
3rd Reading

April 8, 2013 15:22 WSPC/0219-4678 164-IJIG 1350002

International Journal of Image and Graphics
Vol. 13, No. 1 (2013) 1350002 (28 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0219467813500022

A PROVABLE ALGORITHM TO DETECT
WEAK SYMMETRY IN A POLYGON

MAHMOUD MELKEMI∗ and FREDERIC CORDIER†
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This paper deals with the problem of detecting “weak symmetry” in a polygon, which
is a special bijective and continuous mapping between the vertices of the given polygon.
An application of this work is the automatic reconstruction of 3D polygons symmetric
with respect to a plane from free-hand sketches of weakly-symmetric 2D polygons. We
formalize the weak-symmetry notion and highlight its many properties which lead to an
algorithm detecting it. The closest research work to the proposed approach is the detec-
tion of skewed symmetry. Skewed symmetry detection deals only with reconstruction of
planar mirror-symmetric 3D polygons while our method is able to identify symmetry in
projections of planar as well as nonplanar mirror-symmetric 3D polygons.

Keywords: Symmetry; curve reconstruction; computer graphics; sketching interface;
computational geometry.

1. Introduction

Sketches are an efficient way to visualize an idea in conceptual design. Most people
have natural facility to draw freehand sketches. In addition, drawing comprehension
appears to be an inherent part of human perception. Sketching interfaces have been
proven to be very helpful for users to create three-dimensional (3D) shapes quickly
and easily.1,14
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The problem of 3D reconstruction from freehand sketches is defined as follows:
Given a set of two-dimensional (2D) polygons provided by the user, the 3D recon-
struction consists of computing the 3D polygons (planar or nonplanar polygonal
curves) such that their orthogonal projection matches the input polygons. 3D recon-
struction is a difficult problem, as for each vertex of a 2D polygon, there exist an
infinite number of 3D vertices whose orthogonal projection matches this 2D ver-
tex. In this paper, we consider the reconstruction of mirror-symmetric 3D polygons.
Mirror-symmetric 3D polygons are orthogonally symmetric with respect to a central
plane (also known as a symmetry plane).

The problem of reconstructing mirror-symmetric 3D polygons from their orthog-
onal projection involves two steps: (1) finding pairs of “corresponding” vertices in
the given 2D polygons, and (2) using this “correspondence” to compute vertex
positions for the mirror-symmetric 3D polygon.

1.1. Problem statement

Let V = {v0, . . . , vi, . . . , vn−1} and V ′ = {v′0, . . . , v′i, . . . , v′n−1} be two sets of 3D
vertices, each vertex v′i being the mirror image of vi. The straight lines that go
through the pairs of symmetric vertices are perpendicular to the symmetry plane
and are parallel to each other as well. Let Vp = {vp,0, . . . , vp,i, . . . , vp,n−1} and V ′

p =
{v′p,0, . . . , v

′
p,i, . . . , v

′
p,n−1} be the orthogonal projection of V and V ′ respectively.

It follows that the lines that go through pairs of vertices (vp,i, v
′
p,i) are parallel to

each other (see Fig. 1).
Using this property, we define the weak-symmetry notion. Weak symmetry means

that there is a special correspondence among the vertices of a 2D polygon which is
the orthogonal projection of a 3D mirror-symmetric polygon. Given a straight line

(a) (b)

Fig. 1. (Color online) In (a), the symmetric closed polygon and its orthogonal projection onto

the plane (z = 0). In (b), the orthogonal projection of the symmetric polygon; lines joining pairs
of symmetric vertices (red dashed lines in the figure) are parallel to each other.
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�, a polygon P is weakly-symmetric with respect to � if only if it complies with the
following properties:

(i) Bijection. Each point x on P , has a unique correspondent (we say symmetric)
point x′ ∈ P such that the segment [xx′] is parallel to the line �.

(ii) Continuity. Each point of P in a small neighborhood of a point x ∈ P has
a symmetric point in a small neighborhood of x′ ∈ P , which is the symmetric
of x.

Thus, P is said weakly-symmetric when it is weakly-symmetric with respect to
at least one straight line (the formal definitions and examples are given in Sec. 3).

Given a 2D polygon, which is an orthogonal projection of an unknown mirror-
symmetric 3D polygon, reconstruction of this 3D polygon is accomplished as follows:

(i) Find two sets of vertices Vp and V ′
p that partition the vertices of the 2D polygon

so that the vertices of Vp are weakly symmetric to those of V ′
p . Our paper deals

with the problem of computing these two sets. This step is the most difficult
part of the reconstruction process.

(ii) Knowing Vp and V ′
p the computation of the vertices of V and V ′ is straightfor-

ward. This step will be explained in Sec. 6.

1.2. Related works

1.2.1. Reconstruction of mirror-symmetric models

Several researchers have worked on the 3D reconstruction of mirror-symmetric mod-
els from sketches.15 The reconstruction method proposed by Cheon et al.2 uses a
predefined template and assumes that the input sketch is topologically identical
to the predefined template. Li et al.3 have proposed a computational model that
uses planarity and compactness constraints to recover 3D symmetric objects from
2D images. They assume known correspondence of symmetric points. Jiang et al.4

have proposed an interactive method to create symmetric architectural structure.
Their method is mostly focusing on modeling of buildings. In addition, it requires
user interaction to specify the camera calibration and the geometric features of the
building. Tolba et al.5 describe a tool with which a user can draw a scene with 2D
strokes and then he/she can visualize it from different points of view. 3D reconstruc-
tion is achieved by aligning 2D curves on a perspective grid. Cohen et al.6 propose
another sketching interface for 3D curve modeling, where the user can model a
nonplanar curve by drawing it from a single viewpoint and its shadow on the floor
plane.

1.2.2. Symmetry detection

In this paper, we focus on the problem of symmetry detection. To the best of
our knowledge, symmetry detection in the orthogonal projection of nonplanar
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mirror-symmetric 3D polygons remains an open problem. The closest research work
to our approach is detection of skewed symmetry. Skewed symmetry, as defined by
Kanade,7 depicts a mirror-symmetric planar curve viewed from some (unknown)
viewing direction. Posch8 has proposed an algorithm for skewed symmetry detec-
tion. This algorithm first finds all segments parallel to the same direction and
connecting pairs of symmetric vertices. The skewed symmetry is then detected by
checking if the midpoints of these segments are aligned. Shen et al.9,10 have pro-
posed an algorithm based on an affine-invariant-shape representation. They first
build a similarity matrix for the vertices of the curves and use this matrix to detect
the lines corresponding to the skewed-symmetry axis. Yip11 has also proposed an
approach to detect skewed symmetry axes using Hough transformation.

Compared to these previous works, our approach is able to find symmetry for
the projection of planar and nonplanar mirror-symmetric 3D polygons, see Fig. 1.
In previous works, skewed symmetry detection is achieved by finding the symmetry
axis. In the case of nonplanar mirror-symmetric 3D polygons, such an axis does not
exist. Thus, these previous works cannot be used to identify symmetry.

1.3. Overview

To the best of our knowledge, the proposed algorithm reconstructing nonplanar
mirror-symmetric 3D polygons from the 2D polygons of a freehand sketch is the
first one for this problem with provable guarantee. Our algorithm produces an
exact solution and ensures finding all mirror-symmetric 3D polygons that can be
reconstructed from a given 2D polygon. We highlight and formalize a new notion
of symmetry, called weak-symmetry, in order to make possible reconstruction of
mirror-symmetric 3D polygons. A novel algorithm is proposed to detect weak-
symmetry in an input 2D polygon. The strategy of our algorithm requires the
study of two kinds of weak-symmetry: the internal weak-symmetry and the exter-
nal weak-symmetry (these notions are defined in Sec. 3.3). Detection of internal
weak-symmetry is based on the calculus of intersection between at most n wedges
(parts of the unit disc). The polygon P satisfies the internal weak-symmetry while
this intersection is not empty. The external weak-symmetry of P is done in two
steps. First, a candidate-directions set is computed, it contains every straight line
that could make P weakly-symmetric. Second, the lines in the candidate-directions
set are considered one after the other one and the external weak-symmetry of P is
verified using a sweeping-line method.12 Another algorithm is then used to recon-
struct 3D polygons.

The rest of this paper is organized as follows: after the introduction of the
required notation and of the related basic notions (Sec. 2), Sec. 3 presents the
formal definition of the weak-symmetry problem and a main property that will
be used to prove the principal results of this paper. Sections 4 and 5 study the
weak-symmetry of a polygon, and present the related algorithms, accompanied
by a complexity analysis. Section 6 presents the reconstruction step based on the
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proposed algorithm. To improve readability of this paper the proofs of theorems
and lemmas are presented in Appendices.

2. Preliminaries

Throughout this paper P = (v1, . . . , vn) will denote a polygon (without self-
intersection) with vertices vi (i = 1, . . . , n and vn+1 := v1) in the counterclockwise
order, and with edges the segments [vivi+1].

A convex and a concave vertex. A vertex vi of a polygon P is said to be a convex
vertex if the unsigned angle ∠vi−1vivi+1 which is inside P is less than π, otherwise
it is a concave vertex.

Among the key definitions of this paper are the following:

Type of a vertex. Let vi be a vertex of the polygon P and � an oriented line passing
through vi, then vi is said to be of type R if and only if it satisfies one of the
following properties:

(i) vi−1 and vi+1 are on the right side of �.
(ii) vi−1 is on � and vi+1 on the right side of �.
(iii) vi+1 is on � and vi−1 on the right side of �.
(iv) If vi has only one adjacent vertex then it is on the right side of �.

We get the definition of a vertex of type L by replacing in the previous def-
inition the term “right” by “left”. Figure 2 shows the different cases and their
correspondent type.

The �-vertex notation. A vertex of type R or L with respect to a line � is called an
�-vertex.

3. Weak-Symmetry of a Polygon with Respect to a Line

3.1. Defining neighborhoods of points in polygons

Let us denote with ]uw [ the subset of the polygon P which is an open segment that
does not contain its extremities u and w. Let r be a positive real number, then
the neighborhood V (x, r) of a point x ∈ ]vivi+1[ is the intersection set between the
closed disc b(x, r) of radius r and centered at x with P such that b(x, r) ∩ P ⊂

Fig. 2. The type of a vertex vi.
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Fig. 3. Examples of neighborhoods of points on the polygon. The bold lines are neighborhoods
of x and v2.

[vivi+1]. The neighborhood V (vi, r) of a vertex vi is the set b(vi, r)∩P that verifies
b(vi, r) ∩ P ⊂ [vi−1vi] ∪ [vivi+1]. The neighborhoods V (x, r) are not defined for
every real positive r, however there exists r0 > 0 sufficiently small so that for every
r < r0, V (x, r) is well defined, that is, it satisfies the above inclusion constraint.
In Fig. 3, the intersections of the discs centered at x and v2 with the illustrated
polygon are respectively included in [v7v8] and [v1v2] ∪ [v2v3], thus they define
respectively neighborhoods of x and v2. However, the intersections of the discs
centered at y ∈ [v5v6] and v4 with the polygon do not fall into the above inclusion
constraint required by the neighborhood definition. For example, the dotted disc
centered at v4 cuts the edge [v6v7], so it does not satisfy the inclusion constraint
that is, the intersection of the dotted disc centered at v4 with the polygon should
be included in [v3v4]∪ [v4v5]. Similarly, the dotted disc centered at y cuts the edge
[v4v5]. Thus, the inclusion constraint is not satisfied, since its intersection with the
polygon is not included in [v5v6].

3.2. The weak-symmetry notion

Two polygonal segments P1 and P2 are weakly-symmetric with respect to � if and
only if there exists a mapping φ� from P1 to P2 such that:

(i) φ� is bijective, that is for all x ∈ P1 there exists a unique y ∈ P2 such that
y = φ�(x).

(ii) For all x ∈ P1 the segment [xφ�(x)] is parallel to � or it is of zero length (i.e.
φ�(x) = x).

(iii) φ� and φ−1
� are continuous. The continuity of φ� means that for all x ∈ P1

there exists ε0 > 0 such that for all ε < ε0, there exists δ > 0 such that if
y ∈ V (x, δ) then φ�(y) ∈ V (φ�(x), ε). The continuity of φ−1

� is obtained by
replacing in the previous definition φ� by φ−1

� .
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(a) (b) (c)

Fig. 4. (a) Two weakly-symmetric polygonal segments with respect to the horizontal. (b)
The polygon is not weakly-symmetric with respect to the line L1. (c) The polygon is weakly-
symmetric polygon with respect to the line L2. z, z′, v, and w are the only L2-vertices of the
illustrated polygon.

A polygon P is weakly-symmetric with respect to � if and only if P can be divided
in two polygonal segments P1 and P2 sharing their extremities and P1 is weakly-
symmetric to P2 with respect to �.

Example demonstrating cases of weak-symmetry presented in Figs. 4(a)–4(c). Fig-
ure 4(a) shows two polygonal segments which are weakly-symmetric to each other
with respect to the horizontal line. The intersection of the horizontal (the dotted
segments) with the polygonal segments gives the weakly-symmetric points. Each
point must have a unique weakly symmetric point (bijection of the mapping). In the
case of many intersections, we use the property of continuity. For example, consider
the horizontal intersecting the two polygonal segments at a, b, c and d. Since a is
in a neighborhood of x and c is the unique intersection-point which is in the neigh-
borhood of x′ (the point weakly-symmetric of x) then a is weakly-symmetric to c

and therefore b is weakly-symmetric to d. In the example of Fig. 4(b), the polygon
is not weakly-symmetric with respect to the line L1. The intersection points of the
dotted segments with the polygon are the weakly-symmetric points. At the point w,
the construction of the weakly-symmetric mapping is impossible, the point x is into
the neighborhood of w, however x′ is not in the neighborhood of w′. Consequently,
the property of the mapping continuity is not satisfied. In the case of Fig. 4(c), the
polygon is weakly-symmetric with respect to the line L2 because it can be divided
onto two weakly-symmetric polygonal segments with respect to the line L2, these
polygonal segments are P1 of end points w, v and passing through x, and P2 of
end points v and w and passing through x′. The couples of the weakly-symmetric
points are obtained by sweeping L over the polygon starting from the vertex v and
ending at w. The intersection of L with the polygonal segments gives the weakly-
symmetric points. For instance, the points weakly-symmetric to v, x, y, z, u and w

are respectively φL(v) := v, φL(x) := x′, φL(y) := y′, φL(z) := z′, φL(u) := u′ and
φL(w) := w.
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To verify that a polygon is weakly symmetric with respect to a line �, we need
only to verify that the �-vertices satisfy the key property stated in the next theorem,
its proof is given in Appendix A.

Theorem 1. If a polygon P is weakly-symmetric with respect to � then each vertex
of type R (respectively L) is weakly-symmetric to a vertex of type R (respectively L).

3.3. The internal and external weak-symmetry notions

The study of the weak-symmetry notion needs to distinguish two kinds of weak-
symmetry: The Internal weak-symmetry and the External weak-symmetry. In the
rest of the paper, we denote them respectively as I-weak symmetry and E-weak
symmetry. Before defining these notions, we introduce the following terminology. A
line � is called internal-line if for all x ∈ P , [xφ�(x)] is included into the interior of
P , that is [xφ�(x)] ⊂ Int(P )∪P where Int(P ) denotes the interior of P . Otherwise
� is called an external-line. We point out that the term external-line is an abuse
of language since the segments [xφ�(x)] are not everywhere out of the interior
of P .

We say that a polygon P is I-weakly symmetric if there is at least one internal-
line � such that P is weakly-symmetric with respect to �. A weakly-symmetric
polygon which is not I-weakly symmetric is called E-weakly-symmetric.

The polygon of Fig. 5(a) is I-weakly symmetric because it is weakly-symmetric
with respect to the internal-line L1. However, the polygon of Fig. 5(b) is not I-
weakly symmetric but it is E-weakly symmetric with respect to the external-line
L2. The detection of weak-symmetry employs two algorithms: the first deals with
internal weak-symmetry, and it is presented in Sec. 4. The second algorithm detects
the external weak-symmetry, and it is presented in Sec. 5.

(a) (b)

Fig. 5. (a) An I-weakly symmetric polygon. (b) This polygon is E-weakly symmetric. The extrem-
ities of each dotted segments are weakly-symmetric.
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4. Detection of the Internal Weak-Symmetry of Polygons

4.1. Internal weak-symmetry of convex polygons

Theorem 2. Every convex polygon P is I-weakly-symmetric for any line �.

Proof. Considering an arbitrary line �, one must construct the weak-symmetry
mapping φ� which satisfies the internal weak-symmetry constraint. Hereafter we
define φ�. Since P is convex then we distinguish three cases:

(i) � touches P at one vertex v: v is weakly-symmetric to itself, that is φ�(v) := v.
(ii) � intersects P at exactly two points x and x′: then x′ is weakly-symmetric to

x, thus φ�(x) := x′.
(iii) � overlaps with exactly one edge [v1v2] of P , then we pose φ�(tv1 + (1 −

t)v1+v2
2 ) := tv2 + (1 − t)v1+v2

2 , with t ∈ [0, 1].

The convexity of P ensures that for every x ∈ P , [xφ�(x)] ⊂ Int(P ) ∪ P , which
establishes that P is I-weakly symmetric.

4.2. Internal weak-symmetry of arbitrary polygons

Consider the counterclockwise sense, for any vertex v, v− and v+ denote respectively
the previous and the next vertex of v, and we say that a line separates v− from v+ if
these two vertices are not strictly on the same side of this line. In this sub-section,
we show that a polygon is I-weakly-symmetric if there exists a line � such that
for every concave vertex v of this polygon, the parallel line to � passing through v

separates v+ from v− (for an example see the two dotted lines of Fig. 6(a)).
Let u1, u2, . . . , uj be the concave vertices of a polygon P . The wedge of uk is

the region outside P bounded by two half-lines starting at uk and passing through
u−

k and u+
k . In Fig. 6(a), the dashed region is the wedge of the vertex u1. Let O be

the origin of the employed coordinate system. After the translation of the wedge of
uk so that uk coincides with O, we denote the resulting wedge wedgek. M1(uk) and
M2(uk) are the intersection points of the half-lines bounding wedgek with the unit
circle centered at O.

Fig. 6. (a) An I-weakly symmetric polygon. (b) The wedges of the polygon shown in (a). (c) A
polygon which is not I-weakly symmetric. (d) The wedges of the polygon shown in (c).
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Before introducing the next theorem, we point out that a line � passing through
the center O cuts wedgek if M1(uk) and M2(uk) are not on the same side of �

or � passes through either M1(uk) or M2(uk). The next theorem states the main
property used to detect the internal weak-symmetry of a polygon.

Theorem 3. A polygon P is I-weakly-symmetric if and only if there exists a line
�, passing through O, which cuts all the wedges : wedge1, wedge2, . . . , wedgej.

The proof is presented in Appendix A.

Examples. Figure 6(b) shows the wedges of the vertices u1 and u2 of the polygon
in Fig. 6(a). The line L cuts the two wedges wedge1 and wedge2, therefore the
polygon of Fig. 6(a) is I-weakly symmetric. Figure 6(d) shows the wedges of the
polygon of Fig. 6(c): one can observe that there exists no line cutting both wedge1

and wedge2, thus the polygon of Fig. 6(c) is not I-weakly symmetric.
Let us call a communication wedge between two wedges W1 and W2, a wedge

W such that each line passing through the origin O and cutting W cuts also W1

and W2 and vice versa. If W1 and W2 have a communication wedge, then there
are two communication wedges between W1 and W2 (the gray wedges in Fig. 7(a)).
They are symmetric with respect to the origin O. These two wedges have the same
property: they identify all the lines cutting the two wedges W1 and W2. In the rest,
we use only one of these communication wedges.

To detect the internal weak-symmetry of a polygon P , we compute iteratively
the sequence of wedges Wk defined as follows: W1 = wedge1, Wk is the communica-
tion wedge between Wk−1 and wedgek, for all k = 2, . . . , j. The wedge Wj groups

(a) (b)

Fig. 7. (a) Communication wedges between two wedges. (b) A polygon and the wedge returned
by the algorithm IWSD.
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all the lines making the polygon I-weakly symmetric. The algorithm IWSD (Inter-
nal Weak Symmetry Detection) summarizes this iterative process; see Algorithm 1.
The time complexity of this algorithm is O(n), which is established as follows: the
loop in lines 4–6 iterates as many times as there are wedges. At each iteration, the
communication wedge between two wedges is computed, which is done in constant
time. Since the number of wedges does not exceed n then the time complexity of
the algorithm IWSD is indeed linear.

Figure 7(b) presents the output of the algorithm IWSD applied on the illus-
trated polygon composed of 102 vertices. IWSD returns that the polygon is I-
weakly symmetric with respect to every line passing through the illustrated wedge
which is bounded by the segments [Oa] and [Ob], with a = (−0.0026; 0.9999) and
b = (−0.0501; 0.9987).

Algorithm IWSD1

input : A polygon P .
output: A wedge W , each line cutting W makes P I-weakly-symmetric.

W ← wedge1,2

i← 2,3

while i ≤ j and W is not empty do4

Update the wedge W : the new W is the wedge of communication between W5

and wedgei,
end6

return W ,7

Algorithm 1. Internal Weak-Symmetry Detection

5. Detection of External Weak-Symmetry

Let us turn to the case where the polygon is not I-weakly symmetric, and develop an
algorithm detecting the E-weak symmetry. The algorithm EWSD (External Weak-
Symmetry Detection) comprises two steps presented in the next sub-sections.

5.1. Step 1: Computing the candidate directions set

Given a polygon P , the goal is to compute a set called candidate directions set.
This must be as small as possible, and contains all the lines, if any exists, which
make P E-weakly symmetric. The algorithm EWSD (External Weakly Symmetric
Detection) looks for all the lines making the input polygon E-weakly symmetric.
At this point, some additional terminology must be introduced:

(a) A concave-segment of P is the segment e whose end-points are two concave
vertices of P , which have the same type with respect to the line containing e.

(b) The definition of the convex-segment of P is obtained by replacing in the text
of item (a) the term concave by convex.
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Fig. 8. Examples of convex, concave, and convex–concave segments in a polygon.

(c) A convex–concave segment is the segment e whose end-points are a convex and
a concave vertex of P , and they have the same type (R or L) with respect to
the line containing e.

Examples of convex, concave, and convex–concave segments are illustrated in Fig. 8.
We point out that a direction is represented by the unit director vector of a

segment, in the following of the paper, the term segment means its directions. To
define the candidate-directions set, the following sets are needed.

(d) A0 is the set of the convex–concave segments of P .
(e) A1 is the union of the three sets: A0 and the concave-segments of P which are

not edges of P and the set of the edges of the convex hull of P which do not
belong to P .

(f) A2 is the union of the two sets: A0 and the convex-segments of P which are
not edges of P .

The sets A1 and A2 are used to define the candidate-directions set (Definition 1)
because they contain all the lines, if they exist, that make P E-weakly symmetric
(see the next theorem).

Theorem 4. If P is E-weakly symmetric with respect to a line � then � is parallel
to two segments, one belonging to the set A1 and the other belonging to A2.

The proof of Theorem 4 is presented in Appendix B. Theorem 4 gives a way to
filter the set of all the possible directions, that is the union of the convex edges,
the concave segments and the convex–concave segments. The useless directions are
those which do not belong to A1 ∩A2, they are removed. Therefore, based on this
theorem, the candidate-directions set is defined as follows:

Definition 1. The set of the candidate directions A is the set of the directions
� which are parallel to a segment belonging to A1 and another segment belonging
to A2.

Examples. In Fig. 9, the sets of the convex, concave as convex–concave segments
are the following (the segments parallel to existing ones are not mentioned, they
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Fig. 9. (Color online) The dotted segments represent the candidate-direction set. The red seg-
ments are the convex hull edges and the blue ones are the convex–concave segments.

are redundant):

(i) The convex–concave segments are: [v1v9], [v2v8], [v2v14], [v3v9], [v4v8], [v4v12],
[v4v14].

(ii) The edges of the convex hull of P which do not belong to P are: [v1v5], [v5v7],
[v12v14].

(iii) The convex-segments which do not belong to the convex hull of P are: [v1v7],
[v3v7], [v8v14], [v10v14].

(iv) The concave-segments are: [v9v11], [v9v13] and [v11v13].

A1 is the union of the sets of items (i), (ii) and (iv), and the set A2 is the
union of items (i), (ii) and (iii). According to Definition 1, the directions belonging
to the candidate-directions set A are those belonging to (i) and (ii). The concave-
segments are not added to A since they are not parallel to the convex-segments
(the concave-segment [v2v4] is not considered because it is parallel to the convex
hull edge [v1v5]).

The function CDS computing the Candidate-Directions Set is summed up in
Algorithm 2.

Complexity of the function CDS (Algorithm 2). The time complexity of the function
CDS is at most O(n2). This is proved as follows: Line 2 computing the convex hull
of P , costs O(n).13 The loops (line 5) iterate as many times as there are concave,
convex and concave–convex segments: the number of these segments is O(n2) in the
worst case. Therefore, the lines 5 to 25 cost O(n2), which gives the time-complexity
of the function CDS.

5.2. Step 2: Verifying the external weak-symmetry of a polygon

The goal in this section is to find all the lines making the input polygon E-weakly-
symmetric. We look for these lines in the candidate-directions set. That is, for each
line of this set we verify that the polygon P is either E-weakly symmetric with
respect to � or not. To do this, we sweep � over P . The sweep process consists of
Steps A and B described below.
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Function CDS1

input : A polygon P .
output: The candidate-directions set S.

Compute CH (P ) the convex hull of P .2

C ← the directions represented by the edges of CH (P ) which do not belong to P .3

i← 0,4

while i ≤ n do5

j ← i + 2,6

while j < n do7

e← [vivj ],8

if e is convex–concave segment and e is not parallel to a direction of C9

then
add the direction e to C,10

end11

else12

if e is a concave-segment and e is not parallel to a direction of CS then13

add the direction e to CS,14

end15

else16

if e is a convex-segment and e is not parallel to a direction of VS17

then
add the direction e to VS ,18

end19

end20

end21

j ← j + 1,22

end23

i← i + 1,24

end25

S ← (CS ∩VS) ∪ C,26

return S,27

Algorithm 2. Candidate Directions Set

Step A: Initialization (find two weakly-symmetric vertices)

To start the sweep of a given line � over the input polygon, two weakly-symmetric
vertices are required. These vertices are defined by the next theorem. To simplify
the presentation, without loss of generality, we consider the case where the line is
the horizontal �o (with a rotation of P we can transform � to �o).

Theorem 5. If P is externally weakly-symmetric with respect to the horizontal
then the vertex with the smallest ordinate and the smallest abscissa is weakly-
symmetric to the vertex with the smallest ordinate and the largest abscissa.

The proof of this theorem is presented in Appendix C. In the case of the polygon
shown in Fig. 9, these two vertices are v1 and v5.
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Function VEWSL1

input : A polygon P , Two weakly-symmetric vertices u and v, A direction �.
output: ews a boolean, it takes true if P is E-weakly-symmetric otherwise its

value is false.

up ← previous(u), vn ← next(v),2

un ← next(u), vp ← previous(v),3

b1 ← up �= vn and ([upvn] is not an edge of P which is parallel to �),4

b2 ← un �= vp and ([unvp] is not an edge of P which is parallel to �),5

ews ← true,6

while (b1 =true or b2=true) and (ews=true) do7

if (b1 = true) then8

c1 ← (up and vn belong to a line parallel to � and have the same type9

(R or L) with respect to the line �),
if (c1 = true) then10

up ← previous(up), vn ← next(vn),11

b1 ← up �= vn and ([upvn] is not an edge of P which is parallel to �),12

end13

else14

ews ← false,15

end16

end17

if (b2 = true) then18

c2 ← (un and vp belong to a line parallel to � and have the same type19

with respect to the line �),
if (c2 = true) and (ews = true) then20

un ← next(un), vp ← previous(vp),21

b2 ← un �= vp and ([unvp] is not an edge of P which is parallel to �),22

end23

else24

ews ← false,25

end26

end27

end28

Return ews,29

Algorithm 3. Verification of the External Weak-Symmetry with respect
to a Line

Step B : The sweep-line process

Let v be an �-vertex (for a definition see Sec. 2), and next(v) and previous(v) the
next and the previous �-vertex in the counterclockwise order. At Step A, two first
weakly-symmetric vertices u and v with respect to � are computed. Starting at u

and v, � is swept over P . The sweep stops at discrete “events”, that is when � hits
�-vertices. When u is identical to v the sweep stops iteratively at the couples defined
by (next(u), previous(v)), otherwise the polygon is swept in two directions and thus
we stop iteratively at (next(u), previous(v)) and (previous(u), next(v)). For each
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Algorithm: EWSD1

input : A polygon P
output: The set L of the directions making P E-weakly symmetric.

S ← CDS (P ),2

Pose S = {�1, . . . , �N},3

L ← ∅,4

for i=1 to N do5

Compute the two first vertices u and v of P which are weakly symmetric6

with respect to �i (we use Theorem 5 to compute them),
ews ← VEWSL(P,u, v, �i),7

if ews = true then8

add �i to L,9

end10

end11

Return the set L,12

Algorithm 4. External Weak-Symmetry Detection

new couple, we verify that its vertices are weakly-symmetric (i.e. they must belong
to the same line parallel to � and must have the same type (R or L); this property is
stated in Theorem 1). If once the property of Theorem 1 is not satisfied for a couple,
we reject the direction �, otherwise we return that P is E-weakly symmetric with
respect to �. The function VEWSL (Verification of the External Weak Symmetry
with respect to a Line) summarizes the steps verifying the E-weak-symmetry of a
polygon P with respect to a given line, see Algorithm 3. For simplicity this function
is written for the case where the input first weakly-symmetric vertices u and v are
different (u �= v). The pseudo-code corresponding to the case u = v can be obtained
from this function by deleting the line 3, the variables b2 and c2, the line 5 and lines
from 18 to 27. The algorithm EWSD summarizes the steps to detect the external
weak-symmetry of a polygon, see Algorithm 4.

Example. Let us perform the lines 6 to 9 of the algorithm EWSD for the polygon
of Fig. 9 with the direction �i equal to the horizontal line. The first computed
weakly-symmetric vertices are v1 and v5 (line 6), the sweep process starts at v1 and
v5. Using the function VEWSL (line 7), the horizontal hits respectively (v14, v6),
(v2, v4), (v13, v7), (v3, v3), (v12, v8), these couples of vertices are weakly-symmetric.
The next touched vertices are v11 and v9 which are not weakly symmetric, since
[v9v11] is not parallel to the horizontal line. Therefore, the function VEWSL returns
false and the horizontal direction is rejected.

5.3. Time complexity of the algorithm EWSD

First we give the time complexity of the function VEWSL; see Algorithm 3. The
loop (lines 7–28) iterates as many times as there are couples of vertices on the
same line parallel to �, thus the number of iterations is of order n in the worst
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case. Since the tests of lines 8–17 and 18–27 are done in constant time then the
function VEWSL costs O(n) in the worst case. Now, we compute the worst-case
complexity for Algorithm EWSD (Algorithm 4). It is established in Sec. 5.1 that
the time complexity of the function CDS (called at line 2) is O(n2). Line 7 calls
the function VEWSL, so it costs O(n). The loop starting at line 5 iterates as many
times as there are segments in the candidate-directions set S, that is N = O(n2) in
the worst case. Therefore the worst complexity for the loop 5 is O(n3), which gives
the time-complexity of Algorithm EWSD.

In practice, regarding the lines of the candidate-directions set which are not
retained, the algorithm EWSD rejects them in few iterations, as it is demonstrated
by the example in Table 1: the first column gives the candidate directions, for
which the sweep starts at the vertices of column 2. Column 3 indicates the last
touched vertices. For the whole weak-symmetry verification, the total number of
visited vertices is given in column 4. We observe that for the rejected directions
this number does not exceed 4 except for the direction [v1v5]. All the vertices are
visited in the case of [v12v14], since the polygon is weakly symmetric with respect
to the line containing this segment.

5.4. Experimental results

The results of the algorithm EWSD on the polygons illustrated by Fig. 10 are
presented in Table 2. They show the behavior of the algorithm on polygons with
different shapes. The first row gives the number of vertices of each polygon, the
second row shows the number of convex segments, these values include the num-
ber of the convex hull edges of the polygons. The third and fourth rows give
respectively the numbers of concave and convex–concave segments. The number

Table 1. Related to Fig. 9. NVV: the number of the visited vertices.

Directions The sweep starts at: The sweep stops at: NVV

[v1v9], [v2v8], [v4v8] v7 (v6, v8) 2
[v3v9] v7 (v4, v8) 4
[v2v14] v5 (v6, v4) 2
[v5v7] (v5, v7) (v4, v8) 3
[v1v5] (v1, v5) (v9, v11) 11
[v12v14] (v12, v14) v7 14

Table 2. Outputs of the algorithm EWSD on the polygons of Fig. 10.

Fig. 10(a) Fig. 10(b) Fig. 10(c) Fig. 10(d) Fig. 10(e)

Number of vertices 34 51 114 206 631
Convex segments 69 72 3 652 7174
Concave segments 87 100 1317 556 6815
Convex–concave segments 5 115 0 1101 13445
Candidate-directions 62 179 2 1611 18831
CPU time (sec) 0 0 0 0.03 0.81
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(a) (b) (c)

(d) (e)

Fig. 10. Related to Table 2.

of candidate-directions that could make the polygon E-weakly-symmetric is given
in the fifth row. For the polygon of Fig. 10(c), the algorithm is efficient since it
selects only two candidate-directions. Compared to an algorithm which verifies the
weak-symmetry for all the possible directions (all the segments connecting two ver-
tices of a polygon), our method filters out many of the directions to consider for
identifying the E-weak-symmetry. In fact, the numbers of the candidate-directions
are significantly smaller than the following numbers of directions considered by a
brute-force algorithm: 486, 1125, 4846, 20 910 and 198135 corresponding respec-
tively to Figs. 10(a)–10(e). The last row presents the running time (on 2.67GHZ
with 4GB RAM), we observe that the algorithm is fast, it takes less than 1 s even
for polygons with large number of vertices and having complex shapes.

6. 3D Reconstruction Using the Weak-Symmetry Correspondence

Once the weak-symmetry correspondence among the vertices of the polygon has
been calculated, the next step is to compute the 3D positions of these vertices. Let
v a vertex of coordinates (x, y, z) and v′ a vertex of coordinates (x′, y′, z′). v′ is the
mirror-symmetric of v. We assume that v and v′ do not have same coordinates. Let
M be the symmetric plane whose normal vector �N is a unit vector of coordinates
(xn, yn, zn). The two vertices are orthogonally projected onto the plane (z = 0).
Thus, the 3D reconstruction comes down to computing the z-coordinates of the two
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vertices. As explained in Ref. 14m if the coordinates (xn, yn, zn) with zn �= 0, on
the normal vector of M is known, the z-coordinates of the two vertices are given
by Eqs. (1) and (2):

z = −1
2

(
xn(x′ + x)

zn
+

yn(y′ + y)
zn

+
zn(y′ − y)

yn

)
. (1)

z′ = −1
2

(
xn(x′ + x)

zn
+

yn(y′ + y)
zn

− zn(y′ − y)
yn

)
. (2)

The z-coordinates are also given by Eqs. (3) and (4):

z = −1
2

(
xn(x′ + x)

zn
+

yn(y′ + y)
zn

+
zn(x′ − x)

xn

)
. (3)

z′ = −1
2

(
xn(x′ + x)

zn
+

yn(y′ + y)
zn

− zn(x′ − x)
xn

)
. (4)

Given that the value of z is given by Eqs. (1) and (3), the coordinates of v and
v′ satisfy the following equality:

(x′ − x)
(y′ − y)

=
xn

yn
. (5)

Equation (5) gives the relation between the coordinates xn and yn of the normal
vector �N . The other coordinate zn must be chosen between 0 and 1. Since �N is a
unit vector and (xn, yn) satisfies Eq. (5) then the normal vector �N is determined
and thus the symmetric-plane of the 3D polygon can be computed. By varying the
values of zn within the interval (0, 1], the family of the reconstructed 3D polygons
are identical under scaling change of factor related to zn. In this paper, we do not
develop a method to select automatically the value of zn for reconstructing the
curve at the appropriate scale. For the examples of Fig. 11 zn is set to 0.5. One
possibility to define the zn value automatically would be to choose it in a way that
the compactness of the reconstructed curve is maximized. The compactness could
be defined as V 2/S3, V being the volume of the bounding box of the reconstructed
curve and S its surface area. Li et al.3 have shown that human beings interpret
sketches in a way to maximize the compactness of the reconstructed shape. We
leave this as future work. Note that Eq. (5) implies that one of the two coordinates
xn and yn must be different from 0. If xn is equal to 0, the computation of the z-
coordinates of v and v′ is done with Eqs. (1) and (2). If yn is equal to zero, Eqs. (3)
and (4) should be used instead. If xn and yn are both different from 0 then one
may employ any or all of Eqs. (1)–(4).

Figure 11 shows two examples of 3D reconstruction using our algorithms IWSD
and EWSD. We have computed the line that makes all the polygons in each
(Figs. 11(a) and 11(c)) weakly-symmetric. The tangent vector of these two lines
are (0.655; 0.755) and (0.309; 0.951) for Figs. 11(a) and 11(c) respectively. The
process of computing the weak-symmetry of a set of polygonal curves is as follows.
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(a) (b)

(c) (d)

Fig. 11. Drawings composed of 2D polygons (a) and (c) and the corresponding 3D reconstruction
(b) and (d).

First, we compute all possible directions of the weak-symmetry for each curve indi-
vidually. For convex curves, the weak-symmetry can be along any direction. For
nonconvex curves, there are usually one or two possible directions. Next, we find if
there exists one direction of the weak-symmetry which is common to all the curves.
If so, this implies that these curves are the projection of 3D polygonal curves which
are symmetric with respect to the same plane. We compute the 3D positions of
these curves using the common direction and Eqs. (1)–(4).

We point out that when all the curves are weakly-symmetric with respect to
more than one direction, this involves that different 3D polygonal curves can be
reconstructed. Each direction of weak-symmetry defines a plane such that the input
curves are the projection of 3D curves which are symmetric with respect to this
plane. Similarly to the computation of the zn value, we could use the compactness
criteria to find the direction of reconstruction automatically. One way to do it would
be to enumerate all the possible directions and choose the one which maximize the
compactness of the reconstructed curves. We leave it as future work.

7. Conclusion

Detecting the weak-symmetry of a planar hand-sketched polygonal curve is a key
step in the process of reconstructing mirror-symmetric nonplanar 3D polygonal
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curves. In this paper, weak-symmetry has been formally defined, and a method to
identify it has been developed. The whole time complexity of the “weak-symmetry
identification” algorithm is O(n3) in the worst case. Our future work will be to
extend this method to the problem of detecting the weak-symmetry of polygons
with self-intersections.

Appendix A. Proof of Theorem 1 and Theorem 3

A.1 Proof of Theorem 1

Consider a vertex v which is of type R with respect to a fixed line �, and suppose
that the point v′ which is weakly symmetric to v is not of type R. Then, we have
four possible situations illustrated in Fig. 12. In all cases, v is weakly-symmetric to
a point v′ which is not a vertex of type R. The line touching v and v′ obtained by
a slight move of �, intersects P at the point a in a neighborhood of v′. However,
this line does not intersect P in a neighborhood of v. That is φ�(a) is not in a
neighborhood of v which contradicts the continuity of φ� and thus contradicts the
weak-symmetry of P .

A.2 Proof of Theorem 3

Let us prove the first implication. Let P be an I-weakly-symmetric polygon and uk

be a concave vertex of P . We will prove that � cuts wedgek, for every k = 1, . . . , j. To
derive a contradiction, we suppose that � passing through uk does not cut the wedge
of uk, which implies that uk is either of type R or of type L, say that it is of type
R. Theorem 1 ensures that uk is either weakly-symmetric to itself or to a vertex
v of type R (see the example of Figs. 13(a) and 13(b)). Let us move slightly the
line � touching uk. In the case where uk is weakly-symmetric to itself, the obtained
line intersects P at two points a and b in a neighborhood of uk (Fig. 13(a)). The

(a) (b)

(c) (d)

Fig. 12. Proof of Theorem 1: Illustration of the possible situations where the weakly-symmetric
vertices v and v′ have not the same type.
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(a) (b) (c)

Fig. 13. Related to the proof of Theorem 3.

continuity of the mapping φ� implies that a is weakly-symmetric to b (φ�(a) = b)
and since uk is concave then the segment [ab] is not included in the interior of P .
This contradicts the internal weak-symmetry of P . Let us turn to the case where
uk is weakly-symmetric to v, the obtained line, with a slight move of �, intersects
P at the points a and b in a neighborhood of uk and at two points c and d in a
neighborhood of v (see the example of Fig. 13(b)). By reason of continuity of φ�

the weakly-symmetric points to a and to b are c and d ({φ�(a), φ�(b)} ⊂ {c, d}).
Because uk is concave, one of the segments [aφ�(a)] or [bφ�(b)] is not included in
Int(P ). In the example of Fig. 13(b) the segment [bφ�(b)] is outside P : neither [bc]
nor [bd ] is included in Int(P ). This contradicts the fact P is I-weakly symmetric.
Therefore � must cut wedgek for any concave vertex uk.

Conversely, let us prove that if there exists a line � that cuts all the wedges
wedgek, k = 1, . . . , j then P is I-weakly symmetric with respect to �. Since the
line � cuts the wedge of each concave vertex uk, then uk is neither of type R
nor of type L. Let us divide P into convex polygons using the lines parallel to �

and passing through the concave vertices uk (see Fig. 13(c)). Theorem 2 ensures
that the convex polygons are I-weakly symmetric with respect to � thus P is also
I-weakly-symmetric with respect to �. This ends the proof.

Appendix B. Proof of Theorem 4

To prove Theorem 4, we need to prove lemmas 1–4. All lemmas between 1 and 4,
stated immediately below, consider that the polygon P is E-weakly symmetric with
respect to a given line �.

Lemma 1. The line � is parallel to an edge of the convex hull of P or to a segment
connecting two vertices of P having the same type (R or L) with respect to �.

Proof. Let P be an external weakly-symmetric with respect to a line �, we should
prove that � is parallel to an edge of the convex hull of P or to a segment connecting
two vertices having the same type (R or L) with respect to �. Let us sweep � over
P starting outside the convex hull of P , then � will hit:

(i) at least two vertices of P which have the same type (the line A in Fig. 14), or
(ii) an edge of P (the line B in Fig. 14), or
(iii) a vertex of P (the line C in Fig. 14).
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Fig. 14. Related to the proof of Lemma 1.

In the cases (i) and (ii), � is parallel to an edge of CH (P ) which achieves the
proof. It remains the case (iii), let us suppose that � hits a vertex of P (case of the
line C). Starting at this vertex, we sweep � over P until it hits a vertex v of type
R or L, say R, see Fig. 14. This vertex exists, otherwise P is I-weakly symmetric
with respect to �, which contradicts the definition of the external weak-symmetry
of P . As v is of type R then Theorem 1 ensures that there is only two cases:

(a) v is weakly-symmetric to a vertex v′ of type R, or
(b) the vertex v is weakly-symmetric to itself.

In the case (a) the proof is achieved: [vv′] is the segment we are looking for. It
remains the case (b): let u and w be respectively the previous and the next �-vertices
from v. Consider the sweep of the line � starting at v and ending at u and w (see the
dotted segments between v and [uw ], Fig. 14). By reason of the continuity of the
weak-symmetry mapping, the intersection points of the dotted lines with the [uv ]
and [uw ] are weakly-symmetric. We deduce that u must be weakly-symmetric to w

and thus they have the same type (Theorem 1). Consequently, the line � is parallel
to a segment connecting two vertices of the same type, which ends the proof.

The next lemma is introduced to prove Lemma 3.

Lemma 2. Let [uv ] be an edge of P parallel to �. If u is not weakly-symmetric to
v then [uv ] is weakly-symmetric to an edge of P aligned with [uv ]. Otherwise the
half-edge [uu+v

2 ] is weakly-symmetric to [v v+u
2 ].

Proof. Consider an edge [uv ] parallel to �. First, let us study the case where
φ�(u) �= v. As [uφ�(u)] and [vφ�(v)] are parallel to � then u, v, φ�(u) and φ�(v) are
on the same line parallel to �. The continuity of φ� and φ−1

� ensure that [φ�(u)φ�(v)]
is necessarily an edge of P . Now, let us turn to the case where v is weakly-symmetric
to u, i.e. φ�(u) = v. The continuity of the mapping φ� ensures that each point on
[uv ] is weakly-symmetric to a point belonging to the same edge [uv ]. For each
point on the edge [uv ], the weak-symmetry mapping can be defined as follows:
φ�(tv + (1 − t)u+v

2 ) := tu + (1 − t)u+v
2 , with t ∈ [0, 1].
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Lemma 3. If � is parallel to an edge e of P then e is parallel to a segment e′ �∈ P

which is convex or concave or convex–concave.

Proof. Consider an edge e = [uv ] ∈ P parallel to the direction �, we should prove
that e is parallel to a concave segment or to a convex segment or to a convex–concave
one (cf. Sec. 5.1 items (a), (b) and (c)).

Based on Lemma 2, there are only two cases:

(i) e = [uv ] is weakly-symmetric to an edge e′ = [u′v′] ∈ P where e′ is different
than e, or

(ii) e is weakly-symmetric to itself.

Consider the case (i) which is illustrated by Fig. 15(a), the vertices u and v are
respectively weakly-symmetric to u′ and v′. Since the vertices v and v′ have the
same type and [vv′] �∈ P then [vv′] is the segment parallel to e, which we are looking
for (in the example of Fig. 15(a), it is a convex segment). This ends the proof for
this case. Let us turn to the case (ii) where the edge e is weakly-symmetric to itself,
this case is shown in Fig. 15(b), starting at e, we sweep � over P as illustrated by the
dotted segments, the intersection points of these lines with the polygon are weakly-
symmetric (consequence of the continuity of the weak-symmetry mapping). The line
� must meet two vertices u′ and v′ which have the same type. Furthermore [u′v′]
cannot belong to P , otherwise P will be I-weakly-symmetric which will contradict
the fact P is E-weakly symmetric. This ends the proof of the case (ii) and thus the
proof of the lemma.

Lemma 4. (i) If the line � is parallel to a concave-segment e of P which is not
an edge of P, then there exists a convex-segment e′ of P parallel to � and in
addition e′ is not an edge of P .

(ii) If the line � is parallel to a convex-segment e of P which is neither an edge of
P nor an edge of the convex hull of P, then there exists a concave-segment e′

of P parallel to � and in addition e′ is not an edge of P .

Proof. (i) To simplify the proof of the implication, we refer to Fig. 16. Let
e = [uv ] �∈ P be a concave segment and u is weakly-symmetric to v. Starting

(a) (b)

Fig. 15. (a) and (b) are related to the proof of Lemma 3.
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at u and v, we sweep the line containing e over P as illustrated by the dot-
ted segments, the intersection points (empty small discs) of these lines with
the polygon are weakly-symmetric (consequence of continuity of the weak-
symmetry mapping). The sweeping stops when the line hits two convex ver-
tices u′ and v′ having the same type (R or L). These vertices u′ and v′ must
exist. Let us prove it: since u and v are concave then the line containing e

divides the polygon into two parts (the polygon cannot be on the same side of
this line because a concave segment is not an edge of the convex hull of P ).
Starting at e, we sweep the line containing e over the polygon, the sweeping
takes the direction opposite to w, that is, we move away from w (cf. Fig. 16).
This sweeping must reach the vertex w, which is possible only in the case of
existence of two convex vertices to reverse the sweeping direction and move
closer to w. The segment connecting these two convex vertices is the segment
we are looking for. This ends the proof of this property.

(ii) The proof of the property presented in Lemma 4(ii) is similar to the proof of
the property (i). We replace in the previous proof “concave” by “convex” and
“convex” by “concave”.

B.1 Proof of Theorem 4

The proof of this theorem is a direct consequence of Lemma 1, 3 and 4. Lemma 1
ensures that the line � is parallel to a segment e1 which is a convex-segment or a
concave-segment or a convex–concave segment. Lemma 3 shows that it is useless
to consider the edges of P , thus e1 �∈ P . In the case where e1 is a convex hull edge
or convex–concave segment, the property is satisfied: e1 ∈ A1 and e1 ∈ A2. This
ends the proof for this case. It remains the case where e1 is a concave-segment or a
convex-segment which is not edge of the convex hull of P . Consider the case where
e1 is a concave-segment, thus e1 ∈ A1. Lemma 3 ensures that there is a convex-
segment e2, (thus e2 ∈ A2) and parallel to the segment e1. The same reasoning can
be used for the case where e1 is a convex-segment.

Appendix C. Proof of Theorem 5

Consider the vertices u1 < u2 < · · · < ur having the smallest ordinate and sorted
according to their increasing abscissa. To prove that the lowest leftmost vertex u1

Fig. 16. Related to the proof of Lemma 4.

1350002-25



3rd Reading

April 8, 2013 15:22 WSPC/0219-4678 164-IJIG 1350002

M. Melkemi, F. Cordier & N. S. Sapidis

Fig. 17. Related to the proof of Theorem 5.

is weakly-symmetric to the lowest right most vertex ur, we refer to Fig. 17(a). Let
u′

1 be the vertex weakly-symmetric to u1 and suppose that ur �= u′
1. Theorem 1

ensures that u1 and u′
1 have the same type, which implies that u′

1 ∈ {u1, . . . , ur}.
Therefore, we have two possible cases u′

1 = u1 or u′
1 = uj with 1 < j < r.

Consider the case u′
1 = u1 and try to derive a contradiction. Starting at u1,

we sweep the horizontal over P , the direction of the sweeping is illustrated by the
dotted segments (cf. Fig. 17(a)): the order is [aa′], [bb′], [cc′], [dd′] and [ee′], we
stop the sweep until we reach the vertex u2. The continuity of the weak-symmetry
mapping, ensures that the vertex weakly-symmetric to u2 must be in the left side
of the vertical line D passing through u1, this contradicts the fact that u1 is the
lowest leftmost vertex.

Now let us turn to the second case and suppose that u′
1 = uj with 1 < j < r.

Since u1 and uj are weakly-symmetric then these vertices divide P into two weakly-
symmetric polygonal segments with respect to the horizontal. The first one starts
at u1 and ends at uj and composed of the vertices u2, u3, . . . , ur. Here, we are
interested by the other polygonal segment. Starting at u1 and uj, we sweep the
horizontal over this polygonal segment, as shown by Fig. 17(b). The horizontal
passes consecutively through [aa′], [bb′], [cc′], [dd′] and [ee′], we continue the sweep-
ing until we reach uj+1. As illustrated by Fig. 17(b), the vertex weakly-symmetric
to uj+1 must be in the left side of the vertical line D, this contradicts the fact
that u1 is the lowest leftmost vertex. Consequently u1 must be weakly-symmetric
to ur.
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