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Abstract. Araucarias have been introduced by Schott and Spehner as trees which appear in the
minimal automaton of the shuffle of words. We give here a new definition of araucarias which is
more constructive and we prove that our definition of araucarias is equivalent to the original one.
From the new definition we derive an optimal algorithm for theconstruction of araucarias and a
new method for calculating their size. Moreover we characterize araucarias by properties of their
maximal paths, by associating a capacity to every edge. We then show that every araucaria can be
obtained by grafting and merging smaller araucarias. We prove also that every directed tree can be
embedded in an araucaria. Moreover we define a capacity for every vertex of an araucaria, which
leads to different new enumeration formulas for araucarias.
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1. Introduction

If u andv are words of a free monoid, the shuffle ofu andv (denotedu⊔⊔ v) is the language whose words
are of the formu1v1u2v2 . . . umvm whereu1u2 . . . um is a factorization ofu, v1v2 . . . vm a factorization
of v, and the factorsu1 andvm are possibly empty. More generally, ifI andJ are two languages of a
free monoid, the union of the setsu ⊔⊔ v for u ∈ I andv ∈ J is called the shuffle of the languagesI and
J (denotedI ⊔⊔ J). The shuffle productu1 ⊔⊔ . . .⊔⊔ uk of k wordsu1, . . . , uk can then be defined by
induction onk.

CCorresponding author
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The shuffle product admits various applications, in particular in parallel processing [3, 8]. Theoretical
results are given in [4, 5] and algorithmic results can be found in [12, 6, 1]. However, the construction of
the minimal automaton which recognizes the shuffle product ofk words is an old open problem.

The set of letters of a word is called its alphabet. If the alphabets of the words u1, . . . , uk are
pairwise disjoint, the minimal automaton of the languageu1 ⊔⊔ . . .⊔⊔ uk is simply its non-deterministic
automaton and its size is equal to

∏k
i=1(|ui| + 1) + 1 where|ui| is the length of the wordui. In the

converse case, the minimal automaton contains, for every common letter of the wordsu1, . . . , uk, some
directed graphs having special properties, and its size is much bigger.

Recently, Biegler, Daley, and McQuillan [2] have shown that the size of theminimal automaton
which recognizes the languageu ⊔⊔ v can be exponential relative to the lengths of the wordsu andv.

Schott and Spehner [10] (see also [9] and the erratum [11]) have studied the special case ofk words
of the formb1a

p1c1, . . . ,bkapkck (wherep1, . . . , pk are positive integers anda, b1, . . . , bk, c1, . . . , ck are
pairwise distinct letters up to the equalitiesb1 = c1, . . . , bk = ck). They have proved that the minimal
automaton of the languageb1ap1c1 ⊔⊔ . . .⊔⊔ bka

pkck contains a directed tree, called araucaria, which
is characterized by the integerk, called its arity, and by the sequence of integers(p1, . . . , pk), called its
type (see Fig. 1). The araucaria constitutes the most complicated part of theautomaton.
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Figure 1. The grid (a) represents the part of the non-deterministic automaton which recognizes the language
L = caaac ⊔⊔ baab obtained by removing its absorbing state (the empty set);s0 is the initial state andt the
terminal state. (b) represents a part of the minimal automaton ofL obtained by removing its absorbing state. If
we change every edge(u, v) of the oriented subgraph of (b) with unbroken edges in its opposite edge(v, u), we
obtain an araucaria of type(3, 2).

This paper is a continuation of the first part of Schott and Spehner’s paper by using a more algo-
rithmic definition of araucarias and other graph-theoretic or combinatorial concepts. The new definition
is independent of automata theory, but we also give some hints to interpret our results in the context of
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the shuffle of words. The aim is to give more graphical and combinatorial properties of araucarias that
should, in particular, help to prove the following conjecture :
“If the alphabets of the wordsu1, . . . , uk are pairwise disjoint up to a common lettera, then all sub-
graphs of the minimal automaton ofu1 ⊔⊔ . . .⊔⊔ uk which are defined by the transitions relative to the
common lettera are araucarias or homomorphic images of araucarias. The maximum size of the minimal
automaton is a polynomial function of|u1|, . . . , |uk| whose coefficients are exponential ink”.

The new definition of araucarias is given in Section2. In the original definition, an araucaria is
recursively defined as a union of non disjoint subaraucarias. This definition does not enable us to give
an efficient algorithm to construct araucarias. We introduce here the notion of semi-araucaria and show
that an araucaria is a union of semi-araucarias having only their roots in common.

This new definition leads, in Section3, to an optimal algorithm to construct araucarias.

In Section4, we characterize araucarias through their maximal paths (paths starting atthe root and
ending at a leaf). To this aim, we associate to every edge of an araucaria of type (p1, . . . , pk) a subset of
{1, . . . , k}, called the capacity of the edge. Then, a capacity chain corresponds to every maximal path of
the araucaria. We show that these chains characterize the araucaria among all other directed trees.

In Section5, we define a grafting operation from a directed treeC onto a directed treeB which
consists in sticking at every vertexs of B a copy ofC (with root s). We first prove that, ifB andC
are araucarias, then the grafting leads to a subtree of another araucaria. We then show that, for every
positive integerm < k, any araucaria of arityk can be obtained by first grafting araucarias of aritym
onto araucarias of arityk −m and by then merging the resulting trees.

More generally, we show in Section6 that every araucaria of arityk can be obtained by grafting
and merging araucarias whose sum of arities isk. In the particular case where the grafted araucarias
are reduced to paths, the grafting leads to a new family of directed trees having the property that every
araucaria can be obtained by merging such trees.

In Section7, we prove that every directed tree is isomorphic to some subtree of an araucaria.

In [10], Schott and Spehner proved that the size of an araucaria of type (p1, . . . , pk) is equal to the
remarkable polynomialΥk(p1, . . . , pk), whereΥk is defined in the following way:

Υk(X1, . . . , Xk) =
k

∑

m=0

m!Ψm(X1, . . . , Xk)

whereΨm(X1, . . . , Xk) is the elementary symmetric polynomial of degreem on variablesX1, . . . , Xk

andΨ0(X1, . . . , Xk) = 1.

In the last section of this paper, we give some other enumeration formulas for araucarias. To this
aim we first associate to every vertex of an araucaria of arityk a capacity, which is a subsetI of K =
{1, . . . , k}. We then prove that the number of vertices of capacityI of an araucaria of type(p1, . . . , pk)
is equal to(k − |I|)!

∏

i∈K\I pi. We also show that the size of a semi-araucaria of type(p1, . . . , pk) is
equal tok!

∏

i∈K pi + 1. This leads to two new and simple proofs that the size of an araucaria of type
(p1, . . . , pk) is equal toΥk(p1, . . . , pk).

An extended abstract of Sections2, 3, and4 has been presented in [7].
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2. Semi-araucarias and araucarias

After basic definitions, we introduce a new kind of directed trees called semi-araucarias. Araucarias
are then defined by using these semi-araucarias and we prove that this new definition of araucarias is
equivalent to the original one given by Schott and Spehner [11]. We do not recall the original definition
here because it needs several notions which are not introduced in this paper (see Remark 4.16). Moreover,
the notations used in the original definition are incompatible with ours.

Definition 2.1. (i) Every pairG = (V,E) whereE ⊂ V × V is called a directed graph. Everyv ∈ V is
called a vertex ofG and every(s, t) ∈ E is called an (oriented) edge ofG. For every edge(s, t) of E, t
is called a successor ofs ands is called a predecessor oft.

(ii) Every sequenceσ = (s0, . . . , sf ) of vertices such that(s0, s1), . . . , (sf−1, sf ) are edges ofE
is called a path ofG from s0 to sf . The integerf is called the length ofσ and is denoted by|σ|. If
σ = (s0, . . . , sf ) andτ = (sf , . . . , sg) are paths ofG, the pathλ = (s0, . . . , sf−1, sf , sf+1, . . . , sg) is
called the product ofσ andτ and is denoted byλ = στ .

(iii) A directed graphG = (V,E) is called a directed tree if there exists one vertexr ∈ V without
predecessor and such that, for every vertexs ∈ V \{r}, there exists a unique path fromr to s. The vertex
r is called the root ofG. The length of the path from the rootr to s is called the height ofs. Every vertex
s of G without successor is called a leaf ofG. Each path starting at the rootr and whose last vertex is a
leaf ofG is said to be maximal.

Definition 2.2. Throughout this paper,k will be a positive integer,K the set{1, . . . , k}, and(p1, . . . , pk)
a sequence ofk positive integers.

A semi-araucariaH(p1, . . . , pk) of type (p1, . . . , pk) is a directed tree recursively defined in the
following way (see Fig. 2(a) and Example 2.4):
If k = 1, H(p1) is a path of lengthp1.
If k > 1, H(p1, . . . , pk) is the union of a pathτ = (s0, . . . , sp) of lengthp =

∑

i∈K pi and, for each
non-empty proper subsetI = {i1, . . . , im} of K and eachh in {1, . . . ,

∑

j∈K\I pj − 1}, of a semi-
araucariaHI,h of type(pi1 , . . . , pim) such that:
- the root ofHI,h is the vertexsh of τ andHI,h ∩ τ = {sh},
- for each non-empty proper subsetJ of K (J 6= I) such thath <

∑

j∈K\J pj , HI,h ∩HJ,h = {sh}.
The integerk is called the arity ofH(p1, . . . , pk) and the pathτ is called its trunk.

Definition 2.3. An araucariaA(p1, . . . , pk) of type(p1, . . . , pk) is a directed tree which is the union of
the semi-araucariasHI,0 of root s0 and of type(pi1 , . . . , pim), wheres0 is a vertex,I = {i1, . . . , im} is
a non-empty subset ofK and, for every non-empty subsetJ of K distinct fromI, HI,0 ∩HJ,0 = {s0}
(see Fig. 2(b) and Example 2.4).

The integerk is called the arity of the araucaria and the trunk ofHK,0 is called its trunk.

Example 2.4. (i) The semi-araucariaH of type(p1, p2, p3) = (3, 2, 1) (Fig. 2(a)) is composed of a trunk
(s0, . . . , s6) on which the twelve following subsemi-araucarias (i.e., subtrees which are semi-araucarias)
are sticked:
- one subsemi-araucariaH{1,3},1 of type(p1, p3) = (3, 1) (Fig. 2(d)) on the vertexs1,
- two subsemi-araucariasH{2,3},1 andH{2,3},2 of type (p2, p3) = (2, 1) (Fig. 2(e)) on the verticess1
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Figure 2. A semi-araucaria (a) and an araucaria (b) of type(3, 2, 1). (c), (d), (e), (f), (g) and (h) are semi-
araucarias of respective types(3, 2), (3, 1), (2, 1), (3), (2), and(1).

ands2,
- two subsemi-araucariasH{1},1 andH{1},2 of type(p1) = (3) (Fig. 2(f)) on the verticess1 ands2,
- three subsemi-araucariasH{2},1, H{2},2, andH{2},3 of type(p2) = (2) (Fig. 2(g)) on the verticess1,
s2, ands3,
- four subsemi-araucariasH{3},1, H{3},2, H{3},3, andH{3},4 of type (p3) = (1) (Fig. 2(h)) on the
verticess1, s2, s3, ands4.

(ii) The araucariaA of type(p1, p2, p3) = (3, 2, 1) (Fig. 2(b)) is composed of a roots0 on which are
sticked the subsemi-araucariasH{1,2,3},0 of type(3, 2, 1), H{1,2},0 of type(3, 2) (Fig. 2(c)),H{1,3},0 of
type(3, 1), H{2,3},0 of type(2, 1), H{1},0 of type(3), H{2},0 of type(2), andH{3},0 of type(1).

We give now a characterization of araucarias similar to that in [11] which implies that our definition
of araucarias is equivalent to the original one.
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Theorem 2.5. A directed treeB is an araucaria of type(p1, . . . , pk) if and only if B has the following
recursive properties:
If k = 1, B is a path of lengthp1.
If k > 1, B is the union of a pathτB of lengthp1 + . . . + pk and, for each non-empty proper subset
I = {i1, . . . , im} of K and eachh ∈ {0, . . . ,

∑

j∈K\I pj − 1}, of a subtreeBI,h such that:
- BI,h is an araucaria of type(pi1 , . . . , pim),
- the root ofBI,h is the vertexsh of τB of heighth andBI,h ∩ τB = {sh},
- for every non-empty proper subsetJ of K such thath <

∑

i∈K\J pi, the common subtree ofBI,h and
BJ,h is an araucaria of rootsh and type(pj1 , . . . , pjr) where{j1, . . . , jr} = I ∩ J .

Proof:
This theorem is trivial fork = 1 since an araucaria of typep1 and a semi-araucaria of typep1 are reduced
to a single path of lengthp1.

Assume the result for every araucaria of arity smaller thank (k > 1) and letA be an araucaria of
type(p1, . . . , pk). LetB be a directed tree as given in the statement of the theorem.

Since the length of the trunkτA of HK,0 is equal to the length of the pathτB of B, there exists an
isomorphismθ0 from τA ontoτB.

By Definitions 2.2 and 2.3, for each non-empty proper subsetI = {i1, . . . , im} of K and eachh
of {0, . . . ,

∑

j∈K\I pj − 1}, the vertexsh of τA of heighth is the root of the semi-araucariaHI,h of
type(pi1 , . . . , pim) andHI,h ∩ τA = {sh}. Since, for every non-empty proper subsetJ = {j1, . . . , jl}
of I,

∑

j∈K\J pj >
∑

j∈K\I pj , sh is also the root of the semi-araucariaHJ,h of type (pj1 , . . . , pjl),
andHI,h ∩ HJ,h = {sh}. By induction, the unionAI,h of {HJ,h; ∅ ⊂ J ⊆ I} is an araucaria of type
(pi1 , . . . , pim). Since, the vertexθ0(sh) is the root ofBI,h, θ0 can be extended to an isomorphismθ such
thatθ(AI,h) = BI,h.

Moreover, for every non-empty proper subsetJ of K such thath <
∑

i∈K\J pi, the common subtree
of AI,h andAJ,h is, by construction, the union of allHL,h such that∅ ⊂ L ⊆ I∩J which is, by induction,
a subaraucaria of rootsh and type(pj1 , . . . , pjr), where{j1, . . . , jr} = I ∩ J . Hence,θ(AI,h ∩AJ,h) =
BI,h ∩BJ,h.

It follows thatθ0 can be extended to an isomorphism fromA ontoB. ⊓⊔

Corollary 2.6. Our definition of araucarias is equivalent to the original one given by Schott and Spehner.

Proof:
It follows from Theorem 2.5, by induction on the arity, that an araucaria of type (p1, . . . , pk) is unique
up to an isomorphism.

In Theorem 1.1 of [11], Schott and Spehner characterize their araucarias by the same properties as
those of Theorem 2.5, but with more restrictive conditions on the integerh. They also prove the unicity
of their araucarias up to an isomorphism. Hence both definitions are equivalent. ⊓⊔

Remark 2.7. It is not difficult to prove by induction on the arity that, for each permutationϕ of K, the
araucariaA(pϕ(1), . . . , pϕ(k)) is isomorphic toA(p1, . . . , pk) [11]. Hence the type(p1, . . . , pk) of an
araucaria can be given in a standard form such thatp1 ≥ p2 ≥ . . . ≥ pk.

Remark 2.8. The subaraucarias and the subsemi-araucarias appear in a natural way in the context of
shuffle of words. The classical representation of the non-deterministic automaton that recognizes the
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languageb1ap1c1 ⊔⊔ . . .⊔⊔ bka
pkck contains a set ofa-transitions that forms ak-dimensional hyper-

parallelepiped of size
∏k

i=1(pi + 1) (see Fig. 1(a)). The vertexr of this hyper-parallelepiped that has
no outgoinga-transition corresponds to the root of the araucaria of type(p1, . . . , pk) in the minimal
automaton (see Fig. 1(b)). For every integerm ∈ {1, . . . , k} and for every subset{i1, . . . , im} of K,
r is a vertex of anm-dimensional face of size

∏m
j=1(pij + 1) of the hyper-parallelepiped and is the

root of both a subaraucaria and a subsemi-araucaria of aritym and type(pi1 , . . . , pim) in the minimal
automaton. If the faces are considered as open (i.e. without their boundaries), they are pairwise disjoint
like their corresponding subsemi-araucarias (up to the rootr). Otherwise, two closed faces intersect in a
subface if and only if their corresponding subaraucarias intersect in asubaraucaria.

3. Optimal implementation of araucarias

The aim of this section is to show that, with a simple data structure, Definitions 2.2 and 2.3 lead imme-
diately to algorithms that construct araucarias in linear time (linear in the size of the constructed trees).
In Section4, it will be shown that the way araucarias are implemented with these algorithms also helps
to easily report some characteristic values of araucarias (Remark 4.15).In Section8, the complexity of
the algorithms will be compared to that of other construction methods (Remark 8.11).

Araucarias and semi-araucarias can be stored in any data structure used for directed trees, such as
first-child/next-sibling representation. Every vertexs in such a representation contains a link to its oldest
child and another one to the immediately younger sibling ofs. The data structure also contains direct
access to the root of the tree. We suppose that we are also given a function Copy(T ), which returns
a copy of the treeT , and a functionPath(n), which returns a path of lengthn in the form of a first-
child/next-sibling representation (in this case no vertex has a sibling).

The algorithm to construct semi-araucarias is then a straightforward application of Definition 2.2.
To this aim, we first write a recursive functionSemiAraucariaWithoutItsRoot(P, I) which, given a
sequenceP = (p1, . . . , pk) of positive integers and a non-empty subsetI = {i1, . . . , im} of {1, . . . , k}
returns a semi-araucaria of type(pi1 , . . . , pim) without its root (this is to avoid the creation of duplicate
vertices that would have to be merged later).

SemiAraucariaWithoutItsRoot(P, I)
τ = Path(

∑

i∈I pi − 1) // the trunk of the semi-araucaria without its first vertex
for every non-empty proper subsetJ of I

SA = SemiAraucariaWithoutItsRoot(P, J)
for every vertexs of τ of height strictly less than

∑

j∈I\J pj − 1

SA′ = Copy(SA)
next sibling(root(SA′)) = next sibling(first child(s))
next sibling(first child(s)) = root(SA′)

return the constructed tree with rootroot(τ)

And thus the function to construct a semi-araucaria of typeP and arityk:
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SemiAraucaria(P, k)
create a vertexr // the root of the semi-araucaria
K = {1, . . . , k}
SA = SemiAraucariaWithoutItsRoot(P,K)
first child(r) = root(SA)
return the constructed tree with rootr

The function to construct an araucaria of typeP and arityk is then an immediate consequence of
Definition 2.3:

Araucaria(P, k)
SA = SemiAraucaria(P, k)
for every non-empty proper subsetI of {1, . . . , k}

SA′ = SemiAraucariaWithoutItsRoot(P, I)
next sibling(root(SA′)) = next sibling(first child(root(SA)))
next sibling(first child(root(SA))) = root(SA′)

return the constructed tree with rootroot(SA)

Obviously, the given algorithms are linear in the size of the constructed araucarias or semi-araucarias.
In Section8, we give the explicit complexity of these algorithms.

4. Maximal paths and capacity chains

A maximal path in an araucaria corresponds to a maximal sequence of transitions with the same letter in
the minimal automaton containing this araucaria. The right knowledge of maximal paths is thus impor-
tant in the study of the minimal automaton of the shuffle of words. The notion of capacity of an edge
introduced in this section, along with the notion of truncation given in [10], leads to a characterization of
the set of maximal paths of an araucaria.

Definition 4.1. (i) For every vertexs of a directed treeB, let λ(s) be the maximum length of the paths
of B whose first vertex iss. If σ = (s0, . . . , sf ) is a path ofB, then every vertexsj of σ \ {s0, sf} such
thatλ(sj) > λ(sj+1) + 1 is called a breaking vertex ofσ.

(ii) Let σ = (s0, . . . , sf ) be a path ofB and letsj1 , . . . , sjt−1
be the breaking vertices ofσ such that

0 < j1 < . . . < jt−1 < f .
The pathsτ1 = (s0, . . . , sj1), τ2 = (sj1 , . . . , sj2), . . . ,τt = (sjt−1

, . . . , sf ) are called the truncations
of σ and the productτ1...τt is called the decomposition ofσ into truncations.

A truncationτ of a maximal path ofB is simply called a truncation ofB. Its starting vertex is then
either a breaking vertex of this path or the root ofB.

(iii) A truncation τ of a pathσ of B is called terminal if its last vertex is a leaf ofB.
(iv) We say that a directed treeB satisfies the unicity condition if, for every vertexs of B which is

not a leaf, there exists only one successort of s such thatλ(s) = λ(t) + 1 (i.e., there is a unique longest
path starting ats).
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Lemma 4.2. LetB be a semi-araucaria [resp. an araucaria] of type(p1, . . . , pk).
(i) The trunk ofB is its unique longest path and does not contain any breaking vertex.
(ii) Every edge(s, t) of B belongs to a unique terminal truncationτ(s,t) of B.
(iii) Every terminal truncation of the semi-araucariaB is the trunk of a unique subsemi-araucaria of

B of type(pi1 , . . . , pim) where{i1, . . . , im} ⊆ K.
(iv) B satisfies the unicity condition.

Proof:
First, we study the case whereB is a semi-araucaria.

All these properties are trivially satisfied by semi-araucarias of arity1. Assume now that they also
hold true for every arity strictly smaller thank with k > 1.

(i) Let τ = (s0, . . . , sp) be the trunk ofB. By Definition 2.2, for every non-empty proper subset
I = {i1, . . . , im} of K and everyh ∈ {1, . . . ,

∑

i∈K\I pi−1}, the length of the trunkτI of the subsemi-
araucariaHI,h of type(pi1 , . . . , pim) whose root is the vertexsh of τ is equal to

∑

i∈I pi. By induction,
τI is the longest path ofHI,h. Hence, for every pathσ of B which contains the first edge ofτI ,

|σ| ≤ h+
∑

i∈I

pi <
∑

i∈K\I

pi +
∑

i∈I

pi =
∑

i∈K

pi = |τ |.

It follows thatτ is the longest path ofB and does not contain any breaking vertex.
(ii) The property is trivially satisfied by every edge of the trunk ofB. For every other edge(s, t) of

B, there exist a unique non-empty proper subsetI of K and a uniqueh ∈ {1, . . . ,
∑

i∈K\I pi − 1} such
that(s, t) is contained in the subsemi-araucariaHI,h. By induction,(s, t) belongs to a unique terminal
truncationτ(s,t) of a maximal pathσ of HI,h. If (r, . . . , sh) is the path ofB from the rootr of B to the
root sh of HI,h, the pathσ′ = (r, . . . , sh)σ is maximal inB and, by (i),sh is a breaking vertex ofσ′. It
follows thatτ(s,t) is also the unique terminal truncation that contains(s, t) in B.

(iii) Let τ ′ be a terminal truncation ofB. Sinceτ ′ does not contain any breaking vertex and is
maximal with respect to this property, ifτ ′ contains an edge of the trunkτ of B, thenτ ′ = τ by (i), and
the property is true. The other case follows by induction, as in the proof of(ii).

(iv) The result is true for the rootr of B sincer has a unique successor. For any other vertext, let s
be the unique predecessor oft. By (ii), (s, t) belongs to a unique terminal truncationτ(s,t) of B. If τ(s,t)
is the trunk ofB, the result follows from (i). In the other cases, by (iii),τ(s,t) is the trunk of a unique
subsemi-araucaria of arity strictly smaller thank and the result holds by induction.

By Definition 2.3, all these properties hold also for araucarias. ⊓⊔

Definition 4.3. For every araucariaA of type (p1, . . . , pk), let cap be the mapping which associates to
every edge(s, t) of A the subset{i1, . . . , im} of K such that the terminal truncationτ(s,t) of A that
contains(s, t) is the trunk of a subsemi-araucaria ofA of type(pi1 , . . . , pim).

Example 4.4. In the araucariaA of type (p1, p2, p3) = (3, 2, 1) of Fig. 2(b), the decomposition into
truncations of the maximal pathσ = (s0, s1, s2, . . . , e2) is equal toτ1τ2 whereτ1 = (s0, s1, s2) and
τ2 = (s2, . . . , e2). τ1 is a subpath of the trunk of the subsemi-araucaria of type(3, 2, 1) andτ2 is the trunk
of a subsemi-araucaria of type(p2, p3) = (2, 1). Thus, for every edge(s, t) of τ1, cap(s, t) = {1, 2, 3}
and, for every edge(s, t) of τ2, cap(s, t) = {2, 3}.
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Definition 4.5. (i) Let B = (V,E) be a directed tree and letcapB be a mapping from the set of edges
E into the set of non-empty subsets of the setN∗ of positive integers. The mappingcapB is called a
capacity function ofB if, for every pathγ = (s1, s2, s3) of B, capB(s2, s3) = capB(s1, s2) if s2 is not
a breaking vertex ofγ, andcapB(s2, s3)  capB(s1, s2) in the converse case.

Moreover, if, for every distinct successorst1 andt2 of each vertexs, capB(s, t1) 6= capB(s, t2), then
the capacity functioncapB is said to be discriminating.

(ii) If capB is a capacity function ofB then, for every edge(s, t) ∈ E, capB(s, t) is called the
capacity of(s, t).

If τ is a path ofB whose edges have the same capacity, then this capacity is called the capacity of τ
and is denoted bycapB(τ).

Lemma 4.6. The mappingcap is a discriminating capacity function of the araucariaA.

Proof:
(i) For every pathγ = (s1, s2, s3) of A, if s2 is not a breaking vertex ofγ, the terminal truncations
τ(s2,s3) andτ(s1,s2) are equal and hencecap(s2, s3) = cap(s1, s2). In the converse case,cap(s2, s3)  
cap(s1, s2) sinceτ(s2,s3) 6= τ(s1,s2) andτ(s2,s3) is a terminal truncation of the subsemi-araucaria which
admitsτ(s1,s2) as trunk. Thuscap is a capacity function.

(ii) Moreover, we prove thatcap is discriminating.
If k = 1, A is a path and the property is trivial. Hence, ifk > 1, it is also the case for every

subsemi-araucaria ofA of arity 1. Assume that the property is satisfied for every subsemi-araucaria of
arity strictly smaller thank and lett1 andt2 be two distinct successors of a vertexs in an araucariaA
of arity k > 1. If s is not contained in the trunkτ of A, cap(s, t1) 6= cap(s, t2) by induction. Suppose
now thats is a vertex ofτ of heighth. If none of t1 andt2 is contained inτ , by Definitions 2.3 and
2.2, there exist two non-empty distinct proper subsetsI1 andI2 of K such that the edges(s, t1) and
(s, t2) are respectively contained in the trunks of the subsemi-araucariasHI1,h andHI2,h. By Lemma
4.2, these trunks are the terminal truncationsτ(s,t1) andτ(s,t2). Thuscap(s, t1) = I1 6= I2 = cap(s, t2).
Otherwise, only one oft1 and t2 is contained inτ and eithercap(s, t1) = K 6= I2 = cap(s, t2) or
cap(s, t1) = I1 6= K = cap(s, t2).

Hencecap is discriminating. ⊓⊔

Definition 4.7. Let B be a directed tree with capacity functioncapB and letMP(B) be the set of
maximal paths ofB. If τ1...τf is the decomposition of a maximal pathσ of B into truncations, let
capB(σ) = (capB(τ1), . . . , capB(τf )) andπ(σ) = (|τ1|, . . . , |τf |).

The pair(capB(σ), π(σ)) is called the valued capacity chain ofσ (relatively tocapB).
The mappingκ such that, for everyσ ∈ MP(B), κ(σ) = (capB(σ), π(σ)), is said to be associated

to the capacity functioncapB.

Definition 4.8. A pair ((I1, . . . , If ), (q1, . . . , qf )) wheref > 0, ∅ 6= If  . . .  I1 ⊆ K andq1, . . . , qf
are positive integers, is said to be linked to(p1, . . . , pk) (relatively toK) if,

for all r ∈ {1, . . . , f − 1}, 0 < qr <
∑

j∈Ir\Ir+1

pj and qf =
∑

j∈If

pj .

Let Link(p1, . . . , pk) be the set of all pairs which are linked to(p1, . . . , pk).
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Remark 4.9. Let ((I1, . . . , If ), (q1, . . . , qf )) be a pair linked to(p1, . . . , pk) (relatively toK). For every
non-empty proper subsetJ = {j1, . . . , jm} of K such thatI1 ⊆ J , ((I1, . . . , If ), (q1, . . . , qf )) is also
linked to(pj1 , . . . , pjm) (relatively toJ).

It follows thatLink(pj1 , . . . , pjm) ⊂ Link(p1, . . . , pk).

Lemma 4.10. The valued capacity chain of every maximal path of the araucariaA (relatively tocap) is
linked to(p1, . . . , pk).

Proof:
For every subsemi-araucariaH{i},h of A of arity 1, the trunkτ of H{i},h is its unique longest path and
the valued capacity chain(({i}), (|τ |)) is linked to(pi). Assume by induction that, for every subsemi-
araucariaHI,h of A, whereI = {i1, . . . , im} is a non-empty proper subset ofK, and for every maximal
pathσ of HI,h, (cap(σ), π(σ)) is linked to(pi1 , . . . , pim). Letσ = (s0, . . . , st) be a maximal path ofA,
andτ the trunk ofA.

If (s0, s1) /∈ τ , there exists a non-empty proper subsetI = {i1, . . . , im} of K such that(s0, s1) is
contained in the trunkτI of the subsemi-araucariaHI,0 of A of type (pi1 , . . . , pim). By the induction
hypothesis,(cap(σ), π(σ)) is linked to(pi1 , . . . , pim) and, by Remark 4.9, to(p1, . . . , pk).

If σ = τ , thencap(σ) = (K) andπ(σ) = |τ | =
∑

i∈K pi. Hence(cap(σ), π(σ)) is linked to
(p1, . . . , pk).

If (s0, s1) ∈ τ andσ 6= τ , there exist a non-empty proper subsetI = {i1, . . . , im} of K and an
integerh of {1, . . . ,

∑

j∈K\I pj − 1} such that the first truncation ofσ is τ1 = (s0, . . . , sh), wheresh
is the vertex of heighth of τ , andσ′ = (sh, . . . , st) is a maximal path of the subsemi-araucariaHI,h of
type(pi1 , . . . , pim). By induction,(cap(σ′), π(σ′)) is linked to(pi1 , . . . , pim). Sinceσ = τ1σ

′, we have
cap(σ) = (K, cap(σ′)) andπ(σ) = (h, π(σ′)). Thus(cap(σ), π(σ)) is linked to(p1, . . . , pk). ⊓⊔

Corollary 4.11. Let σ be a path from the root ofA to a vertex which is not a leaf ofA andτ1...τf the
decomposition ofσ into truncations. Then,

for all r ∈ {1, . . . , f − 1}, 0 < |τr| <
∑

j∈cap(τr)\cap(τr+1)

pj and 0 < |τf | <
∑

j∈cap(τf )

pj .

Proof:
By Lemma 4.2, the first edge(u, v) of the last truncationτf belongs to a unique terminal truncation
τ ′f . Sinceτf andτ ′f do not contain breaking vertices distinct fromu and sinceA satisfies the unicity
condition,τf is a subpath ofτ ′f and, since the last vertex ofτ ′f is a leaf,τf 6= τ ′f . Thenσ′ = τ1...τf−1τ

′
f

is a maximal path ofA and, by Lemma 4.10,

for all r ∈ {1, . . . , f − 1}, 0 < |τr| <
∑

j∈cap(τr)\cap(τr+1)

pj and 0 < |τf | < |τ ′f | =
∑

j∈cap(τf )

pj .

⊓⊔

We prove now that the property of the valued capacity chain of the maximal paths given in Lemma
4.10 characterizes the araucarias.
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Theorem 4.12. A directed treeB is isomorphic to an araucaria of type(p1, . . . , pk) if and only if it ad-
mits a discriminating capacity function whose associated mapping is a bijection ontoLink(p1, . . . , pk).

Proof:
(i) Let A be an araucaria of type(p1, . . . , pk). By Lemma 4.10, ifκ is the mapping associated tocap,
κ(σ) ∈ Link(p1, . . . , pk) for every maximal pathσ of A.

We prove now thatκ is one-to-one.
Let σ andσ′ two distinct maximal paths ofMP(A) and letτ1 . . . τf andτ ′1 . . . τ

′
f ′ be their decompo-

sitions into truncations. There exists a smallesti ∈ {1, . . . ,min(f, f ′)} such thatτi 6= τ ′i . If τi andτ ′i
have only their first vertex in common,cap(τi) 6= cap(τ ′i) sincecap is discriminating. Otherwise, since
A satisfies the unicity condition, eitherτi ⊂ τ ′i or τ ′i ⊂ τi (in the converse case one ofτi andτ ′i would
have a breaking vertex) and|τi| 6= |τ ′i |. Thusκ(σ) 6= κ(σ′).

We prove now, by induction onk and by using the results of Theorem 2.5, thatκ is surjective.
This is trivial fork = 1. Assume that, for every subaraucariaAJ,h of A of arity strictly smaller than

k (as defined in Theorem 2.5),κ(MP(AJ,h)) = Link(pj1 , . . . , pjm) whereJ = {j1, . . . , jm}.
Let ((I1, . . . , If ), (q1, . . . , qf )) ∈ Link(p1, . . . , pk).
If I1 = {i1, . . . , im} 6= K, ((I1, . . . , If ), (q1, . . . , qf )) ∈ Link(pi1 , . . . , pim). By the induction

hypothesis, there exists a maximal pathσ of the subaraucariaAI1,0 of A such thatcap(σ) = (I1, . . . , If )
andπ(σ) = (q1, . . . , qf ). Moreoverσ is also maximal inA.

If I1 = K andf = 1, by Definitions 4.8 and 2.3,q1 =
∑

j∈K pj is the length of the trunkτ of A
andκ(τ) = ((K), (|τ |)).

If I1 = K and f > 1, let τ1 be the initial section of lengthq1 of the trunk ofA. Sinceq1 <
∑

j∈K\I2
pj , it follows from Theorem 2.5 that, settingI2 = {i1, . . . , im}, A admits a subaraucaria

AI2,q1 of type(pi1 , . . . , pim). By the induction hypothesis, there exists a maximal pathσ′ of AI2,q1 such
thatcap(σ′) = (I2, . . . , If ) andπ(σ′) = (q2, . . . , qk). Thenσ = τ1σ

′ is a maximal path ofA such that
cap(σ) = (K, cap(σ′)) andπ(σ) = (q1, π(σ

′)) = (q1, . . . , qf ).
It follows thatκ is a bijection.
(ii) Conversely, assume thatB is a directed tree which admits a discriminating capacity functioncap′

whose associated mappingκ′ is a bijection fromMP(B) ontoLink(p1, . . . , pk).
By (i), for every maximal pathσ of the araucariaA, there exists a maximal pathσ′ of B such

thatκ′(σ′) = κ(σ) = ((I1, . . . , If ), (q1, . . . , qf )). Hence|σ′| =
∑f

g=1 qg = |σ|, and there exists an
isomorphismϕ from the pathσ ontoσ′.

Let now{σ1, . . . , σl} be a non-empty proper subset of paths ofMP(A), C the minimal subtree of
A which contains{σ1, . . . , σl}, andC ′ the minimal subtree ofB which contains{σ′

1, . . . , σ
′
l} where

σ′
i = κ′−1 ◦ κ(σi) for all i ∈ {1, . . . , l}. Assume, by induction, that there exists an isomorphismϕ from

C ontoC ′ such that, for alli ∈ {1, . . . , l}, ϕ(σi) = σ′
i.

Let nowσ = (s0, . . . , sf ) be a path ofMP(A) \ {σ1, . . . , σl}, σ′ = κ′−1 ◦ κ(σ) = (s′0, . . . , s
′
f ),

andsi ∈ {s0, . . . , sf−1} be the highest vertex ofσ belonging toC. Since the capacity functioncap is
discriminating, for every successort of si in C, cap(si, t) 6= cap(si, si+1). Sincecap′ is also a discrim-
inating capacity function and since the edges ofσ′ satisfycap ′(s′j , s

′
j+1) = cap(sj , sj+1), (s′0, . . . , s

′
i)

is the pathϕ((s0, . . . , si)) of C ′. For the same reason,(s′i, s
′
i+1) does not belong toC ′. It follows thatϕ

can be extended to an isomorphismϕ′ fromC ∪ σ ontoC ′ ∪ σ′ such thatϕ′(σ) = σ′.
Hence, by induction, there exists a one-to-one morphismϕ from A into B. Since|MP(B)| =

|MP(A)|, ϕ is an isomorphism fromA ontoB. ⊓⊔
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Remark 4.13. It follows from the proofs of Lemma 4.10 and Theorem 4.12 that, ifI = {i1, . . . , im}
is a proper subset ofK, a directed tree is an araucaria of type(pi1 , . . . , pim) if and only if it admits a
discriminating capacity function whose associated mapping is a bijection ontoLink(pi1 , . . . , pim).

Remark 4.14. Note that the ”if” part of Theorem 4.12 does not hold if the capacity function is not
discriminating.

Remark 4.15. (i) The algorithms of Section3 construct the araucarias and semi-araucarias in such a
way that, ifs is a vertex which is not a leaf and ift is the first child ofs, then the subsemi-araucaria trunk
that contains(s, t) is the longest of all subsemi-araucaria trunks that contains. Hence,s is a breaking
vertex for all maximal paths that pass through a child ofs other than the first one. It follows that the
decomposition into truncations of any path in the tree can be reported while traversing the path.

(ii) If the capacities of the edges need to be stored in the data structure, it suffices to pass the parameter
I of the functionSemiAraucariaWithoutItsRoot to the functionPath and to storeI in all the vertices
of the path generated by the functionPath. At the end of the algorithm, the capacity of every edge(s, t)
will then have been stored in the vertext.

Remark 4.16. In [11], araucarias have been defined using attribution functions. These attribution func-
tions and our capacity function are closely related. Indeed, ifA is an araucaria of type(p1, . . . , pk) with
capacity functioncap, σ a maximal path ofA, andτ1 . . . τf the decomposition ofσ into truncations then,
for everyr ∈ {1, . . . , f − 1}, the setcap(τr) \ cap(τr+1) can be attributed to the truncationτr, and
cap(τf ) can be attributed toτf . More precisely,τr [resp. τf ] can be factorized into sections and each
section can be attributed to an integer ofcap(τr) \ cap(τr+1) [resp.cap(τf )]. Such attribution functions
are natural in the proof that every araucaria can be embedded in the minimalautomaton of a shuffle of
words, since every transition of this automaton is generated by a letter of oneof these words and, hence,
can be attributed to the index of this word. In the automaton of Fig. 1 for example, thea-transition
from 4(1) to 4(2) can be attributed to the second letter of the wordcaaac. Thea-transition from2(2) to
{2(3), 3(2)} can be attributed either to the third letter ofcaaac or to the second letter ofbaab.

Hence, a truncation in an araucaria can have several attribution sets whileit admits a unique capacity
set. This suggests that capacities are more interesting in the study of araucarias than attributions.

5. The first grafting theorem

In [10], it has been shown that an araucaria of arityk can be obtained by sticking araucarias of arity 1
on the vertices of araucarias of arityk − 1. This operation was called ramification. We introduce here
the grafting of a directed tree onto another which generalizes the notion of ramification. If the two trees
admit a capacity function, we define a capacity function for the resulting tree. In the particular case
where the two trees are araucarias of respective aritiesk1 andk2, we prove that the resulting tree is a
subtree of an araucaria of arityk1+k2. Moreover, for everym such that1 ≤ m < k, we show that every
araucaria of arityk can be obtained by grafting araucarias of aritym onto araucarias of arityk −m and
by then merging the resulting trees.
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Definition 5.1. LetB = (S,U) andC = (T, V ) be directed trees andP a subset ofS.
Let, for each vertexp of P , C(p) = (Tp, Vp) be a directed tree isomorphic toC with root p, such

thatS ∩ Tp = {p} and, for each vertexq of P distinct fromp, Tp ∩ Tq = ∅.
The directed tree which is the union ofB and of the treesC(p), for all p ∈ P , is said to be obtained

by graftingC ontoB atP and is denotedgraftP (C/B).
If P = S, this directed tree is said to be obtained by completely graftingC ontoB and is denoted

graft(C/B) (see Fig.3).

s3s0 s2s1

t'1

t'3

t'2

t1

t2

t3

Figure 3. The tree obtained by completely grafting an araucaria of type (3, 1) (full lines) onto an arau-
caria of type(2, 1) (dotted lines). The decomposition into truncations of the maximal path(s0, . . . , t3) is
(s0, s1, s2)(s2, t1, t2)(t2, t3) and that of(s0, . . . , t′3) is (s0, . . . , t

′
2)(t

′
2, t

′
3).

Lemma 5.2. Let B andC be directed trees that satisfy the unicity condition and admit the respective
discriminating capacity functionscapB andcapC such that, for every edge(s, t) of B and every edge
(s′, t′) of C, capB(s, t) ∩ capC(s

′, t′) = ∅.
The treeD = graft(C/B) satisfies the unicity condition and admits a discriminating capacity func-

tion capD.

Proof:
(i) SinceB satisfies the unicity condition, for every vertexs of B, there exists a unique longest path
σ = (s, s1, . . . , sh) of B starting ats. Letλ1(s) be the length of this path. In the same way, there exists
a unique longest pathτ(sh) in C(sh), and its lengthλ2 is independent ofsh. στ(sh) is then the unique
longest path ofD starting ats. Hence, settingλ(s) the length of this path,λ(s) = λ1(s)+λ2. Moreover,
for every vertexs of B and every vertexu of C(s), there exists a unique longest path ofC(s) starting at
u and this path is also the longest path starting atu in D. Hence, setting respectivelyλ2(u) andλ(u) the
lengths of these paths,λ2(u) = λ(u). It follows thatD satisfies the unicity condition.
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(ii) Every maximal pathσ of D is the product of a pathσ1 of B (possibly of length zero) and of a
maximal pathσ2 of C(s), wheres is the last vertex ofσ1. The length ofσ1 is zero if and only ifs is the
root ofB. SinceD satisfies the unicity condition and since, for every vertexu of B, λ(u) = λ1(u)+λ2,
the breaking vertices ofσ1 in B are also the breaking vertices ofσ1 in D. In the same way, since, for
every vertexu of C(s), λ(u) = λ2(u), the breaking vertices ofσ2 in C(s) are also the breaking vertices
of σ2 in D. Moreover, sinceλ(s) = λ1(s) + λ2, s is a breaking vertex forσ if and only if, eithers is not
a leaf ofB, or s is a leaf ofB but the first edge ofσ2 is not contained in the longest pathτ(s) of C(s).

Let τ1...τf be the decomposition ofσ1 into truncations inD and τf+1...τg be the decomposition
of σ2 into truncations inC(s). Then, from above, the decomposition into truncations ofσ in D is
τ1...τfτf+1...τg if, eithers is not a leaf ofB, or s is a leaf ofB but the first edge ofσ2 is not contained in
τ(s). In the converse case, the decomposition isτ1...τf−1τ

′
fτf+2...τg, whereτ ′f = τfτf+1 is a truncation.

(iii) For every edge(u, v) of B, let capD(u, v) = capB(u, v) ∪ capC(τ), whereτ is the longest
path ofC. Since, for everys ∈ B, the treeC(s) is isomorphic toC, it admits a discriminating capacity
function corresponding tocapC . For every edge(u, v) of C(s), let capD(u, v) = capC(u, v), except
whens is a leaf ofB and(u, v) is an edge of the longest pathτ(s) of C(s). In this exception case,s
admits a predecessors′ in B and we setcapD(u, v) = capD(s

′, s), for every edge(u, v) of τ(s).
We prove now thatcapD is a capacity function. Letγ = (s1, s2, s3) be a path ofD.
Case1: γ is in B. From (ii), s2 is a breaking vertex ofγ in B if and only if it is also a breaking

vertex ofγ in D. HencecapB(s1, s2) = capB(s2, s3) [resp.capB(s2, s3)  capB(s1, s2)] if and only
if capD(s1, s2) = capD(s2, s3) [resp.capD(s2, s3)  capD(s1, s2)].

Case2: s1 ∈ B ands3 ∈ C(s2). If s2 is a leaf ofB ands3 ∈ τ(s2), s2 is not a breaking vertex ofγ in
D andcapD(s1, s2) = capD(s2, s3). Otherwise,s2 is a breaking vertex ofγ in D andcapD(s2, s3) ⊆
capC(τ(s2))  capD(s1, s2).

Case3: γ is in someC(s). The result is trivial whenγ is in τ(s) or when no edge ofγ is in τ(s).
Otherwise,s2 is a breaking vertex ofγ in D andcapD(s2, s3)  capC(τ(s))  capD(s1, s2).

HencecapD is a capacity function.
Moreover, sincecapB andcapC are discriminating, the same easily follows forcapD. ⊓⊔

Definition 5.3. (i) The capacity functioncapD of D defined in the preceding proof is said to be obtained
by graftingcapC ontocapB and is denoted bycapD = graft(capC/capB).

(ii) For every non-empty proper subsetI of K, letAI be an araucaria isomorphic to the subaraucaria
AI,0 of A and whose capacity functioncapI is the restriction ofcap toAI,0.

(iii) Let BI be the directed treegraft(AI/AK\I) and bcapI = graft(capI/capK\I) its capacity
function.

Example 5.4. LetA be the araucaria of type(p1, p2, p3, p4) = (3, 2, 1, 1) andI = {1, 4}.
AI is then the araucaria of type(p1, p4) = (3, 1), AK\I the araucaria of type(p2, p3) = (2, 1), and

BI = graft(A{1,4}/A{2,3}) is the tree of Fig. 3.
In the araucariaAK\I , we havecapK\I(s0, s1, s2) = capK\I(s0, s1, s2, s3) = K \ I = {2, 3}. In

AI(s2), capI(s2, t1, t2) = I = {1, 4} andcapI(t2, t3) = {4}. In AI(s3), capI(s3, t
′
1, t

′
2) = {1, 4} and

capI(t
′
2, t

′
3) = {4}. We then have inBI , bcapI(s0, s1, s2) = bcapI(s0, s1, s2, s3, t

′
1, t

′
2) = {1, 2, 3, 4},

bcapI(s2, t1, t2) = {1, 4}, andbcapI(t2, t3) = bcapI(t
′
2, t

′
3) = {4}.
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Proposition 5.5. The mappingκI associated to the capacity functionbcapI of BI is a bijection onto the
subset of pairs ofLink(p1, . . . , pk) that are of the form((I1, . . . , Ig), (q1, . . . , qg)) with eitherIh ⊆ I or
I ⊆ Ih, for all h ∈ {1, . . . , g}.

Proof:
(i) Since, by Lemma 5.2,bcapI is a discriminating capacity function andBI satisfies the unicity condi-
tion, the mappingκI associated tobcapI is one-to-one, as in proof (i) of Theorem 4.12.

We show now that the valued capacity chainκI(σ) = (bcapI(σ), π(σ)) of any maximal pathσ of
BI is linked to(p1, . . . , pk).

Let σ1 be the subpath ofσ contained inAK\I , s the last vertex ofσ1 (or the unique vertex of
σ1 when |σ1| = 0), andσ2 the subpath ofσ contained inAI(s). Let τ1...τf and τf+1...τg be the
decompositions into truncations ofσ1 in AK\I and ofσ2 in AI(s). Let capK\I(σ1) = (I1, . . . , If ) and
capI(σ2) = (If+1, . . . , Ig). From proof (ii) of Lemma 5.2, the decomposition into truncations ofσ in
BI is eitherτ1...τfτf+1...τg or τ1...τf−1τ

′
fτf+2...τg, whereτ ′f = τfτf+1 is a truncation.

By definition ofbcapI , in the first case

bcapI(σ) = (I1 ∪ I, . . . , If ∪ I, If+1, . . . , Ig)

and in the second case
bcapI(σ) = (I1 ∪ I, . . . , If ∪ I, If+2, . . . , Ig).

In both cases,bcapI(σ) is an inclusion chain ofK.
Now, we considerπ(σ).
Case1.- If s is not a leaf ofAK\I , from proof of Lemma 5.2, the decomposition into truncations of

σ is τ1...τfτf+1...τg. If σ1 6= (s), by Corollary 4.11, for everyh ∈ {1, . . . , f − 1},

0 < |τh| <
∑

i∈Ih\Ih+1

pi =
∑

i∈(Ih∪I)\(Ih+1∪I)

pi and 0 < |τf | <
∑

i∈If

pi ≤
∑

i∈(If∪I)\If+1

pi.

In the same way, by Lemma 4.10, whetherσ1 is reduced to(s) or not,

for all h ∈ {f + 1, . . . , g − 1}, 0 < |τh| <
∑

i∈Ih\Ih+1

pi and 0 < |τg| =
∑

i∈Ig

pi.

Case2.- If s is a leaf ofAK\I butτf+1 does not belong to the trunk ofAI(s), the decomposition into
truncations ofσ is τ1...τfτf+1...τg. Then, for allh ∈ {1, . . . , g} \ {f}, |τh| satisfies the same relations
as in case1. Moreover, from Lemma 4.10,

0 < |τf | =
∑

i∈If

pi <
∑

i∈(If∪I)\If+1

pi.

Case3.- If s is a leaf ofAK\I and τf+1 belongs to the trunk ofAI(s), the decomposition into
truncations ofσ is τ1...τf−1τ

′
fτf+2...τg. For everyh ∈ {1, . . . , g} \ {f, f + 1}, |τh| satisfies the same

relations as in case1. Moreover, by Lemma 4.10, iff + 1 6= g, then

0 < |τ ′f | = |τf |+ |τf+1| <
∑

i∈If

pi +
∑

i∈If+1\If+2

pi =
∑

i∈If

pi +
∑

i∈I\If+2

pi =
∑

i∈(If∪I)\If+2

pi.
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In the same way, iff + 1 = g,

0 < |τ ′f | =
∑

i∈If

pi +
∑

i∈If+1

pi =
∑

i∈If∪I

pi.

It follows that, in all three cases,(bcapI(σ), π(σ)) ∈ Link(p1, . . . , pk).
Moreover, by definition ofbcapI , for every edge(u, v) of σ, eitherI ⊆ bcapI(u, v) or bcapI(u, v) ⊆

I.
(ii) Let now ((I1, . . . , Ig), (q1, . . . , qg)) ∈ Link(p1, . . . , pk) such that, for allh ∈ {1, . . . , g}, either

I ⊆ Ih or Ih ⊆ I. Set{i1, . . . , im} = I and{j1, . . . , jk−m} = K \ I. We show that there exists a
maximal pathσ of BI such thatκI(σ) = ((I1, . . . , Ig), (q1, . . . , qg)).

Case1.- If I1 ⊆ I, by Remark 4.9,((I1, . . . , Ig), (q1, . . . , qg)) ∈ Link(pi1 , . . . , pim). Hence, ifs is
the root ofBI , there exists, by Remark 4.13, a maximal pathσ of AI(s) such thatbcapI(σ) = capI(σ) =
(I1, . . . , Ig) andπ(σ) = (q1, . . . , qg).

Case2.- If there existsf ∈ {1, . . . , g − 1} such thatIf+1 ⊆ I  If , let, for everyh ∈ {1, . . . , f},
I ′h = Ih \ I. Then∅ 6= I ′f  . . .  I ′1 ⊆ K \ I and, for allh ∈ {1, . . . , f − 1},

0 < qh <
∑

i∈Ih\Ih+1

pi =
∑

i∈I′
h
\I′

h+1

pi.

Thus, settingq′f =
∑

i∈I′
f
pi, ((I ′1, . . . , I

′
f ), (q1, . . . , qf−1, q

′
f )) ∈ Link(pj1 , . . . , pjk−m

) and, by Re-

mark 4.13, there exists a maximal pathσ1 of AK\I such thatcapK\I(σ1) = (I ′1, . . . , I
′
f ) andπ(σ1) =

(q1, . . . , qf−1, q
′
f ).

Subcase2.1.- If qf ≤ q′f , let s be the vertex ofσ1 of height
∑f

i=1 qi and letσ′
1 be the subpath of

σ1 starting at the root ofAK\I and whose last vertex iss. Since, for allh ∈ {f + 1, . . . , g}, Ih ⊆ I,
((If+1, . . . , Ig), (qf+1, . . . , qg)) ∈ Link(pi1 , . . . , pim) and, by Remark 4.13, there exists a maximal path
σ2 of AI(s) such thatcapI(σ2) = (If+1, . . . , Ig) andπ(σ2) = (qf+1, . . . , qg). Obviously,σ = σ′

1σ2
is a maximal path ofBI . Moreover,s is a leaf ofAK\I if and only if qf = q′f and, in this case,
If+1 6= I, sinceq′f =

∑

i∈I′
f
pi andqf <

∑

i∈If\If+1
pi. It follows that, if s is a leaf ofAK\I , the

first edge ofσ2 does not belong to the trunk ofAI . Then, by proof (ii) of Lemma 5.2, whethers is
a leaf or not, the breaking vertices ofσ are composed of the breaking vertices ofσ1, of those ofσ2,
and of s. Thus,π(σ) = (q1, . . . , qf , qf+1, . . . , qg). Moreover, by definition ofbcapI , bcapI(σ) =
(I ′1 ∪ I, . . . , I ′f ∪ I, If+1, . . . , Ig) = (I1, . . . , Ig).

Subcase2.2.- If q′f < qf , let s be the last vertex ofσ1. Sinceq′f =
∑

i∈If\I
pi and qf <

∑

i∈If\If+1
pi, we haveIf+1 6= I andqf − q′f <

∑

i∈I\If+1
pi.

Thus((I, If+1, . . . , Ig), (qf − q′f , qf+1, . . . , qg)) ∈ Link(pi1 , . . . , pim) and, by Remark 4.13, there
exists a maximal pathσ2 of AI(s) such that

capI(σ2) = (I, If+1, . . . , Ig) and π(σ2) = (qf − q′f , qf+1, . . . , qg).

Since the capacity of the first edge ofσ2 is equal toI, this edge belongs to the trunk ofAI(s). s being
a leaf ofAK\I , it follows from proof of Lemma 5.2, that the breaking vertices of the maximal path
σ = σ1σ2 of BI are the breaking vertices ofσ1 and those ofσ2.

Thusπ(σ) = (q1, . . . , qf−1, q
′
f + (qf − q′f ), qf+1, . . . , qg) = (q1, . . . , qg). Moreover, by definition

of bcapI , bcapI(σ) = (I ′1 ∪ I, . . . , I ′f ∪ I, If+1, . . . , Ig) = (I1, . . . , Ig).
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Case3.- If I  Ig then, for everyh ∈ {1, . . . , g}, I  Ih. So letI ′h = Ih \ I. For everyh 6= g,

0 < qh <
∑

i∈Ih\Ih+1

pi =
∑

i∈I′
h
\I′

h+1

pi and qg =
∑

i∈Ig

pi >
∑

i∈I′g

pi.

Settingq′g =
∑

i∈I′g
pi, ((I ′1, . . . , I

′
g), (q1, . . . , qg−1, q

′
g)) ∈ Link(pj1 , . . . , pjk−m

). Thus there exists

a maximal pathσ1 of AK\I such thatcapK\I(σ1) = (I ′1, . . . , I
′
g) and π(σ1) = (q1, . . . , qg−1, q

′
g).

Moreover, the last vertexs of σ1 is a leaf ofAK\I , and the trunkσ2 of AI(s) is such thatcapI(σ2) = I
andπ(σ2) = (

∑

i∈I pi) = (qg − q′g). It follows that the maximal pathσ = σ1σ2 of BI is such that
bcapI(σ) = (I1, . . . , Ig) andπ(σ) = (q1, . . . , qg−1, q

′
g + (qg − q′g)) = (q1, . . . , qg). ⊓⊔

Lemma 5.6. There exists a one-to-one morphismϕI from the directed treeBI into the araucariaA, such
that, for every edge(s, t) of BI , bcapI(s, t) = cap(ϕI(s, t)) and such thatϕI(BI) admits the same root
asA, the same longest path asA, and every leaf ofϕI(BI) is a leaf ofA.

Proof:
By Proposition 5.5, for every maximal pathσ = (s0, . . . , sh) of BI , (bcapI(σ), π(σ)) is contained
in Link(p1, . . . , pk) and, by Theorem 4.12, there exists a unique maximal pathσ′ of A such that
cap(σ′) = bcapI(σ) andπ(σ′) = π(σ). Sinceπ(σ′) = π(σ), σ andσ′ have the same length and, if
σ′ = (s′0, . . . , s

′
h), there exists a one-to-one morphismϕ from the subtreeC0 reduced to the unique path

σ into A such that, for alli ∈ {0, . . . , h}, ϕ(si) = s′i and, for alli ∈ {0, . . . , h − 1}, cap(s′i, s
′
i+1) =

bcapI(si, si+1). Moreover the images′0 = ϕ(s0) of the root ofBI is the root ofA and the image
s′h = ϕ(sh) of the leafsh of BI is a leaf ofA. SincebcapI is discriminating we can extendϕ to a
one-to-one morphismϕI fromBI intoA by using the same method as in the proof (ii) of Theorem 4.12.
Moreover, for every edge(s, t) of BI , bcapI(s, t) = cap(ϕI(s, t)) and, for every leaff of BI , ϕI(f) is
a leaf ofA. Furthermore, the longest pathτ of BI is the product of the trunks ofAK\I andAI . Hence,
|τ | =

∑

i∈K pi andϕI(τ) is the trunk ofA (see Fig. 4). ⊓⊔

Definition 5.7. Let B be the union of a family(Bλ)λ∈Λ of disjoint directed trees and, for everyλ ∈ Λ,
capλ a capacity function ofBλ. Two maximal pathsσ of Bλ andσ′ of Bµ are said to be equivalent
relatively to(capλ)λ∈Λ if π(σ) = π(σ′) andcapλ(σ) = capµ(σ

′).

Definition 5.8. Let σ = (s0, . . . , sh) andσ′ = (s′0, . . . , s
′
h) be two paths of equal length in a graphG.

Mergingσ andσ′ consists in merging, for alli of {0, . . . , h}, the verticessi ands′i into a unique
vertex, and, for alli of {0, . . . , h− 1}, the edges(si, si+1) and(s′i, s

′
i+1) into a unique edge.

Theorem 5.9. Let m and k be integers such that1 ≤ m < k, (p1, . . . , pk) a sequence of positive
integers, andPm(K) the set of subsetsI of K of cardinalitym.

The directed graphA(m) obtained by merging all equivalent maximal paths ofB(m) =
⋃

I∈Pm(K)BI

relatively to(bcapI)I∈Pm(K) is isomorphic to the araucariaA of type(p1, . . . , pk).

Proof:
(i) Since the treesBI are pairwise disjoint, every maximal pathσ = (s0, s1, . . . , sh) of B(m) belongs
to a uniqueBI . By the proof of Lemma 5.6, there exists a one-to-one morphismϕI from the directed
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f
f'

f"

r'r r"

(a) (b) (c)

Figure 4. The araucariaA(3, 2, 1) (see Fig. 2(b)) of type(3, 2, 1) admits subtrees isomorphic toB{2,3} =
graft(A{2,3}/A{1}) (Fig. (a)),B{1,3} = graft(A{1,3}/A{2}) (Fig. (b)), andB{1,2} = graft(A{1,2}/A{3}) (Fig.
(c)). MoreoverA(3, 2, 1) is the union of these subtrees.

treeBI = graft(AI/AK\I) into the araucariaA such thatϕI(σ) = (ϕI(s0), . . . , ϕI(sh)) is a maximal
path ofA, cap(ϕI(σ)) = bcapI(σ), andπ(ϕI(σ)) = π(σ). The extensionϕ of all the mappingsϕI

is a morphism from the graphB(m) =
⋃

I∈Pm(K)BI into A. Moreover, the extensionbcap of all the

capacity functionsbcapI is such that, for every edge(s, t) of B(m), bcap(s, t) = cap(ϕ(s, t)).
Since, by Theorem 4.12, every maximal path ofA is characterized by its valued capacity chain, two

maximal pathsσ = (s0, s1, . . . , sh) andσ′ = (s′0, s
′
1, . . . , s

′
h) of B(m) are equivalent if and only if

ϕ(σ) = ϕ(σ′), that is, if and only if, for alli ∈ {0, . . . , h}, ϕ(si) = ϕ(s′i).
(ii.1) For every vertexs of B(m), let s̄ be the set of vertices ofB(m) which are merged withs when

all equivalent maximal paths ofB(m) are merged and letϕ−1(ϕ(s)) be the set of verticess′ of B(m)

such thatϕ(s′) = ϕ(s). It follows from (i) thats̄ ⊆ ϕ−1(ϕ(s)).
We prove now that̄s = ϕ−1(ϕ(s)).
(ii.2) Let (s, t) be an edge of a treeBI of B(m). From Proposition 5.5, the valued capacity chain

of every maximal path ofBI containing(s, t) is of the form((I1, . . . , Ig), (q1, . . . , qg)) with, for all
h ∈ {1, . . . , g}, eitherI ⊆ Ih or Ih ⊆ I. From Definition 4.8 and from Proposition 5.5, one of these
pathsσ is such thatIg = bcap(s, t).

(ii.3) Let (s′, t′) be an edge ofB(m) distinct from(s, t) such thatϕ(s′, t′) = ϕ(s, t) and letBJ be
the tree ofB(m) that contains(s′, t′). Let σ1 [resp.σ′

1] be the path from the root ofBI [resp.BJ ] to t
[resp. t′]. By (i), ϕ(σ1) = ϕ(σ′

1), bcap(σ1) = bcap(σ′
1), andπ(σ1) = π(σ′

1). As in (ii.2),BJ admits a
maximal pathσ′ containing(s′, t′) whose valued capacity chain is((I1, . . . , Ig), (q1, . . . , qg)). Hence,σ
andσ′ are equivalent,s′ ∈ s̄, andt′ ∈ t̄.

Hence, by (ii.1),̄t = ϕ−1(ϕ(t)) for everyt of B(m).
(iii) By the isomorphism theorem for graphs, it follows that the mappingη from B(m) into A(m)
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such thatη(s) = s̄ = ϕ−1(ϕ(s)) for everys in B(m) is a surjective morphism and that there exists a
one-to-one morphism̄ϕ from A(m) into the araucariaA such that, for everys of B(m), ϕ(s) = ϕ̄(s̄),
that is,ϕ = ϕ̄ ◦ η.

(iv) We prove now thatϕ is surjective.
Every vertexs of A belongs to a maximal pathσ of A. From Theorem 4.12, the valued capacity chain

((I1, . . . , Ig), (q1, . . . , qg)) of σ belongs toLink(p1, . . . , pk). If |Ig| ≥ m, there existsI ∈ Pm(K) such
that I ⊆ Ig and then, for everyh ∈ {1, . . . , g}, I ⊆ Ih. If |I1| ≤ m, there existsI ∈ Pm(K) such
that I1 ⊆ I and then, for everyh ∈ {1, . . . , g}, Ih ⊆ I. Finally, if there existsh ∈ {1, . . . , g − 1},
such that|Ih+1| ≤ m ≤ |Ih|, there existsI ∈ Pm(K) such thatIh+1 ⊆ I ⊆ Ih. In this case, for all
j ∈ {1, . . . , h}, I ⊆ Ij and, for allj ∈ {h + 1, . . . , g}, Ij ⊆ I. By Proposition 5.5, there exists in all
three cases a maximal pathσI in BI with valued capacity chain((I1, . . . , Ig), (q1, . . . , qg)). Hence, from
(i), σI admits a vertexsI such thatϕ(sI) = s.

(v) Sinceϕ is surjective,ϕ̄ is also surjective. Hencēϕ is an isomorphism from the directed graph
A(m) onto the araucariaA of type(p1, . . . , pk). ⊓⊔

Remark 5.10. The special casem = 1 of this Theorem is a result of [10], which was used for proving
that every araucaria is included in the minimal automaton of the shuffle of some words. Moreover this is
a new proof that our definition of araucarias is equivalent to the originalone.

Remark 5.11. Theorem 5.9 can also be proved by showing thatA(m) is a directed tree which admits a
discriminating capacity function whose associated mapping is a bijection ontoLink(p1, . . . , pk) and by
then using Theorem 4.12.

Remark 5.12. In Theorem 5.9, it is not possible to replacePm(K) by one of its proper subsetsP ′
m(K).

Indeed, ifJ ∈ Pm(K) \ P ′
m(K), the union of the directed trees(BI)I∈P ′

m(K) contains no maximal path
σ such thatcap(σ) = (J), by Proposition 5.5. However, by Theorem 4.12, the araucariaA contains such
a maximal path.

Remark 5.13. An algorithm to build araucarias can be derived from Theorem 5.9. In Remark 8.11, we
will give the size of the directed graphB(m) and the complexity of this algorithm.

6. The general grafting theorem

In this section, we extend the first grafting theorem to more than one graftingoperation. As a special
case of this general theorem, we obtain another method to construct araucarias by using a new family of
trees generated by an iterative application of grafting to elementary trees reduced to paths.

Definition 6.1. Let p1, . . . , pk be k ≥ 1 positive integers andM = (k1, . . . , km) a sequence ofm
(1 ≤ m ≤ k) positive integers such thatk1 + . . .+ km = k.

Every sequenceP = (K1, . . . ,Km) of non-empty disjoint subsets ofK such thatK1∪. . .∪Km = K
and, for alli ∈ {1, . . . ,m}, |Ki| = ki is called a partition ofK with modelM. LetPM(K) be the set
of these partitions.

For every partitionP = (K1, . . . ,Km) of PM(K), let

CP = graft(AKm/ . . . /graft(AK2
/AK1

) . . .)
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and
capP = graft(capKm

/ . . . /graft(capK2
/capK1

) . . .).

Theorem 6.2. The directed graph obtained by merging all maximal paths ofC(M) =
⋃

P∈PM(K)CP

that are equivalent relatively to(capP)P∈PM(K) is the araucaria of type(p1, . . . , pk).

Proof:
(i) We prove this result by induction on the numberm of grafting operations.

If M = (k), P = (K) is the unique partition ofPM(K) andC(M) = CP is the araucariaAK = A
with capacity functioncapP = capK = cap.

If m = 2, the result is nothing else than Theorem 5.9.
Let nowM = (k1, . . . , km) with m > 2 and letM′ = (k1, . . . , km−1). For any subsetI of K

of cardinalitykm, PM′(K \ I) is the set of partitions ofK \ I with modelM′. By induction, we can
assume that the graph obtained by merging all equivalent maximal paths ofC(M′) =

⋃

P ′∈P
M′ (K\I)CP ′

relatively to(capP ′)P ′∈P
M′ (K\I) is the araucariaAK\I with capacity functioncapK\I . Two vertices of

C(M′) which are merged in a same vertex during this merging operation are said to beI-equivalent.
(ii) Let PI be the set of partitions ofPM(K) whose last term isI. For everyP = (K1, . . . ,Km−1, I)

of PI , letP ′ = (K1, . . . ,Km−1). In a first step, we realize the merging operation in the subgraph

CI =
⋃

P∈PI

CP =
⋃

P ′∈P
M′ (K\I)

graft(AI/CP ′)

of C(M), for every subsetI of K of cardinalitykm.
Let s1 ands2 be twoI-equivalent vertices ofC(M′), let CP ′

1
[resp.CP ′

2
] be the subtree ofC(M′)

which contains the vertexs1 [resp. s2], and letσ′
1 [resp.σ′

2] be the path (possibly of length zero) from
the root ofCP ′

1
[resp.CP ′

2
] to s1 [resp.s2]. Clearly,capP ′

1
(σ′

1) = capP ′
2
(σ′

2) andπ(σ′
1) = π(σ′

2).
Then, for each maximal pathσ′′

1 ofAI(s1) and each maximal pathσ′′
2 ofAI(s2) such thatcapI(σ

′′
1) =

capI(σ
′′
2) andπ(σ′′

1) = π(σ′′
2), it follows from the proof of Lemma 5.2 that the maximal pathsσ1 = σ′

1σ
′′
1

andσ2 = σ′
2σ

′′
2 of CI are equivalent relatively to(capP)P∈PI

. If we merge the pathsσ1 andσ2 for all
such pairs(σ′′

1 , σ
′′
2), σ

′
1 andσ′

2 are merged relatively to(capP ′)P ′∈P
M′ (K\I), s1 ands2 are merged in a

unique vertexs, and the araucariasAI(s1) andAI(s2) are merged in an isomorphic araucariaAI(s).
Now, if we repeat the same operation for every pair(s1, s2) of I-equivalent vertices ofC(M′), we

merge simultaneously the equivalent maximal paths ofCI relatively to(capP)P∈PI
and the equivalent

maximal paths ofC(M′) relatively to(capP ′)P ′∈P
M′ (K\I).

Hence, by the induction hypothesis, the directed graph obtained by mergingall equivalent maximal
paths ofCI relatively to (capP)P∈PI

is isomorphic to the directed treeBI = graft(AI/AK\I) with
capacity functionbcapI .

(iii) To complete the merging operation for all equivalent maximal paths ofC(M) =
⋃

I∈Pkm (K)CI

relatively to(capP)P∈PM(K), it remains to merge the maximal paths ofB(km) =
⋃

I∈Pkm (K)BI which
are equivalent relatively to(bcapI)I∈Pkm (K). From Theorem 5.9, we obtain that way the araucaria of
type(p1, . . . , pk). ⊓⊔

Remark 6.3. In general,PM(K) can not be replaced by one of its proper subsets. Indeed, given a
modelM and a partitionP = (K1, . . . ,Km) of PM(K), it results from the definition of the capacity
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functions obtained by grafting, thatCP is the unique tree ofC(M) that can contain a maximal path of
capacity chain(K2 ∪ ... ∪Km,K3 ∪ . . . ∪Km, . . . ,Km) (just use recursively the argument that a tree
CP of C(M) contains a maximal path whose last truncation has capacityKm only if Km is the last term
of the sequenceP).

Now, from Definition 2.3, the root of the araucariaA is the root of a semi-araucariaHK2∪...∪Km,0

whose trunkτ has capacityK2 ∪ . . . ∪ Km. From Definition 2.2, if
∑

i∈K2
pi > 1, the vertex ofτ

of height 1 is the root of a semi-araucariaHK3∪...∪Km,1 whose trunk has capacityK3 ∪ . . . ∪ Km.
More generally if, for everyj of {2, . . . ,m − 1},

∑

i∈Kj
pi > 1, A admits a path with capacity chain

(K2 ∪ . . . ∪Km,K3 ∪ . . . ∪Km, . . . ,Km).
Since

∑

i∈Kj
pi > 1 whenKj is not reduced to a unique element{h} with ph = 1, it follows that

PM(K) can not be replaced by one of its proper subsets ifA is an araucaria of type(p1, . . . , pk) with,
for all h ∈ {1, . . . , k}, ph 6= 1. In the converse case, not all elements ofPM(K) are always necessary
(see Remark 6.6).

In the special caseM = (1, . . . , 1), PM(K) is the set of permutations ofK and Theorem 6.2 leads
to a construction of araucarias by using a family of trees obtained by iteratively grafting elementary trees
reduced to paths (see Fig. 5).

This result can be stated in the following way:

Theorem 6.4. Let p1, . . . , pk be positive integers,A(p1), . . . , A(pk) elementary araucarias of respective
types(p1), . . . , (pk), Σ(K) the set of permutations ofK = {1, . . . , k}, and, for allα ∈ Σ(K),

Dα = graft(A(pα(k))/ . . . /graft(A(pα(2))/A(pα(1))) . . .)

and
capα = graft(cap{α(k)}/ . . . /graft(cap{α(2)}/cap{α(1)}) . . .).

The directed graph obtained by merging all equivalent maximal paths ofD =
⋃

α∈Σ(K)Dα relatively
to (capα)α∈Σ(K) is the araucaria of type(p1, . . . , pk).

By induction on the number of graftings, we can also prove that:

Proposition 6.5. There exists a maximal pathσ of Dα such thatcapα(σ) = (I1, . . . , If ) andπ(σ) =
(q1, . . . , qf ) if and only if ((I1, . . . , If ), (q1, . . . , qf )) belongs toLink(p1, . . . , pk) and(I1, . . . , If ) is a
subsequence of(α({1, . . . , k}), α({2, . . . , k}), . . . , {α(k)}).

This result can be used for an alternative proof of Theorem 6.4.

Remark 6.6. It is not difficult to see that the araucaria of type(p1, p2, p3) = (3, 2, 1) can also be
obtained by merging the equivalent maximal paths ofD =

⋃

α∈Σ′(K)Dα, whereΣ′(K) is the set
Σ(K) \ {(1, 3, 2), (2, 3, 1)} (see Fig. 5).

More generally, letp1, . . . , pk be a set ofk > 2 positive integers, at least one of them being equal to1.
Letα be a permutation ofK such that there existsi ∈ {2, . . . , k− 1} for whichpα(i) = 1. By definition
of capα, for every maximal pathσ of Dα, capα(σ) cannot contain(α({i, . . . , k}), α({i+1, . . . , k})) as
a subsequence. From Proposition 6.5,σ is then equivalent to a maximal path of a treeDα′ whereα′ is
obtained fromα by swappingα(i) either withα(i− 1) or withα(i+ 1). It follows that the permutation
α is not necessary to construct the araucaria of type(p1, . . . , pk) with the method of Theorem 6.4.
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(d)(c)(b)(a)

r1 r2 r3 r4 r5 r6

s1 s2 s3 s4 s5 s6

(e) (f)

Figure 5. Given the three integersp1 = 3, p2 = 2, andp3 = 1, figures (a), (b), (c), (d), (e), and (f) show the
directed treeDα = graft(A(pα(3))/graft(A(pα(2))/A(pα(1)))) for the following respective values ofα: (1, 2, 3),
(1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1).

Remark 6.7. As in Remark 5.13, an algorithm which builds araucarias based on the construction of
Theorem 6.4 can be given. The directed trees which are used here aremuch simpler than the treesBI .
In Remark 8.11, we will give the size of the directed graphD and the complexity of this algorithm.

7. The embedding theorem

We prove here that every directed tree can be embedded in an araucaria. Hence, despite the complexity
of their definition, the family of subtrees of araucarias contains all the directed trees. This result is a
simple corollary of the grafting theorems but it can also be proved by directlyusing Definition 2.3 (see
Remark 7.3).

Theorem 7.1. Every directed tree can be embedded in an araucaria.

Proof:
If B is a subtree of an araucariaAI , if C is a subtree of the araucariaAK\I and, ifP is a subset of the set
of vertices ofB, graftP (B/C) is a subtree ofBI = graft(AI/AK\I), which is a subtree of an araucaria
of type(p1, . . . , pk) by Lemma 5.6.

Now, every directed treeB is obtained by grafting successively its edges, which are araucarias of
type(1). Hence, by induction, it follows thatB is isomorphic to a subtree of some araucaria. ⊓⊔

Remark 7.2. Similarly, we can prove that every directed tree of sizen can be embedded in the tree

graft(A(pn−1)/ . . . /graft(A(p2)/A(p1)) . . .)

wherep1 = p2 = . . . = pn−1 = 1.
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Remark 7.3. Theorem 7.1 can also be proved directly by induction on the size of the directed treeB.
As sketch of proof, it is sufficient to see that, if the root ofB is removed then each resulting tree can be
embedded in an araucaria by induction. Furthermore, if we add an edge(r, s) to an araucaria of roots,
the resulting tree is embeddable in a semi-araucaria.

8. Some enumeration formulas for araucarias

To every vertex of an araucariaA of type(p1, . . . , pk), we associate a capacity which is a subsetI of K.
We prove that the number of vertices of capacityI is equal to(k − |I|)!

∏

i∈K\I pi. As a corollary we
obtain the size of the setLink(p1, . . . , pk) introduced in Section4. We prove also that the size of a semi-
araucaria of type(p1, . . . , pk) is equal tok!

∏

i∈K pi + 1. The size of an araucaria follows immediately
from each of this two results, providing simpler proofs of a result of [10].

Definition 8.1. (i) For every leafs of an araucariaA with capacity functioncap, if p is the predecessor
of s, the subsetI = cap(p, s) of K is called the capacity ofs and is denotedχ(s).

Moreover, for every internal vertexs of A, χ(s) = ∅ is called the capacity ofs.
(ii) For every subsetI of K, letEI(p1, . . . , pk) be the set of vertices of capacityI of an araucariaA

of type(p1, . . . , pk).

Lemma 8.2. For every non-empty proper subsetI of K, if m = |I| andK \ I = {j1, . . . , jk−m} then

|EI(p1, . . . , pk)| = |E∅(pj1 , . . . , pjk−m
)|.

Proof:
(i) Let δ be the mapping from the setE∅(pj1 , . . . , pjk−m

) of internal vertices of the araucariaAK\I

into the set of leaves of the directed treeBI = graft(AI/AK\I) such that, for every vertexs of
E∅(pj1 , . . . , pjk−m

), δ(s) is the last vertex of the trunkτ(s) of the araucariaAI(s). By proof of Lemma
5.2, τ(s) is the terminal truncation of the maximal pathσ of BI whose last vertex isδ(s). By Lemma
5.6,ϕI(τ(s)) is the terminal truncation of the maximal pathϕI(σ) of A andχ(δ(s)) = cap(ϕI(τ(s))) =
bcapI(τ(s)) = I. HenceϕI ◦ δ(s) ∈ EI(p1, . . . , pk) andϕI ◦ δ(E∅(pj1 , . . . , pjk−m

)) ⊆ EI(p1, . . . , pk).
(ii) Conversely, lett be a vertex ofEI(p1, . . . , pk) andσ(t) the maximal path ofA whose last vertex

is t. Since, by proof of Theorem 5.9, the extensionϕ of all morphismsϕI whereI ∈ Pm(K) is surjective,
there existJ ∈ Pm(K) and a maximal pathσ of BJ such thatϕJ(σ) = ϕ(σ) = σ(t). The capacity
of the terminal truncationτ(f) of σ is then equal tobcapJ(τ(f)) = cap(ϕJ(τ(f))) = χ(t) = I. By
Proposition 5.5, eitherI ⊆ J orJ ⊆ I and, since|I| = m = |J |, I = J . Hence, by proof of Lemma 5.2,
τ(f) is the trunk ofAI(s) for some internal vertexs of AK\I , s ∈ E∅(pj1 , . . . , pjk−m

), andϕI ◦δ(s) = t.
This proves thatEI(p1, . . . , pk) ⊆ ϕI ◦ δ(E∅(pj1 , . . . , pjk−m

)).
Thus, by (i),ϕI ◦ δ(E∅(pj1 , . . . , pjk−m

)) = EI(p1, . . . , pk) and, sinceδ andϕI are one-to-one,

|EI(p1, . . . , pk)| = |E∅(pj1 , . . . , pjk−m
)|.

⊓⊔

Lemma 8.3. If P (K) is the set of non-empty proper subsets ofK,

|E∅(p1, . . . , pk)| = 1 +
∑

I∈P (K)∪{K}

|EI(p1, . . . , pk)|
(

∑

i∈I

pi − 1
)

.
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Proof:
By Lemma 4.2, every edge ofA is contained in exactly one terminal truncation. For every vertext
of the setLeaves(A) of leaves ofA, let τ(t) = (s0, . . . , sf−1, t) be the terminal truncation which
contains the leaft and letτ∗(t) be the set of vertices ofτ(t) \ {s0, t}. Then, if r is the root ofA,
{τ∗(t); t ∈ Leaves(A)} ∪ {r} forms a partition of the set of internal vertices ofA. MoreoverI = χ(t)
is a non-empty subset ofK andτ∗(t) contains

∑

i∈I pi − 1 internal vertices ofA. It follows that

|E∅(p1, . . . , pk)| = 1 +
∑

I∈P (K)∪{K}

|EI(p1, . . . , pk)|
(

∑

i∈I

pi − 1
)

.

⊓⊔

Definition 8.4. (i) Let Ψ0(X1, . . . , Xk) = 1 and, for eachm ∈ {1, . . . , k}, let

Ψm(X1, . . . , Xk) =
∑

I∈Pm(K)

∏

i∈I

Xi

be the elementary symmetric polynomial of degreem on variablesX1, . . . , Xk, wherePm(K) is the set
of subsetsI of K of cardinalitym.

For example,Ψ1(X1, X2, X3) = X1 +X2 +X3, Ψ2(X1, X2, X3) = X1X2 +X2X3 +X3X1, and
Ψ3(X1, X2, X3) = X1X2X3.

(ii) The polynomial

Υk(X1, . . . , Xk) =
k

∑

m=0

m!Ψm(X1, . . . , Xk)

is called the araucaria polynomial ink variables.
The first araucaria polynomials are:

Υ1(X1) = X1 + 1,
Υ2(X1, X2) = 2X1X2 +X1 +X2 + 1,
Υ3(X1, X2, X3) = 6X1X2X3 + 2(X1X2 +X2X3 +X3X1) +X1 +X2 +X3 + 1.

Lemma 8.5. For eachm ∈ {1, . . . , k − 1},

∑

I∈Pm(K)

(

∏

i∈I

Xi

)(

∑

j∈K\I

Xj

)

= (m+ 1)Ψm+1(X1, . . . , Xk).

Proof:
The sum

S =
∑

I∈Pm(K)

(

∏

i∈I

Xi

)(

∑

j∈K\I

Xj

)

is a symmetric function ofX1, . . . , Xk. The product
(
∏

i∈I Xi

)

Xj is equal toX1 . . . Xm+1 if and only
if j ∈ {1, . . . ,m + 1} andI = {1, . . . ,m + 1} \ {j}. ThereforeX1 . . . Xm+1 appearsm + 1 times in
the sumS. By symmetry, the same thing happens for the other products and this provesthe relation. ⊓⊔
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Theorem 8.6. For every proper subsetI of K, if m = |I|,

|EI(p1, . . . , pk)| = (k −m)!
∏

i∈K\I

pi

and|EK(p1, . . . , pk)| = 1.

Proof:
Fork = 1, every araucaria of typep1 admits one leaf andp1 internal vertices. Thus|E{1}(p1)| = 1 and
|E∅(p1)| = p1.

Assume that the property is satisfied for every arity smaller thank and letA be an araucaria of type
(p1, . . . , pk).

(i) If I 6= K, I 6= ∅, andK \ I = {j1, . . . , jk−m}, by Lemma 8.2 and by the induction hypothesis,

|EI(p1, . . . , pk)| = |E∅(pj1 , . . . , pjk−m
)| = (k −m)!

∏

j∈K\I

pj .

(ii) |EK(p1, . . . , pk)| = 1 since the trunk ofA is the only terminal truncation of capacityK.
(iii) By (i), (ii), and Lemma 8.3,

|E∅(p1, . . . , pk)| =
∑

i∈K

pi +
k−1
∑

m=1

∑

I∈Pm(K)

(k −m)!
∏

j∈K\I

pj
(

∑

i∈I

pi − 1
)

.

By Lemma 8.5,

∑

I∈Pm(K)

(

∏

j∈K\I

pj
)(

∑

i∈I

pi
)

= (k −m+ 1)Ψk−m+1(p1, . . . , pk).

Hence|E∅(p1, . . . , pk)| is equal to

∑

i∈K

pi +

k−1
∑

m=1

(

(k −m+ 1)!Ψk−m+1(p1, . . . , pk)− (k −m)!Ψk−m(p1, . . . , pk)
)

and
|E∅(p1, . . . , pk)| = k!Ψk(p1, . . . , pk).

⊓⊔

Remark 8.7. By setting
∏

j∈∅ pj = 1, the caseI = K in Theorem 8.6 can be included in the general
case.

Corollary 8.8. The size of the setLink(p1, . . . , pk) is equal to

Υk(p1, . . . , pk)− k!
∏

i∈K

pi.
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Proof:
For every leaft of the araucariaA of type (p1, . . . , pk), there exists a unique maximal path ofA from
the root ofA to t. Hence there exists a bijection from the setLeaves(A) of leaves ofA onto the set
MP(A) of maximal paths ofA. By Theorem 4.12, there exists also a bijection fromMP(A) onto the set
Link(p1, . . . , pk). It follows that

|Link(p1, . . . , pk)| = |MP(A)| = |Leaves(A)| =
∑

I∈P (K)∪{K}

|EI(p1, . . . , pk)|

and, by Theorem 8.6, that

|Link(p1, . . . , pk)| =
k−1
∑

m=1

(k −m)!Ψk−m(p1, . . . , pk) = Υk(p1, . . . , pk)− k!
∏

i∈K

pi.

⊓⊔

Theorem 8.9. (i) The size of a semi-araucaria of type(p1, . . . , pk) is equal tok!
∏

i∈K pi + 1.
(ii) The size of an araucaria of type(p1, . . . , pk) is equal toΥk(p1, . . . , pk).

Proof:
(i) By Definition 2.2, the size of a semi-araucariaH of type(p1, . . . , pk) is equal to

|H| = 1 +
∑

i∈K

pi +
∑

I∈P (K)

(

|HI,h| − 1
)(

∑

j∈K\I

pj − 1
)

.

If we assume, by induction, that, for allI ∈ P (K), |HI,h| = m!
∏

i∈I pi + 1, it follows that

|H| = 1 +
∑

i∈K

pi +
k−1
∑

m=1

m!
(

∑

I∈Pm(K)

(

∏

i∈I

pi
)(

∑

j∈K\J

pj − 1
)

)

.

Hence, by Lemma 8.5,

|H| = 1 +
∑

i∈K

pi +
k−1
∑

m=1

(

(m+ 1)!Ψm+1(p1, . . . , pk)−m!Ψm(p1, . . . , pk)
)

= k!
∏

i∈K

pi + 1.

(ii) We give here two simple proofs of the result of [10].
Proof1.- By Definition 2.3, the size of the araucariaA of type(p1, . . . , pk) is equal to

|A| = 1 +
∑

I∈P (K)∪{K}

(

|HI,0| − 1
)

=
k

∑

m=0

m!Ψm(p1, . . . , pk) = Υk(p1, . . . , pk).

Proof2.- By Theorem 8.6, the size ofA is equal to

|A| =
∑

I∈P (K)∪{K,∅}

|EI(p1, . . . , pk)| =
k

∑

m=0

m!Ψm(p1, . . . , pk).

⊓⊔
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Remark 8.10. By Theorems 8.6 and 8.9, there exists a bijection from the setE∅(p1, . . . , pk) of internal
vertices of an araucariaA of type (p1, . . . , pk) onto the setHK,0 \ {r} whereHK,0 is the subsemi-
araucaria ofA of same type andr their common root. (We use here the same notation for a tree and
for the set of its vertices.) This can also be proved directly. Indeed, if weassume the property for every
arity smaller thank, for every non-empty proper subsetI = {i1, . . . , im} of K, there exist a bijectionαI

from E∅(pi1 , . . . , pim) ontoHI,0 \ {r} and, by Lemma 8.2, a bijectionζI from EK\I(p1, . . . , pk) onto
E∅(pi1 , . . . , pim). If s is the last vertex of the trunk ofA, EK(p1, . . . , pk) = {s} by Theorem 8.6. Hence
there exists a bijection from

A \ E∅(p1, . . . , pk) =
(

⋃

I∈P (K)

EK\I(p1, . . . , pk)
)

∪ {s}

onto
A \ (HK,0 \ {r}) =

(

⋃

I∈P (K)

(

HI,0 \ {r}
)

)

∪ {r}

which extends all theαI ◦ ζI . Thus there exists also a bijection fromE∅(p1, . . . , pk) ontoHK,0 \ {r}.

Remark 8.11. (i) For every non empty proper subsetI = {i1, . . . , im} of K, the size of the treeBI =
graft(AI/AK\I) is equal to|AI | · |AK\I |. Hence, by Theorem 8.9, setting{j1, . . . , jk−m} = K \ I, the
size ofB(m) =

⋃

I∈Pm(K)BI is equal to

Γk(p1, . . . , pk) =
∑

I∈Pm(K)

Υm(pi1 , . . . , pim)Υk−m(pj1 , . . . , pjk−m
).

Γk is then a polynomial of same degree asΥk and, since|Pm(K)| =
(

k
m

)

, it has same term of highest
degree. Hence, the araucariaA and the graphB(m) have asymptotically the same size.

(ii) Theorem 5.9 can be used to construct the araucariaA by adding and merging the treesBI of
B(m) one by one. This can be achieved in timeO(|B(m)|) = O(|A|) as long ask is considered as a
constant (both the size of the capacity of an edge and the number of neighbors of a vertex inA can be
bounded by a value only depending onk). However, the algorithm given in Section 3 is simpler, runs
faster, and remains linear even ifk is not a constant.

(iii) The same remarks hold if we want to constructA using Theorem 6.4. Indeed, the size of a tree
Dα is equal to

∏

i∈K(pi + 1) and the size ofD =
⋃

α∈Σ(K)Dα is equal to

∆k(p1, . . . , pk) = k!
∏

i∈K

(pi + 1).

Hence, the polynomials∆k andΥk have same degree and same term of highest degree.

9. Conclusion

In this paper, we have given a new definition of the araucarias introduced in [10, 11] and, based on this
definition, an optimal algorithm for their construction as well as a new method for calculating their size.
We have also introduced a notion of capacity which leads to a characterization of the maximal paths of an
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araucaria. The araucarias are then characterized by these properties. The grafting operation introduced
here has interesting properties in relation with capacities. In particular, we get various methods for
generating araucarias of arityk by using either araucarias of arity less thank or a family of simpler trees.
We also establish bijections from some sets of vertices of an araucaria of arity k onto sets of vertices
of araucarias of arity smaller thank. This leads to two new proofs that the size of an araucaria of type
(p1, . . . , pk) is a symmetric polynomial inp1, . . . , pk. We prove also that every directed tree can be
embedded in an araucaria.

These results will be used in the study of the minimal automaton of the shuffle product of a finite
set of words. In particular, we hope to prove that, if the alphabets of the wordsu1, . . . , uk are pairwise
disjoint up to a common letter, then the minimal automaton ofu1 ⊔⊔ . . .⊔⊔ uk can be described by
using only araucarias or homomorphic images of araucarias, and that the maximum size of the minimal
automaton is a polynomial function of|u1|, . . . , |uk| whose coefficients are exponential ink. Some
properties of the minimal automaton are also expected in the general case. Moreover, we hope to be able
to give an optimal algorithm to construct this automaton by using a method given in[10].
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