Araucaria Trees: Construction and Grafting Theorems

Dominique Schmitt

Laboratoire LMIA, Equipe MAGE, Univeréitde Haute Alsace
4, rue des Feres Lumére, 68093 Mulhouse, France
Dominique.Schmitt@uha.fr

Jean-Claude Spehnef

Laboratoire LMIA, Equipe MAGE, Univeréitde Haute Alsace
4, rue des Feres Lumére, 68093 Mulhouse, France
Jean-Claude.Spehner@uha.fr

Abstract. Araucarias have been introduced by Schott and Spehner essitgich appear in the
minimal automaton of the shuffle of words. We give here a nefinifien of araucarias which is
more constructive and we prove that our definition of araasas equivalent to the original one.
From the new definition we derive an optimal algorithm for twnstruction of araucarias and a
new method for calculating their size. Moreover we charétearaucarias by properties of their
maximal paths, by associating a capacity to every edge. Bfeshow that every araucaria can be
obtained by grafting and merging smaller araucarias. Weepadso that every directed tree can be
embedded in an araucaria. Moreover we define a capacity &y eertex of an araucaria, which
leads to different new enumeration formulas for araucarias
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1. Introduction

If wandv are words of a free monoid, the shufflecchndv (denoted: LLI v) is the language whose words
are of the formuviusgvs . . . umv,y, Whereujus . . . u,y, 1S a factorization ots, vivs . . . v, a factorization
of v, and the factors; andwv,, are possibly empty. More generally,ifandJ are two languages of a
free monoid, the union of the seis 1 1 v for uw € I andv € J is called the shuffle of the languagkand

J (denoted LLI J). The shuffle product; LLI... LI ug of k wordsug, . .., u, can then be defined by
induction onk.
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The shuffle product admits various applications, in particular in parabelgssing [3, 8]. Theoretical
results are given in [4, 5] and algorithmic results can be found in [12, &Jdwever, the construction of
the minimal automaton which recognizes the shuffle produgtwbrds is an old open problem.

The set of letters of a word is called its alphabet. If the alphabets of theswqtd. ., u; are
pairwise disjoint, the minimal automaton of the languageLl!. . . LLI uy is simply its non-deterministic
automaton and its size is equal f§{_, (|u;| + 1) + 1 where|u;| is the length of the word,;. In the
converse case, the minimal automaton contains, for every common letter obttswy, . . . , ux, some
directed graphs having special properties, and its size is much bigger.

Recently, Biegler, Daley, and McQuillan [2] have shown that the size ofrimémal automaton
which recognizes the language LI v can be exponential relative to the lengths of the wardsidv.

Schott and Spehner [10] (see also [9] and the erratum [11]) hasleedtthe special case éfwords
of the formb aP'cy, ..., bgaPrc, (Wherepy, ..., p, are positive integers and by, ..., bg, c1,..., ¢ are
pairwise distinct letters up to the equalities= cy,...,br = c¢;). They have proved that the minimal
automaton of the languagk a'c; LLI. .. LI byaPk¢, contains a directed tree, called araucaria, which
is characterized by the integkr called its arity, and by the sequence of intedexs. . ., px), called its
type (see Fig. 1). The araucaria constitutes the most complicated partafttraaton.
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Figure 1. The grid (a) represents the part of the non-detéstic automaton which recognizes the language
L = caaac LI baab obtained by removing its absorbing state (the empty sgt)s the initial state and the
terminal state. (b) represents a part of the minimal automaf L obtained by removing its absorbing state. If
we change every edde, v) of the oriented subgraph of (b) with unbroken edges in itsogjip edggv, u), we
obtain an araucaria of ty8, 2).

This paper is a continuation of the first part of Schott and Spehnepergay using a more algo-
rithmic definition of araucarias and other graph-theoretic or combinataadepts. The new definition
is independent of automata theory, but we also give some hints to interpregsults in the context of



D. Schmitt, J.-C. Spehner/Araucarias: Construction and Grafting 3

the shuffle of words. The aim is to give more graphical and combinatagigoties of araucarias that
should, in particular, help to prove the following conjecture :

“If the alphabets of the words,, ..., u; are pairwise disjoint up to a common letterthen all sub-
graphs of the minimal automaton of LLI. .. LLI u; which are defined by the transitions relative to the
common letter are araucarias or homomorphic images of araucarias. The maximum sizawifiimal
automaton is a polynomial function @f; |, . . ., |ux| whose coefficients are exponentialiih

The new definition of araucarias is given in SectibnIn the original definition, an araucaria is
recursively defined as a union of non disjoint subaraucarias. Thisitd® does not enable us to give
an efficient algorithm to construct araucarias. We introduce here tienraf semi-araucaria and show
that an araucaria is a union of semi-araucarias having only their rootsnmoa.

This new definition leads, in Sectidyto an optimal algorithm to construct araucarias.

In Section4, we characterize araucarias through their maximal paths (paths starthmgrabt and
ending at a leaf). To this aim, we associate to every edge of an arautbedp, . . . , px) a subset of
{1,...,k}, called the capacity of the edge. Then, a capacity chain correspongsryoneaximal path of
the araucaria. We show that these chains characterize the araucanig abhaiher directed trees.

In Section5, we define a grafting operation from a directed téeéento a directed tred? which
consists in sticking at every vertexof B a copy ofC (with root s). We first prove that, ifB andC
are araucarias, then the grafting leads to a subtree of another &aaud&rthen show that, for every
positive integem < k, any araucaria of arity¢ can be obtained by first grafting araucarias of awity
onto araucarias of arity — m and by then merging the resulting trees.

More generally, we show in Sectighthat every araucaria of arity can be obtained by grafting
and merging araucarias whose sum of aritie.idn the particular case where the grafted araucarias
are reduced to paths, the grafting leads to a new family of directed treegytibe property that every
araucaria can be obtained by merging such trees.

In Section7, we prove that every directed tree is isomorphic to some subtree of acasigau

In [10], Schott and Spehner proved that the size of an araucarigefy, ..., px) is equal to the
remarkable polynomidl'y(p1, . . ., pr), whereYy is defined in the following way:

k
Te(Xp,o, Xp) = ) miWn (X, Xp)
m=0

whereV,, (X1, .., X}) is the elementary symmetric polynomial of degreen variablesXy, ..., Xj
and\IlO(Xl, - ,Xk) = 1.

In the last section of this paper, we give some other enumeration formulasafocarias. To this
aim we first associate to every vertex of an araucaria of araycapacity, which is a subsétof K =
{1,...,k}. We then prove that the number of vertices of capakit§ an araucaria of typép1, ..., px)
is equal to(k — [I|)! [[;cx\; pi- We also show that the size of a semi-araucaria of type. . ., px) is
equal tok! [[,c - pi + 1. This leads to two new and simple proofs that the size of an araucaria of type
(p1,...,pr) is equal toYy(py, . .., pr)-

An extended abstract of Sectiols3, and4 has been presented in [7].
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2. Semi-araucarias and araucarias

After basic definitions, we introduce a new kind of directed trees called aegmicarias. Araucarias
are then defined by using these semi-araucarias and we prove thatvthitefieition of araucarias is
equivalent to the original one given by Schott and Spehner [11]. Weotirecall the original definition
here because it needs several notions which are not introduced iapieis(see Remark 4.16). Moreover,
the notations used in the original definition are incompatible with ours.

Definition 2.1. (i) Every pairG = (V, E) whereE C V x V is called a directed graph. Evevyc V' is
called a vertex of7 and every(s,t) € E is called an (oriented) edge 6f. For every edgés, t) of E, ¢
is called a successor efands is called a predecessor of

(i) Every sequence = (so,...,sy) of vertices such thatso, s1),...,(s¢—1,sy) are edges off
is called a path ofs from s, to s;. The integerf is called the length of and is denoted byo|. If
o = (s0,...,s7) andr = (sy,...,s,) are paths ofy, the path\ = (so,...,s7_1,57,5741,...,54) IS
called the product of andr and is denoted by = o7.

(iii) A directed graphG = (V, E) is called a directed tree if there exists one vertex V' without
predecessor and such that, for every vestexV'\ {r}, there exists a unique path franto s. The vertex
r is called the root ofs. The length of the path from the rooto s is called the height of. Every vertex
s of G without successor is called a leaf@f Each path starting at the rooand whose last vertex is a
leaf of GG is said to be maximal.

Definition 2.2. Throughout this papek, will be a positive integerk the sef{1, ..., k}, and(p1, ..., pk)
a sequence df positive integers.
A semi-araucariad (p1, . .., px) of type (p1,...,pr) is a directed tree recursively defined in the
following way (see Fig. 2(a) and Example 2.4):
If k=1, H(p1) is a path of lengthp;.
If £ > 1, H(p1,...,px) is the union of a path = (so,...,s,) of lengthp = >"._ . p; and, for each
non-empty proper subsét= {i,...,i,} of K and eachh in {1,.. .,ZjeK\ij — 1}, of a semi-
araucariaf j, of type (p;,, . .., pi,,) such that:
- the root ofHy , is the vertexs;, of T andHy, N7 = {sp},
- for each non-empty proper subskof K (J # I) such thath < ZjeK\Jpj, HipNWHyp = {sp}.
The integelk is called the arity of (p1, . . ., pr) and the pathr is called its trunk.

Definition 2.3. An araucariaA(p, . .., px) of type (p1, ..., pr) is a directed tree which is the union of
the semi-araucarial; o of root so and of type(p;,, . . ., pi,,), wheresg is a vertex,] = {i1,..., iy} IS
a non-empty subset df and, for every non-empty subsétof K distinct fromI, Hro N Hjo = {so}
(see Fig. 2(b) and Example 2.4).

The integerk is called the arity of the araucaria and the trunkh# ( is called its trunk.

Example 2.4. (i) The semi-araucari@l of type(p1, p2, p3) = (3,2,1) (Fig. 2(a)) is composed of a trunk
(so,- .-, s¢) on which the twelve following subsemi-araucarias (i.e., subtrees whiclearessaucarias)
are sticked:

- one subsemi-araucaridy, 3 ; of type(p1, p3) = (3,1) (Fig. 2(d)) on the vertex;,

- two subsemi-araucaria, 33 ; and Hy, 3 o of type (pa, p3) = (2,1) (Fig. 2(e)) on the vertices;
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56 56

Figure 2. A semi-araucaria (a) and an araucaria (b) of (#&,1). (c), (d), (e), (), (g) and (h) are semi-
araucarias of respective typ€k 2), (3,1), (2,1), (3), (2), and(1).

andss,
- two subsemi-araucarid@$;;, ; and Hyy, » of type (p1) = (3) (Fig. 2(f)) on the vertices; andss,
- three subsemi-araucariak) 1, Hysy,2, and Hysy 5 of type (p2) = (2) (Fig. 2(g)) on the vertices;,
So, andss,
- four subsemi-araucaria sy 1, Hsy 2, Hysy 3, and Hysy 4 of type (p3) = (1) (Fig. 2(h)) on the
verticessy, s, s3, andsy.

(i) The araucariad of type (p1, p2, p3) = (3,2,1) (Fig. 2(b)) is composed of a roeg on which are
sticked the subsemi-araucarifl, 3, o of type (3,2, 1), Hyy 230 of type (3, 2) (Fig. 2(c)), Hyy 33,0 Of
type(3,1), Hya3y0 Of type (2, 1), Hyqy o Of type(3), Hygy o of type(2), andH sy o of type (1).

We give now a characterization of araucarias similar to that in [11] which im &t our definition
of araucarias is equivalent to the original one.
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Theorem 2.5. A directed treeB is an araucaria of typépi, ..., p) if and only if B has the following
recursive properties:

If £ =1, Bis a path of lengthp;.

If £ > 1, B is the union of a pathp of lengthp; + ... + px and, for each non-empty proper subset
I'={i,...,in}of K andeachh € {0,..., > ;cx\ ;p; — 1}, of a subtreeB; ; such that:

- By, is an araucaria of typ@;,, . . ., pi,,)s

- the root of By 5, is the vertexs;, of 75 of heighth and B, N 78 = {s1},

- for every non-empty proper subsebf K such thath < ZiGK\J p;, the common subtree d@#; 5, and
By, is an araucaria of roo, and type(p;,, . . ., p;,) where{ji,...,j.} =INJ.

Proof:
This theorem is trivial fok = 1 since an araucaria of type and a semi-araucaria of type are reduced
to a single path of length.

Assume the result for every araucaria of arity smaller thgh > 1) and letA be an araucaria of
type(p1,...,px). Let B be a directed tree as given in the statement of the theorem.

Since the length of the trunky of Hx  is equal to the length of the patix of B, there exists an
isomorphisny, from 74 ontorp.

By Definitions 2.2 and 2.3, for each non-empty proper subpset {i1,...,i,} of K and each
of {0,..., 2 ;ex\rP; — 1}, the vertexs, of 74 of height/ is the root of the semi-araucarfd;, of
type (pi,, ..., pi,,) andHy , N 74 = {s}. Since, for every non-empty proper subset {ji,...,Ji}
of I, X jex\sPi > 2 jer\1Pj» S is also the root of the semi-araucafigy, of type (p;,, ..., p;,),
andH;, N Hyp, = {sp}. By induction, the uniom;;, of {H;;;0 C J C I} is an araucaria of type
(Pirs - - - Piny ). Since, the vertey(sy,) is the root ofB; 5, 6y can be extended to an isomorphigrsuch
thatG(ALh) = B],h.

Moreover, for every non-empty proper subgedf K such that, < ZieK\in, the common subtree
of A7, andA , is, by construction, the union of alf, , suchthaf) ¢ L C InJ whichis, by induction,

a subaraucaria of roey, and type(p;, , .. ., p;, ), where{ji,... 4.} =INJ. Hencef(Ar, N Asp) =
B[’h N BJJL.
It follows thatf, can be extended to an isomorphism franonto B. O

Corollary 2.6. Our definition of araucarias is equivalent to the original one given yp®and Spehner.

Proof:
It follows from Theorem 2.5, by induction on the arity, that an araucdrigpe (p1, ..., px) IS unique
up to an isomorphism.

In Theorem 1.1 of [11], Schott and Spehner characterize their aiasdy the same properties as
those of Theorem 2.5, but with more restrictive conditions on the integ&hey also prove the unicity
of their araucarias up to an isomorphism. Hence both definitions are é&mntiva O

Remark 2.7. It is not difficult to prove by induction on the arity that, for each permutatiaof K, the
araucariad(py(1), - - - » Pp(k)) IS isomorphic toA(ps, ..., px) [11]. Hence the typép,...,p;) of an
araucaria can be given in a standard form suchghat ps > ... > py.

Remark 2.8. The subaraucarias and the subsemi-araucarias appear in a natytal tha context of
shuffle of words. The classical representation of the non-determinigtiecreton that recognizes the



D. Schmitt, J.-C. Spehner/Araucarias: Construction and Grafting 7

languagebiaPicy LLI...LLI byaPkc, contains a set ai-transitions that forms &-dimensional hyper-
parallelepiped of sizﬂle(pi + 1) (see Fig. 1(a)). The vertexof this hyper-parallelepiped that has
no outgoinga-transition corresponds to the root of the araucaria of tfge. .., px) in the minimal
automaton (see Fig. 1(b)). For every integerc {1,...,k} and for every subsdii, ..., i} of K,

r is a vertex of anm-dimensional face of sizﬂ’j":l(pij + 1) of the hyper-parallelepiped and is the
root of both a subaraucaria and a subsemi-araucaria ofrarayd type(p;,, . .., p;,,) in the minimal
automaton. If the faces are considered as open (i.e. without their boes)d#hey are pairwise disjoint
like their corresponding subsemi-araucarias (up to themmpddtherwise, two closed faces intersect in a
subface if and only if their corresponding subaraucarias intersectubaraucaria.

3. Optimal implementation of araucarias

The aim of this section is to show that, with a simple data structure, Definitions &.2.aread imme-
diately to algorithms that construct araucarias in linear time (linear in the size abifstructed trees).
In Sectiond, it will be shown that the way araucarias are implemented with these algorithmbedfss
to easily report some characteristic values of araucarias (Remark hi1%gction8, the complexity of
the algorithms will be compared to that of other construction methods (Remdrk 8.1

Araucarias and semi-araucarias can be stored in any data structdriousgié@ected trees, such as
first-child/next-sibling representation. Every vertex such a representation contains a link to its oldest
child and another one to the immediately younger sibling.oThe data structure also contains direct
access to the root of the tree. We suppose that we are also giventaflu@opy(7'), which returns
a copy of the tred’, and a functionPath(n), which returns a path of length in the form of a first-
child/next-sibling representation (in this case no vertex has a sibling).

The algorithm to construct semi-araucarias is then a straightforward afigticof Definition 2.2.
To this aim, we first write a recursive functiocfemiAraucaria WithoutltsRoot(P, I) which, given a
sequence’ = (p1, ..., pi) Of positive integers and a non-empty subbet {iq,...,i,} of {1,... k}
returns a semi-araucaria of type, , . . ., p;,, ) without its root (this is to avoid the creation of duplicate
vertices that would have to be merged later).

SemiAraucariaWithoutItsRoot(P, I)
T = Path(}_,c;pi — 1) /1 the trunk of the semi-araucaria without its first vertex
for every non-empty proper subséof 7
SA = SemiAraucaria WithoutItsRoot(P, J)
for every vertexs of T of height strictly less thanel\Jpj -1
SA" = Copy(SA)
next_sibling(root(SA’)) = next_sibling(first_child(s))
next_sibling(first_child(s)) = root(SA’)
return the constructed tree with roetot ()

And thus the function to construct a semi-araucaria of tpend arityk:
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SemiAraucaria(P, k)
create a vertex /Il the root of the semi-araucaria
K={1,...,k}
SA = SemiAraucaria WithoutltsRoot (P, K')
first_child(r) = root(SA)
return the constructed tree with root

The function to construct an araucaria of typeand arityk is then an immediate consequence of
Definition 2.3:

Araucaria(P, k)
SA = SemiAraucaria(P, k)
for every non-empty proper subseof {1, ... k}
SA" = SemiAraucaria WithoutltsRoot(P, I)
next_sibling(root(SA")) = next_sibling(first_child(root(SA)))
next_sibling(first_child(root(SA))) = root(SA")
return the constructed tree with roetot(SA)

Obviously, the given algorithms are linear in the size of the constructedanias or semi-araucarias.
In Section8, we give the explicit complexity of these algorithms.

4. Maximal paths and capacity chains

A maximal path in an araucaria corresponds to a maximal sequence of tnagigiith the same letter in
the minimal automaton containing this araucaria. The right knowledge of maxatta s thus impor-

tant in the study of the minimal automaton of the shuffle of words. The notiompdaty of an edge

introduced in this section, along with the notion of truncation given in [10flde¢a a characterization of
the set of maximal paths of an araucaria.

Definition 4.1. (i) For every vertexs of a directed tree3, let \(s) be the maximum length of the paths
of B whose first vertex is. If o = (so, ..., sy) is a path ofB, then every vertex; of o \ {so, ss} such
that\(s;) > A(s;+1) + 1 is called a breaking vertex of.

(i) Let 0 = (s0,...,s¢) be a path ofB and lets;,, ..., s;,_, be the breaking vertices ofsuch that
0<j1 <...<ji—1<f.

The paths = (sg,...,55,): T2 = (Sjis---+8ja)s -, Tt = (85,1, ..., 5f) are called the truncations
of o and the product;...7; is called the decomposition efinto truncations.

A truncationr of a maximal path of3 is simply called a truncation aB. Its starting vertex is then
either a breaking vertex of this path or the rootf

(iii) A truncation 7 of a patho of B is called terminal if its last vertex is a leaf &f.

(iv) We say that a directed trelg satisfies the unicity condition if, for every vertexof B which is
not a leaf, there exists only one succegsof s such that\(s) = A(¢) + 1 (i.e., there is a unique longest
path starting a).
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Lemma 4.2. Let B be a semi-araucaria [resp. an araucaria] of type. . ., px).

() The trunk of B is its unique longest path and does not contain any breaking vertex.

(i) Every edge(s, t) of B belongs to a unique terminal truncatiog ;) of B.

(iii) Every terminal truncation of the semi-araucaffais the trunk of a unique subsemi-araucaria of
B of type (pi,, - - -, pi,,) Where{ii, ... i} C K.

(iv) B satisfies the unicity condition.

Proof:
First, we study the case whekeis a semi-araucaria.

All these properties are trivially satisfied by semi-araucarias of aritkssume now that they also
hold true for every arity strictly smaller thanwith & > 1.

(i) Let 7 = (s0,...,sp) be the trunk ofB. By Definition 2.2, for every non-empty proper subset
I'={i1,...,im}of Kandeveryh € {1,...,3 ", ;pi — 1}, the length of the trunk; of the subsemi-
araucariat  of type (p;,, . . ., pi,,) Whose root is the vertey;, of 7 is equal to) _,_; p;. By induction,

77 is the longest path ol ,. Hence, for every path of B which contains the first edge of,

ol <h+Y pi< Y pit+ Y pi=Y pi=|rl

iel i€ K\T icl €K

It follows thatr is the longest path aB and does not contain any breaking vertex.

(if) The property is trivially satisfied by every edge of the trunkif For every other edges, t) of
B, there exist a unique non-empty proper suliseft X' and a uniquéx € {1,..., ZieK\I p; — 1} such
that (s, ¢) is contained in the subsemi-araucaHa,. By induction, (s, t) belongs to a unique terminal
truncationr, ;) of a maximal pathr of Hy 5. If (r, ..., sp) is the path of3 from the rootr of B to the
root s, of Hy , the patho’ = (r, ..., sp)o is maximal inB and, by (i),s;, is a breaking vertex of’. It
follows thatr(, ;) is also the unique terminal truncation that contding) in B.

(iii) Let 7 be a terminal truncation oB. Sincer’ does not contain any breaking vertex and is
maximal with respect to this property,if contains an edge of the trunkof B, thent’ = 7 by (i), and
the property is true. The other case follows by induction, as in the pra@).of

(iv) The result is true for the rootof B sincer has a unique successor. For any other vertést s
be the unique predecessortoBYy (i), (s,t) belongs to a unique terminal truncatiog ;) of B. If 7,
is the trunk of B, the result follows from (i). In the other cases, by (iif), ;) is the trunk of a unique
subsemi-araucaria of arity strictly smaller thaand the result holds by induction.

By Definition 2.3, all these properties hold also for araucarias. O

Definition 4.3. For every araucarid of type (p1, ..., px), let cap be the mapping which associates to
every edge(s,t) of A the subsefiy,...,i,} of K such that the terminal truncatian, ;) of A that
contains(s, t) is the trunk of a subsemi-araucaria4bf type (p;,, ..., pi,,)-

Example 4.4. In the araucariaA of type (p1,p2,p3) = (3,2,1) of Fig. 2(b), the decomposition into
truncations of the maximal path = (so, s1, s2, ..., e2) is equal tor; 72 wherer; = (s, s1, s2) and
Ty = (s2,...,e2). 11 IS asubpath of the trunk of the subsemi-araucaria of (3p2, 1) andr, is the trunk
of a subsemi-araucaria of tyges, ps) = (2,1). Thus, for every edgés, t) of 1, cap(s,t) = {1,2,3}
and, for every edgés, t) of 7, cap(s,t) = {2, 3}.
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Definition 4.5. (i) Let B = (V, E)) be a directed tree and letp 5 be a mapping from the set of edges
E into the set of non-empty subsets of the Bétof positive integers. The mappingp g is called a
capacity function ofB if, for every pathy = (s1, s2, s3) of B, capg(s2, s3) = capp(s1, s2) if s is not
a breaking vertex of, andcap 5(s2, s3) & capg(s1, s2) in the converse case.

Moreover, if, for every distinct successaisandts of each vertex, cap (s, t1) # capg(s,ta), then
the capacity functiorap 5 is said to be discriminating.

(i) If capp is a capacity function o3 then, for every edgés,t) € FE, capg(s,t) is called the
capacity of(s, t).

If 7 is a path ofB whose edges have the same capacity, then this capacity is called the capacity o
and is denoted byap (7).

Lemma 4.6. The mappingeap is a discriminating capacity function of the araucafia

Proof:

(i) For every pathy = (s1, s2,s3) Of A, if sy is not a breaking vertex of, the terminal truncations
T(sn,s5) ANAT(4, 5,) are equal and henaep(sz, s3) = cap(s1, s2). In the converse casegp(sz, s3) &
cap(s1,52) SINCET (g, 1) F T(sy,s0) ANAT(s, s, IS @ terminal truncation of the subsemi-araucaria which
admitsr,, .,y as trunk. Thusap is a capacity function.

(ii) Moreover, we prove thatap is discriminating.

If £ = 1, A is a path and the property is trivial. Hence,kif> 1, it is also the case for every
subsemi-araucaria oA of arity 1. Assume that the property is satisfied for every subsemi-araucaria of
arity strictly smaller thark and lett; andt, be two distinct successors of a vertein an araucariad
of arity £ > 1. If s is not contained in the trunk of A, cap(s,t1) # cap(s,t2) by induction. Suppose
now thats is a vertex ofr of heighth. If none oft; andt, is contained inr, by Definitions 2.3 and
2.2, there exist two non-empty distinct proper subdetand 7> of K such that the edges,t;) and
(s,t2) are respectively contained in the trunks of the subsemi-arauddyigs and Hy, ,. By Lemma
4.2, these trunks are the terminal truncati®@§l) andr(s,tg). Thuscap(s,t1) = I1 # Is = cap(s, ta).
Otherwise, only one of; andts is contained inr and eithercap(s,t1) = K # Is = cap(s,ta) Or
cap(s,t1) = I # K = cap(s,t2).

Hencecap is discriminating. O

Definition 4.7. Let B be a directed tree with capacity functienpz and let MP(B) be the set of
maximal paths of5. If 7;...7; is the decomposition of a maximal pathof B into truncations, let
capp(o) = (capp(m1), ..., capp(ts)) andn (o) = (|71, ..., |7¢|)-

The pair(cap (o), (o)) is called the valued capacity chain®{relatively tocap ).

The mappings such that, for every € MP(B), k(o) = (capg(c),n(0)), is said to be associated
to the capacity functiomap 5.

Definition 4.8. A pair ((I1,...,1¢),(q1,...,qf)) wheref > 0,0 # Iy & ... ¢ I C Kandg,...,qf
are positive integers, is said to be linked tq, . . ., px) (relatively to K) if,

forall re{1,...,f -1}, 0< g, < Z p; and ¢y = ij.
JEI\Ir+1 Jely

Let Link(p1,...,pr) be the set of all pairs which are linked (o, . . ., px).
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Remark 4.9. Let(({1,...,1f),(q1,---,qs)) be apairlinked tdp1, . .., p;) (relatively toK’). For every
non-empty proper subset= {ji,...,jn} of K such thatly C J, (({1,...,1¢),(q1,-.-,qy)) is also
linked to(pj,, . .., pj,,) (relatively to.J).

It follows that Link(p;,, . .., pj,,) C Link(p1,...,pk).

Lemma 4.10. The valued capacity chain of every maximal path of the arauch(r@latively tocap) is
linked to (p1, ..., pk).

Proof:

For every subsemi-araucarté;, ;, of A of arity 1, the trunkr of Hy;, , is its unique longest path and
the valued capacity chaif{{i}), (|7])) is linked to(p;). Assume by induction that, for every subsemi-
araucariaf; », of A, wherel = {i1,...,iy} iS a non-empty proper subset&f, and for every maximal
patho of Hy ,, (cap(o), n(o)) is linked to(p;, , - . ., pi,.). Leto = (s, ..., s;) be a maximal path ofl,
andr the trunk ofA.

If (s0,s1) ¢ 7, there exists a non-empty proper subbet {ii,...,i,} of K such that sy, s1) is
contained in the trunk; of the subsemi-araucarié; , of A of type (p;,,...,pi,.). By the induction
hypothesis(cap (o), m (o)) is linked to(p;,, . . ., pi,,) and, by Remark 4.9, t., . . ., px).

If o0 = 7, thencap(o) = (K) andn(o) = |[7| = > ,cxpi- Hence(cap(o),m(0)) is linked to
(P1,- -+ Pr)-

If (so,s1) € T ando # T, there exist a non-empty proper subget {iy,...,i,} of K and an
integerh of {1,..., Z]EK\] pj — 1} such that the first truncation ofis 7 = (so, ..., sp), wheresy,
is the vertex of height of 7, ando’ = (sy, ..., s¢) is a maximal path of the subsemi-araucdtia;, of
type (pi, - - -, pi,, ). By induction,(cap(c’), m(c")) is linked to(p;,, . .., ps,, ). Sincesc = 110’, we have
cap(o) = (K, cap(o’)) andn (o) = (h,7(c")). Thus(cap(o),n (o)) is linked to(p1, . .., k). 0

Corollary 4.11. Let o be a path from the root ofl to a vertex which is not a leaf of and,...7; the
decomposition of into truncations. Then,

forall re{1,...,f—1}, 0< |7| < > piand0<|r|< > p;

je€cap(rr)\cap(Tr41) jEcap(Ty)

Proof:

By Lemma 4.2, the first edge, v) of the last truncatiorr; belongs to a unique terminal truncation
T}. Sincer; andr} do not contain breaking vertices distinct framand sinceA satisfies the unicity
condition, 7 is a subpath of; and, since the last vertex of is a leaf,7y # 7;. Theno’ = 7.7y 7}

is a maximal path o and, by Lemma 4.10,

forall re{1,...,f—1}, 0<|n| < > pjand 0 < || <[t} = > pj.
j€cap(rr)\cap(Tr+1) j€Ecap(tys)
O

We prove now that the property of the valued capacity chain of the maxintad paven in Lemma
4.10 characterizes the araucarias.
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Theorem 4.12. A directed treeB is isomorphic to an araucaria of tygg, , . . ., px) if and only if it ad-
mits a discriminating capacity function whose associated mapping is a bijectiod.otit(;, . . . , px).

Proof:
(i) Let A be an araucaria of typ@;,...,pr). By Lemma 4.10, ifx is the mapping associated tap,
k(o) € Link(p1, ..., px) for every maximal patlr of A.

We prove now thak is one-to-one.

Leto ando’ two distinct maximal paths af/P(A) and letr; ... 7y andr ... 7}, be their decompo-
sitions into truncations. There exists a smallest {1, ... ,min(f, f’)} such that; # 7/. If 7, and7]
have only their first vertex in commongp(7;) # cap(7]) Sincecap is discriminating. Otherwise, since
A satisfies the unicity condition, either C 7/ or 7/ C ; (in the converse case onegfandr/ would
have a breaking vertex) and| # |7/|. Thusk(o) # k(o’).

We prove now, by induction ok and by using the results of Theorem 2.5, thas surjective.

This is trivial for £ = 1. Assume that, for every subaraucadg,, of A of arity strictly smaller than
k (as defined in Theorem 2.5)(MP(A ;1)) = Link(pj,, - .., pj,) whereJ = {j1,..., jm}.

Let ((11, e ,If), (ql, . ,Qf)) S Link(pl, . ,pk).

It 1 = {i1,...,im} # K, ((I1,...,If),(q1,-..,q5)) € Link(ps,,...,ps,). By the induction
hypothesis, there exists a maximal patbf the subaraucarid, o of A such thatap(o) = (I1,...,Iy)
andr(o) = (q1,-..,qr). Moreovero is also maximal inA.

If I, = K and f = 1, by Definitions 4.8 and 2.3¢1 = >, x p; is the length of the trunk of A
ands(7) = ((K), (|7])).

If h, = Kandf > 1, let , be the initial section of lengtl; of the trunk of A. Sinceq; <

ZjeK\I2 pj, it follows from Theorem 2.5 that, setting = {i1,...,i,}, A admits a subaraucaria
Ar, o of type(pi,, ..., pi,.). By the induction hypothesis, there exists a maximal patf Ay, ,, such
thatcap(o’) = (Io,...,Iy) andw(o’) = (q2,...,qx). Theno = 10’ is a maximal path ofd such that

cap(o) = (K, cap(o’)) andrn (o) = (q1,7(0")) = (q1,- - ., q5)-

It follows thatx is a bijection.

(i) Conversely, assume that is a directed tree which admits a discriminating capacity function
whose associated mappirgis a bijection fromMP(B) onto Link(ps, - . ., px)-

By (i), for every maximal pathr of the araucariad, there exists a maximal patf of B such
thatx/(0’) = k(o) = ((I1,..., 1), (q1,---,qf)). Hencelo'| = Zgzl ¢y = |o|, and there exists an
isomorphismp from the pathr ontoo’.

Let now {o1,...,0;} be a non-empty proper subset of pathd\iP(A), C' the minimal subtree of
A which contains{oy, ...,0;}, andC’ the minimal subtree oB which contains{s/, ..., o]} where
ol = k'"lork(o;)foralli € {1,...,1}. Assume, by induction, that there exists an isomorphisfrom
ContoC’ such that, foralt € {1,...,1}, ¢(0;) = o}.

Let nowo = (s, ...,sy) be a path ofMP(A) \ {o1,...,01}, 0’ = &' o k(0) = (s,...,5)),
ands; € {so,...,ss_1} be the highest vertex ef belonging toC. Since the capacity functiotup is
discriminating, for every successoof s; in C, cap(s;,t) # cap(s;, si+1). Sincecap’ is also a discrim-
inating capacity function and since the edgesosatisfy cap’(s), s’ ;) = cap(sj, sj+1), (sp; - - -, 5})
is the pathp((so, ..., s;)) of C’. For the same reasofy;, s;, ;) does not belong t6”. It follows thaty
can be extended to an isomorphigfrfrom C' U o ontoC” U ¢’ such thaty/ (o) = ¢.

Hence, by induction, there exists a one-to-one morphisfrom A into B. Since|MP(B)| =
|MP(A)|, ¢ is an isomorphism fromt onto B. 0
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Remark 4.13. It follows from the proofs of Lemma 4.10 and Theorem 4.12 thaf, # {i1,..., i}
is a proper subset oK, a directed tree is an araucaria of tyge, , . .., p;,,) if and only if it admits a
discriminating capacity function whose associated mapping is a bijectionenidp;, , . .., pi,,)-

Remark 4.14. Note that the "if” part of Theorem 4.12 does not hold if the capacity fumctgonot
discriminating.

Remark 4.15. (i) The algorithms of Sectiol construct the araucarias and semi-araucarias in such a
way that, ifs is a vertex which is not a leaf andtifs the first child ofs, then the subsemi-araucaria trunk
that contaings, t) is the longest of all subsemi-araucaria trunks that contaidence,s is a breaking
vertex for all maximal paths that pass through a child @ther than the first one. It follows that the
decomposition into truncations of any path in the tree can be reported whisgsiay the path.

(i) If the capacities of the edges need to be stored in the data structuficiesto pass the parameter
I of the functionSemiAraucaria WithoutItsRoot to the functionPath and to stord in all the vertices
of the path generated by the functi®ath. At the end of the algorithm, the capacity of every edge)
will then have been stored in the vertex

Remark 4.16. In [11], araucarias have been defined using attribution functionsseTagribution func-
tions and our capacity function are closely related. Indeed i an araucaria of type, . . ., px) with
capacity functiorcap, o a maximal path of4, andr; . . . 7y the decomposition of into truncations then,
for everyr € {1,...,f — 1}, the setcap(7,) \ cap(7,+1) can be attributed to the truncatiop, and
cap(7¢) can be attributed te;. More precisely;, [resp. 7¢] can be factorized into sections and each
section can be attributed to an integerap(7,) \ cap(7,41) [resp. cap(7y)]. Such attribution functions
are natural in the proof that every araucaria can be embedded in the maitoataton of a shuffle of
words, since every transition of this automaton is generated by a letter of dmese words and, hence,
can be attributed to the index of this word. In the automaton of Fig. 1 for exarti@e-transition
from 4(Y) to 4(2) can be attributed to the second letter of the wardac. Thea-transition from2( to
{2(3) 321 can be attributed either to the third lettercafiac or to the second letter dfiab.

Hence, a truncation in an araucaria can have several attribution setstwliheits a unique capacity
set. This suggests that capacities are more interesting in the study ofreaatican attributions.

5. The first grafting theorem

In [10], it has been shown that an araucaria of akityan be obtained by sticking araucarias of arity 1
on the vertices of araucarias of arity— 1. This operation was called ramification. We introduce here
the grafting of a directed tree onto another which generalizes the noti@mification. If the two trees
admit a capacity function, we define a capacity function for the resulting tie¢he particular case
where the two trees are araucarias of respective akitiesd ko, we prove that the resulting tree is a
subtree of an araucaria of arity + ko. Moreover, for everyn such thatt < m < k, we show that every
araucaria of arityc can be obtained by grafting araucarias of anityonto araucarias of arity — m and

by then merging the resulting trees.
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Definition 5.1. Let B = (S,U) andC = (T, V) be directed trees anfl a subset of.

Let, for each vertey of P, C(p) = (T}, V)) be a directed tree isomorphic € with root p, such
thatS N7, = {p} and, for each vertex of P distinct fromp, T, N T, = 0.

The directed tree which is the union Bfand of the tree€’(p), for all p € P, is said to be obtained
by graftingC' onto B at P and is denoteg@raft ,(C/B).

If P =S, this directed tree is said to be obtained by completely graffimento B and is denoted
graft(C/B) (see Fig.3).

Pte
R
-

Figure 3. The tree obtained by completely grafting an andacaf type (3,1) (full lines) onto an arau-
caria of type(2,1) (dotted lines). The decomposition into truncations of thaximal path(sg,...,t3) is
(50, S1, 52)(82, t1, tQ)(tQ, tg) and that Of(S()7 . ,tg) is (So, C.. ,té)(té, tg)

Lemma5.2. Let B andC be directed trees that satisfy the unicity condition and admit the respective
discriminating capacity functionsap g and cap such that, for every edge, t) of B and every edge
(s',t") of C, capp(s,t) N capa(s',t") = 0.

The treeD = graft(C/B) satisfies the unicity condition and admits a discriminating capacity func-
tion cap .

Proof:
(i) Since B satisfies the unicity condition, for every verte»of B, there exists a unique longest path
o= (s,s1,...,s,) Of B starting ats. Let \;(s) be the length of this path. In the same way, there exists

a unique longest paths, in C(sy), and its length\, is independent of;. o7, is then the unique
longest path oD starting ats. Hence, setting\(s) the length of this path\(s) = A;(s) + A2. Moreover,
for every vertexs of B and every vertex, of C'(s), there exists a unique longest path(i(fs) starting at
u and this path is also the longest path starting &t D. Hence, setting respectivels (u) and(u) the
lengths of these pathdg(u) = A(u). It follows that D satisfies the unicity condition.
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(i) Every maximal pathr of D is the product of a path; of B (possibly of length zero) and of a
maximal pathoo of C'(s), wheres is the last vertex of;. The length ofr; is zero if and only ifs is the
root of B. SinceD satisfies the unicity condition and since, for every veitef B, A(u) = A1 (u) + A2,
the breaking vertices af, in B are also the breaking vertices @f in D. In the same way, since, for
every vertexu of C(s), A(u) = A2(u), the breaking vertices af, in C(s) are also the breaking vertices
of o2 in D. Moreover, since\(s) = Ai(s) + A2, s is a breaking vertex for if and only if, eithers is not
a leaf of B, or s is a leaf of B but the first edge of> is not contained in the longest path of C(s).

Let 71...7f be the decomposition af; into truncations inD and7,,...7, be the decomposition
of oy into truncations inC(s). Then, from above, the decomposition into truncationgroh D is
T1...T§Ty4+1..-T¢ if, €ithers is not a leaf of3, or s is a leaf of B but the first edge of- is not contained in
7(s)- In the converse case, the decomposition is7;_17}7f+2...75, Wherer} = 74771 is a truncation.

(iii) For every edge(u,v) of B, let capp(u,v) = capg(u,v) U caps (1), wherer is the longest
path ofC. Since, for every € B, the treeC'(s) is isomorphic toC, it admits a discriminating capacity
function corresponding teap. For every edgéu,v) of C(s), let capp(u,v) = cap(u,v), except
whens is a leaf of B and (u,v) is an edge of the longest patfyy of C(s). In this exception cass,
admits a predecesserin B and we setap ,(u,v) = capp(s', s), for every edgéu, v) of 7).

We prove now thatap p, is a capacity function. Let = (s1, s2, s3) be a path ofD.

Casel: v is in B. From (ii), s is a breaking vertex of in B if and only if it is also a breaking
vertex ofy in D. Hencecap p(s1, s2) = capp(sa, s3) [resp. capg(sa, s3) & capp(s1, s2)] if and only
if capp(s1,s2) = capp(s2, s3) [resp.capp(sa, s3) & capp(s1, s2)].

Case2: s1 € Bandss € C(s2). If sy is aleaf of B ands; € 7(,), s2 is not a breaking vertex of in
D andcapp(s1,s2) = capp(s2, s3). Otherwise,sq is a breaking vertex of in D andcap (s, s3) C
CapC(T(sz)) & capp(s1, s2).

Case3: v is in someC(s). The result is trivial wheny is in 7, or when no edge of is in 7).
Otherwise s, is a breaking vertex of in D andcap(s2, s3) & cape(7(s)) & capp(s1, s2).

Hencecap, is a capacity function.

Moreover, sinceap g andcap are discriminating, the same easily follows faip 5. O

Definition 5.3. (i) The capacity functiorap , of D defined in the preceding proof is said to be obtained
by graftingcap~ onto cap z and is denoted byap , = graft(capo/capp).

(ii) For every non-empty proper subsedf K, let A; be an araucaria isomorphic to the subaraucaria
Ar, of A and whose capacity functiafup; is the restriction otap to Az .

(iii) Let By be the directed tre@raft(Ar/Am\r) andbcap; = graft(capy/cap\r) its capacity
function.

Example 5.4. Let A be the araucaria of typ@:, p2, ps, ps) = (3,2,1,1) andl = {1,4}.

Ay is then the araucaria of tyde:, ps) = (3,1), A\ ; the araucaria of typéps, p3) = (2,1), and
B = gTaft(A{lA}/A{Q’?)}) is the tree of Fig. 3.

In the araucarial i\ 7, we havecap i\ (o, s1, 82) = capg\1(s0,51,52,83) = K \ I = {2,3}. In
Ap(s2), capr(s2,t1,ta) = I = {1,4} andcap,(ta,t3) = {4}. In Af(s3), cap;(s3,1y,15) = {1,4} and
capy(th, t5) = {4}. We then have iB;, beap;(so, s1,s2) = beapy(so, s1, 52, 83,81, t5) = {1,2,3,4},
beapy(s2,t1,t2) = {1,4}, andbcap; (ta, t3) = beap (s, ty) = {4}.
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Proposition 5.5. The mapping:; associated to the capacity functieeup ; of By is a bijection onto the
subset of pairs obLink(p1, ..., px) that are of the forni(11, ..., 1,), (q1, - - ., qq)) With eitherl;, C I or
IC I forallhe{l1,...,g}.

Proof:
(i) Since, by Lemma 5.2)cap; is a discriminating capacity function arig} satisfies the unicity condi-
tion, the mapping:; associated tdcap; is one-to-one, as in proof (i) of Theorem 4.12.

We show now that the valued capacity chaifio) = (bcap;(c), 7 (o)) of any maximal pattr of
Byislinked to(py, . .., pk)-

Let o, be the subpath of contained inAg\;, s the last vertex ofr; (or the unique vertex of
o1 when |o1| = 0), andoy the subpath ot contained inA;(s). Let..7y and7¢,4...7, be the
decompositions into truncations ef in A\ ; and ofoy in A(s). Let cap e\ (01) = (11,...,1y) and
capr(o2) = (I41,-..,14). From proof (ii) of Lemma 5.2, the decomposition into truncations afi
By is eitherr,.. 7y 1...7g OF T1...Tf_1T;Tf42...Tg, Wherer, = ;7411 is a truncation.

By definition of bcap;, in the first case

beap;(o) = (IlUI,...,IfUI,Ierl,...,Ig)
and in the second case
bcapf(a) = (IlUI,...,IfUI,If+2,...,Ig).

In both caseshcap (o) is an inclusion chain of.

Now, we considerr (o).

Casel.- If s is not a leaf ofA k. ;, from proof of Lemma 5.2, the decomposition into truncations of
oIS Ti..TfTf41...7¢. If 01 # (s), by Corollary 4.11, for everyt € {1,..., f — 1},

0<|ml< Y pi= > prand0<|r[ <> p< > p

ielh\th iE(IhUI)\(Ih+1UI) iGIf iE(IfUI)\Ierl

In the same way, by Lemma 4.10, whethegris reduced tds) or not,

forall he{f+1,....9—1} 0<|m[< > pand0<|r[=> pi
iEIh\Ih+1 iGIg

Case2.- If sis aleaf of Ay ; but7y,; does not belong to the trunk dff; (s), the decomposition into
truncations obr is 7y...7f741...74. Then, forallh € {1,..., 9} \ {f}, || satisfies the same relations
as in casd. Moreover, from Lemma 4.10,

0<]Tf|:Zp,-< Z Di-
’L'EIf iE(IfUI)\If+1

Case3.- If s is a leaf of Ag\; and 7,1 belongs to the trunk ofi;(s), the decomposition into
truncations of is 71...7¢_17}742...74. FoOreveryh € {1,...,g} \ {f, f + 1}, || satisfies the same
relations as in case Moreover, by Lemma 4.10, if + 1 # g, then

0<‘T}|:|Tf|+|7f+1’<zpi+ Z pi:Zpi—i- Z pi = Z Pi-

ely iGIf+1\If+2 i€ly Z'EI\If+2 Z'E(IfU[)\If+2
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In the same way, if +1 = g,

0<|T}‘:Zpi+ Z Pi = Z Di-

iE]f iGIf+1 iGIfUI

It follows that, in all three casesgbcap; (o), 7(c)) € Link(p1, ..., k).

Moreover, by definition obcap , for every edgéu, v) of o, either! C beap;(u,v) or beap(u,v) C
1.

(i) Let now ((I1,...,14),(q1,--.,4q4)) € Link(p1,...,px) such that, foralh € {1, ..., g}, either
I CIyorl, CI. Set{i1,...,im} = I and{ji,...,jk—m} = K \ I. We show that there exists a
maximal patho of By such that; (o) = ((11,...,1y), (q1,---,4g))-

Casel.- If I; C I, by Remark 4.9((11,...,1y),(q1,--.,49)) € Link(p;,,...,ps, ). Hence, ifs is
the root of B, there exists, by Remark 4.13, a maximal patsf A;(s) such thabcap;(o) = cap;(o) =
(I1,...,1g) andn (o) = (q1,- .-, qqg)-

Case2.- If there existsf € {1,...,g — 1} suchthatl;; C I ¢ Iy, let, for everyh € {1,..., f},
I, =I\I.Then) # 1, ¢ ... I} CK\Iand forallh € {1,...,f -1},

0<qn< Z P = Z Di-

i€Ip\Ip 41 S AV

Thus, settingy; = Eig} pi, (L1, 13), (a1, - qp—1,4})) € Link(pj,,....pj ) and, by Re-
mark 4.13, there exists a maximal pathof Ag\; such thatcap i\ ;(01) = (11, ..., I}) andr(o1) =
(g1, qr-1, 7).

Subcase.1.- If ¢¢ < ¢}, let s be the vertex obr; of heightZZf:l ¢; and leto’ be the subpath of
oy starting at the root ofl i ; and whose last vertex is Since, forallh € {f +1,...,g}, In € I,
((Tpg1,--51g), (qp41,-- -, q9)) € Link(p;y, - .., pi,,) and, by Remark 4.13, there exists a maximal path
oy of Af(s) such thatcap;(o2) = (If41,...,1y) andn(o2) = (qf+1,--.,4q). Obviously,c = ojos
is @ maximal path of5;. Moreover,s is a leaf of Ay if and only if ¢y = q} and, in this case,
Iri1 # I, sinceq; = Zie]} p; andgy < Zielf\1f+1 p;. It follows that, if s is a leaf of A 7, the
first edge ofos does not belong to the trunk of;. Then, by proof (i) of Lemma 5.2, whetheris
a leaf or not, the breaking vertices efare composed of the breaking verticesogf of those ofo,,
and ofs. Thus,n(c) = (q1,..-,4f,9f+1,---,q¢). Moreover, by definition ofbcap;, bcap (o) =
(LUI... . UL I, .. 1g) = (I, ..., Ig).

Subcase2.2.- If q} < gy, let s be the last vertex ob;. Sinceq} = Zielf\[pi andgy <
Zieff\IHl pi, we havelyy # I andgy — ¢ < Ziemﬂl Di-

Thus((Z,Ip41,...,14), (a5 — q},qfﬂ, ...,qg)) € Link(p;,,...,pi,) and, by Remark 4.13, there
exists a maximal paths of A;(s) such that

capy(02) = (I, I41,. .., 1) and 7(o2) = (ar — 4y qf+1- - - qg)-

Since the capacity of the first edge of is equal tol, this edge belongs to the trunk df;(s). s being
a leaf of Ak, it follows from proof of Lemma 5.2, that the breaking vertices of the maxinadih p
o = o109 Of By are the breaking vertices ef and those ob-.

Thusm(o) = (q1,---,qr-1.4; + (a5 — 45): qr+1,-- - q9) = (@1, - - ., qq). Moreover, by definition
of beapy, beapr(o) = ([ UL, ..., I UL Ipiq,..., 1) = (I1,...,Iy).
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Case3.- If I & I, then, foreveryh € {1,...,g}, I & Ij,. Soletl; = I}, \ I. For everyh # g,

0<qn< Z pi = Z piandQQ:ZPi>ZPi~

i€I\In i1 SAV i€l iel)

Settingq, = Zielépi, (11, 1), (q1s - - s q9-1,q5)) € Link(pj,, ..., pj,_,,)- Thus there exists
a maximal patho; of Ag\; such thatcap\ ;(01) = (I1,...,1y) andn(o1) = (q1,.--5q5-1,4y)-
Moreover, the last vertexof o4 is a leaf of A 7, and the trunkr; of A;(s) is such thatap,(o2) = 1
andm(o2) = (3 ;c;pi) = (g4 — qp)- It follows that the maximal pathr = o102 of By is such that
beapr(o) = (I1,...,1y) and7w (o) = (q1, ..., qg—1, q; + (gq — q;)) = (q1,---,4qg)- ]

Lemma 5.6. There exists a one-to-one morphigmfrom the directed tre®; into the araucaria, such
that, for every edgeés, t) of By, becap;(s,t) = cap(¢1(s,t)) and such thap;(Br) admits the same root
asA, the same longest path ds and every leaf op;(By) is a leaf ofA.

Proof:

By Proposition 5.5, for every maximal path = (so,...,sp) of By, (bcap;(o),n(0)) is contained
in Link(p1,...,pr) and, by Theorem 4.12, there exists a unique maximal patbf A such that
cap(c’) = beap;(o) andn(o’) = w(o). Sincer(c’) = n(c), o ando’ have the same length and, if
o' = (sp,---,5}), there exists a one-to-one morphignfrom the subtre€’, reduced to the unique path
o into A such that, for ali € {0,...,h}, ¢(s;) = s; and, for alli € {0,...,h — 1}, cap(s), sj, 1) =
beap;(si, si+1). Moreover the image(, = ¢(sp) of the root of By is the root of A and the image
s, = ¢(sp) of the leafs;, of By is a leaf of A. Sincebcap; is discriminating we can extend to a
one-to-one morphism; from B; into A by using the same method as in the proof (ii) of Theorem 4.12.
Moreover, for every edgés, t) of By, beap;(s,t) = cap(¢1(s,t)) and, for every leaf of By, ¢;(f) is

a leaf of A. Furthermore, the longest pattof B; is the product of the trunks of ;-\ ; and A;. Hence,
7| = Y. pi andy; (1) is the trunk ofA (see Fig. 4). O

Definition 5.7. Let B be the union of a family B ) ca Of disjoint directed trees and, for evekye A,
cap, a capacity function of3,. Two maximal pathsr of By ando’ of B, are said to be equivalent
relatively to(capy)aea if 7(0) = 7(o’) andcap, (o) = cap,(o’).

Definition 5.8. Leto = (so, ..., s,) ando’ = (s, ..., s;,) be two paths of equal length in a gragh
Merging o and¢’ consists in merging, for all of {0, ..., A}, the verticess; and s into a unique
vertex, and, for ali of {0,...,h — 1}, the edgess;, s;;1) and(s;, s ;) into a unique edge.

Theorem 5.9. Let m and k£ be integers such that < m < k, (p1,...,pr) @ sequence of positive
integers, and’,,,(K) the set of subsetsof K of cardinalitym.

The directed grapi (™ obtained by merging all equivalent maximal path$36f") = Urep,. k) Br
relatively to(bcap ) rep,, (k) iS isomorphic to the araucaridof type (p1, . . ., p,).

Proof:
(i) Since the treed3; are pairwise disjoint, every maximal path= (so, s1,. .., sp) Of B(™) belongs
to a uniqueB;. By the proof of Lemma 5.6, there exists a one-to-one morphkigrirom the directed



D. Schmitt, J.-C. Spehner/Araucarias: Construction and Grafting 19

(@)

Figure 4. The araucaria(3,2,1) (see Fig. 2(b)) of typd3,2,1) admits subtrees isomorphic B, 3, =

graft(Aga 3y /Aq1y) (Fig. (), Byi3y = graft(Aq3)/Aq2y) (Fig. (b)), andByy oy = graft(Aqy 2y /Agsy) (Fig.
(c)). MoreoverA(3,2,1) is the union of these subtrees.

tree B; = graft(A;/Ag\r) into the araucariad such thato; (o) = (¢1(s0), - - -, w1(ss)) is @ maximal
path of A, cap(¢r(c)) = beap;(o), andn(¢r(0)) = w(o). The extensiorp of all the mappingsy;
is a morphism from the grapB(™) = Urep,.(x) Br into A. Moreover, the extensiobeap of all the
capacity functionscap; is such that, for every edde, t) of BU™), beap(s,t) = cap(p(s,t)).

Since, by Theorem 4.12, every maximal pathdois characterized by its valued capacity chain, two
maximal pathsr = (so,s1,...,s,) anda’ = (s),s},...,s,) of B(™ are equivalent if and only if
(o) = ¢(d’), thatis, if and only if, for alk € {0,...,h}, o(si) = p(s}).

(ii.1) For every vertexs of B(™), let 5 be the set of vertices d8(™ which are merged with when
all equivalent maximal paths d8(™) are merged and lgt—"(¢(s)) be the set of vertices' of B(™)
such thatp(s") = ¢(s). It follows from (i) thats C ¢! (p(s)).

We prove now that = o~ !(p(s)).

(ii.2) Let (s,t) be an edge of a treB; of B(™)_ From Proposition 5.5, the valued capacity chain
of every maximal path of3; containing(s,t) is of the form((Iy,...,1,),(q1,.-.,q,)) With, for all
h e {1,...,g}, eitherI C I, or I;, C I. From Definition 4.8 and from Proposition 5.5, one of these
pathso is such thatl, = beap(s,t).

(ii.3) Let (s, ') be an edge oB(™ distinct from (s, t) such thato(s', ') = ¢(s,t) and letB; be
the tree of B(™) that contaings’, #'). Leto; [resp. o] be the path from the root aB; [resp. By] to t
[resp.t']. By (i), ¢(01) = ¢(0}), beap(o1) = beap(o}), andr(o1) = w(o}). Asin (ii.2), By admits a
maximal paths’ containing(s’, t') whose valued capacity chain(&, .. ., ), (¢1, - . ., q¢)). Henceg
ando’ are equivalents’ € 5, andt’ € t.

Hence, by (ii.1)f = o' (¢(t)) for everyt of B(™),

(iii) By the isomorphism theorem for graphs, it follows that the mappjrigom B(™) into A(™)
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such thaty(s) = 5 = ¢~ '(¢(s)) for everys in B(™) is a surjective morphism and that there exists a
one-to-one morphisng from A(™) into the araucarial such that, for every of B(™, ¢(s) = 3(5),
thatis,p = @ o .

(iv) We prove now that is surjective.

Every vertexs of A belongs to a maximal pathof A. From Theorem 4.12, the valued capacity chain
((Ih,...,14),(q1,.--,q9)) Of o belongs taLink(p:, ..., pk). If |I;] > m, there existd € P, (K) such
that! C I, and then, for every, € {1,...,g}, I C I}. If |I;] < m, there existd € P,,(K) such
that7; C I and then, for every. € {1,...,g}, I, C I. Finally, if there exists € {1,...,9 — 1},
such thatl, 1| < m < |I], there existd € P, (K) such thatl; .y C I C Ij. In this case, for all
je{l,...,h}, I C Ijand, forallj € {h+1,...,9}, I; C I. By Proposition 5.5, there exists in all
three cases a maximal pathin B; with valued capacity chai((/1, ..., Iy), (¢1,- - .,q4)). Hence, from
(i), or admits a vertex; such thatp(sy) = s.

(v) Sincey is surjective,p is also surjective. Hencg is an isomorphism from the directed graph
A(™) onto the araucarid of type (p1, . .., pi). O

Remark 5.10. The special case: = 1 of this Theorem is a result of [10], which was used for proving
that every araucaria is included in the minimal automaton of the shuffle of samkswWMoreover this is
a new proof that our definition of araucarias is equivalent to the originel

Remark 5.11. Theorem 5.9 can also be proved by showing thé@® is a directed tree which admits a
discriminating capacity function whose associated mapping is a bijectionfentdp;, . .., px) and by
then using Theorem 4.12.

Remark 5.12. In Theorem 5.9, it is not possible to replaBg (K') by one of its proper subset¥, (K).
Indeed, ifJ € P,,,(K) \ Py,(K), the union of the directed tre¢®;);cp; (k) contains no maximal path
o such thatap(o) = (J), by Proposition 5.5. However, by Theorem 4.12, the arauchtantains such
a maximal path.

Remark 5.13. An algorithm to build araucarias can be derived from Theorem 5.9. mdRle8.11, we
will give the size of the directed grapB(™ and the complexity of this algorithm.

6. The general grafting theorem

In this section, we extend the first grafting theorem to more than one graftietion. As a special
case of this general theorem, we obtain another method to construcaaagury using a new family of
trees generated by an iterative application of grafting to elementary trbeseekto paths.

Definition 6.1. Let p;,...,px be k > 1 positive integers andM = (ki,...,k,) a sequence oin
(1 <m < k) positive integers such that + ... + k,, = k.

Every sequencP = (K, ..., K,,) of non-empty disjoint subsets &f such that<,U. . .UK,, = K
and, foralli € {1,...,m}, |K;| = k; is called a partition of< with model M. Let P (K) be the set
of these partitions.

For every partition? = (K7, ..., K,,) of Pp(K), let

Cp = graft(Axk,,/ ... /graft(Ak, /AKk,) - - .)
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and
capp = graft(capy, /... /graft(capg,/capk,)...).

Theorem 6.2. The directed graph obtained by merging all maximal path§'6f) = Upcp,, (x) Cp
that are equivalent relatively {@app ) pep, (k) is the araucaria of typ@s, . . . , p.).-

Proof:
(i) We prove this result by induction on the numberof grafting operations.

If M = (k), P = (K) is the unique partition oP((K) andCM) = Cp is the araucarial x = A
with capacity functiorcapp = cap i = cap.

If m = 2, the result is nothing else than Theorem 5.9.

Let now M = (ki,...,ky,) withm > 2 and letM’ = (ki,...,kn—_1). For any subsef of K
of cardinality k,,,, Pry (K \ I) is the set of partitions ofC \ 7 with model M’. By induction, we can
assume that the graph obtained by merging all equivalent maximal pafH$tf = UP,GPM/(K\I) Cp:
relatively to(capp,)plepM,( K\1) IS the araucarial i ; with capacity functiorcap i ;. Two vertices of
CM’) which are merged in a same vertex during this merging operation are said techévalent.

(i) Let Pr be the set of partitions 0%, (K ) whose lastterm i$. ForeveryP = (K1, ..., Ky—1,1)

of Py, letP' = (Ky,...,K,—1). In afirst step, we realize the merging operation in the subgraph
Cr= U Cp = U graft(A;/Cpr)
PEP; PP (K\I)

of CM) _ for every subsef of K of cardinality,y,.

Let s; ands, be twoI-equivalent vertices off ™M), let Cp/, [resp. Cps,] be the subtree of (M)
which contains the vertex; [resp. so], and leto] [resp. %] be the path (possibly of length zero) from
the root ofCp; [resp.Cp;] to s1 [resp.so]. Clearly, capp: (01) = cappy (03) andm(oy) = 7(03).

Then, for each maximal pat{’ of A;(s;) and each maximal path) of A;(s2) such thatap; (o) =
cap;(of) andr(af) = w(o¥), it follows from the proof of Lemma 5.2 that the maximal paths= oo/
andos = ool of C; are equivalent relatively tocapp)pep,. If we merge the paths; andos for all
such pairo7, 03), o} anda; are merged relatively tocapp)prep, , (k\1)» 51 andsz are merged in a
unique vertexs, and the araucariad;(s;) and A;(s2) are merged in an isomorphic arauca#igs).

Now, if we repeat the same operation for every gair, s;) of I-equivalent vertices o™, we
merge simultaneously the equivalent maximal path€'pfelatively to(capp)pep, and the equivalent
maximal paths ofM") relatively to(capp:)prep, , (k\1)-

Hence, by the induction hypothesis, the directed graph obtained by meigemguivalent maximal
paths ofC’ relatively to (capp)pep, is isomorphic to the directed trel8; = graft(A;/Ag\ ) with
capacity functiorbcap ;.

(iii) To complete the merging operation for all equivalent maximal path8@f) = UIGPM(K) Cr

relatively to(capp)pep, (k) it remains to merge the maximal pathsifm) = Urep, (k) Br which
are equivalent relatively t@bcap;);c ., (k)- From Theorem 5.9, we obtain that way the araucaria of
type (p1, .- -, pr)- O

Remark 6.3. In general,P,(K) can not be replaced by one of its proper subsets. Indeed, given a
model M and a partitior? = (K1, ..., K,,) of Pyp(K), it results from the definition of the capacity
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functions obtained by grafting, thaty is the unique tree of ) that can contain a maximal path of
capacity chaif Ko U ... U K, K3 U ... U K,,,..., K,,) (just use recursively the argument that a tree
Cp of CM) contains a maximal path whose last truncation has cap&Gitynly if K, is the last term

of the sequenc®).

Now, from Definition 2.3, the root of the araucariais the root of a semi-araucarfdy., ...ux,, 0
whose trunkr has capacityKs U ... U K. From Definition 2.2, ify , ;- pi > 1, the vertex ofr
of height1 is the root of a semi-araucarix,u. uk,,1 Whose trunk has capaciti(z U ... U K,,.
More generally if, for every of {2,...,m — 1}, ZieKj p; > 1, A admits a path with capacity chain
(KoU...UK,, KsU...UK,...,Kp).

Since) i, pi > 1 whenK; is not reduced to a unique elemefiti} with p, = 1, it follows that
Pam(K) can not be replaced by one of its proper subsetsig an araucaria of typéps, . . ., px) with,
forall h € {1,...,k}, p,, # 1. In the converse case, not all elementsgfi (K) are always necessary
(see Remark 6.6).

In the special cas1 = (1,...,1), Pp(K) is the set of permutations & and Theorem 6.2 leads
to a construction of araucarias by using a family of trees obtained by itelsagvafting elementary trees
reduced to paths (see Fig. 5).

This result can be stated in the following way:

Theorem 6.4. Letpy, ..., p; be positive integersA(p1), . . ., A(pr) elementary araucarias of respective
types(pi), ..., (px), 2(K) the set of permutations df = {1,...,k}, and, for alla € X(K),

Do = graft(A(pag))/ - - - / graft(A(pa2)) [APa))) - - -)
and
cap,, = graft(capgamyy/ - - -/ graft(cap o)/ capiaayy) - - -)-
The directed graph obtained by merging all equivalent maximal patbs-ef
to (cap,,)aecs (k) IS the araucaria of typgs, . . ., ).

aex(i) Da relatively

By induction on the number of graftings, we can also prove that:

Proposition 6.5. There exists a maximal pathof D,, such thatcap (o) = (I1,...,Iy) andn (o) =
(q1,-..,qf) ifandonly if ((11,...,1¢), (q1,-..,qr)) belongs toLink(pi,...,pg) and(ly,...,Ir) isa
subsequence dfx({1,...,k}),a({2,...,k}),..., {a(k)}).

This result can be used for an alternative proof of Theorem 6.4.

Remark 6.6. It is not difficult to see that the araucaria of type;, p2,p3) = (3,2,1) can also be
obtained by merging the equivalent maximal paths/of= [ (i) Da whereY/(K) is the set
Y(K)\{(1,3,2),(2,3,1)} (see Fig. 5).

More generally, lepy, . .., pr be a set ok > 2 positive integers, at least one of them being equél to
Let o be a permutation ok such that there existsc {2, ...,k — 1} for whichp,;, = 1. By definition
of cap,,, for every maximal path of D,,, cap (o) cannot contaifa({s,...,k}),a({i+1,...,k})) as
a subsequence. From Proposition @:3s then equivalent to a maximal path of a ttBg: wherea’ is
obtained from by swappingx(i) either witha(i — 1) or with a(i + 1). It follows that the permutation
a is not necessary to construct the araucaria of fype. . . , px) with the method of Theorem 6.4.

aeY’
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Figure 5. Given the three integews = 3, p2 = 2, andps = 1, figures (a), (b), (c), (d), (e), and (f) show the
directed treeD,, = graft(A(pa(s))/ graft(A(pa(2))/A(pac1y))) for the following respective values of. (1,2,3),
(1,3,2),(2,1,3),(2,3,1), (3,1,2), (3,2, 1).

Remark 6.7. As in Remark 5.13, an algorithm which builds araucarias based on the wctistr of
Theorem 6.4 can be given. The directed trees which are used haraiahesimpler than the treds;.
In Remark 8.11, we will give the size of the directed grdpland the complexity of this algorithm.

7. The embedding theorem

We prove here that every directed tree can be embedded in an aratitemize, despite the complexity
of their definition, the family of subtrees of araucarias contains all the tduettees. This result is a

simple corollary of the grafting theorems but it can also be proved by dirasthg Definition 2.3 (see
Remark 7.3).

Theorem 7.1. Every directed tree can be embedded in an araucaria.

Proof:

If Bis a subtree of an araucadg, if C'is a subtree of the araucarig\ ; and, if P is a subset of the set

of vertices ofB, graft p(B/C') is a subtree of3; = graft(A;/Ak\ 1), which is a subtree of an araucaria
of type(p1,...,pr) by Lemma 5.6.

Now, every directed tre# is obtained by grafting successively its edges, which are araucarias of
type (1). Hence, by induction, it follows tha® is isomorphic to a subtree of some araucaria. O

Remark 7.2. Similarly, we can prove that every directed tree of sizean be embedded in the tree

graft(A(pn-1)/ ... /graft(A(p2)/A(p1)) - ..)

Wherep1 =p2=...=pp-1=1.
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Remark 7.3. Theorem 7.1 can also be proved directly by induction on the size of thaetiréeeB.

As sketch of proof, it is sufficient to see that, if the rootiis removed then each resulting tree can be
embedded in an araucaria by induction. Furthermore, if we add an(edgeto an araucaria of root,

the resulting tree is embeddable in a semi-araucaria.

8. Some enumeration formulas for araucarias

To every vertex of an araucariof type (p1, . .., pr), we associate a capacity which is a subdset K.
We prove that the number of vertices of capaditis equal to(k — |I|)! HieK\I p;. As a corollary we
obtain the size of the sétink(p, . . ., pr) introduced in Sectiod. We prove also that the size of a semi-
araucaria of typép,, ..., py) is equal tok! [ [, p; + 1. The size of an araucaria follows immediately
from each of this two results, providing simpler proofs of a result of [10]

Definition 8.1. (i) For every leafs of an araucariad with capacity functiorcap, if p is the predecessor
of s, the subsel = cap(p, s) of K is called the capacity of and is denoteg(s).

Moreover, for every internal vertexof A, x(s) = 0 is called the capacity of.

(i) For every subsef of K, let E1(p1, . .., px) be the set of vertices of capacityof an araucariad

of type(pla s 7pk)
Lemma 8.2. For every non-empty proper subdedf K, if m = [I| andK \ I = {j1,...,jk—m} then

‘Ef(plw"apk)‘ = ’EQ)(pjl’ S 7pjk—'m)|'

Proof:
(i) Let § be the mapping from the séfy(p,,...,pj,_,,) of internal vertices of the araucaridy ;
into the set of leaves of the directed trég = graft(A;/Ax\r) such that, for every vertex of
Ey(pjys- - > Pjr_m)» 0(s) is the last vertex of the trunk,, of the araucariai,(s). By proof of Lemma
5.2, 7(4) is the terminal truncation of the maximal pathof B; whose last vertex i§(s). By Lemma
5.6,1(7(s)) is the terminal truncation of the maximal path(o) of A andx(5(s)) = cap(vr(7(s))) =
beap(7(5)) = 1. Hencepr 0 6(s) € Er(p1, - .-, pr) andpr o §(Ep(Pjys - - -5 Pjr_)) € E1(p1, -, pr)-

(il) Conversely, let be a vertex ofZ;(p1, . .., pr) ando(t) the maximal path ofd whose last vertex
ist. Since, by proof of Theorem 5.9, the extensjoof all morphismsy; wherel € P,,(K) is surjective,
there exist/ € P, (K) and a maximal patl of B; such thatp;(c) = ¢(0) = o(t). The capacity
of the terminal truncationy of o is then equal tdcap ;(7(y)) = cap(vs(7(p))) = x(t) = I. By
Proposition 5.5, eithef C J orJ C I and, sincel| = m = |J|, I = J. Hence, by proof of Lemma 5.2,
7(s) is the trunk ofA(s) for some internal vertexof A1, s € Ey(pj, ;- - -, Pjy_,,), @ndprod(s) = t.
This proves thaE;(p1, ..., pk) C o1 0 0(Ep(Pjrs- -+ Pjr_n))-

Thus, by (),¢1 0 6(Eg(pjys- - -+ Pjr_,.)) = Er(p1,...,pr) and, since) andy; are one-to-one,

|Er(p1, - 06)| = |Ep(Pj1s - -+, D)

Lemma 8.3. If P(K) is the set of non-empty proper subsetdaf

1eP(K)U{K} iel
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Proof:
By Lemma 4.2, every edge of is contained in exactly one terminal truncation. For every vettex
of the setLeaves(A) of leaves ofA, let 7(t) = (so,...,s7—1,t) be the terminal truncation which

contains the leaf and let7*(¢) be the set of vertices of(t) \ {so,t}. Then, ifr is the root of A4,
{T*(t);t € Leaves(A)} U {r} forms a partition of the set of internal vertices4f Moreover!/ = x(t)
is a non-empty subset @€ and7*(¢) containsy _,_; p; — 1 internal vertices of. It follows that

|Eo(pr,- o)l =14+ > |Er(pr, o) (D pi — 1).

IeP(K)U{K} el
0
Definition 8.4. (i) Let ¥o(X1,...,X;) = 1 and, foreachn € {1,...,k}, let
U (X1, Xe) = > [[X
1P, (K) i€l
be the elementary symmetric polynomial of degreen variablesXy, ..., X, whereP,,(K) is the set

of subsetd of K of cardinalitym.

For exampleW (X1, Xo, X3) = X1 + X + X3, ¥a(X1, X2, X3) = X1Xo + Xo X3 + X3X, and
W3(X1, X2, X3) = X1 X0 X3.

(i) The polynomial

k
Ye(Xp, o, X)) =) mlTn (X1, .., Xk)
m=0

is called the araucaria polynomial knvariables.
The first araucaria polynomials are:

T(X1)=X1+1,
To(X1, Xo) =2X1Xo+ X1 + X0+ 1,
T3(X1, X2, X3) = 6X1 X0 X3 +2(X1 X0+ Xo X3+ X3X1) + X7 + Xo+ X3+ 1.

Lemma 8.5. Foreachm € {1,... , k — 1},

Z (HXZ)( Z Xj) = (m+ 1)W1 (X1,. .., Xp).

IePp(K) i€l JEK\I

Proof:
The sum

s= Y (190X x)

IeP,(K) i€l JER\I

is a symmetric function oKy, ..., Xj.. The product [],., X;) X, is equal toX; ... X,,,;; if and only
if je{l,....om+1}andl ={1,...,m+ 1} \ {j}. ThereforeX; ... X,, ., appearsn + 1 times in
the sumS. By symmetry, the same thing happens for the other products and this pinevedation. O
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Theorem 8.6. For every proper subsétof K, if m = ||,

|Er(p1, - .- oK) = (K —m)! H i
ieK\I

and\EK(pl, A ,pk)’ =1.

Proof:
Fork = 1, every araucaria of type, admits one leaf ang; internal vertices. ThuF;,(p1)| = 1 and

|Ep(p1)] = p1.
Assume that the property is satisfied for every arity smaller thand letA be an araucaria of type

(p1,- -, Pk).
W I#£K,1#0,andK\I={ji1,...,jk—m}, by Lemma 8.2 and by the induction hypothesis,

JERNT

(i) |Ex(p1,-..,pr)| = 1 since the trunk o4 is the only terminal truncation of capacity.
(iii) By (i), (ii), and Lemma 8.3,

|Ey(p1 - - k) !—meLZ > k=m) I pi(D_pi—1).

ieK m=1I€Py,( K) JEK\I iel

By Lemma 8.5,

S (I e O ) =k =m+ 1) mia(pr,- - 0r).

IeP(K) jeK\I iel
Hence|Ey(p1, ..., px)| is equal to
k—1
S pi+ D ((k—mA+ D1 (pr, - px) — (k=)W (p1, .- i)
€K m=1

and
|E@(p17 R 7pk)| = k'\yk(ph s )pk)

O

Remark 8.7. By settingHjem p; = 1, the casd = K in Theorem 8.6 can be included in the general
case.

Corollary 8.8. The size of the sekink(p1,...,px) is equal to

Yilprs--ox) — K ] ] i
€K
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Proof:

For every leaft of the araucariad of type (pi, . .., px), there exists a unique maximal path 4ffrom
the root of A to t. Hence there exists a bijection from the detiwes(A) of leaves ofA onto the set
MP(A) of maximal paths ofA. By Theorem 4.12, there exists also a bijection frdf?(A) onto the set
Link(p1, ..., pg). It follows that

|Link(p1,...,pr)| = |[MP(A)| = |Leaves(A)| = Z |Er(p1y-- - 0K)]
1€P(K)U{K}

and, by Theorem 8.6, that

k—1
|L7,’flk’(p1,,pk Z k m '\Ijk m(pla7pk):Tk(p1aapk)_k'le
m=1 (15326

Theorem 8.9. (i) The size of a semi-araucaria of type, . . ., p) is equal tok! [ [,z i + 1.
(il) The size of an araucaria of ty@des, . . ., px) is equal toYx(p1, . .., pr)-

Proof:
(i) By Definition 2.2, the size of a semi-araucafiaof type (p1, . . ., px) is equal to

H =1+ pi+ > (Hial=1)( > pi—1).
ieK IeP(K) JeEKNI

If we assume, by induction, that, for dllc P(K), |[H; x| = m![[,c;pi + 1, it follows that

|H|=1+Zpi+szm!( S (IIe)( > pj—l)).

icK m=1 I€P,,(K) i€l JEK\J

Hence, by Lemma 8.5,

H =14 pi+ Y, ((m+ D1 (p1, -, k) *m!\Ifm(plw-,pk)) =k [[p+1
€K m=1 ieK

(ii) We give here two simple proofs of the result of [10].
Proof1.- By Definition 2.3, the size of the araucardaof type (p1, ..., px) is equal to

Al=1+ > ([Hol-1) = Zm"l’ (p1,- - pk) = T(prs .- pi)-
1eP(K)U{K}

Proof2.- By Theorem 8.6, the size of is equal to

k
|A|: Z |E[(p1,...,pk)|= Zm!qjm(pla'--apk)'

IeP(K)U{K,0} m=0
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Remark 8.10. By Theorems 8.6 and 8.9, there exists a bijection from thé/gét,, . . ., px) of internal
vertices of an araucarid of type (p1,...,px) onto the setHg \ {r} where Hg ( is the subsemi-
araucaria ofA of same type and their common root. (We use here the same notation for a tree and
for the set of its vertices.) This can also be proved directly. Indeed, dsseme the property for every
arity smaller thark, for every non-empty proper subgdet= {i1, ..., i, } of K, there exist a bijection;

from Ey(piy, - -, pi,) ONtOHy o \ {r} and, by Lemma 8.2, a bijectiofy from E;(p1, . .., px) ONto
Ey(piy,---,pi,)- If sisthe last vertex of the trunk of, Ex (p1,...,px) = {s} by Theorem 8.6. Hence
there exists a bijection from

A\ Ey(p1,. ... pk) = ( U EK\I(le--apk)) U {s}

IeP(K)
onto
AN Heo\ ) = (U (Hio\ ) ulr}
IeP(K)
which extends all ther; o ¢;. Thus there exists also a bijection fraig (p1, ..., px) ONtoHg o \ {r}.

Remark 8.11. (i) For every non empty proper subget= {ii,...,,,} of K, the size of the tre&; =
graft(Ar/Ag\r) is equal tg A;| - |Ag\ 7| Hence, by Theorem 8.9, settifig, . . ., jx—m} = K \ I, the
size of B = Ujcp, (k) Br is equal to

Te(prs-ok) = > To(Pirs - Pin) Thmm(Pirs - > Pi -
1Py, (K)
I’y is then a polynomial of same degree¥g and, sincdP,,,(K)| = (7’;) it has same term of highest
degree. Hence, the araucariand the graptB(™ have asymptotically the same size.

(i) Theorem 5.9 can be used to construct the araucarizy adding and merging the treésy of
B(™) one by one. This can be achieved in ti@¢/B(™)|) = O(|A|) as long ask is considered as a
constant (both the size of the capacity of an edge and the number of asghfla vertex indA can be
bounded by a value only depending Bn However, the algorithm given in Section 3 is simpler, runs
faster, and remains linear everkifs not a constant.

(iii) The same remarks hold if we want to construtusing Theorem 6.4. Indeed, the size of a tree
D is equal to] ;¢ ¢ (pi + 1) and the size oD = (5 (k) Da is equal to

Ar(pr,-- - pe) = K ] (i + 1)
113:¢

Hence, the polynomiald, and Y, have same degree and same term of highest degree.
9. Conclusion
In this paper, we have given a new definition of the araucarias intraddandéd0, 11] and, based on this

definition, an optimal algorithm for their construction as well as a new methochfoulating their size.
We have also introduced a notion of capacity which leads to a charactamipétite maximal paths of an
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araucaria. The araucarias are then characterized by these pmpé&héegrafting operation introduced
here has interesting properties in relation with capacities. In particular,etvgagious methods for
generating araucarias of arityby using either araucarias of arity less thaor a family of simpler trees.
We also establish bijections from some sets of vertices of an araucaridyokamto sets of vertices

of araucarias of arity smaller than This leads to two new proofs that the size of an araucaria of type
(p1,...,px) is @ symmetric polynomial iy, ...,pr. We prove also that every directed tree can be
embedded in an araucaria.

These results will be used in the study of the minimal automaton of the shufilieigirof a finite
set of words. In particular, we hope to prove that, if the alphabets of tidsa,, . . ., u; are pairwise
disjoint up to a common letter, then the minimal automatom.of LI...LLI ux can be described by
using only araucarias or homomorphic images of araucarias, and that fimaumasize of the minimal
automaton is a polynomial function of|, ..., |ux| whose coefficients are exponential in Some
properties of the minimal automaton are also expected in the general casmvigip we hope to be able
to give an optimal algorithm to construct this automaton by using a method giy]in
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