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ABSTRACT

Given a set V of n points in the plane, no three of them being collinear, a convex inclusion

chain of V is an ordering of the points of V such that no point belongs to the convex hull
of the points preceding it in the ordering. We call k-set of the convex inclusion chain,
every k-set of an initial subsequence of at least k points of the ordering. We show that
the number of such k-sets (without multiplicity) is an invariant of V , that is, it does

not depend on the choice of the convex inclusion chain. Moreover, this number is equal
to the number of regions of the order-k Voronoi diagram of V (when no four points are
cocircular).

The dual of the order-k Voronoi diagram belongs to the set of so-called centroid

triangulations that have been originally introduced to generate bivariate simplex spline
spaces. We show that the centroids of the k-sets of a convex inclusion chain are the
vertices of such a centroid triangulation. This leads to the currently most efficient algo-
rithm to construct particular centroid triangulations of any given point set; it runs in
O(n log n+ k(n− k) log k) worst case time.

Keywords: k-set enumeration; convex inclusion chains; order-k Voronoi diagrams; cen-
troid triangulations.

1. Introduction

Given a finite set V of n points in the plane, a k-set of V is a subset of k points

of V that can be separated from the remaining points by a straight line. Since the

1970s, finding matching upper and lower bounds for the maximum number of k-sets

of a set of n points in the plane has been an important problem in combinatorial
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geometry (see, e.g., Chapter 11 in Matoušek’s textbook1, or Wagner’s survey2). The

first (published) result is due to Lovász3 who proved an upper bound of O(n
3
2 ) for

k = n/2. Erdös, Lovász, Simmons and Straus4 extended the result to general k,

getting an upper bound of O(nk
1
2 ) and a lower bound of Ω(n log k). The currently

best bounds have been given by Dey5 and by Tóth6. Dey showed that no point

set has more than O(nk
1
3 ) k-sets and Tóth constructed sets with n2Ω(

√
log k) k-sets.

More precise results have been obtained by adding up the numbers of k-sets over

different values of k. Calling every i-set of V (i ≤ k) an (≤ k)-set of V , Peck7 and,

independently, Alon and Györi8, showed that the number of (≤ k)-sets of any set

of n points is bounded by kn; the bound is achieved for points in convex position.

In this paper we obtain a new result on another summation of numbers of k-

sets. In opposition to previous works, we fix the value of k and consider the k-sets

of different subsets of V (without multiplicity). The subsets are obtained in the

following way: Let V = (v1, v2, ..., vn) be an ordering of the points of V such that,

for every i ∈ {2, ..., n}, vi does not belong to the convex hull of {v1, ..., vi−1}. V is

called a convex inclusion chain of V , and we call k-set of V any k-set of {v1, ..., vi},

for all i ∈ {k, ..., n}. We show that, when no three points of V are collinear, the

number of distinct k-sets of a convex inclusion chain of V is an invariant of V , that

is, it does not depend on the chosen convex inclusion chain. More precisely, it is

equal to 2kn−n− k2 +1−
∑k−1

j=1 aj(V ), with aj(V ) the number of j-sets of V and

with
∑0

1 = 0.

Surprisingly, this number is equal to the number of regions of the order-k Voronoi

diagram of V (when no four points of V are cocircular)9. This diagram is a partition

of the plane whose every region is the set of points of the plane having the same

k nearest neighbors in V . In order to establish another connection between convex

inclusion chains and order-k Voronoi diagrams, we first recall how these diagrams

occur in spline theory.

An (univariate) degree k B-spline is a piecewise polynomial function, every piece

of which being a degree k polynomial10. This function is defined through a set of

k + 2 reals, called knots. Given a set K of n knots, the B-splines defined by all

subsets of k + 2 consecutive knots of K are linearly independent and form the

basis of a degree k B-spline space. Spline functions are then obtained by linear

combinations of B-splines. These functions have many properties that make them

attractive, namely for curve modeling. In order to model surfaces, a multivariate

generalization of B-splines is needed. In 1976, de Boor11 introduced the notion of

simplex spline: a degree k simplex spline is a piecewise polynomial function defined

through a set of k + d + 1 knots, which are points in R
d. Given a set K of n

knots, different methods have then been proposed to select subsets of k + d + 1

knots of K (also called configurations) to form the basis of a simplex spline space;

for an overview, see the survey of Neamtu12. In 2007, Neamtu13 proposed the first

solution that really reduces to B-splines when d = 1. The selected configurations are

all (k+ d+1)-subsets of K for which there exists a sphere passing through d+1 of
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these knots, having the k other knots inside, and the rest of K outside. The centers

of these spheres form a subset of the vertices of the order-(k + 1) Voronoi diagram

of K. An application of Neamtu’s configurations to surface reconstruction can be

found in 14. However, Liu and Snoeyink15 pointed out that Neamtu’s solution is too

restrictive on the types of splines that can be generated. They showed that there

exist more general families of configurations that generalize B-splines. The simplex

splines defined with these more general configurations are interesting notably to

model sharp features16.

In order to generate their configurations in the case d = 2, Liu and Snoeyink gen-

eralized the order-k Voronoi diagram in the following way. The order-k Voronoi dia-

gram of a set V of points in the plane admits a straight line dual graph whose vertices

are the centroids of the k-point subsets defining the order-k Voronoi regions17,18.

When no four points of V are cocircular, this dual graph is a triangulation called

the order-k centroid Delaunay triangulation of V . Such a triangulation can be

constructed by an iterative algorithm that deduces the order-k centroid Delau-

nay triangulation from the order-(k − 1) centroid Delaunay triangulation9,17. Liu

and Snoeyink extended this algorithm to construct more general triangulations,

called order-k centroid triangulations. The extended algorithm is applied to any

given order-(k − 1) centroid triangulation. When it succeeds in constructing a new

triangulation (and not overlapping triangles) then the generated triangulation is

an order-k centroid triangulation. An order-1 centroid triangulation is an arbitrary

(classical) triangulation of V. The vertices of an order-k centroid triangulation are

centroids of k-point subsets of V , and its triangles are of two types. The triangles

of the first type are defined with subsets of k+2 points of V , and these subsets are

configurations defining a bivariate degree k − 1 simplex spline space. The triangles

of the second type are defined with subsets of k + 1 points that define a bivariate

degree k − 2 simplex spline space.

However, Liu and Snoeyink could prove that their algorithm really generates

triangulations only for the cases k = 2 and k = 3. Even though experimental results

indicate that it also works for higher values of k, the family of centroid Delaunay

triangulations is still the only family of centroid triangulations for which it has been

proved that it can be generated for all k. In this paper, we prove the existence of a

new family of centroid triangulations, which are related to convex inclusion chains.

In fact we show that, for all k, the centroids of the k-sets of a convex inclusion chain

of V are the vertices of an order-k centroid triangulation of V .

Up to now, the algorithm of Liu and Snoeyink is the only algorithm that al-

lows to generate every existing centroid triangulation. Its time complexity depends

on the generated triangulation, but it cannot be less than Ω(n log n + k2(n − k)).

A particular centroid triangulation, the order-k centroid Delaunay triangulation,

can be generated using algorithms that construct the order-k Voronoi diagram.

The algorithm of Agarwal and Matoušek19, for example, allows to construct this

diagram in O(n1+ǫk) time, where ǫ > 0 is an arbitrarily small constant. The cur-

rently best randomized algorithm is the one given by Agarwal, de Berg, Matoušek,
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and Schwarzkopf20, improved by Chan21, which runs in O(n log n+ k(n− k) log k)

expected time.

We give here a deterministic algorithm that constructs different order-k centroid

triangulations of any set of n points in the plane in O(n log n+k(n−k) log k) worst

case time. Our algorithm is a generalization of the simple and fast Beneath-Beyond

algorithm used to construct a triangulation of a point set, after a presort in some

direction22. The triangulations generated by our algorithm can serve as input for an

algorithm (for example a flip algorithm) that has to build a centroid triangulation

optimizing various criteria.

2. k-sets of a convex inclusion chain

In the whole paper V denotes a finite set of n points in the plane, no three of them

being collinear.

For any subset E of the plane, we denote by E the closure of E, by E̊ the relative

interior of E, by δ(E) = E \ E̊ the boundary of E, and by conv(E) the convex hull

of E.

For every oriented straight line ∆, let ∆+ (resp. ∆−) be the closed half plane

on the left (resp. on the right) of ∆.

Given to points s and t, we denote by st the closed line segment with endpoints

s and t oriented from s to t, and by (st) the oriented straight line generated by st.

Given a non-negative integer k, a k-point subset T of V is called a k-set of V if

their exists an oriented straight line ∆ such that ∆̊−∩V = T . An oriented segment

st with endpoints in V is called a k-edge of V if |(s̊t)− ∩ V | = k.

A convex inclusion chain of V is an ordering (v1, v2, ..., vn) of the points of V

such that, for every i ∈ {2, ..., n}, vi /∈ conv(v1, ..., vi−1). Every k-set of {v1, ..., vi},

i ∈ {1, ..., n}, is called a k-set of the convex inclusion chain (v1, v2, ..., vn).

Theorem 1. For every k ∈ {1, . . . , n}, any convex inclusion chain of V admits

2kn−n− k2 +1−
∑k−1

j=1 aj(V ) distinct k-sets, where aj(V ) is the number of j-sets

of V and
∑0

1 = 0.

Proof. (i) Let V = (v1, . . . , vn) be a convex inclusion chain of V . Consider first, for

any k ∈ {0, ..., n−2} and for any i ∈ {1, ..., n}, the set of k-edges of Vi = {v1, ..., vi}.

Every k-edge st of Vi, if some exists (it is the case if and only if i ≥ k + 2), falls

into one of the following three categories:

(a) vi ∈ (s̊t)+; in this case, i ≥ k + 3 and st is also a k-edge of Vi−1,

(b) vi = s or vi = t; st is clearly not a k-edge of Vi−1,

(c) vi ∈ (s̊t)−; in this case, k ≥ 1, i ≥ k + 2, and st is a (k − 1)-edge of Vi−1.

Since vi is an extreme point of Vi by assumption, if i ≥ k + 2 there is precisely

one point s in Vi such that |(s̊vi)
− ∩Vi| = k. It follows that Vi admits precisely one

k-edge of type (b) with vi = t. In the same way, Vi admits precisely one k-edge of

type (b) with vi = s.
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Furthermore, the k-edges of type (c) are all the (k − 1)-edges of Vi−1 that are

not (k − 1)-edges of Vi.

For every i ∈ {2, ..., n}, let us denote by ck(i) the number of k-edges of Vi that are

not k-edges of Vi−1 (these are “created” when inserting vi), and by dk(i) the number

of k-edges of Vi−1 that are not k-edges of Vi (these are “deleted” when inserting vi).

Then, from the three categories above, c0(i) = 2 and, for every k ∈ {1, ..., n− 2},

– ck(i) = 2 + dk−1(i) for i ∈ {k + 2, ..., n},

– ck(i) = 0 for i ∈ {2, ..., k + 1},

– dk(i) = 0 for i ∈ {2, ..., k + 2}.

Furthermore, the total number of k-edges of V is equal to ek(V ) =
∑n

i=2 ck(i) −∑n

i=2 dk(i). Thus, for every k ∈ {1, ..., n− 2},

n∑

i=2

ck(i) =
n∑

i=k+2

2 +
n∑

i=2

dk−1(i) = 2(n− k − 1) +
n∑

i=2

ck−1(i)− ek−1(V ).

Since
∑n

i=2 c0(i) = 2(n− 1), we get by induction, for every k ∈ {0, ..., n− 2},

n∑

i=2

ck(i) = (2n− k − 2)(k + 1)−
k−1∑

j=0

ej(V ).

(ii) Consider now, for any k ∈ {1, ..., n}, the set of k-sets of all the sets Vi, when

i ranges over {1, ..., n}. Let bk(i) be the number of k-sets created when inserting vi.

Clearly, bk(i) = 0 when i ∈ {1, ..., k − 1}, and bk(k) = 1.

When i ≥ k + 1, there is a bijection between the k-sets and the (k − 1)-edges

of Vi. Indeed, if st is a (k − 1)-edge of Vi then T = ((s̊t)− ∩ Vi) ∪ {t} is a k-set of

Vi, which can be associated to the (k − 1)-edge st (a separating line for T can be

obtained by rotating st slightly counter clockwise about its midpoint). Conversely,

for every k-set T of Vi, T and Vi \ T admit exactly one common internal tangent

(st) such that s ∈ V \T , t ∈ T , and T ⊂ (st)−. The segment st is then a (k−1)-edge

and T is its associated k-set. Furthermore, if st is of type (c), or of type (b) with

vi = t, then vi ∈ T and T is not a k-set of Vi−1. In the other cases, vi /∈ T and T is

a k-set of Vi−1. It follows that bk(i) = ck−1(i)− 1 when i ∈ {k + 1, ..., n}, and that

the total number of k-sets of the convex inclusion chain V is

n∑

i=1

bk(i) = 1 +

n∑

i=k+1

ck−1(i)− (n− k).

From (i), since
∑k

i=2 ck−1(i) = 0, this number equals

1 + (2n− k − 1)k −

k−2∑

j=0

ej(V )− (n− k) = 2kn− n− k2 + 1−

k−2∑

j=0

ej(V ).

The statement of the theorem follows from the fact that, by the bijection, ej(V ) is

equal to the number aj+1(V ) of (j + 1)-sets of V .
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This theorem shows that the number of k-sets of a convex inclusion chain of a

planar point set is an invariant of the point set, that is, it does not depend on the

chosen convex inclusion chain. It notably means that the total number of k-sets

that have to be generated when determining the k-sets of a point set by adding the

points one by one does not depend on the order in which the points are treated,

provided that every new inserted point does not belong to the convex hull of the

previously inserted ones. Since
∑k−1

j=1 aj(V ) is the number of (≤ (k − 1))-sets of V ,

which is known to be bounded by (k − 1)n (see 7,8), it follows that the worst case

complexity of the incremental determination of the k-sets of n points is Ω(k(n−k)).

A more intriguing consequence of the theorem arises from its connection with

order-k Voronoi diagrams. Recall that the order-k Voronoi diagram of the point set

V is a partition of the plane whose every region is associated with a k-point subset

of V . More precisely, the order-k Voronoi region associated with a subset T of V

includes all points of the plane closer to each element of T than to any element of

V \T . Lee9 has shown that, if no four points of V are cocircular, the order-k Voronoi

diagram of V admits 2kn− n− k2 + 1−
∑k−1

j=1 aj(V ) regions; the same number as

the one found in Theorem 1. Since a k-point subset T is associated with an order-k

Voronoi region if and only if T can be separated from the remaining points by a

circle, it follows that:

Corollary 1. Given a set V of points in the plane, no three of them being collinear

and no four of them being cocircular, the number of k-sets of a convex inclusion

chain of V is equal to the number of k-point subsets of V that can be separated from

the remaining by a circle.

Before we go further, we have to wonder if the subsets of k points of V separable

from the others by a circle are the k-sets of a particular convex inclusion chain of

V . The following example shows that it is not the case for every set V .

Example 1. Let V be a set of six points, five of them being the vertices of a regular

pentagon P and the sixth being placed at the center of the circle circumscribed to

P. We can slightly perturb the vertices of P so that no four points are cocircular.

By definition, the last element of any convex inclusion chain V of V is a vertex of

conv(V ), that is, a vertex s of P. The two neighbors r and t of s on P form an edge

of conv(V \ {s}) and, therefore, a 2-set of V \ {s}. {r, t} is then a 2-set of V, but

it can not be separated from V by a circle. It results that this point set V has no

convex inclusion chain whose every 2-set can be separated from the other points by

a circle.

3. Convex inclusion chains and k-neighbor triangulations

In the remainder of the paper, we will try to better understand the result of Corol-

lary 1 by establishing other relations between k-sets of convex inclusion chains and

order-k Voronoi diagrams.
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Fig. 1. Edges and vertices of a 4-set polygon of 11 points.

3.1. Convex inclusion chains and k-set polygons

From now on we will suppose that the integer k belongs to {1, ..., n}.

A practical way to handle a k-point subset T of V consists in representing it

by its centroid g(T ). The convex hull of the centroids of all k-point subsets of V is

called the k-set polygon of V . It has been introduced by Edelsbrunner, Valtr, and

Welzl23, and is denoted by Qk(V ). Notice that Q1(V ) is the convex hull of V and

that Qn(V ) is a unique point, the centroid of V .

The characterization of the vertices and of the edges of Qk(V ) has been given

by Andrzejak and Fukuda24, and by Andrzejak and Welzl25 (see Fig. 1):

Proposition 1. (i) The centroid g(T ) of T is a vertex of Qk(V ) if and only if T

is a k-set of V . Distinct k-sets have distinct centroids.

(ii) The line segment g(T )g(T ′) is an edge of Qk(V ) if and only if there exists a

(k−1)-edge st of V such that, if P = (s̊t)−∩V , then T = P ∪{s} and T ′ = P ∪{t}.

Such an oriented edge g(P∪{s})g(P∪{t}) will be denoted by eP (s, t). Obviously,

eP (s, t) is parallel to (st).

Given an oriented straight line ∆, we say that a set T is ∆-separable from V

if T is a subset of V such that ∆̊− ∩ V = T . T is said to be //∆-separable from

V if there exists a straight line ∆′, parallel to ∆ and with the same orientation as

∆, such that T is ∆′-separable from V . For short, we say also that a vertex of a

convex polygon P is ∆-separable (resp. //∆-separable) from P if it is ∆-separable

(resp. //∆-separable) from the set of vertices of P.

Lemma 1. Given a k-point subset T of V and an oriented straight line ∆, the

following assertions are equivalent:

– T is //∆-separable from V ,

– g(T ) is //∆-separable from the set of centroids of all k-point subsets of V .
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Fig. 2. Updating the 4-set polygon of Vi−1 = {1, ..., 11} when vi = {12} is added. The edges to

delete are in dashed lines and the edges to create in bold lines.

Proof. (i) If g(T ) is //∆-separable from Qk(V ), there exists a straight line ∆′

parallel to ∆, with same orientation as ∆, that passes through g(T ), and such

that all other points of Qk(V ) are in ∆̊′+. Let ∆′′ be a straight line parallel to ∆,

with same orientation as ∆, and such that |∆̊′′− ∩ V | < k and |∆′′− ∩ V | ≥ k.

At least one point a of T belongs to ∆′′+. There is no point b of V \ T in ∆′′−;
otherwise the point g((T \ {a}) ∪ {b}) of Qk(V ) would belong to ∆′− since the

segments g(T )g((T \ {a}) ∪ {b}) and ab are parallel and have same orientation.

Thus ∆′′− ∩ V = T and T is //∆-separable from V .

(ii) Conversely, if T is //∆-separable from V , let ∆′′ be a straight line parallel

to ∆, with same orientation as ∆, and such that T is ∆′′-separable from V . Let

∆′ be the straight line parallel to ∆, with same orientation as ∆, and that passes

through g(T ). For every k-point subset T ′ of V distinct from T , A = T \ T ′ ⊂ ∆̊′′−

and B = T ′ \ T ⊂ ∆′′+. Thus, g(A)g(B) is oriented from ∆̊′′− to ∆′′+ and, since

T ′ = (T \ A) ∪ B, g(T )g(T ′) is parallel to g(A)g(B) and has the same orientation.

Hence, g(T ′) belongs to ∆̊′+, and g(T ) is //∆-separable from Qk(V ).

Let now V = (v1, v2, ..., vn) be a convex inclusion chain of V and let Vi =

{v1, ..., vi}, for all i ∈ {1, ..., n}.

Using the arguments of the proof of Theorem 1, we can characterize the k-set

polygon edges to create and those to delete when constructingQk(Vi) fromQk(Vi−1)

(see Figure 2).

Proposition 2. (i) If k < i ≤ n, the edges of Qk(Vi) that are not edges of Qk(Vi−1)

form a (connected) polygonal line of at least two edges. These edges are of the form:

– eP (s, vi) for the first edge (in counter clockwise direction),

– eP (vi, t) for the last edge,

– eP (s, t) with vi ∈ P for the other edges, if some exist.
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(ii) If k < i ≤ n, the common edges of Qk(Vi) and of Qk(Vi−1), if some exist,

form a (connected) polygonal line, and are of the form eP (s, t) with vi ∈ (s̊t)+.

(iii) If k + 1 < i ≤ n, the edges of Qk(Vi−1) that are not edges of Qk(Vi) form

a (connected) polygonal line of at least one edge, and are of the form eP (s, t) with

vi ∈ (s̊t)−.

Proof. (i) From proof of Theorem 1, Vi admits exactly one (k − 1)-edge of the

form svi. Thus, from Proposition 1, Qk(Vi) admits exactly one edge of the form

eP (s, vi) = g(P ∪ {s})g(P ∪ {vi}), and this edge is the unique edge of Qk(Vi)

that starts at a vertex of δ(Qk(Vi)) ∩ δ(Qk(Vi−1)) and that ends at a vertex of

δ(Qk(Vi)) \ δ(Qk(Vi−1)). Similarly, Qk(Vi) admits exactly one edge of the form

eP ′(vi, t
′) that starts at a vertex of δ(Qk(Vi)) \ δ(Qk(Vi−1)) and ends at a vertex

of δ(Qk(Vi)) ∩ δ(Qk(Vi−1)). It follows that no edge of Qk(Vi) between eP (s, vi)

and eP ′(vi, t
′) in counter clockwise direction is an edge of Qk(Vi−1). From proof of

Theorem 1 and from Proposition 1, these edges are of the form eP ′′(s′′, t′′) with

vi ∈ ( ˚s′′t′′)− ∩ Vi = P ′′.
(ii) From (i), the edges ofQk(Vi) that are also edges ofQk(Vi−1) form a polygonal

line. From proof of Theorem 1, they are defined by (k − 1)-edges st such that

vi ∈ (s̊t)+.

(iii) If i > k + 1, Vi−1 admits at least two k-sets and thus Qk(Vi−1) admits at

least two (oriented) edges. From (i), the edges of Qk(Vi−1) that are not edges of

Qk(Vi) form a polygonal line of at least one edge. From proof of Theorem 1, these

edges are defined by (k − 1)-edges st with vi ∈ (s̊t)−.

3.2. k-neighbor triangulations

The order-k Voronoi diagram admits a straight line dual graph whose vertices are

the centroids of the k-point subsets associated with the order-k Voronoi regions17,18.

When no four points of V are cocircular, this dual graph induces a triangulation of

the k-set polygon of V (with additional inner points), called the order-k centroid

Delaunay triangulation of V (see26 and Fig. 3). Every edge of this triangulation

connects the centroids of two k-point subsets that differ from each other by only

one point (the same holds for the subsets associated with two order-k Voronoi

regions sharing an edge9). Recall that it is also the case with the edges of the k-set

polygon (Proposition 1).

More generally, we call k-neighbor triangulation of V any triangulation T of

Qk(V ) (with possible additional inner points) such that

– there exists a set R of k-point subsets of V such that every vertex of T is the

centroid of a unique element of R,

– every edge of T is of the form g(T )g(T ′) with {T, T ′} ⊆ R and |T ∩T ′| = k−1.

From this definition, if V admits different k-point subsets with same centroid,

then at most one of these subsets is in R. In the following, when we will say that

g(T ) is a vertex of the k-neighbor triangulation T , this will imply that T is an
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Fig. 3. Order-4 Voronoi diagram (full lines) and order-4 centroid Delaunay triangulation (dashed

lines). White triangles are type-1 and gray triangles are type-2.

element of R. When, moreover, the centroid of every element of R is a vertex of T ,

R is said to determine the vertices of T .

Now it is easy to see that T has only two types of triangles:

– so called type-1 triangles of the form g(P ∪ {r})g(P ∪ {s})g(P ∪ {t}), with P

a (k − 1)-point subset of V and r, s, t three distinct points of V \ P ,

– so called type-2 triangles of the form g(P ∪{r, s})g(P ∪{s, t})g(P ∪{r, t}), with

P a (k − 2)-point subset of V and r, s, t three distinct points of V \ P .

Remark 1. It is important to note that this property would be wrong if R could

contain two elements with same centroid (see Fig. 4).

1

6

8

5 2

4

7

9
3

g ({1,3}) = g ({7,9})g ({4,6}) = g({7,8})

g ({1,2}) = g ({4,5})

Fig. 4. The three edges of this triangle are of the form g(T )g(T ′) with |T ∩ T ′| = k − 1; but the

triangle is neither type-1 nor type-2.
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Notice also that a 1-neighbor triangulation has only type-1 triangles, for its

vertices are points of V , whereas an (n− 1)-neighbor triangulation has only type-2

triangles, for its vertices are centroids of all but one point of V .

The aim of this section is to show that the set of k-sets of the convex inclusion

chain V = (v1, . . . , vn) of V determines the vertices of a k-neighbor triangulation of

V .

As in proof of Proposition 2, let eP (s, vi) and eP ′(vi, t
′) be the first and the

last edge of the polygonal line formed by the edges of Qk(Vi) that are not edges of

Qk(Vi−1), for every k ∈ {1, ..., n − 1} and for every i ∈ {k + 1, ..., n}. Let Ck(i) be

the part of the line without these two edges (Ck(i) is possibly reduced to a point).

Furthermore, when k ∈ {1, ..., n− 2} and i ∈ {k + 2, ..., n}, we denote by Dk(i)

the polygonal line of edges of Qk(Vi−1) that are not edges of Qk(Vi).

Since Qk(Vk) is reduced to the unique point g(Vk), we set Ck(k) = g(Vk), for all

k ∈ {1, . . . , n}, and Dk(k + 1) = g(Vk), for all k ∈ {1, . . . , n− 1}.

Suppose now i ∈ {k + 1, . . . , n}. Since the edges eP (s, vi) and eP ′(vi, t
′) are

parallel to the straight lines (s, vi) and (vi, t
′) respectively, the vertices of Ck(i)

are the vertices //∆-separable from Qk(Vi) with the oriented straight lines ∆ ver-

ifying 0 < ∡((svi),∆) < ∡((svi), (vit
′)). Now, the vertices //∆-separable from

Qk(Vi−1) with such oriented straight lines ∆ are the vertices of Dk(i). So let

(g(Ti,1), . . . , g(Ti,mi
)) be the sequence of vertices of Dk(i) ordered in counter clock-

wise direction, and, for every vertex g(Ti,j), let Ck(i, j) be the set

– of vertices g(T ) of Ck(i) such that g(T ) and g(Ti,j) are respectively //∆-separable

from Qk(Vi) and from Qk(Vi−1), with a same straight line ∆,

– and of edges of Ck(i) that connect these vertices.

Clearly, the set of straight lines ∆ for which g(Ti,j) is //∆-separable from

Qk(Vi−1) defines a (connected) interval of angles ∡((svi),∆). Hence, Ck(i, j) is a

connected subset of Ck(i), possibly reduced to a point. Moreover, if h > j, Ck(i, h) is

after Ck(i, j) on Ck(i), and these two polygonal lines do not overlap, except possibly

at their endpoints. Furthermore:

Lemma 2. (i) g(P ∪ {vi}) is the first endpoint of Ck(i, 1) and g(P ′ ∪ {vi}) is the

last endpoint of Ck(i,mi).

(ii) For all j ∈ {2, ...,mi}, if ePj
(sj , tj) is the edge of Dk(i) connecting g(Ti,j−1)

to g(Ti,j), then Ck(i, j − 1) and Ck(i, j) admit g(Pj ∪ {vi}) as common endpoint.

Proof. (i) g(P ∪ {vi}) is the second endpoint of eP (s, vi) and is thus the first end-

point of Ck(i). g(P ∪ {vi}) is also //∆-separable from Qk(Vi) with oriented straight

lines ∆ such that 0 < ∡((svi),∆) < ǫ (for some ǫ > 0). Moreover, since the straight

line spanned by eP (s, vi) is tangent to Qk(Vi−1) at g(Ti,1), g(Ti,1) is also //∆-

separable from Qk(Vi−1) with such straight lines ∆ (and ǫ sufficiently small). By

the definition of Ck(i, 1), it follows that g(P ∪ {vi}) belongs to Ck(i, 1) and, since it

is the first endpoint of Ck(i), it is also the first endpoint of Ck(i, 1).

Similarly, g(P ′ ∪ {vi}) is the last endpoint of Ck(i,mi).
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(ii) Since Pj = ( ˚sjtj)
− ∩ Vi−1 and since, from Proposition 2, vi ∈ ( ˚sjtj)

−,
we have Pj ∪ {vi} = ( ˚sjtj)

− ∩ Vi. Therefore, from Lemma 1, g(Pj ∪ {vi}) is the

vertex //(sjtj)-separable from Qk(Vi). Now, g(Pj ∪ {vi}) is also //∆-separable from

Qk(Vi) with oriented straight lines ∆ such that ∡((svi),∆) is slightly smaller or

slightly greater than ∡((svi), (sjtj)). In the first case g(Ti,j−1) is //∆-separable

from Qk(Vi−1), and in the second case g(Ti,j) is //∆-separable from Qk(Vi−1). It

follows that g(Pj ∪ {vi}) is a vertex of both Ck(i, j − 1) and Ck(i, j).

It then results that Ck(i) is the sequence of polygonal lines Ck(i, 1), . . . , Ck(i,mi),

which do not overlap except at their endpoints (see Fig. 5).

Lemma 3. (i) For every vertex g(Ti,j) of Dk(i) and for every vertex g(T ) of

Ck(i, j), there exists q ∈ Ti,j such that T = (Ti,j \ {q}) ∪ {vi}.

(ii) The segment g(Ti,j)g(T ) is included in Qk(Vi) \ Qk(Vi−1).

Proof. Let ∆ be a straight line passing through g(Ti,j) such that g(Ti,j) and

g(T ) are respectively //∆-separable from Qk(Vi) and from Qk(Vi−1). Obviously,

Qk(Vi−1) ⊂ ∆+.

From Lemma 1, there exist two straight lines ∆′ and ∆′′, which are parallel to

and oriented in the same direction as ∆, which avoid the points of Vi, and such that

∆̊′− ∩ Vi−1 = Ti,j and ∆̊′′− ∩ Vi = T . Thus, since vi ∈ T , there is exactly one point

q of Vi−1 between ∆ and ∆′. It follows that T = (Ti,j \ {q}) ∪ {vi}.

Furthermore, g(T ) ∈ ∆̊′− since vi ∈ ∆̊′′−, q ∈ ∆̊′′+, and g(Ti,j)g(T ) is parallel

to and has same orientation as qvi. Thus, g(Ti,j)g(T ) intersects Qk(Vi−1) only in

g(Ti,j). Since g(Ti,j) and g(T ) belong to Qk(Vi), g(Ti,j)g(T ) ⊂ Qk(Vi) \ Qk(Vi−1).

From now on, we denote by Ek(i) the set of segments g(Ti,j)g(T ) determined by

the previous lemma when j runs over {1, ...,mi} (see Fig. 5).

g (Ti,mi
)

g (Ti,1)

g (Ti,2)

g (Ti,3)
3 12 = v

i

2

9

4

7

5

11

1

6

8

10 (i,mi)k

(i,3)k

(i,2)k

(i,1)k

Fig. 5. The edges of Dk(i) are in dashed lines, the edges of Ck(i) in bold lines, and the edges of

Ek(i) connect the vertices of Dk(i) with the vertices of Ck(i). The triangles generated by these
edges are either of type-1 (white) or of type-2 (gray).
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Lemma 4. (i) The segments of Ek(i) induce a triangulation of Qk(Vi) \ Qk(Vi−1).

(ii) The triangles of this triangulation are

– the type-2 triangles g(Ti,j)g(T )g(T
′), where g(Ti,j) is a vertex of Dk(i) and

g(T )g(T ′) is an edge of Ck(i, j),

– the type-1 triangles g(Ti,j)g(Ti,j+1)g(T ), where g(Ti,j)g(Ti,j+1) is an edge of

Dk(i) and g(T ) is the common vertex of Ck(i, j) and Ck(i, j + 1).

Proof. (i) Qk(Vi) \ Qk(Vi−1) is reduced to a line segment when Dk(i) is reduced to

the point g(Ti,1) and when Ck(i) = Ck(i, 1) is reduced to a unique point g(T ). Ek(i)

is then reduced to the segment g(Ti,1)g(T ) and forms a degenerate triangulation of

Qk(Vi) \ Qk(Vi−1). (Actually this only occurs when k = 1 and i = 2.)

We deal now with the case where Qk(Vi) \ Qk(Vi−1) is not reduced to a segment.

g(Ti,j) precedes g(Ti,h) on Dk(i) if and only if Ck(i, j) precedes Ck(i, h) on Ck(i);

therefore, the segments of Ek(i) are pairwise disjoint (up to their endpoints).

The boundary of Qk(Vi) \ Qk(Vi−1) is composed of the edges of Dk(i), of the

edges of Ck(i), and of two edges of Ek(i): The one linking g(Ti,1) to the first vertex

of Ck(i, 1) and the one linking g(Ti,mi
) to the last vertex of Ck(i,mi). Since every

segment of Ek(i) connects a point of Dk(i) to a point of Ck(i), the boundary Γ of

every connected component of ( ˚Qk(Vi)\Qk(Vi−1))\Ek(i) is also composed of edges

of Dk(i), of edges of Ck(i), and of two edges of Ek(i).

If Γ contains an edge g(T )g(T ′) of Ck(i), g(T )g(T ′) is an edge of exactly one line

Ck(i, j). By definition, the segments g(T )g(Ti,j) and g(T ′)g(Ti,j) belong to Ek(i),

and Γ is the triangle g(T )g(T ′)g(Ti,j).

If Γ contains an edge g(Ti,j)g(Ti,j+1) of Dk(i), from Lemma 2, Ck(i, j) and

Ck(i, j+1) have a common vertex g(T ). By definition, g(Ti,j)g(T ) and g(Ti,j+1)g(T )

are then also segments of Ek(i), and Γ is the triangle g(Ti,j)g(Ti,j+1)g(T ).

It follows that every connected component of ( ˚Qk(Vi) \ Qk(Vi−1)) \ Ek(i) is a

triangle. Hence, Ek(i) induces a triangulation of Qk(Vi) \ Qk(Vi−1).

(ii) From (i), the triangulation induced by Ek(i) has two types of triangles. The

triangles g(T )g(T ′)g(Ti,j) are type-2 triangles since, from Lemma 3, there exist

two distinct points q and q′ of Ti,j such that T = (Ti,j \ {q}) ∪ {vi} and T ′ =

(Ti,j \ {q′}) ∪ {vi}. The triangles g(Ti,j)g(Ti,j+1)g(T ) are type-1 triangles since,

from Lemma 3, there exist q ∈ Ti,j and q′ ∈ Ti,j+1 such that Ti,j = (T \ {vi})∪ {q}

and Ti,j+1 = (T \ {vi}) ∪ {q′}, where q 6= q′.

Theorem 2. The edges of the k-set polygons Qk(Vi) and of the sets Ek(i), for all

integers i of {k + 1, ..., n}, form a k-neighbor triangulation of V whose vertices are

determined by the k-sets of the convex inclusion chain V.

Proof. The k-set polygon Qk(Vk) is reduced to a unique point. From Lemma 4, if

i ∈ {k+1, ..., n}, Ek(i) induces a triangulation of Qk(Vi) \ Qk(Vi−1). It follows that

the set of edges of all k-set polygons Qk(Vi) and of all sets Ek(i), i ∈ {k + 1, ..., n},

forms a triangulation T of Qk(Vn) = Qk(V ).
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Fig. 6. The 4-neighbor triangulation T4(1, 2, . . . , 12). The white triangles are type-1 and the gray
triangles are type-2.

Moreover, from Proposition 1, every edge of Qk(Vi) is of the form g(T )g(T ′)
with |T ∩ T ′| = k − 1. From Lemma 3, it is the same with the edges of Ek(i).

The vertices of T are the vertices of the k-set polygons Qk(Vi), ∀i ∈ {k, ..., n},

that is, the centroids of the k-sets of the convex inclusion chain V. Since distinct

k-sets have distinct centroids, it follows that T is a k-neighbor triangulation of V

whose vertices are determined by the k-sets of the convex inclusion chain V.

For every convex inclusion chain V of V , the triangulation defined by this the-

orem is said to be associated to V and is denoted by Tk(V) (see Fig. 6). In the

particular case k = n, we set Tn(V) = Qn(V ) = g(V ).

4. Convex inclusion chains and centroid triangulations

If g(P ∪{r})g(P ∪{s})g(P ∪{t}) is a type-1 triangle whose vertices are centroids of

(k− 1)-point subsets of V then, by definition, g(P ∪{r, s})g(P ∪{r, t})g(P ∪{s, t})

is a type-2 triangle whose vertices are centroids of k-point subsets of V . Using this

property, Liu and Snoeyink15 suggested to apply Algorithm 1 below to (k − 1)-

neighbor triangulations. By the term “constrained triangulation of Qk(V ) \ τ” in

step (2) of the algorithm is meant a partition of Qk(V ) \ τ in triangles such that the

vertices of Qk(V ) \ τ are the vertices of the partition and every edge of Qk(V ) \ τ

is an edge of the partition.

Algorithm 1: To apply to a (k − 1)-neighbor triangulation T of V

(1) for every type-1 triangle g(P ∪ {r})g(P ∪ {s})g(P ∪ {t}) of T do

compute the type-2 triangle g(P ∪ {r, s})g(P ∪ {r, t})g(P ∪ {s, t})
(2) Construct a constrained triangulation of Qk(V ) \ τ , where τ is the set of

triangles computed in loop (1)



Centroid triangulations from k-sets 15

3
12

2

9

4

7

5

11

1

6

8

10

Fig. 7. A 2-neighbor triangulation (full lines) obtained from a 1-neighbor triangulation (dashed
lines) by Algorithm 1. The triangles computed in loop (1) are gray.

Actually, Algorithm 1 is a generalization of an algorithm that constructs the

order-k centroid Delaunay triangulation from the order-(k − 1) centroid Delaunay

triangulation9,17. The difference is that that algorithm constructs a constrained

Delaunay triangulation in step (2) instead of an arbitrary constrained triangulation.

Unfortunately, Algorithm 1 does not work with any given (k − 1)-neighbor tri-

angulation, in the sense that the type-2 triangles computed in loop (1) may overlap.

However, it is easy to see that it works when applied to a 1-neighbor triangulation,

i.e., to a (classical) triangulation of the point set (see Fig. 7). In this case, it gen-

erates a 2-neighbor triangulation. Liu and Snoeyink proved that, if the algorithm

is applied to such a 2-neighbor triangulation, then it also generates a 3-neighbor

triangulation. Experimental results indicate that the algorithm works as long as it

is applied to a (k − 1)-neighbor triangulation that has been iteratively generated

by the algorithm itself. A triangulation generated in this way is called an order-k

centroid triangulation.

Currently, the order-k centroid Delaunay triangulations form the only family of

k-neighbor triangulations for which it has been proved that the algorithm works for

k > 3. The aim of this section is to show that it is also the case for the triangulations

associated to convex inclusion chains.

For every set V of n points, we call iterative centroid triangulation sequence of

V , every sequence (A1, . . . ,An) of centroid triangulations of V such that A1 is a

(classical) triangulation of V and, for every integer i ∈ {2, . . . , n}, Ai is obtained

from Ai−1 using Algorithm 1.

Theorem 3. For every convex inclusion chain V = (v1, . . . , vn) of V ,

(T1(V), . . . , Tn(V)) is an iterative centroid triangulation sequence of V .

Proof. (i) The set V1 = {v1} admits a unique convex inclusion chain V1 = (v1).
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The triangulation T1(V1) (which is reduced to the point v1) is then the unique

element of the unique iterative centroid triangulation sequence of V1, (T1(V1)).

(ii) Now, assume n > 1 and let i be an integer of {2, . . . , n}. Let Vi−1 be the

convex inclusion chain (v1, . . . , vi−1) of Vi−1 = {v1, . . . , vi−1}. Assume the following

induction hypothesis: (T1(Vi−1), . . . , Ti−1(Vi−1)) is an iterative centroid triangula-

tion sequence of Vi−1. We will furthermore assume by induction that, for every

l ∈ {2, . . . , i− 2}, all type-2 triangles of Tl(Vi−1) are obtained from the type-1 tri-

angles of Tl−1(Vi−1) (i.e., they are constructed by loop (1) of Algorithm 1) and that

every vertex of Tl(Vi−1) is a vertex of a type-2 triangle of Tl(Vi−1). In the remainder

of the proof we will refer to this condition as the triangle and vertex criterion.

We show now that, if Vi is the convex inclusion chain (v1, . . . , vi) of Vi =

{v1, . . . , vi}, then (T1(Vi), . . . , Ti(Vi)) is still an iterative centroid triangulation se-

quence of Vi verifying the triangle and vertex criterion. From Theorem 2, T1(Vi) is

a triangulation of Vi and is then the first element of an iterative centroid triangula-

tion sequence of Vi. Suppose that the following second induction hypothesis holds:

For an integer h ∈ {2, . . . , i}, (T1(Vi), . . . , Th−1(Vi)) is an initial subsequence of

an iterative centroid triangulation sequence of Vi, verifying the triangle and vertex

criterion.

(ii.1) If h = i, on the one hand, Th(Vh) is reduced to the unique point g(Vh). On

the other hand, Th−1(Vh) is an (h− 1)-neighbor triangulation of h points; thus, all

its triangles are type-2. When Algorithm 1 is applied to this triangulation, loop (1)

does not construct any triangle. Since Qh(Vh) is reduced to the point g(Vh), step (2)

generates a degenerate triangulation which is also reduced to this point. Therefore,

from the second induction hypothesis, (T1(Vh), . . . , Th(Vh)) is an iterative centroid

triangulation sequence of Vh, verifying the triangle and vertex criterion.

(ii.2) Suppose now that h ∈ {2, . . . , i− 1}.

– By construction, the set of type-2 triangles of Th(Vi) is the union of the type-2

triangles of Th(Vi−1) and of those of Th(Vi) \ Th(Vi−1). In the same way, the set

of type-1 triangles of Th−1(Vi) is the union of the type-1 triangles of Th−1(Vi−1)

and of those of Th−1(Vi) \ Th−1(Vi−1).

Now, by the first induction hypothesis, the type-2 triangles of Th(Vi−1) are

obtained from the type-1 triangles of Th−1(Vi−1) by loop (1) of Algorithm 1.

From Lemma 4, every type-1 triangle of Th−1(Vi) \ Th−1(Vi−1) is of the

form g(P ∪{q})g(P ∪{q′})g(P ∪{vi}), where g(P ∪{q})g(P ∪{q′}) is the edge
eP (q, q

′) of Dh−1(i). Now, from Proposition 2, vi ∈ (q̊q′)− and eP∪{vi}(q, q
′) =

g(P∪{vi, q})g(P∪{vi, q
′}) is an edge of Ch(i). Then, from Lemma 4, the triangle

g(P∪{vi, q})g(P∪{vi, q
′})g(P∪{q, q′}) is a type-2 triangle of Th(Vi) \ Th(Vi−1).

Conversely, every edge of Ch(i) is an edge of such a type-2 triangle (see Fig. 8).

(Notice that Ch(i) admits at least one edge since, from Proposition 2, Dh−1(i)

admits at least one edge.)

It follows that all type-2 triangles of Th(Vi) are obtained by applying loop

(1) of Algorithm 1 to Th−1(Vi).

– The set of vertices of Th(Vi) is the union of the vertices of Th(Vi−1) and of the
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Fig. 8. The type-2 triangles of T4(1, ..., 12) \ T4(1, ..., 11) (gray on the figure on the right) can be
obtained from the type-1 triangles of T3(1, ..., 12) \ T3(1, ..., 11) (white on the figure on the left)
by loop (1) of Algorithm 1.

vertices of Ch(i).

From the previous item, all edges of Ch(i) are edges of type-2 triangles of

Th(Vi), and Ch(i) admits at least one edge. Hence, every vertex of Ch(i) is also

a vertex of a type-2 triangle.

From the first induction hypothesis, the vertices of Th(Vi−1) are also vertices

of type-2 triangles, when h < i − 1. When h = i − 1, Th(Vi−1) is reduced to

the unique vertex Qh(Vh) = Dh(h+ 1) and, from Lemma 4, it is a vertex of all

type-2 triangles having an edge on Ch(h+ 1).

Thus, all vertices of Th(Vi) are vertices of type-2 triangles of Th(Vi).

– Since Th(Vi) is a triangulation of Qh(Vi), it follows from the preceding item that

the type-1 triangles of Th(Vi) form a constrained triangulation of Qh(Vi) \ τ ,

where τ is the set of type-2 triangles of Th(Vi). Hence, from the first item, the

type-1 triangles of Th(Vi) can be constructed by step (2) of Algorithm 1.

Thus, Th(Vi) can be obtained from Th−1(Vi) using Algorithm 1 and it verifies

the triangle and vertex criterion. Therefore, from the second induction hypothesis,

(T1(Vi), . . . , Th(Vi)) is an initial subsequence of an iterative centroid triangulation

sequence of Vi verifying the triangle and vertex criterion, for all h ∈ {2, . . . , i}.

Finally, from the first induction hypothesis, (T1(Vi), . . . , Ti(Vi)) is an iterative

centroid triangulation sequence of Vi verifying the triangle and vertex criterion, for

every i ∈ {2, . . . , n}.

An immediate consequence of this theorem is that,

Corollary 2. The k-neighbor triangulation associated to any convex inclusion

chain of V is an order-k centroid triangulation of V .

Since the order-k centroid Delaunay triangulation of V is also an order-k centroid

triangulation, this result is a first step toward the understanding why the number

of k-sets of a convex inclusion chain of V is equal to the number of regions of

the order-k Voronoi diagram of V . For the explanation to be complete, it should

be proved that all order-k centroid triangulations of V have the same number of
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vertices, that is, 2kn−n−k2+1−
∑k−1

j=1 aj(V ) vertices. This would also corroborate

a conjecture of Liu and Snoeyink15, which claims that the size of every order-k

centroid triangulation of n points is in Θ(kn) or, more precisely, in Θ(k(n− k)).

5. Construction of particular centroid triangulations

If the conjecture on the size of a centroid triangulation holds, it implies that the

construction of any order-k centroid triangulation of n points with the help of

Algorithm 1 takes Ω(n log n+ k2(n− k)) time: Ω(n log n) for an (order-1 centroid)

triangulation and Ω(i(n−i)) for each of the next k−1 order-i centroid triangulations.

The aim of this last section is to show that order-k centroid triangula-

tions associated to some special convex inclusion chains can be constructed in

O(n log n + k(n − k) log k) worst case time. Moreover, every point set admits such

convex inclusion chains.

Let V = (v1, . . . , vn) be a convex inclusion chain of V and, as in proof of Theorem

3, let Vi = (v1, . . . , vi), for all i ∈ {1, . . . , n}. Assume that the order-k centroid

triangulation Tk(Vi−1) associated to Vi−1 is given, for an i > k. To construct Tk(Vi),

we need then to determine the vertices of Ck(i), to connect them to each others with

the edges of Ck(i), and to connect them to Tk(Vi−1) with the edges of Ek(i).

As already pointed out in section 3, Ck(i) can be decomposed into a sequence

of lines Ck(i, j), each of them being associated to a vertex g(Ti,j) of Dk(i). More

precisely, the vertices of Ck(i, j) are the vertices of Ck(i) that are //∆-separable from

Qk(Vi) with the oriented straight lines ∆ for which g(Ti,j) is //∆-separable from

Qk(Vi−1). For such a line ∆ we then have:

Lemma 5. If g(T ) is the vertex //∆-separable from Qk(Vi), then it is also the

vertex //∆-separable from Qk(Ti,j ∪ {vi}).

Proof. Since, from Lemma 1, Ti,j is //∆-separable from Vi−1, the k-set T //∆-

separable from Vi = Vi−1∪{vi} is either Ti,j itself, or a subset of Ti,j∪{vi} containing

vi. Hence, the vertex g(T ) //∆-separable from Qk(Vi) is also //∆-separable from

Qk(Ti,j ∪ {vi}).

It follows that determining the vertices of Ck(i, j) comes to compute the k-set

polygon Qk(Ti,j ∪ {vi}) and to extract the vertices that are //∆-separable from

Qk(Ti,j ∪ {vi}) with the oriented straight lines ∆ for which g(Ti,j) is //∆-separable

from Qk(Vi−1). Actually, since we only want vertices of Ck(i), we have only to

consider the lines ∆ such that 0 < ∡((svi),∆) < ∡((svi), (vit
′)), where eP (s, vi) and

eP ′(vi, t
′) are the edges respectively preceding and following Ck(i) onQk(Vi). The set

of these lines ∆ determines a set of consecutive vertices of Qk(Ti,j ∪{vi}). We show

now who to find the first and the last vertex of the line Ck(i, j) on δ(Qk(Ti,j∪{vi})).

Lemma 6. (i) The first vertex of the line Ck(i, 1) is the successor of g(Ti,1) on

δ(Qk(Ti,1 ∪ {vi})), and the last vertex of Ck(i,mi) is the predecessor of g(Ti,mi
) on

δ(Qk(Ti,mi
∪ {vi})).
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(ii) If j ∈ {2, . . . ,mi} and if ePj
(sj , tj) is the edge of Dk(i) linking g(Ti,j−1) to

g(Ti,j), then g((Ti,j−1 ∪ {vi}) \ {sj}) = g((Ti,j ∪ {vi}) \ {tj}) is both the last vertex

of Ck(i, j − 1) and the first vertex of Ck(i, j).

Proof. (i) The edge that links g(Ti,1) to the first vertex of Ck(i, 1) on δ(Qk(Vi)) is

of the form eP (s, vi), with P ∪{s} = Ti,1 and g(P ∪{vi}) the first vertex of Ck(i, 1).

Thus, P ∪ {s, vi} ⊆ Ti,1 ∪ {vi} and eP (s, vi) is also an edge of Qk(Ti,1 ∪ {vi}).

Hence, g(P ∪ {vi}) is also the successor of g(Ti,1) on δ(Qk(Ti,1 ∪ {vi})). Similarly,

an edge of Qk(Vi) of the form eP ′(vi, t
′) links the last vertex of Ck(i,mi) to g(Ti,mi

)

on δ(Qk(Ti,mi
∪ {vi})).

(ii) For all j ∈ {2, . . . ,mi}, if ePj
(sj , tj) links g(Ti,j−1) to g(Ti,j) then, from

Lemma 2, g(Pj ∪ {vi}) is the last vertex of Ck(i, j − 1) and the first vertex of

Ck(i, j). Since Ti,j−1 = Pj ∪ {sj} and Ti,j = Pj ∪ {tj}, we have g(Pj ∪ {vi}) =

g((Ti,j−1 \ {sj}) ∪ {vi}) = g((Ti,j \ {tj}) ∪ {vi}).

The last thing to see to compute Ck(i, j) efficiently is that, for all j ∈ {1, . . . ,mi},

the k-set polygon Qk(Ti,j ∪{vi}) is the image of conv(Ti,j ∪{vi}) by the homothety

with center g(Ti,j ∪ {vi}) and ratio −1/k. Indeed, q is a vertex of conv(Ti,j ∪ {vi})

if and only if it can be separated from (Ti,j ∪ {vi}) \ {q} by a straight line, that

is, if and only if g((Ti,j ∪ {vi}) \ {q}) is a vertex of Qk(Ti,j ∪ {vi}). Thus, every

counter clockwise oriented edge qq′ of conv(Ti,j ∪ {vi}) corresponds to an edge

g((Ti,j ∪{vi})\{q})g((Ti,j ∪{vi})\{q
′}) = e(Ti,j∪{vi})\{q,q′}(q

′, q) of Qk(Ti,j ∪{vi})

(see Fig. 9).

The edges of Ek(i) can also be easily built while constructing the lines Ck(i, j).

Indeed, from Lemma 3, for every vertex g((Ti,j ∪ {vi}) \ {q}) of a line Ck(i, j),

g((Ti,j ∪ {vi}) \ {q})g(Ti,j) is an edge of Ek(i); and every edge of Ek(i) is of this

form.

g (Ti,2)

g ({2,7,11,12})

g ({7,9,11,12})

g ({2,7,9,12})

conv(Ti,2    {v
i
})

e{2,7,9}(11,3)

e{2,7,11}(6,9) e{7,11,12}(2,9)

e{7,9,12}(11,2)

3 12 = v
i

2

9

4

7

5

11

1

6

8

10

Fig. 9. The line C4(i, 2) = (g({2, 7, 11, 12}), g({7, 9, 11, 12}), g({2, 7, 9, 12})) is the image of the line
(9, 2, 11) by the homothety with center g(Ti,2 ∪ {vi}) = g({2, 7, 9, 11, 12}) and ratio −1/4.
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Tk(Vi) can then be constructed from Tk(Vi−1) by Algorithm 2. When implement-

ing the algorithm, attention has to be paid to the case where Tk(Vi−1) is reduced

to the point g(Ti,1) = g(Ti,mi
) (as already seen, this only occurs when i − 1 = k).

In this case, the vertices to traverse on δ(conv(Ti,1 ∪ {vi})) go from the successor

of vi to the predecessor of vi, in counter clockwise direction.

Algorithm 2: Construction of Tk(Vi) from Tk(Vi−1)

// construction of Ck(i, 1) and of the edges of Ek(i) incident in g(Ti,1)
let eP2

(s2, t2) be the edge leaving g(Ti,1) on δ(Qk(Vi−1)) = δ(Tk(Vi−1))
q ← successor of vi on δ(conv(Ti,1 ∪ {vi}))
create the first vertex g((Ti,1 ∪ {vi}) \ {q}) of Ck(i, 1)
create the edge g((Ti,1 ∪ {vi}) \ {q}) g(Ti,1) of Ek(i)
(1) while q 6= s2 do

q′ ← successor of q on δ(conv(Ti,1 ∪ {vi}))
create the next vertex g((Ti,1 ∪ {vi}) \ {q

′}) of Ck(i, 1)
create the edge g((Ti,1 ∪ {vi}) \ {q

′}) g((Ti,1 ∪ {vi}) \ {q}) of Ck(i, 1)
create the edge g((Ti,1 ∪ {vi}) \ {q

′}) g(Ti,1) of Ek(i)
q ← q′

// treatment of Ck(i, 2), . . . , Ck(i,mi − 1)
for all j ∈ {2, . . . ,mi − 1} do

let ePj
(sj , tj) be the edge entering g(Ti,j) on δ(Tk(Vi−1))

let ePj+1
(sj+1, tj+1) be the edge leaving g(Ti,j) on δ(Tk(Vi−1))

create the edge g((Ti,j ∪ {vi}) \ {tj}) g(Ti,j) of Ek(i)
// g((Ti,j ∪ {vi}) \ {tj}) = g((Ti,j−1 ∪ {vi}) \ {sj}) is the last vertex of

// the just created line Ck(i, j − 1) and the first vertex of Ck(i, j)
q ← tj
(2) while q 6= sj+1 do

q′ ← successor of q on δ(conv(Ti,j ∪ {vi}))
create the next vertex g((Ti,j ∪ {vi}) \ {q

′}) of Ck(i, j)
create the edge g((Ti,j ∪ {vi}) \ {q

′}) g((Ti,j ∪ {vi}) \ {q}) of Ck(i, j)
create the edge g((Ti,j ∪ {vi}) \ {q

′}) g(Ti,j) of Ek(i)
q ← q′

// treatment of Ck(i,mi)
let ePmi

(smi , tmi) be the edge entering g(Ti,mi
) on δ(Tk(Vi−1))

create the edge g((Ti,mi
∪ {vi}) \ {tmi}) g(Ti,mi

) of Ek(i)
q ← tmi

(3) while q 6= predecessor of vi on δ(conv(Ti,mi
∪ {vi})) do

q′ ← successor of q on δ(conv(Ti,mi
∪ {vi}))

create the next vertex g((Ti,mi
∪ {vi}) \ {q

′}) of Ck(i,mi)
create the edge g((Ti,mi

∪ {vi}) \ {q
′}) g((Ti,mi

∪ {vi}) \ {q}) of Ck(i,mi)
create the edge g((Ti,mi

∪ {vi}) \ {q
′}) g(Ti,mi

) of Ek(i)
q ← q′

We store the constructed centroid triangulation in a combinatorial map. Every

edge of the triangulation is of the form g(P ∪ {s})g(P ∪ {t}). So we associate the
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points s and t to the edge connecting g(P ∪{s}) to g(P ∪{t}) in the map, but we do

not store explicitly the set P . In fact, we only need to store the set T for a unique

vertex g(T ) of the centroid triangulation. Starting from g(T ), the sets defining the

other vertices can then be computed while traversing the map, by alternatively

removing and adding the points associated to the edges. Hence, an order-k centroid

triangulation with e edges can be stored with O(e+ k) space.

For the need of our algorithm, g(T ) is a particular vertex on the boundary of the

triangulation, which will be made precise later on. As seen above, we will not only

need the set T , but also its convex hull. Moreover, while traversing the triangulation,

we need to insert and remove points in this convex hull. So we store the convex hull

of T in a dynamic convex hull data structure, as described by Brodal and Jacob27.

Recall that the convex hull of h points can be stored in such a structure CH with

O(h) space. After inserting or deleting a point, CH can be updated in amortized

O(log h) time. The data structure also supports queries for the neighbor points on

the convex hull in O(log h) time. It means that any sequence of O(Q) operations

in CH, mixing insertions, deletions, and neighbor queries, takes O(Q log h) worst

case time, provided that CH is empty before the first operation, and that it never

contains more than O(h) points.

Denoting by |L| the number of edges of any polygonal line L, we then have:

Proposition 3. If the vertex g(Ti,1) is given and if conv(Ti,1) is stored in the data

structure CH, then the complexity of Algorithm 2 depends only on the complexity of

the O(|Ck(i)|+|Dk(i)|) operations performed in CH. Moreover, CH always contains

the convex hull of O(k) points.

Proof. The total number of passes in loops (1), (2), and (3) is equal (within a

margin of one) to the number of vertices created by the algorithm, and is thus in

O(|Ck(i)|). At each pass in such a loop, the successor q′ of one vertex q is searched

in CH and two edges are created: An edge of Ck(i) to which are associated the

points q′ and q, and an edge of Ek(i) to which are associated the points q′ and vi.

Each edge can be created in constant time, and the overall complexity of loops (1),

(2), and (3) only depends on the number O(|Ck(i)|) of successor queries in CH.

The other instructions in the algorithm consist in traversing the vertices g(Ti,j)

of Dk(i) and constructing the convex hulls conv(Ti,j ∪ {vi}). Traversing Dk(i) con-

sists in traversing the edges eP (s, t) of δ(Tk(Vi−1)) such that vi ∈ (s̊t)−. Since s and
t are stored in the map and since the first vertex g(Ti,1) of Dk(i) is given, Dk(i) can

be traversed in O(|Dk(i)|) time.

As the convex hull conv(Ti,1) is supposed to be stored in CH, conv(Ti,1 ∪ {vi})

is obtained with only one insertion in CH. For every j ∈ {2, . . . ,mi}, if ePj
(sj , tj)

is the edge connecting g(Ti,j−1) and g(Ti,j), conv(Ti,j ∪ {vi}) is obtained from

conv(Ti,j−1∪{vi}) by removing sj from CH and inserting tj . Thus, the complexity

of all convex hull constructions only depends on the number O(|Dk(i)|) of insertions

and removals in CH.
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Finally, the overall complexity of the algorithm only depends on the complex-

ity of the O(|Ck(i)| + |Dk(i)|) operations performed in CH. Moreover, CH always

contains the convex hull of less than k + 2 points.

The aim is now to use Algorithm 2, with i ranging over {k + 1, . . . , n}, for the

incremental construction of Tk(V). Since Tk(Vk) is reduced to the point g(Vk), the

map is initialized with this unique vertex, and the convex hull of Vk is stored in

CH with O(k) insertions (CH is initially empty). The problem left is to find the

first vertex g(Ti,1) of Dk(i), for all i ∈ {k + 1, . . . , n}. It is straightforward when

i = k + 1, since Tk(Vk) is reduced to the point g(Ti,1). When i > k + 1, it comes

to find the unique vertex of δ(Tk(Vi−1)) such that, if eP1
(s1, t1) and eP2

(s2, t2)

are the edges of δ(Tk(Vi−1)) respectively entering and leaving this vertex, then

vi ∈ ( ˚s1t1)
+ and vi ∈ ( ˚s2t2)

−. In the general case, we may have to traverse the

whole boundary of Tk(Vi−1) to find this vertex, leading to a non-efficient centroid

triangulation construction. So let us concentrate on the particular case where the

convex inclusion chain V = (v1, . . . , vn) forms a simple polygonal line.

Lemma 7. If the convex inclusion chain V = (v1, . . . , vn) forms a simple polygonal

line, at least one vertex of Ck(i−1) is also a vertex of Dk(i), for all i ∈ {k+2, . . . , n}.

Proof. (i) By definition of a convex inclusion chain, vi−1 is a vertex of conv(Vi−1)

and vi does not belong to conv(Vi−1). Assume that the segment ˚vi−1vi intersects

conv(Vi−1). It then divides conv(Vi−1) in two and it cuts an edge ˚vavb of conv(Vi−1).

The part of the polygonal line (v1, . . . , vi) connecting va and vb is contained in

conv(Vi−1) and is therefore also intersected by ˚vi−1vi. But this is impossible since

(v1, . . . , vi) is a simple polygonal line. It follows that ˚vi−1vi does not intersect

conv(Vi−1).

(ii) Hence, there exists a straight line ∆ that passes through exactly one point of

Vi−1 and such that vi−1 ∈ ∆−, vi ∈ ∆̊−, and |∆−∩Vi−1| = k. Setting T = ∆−∩Vi−1,

g(T ) is a vertex of Qk(Vi−1) and, since vi−1 ∈ T , g(T ) is a vertex of Ck(i− 1).

The two edges of Qk(Vi−1) incident in g(T ), are determined by the two (k− 1)-

edges st and s′t′ of Vi−1 such that (st) and (s′t′) are the common internal tangents

of T and Vi−1 \T , with T ⊂ (st)−∩ (s′t′)−. We then have ∆̊− ⊂ (s̊t)−∪ (s̊′t′)− and,

since vi ∈ ∆̊−, at least one of st and s′t′ is not a (k − 1)-edge of Vi. Thus, at least

one of the edges incident in g(T ) belongs to Dk(i) and it is the same with g(T ).

It suffices now to see that, for all i ∈ {k + 1, . . . , n − 1}, Algorithm 2 stops on

the vertex g(Ti,mi
) of Dk(i) and with the convex hull of Ti,mi

∪ {vi} stored in CH.

Since g(Ti,mi
) is the successor of Ck(i) on δ(Qk(Vi)), it results from Lemma 7, that

g(Ti+1,1) can be found by traversing at most the edges of Ck(i) and of Dk(i + 1).

For each edge eP (s, t) traversed, it is checked on which side of (st) the point vi lies,

s is remove from CH, and t is inserted in CH. Thus, the complexity of the search

for g(Ti+1,1) depends only on the number O(|Ck(i)|+ |Dk(i+ 1)|) of insertions and
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removals performed in CH. Moreover, CH contains always the convex hull of O(k)

points.

Theorem 4. Any set of n points in the plane admits (usually several) order-k

centroid triangulations that can be constructed in O(n log n+ k(n− k) log k) worst

case time.

Proof. For any set of n points, it is possible to find several convex inclusion chains V

that also form simple polygonal lines, in O(n log n) time; for example, by sorting the

points in various directions. In general, the sets of k-sets of these convex inclusion

chains are distinct. From the discussion above, the complexity of the incremental

construction of Tk(Vk), . . . , Tk(Vn) only depends on the complexity of the operations

performed in CH. CH is initially empty. When constructing Tk(Vk), k points are

inserted in CH. Then, for every i ∈ {k + 1, . . . , n}, Tk(Vi) is constructed from

Tk(Vi−1) with O(|Ck(i−1)|+ |Ck(i)|+ |Dk(i)|) operations in CH (Proposition 3 and

discussion above). Since CH contains always the convex hull of O(k) points, the

total worst case complexity of the construction of Tk(V) is

O(n log n+ k log k +
n∑

i=k+1

(|Ck(i− 1)|+ |Ck(i)|+ |Dk(i)|) log k).

Each of the three sums is bounded by the total number of distinct edges of the k-set

polygons Qk(Vk), . . . ,Qk(Vn), that is, from Proposition 1, by the number of (k−1)-

edges of the sets V1, . . . , Vn (without multiplicity). It then follows from proof of

Theorem 1 that the total complexity of the algorithm is O(n log n+k(n−k) log k).

6. Conclusion

In this paper, we have shown that the number of k-sets of a convex inclusion chain

of a set V of points in the plane is an invariant of V . Furthermore, it is equal

to the number of regions of the order-k Voronoi diagram of V . We get that way

a completely new method to compute the size of the order-k Voronoi diagram in

the plane. We hope that the study of convex inclusion chains brings new insights

into the important open problem of the size of order-k Voronoi diagrams in higher

dimensions.

We have also shown that the centroids of the k-sets of a convex inclusion chain

are the vertices of a triangulation that belongs to the set of centroid triangulations.

This set also contains the order-k centroid Delaunay triangulation. Fully explaining

the reason why the number of k-sets of a convex inclusion chain is equal to the

number of order-k Voronoi regions comes then to showing that all centroid triangu-

lations of a given point set have the same number of vertices. A sufficient condition

for the result to hold has been given in 28: If, in any centroid triangulation, every

set of type-2 triangles defined with the same k + 1 points triangulates a convex

polygon, then all centroid triangulations have the same number of vertices.
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The difficulty of proving results on centroid triangulations comes from their re-

cursive definition. The existence of an order-k centroid triangulation depends on the

existence of a sequence of order-i centroid triangulations, for all i < k. We deem

it necessary to find a direct geometric characterization of order-k centroid trian-

gulations, not depending on lower order triangulations. We are currently proving

that every vertex of an order-k centroid triangulation is the centroid of a k-point

subset that can be separated from the remaining points by a convex curve. More

precisely, the separating curves of the k-point subsets that define the vertices of

such a triangulation form a set of convex pseudo-circles29.

Finally, we have given an algorithm that allows to construct several order-k

centroid triangulations of any given point set in O(n log n + k(n − k) log k) time.

This is nearly optimal since the size of an order-k centroid triangulation is expected

to be Θ(k(n − k)) and since the construction of an order-1 centroid triangulation

is in Ω(n log n). However, the generated centroid triangulations should have some

regularity properties to be of practical interest, namely for B-spline construction.

Therefore, it is now important to investigate how they can be improved by local

transformations, such as flips.
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