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Constructing the Segment Delaunay Triangulation by Flip

Mathicu Brévilliers*

Abstract

Using locally convex functions, we show that the dual
of the segment Voronoi diagram in the plane can be
computed by a flip algorithm.

1 Introduction

The flip algorithm is a classical method to construct
the Delaunay triangulation of a set of points in the
plane, starting with any given triangulation [6]. In
recent years, the method has been extended to gen-
eralized triangulations of point sets such as pseudo-
triangulations or pre-triangulations [2], [3], [1], ...

In this paper, we propose a flip algorithm to con-
struct the dual of the Voronoi diagram of a set of
segments in the plane. This diagram, called segment
Delaunay triangulation, has been introduced by Chew
and Kedem [5]. In [4], we have already defined a fam-
ily of diagrams containing the segment Delaunay tri-
angulation: the segment triangulations (see Figure 1).
The faces of such a triangulation form a maximal set
of disjoint triangles resting on three distinct segments.

A classical method to study flip algorithms con-
sists in lifting the triangulations to three-dimensional
space. The problem here is that lifting has to be per-
formed on non-convex regions in the plane. As in [2]
and [3], we overcome this problem with the help of
locally convex functions.

Another difficulty comes out of the fact that there
are infinitely many segment triangulations of a given
segment set. Thus, we give a flip algorithm that con-
structs, in a finite number of steps, a segment trian-
gulation that has the same topology as the segment
Delaunay triangulation.

2 Segment triangulations

In this section, we recall the main results about seg-
ment triangulations given in [4].

Throughout this paper, S is a finite set of n > 2
disjoint closed segments in the plane, which we call
sites. A closed segment may possibly be reduced to a
single point. We say that a circle is tangent to a site
s if s meets the circle but not its interior. The sites of
S are supposed to be in general position, that is, we
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Figure 1: A segment triangulation (a) (the sites ap-
pear in black, the faces in white, and the edges in
grey) and its topology (b).

suppose that no three segment endpoints are collinear
and that no circle is tangent to four sites.

Definition 1 A segment triangulation 7 of S is a
partition of the convex hull conv(S) of S in disjoint
sites, edges, and faces such that:

1. Every face of T is an open triangle whose vertices
belong to three distinct sites of S and whose open
edges do not intersect S,

2. No face can be added without intersecting another
one,

3. The edges of T are the (possibly two-dimensional)
connected components of conv(S) \ (£'US), where F'
is the set of faces of T .

In the following, the word “triangle” will only be
used for faces and never for edges, even if they have
the shape of a triangle.

An edge of such a triangulation is adjacent to ex-
actly two sites (see Figure 1). Moreover, the set of
sites and edges defines a planar graph and thus a com-
binatorial map which represents the topology of the
segment triangulation. The number of faces of a seg-
ment triangulation of S depends only on S and is
linear with the number of sites of S.

Definition 2 A segment triangulation of S is Delau-
nay if the circumcircle of each face does not contain
any point of S in its interior.

The segment Delaunay triangulation of S always
exists. Moreover, since S is in general position, it is
unique and dual to the segment Voronoi diagram of
S. Note that the geometry of the segment Delaunay
triangulation is easy to compute once its topology is
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known. Indeed, it suffices to put every triangle ¢ in
tangency position on the three sites on which it rests,
i.e., its circumcircle is tangent to these three sites and
meets them in the same order as .

As for point sets, a segment Delaunay triangulation
can be recognized with local tests using edge legality.
An edge of a segment triangulation is said to be (topo-
logically) legal if the triangles adjacent to the edge,
moved to their tangency positions, are Delaunay with
respect to the sites adjacent to the triangles and if
they retain locally the original topology. Hence:

Theorem 1 A segment triangulation of S whose all
edges are legal has the same topology as the Delaunay
one.

It is easy to see that the legality of an edge can
be checked in constant time. Thus, there is a linear
time algorithm that checks whether a given segment
triangulation has the same topology as the segment
Delaunay triangulation.

In this paper, we shall need to constrain the seg-
ment triangulations in some subsets of the convex hull
of S. Thus, we extend slightly the above results.

Definition 3 A subset U of conv(S) is S-polygonal
if U is closed and if the boundary of U is a finite union
of disjoint segments of two kinds:

— closed segments included in S,

— open segments |p, q[ such that SN [p,q] = {p,q}.

Now, the definition of segment triangulations ex-
tends to an S-polygonal subset U of conv(S) by re-
placing, in Definition 1, conv(S) by U and S by UNS.
Here again we can show that the number of faces of a
segment triangulation of U depends only on the cou-
ple (U, S).

Definition 4 A segment triangulation 7 of U is De-
launay if the interior of the circumcircle of each trian-
glet of T contains no point of S that is visible from an
interior point of t, i.e., the open segment connecting
these two points is not included in U \ S.

Theorem 5 of section 4, shows that a segment De-
launay triangulation of U always exists. However, it
is not necessarily unique since four connected compo-
nents of UN.S may be cocircular even if S is in general
position.

3 Description of the flip algorithm

The algorithm starts with a segment triangulation of
S. The edges of the triangulation are stored in a
queue. The edge e at the head of the queue is popped
and a Delaunay triangulation of the S-polygonal sub-
set P, union of e and of its adjacent triangles, is con-
structed (P is called the input polygon of ¢; see Fig-
ure 2). This gives rise to a new segment triangulation.
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Figure 2: Input polygons of some edges.
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Figure 3: The flip algorithm transforms the given seg-
ment triangulation (a) in a segment triangulation (d)
that has the same topology as the Delaunay one (e).
The edge e; of (a) is treated but remains illegal in (b)
because it cannot be flipped. The legal edge es has to
be processed before the flip of e;.

The edge replacing e is pushed at the tail of the queue.
Beside this queue, a list of illegal edges is maintained.
The algorithm ends when all edges are legal.

Studying the different cases, we can show that a
Delaunay triangulation of P can be computed in con-
stant time. If this triangulation admits two triangles
and if the edge between them does not connect the
same two sites as the edge used to determine P, then
the edge is said to be flipped.

Even if the algorithm looks very close to the classi-
cal flip algorithm, there are important differences in
their convergences. In case of segment sets:

— some illegal edges cannot be flipped (see Figure 3),
— a new constructed edge is not necessarily legal,
— a removed topological edge can reappear (Figure 4).

This shows that neither the legality of the edges nor
the flip count suffices to prove the convergence of the
algorithm. Another way to prove the convergence of
the point set flip algorithm to the Delaunay triangu-
lation, is to lift the point set on the three-dimensional
paraboloid z = x? 4+ y2. It is well known that the
downward projection of the lower convex hull of the
lifting is the Delaunay triangulation of the point set.
Conversely, every other triangulation lifts to a non
convex polyhedral surface above the lower convex hull.
Now, it is enough to notice that an edge flip brings
down the polyhedral surface.

The lower convex hull of a set .S of segments lifted
on the paraboloid, also projects downward onto the
segment Delaunay triangulation of S (see Theorem
5). The main difficulty is to lift the other segment
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Figure 4: The edge flipped between (a) and (b) re-
mains illegal. The edge connecting sy and s4 in (b)
disappears in (c) and reappears in (d).

triangulations and especially their non convex edges.
To this aim we use locally convex functions.

4 Locally convex functions and segment triangu-
lations

Recall that a real-valued function ¢ on the line seg-
ment s is convex if ¢(tx+(1—t)y) < to(x)+(1-1)o(y),
for all t in [0,1] and all z,y € s. More generally, if V'
is a subset of R? and ¢ : V — R is a function, we say
that ¢ is locally convex if the restriction of ¢ to each
segment included in V' is convex.

We define now the lower convex hull of a function,
which we shall use instead of the usual lower convex
hull of a subset in R2.

Definition 5 Given a real-valued function f defined
on VNS, the lower convex hull of f on (V,5) is fy,s =
sup{¢p:V—=R:¢9 € L(V), Ve € VNS, é(x) < f(x)}
where L(V') is the set of functions ¢ : V. — R that
are locally convex on V.

In the following, U denotes an S-polygonal subset
of conv(S) and the above definition will be used with
the function f : R? — R defined by f(z,y) = 2% +y%.
The convexity of f implies that fy g = fon UNS. It
can also be proven that fy,s is continuous.

The main aim of this section is to explain that the
function fy,s determines a segment Delaunay trian-
gulation of U. Next theorem gives information about
the value of the function fy,s at a point p. It begins
by the simplest case where U is convex. Then it shows
how to reduce the general case to the convex case. For

every point p in U \ S, denote S, the closure of the
set of points in S visible from p and V,, its convex hull
(in general, V), is not contained in U). The theorem
asserts that f g(p) depends only on the lower convex
hull of f on (V},, Sp).

Theorem 2

1. If U is convex, then every point of U \ S belongs to
a closed convex subset C' of U whose extremal points
are in S and such that fy g is affine on C.

2. In case of a (non convex) S-polygonal subset U, let
p be a point of U\ S. If C is a closed convex subset
of V,,, containing p, whose extremal points are in Sp,
and such that fy, s, is afline on C, then C is included
inU and fys = fv, s, on C.

The next step consists in showing that U can be
partitioned into maximal convex subsets where the
function fy, g is affine.

Theorem 3 Every point p in U\ S belongs to a con-
vex subset C,, that is maximal for the inclusion among
the relatively open convex subsets of U where fy s is
affine. Moreover, the extremal points of Fp are in S
and, if q is another point of U \ S, either C, NCy =0,
or Cp, = C,.

The last statement of Theorem 3 means that the
subsets Cp form a partition of U \ S. Now we have
to establish that the two-dimensional convex subsets
among the C,, are the faces of a segment triangulation.

Theorem 4 By decomposing the two-dimensional
(Cp)pev\s into triangles we get the faces of a segment
triangulation T of U, which we call a triangulation in-
duced by fu,s.

Suppose now that U = conv(S) and let ¢ be a tri-
angle of 7 and h the affine function that is equal to
fu,s on t. The graph of & is a plane and its intersec-
tion with the graph of f is an ellipse whose downward
projection is the circumcircle of ¢. Since U is convex,
the function fy, s is convex. Therefore, h < fy g on
U. It follows that h < f on S NU. We deduce that
the circumcircle of ¢ does not contain any point of S
in its interior. By definition of a face of a segment
Delaunay triangulation, we conclude that:

Theorem 5

1. If U = conv(S), the segment triangulation induced
by fu,s is the segment Delaunay triangulation of S.
2. For any S-polygonal subset U, a segment trian-
gulation of U is induced by fy s if and only if it is
Delaunay.

Using locally convex functions, we are able to lift
any segment triangulation in the following way:
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Definition 6 Let 7 be a segment triangulation of U.
The function fy s : U — R is equal to f on S, to
fe,s on any edge e of T, and to f; s on the interior of
any triangle t of T.

The lifting of 7 to R? is the graph of the function
fu,s,7- Using the previous results we have then:

Theorem 6

1. If T is a segment triangulation of U, then fy,s <
fu,s,7. Moreover fys = fusT if and only if T is
induced by fu,s.

2. If U = conv(S), then T is the segment Delaunay
triangulation of S if and only if fu s = fu.sT-

5 Convergence of the flip algorithm

In case of point set triangulations, it is well known
that a flip increases the smallest angle of the triangles.
A weaker result holds for segment triangulations.

Given a segment triangulation 7 of U, let the slope
of T be:

o(T) = sup{ fU’S’T([‘);:gf’S’T(Q) :peU\S, qelUnNnS,
[p,q] CU}

Denoting by 0(7) the minimal angle of the triangles
of 7, we get then:

Proposition 7 There exists a positive constant ¢ de-
pending only on f, S, and U such that, for every seg-
ment triangulation T of U, 0(T) > ¢/(max(1,0(7))).

It is not difficult to prove that o(7) < +oo and, if
T’ is a segment triangulation of U such that fy g7 <
fu,s, 7, then o(T) < U(T’).

Consider now our algorithm: It starts with a seg-
ment triangulation 7y of conv(S) and computes a se-
quence 71,75, ...,7,, ... of triangulations.

Theorem 8 The sequence (fn = feonv(s),5,7, )neN
decreases to feonu(s),s as n goes to infinity.

Proof. At every stage n, we compute a Delaunay tri-
angulation of the input polygon P, of the edge at the
head of the queue. Applying Theorem 6 to the S-
polygonal subset U composed of P, and of all the
edges of 7,, adjacent to P,, we get that f,11 < f, on
U which implies that f,11 < f,, on conv(S).

It follows that the sequence of functions (f,)nen
decreases to a function g : conv(S) — R. The only
thing to show is that g is locally convex, i.e., g is
convex on any open segment |po,p1[ included in the
interior of conv(S)\S. Since the angles of the triangles
generated by the algorithm are not too sharp, it can
be shown that, for every point p of |pg, p1[, there exists
€ > 0 such that the neighbourhood I, . of p of lenght
£ in |pg, p1] is included either in a triangle of 7,, or in
the input polygon P, treated at stage n, for infinitely
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many integers n. Thus, for these integers n, either f,
or fp,.s is convex on I, ., and since f,4+1 < fp, s <

fn on P,, the function ¢ is a limit of a sequence of
convex functions on I, .. O

Now, note that the set of topologies of all the seg-
ment triangulations of S is finite. We can also show
that the only topology that appears infinitely many
times in the sequence (7, )nen, is the topology of the
segment Delaunay triangulation. Thus:

Corollary 9 There exists an integer N such that, for
all integers n > N, the triangulation 7,, has the same
topology as the segment Delaunay triangulation of
conv(S).

6 Conclusion

The aim of this paper was to show that the dual of
the segment Voronoi diagram can be constructed by a
flip algorithm in a finite number of steps. The remain-
ing computational problems concern the implementa-
tion of the algorithm: robustness, time complexity;,...
The algorithm has also to be compared with standard
methods for computing segment Voronoi diagrams.

From the theoretical point of view, the fact that
the angles of the triangles that appear during the al-
gorithm cannot be too sharp, makes us believe that
the segment Delaunay triangulation should have some
optimality properties.

At last, possible extensions of segment triangu-
lations should be mentioned: Extension to three-
dimensional space, to more general sites, to more gen-
eral distance functions, ...
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