
Divide and Conquer Method for k-Set Polygons

Wael El Oraiby and Dominique Schmitt

Laboratoire MIA, Université de Haute-Alsace
4, rue des Frères Lumière, 68093 Mulhouse Cedex, France

{Wael.El-Oraiby,Dominique.Schmitt}@uha.fr

Abstract. The k-sets of a set V of points in the plane are the subsets
of k points of V that can be separated from the rest by a straight line. In
order to find all the k-sets of V , one can build the so called k-set polygon
whose vertices are the centroids of the k-sets of V . In this paper, we
extend the classical convex-hull divide and conquer construction method
to build the k-set polygon.

1 Introduction

Given a finite set V of |V | = n points in the Euclidean plane (no three of them
being collinear) and an integer k (0 < k ≤ n), the k-set polygon gk(V ) of V is
the convex hull of the centroids g(T ) of all the subsets T of k elements of V . An-
drzejak and Fukuda [1] showed that the vertices of gk(V ) are the centroids of the
k-sets of V , i.e. of the subsets of k points of V that can be strictly separated from
the rest by a straight line. Thus, determining k-sets comes down to construct-
ing k-set polygons. Counting and constructing k-sets is an important problem
in computational geometry. Cole, Sharir, and Yap [4] have given an algorithm
to determine the k-sets by generalizing the convex hull algorithm of Jarvis [7].
Their algorithm can be implemented to run in O(n log n+m log2 k) time, where
m is the size of the output. In [6] we extended the incremental convex hull con-
struction algorithm to construct k-set polygons. The algorithm performance was
in O(n log n + k(n− k) log2 k) time and we showed that incremental algorithms
constructing k-set polygons may have to construct Ω(k(n− k)) edges.

In this paper we extend another classical convex hull construction method to
the k-set polygon, namely the divide and conquer method. Our algorithm works
similarly in that it starts by dividing the set of points V recursively into subsets of
relatively equal size, then recursively constructs their k-set polygons, and finally
merges the two polygons. We first characterize the edges to remove, which form
two connected lines on the k-set polygons to merge. We also show that the edges
to create can be obtained by considering k-set polygons of only 2k points. This
leads to an algorithm that constructs the k-set polygon of n points in O(n log n+
m log2 k log(n/k)) time, where m is the worst case size of the output.

2 Preliminaries

Throughout this paper we will consider the boundary of the k-set polygon gk(V )
of V to be oriented in counter clockwise direction. We denote by st the closed

H. Ito et al. (Eds.): KyotoCGGT 2007, LNCS 4535, pp. 166–177, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Divide and Conquer Method for k-Set Polygons 167

oriented line segment with s as startpoint and t as endpoint, by (st) the oriented
straight line generated by st, and by (st)+ (resp. (st)−) the open half plane on the
left (resp. right) of (st). (st)+ and (st)− denote the closures of (st)+ and (st)−.

Let us first recall two important properties of the vertices and edges of k-set
polygons given by Andrzejak and Fukuda [1], and by Andrzejak and Welzl [2].

Proposition 1. The centroid g(T ) of a subset T of k points of V is a vertex of
gk(V ) if and only if T is a k-set of V . Moreover, the centroids of distinct k-sets
are distinct vertices.

Proposition 2. g(T )g(T ′) is an oriented edge of gk(V ) if and only if there exist
two points s and t of V and a subset P of k−1 points of V such that T = P ∪{s},
T ′ = P ∪ {t}, and V ∩ (st)− = P .

Such an oriented edge will be denoted by eP (s, t); g(P ∪ {s}) will be called its
start vertex, and g(P ∪ {t}) its end vertex. Note that eP (s, t) is parallel to (st)
(see Fig. 1).

12

11
10

9

8

7

6

5

4

3
2

1

12

11

10

97

6

5

4

3

2

1

8

e6,10,12(8,9)

e8,10,12(11,6)

g(6,8,10,12)

Fig. 1. Edges and vertices of a 4-set polygon of 12 points

From the above propositions we can easily obtain the following:

Proposition 3. If eP (s, t) and eP ′(s′, t′) are two consecutive edges of gk(V ),
then the line segments st and s′t′ intersect.

Propositions 1 and 2, lead to an efficient data structure to store k-set polygons.
Indeed, the boundary of gk(V ) can be stored in a circular list L whose elements
represent the edges of gk(V ). To any element e of L, which represents an edge
eP (s, t), are associated the two elements of L that represent the predecessor and
the successor of eP (s, t) on the boundary of gk(V ), as well as the two points s
and t of V . Note that, from Proposition 2, the k-sets defining two consecutive
vertices of gk(V ) differ from each other by one point and thus it suffices to know
one k-set T of V and one edge with endpoint g(T ) to be able to generate the
whole k-sets of V while traversing L. It follows that a k-set polygon with c edges
can be stored in a data structure of size O(c + k). In this paper we will store
in the data structure the two k-sets whose centroids are the leftmost and the
rightmost vertices of gk(V ).



168 W. El Oraiby and D. Schmitt

3 Edge Removal

For the sake of simplicity of the exposition, we will assume that no two points
of V belong to a same vertical line and that no four distinct points of V belong
to two parallel lines.

Suppose now that the points of V are sorted with respect to the x-axis (from
left to right). Suppose also that we are given two subsets Vl and Vr of at least k
points of V each, having at most k−1 common points, and such that there exists
a vertical strip containing Vl ∩ Vr. Vl \Vr and Vr \ Vl are respectively on the left
and on the right side of the strip. More precisely, there exist two vertical straight
lines Δl and Δr oriented upwards such that Δl ⊂ Δ+

r , Vr ⊂ Δ−
l , Vl ⊂ Δ+

r , and
Vl ∩ Vr = (Δ−

l ∩Δ+
r ) ∩ (Vl ∪ Vr). Suppose furthermore that gk(Vl) and gk(Vr)

are given and that we want to construct gk(Vl ∪ Vr). As in the construction of
the classical convex hull, the method consists in finding the edges to remove on
the given k-set polygons gk(Vl) and gk(Vr) and afterwards determining the new
edges to create in order to get gk(Vl ∪ Vr) (see Fig. 2).

Δl Δr

1

2

3

4

5

6

7

8

9

10

11

12

13

Fig. 2. Merging the 5-set polygons g5(1, ..., 9) and g5(6, ..., 13)

In this section we focus on the edges to remove. We notably characterize the
two connected lines that they form on gk(Vl) and gk(Vr).

Lemma 1. (i) If gk(Vl) (resp. gk(Vr)) is not reduced to a unique vertex, at least
one of the edges incident in its rightmost (resp. leftmost) vertex is to be removed.

(ii) The leftmost vertex of gk(Vl) and the rightmost vertex of gk(Vr) are ver-
tices of gk(Vl ∪ Vr).

From now on we will consider gk(V )+ (resp. gk(V )−) to be the oriented polygonal
line of the edges of gk(V ) that connects the rightmost to the leftmost (resp.
leftmost to rightmost) vertex of gk(V ) in counter clockwise direction.

Obviously, an edge st precedes an edge s′t′ in counter clockwise direction
on gk(V )+ if and only if the angle θ(st) of the oriented line (st) with the x-
axis (oriented from left to right) is smaller than the angle θ(s′t′) of (s′t′) with
the x-axis. In the remainder of this paper the three following notations will be
equivalent: θ(st) < θ(s′t′), (st) <

θ
(s′t′), and st <

θ
s′t′.



Divide and Conquer Method for k-Set Polygons 169

Lemma 2. Let eP (s, t) and eP ′(s′, t′) be two edges of the line gk(Vl)+ such that
eP (s, t) <

θ
eP ′(s′, t′) and let r be a point of Vr \Vl. If r ∈ (s′t′)− then r ∈ (st)−.

Proof. If eP (s, t) and eP ′(s′, t′) are two consecutive edges of gk(Vl)+, then from
Proposition 3, the line segments st and s′t′ intersect and, since Vl ⊂ Δ+

r , their
intersection point belongs to Δ+

r . Moreover, since st <
θ
s′t′, (s′t′)−∩Δ−

r ⊂ (st)−.
It follows that, if a site r of Vr \Vl belongs to (s′t′)−, it also belongs to (st)−. By
an elementary induction, the result holds for any edges eP (s, t) and eP ′(s′, t′) of
gk(Vl)+ such that eP (s, t) <

θ
eP ′(s′, t′). ��

Similar results hold for gk(Vl)−, gk(Vr)+, and gk(Vr)−. Thus, using Proposition 2:

Theorem 1. The edges to remove on gk(Vl) (resp. gk(Vr)) form a connected line
which contains the rightmost vertex of gk(Vl) (resp. leftmost vertex of gk(Vr)).

Denote respectively by D+
left and D+

right the lines to remove on gk(Vl)+ and
gk(Vr)+, oriented in counter clockwise direction (see Fig. 3). That is, the right-
most vertex of gk(Vl) and the leftmost vertex of gk(Vr) are respectively the start
vertex of D+

left and the end vertex of D+
right.

gk(Vl )
+

Dleft
+

+

Cupper

Dright

gk(Vr )
+

Fig. 3. The upper lines handled in Algorithms 1 and 2

We show now that the edges ofD+
left can be found efficiently by only traversing

the edges to remove on the k-set polygons.
Given an oriented straight line Δ, we say that a set T is Δ-separable from V if

T is a subset of V such that Δ−∩V = T . Moreover, T is said to be //Δ-separable
from V if there exists a straight line Δ′, parallel to Δ and oriented as Δ, such
that T is Δ′-separable from V .

Lemma 3. An edge eP (s, t) of gk(Vl)+ is also an edge of gk(Vl∪Vr) if and only if
the k-element set Tr which is //(st)-separable from Vr is such that Tr\Vl ⊂ (st)+.

Proof. If (Tr \Vl)∩ (st)− 	= ∅ then, from Proposition 2, eP (s, t) is not an edge of
gk(Vl∪Vr). Conversely, if Tr \Vl ⊂ (st)+, let Δ be a straight line parallel to (st),
oriented as (st), and such that Tr is Δ-separable from Vr. Since |Tr \ Vl| ≥ 1,
at least one point of Tr belongs to (st)+. It follows that Δ ⊂ (st)+, that is,
Vr \Tr ⊂ (st)+. Hence, from Proposition 2, eP (s, t) is an edge of gk(Vl ∪Vr). ��
Thus, finding the edges of D+

left comes down to finding the first edge eP (s, t) of
gk(Vl)+ that verifies Lemma 3. Now, given a straight line Δ, the k-element set
//Δ-separable from Vr can be found thanks to the following lemma:



170 W. El Oraiby and D. Schmitt

Lemma 4. If the k-set polygon gk(Vr) is not reduced to a unique vertex, let
g(T0), ..., g(Tm) and eP1(s1, t1), ..., ePm(sm, tm) be the vertices and the edges
of gk(Vr)+, given in counter clockwise direction. Let Δ be an oriented straight
line with θ(Δ) ∈ [π/2, 3π/2]. Ti is //Δ-separable from Vr if and only if,
- either i = 0 and Δ <

θ
(s1t1),

- or i ∈ {1, . . . , m− 1} and (siti) <
θ
Δ <

θ
(si+1ti+1),

- or i = m and (smtm) <
θ
Δ.

Proof. Since g(T0) is the rightmost vertex of gk(Vr), T0 can be separated from Vr

with a straight line Δ0 such that θ(Δ0) = π/2. The same, Tm can be separated
from Vr with a straight line Δm+1 such that θ(Δm+1) = 3π/2. For every i ∈
{1, . . . , m}, let Δi = (siti). Then, from Proposition 2, for every i ∈ {0, . . . , m},
Ti ⊂ Δ−

i ∩Δ−
i+1 and Vr \ Ti ⊂ Δ+

i ∩Δ+
i+1. For every straight line Δ such that

Δi <
θ
Δ <

θ
Δi+1, the line Δ′, parallel to Δ, oriented as Δ, and passing through

x = Δi ∩Δi+1 is such that Δ−
i ∩Δ−

i+1 ⊂ Δ′− and Δ+
i ∩Δ+

i+1 ⊂ Δ′+. It follows
that Ti is //Δ-separable from Vr (if x ∈ Vr, it suffices to move slightly Δ′ parallely
to itself such that it strictly separates Ti from Vr).

The converse follows directly from the fact that, for a given straight line Δ,
there exists at most one k-set Ti //Δ-separable from Vr. ��
To avoid dealing with the special cases i = 0 and i = m in the algorithm, we add
two anchor-edges to the upper line gk(U)+ of the k-set polygon of any subset
U of V in the following way: If g(T ) is the rightmost vertex of gk(U)+, insert
an anchor-edge eP (s, t) with end vertex g(T ), such that t is the leftmost point
of T and s is any point in the plane having the same x-coordinate as t and a
smaller y-coordinate (note that, from the assumptions on V , s /∈ V ). Clearly,
θ(st) = π/2. In the same way, if g(T ) is the leftmost vertex of gk(U)+, insert an
anchor-edge eP (s, t) with start vertex g(T ), such that s is the rightmost point
of T and t is any point in the plane having the same x-coordinate as s and a
smaller y-coordinate (i.e. θ(st) = 3π/2). Note that if gk(U)+ is reduced to a
unique vertex, this vertex will be incident to both anchor-edges.

The edges of D+
left can then be found by the following algorithm:

Algorithm 1 – Find D+
left

let eP (s, t) be the edge of gk(Vl)+ with start vertex the rightmost vertex of gk(Vl)+

let g(T ) be the leftmost vertex of gk(Vr)
let eP ′(s′, t′) be the edge of gk(Vr)+ with end vertex g(T ) (i.e. P ′ ∪ {t′} = T )
(1) while T \ Vl 	⊂ (st)+

eP (s, t)←− successor of eP (s, t) on gk(Vl)
(2) while st <

θ
s′t′

eP ′(s′, t′)←− predecessor of eP ′(s′, t′) on gk(Vr)
(3) while (P ′ ∪ {t′}) \ Vl 	⊂ (st)+

eP (s, t)←− successor of eP (s, t) on gk(Vl)
return eP (s, t)

For any polygonal line L, let |L| be the number of edges of L.



Divide and Conquer Method for k-Set Polygons 171

Proposition 4. (i) At the end of the algorithm, g(P ∪{s}) is the end vertex of
D+

left.
(ii) D+

left can be found in O(k + |D+
left| log k + |D+

right|) time.

Proof. (i.1) Every edge eP (s, t) of gk(Vl) traversed by the algorithm, except
possibly the last one, is to be removed since at least one of the points of Vr \ Vl

belongs to (st)−, as checked in loops (1) and (3) conditions. Note that these
loops necessarily stops at the latest on an anchor-edge.

(i.2) If eP (s, t) and eP ′(s′, t′) are the last edges encountered by the algorithm re-
spectively on gk(Vl)+ and on gk(Vr)+ then, from loop (2) condition, there exist two
consecutive edges eP ′

1
(s′1, t

′
1) and eP ′

2
(s′2, t

′
2) of gk(Vr)+ such that s′t′ ≤

θ
s′1t

′
1 <

θ
st

<
θ
s′2t

′
2. From Lemma 4, P ′

1∪{t′1} is then //(st)-separable from Vr. Moreover, from
loops (1) and (3) conditions, there exists an edge eP1(s1, t1) of gk(Vl)+ such that
s1t1 ≤θ

st and (P ′
1 ∪ {t′1}) \Vl ⊂ (s1t1)+. From Lemma 2, (P ′

1 ∪ {t′1}) \Vl ⊂ (st)+

and, from Lemma 3, eP (s, t) is an edge of gk(Vl ∪ Vr). Since D+
left is connected, it

follows from (i.1) that g(P ∪ {s}) is the end vertex of D+
left.

(ii.1) From (i.1), within a margin of one, only the edges to remove are tra-
versed on gk(Vl)+. Moreover, for every edge eP ′(s′, t′) of gk(Vr) traversed by the
algorithm, except for the last one, there exists an edge eP (s, t) of gk(Vl)+ such
that st <

θ
s′t′ (loop (2) condition) and (P ′ ∪ {t′}) \ Vl ⊂ (st)+ (loops (1) and

(3) conditions). Since, (P ′ ∪ {t′}) \ Vl contains at least one point and since this
point belongs to Δ−

r ∩ (st)+, (st)∩ (s′t′) ∈ Δ−
r . Thus (st)− ∩Δ+

l ⊂ (s′t′)− and,
since (st)− ∩Δ+

l contains at least one point of (P ∪ {s, t}) \ Vr, eP ′(s′, t′) is not
an edge of gk(Vl ∪ Vr). It follows that, within a margin of one, only the edges to
remove are traversed on gk(Vr)+.

(ii.2) In loop (1), g(T ) is the leftmost vertex of gk(Vr) and, by hypothesis, T is
stored in the data structure containing gk(Vr). To check whether T \Vl ⊂ (st)+,
it suffices to compute the straight line passing through s, tangent to the convex
hull conv(T \Vl) at a point r, and such that conv(T \Vl) ⊂ (rs)+. (T \Vl) ⊂ (st)+

is then equivalent to r ∈ (st)+. Since the points of V are sorted from left to right,
T \ Vl can be obtained in O(k) time and conv(T \ Vl) can also be computed in
O(k) time. Any tangent to conv(T \ Vl) can then be found in O(log k) time
(see for example [9]). The time complexity of loop (1) can thus be bounded by
O(k + |D+

left| log k).
(ii.3) From (ii.1), the test (P ′ ∪ {t′}) \ Vl 	⊂ (st)+ in loop (3) condition is

done at most |D+
left|+ |D+

right|+ 2 times. From Lemma 2, given a set P ′ ∪ {t′},
if an edge eP (s, t) of gk(Vl)+ is such that (P ′ ∪ {t′}) \ Vl ⊂ (st)+, then all the
successors of eP (s, t) verify the same inclusion. Furthermore, if eP ′′(s′′, t′′) is the
predecessor of an edge eP ′(s′, t′) of gk(Vr), then P ′′∪{t′′} = (P ′∪{t′})\{t′}∪{s′},
from Proposition 2. It follows that, for two consecutive passes in loop (2), the
considered sets (P ′ ∪ {t′}) \ Vl differ from each other by at most one point
and the test (P ′ ∪ {t′}) \ Vl 	⊂ (st)+ can be achieved in constant time. It is
the same with all the other instructions in loop (2), which are all together in
O(|D+

left|+ |D+
right|); hence the result. ��



172 W. El Oraiby and D. Schmitt

Obviously, D+
right can be found in a symmetric way and it is the same with the

lines to remove on gk(Vl)− and gk(Vr)−. Hence the theorem:

Theorem 2. The edges to remove on gk(Vl) and gk(Vr) can be found in O(k +
d log k) time, where d is the total number of edges to remove.

4 Edge Construction

In the preceding section we have seen that the edges to remove form two con-
nected lines on the left and on the right k-set polygons. Since the k-set polygon
to construct is convex, the edges to create form also two connected lines, an
upper and a lower one (see Fig. 2 and Fig. 3). We denote by Cupper the oriented
upper line to create and by Clower the lower line. Cupper connects the start vertex
of D+

right to the end vertex of D+
left (obtained by Algorithm 1).

We show now that the edges of Cupper can be found by considering k-set
polygons of at most 2k points of Vl ∪ Vr.

Lemma 5. eP (s, t) is an edge of Cupper if and only if the k-element sets Tl and
Tr, which are //(st)-separable from Vl and Vr respectively, are such that:
– eP (s, t) is an edge of gk(Tl ∪ Tr)+,
– g(Tl) is a vertex of D+

left and g(Tr) is a vertex of D+
right.

Proof. (i) If eP (s, t) is an edge of Cupper, P ∪ {s, t} contains at least one point
u of Vl \ Vr (otherwise it would be an edge of gk(Vr)). If there were a point v
of Vr \ Tr in (st)− then, since there exists an oriented straight line Δ parallel
to (st) such that Tr is Δ-separable from Vr, we would have Δ ⊂ (st)− and thus
Tr ⊂ (st)−. Hence Tr ∪ {u, v} ⊂ (st)−. This is impossible, from Proposition
2, and thus Vr \ Tr ⊂ (st)+. In the same way, Vl \ Tl ⊂ (st)+. It follows that
P ∪ {s, t} ⊆ Tl ∪ Tr and that eP (s, t) is an edge of gk(Tl ∪ Tr). More precisely,
since eP (s, t) is an edge of gk(Vl ∪ Vr)+, it is also an edge of gk(Tl ∪ Tr)+.

Moreover, if g(Tr) is the leftmost vertex of gk(Vr), from Lemma 1, it belongs to
D+

right. Otherwise, from Lemma 4, the edge eP ′(s′, t′) of gk(Vr) with start vertex
g(Tr) is such that st <

θ
s′t′. Then eP ′(s′, t′) cannot be an edge of gk(Vl ∪ Vr)

since it should precede eP (s, t) on gk(Vl ∪ Vr)+. It follows that g(Tr) is a vertex
of D+

right. In the same way, g(Tl) is a vertex of D+
left.

(ii) Conversely, let Tl and Tr be two k-element sets //Δ-separable from Vl and
Vr respectively (with a same straight line Δ) and such that gk(Tl ∪Tr)+ admits
an edge eP (s, t) parallel to Δ. Since |Tl| = k and |P | = k−1, at least one point of
Tl belongs to (st)+. It follows that if Δ′ is a straight line parallel to Δ such that
Tl is Δ′-separable from Vl, we have (st) ⊂ Δ′−. Hence Vl \ Tl ⊂ Δ′+ ⊂ (st)+. In
the same way, Vr \ Tr ⊂ (st)+. From Proposition 2, eP (s, t) is then an edge of
gk(Vl ∪ Vr). Moreover, since eP (s, t) belongs to gk(Tl ∪ Tr)+, it also belongs to
gk(Vl∪Vr)+. Furthermore, since g(Tr) belongs to D+

right, every edge eP ′(s′, t′) of
gk(Vr)+ that belongs to gk(Vl ∪Vr) is such that s′t′ <

θ
st. The same, since g(Tl)

belongs to D+
left, every edge eP ′′(s′′, t′′) of gk(Vl)+ that belongs to gk(Vl ∪Vr) is

such that st <
θ
s′′t′′. It follows that eP (s, t) is an edge of Cupper. ��



Divide and Conquer Method for k-Set Polygons 173

It follows from this proposition that, to construct Cupper, we have to consider
all the couples of vertices (g(Tl), g(Tr)), where g(Tl) and g(Tr) belong to D+

left

and D+
right respectively and such that Tl and Tr are //Δ-separable from Vl and

Vr with a same straight line Δ. Then it suffices, for each of these couples, to
compute the k-set polygon of Tl ∪ Tr and to extract some of its edges. We give
now an algorithm that generates these couples efficiently, by using the result of
Lemma 4.

If ePl
(sl, tl) and eP ′

l
(s′l, t

′
l) are the edges of gk(Vl)+ respectively starting and

ending in g(Tl) and if ePr (sr, tr) and eP ′
r
(s′r, t′r) are the edges of gk(Vr)+ re-

spectively starting and ending in g(Tr), we denote by θ(g(Tl), g(Tr)) the interval
[max(θ(s′lt

′
l), θ(s

′
rt

′
r)), min(θ(sltl), θ(srtr))].

We suppose that the upper line of any k-set polygon is completed with the
same two anchor-edges as in Algorithm 1.

Algorithm 2 – Construct Cupper

let ePmin(smin, tmin) be the edge of gk(Vr)+ ending at the start vertex of D+
right

let ePmax(smax, tmax) be the edge of gk(Vl)+ starting at the end vertex of D+
left

let ePl
(sl, tl) be the edge of gk(Vl)+ starting at the rightmost vertex of D+

left

(1) while sltl <
θ
smintmin

ePl
(sl, tl)←− successor of ePl

(sl, tl) on gk(Vl)+

Tl ←− Pl ∪ {sl}
ePr(sr, tr)←− successor of ePmin(smin, tmin) on gk(Vr)+

Tr ←− Pr ∪ {sr}
T ←− Tr

(2) do
let Θ be the interval θ(g(Tl), g(Tr))
(3) let eP (s, t) be the edge of gk(Tl ∪ Tr) starting at g(T )
(4) while θ(st) ∈ Θ

insert eP (s, t) in gk(Vl ∪ Vr)+ such that it starts at g(T )
(5) T ←− P ∪ {t}
let eP (s, t) be the edge of gk(Tl ∪ Tr) starting at g(T )

(6) if sltl <
θ
srtr

ePl
(sl, tl)←− successor of ePl

(sl, tl) on gk(Vl)
Tl ←− Pl ∪ {sl}

else
ePr(sr, tr)←− successor of ePr(sr, tr) on gk(Vr)
Tr ←− Pr ∪ {sr}

while θ(smaxtmax) /∈ Θ

Proposition 5. The algorithm constructs Cupper and can be implemented to run
in O((k + |D+

right|+ |D+
left|+ |Cupper |) log2 k) time.

Proof. (i) We first show that the algorithm constructs Cupper . Since gk(Vl∪Vr)+

is convex, the angles of the edges of Cupper with the x-axis belong to the inter-
val [θ(smin, tmin), θ(smax, tmax)]. Now, the intervals θ(g(Tl), g(Tr)) considered



174 W. El Oraiby and D. Schmitt

in loop (2) partition [θ(smin, tmin), θ(smax, tmax)]. It follows, from Lemmas 4
and 5, that the edges of Cupper are the edges eP (s, t) of gk(Tl ∪ Tr)+ such that
θ(s, t) ∈ θ(g(Tl), g(Tr)), for all couples (Tl, Tr) treated in loop (2). Moreover,
since the intervals θ(g(Tl), g(Tr)) are treated in increasing angular order, the
edges extracted from two consecutive k-set polygons gk(Tl ∪ Tr) will appear
consecutively on Cupper.

In order to show that the algorithm works, it remains to prove that instruction
(3) is valid, that is, that g(T ) is really a vertex of the considered k-set polygon
gk(Tl ∪ Tr) (even if none of its edges belongs to gk(Vl ∪ Vr)+). By construction,
g(T ) is the end vertex of the already constructed part of Cupper . Denote now
by eP1(s1, t1) and eP2(s2, t2) the edges of gk(Vl ∪ Vr)+ respectively ending and
starting in g(T ). On the one hand, Tl and Tr are such that, when instruction
(3) is executed, θ(s1t1) is smaller than the lower bound θmin of θ(g(Tl), g(Tr)),
since eP1(s1, t1) has been constructed before the couple (Tl, Tr) was considered.
On the other hand, θ(s2t2) is greater than θmin since eP2(s2, t2) has still to
be constructed. Let Δ be a straight line such that θ(Δ) ∈ θ(g(Tl), g(Tr)) and
θ(Δ) < θ(s2t2) (Δ can always be chosen in such a way that it is not parallel
to any straight line passing through two points of V ). Since θ(s1t1) < θ(Δ) <
θ(s2t2), T is //Δ-separable from Vl ∪ Vr, by Lemma 4. Let now g(T ′) be the
vertex of gk(Tl ∪ Tr) such that T ′ is //Δ-separable from Tl ∪ Tr. If Δ′ is the
oriented straight line parallel to Δ such that T ′ is Δ′-separable from Tl ∪ Tr,
then the same reasoning as in proof of Lemma 5 shows that no point of Vl \ Tl

and of Vr \Tr belongs to Δ′−. It follows that g(T ′) is also a vertex of gk(Vl∪Vr).
More precisely, g(T ′) is the vertex of gk(Vl ∪ Vr)+ such that T ′ is //Δ-separable
from Vl ∪ Vr, that is, g(T ′) = g(T ). Hence, g(T ) is really a vertex of gk(Tl ∪ Tr).

(ii) The essential step of the algorithm, given a vertex g(T ) of gk(Tl ∪ Tr), is
to determine the edge eP (s, t) of gk(Tl ∪Tr) starting at g(T ). If the convex hulls
of T and (Tl ∪ Tr) \ T are given, it suffices to find the common oriented tangent
Δ of these convex hulls such that T ⊂ Δ−, (Tl ∪ Tr) \ T ⊂ Δ+, and s = T ∩Δ
precedes t = ((Tl ∪ Tr) \ T ) ∩Δ on Δ. Indeed, from Proposition 2, eT\{s}(s, t)
is then the edge of gk(Tl ∪ Tr) starting at g(T ). We have thus to maintain the
convex hulls of T and of (Tl ∪ Tr) \ T all along the algorithm.

At the beginning of the algorithm, g(T ) = g(Tr) is the start vertex of D+
right.

The convex hull of T can then be obtained in the following way: If g(T ′) is the
leftmost vertex of gk(Vr), the convex hull of T ′ can be directly computed since
the points of T ′ are stored in the data structure containing gk(Vr). Let CH be
the data structure containing this convex hull. D+

right can then be traversed from
g(T ′) to g(T ) and, for each traversed edge eP (s, t), t is removed from CH and s is
inserted in CH . When arriving in g(T ), CH contains the convex hull of T . Using
the fully dynamic convex hull data structure of Overmars and van Leeuwen [8],
the convex hull of T ′ can be stored in CH in O(k log2 k) time and every insertion
or deletion in CH can be done in O(log2 k) time (the same operations can be
achived in O(log k) amortized time with the data structure of [3]). The convex
hull of the set T at the beginning of the algorithm can thus be obtained in
O((k + |D+

right|) log2 k) time. Since, at the beginning of the algorithm, T = Tr,



Divide and Conquer Method for k-Set Polygons 175

the convex hull of (Tl ∪ Tr) \ T = Tl \ T can be computed in the same way (in
a dynamic structure CH ′) while traversing D+

left in loop (1). In order to place
in CH ′ only the points of Tl that are not in T , it suffices to mark the points of
T (for example, while constructing their convex hull). During the execution of
the algorithm, the set T is only modified by instruction (5). To update CH , we
have just to remove s and to insert t. Since instruction (5) happens exactly once
per edge created on Cupper, the overall complexity of all the updates of CH is
O(|Cupper | log2 k). The set (Tl∪Tr)\T is modified by instructions (5) and (6). In
the same way, for each of these instructions, at most one point is removed from
CH ′ and at most one point is inserted (a point that already belongs to CH is
neither removed nor inserted in CH ′). Since the total number of passes in loop
(2) is at most |D+

right|+ |D+
left| and since the total number of passes in loop (4)

is equal to the number of edges of Cupper, it follows that the overall complexity
of the updates of CH ′ is O((|D+

right|+ |D+
left|+ |Cupper |) log2 k). Since a common

tangent of T and (Tl ∪ Tr) \ T can also be found in O(log2 k) time using CH
and CH ′, Cupper can be constructed in O((k+ |D+

right|+ |D+
left|+ |Cupper|) log2 k)

time. ��
Obviously, the lower polygonal line can be constructed similarly and we get the
following result:

Theorem 3. The edges to construct while merging gk(Vl) and gk(Vr) can be
found in O((k + d + c) log2 k) time, where d and c are the numbers of edges to
delete and to create.

The divide and conquer construction of the k-set polygon of a set V of at least
k points is then as follows:

Algorithm 3 – Construct gk(V )

if |V | ≤ k + 1
construct directly gk(V )

else
if |V | < 2(k + 1)

divide V into two non-disjoint subsets Vl and Vr of k or k + 1 points each
such that Vl ∩ Vr belong to a vertical strip separating Vl \ Vr and Vr \ Vl

else
divide V into two disjoint subsets Vl and Vr of �|V |/2� and �|V |/2� points
separable by a vertical straight line

construct recursively gk(Vl) and gk(Vr)
merge gk(Vl) and gk(Vr) with Algorithms 1 and 2

Theorem 4. Algorithm 3 constructs the k-set polygon of n points in O(n log n+
m log2 k log(n/k)) time, where m is the worst case size of the output.

Proof. If n ≤ k + 1, the algorithm directly constructs the k-set polygon of V .
If n = k, this k-set polygon is reduced to the centroid g(V ). If n = k + 1, from



176 W. El Oraiby and D. Schmitt

Proposition 1, a vertex of the k-set polygon of V is the centroid of a subset of
k points of V separable from the last one by a straight line. This last point is
then a vertex of the convex hull of V and it follows that constructing the k-set
polygon of V comes to constructing its convex hull. This can be done in O(k)
time since V is sorted.

If n > k + 1, V is divided into two subsets Vl and Vr such that |Vl| = �n/2�
and |Vr| = �n/2� if n ≥ 2(k + 1), and |Vl| ≤ k + 1 and |Vr| ≤ k + 1 otherwise.
The k-set polygons of Vl and Vr are then recursively constructed and, finally,
merged with Algorithms 1 and 2 in O((k + d+ c) log2 k) time, where d and c are
the total numbers of edges deleted and constructed in the merging step.

Now, Dey [5] and Tóth [10] have shown that the size of a k-set polygon
of n points is in O(nβ(k)), with 2Ω(

√
log k) ≤ β(k) ≤ O(k1/3). It follows that

d and c are bounded by O(nβ(k)) and that the complexity of the merging is
O(nβ(k) log2 k). Hence the induction relation that gives the complexity T (n) of
the algorithm (without the sorting step):

T (n) ≤ T (�n/2�) + T (�n/2�) + O(nβ(k) log2 k) if n ≥ 2(k + 1)
T (n) ≤ 2T (k + 1) + O(nβ(k) log2 k) if k + 1 < n < 2(k + 1)
T (n) = O(k) if n ≤ k + 1

Solving this relation, we get T (n) = O(nβ(k) log2 k log(n/k)). Thus, the over-
all complexity of Algorithm 3, including sorting, is O(n log n+m log2 k log(n/k)),
where m = O(nβ(k)) is the worst case size of a k-set polygon of n points. ��

5 Conclusion

In this paper we have applied a classical algorithmic method to the construction
of k-set polygons in the plane: The divide and conquer method. To this aim we
have characterized the edges that are removed and the ones that are created
when two k-set polygons are merged.

In the worst-case time complexity of the final divide and conquer algorithm
appears an additional log(n/k) factor, in comparison with the algorithm of [4].
We suspect that this factor comes from over-estimates in the complexity com-
putation. Indeed, in this computation, we suppose that the number of edges
removed and created at each merging step is linear with the worst case sizes
of the merged k-set polygons. Applied to the recursive convex hull construction
(i.e. for k = 1), this way of computing leads to a total number of O(n log n)
created edges whereas it is well known that this algorithm only constructs O(n)
edges in all.

The aim now is to find a finer analysis method of our algorithm to remove the
log(n/k) factor. A second aim is to extend other classical convex hull algorithms
to the construction of k-set polygons and namely the Quick-Hull algorithm in or-
der to check if its good practical performances hold for k-set polygon construction.



Divide and Conquer Method for k-Set Polygons 177

References

1. Andrzejak, A., Fukuda, K.: Optimization over k-set polytopes and efficient k-set
enumeration. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS
1999. LNCS, vol. 1663, pp. 1–12. Springer, Heidelberg (1999)

2. Andrzejak, A., Welzl, E.: In between k-sets, j-facets, and i-faces: (i, j)-partitions.
Discrete Comput. Geom. 29, 105–131 (2003)

3. Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: Proc. 43rd Annu. Sympos.
Found. Comput. Science, pp. 617–626 (2002)

4. Cole, R., Sharir, M., Yap, C.K.: On k-hulls and related problems. SIAM J. Com-
put. 16, 61–77 (1987)

5. Dey, T.K.: Improved bounds on planar k-sets and related problems. Discrete Com-
put. Geom. 19, 373–382 (1998)

6. El Oraiby, W., Schmitt, D.: k-sets of convex inclusion chains of planar point sets.
In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 339–350.
Springer, Heidelberg (2006)

7. Jarvis, R.A.: On the identification of the convex hull of a finite set of points in the
plane. Inform. Process. Lett. 2, 18–21 (1973)

8. Overmars, M.H., van Leeuwen, J.: Maintenance of configurations in the plane. J.
Comput. Syst. Sci. 23, 166–204 (1981)

9. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.
Springer, New York (1985)

10. Toth, G.: Point sets with many k-sets. In: Proc. 16th Annu. ACM Sympos. Comput.
Geom, pp. 37–42 (2000)


	Introduction
	Preliminaries
	Edge Removal
	Edge Construction
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


