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Abstract. Given a set S of disjoint line segments in the plane, which we
call sites, a segment triangulation of S is a partition of the convex hull of
S into sites, edges, and faces. The set of faces is a maximal set of disjoint
triangles such that the vertices of each triangle are on three distinct sites.
The segment Delaunay triangulation of S is the segment triangulation of
S whose faces are inscribable in circles whose interiors do not intersect
S. It is dual to the segment Voronoi diagram. The aim of this paper
is to show that any given segment triangulation can be transformed by
a finite sequence of local improvements in a segment triangulation that
has the same topology as the segment Delaunay triangulation. The main
difference with the classical flip algorithm for point set triangulations is
that local improvements have to be computed on non convex regions. We
overcome this difficulty by using locally convex functions.

1 Introduction

In 1977, Lawson [16] has shown that any given triangulation of a planar point
set can be transformed in a Delaunay triangulation (one whose triangles’ cir-
cumcircles are empty of sites) by a sequence of local improvements. Every local
improvement consisted in flipping a diagonal of a convex quadrilateral to the
other diagonal. Since then, several extensions of flip algorithms have been pro-
posed. On the one hand, they have been investigated in higher dimensions. The
algorithm does not work as such in dimensions higher than two because flips
should be applied to non convex polyhedrons, leading to geometrically unrealiz-
able tetrahedrizations [13]. However, Joe [14] has shown that, once the Delaunay
tetrahedrization of a point set in three dimensions is given, it can be updated by
a sequence of flips, after the insertion of a new point. Cheng and Dey [7] have
also proven that a surface triangulation that closely approximates a smooth sur-
face with uniform density can be transformed to a Delaunay triangulation by
a flip algorithm. On the other hand, flips have been studied for different types
of triangulations such as constrained triangulations [9], weighted triangulations
[10], pseudo-triangulations [2], pre-triangulations [1], ...

Independently of their efficiency when applied to a “not too bad” initial trian-
gulation, flip algorithms have been implemented as subroutines for randomized
algorithms [11]. They also enable to prove important properties of the manipu-
lated triangulations. For example, they have been used for proving that, among
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all triangulations of a point set in the plane, the Delaunay triangulation maxi-
mizes the minimum angle [16]. They also enable to structure and to enumerate
triangulations as vertices of a graph in which two vertices are adjacent if they
differ from each other by a flip [12], [5].

In this work we address the question of flip algorithm for the segment triangula-
tions that have been introduced in [4]. Given a finite set S of disjoint line segments
in the plane, a segment triangulation of S is a maximal set of disjoint triangles,
each of them having its vertices on three distinct sites of S (see Figure 1). Seg-
ment triangulations form a very natural family of diagrams containing the dual
of the segment Voronoi diagram. This dual diagram, called the segment Delaunay
triangulation (or edge Delaunay triangulation), has been introduced much earlier
by Chew and Kedem [8]. A topological dual of the segment Voronoi diagram has
also been used to implement efficiently the construction of the segment Voronoi
diagram in the CGAL Library [15]. In [4], we have given a local characterization
of the segment Delaunay triangulation among the family of all segment triangu-
lations of S as well as a local characterization of its topology.

An obstacle arises when trying to transform a segment triangulation into the
segment Delaunay triangulation by a sequence of local improvements: As for
three dimensional point sets, local transformations must be performed on non
convex regions. We overcome this difficulty by allowing local improvements that
not necessarily imply changes in the topology, as flips do. In order to character-
ize these local improvements and to prove that the constructed triangulations
tend toward the segment Delaunay triangulation, we use a lifting on the three-
dimensional paraboloid together with locally convex functions. The usefulness
of locally convex functions in the context of flip algorithms has been already
noticed by several authors (see [2], [3], ...).

Another difficulty comes out of segment triangulations: There are infinitely
many segment triangulations of a given set of sites, while the number of triangu-
lations usually handled by flip algorithms is finite. So, a flip algorithm that aims
to construct a segment Delaunay triangulation explicitly, might need infinitely
many steps. Fortunately, this drawback can be circumvented by stopping the
algorithm when it reaches a segment triangulation that has the same topology
as the segment Delaunay triangulation. We shall show that such a triangula-
tion is obtained in finitely many steps, thanks to geometrical estimates about
the angles of the triangles arising during the algorithm. The segment Delaunay
triangulation can then be deduced from this triangulation in linear time.

2 Segment Triangulations

In this section, we recall the main results about segment triangulations given in
[4]. They generalize the concept of triangulation to a set of disjoint segments in
the plane. Afterwards, we slightly extend these results.

Throughout this paper, S is a finite set of n ≥ 2 disjoint closed segments in
the plane, which we call sites. A closed segment may possibly be reduced to a
single point. We shall denote by S the set of points of the segments of S. We say
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that a circle is tangent to a site s if s meets the circle but not its interior. The
sites of S are supposed to be in general position, that is, we suppose that no
three segment endpoints are collinear and that no circle is tangent to four sites.

Definition 1. A segment triangulation T of S is a partition of the convex hull
conv(S) of S in disjoint sites, edges, and faces such that:
1. Every face of T is an open triangle whose vertices are in three distinct sites
of S and whose open edges do not intersect S,
2. No face can be added without intersecting another one,
3. The edges of T are the (possibly two-dimensional) connected components of
conv(S) \ (F ∪ S), where F is the union of faces of T .

In the following, the word “triangle” will only be used for faces and never for
edges, even if they have the shape of a triangle.

(a) (b)

Fig. 1. A segment triangulation (a) (the sites appear in black, the faces in white, and
the edges in gray) and its topology (b)

Using the fact that no triangle can be added to T , it has been shown that
the closure of an edge of a segment triangulation meets exactly two sites (see
Figure 1). Thus, a planar combinatorial map M can be associated with T in the
following way:

– the vertices of M are the sites of S,
– the arcs connecting two sites s and t in M are the edges of T whose closures

intersect s and t,
– for every vertex s of M , the cyclic ordering of the arcs out of s agrees with

the counter-clockwise ordering of the associated edges around the site s in T .

M represents the topology of T . Using this topology, it has been shown that the
number of faces of a segment triangulation of S depends only on S and is linear
with the number of sites of S.

Definition 2. A segment triangulation of S is Delaunay if the circumcircle of
each face does not contain any point of S in its interior.
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If all the sites are points, a segment Delaunay triangulation is a usual point set
Delaunay triangulation. It has been shown that the segment Delaunay triangu-
lation exists for any set S, is unique if S is in general position, and is dual to
the segment Voronoi diagram.

As for point sets, the legal edge property has been defined for segment trian-
gulations in [4]. A more intuitive formulation is:

Definition 3. Let e be an edge adjacent to two triangles T1 and T2 in a segment
triangulation and let r, t, u, v be the sites adjacent to T1 and T2. The edge e
is legal if there exists a segment triangulation T of {r, t, u, v} with the same
topology as the segment Delaunay triangulation of {r, t, u, v} and such that T1
and T2 are two triangles of T .

An edge adjacent to zero or one triangle is legal.

This led to a local characterization of the segment Delaunay triangulation:

Theorem 1. A segment triangulation of S whose all edges are legal has the same
topology as the Delaunay one.

Since the segment Delaunay triangulation of four sites contains at most four
triangles, it can be checked in constant time whether an edge is legal or not.

Note that the segment Delaunay triangulation can be easily computed once
its topology is known. It suffices to put each triangle in its tangency position,
which means that the interior of its circumcircle does not meet the three sites that
contain its vertices. Thus, computing the segment Delaunay triangulation comes
down to compute its topology. Therefore, the goal of our flip algorithm is to lead
in finitely many “local” steps to a segment triangulation whose edges are all legal.
To this aim, we shall need to constrain the segment triangulations in some subsets
of the convex hull of S. So, we need to extend slightly the above results.

Definition 4. A subset U of conv(S) is S-polygonal if U is closed and if the
boundary of U is a finite union of disjoint segments of two kinds:

– closed segments included in S,
– open segments ]p, q[ such that S ∩ [p, q] = {p, q}.

Throughout this paper, U denotes an S-polygonal subset of conv(S). Now, the
definition of segment triangulations extends to U by replacing, in Definition 1,
conv(S) by U and S by U ∩ S. Here again we can show that:

Theorem 2. The number of faces of a segment triangulation of U depends only
on the couple (U, S).

We say that a point q in U is visible from a point p in U if ]p, q[ is included in
U \ S.

Definition 5. 1. A triangle t included in U with vertices in S is a Delaunay
triangle of U if there exists a point p in the interior of t such that the interior
of the circumcircle of t contains no point of S visible from p.

2. A segment triangulation of U is Delaunay if all its triangles are Delaunay.
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Theorem 3. Every S-polygonal subset U admits a segment Delaunay
triangulation.

This result is a consequence of Theorem 7 of section 4. However, a segment De-
launay triangulation is not necessarily unique since four connected components
of U ∩ S may be cocircular even if S is in general position.

3 Description of the Flip Algorithm

The algorithm starts with a segment triangulation of S. The edges of the trian-
gulation are stored in a queue.

One basic step of the algorithm goes as follows. The edge e at the head
of the queue is popped. Let P be the closure of the union of e and of its at
most two adjacent triangles: This region is called the input polygon of e (see
Figure 2 (b) and (f)). Then, the algorithm computes a segment Delaunay trian-
gulation of P . Since P meets at most four sites, the Delaunay triangles of P can
be computed in constant time. The triangles adjacent to e are replaced with the
Delaunay triangles of P . This gives rise to a new segment triangulation of S (it
is a consequence of Theorems 2 and 3). Finally, the edge replacing e is pushed
at the tail of the queue.

Beside this queue, the algorithm maintains the number of illegal edges in the
current triangulation. The algorithm ends when all edges are legal.

If a basic step changes the topology of the current triangulation, we say that
the processed edge is flipped.

In case of point set triangulations, when an illegal edge is processed by the flip
algorithm, it is flipped, it becomes legal, and it will never reappear. Since there
are finitely many edges, the flip algorithm reaches the Delaunay triangulation
after a finite number of steps. Our flip algorithm looks very close to this classical
flip algorithm, but we can not use the same idea to prove its convergence because
of some important differences (see Figure 2):

– even if an edge is not flipped, its geometry may change,
– some illegal edges cannot be flipped,
– a new constructed edge is not necessarily legal.

For point set triangulations, another way to prove the convergence of the flip
algorithm to the Delaunay triangulation, is to lift the point set on the three-
dimensional paraboloid z = x2 + y2. It is well known that the downward projec-
tion of the lower convex hull of the lifting is the Delaunay triangulation of the
point set. Conversely, every other triangulation lifts to a non convex polyhedral
surface above the lower convex hull. Now, it is enough to notice that an edge
flip brings down the polyhedral surface.

In the next two sections, we use the same approach to prove that our flip algo-
rithm constructs a segment triangulation that has the same topology as the seg-
ment Delaunay triangulation. At first, for every S-polygonal subset U , the lower
convexhull of the lifting ofU∩S on the paraboloid is defined with the help of locally
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convex functions and we show that it projects down to the segment Delaunay tri-
angulation of U (Theorem 7). Then, we define the lifting of any segment triangula-
tion that is not Delaunay (Definition 7) and we show that the lifting of the segment
Delaunay triangulation is lower than or equal to the lifting of any other segment
triangulation (Theorem 8). In order to show the correctness of the algorithm, we
prove that, after a basic step, the lifting of the resulting segment triangulation is
lower than or equal to the lifting of the segment triangulation before the basic step
(Theorem 9). This leads to prove that the sequence of basic steps builds a sequence
of segment triangulations that converges to the segment Delaunay triangulation
(Theorem 9). It remains to see that, after a finite number of basic steps, the seg-
ment triangulation constructed by the flip algorithm has the same topology as the
segment Delaunay triangulation (Corollary 2). From Theorem 1, there is no more
illegal edge in this triangulation and the algorithm stops.

(a)

e1

e2

e3

(g)(e)

e1

e2

e3

(f)

(c)

e3

(d)

e1

e2

e3

(b)

e3

(i)(h)

e1

e2

e3

e1
e1

Fig. 2. The flip algorithm transforms the given segment triangulation (a) in a seg-
ment triangulation (h) that has the same topology as the segment Delaunay trian-
gulation (i).The topology in (a) and the topology in (h) differ only by the flip of e1,
which is the only illegal edge of (a). However, the edge e1 of (a) cannot be immediately
flipped because its input polygon is not convex. So, the legal edges e3 and e2 have
to be processed before e1 becomes flippable. In (b), the algorithm considers the input
polygon of the edge e3. Then, in (c), it computes the segment Delaunay triangulation
of the input polygon and this gives rise to a new segment triangulation in (d). In the
same way, the processing of the edge e2 leads to (e). Finally, the edge e1 can be flipped
(f, g), which leads to (h).
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4 Locally Convex Functions and Segment Triangulations

Recall that, if V is a subset of R2, a function φ : V → R is locally convex if the
restriction of φ to each segment included in V is convex.

We define now the lower convex hull of a function, which we shall use instead
of the usual lower convex hull of a subset in R3. Note that it corresponds to this
usual lower convex hull when the domain V is convex.

Definition 6. Let L(V ) be the set of functions φ : V → R that are locally
convex on V . Given a real-valued function f defined on V ∩ S, the lower convex
hull of f on (V,S) is the function fV,S defined on V by

fV,S(x) = sup{φ(x) : φ ∈ L(V ), ∀y ∈ V ∩ S, φ(y) ≤ f(y)}.

In the following, the above definition will be used on an S-polygonal domain U
with the function f : R2 → R defined by f(x, y) = x2 + y2. The convexity of f
implies that fU,S = f on U ∩S. Using the geometrical assumptions on U , it can
also be proven that fU,S is continuous.

The main aim of this section is to explain that the function fU,S determines
a segment Delaunay triangulation of U (see Figure 3). Next theorem gives in-
formation about the value of the function fU,S at a point p. For every point p in
U \ S, denote Sp the closure of the set of points in S visible from p and Vp its
convex hull (in general, Vp is not contained in U).

U

Fig. 3. An S-polygon U and the graph of fU,S. U is decomposed into two triangles and
infinitely many line segments where fU,S is affine. The triangles are Delaunay triangles
of U and the union of the segments forms the five edges of the segment Delaunay
triangulation of U .

Theorem 4. Every point p of U belongs to a closed convex subset C of U whose
extreme points are in S and such that the function fU,S is affine on C. Moreover
fU,S(p) = fVp,Sp(p).
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Proof. (1) We begin with the case U = conv(S). In this case, the graph of fU,S

is the classical lower convex hull E of the lifting of S on the paraboloid. Every
(0-, 1-, or 2-dimensional) face of E is contained in a non vertical supporting
hyperplane of E, which implies that fU,S is affine on the downward projection C
of each face of E in the plane z = 0. Every point p of the plane belongs to such
a set C. Moreover the extreme points of C are the projections of the extreme
points of a face and thus they belong to S.

(2) We consider now a general S-polygonal subset U . The Theorem is more
difficult to prove and we only give the steps of its proof.

If p is in S or in the boundary of U , the Theorem is very easy to prove. So
we may suppose that p is in the interior of U and not in S. In this case, since U
is S-polygonal, it can be shown that p is also in the interior of Vp. We use the
the result of (1) with Vp and Sp instead of conv(S) and S: There exists a convex
set C containing p, included in Vp whose extreme points are in Sp and such that
fVp,Sp is affine on the convex set C. Since U is an S-polygonal subset, we can
see that for every point in U \ S there is a ball centered at this point whose
intersection with U is convex. This property enables to prove that the convex C
is entirely contained in U .

We know that the function fVp,Sp is affine on the convex set C. Since p is
in the interior of Vp and since fVp,Sp is convex there exists an affine function
h : R2 → R equal to fVp,Sp on the convex set C and lower than or equal to
fVp,Sp on Vp. This implies h ≤ f on Sp.

The main idea of the proof is to construct a locally convex function g : U → R
which is equal to h on the convex set C and such that g ≤ f on S. Indeed,
fU,S ≥ g by definition of the lower convex hull of a function and since fU,S is
convex on C, the function fU,S must be lower than or equal to the function h
on C. Therefore fU,S = h on C.

The function g is defined as follows. Consider the open disk A = {q ∈ R2 :
f(q) < h(q)} and let W be the connected component of A ∩ U containing p.
The function g : U → R is defined by g(q) = h(q) if q ∈ W and g(q) = f(q)
otherwise. One can check that g is convex on each segment included in U , hence
g is locally convex. Moreover, it is not difficult to see that C is included in
W ∪ {q ∈ R2 : h(q) = f(q)}. The last and most difficult thing to check is
that g ≤ f on S. It is enough to prove that W contains no point of S. Since
the function h is lower than or equal to f on all the points of S visible from
p and since h < f on W , we know that W contains no point of S visible from
p. Suppose that there exists a point q in W ∩ S. Since W is connected, we can
join the point p to the point q by a path γ in W and we can suppose that the
lenght of γ is finite. The distance δ = d(γ, ∂A) from γ to the boundary of A is
positive. It is not difficult to show that Wδ = W ∩ {x ∈ A : d(x, ∂A) ≥ δ} is a
closed set. It follows that there exists a shortest path from p to q in Wδ. Now,
we know that for every point in U \S there is a ball centered at this point whose
intersection with U is convex. This shows that this shortest path from p to q is
straight unless it meets some point in S. Therefore, either q is visible from p or
the shortest path contains a point of S visible from p, which is impossible. 	
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Corollary 1. Let t be a triangle included in U with vertices in S. fU,S is affine
on t if and only if t is a Delaunay triangle of U .

Proof. Suppose that fU,S is affine on t. Let p be any point in the interior of t and
q ∈ Sp. Denote h : R2 → R the affine function equal to fU,S on t. The function
fU,S is convex on [p, q] and is equal to h on a neighborhood of p. Therefore
fU,S ≥ h on [p, q]. Since fU,S = f on S, f(q) = fU,S(q) ≥ h(q). Hence q is not in
the region of R2 where f < h, which is precisely the interior of the circumcircle
of the triangle t.

Conversely, suppose that t is a Delaunay triangle. We begin by the case U =
conv(S). There exists a point p in the interior of t such that the interior of
the circumcircle of t contains no point of S visible from p. Consider the affine
function ht : R2 → R which is equal to f on the vertices of the triangle t. Since
U is convex, the interior of the circumcircle contains no point of S. Therefore
ht ≤ f on S. It follows that fU,S ≥ ht on the entire set U . On the other hand,
fU,S = f = ht on the vertices of t. Thus, by convexity, fU,S ≤ ht on t. It follows
that fU,S = ht on t.

In the general case, if t is a Delaunay triangle of U then, by definition, it is
also a Delaunay triangle of (Vp, Sp). Hence, by the convex case, fVp,Sp is affine on
t. By the previous Theorem, we have fU,S(p) = fVp,Sp(p). Since fU,S is locally
convex, we have fU,S ≤ fVp,Sp on t. Now, p is in the interior of t, therefore
fU,S = fVp,Sp on t. 	


The next step consists in showing that U can be partitioned into maximal convex
subsets where the function fU,S is affine. We are not going to prove this result,
nevertheless we can explain why it is natural. On the one hand, the relative
interiors of the faces of a closed convex set form a partition of this convex set (see
[6]). In the case U = conv(S), it follows that U is partionned by the downward
projections of the relative interiors of the lower faces of the convex hull of the
lifting of S on the paraboloid {z = x2 + y2}. On the other hand, in the case
of an S-polygonal subset U , the maximal subsets of U where fU,S is affine are
intended to replace these downward projections. This leads to the Theorem:

Theorem 5. For each point p in U \ S consider the set of all relatively open
convex subsets of U containing p where fU,S is affine. This set of convex subsets
contains a maximal element Cp (maximal for the inclusion). Moreover, the ex-
treme points of Cp are in S and, if q is another point of U \S, either Cp∩Cq = ∅,
or Cp = Cq.

The last statement of Theorem 5 means that the subsets Cp form a partition of
U \S. Now we have to establish that the two-dimensional convex subsets among
the Cp induce the triangles of a segment triangulation.

Theorem 6. By decomposing the two-dimensional (Cp)p∈U\S into triangles we
get the triangles of a segment triangulation of U , which we call a triangulation
induced by fU,S.
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Proof. As before, by lack of place, we can only give some hints about the proof
of this Theorem. Denote by CS1,S2 the set of all one-dimensional Cp with one
endpoint in the site S1 and the other in the site S2. Denote by US1,S2 the union
of all the segments of CS1,S2 . The continuity of fU,S and the strict convexity of
f allow to show that a point in S \ (S1 ∪ S2) cannot be too close to a point in
a segment Cp ∈ CS1,S2 . It follows that US1,S2 is open in V = U \ (S ∪ {the two-
dimensional Cp}). Now, by definition, a connected component A of V cannot
meet more than one set US1,S2 , S1 ∈ S, S2 ∈ S. Then, it is not difficult to prove
that the closure of A meets exactly two sites. Therefore, it is impossible to add
a triangle to the two-dimensional Cp without intersecting them. Thus we have a
segment triangulation of U . �

From Corollary 1 and Theorem 6 we deduce:

Theorem 7. For any S-polygonal subset U , a segment triangulation of U is
induced by fU,S if and only if it is Delaunay.

Using locally convex functions, we are able to lift any segment triangulation in
the following way:

Definition 7. Let T be a segment triangulation of U . The function fU,S,T :
U → R is equal to f on S, to fe,S on every edge e of T , and to ft,S on the
interior of every triangle t of T .

The lifting of T to R3 is the graph of the function fU,S,T .
Since fe,S ≥ fU,S on e and ft,S ≥ fU,S on t, we get:

Theorem 8. If T is a segment triangulation of U , then fU,S ≤ fU,S,T .

5 Convergence of the Flip Algorithm

In case of point set triangulations, it is well known that a flip increases the
smallest angle of the triangles. A weaker result holds for segment triangulations.

Given a segment triangulation T of U , let the slope of T be:

σ(T ) = sup{fU,S,T (p) − fU,S,T (q)
|p − q| : p ∈ U \ S, q ∈ U ∩ S, [p, q] ⊂ U}

Denoting by θ(T ) the minimum angle of the triangles of T , we can prove:

Proposition 1. There exists a positive constant c depending only on f , S, and
U such that, for every segment triangulation T of U , θ(T ) ≥ c/(max(1, σ(T ))).

It is not difficult to prove that σ(T ) < +∞. Moreover, it is obvious that if T ′ is
a segment triangulation of U such that fU,S,T ≤ fU,S,T ′ , then σ(T ) ≤ σ(T ′).

Consider now our algorithm: It starts with a segment triangulation T0 of
conv(S) and computes a sequence T1, T2, ..., Tn, ... of triangulations.
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Theorem 9. The sequence (fn = fconv(S),S,Tn
)n∈N decreases to fconv(S),S as n

goes to infinity.

Proof. At every stage n, we compute a Delaunay triangulation of the input
polygon Pn of the edge at the head of the queue. Applying Theorem 8 to the
S-polygonal subset U composed of Pn and of all the edges of Tn adjacent to Pn,
we get that fn+1 ≤ fn on U , which implies that fn+1 ≤ fn on conv(S).

It follows that the sequence of functions (fn)n∈N decreases to a function
g : conv(S) → R. The only thing to show is that g is (locally) convex. Since
g = f on S and g ≥ f on conv(S), we are reduced to show that g is convex on any
open segment ]p0, p1[ included in the interior of conv(S) \ S. By Proposition 1
and since the sequence fn decreases, the angles of the triangles generated by the
algorithm are not too sharp. It allows to show that, for every point p in ]p0, p1[,
there exists ε > 0 such that the neighborhood Ip,ε of p of radius ε in ]p0, p1[ is
included either in a triangle of Tn or in the input polygon Pn treated at stage
n, for infinitely many integers n. Thus, for these integers n, either fn or fPn,S is
convex on Ip,ε, and since fn+1 ≤ fPn,S ≤ fn on Pn, the function g is a limit of a
sequence of convex functions on Ip,ε, hence g is convex. Finally, since fn ≥ fU,S
for all n, we get g ≥ fU,S. Moreover, g = fn = f on S and g is convex, therefore
g ≤ fU,S. 	


Corollary 2. There exists an integer N such that, for all integers n ≥ N , the
triangulation Tn has the same topology as the segment Delaunay triangulation
of conv(S).

Proof. Since the set of topologies of all the segment triangulations of S is finite,
if the corollary were false, then a non Delaunay topology would appear infinitely
many times. Therefore, it is enough to prove that, if for an increasing sequence
of integers (kn)n∈N, the triangulations Tkn have the same topology, then it is
the topology of the segment Delaunay triangulation.

We can always suppose that, given a topological triangle t, its geometrical
representation tkn in Tkn converges to a triangle t∞ when n goes to infinity (take
subsequences of Tkn). Therefore, the function fconv(S),S = limn→∞ fconv(S),S,Tkn

must be affine on each of these triangles t∞. Together with Theorem 7, this
shows that the set of all triangles t∞ defines the segment Delaunay triangulation
of S and that all the segment triangulations Tkn have the same topology as the
Delaunay one. �

6 Conclusion

In this paper, we have shown that the segment Delaunay triangulation can be
constructed by a flip algorithm in a finite number of steps.

The complexity of the flip algorithm seems difficult to estimate since the same
edge is processed several times. Nevertheless, as for point set triangulations, we
can expect that the practical complexity of the algorithm will be efficient if the
input segment triangulation is not too bad. This practical complexity may be
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improved by a better handling of the queue: It is not necessary to systematically
insert all the edges in the queue and we could establish an ordering of these
edges.

The proof of the convergence of the flip algorithm uses the control of the angles
of the triangles during the algorithm. Moreover, as for point set triangulations,
the segment Delaunay triangulation is the only segment triangulation whose
three-dimensional lifting is convex. These are two strong hints that make us
believe that the segment Delaunay triangulations should have some optimality
properties.

At last, possible extensions of segment triangulations should be mentioned:
Extension to three-dimensional space, to more general sites, to more general
distance functions, ... The three-dimensional extension is certainly a difficult
problem; it will be easier to consider first more general convex sites in the plane.
We believe that some of the results given in this paper can be extended to this
more general setting.
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