Computer-Aided Design 45 (2013) 301-311

journal homepage: www.elsevier.com/locate/cad

Contents lists available at SciVerse ScienceDirect

Computer-Aided Design

Inferring mirror symmetric 3D shapes from sketches”

Frederic Cordier**, Hyewon Seo?, Mahmoud Melkemi?, Nickolas S. Sapidis©

2 LMIA, Université de Haute Alsace, France
b Université de Strasbourg (UMR 7005 CNRS), France
¢ University of Western Macedonia, Greece

ARTICLE INFO ABSTRACT

Keywords:
3D reconstruction
Sketch-based modeling

We describe a system for taking a 2D sketch of a mirror-symmetric 3D shape and lifting the curves to
3D, inferring the symmetry relationship from the original hand-drawn curves. The system takes as input
a hand-drawn sketch and generates a set of 3D curves such that their orthogonal projection matches

the input sketch. The main contribution is a method which is able to identify the symmetry relationship
among the hand-drawn curves even in the presence of ambiguity in the sketch.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Freehand sketching is one of the most common ways to com-
municate ideas. Sketches have been used since ancient times in the
form of hieroglyphs. Nowadays, sketches are used for many pur-
poses such as the creation of computer games, movie script, indus-
trial product design, etc. Sketching and understanding sketches is
an inherent part of human comprehension [1].

However, 3D reconstruction from sketches is particularly diffi-
cult. The main issues of reconstruction of 3D shapes from sketches
are the interpretation of the sketch, the reconstruction of the oc-
cluded parts and the computation of the 3D shape using the 2D
data.

In this paper, we present a method for the 3D reconstruction of
a particular class of objects, which are sets of mirror-symmetric
curves. Mirror symmetric shapes are symmetric with respect to
a plane (also known as a symmetry plane). Many, if not most,
human-made objects are mirror symmetric. We believe that a
sketching interface for symmetric shapes would be useful.

The choice of reconstructing 3D curves rather than 3D surfaces
is motivated by the fact that the problem of occluded surface does
not exist for curves, contrary to surface sketching. Also, another
advantage is the possibility to create much more complex models.
For instance, by sketching the curves instead of the surfaces, the
user is able to draw all the details of a car model using a single
sketch. If the user draws the silhouette of the car body, the occluded
parts from the backside are missing; the user has to provide

* The research of N. Sapidis has been co-financed by the European Union
(European Social Fund — ESF) and Greek national funds through the Operational
Program “Education and Lifelong Learning” of the National Strategic Reference
Framework (NSRF) - Research Funding Program: THALIS.

* Corresponding author.

E-mail address: fredcord@gmail.com (F. Cordier).

0010-4485/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cad.2012.10.013

another sketch showing the back view. Thus, wireframe sketching
is often used in Computer Aided Design where the visible and
occluded parts of the model have to be carefully designed. If the
modeling of surfaces is required, our approach can be combined
with existing techniques that generate 3D surfaces from 3D curves.

Our contribution is a method to identify automatically the
symmetry relationships between the input 2D curves. In particular,
our method identifies the pairs of symmetric curves, the self-
symmetric curves and the curves with no symmetry. Our method
is able to process sketches with inherent ambiguity. It always finds
a unique solution by using the curve connectivity and maximizing
the compactness of the reconstructed models. Using the symmetry
relationship, we then compute the 3D reconstruction of the curves.

2. Related work

The most common approach to 3D modeling with a sketching
interface is to require the user to draw the visible and hidden
contours of the rectilinear shape to be modeled. The reconstruction
is usually formulated as an optimization problem. The variables
of the objective functions are the missing depth of the vertices of
the drawing (and possibly other parameters). Different objective
functions have been proposed, such as minimizing the standard
deviation of the segment magnitudes [2] or minimizing the
entropy of the angle distribution [3]. Liu et al. [4] proposed a
different approach for which the variables of the objective function
are the parameters of the planes that pass through the planar faces
of the model to reconstruct. All of these reconstruction techniques
are particularly suitable for the design of CAD-like geometric
shapes. However, the hypothesis they use allows modeling of
rectilinear shapes only and is not suitable for free-form modeling.

Another group [5] presented a sketching interface for free-form
modeling of surfaces. In their system, the user creates a shape by

http://dx.doi.org/10.1016/j.cad.2012.10.013
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
mailto:fredcord@gmail.com
http://dx.doi.org/10.1016/j.cad.2012.10.013

302 F. Cordier et al. /| Computer-Aided Design 45 (2013) 301-311

drawing its 2D silhouette; a 3D mesh is generated by inflating
the region surrounded by the silhouette, making wide areas fat
and narrow areas thin. The created model can be then modified
interactively with a set of tools that cuts, extrudes, bends, or
draws on the mesh. Others [6-9] have also proposed methods to
create 3D models from 2D silhouette curves. Unlike the system
proposed by Igarashi et al. [5], the user can create self-occluding
objects. Another difference is that the curves of the 2D drawing
are processed in conjunction, and no modification is allowed after
the creation of the 3D model. The purpose of these works is the
modeling of surfaces. In this paper, we focus on the modeling of
3D curves.

Cohen et al. [9] proposed a method for 3D curve modeling with
which the user creates non-planar curves. The main disadvantage
is that the user must draw two curves: the curve itself and its
shadow on the floor plane. Research has been done for skewed
mirror symmetry, which is a particular case of 3D curves. Skewed-
mirror symmetry depicts a mirror-symmetric planar curve viewed
from some (unknown) viewing direction. Researchers [10] have
proposed methods to detect and compute the symmetry corre-
spondence of skewed mirror symmetric curves. In this paper, we
consider the more general case, which is the reconstruction of sym-
metric curves that are not necessarily planar. Schmidt et al. [11]
proposed an interactive design tool to create 3D models com-
posed of curves. The user defines 3D constraints and uses these
constraints to create complex curve networks. The system is de-
signed for aiding single view sketching. Bae et al. [12] proposed
another system for sketching 3D curves. Their contribution is a
user-friendly interface with new features such as a widget for
curve manipulation and the automatic view rotation. For these two
systems, the modeling is done incrementally using different view-
points and different types of widgets. Our system is more faithful to
the principle of sketching. The user draws models with our sketch-
ing interface as they would do with a paper and a pen.

Li et al. [13] proposed a computational model that uses pla-
narity and compactness constraints to recover 3D symmetric ob-
jects from 2D images. They assume known correspondence of
symmetric points. Their method has been successfully applied to
the reconstruction of models composed of curves. Compared to
their work, our contribution is a method to compute the symmetry
correspondence. Melkemi et al. [14] [15] have proposed a method
to compute the symmetry relationship between two curves. They
did not consider the case of multiple curves.

The closest work to ours is that of Oztireli et al. [16]. They pro-
posed an algorithm to reconstruct a 3D model from a set of planar
curves using the symmetry assumption and the orthogonal pro-
jection. The user has to select a pair of symmetric curves to de-
fine the orientation of the symmetry. The symmetry relationship is
then computed. If the reconstruction is not possible because of the
ambiguity of the sketch, more user intervention is required. In con-
trary to this previous work, our method does not require user inter-
vention and is able to process ambiguous sketches automatically.

3. Overview

Our system takes a user’s sketch composed of a set of 2D
curves and determines the 3D curves whose orthogonal projection
matches the input sketch. The set of reconstructed curves may be
composed of pairs of symmetric curves (C4 and Cs in Fig. 1(a)), self-
symmetric curves (C, in Fig. 1(a)) and curves with no symmetry
(Cq in Fig. 1(a)). Mirror-symmetry is defined as invariant under
reflection with respect to a plane (referred as symmetry plane);
C; is mirror-symmetric to a curve G, if the curve G has the same
position as G; upon undergoing a reflection. Similarly, a curve
C; which does not change upon undergoing a reflection is self-
symmetric. Non-symmetric curves are located in the symmetry
plane.

y

Lox
Fig. 1. In(a), the 2D curves are drawn by the user on the sketching plane (z = 0);
P, is the projection of a self-symmetric curves; P4 and Ps are the projection of a pair
of symmetric curves; P; is the projection of a non-symmetric curve. In (b), the 3D

curves Cy, G, C3, C4 and Cs are reconstructed such that their orthogonal projection
matches the input 2D curves.

a (z=0) b (z=0)

Fig. 2. Orthogonal projections that do not comply with the generic viewpoint
assumption: in (a), the 3D curves C4 and Cs are projected onto the same 2D curve
P4. In (b), the vertices v, and v, are projected onto the same vertex p.

Other types of symmetry are defined as invariant under other
transformations such as translation, rotation, etc. These types of
symmetry are not considered in our approach.

3.1. Assumptions

The user draws the 2D curves on the plane (z = 0) that we call
the sketching plane. These curves are polygonal curves; a polygo-
nal curve is specified by a sequence of vertices so that the curve
is composed of the line segments connecting the consecutive ver-
tices. These curves are the orthogonal projection of the 3D polygo-
nal curves onto the sketching plane (z = 0) (Fig. 1(b)). This implies
that the x and y coordinates of the 3D vertices of the curves are
known. The z-coordinates have to be computed.

We assume the view of the sketch to be generic. The “generic
view” assumption states that the view is not accidental. The idea
is that accidental views are unstable, that is, small changes in the
orientation of the projection plane would generate large changes
in the projected image. The generic viewpoint assumption favors
the sketch interpretations which are stable with respect to small
changes of the orientation of the projection plane. This assumption
is commonly used in the domain of 3D reconstruction and com-
puter vision [17].

Let C; and G; be two 3D curves with different shape and P; and P
be their orthogonal projection respectively. If the orthogonal pro-
jection complies with the generic viewpoint assumption, then the
projected curves P; and P; must have different shape (Fig. 2(a)). The
generic viewpoint assumption applies to curve points as well. Let
v; be an endpoint of a 3D curve and v; be a point along a 3D curve. If
the viewpoint is generic and v; and v; have different location, their
projection must have different location as well (Fig. 2(b)).

The generic viewpoint assumption implies that 2D curves con-
nected at their endpoint are the projection of 3D curves that are
also connected at their endpoints. This property on curve connec-
tivity is used in our algorithm to resolve ambiguities in the sketch.

Another assumption is that the set of 3D curves reconstructed
from the input sketch is mirror-symmetric. We also assume that
the symmetry relationship can be found without changing the
topology of the curves. This means that the process of finding
pairs of symmetric curves does not require cutting or gluing curves
together.

F. Cordier et al. / Computer-Aided Design 45 (2013) 301-311 303

(a): Computation of the turn vertices for all possible orientations of the symmetry line.
Red dots are turn vertices. Dashed lines are symmetry lines.

No symmetfric curves

No symmetric curves

P7

Symmetry with ambiguity. The
possible pairs of symmetric
curves are: (Py,Ps), (P1,P3),
(P1,P4), (P3,Py), (P2,Py) (P2,P5)

({c): In case of ambiguity (i.e. a curve symmetric to several curves), we use the
connectivity of the curves and the compactness criteria to compute the symmetry

relationship

Fig. 3. Overview of the approach.

3.2. Overview of the approach

As we will explain in Section 4, the computation of the 3D
positions of a point and its mirror image is possible if we know the
2D position of their orthogonal projection onto the sketching plane
(z = 0). Similarly, it is possible to compute whether two polygonal
curves are the projection of a pair of 3D polygonal curves that are
symmetric to one another.

In case of a sketch composed of multiple curves, the computa-
tion of the symmetry relationship becomes more complicated. One
difficulty is to identify the orientation of the symmetry from the
sketch. Another difficulty is the ambiguity that may arise in some
sketches. Ambiguity appears when the symmetry relationship is
not uniquely defined (see Fig. 3).

Our approach is composed of the following steps. First, we com-
pute all the possible orientations of the symmetry lines. Symmetry
lines are lines that connect pairs of mirror-symmetric vertices. Two
vertices are mirror symmetric if they are invariant under reflection.
The properties of mirror-symmetric vertices are described in Sec-
tion 4. Then, we compute the turn vertices of the polygonal curves
for each possible orientation of the symmetry line. A vertex v is
a turn vertex if its two neighbors are in the same half-plane de-
limited by the symmetry line passing through v (see Fig. 3(a)). The
computation of the turn vertices is described in Section 5.1.

The next step is to compute the symmetry relationship for each
candidate of the symmetry orientation. Two curves are the pro-
jection of symmetric curves if they have the same number of turn

vertices and there exists a one-to-one matching between the ver-
tices and line segments of the two curves (see Fig. 3(a)). A method
to compute the symmetry relationship using turn vertices is given
in Section 5.2.

For some sketches, the symmetry relationship is not uniquely
defined (Fig. 3(c)). A one-to-one symmetry correspondence could
not be found using the turn vertices; a curve has more than one
candidate for the symmetry relationship. The last step of our al-
gorithm is composed of two methods to overcome the ambiguity
problem. First, we use the connectivity among the curves to iden-
tify the symmetry relationships that are not valid. This method is
described in Section 6.1. If the ambiguity remains, the symmetry
relationship is defined such that the compactness of the recon-
structed model is maximized (Section 6.2).

4. Mirror symmetry

Let v; be a vertex with coordinates (x;, y;, z;) and v be a vertex
with coordinates (x;, ¥;, z/). v] is the mirror symmetric of v;. We
assume that v; and v] do not have same coordinates. Let M be the
symmetry plane whose normal vector N is a unit vector with com-
ponents (xy, yn, zy). Without loss of generality, we assume that
the symmetry plane passes through the origin of the coordinate
system. p; and p; are the orthogonal projection of v; and v onto
the plane (z = 0). Their coordinates are (x;, y;, 0) and (x, y;, 0)
respectively. Thus, the 3D reconstruction comes down to comput-
ing the z-coordinates of the two vertices. As explained in [8], if the

304 F. Cordier et al. /| Computer-Aided Design 45 (2013) 301-311

Fig. 4. In (a), the two polygonal curves comply with Proposition 2; they are the orthogonal projection of mirror-symmetric curves. In (b), the vertex p € P has more than
one symmetric counterpart on P’. In (c), p; € P’ is the symmetric vertex of p; € P. The vertices p, and p, which are adjacent to p; and p] respectively, are not symmetric to

each other. Dashed lines are symmetry lines and black dots are the curve vertices.

components (xy, Yn, zy) of the normal vector of M are known, the
z-coordinates of the two vertices and are given by Egs. (1) and (2):

1 / . ! . R

Zi=—— <XN(X,+X1) +.VN(.V,+y1) +ZN(.y, yl)))
2 zN zN YN

Z;:_l (xN(X§+xi) +yN(v§+y,-) _ZN(.y;_Yi))' @)
2 ZN ZN YN

The z-coordinates are also given by Egs. (3) and (4):
2 — _1 <XN(X§ + X;) n INQ; +yi) n N (Y} —yl-)>
2 ZN ZN XN
z _ &+ x) +YN(V§+Yi))
i 2 ZN ZN XN '

If a point v; has no mirror image (v; and v; have the same loca-
tion), it is located on the symmetry plane. Its z-coordinate is given
as follows:

XNXi i
Zi:_(Nr_"_yNyl)' (5)

ZN ZN

(3)

(4)

Given that the value of z; is computed with the two Egs. (1) and
(3) and z{ with Egs. (2) and (4), the computation of these values is
possible if and only if zy differs from 0 and the coordinates of v;
and v] satisfy the following equality:

(= X) - yn = Vi — Y1) - xn- (6)
For a set of vertices being symmetric to each other with respect
to the same symmetry plane, the value ;—x is constant. Therefore,
Eq. (6) implies that the lines that connect pairs of symmetric ver-
tices must be parallel to each other. These lines are referred to as
symmetry lines. This gives us the following proposition.

Proposition 1. Let there be two sets of 2D vertices P = po, ..., Di,
pn—1and P’ = py, ..., pj, p,_;, each vertex p; being the mirror image
of pi. These two sets are the orthogonal projection of the two sets of
vertices V and V', which are mirror-symmetric to each other if and
only if all the symmetry lines (lines that pass through p; and their
mirror image p;) are parallel to each other.

Using Proposition 1, we define a set of properties for a pair of
polygonal curves P and P’ which are the orthogonal projection of a
pair of symmetric 3D curves.

Proposition 2. Given a straight line |, we say that two polygonal
curves P and P’ are the orthogonal projections of a pair of symmetric
3D polygonal curves if it complies with the following conditions:

- Bijection. The vertex p on P has a unique symmetric vertexp’ € P’
which is on the line parallel to | and passing through p (Fig. 4(b)).
- Continuity. Let p, and p, be two symmetric vertices located on P
and P’ respectively. Let p, be a vertex adjacent to p; along P. Then,
p» must have a symmetric vertex adjacent to p; along P (Fig. 4(c)).

Avertex p; is adjacent to p; if p; and p; are consecutive vertices of
the polygonal curve, that is, they are connected with a line segment
of the polygonal curve. Note that Proposition 2 holds only with
the generic viewpoint assumption. For the sake of simplicity, we
say that two 2D polygonal curves P and P’ are symmetric to one
another if they are the orthogonal projection of two 3D curves
which are symmetric to one another.

The continuity condition is explained by the fact that a one-to-
one correspondence must exist between the line segments of the
two polygonal curves P and P/, that is, every segment of P should
correspond to a segment of P’. In Fig. 4(c), the segment (py, p2) of
P does not have any corresponding segment on P’. Although a one-
to-one correspondence exists between the vertices of P and P/, the
two polygonal curves are not symmetric to one another.

5. Finding the candidates for the symmetry orientation

The simplest way to find the symmetry relationship would be to
search for all the curves its symmetric counterpart among the other
curves. We propose a more efficient approach. We first compute
all the possible orientations of the symmetry lines and sort them
according to how much they may result in a valid symmetry
relationship. The first orientation is the one which is most likely
to be the valid one.

Our approach is based on the following observation. Let there
be two curves which are symmetric to one another with respect
to a symmetry line [; it follows that the lines that pass through
their endpoints are parallel to I. For example, in Fig. 5, there are
two lines parallel to I and passing through the two endpoints p; ;
and p, 1 and the two other endpoints p; 4 and p, 4. In case the
two curves P; and P; are not monotone with respect to the line
I orthogonal to I, these polygonal curves are decomposed into
monotone polygons. Let P; 1, P; 5, , P, and P 1, P; 2, Pj , be the set
of the monotone polygons of P; and P; respectively. Since P; and P;
are symmetric to one another, this symmetry relationship exists
also between the monotone polygons of P; and P;: P; ; is symmetric
to P 1, P, symmetric to P; ,, etc. It follows that the lines that pass
through the endpoints of a pair of symmetric monotone polygons
are parallel to I In Fig. 5, the lines passing through (p; 3, p2,3) and
(p1.2, P2.2) are parallel to . Given a line I, we first compute the
endpoints of the monotone pieces of the curves. We name these
endpoints “turn vertices”. Next, we find how many of these turn
vertices can be connected with lines parallel to I. We also find how
many of the curve endpoints can be connected with lines parallel
to I. We use this information to compute the maximum number of
possible symmetric curves for the symmetry line [.

5.1. Finding the turn vertices

A turn vertex is a vertex such that the two adjacent vertices are
located in the same half-plane delimited by L. Let p; be a vertex and
ai_1.1 and a; 1 be the two angles between X and the two segments

F. Cordier et al. / Computer-Aided Design 45 (2013) 301-311 305

Fig. 5. The polygonal curves P; and P, are composed of three pieces, which are
monotone with respect to [perpendicular to 1. The turn vertices vq; and vy, of P;
are connected to the turn vertices v ; and vy » of P, with lines parallel to I. Similarly,
the endpoints of P; and P, are connected with lines parallel to L

Angle intervals for which p;
is not a turn vertex:
lein il
lai rtm, o rbm [

Angle intervals for which
pi1s a turn vertex:
lewr,s o rtnl
leg.s, rim, ol

Fig. 6. Angle intervals for which pi is a turn vertex.

(pi—1, pi) and (p;, pi+1) connected to p; (See Fig. 6.). Let 6 be the
angle between | and X. p; is a turn vertex if one of the two following
inequalities is true:

i1 <0 <ajz, ax=a1+7

(7)

12 <0 <ajy, ai12=011+7T.

Note that these two inequalities are equivalent, since [is not
oriented. The inequalities (7) define the angle intervals for which
pi is a turn vertex (see Fig. 7(b)). Now, we consider the case of a set
of vertices. For each vertex v;, we compute the four angles o;_1 1,
Qi—1.2, ¢ 1 and «;», and write the corresponding inequalities (7).
If all the vertices of the set are turn vertices with respect to the
same line |, the inequalities (7) must be true for all the vertices. In
fact, this is equivalent to computing if the intersection of the angle
intervals is not empty (See Fig. 8.).

Our algorithm works as follows. We have a set of the polygonal
curves as input. First, we compute the two angles «;; and «;
for each vertex v; of the curves. Then, we sort these angle values
by increasing order. Each angle value of this sorted list defines
the orientation of the symmetry line for which a vertex becomes
a turn vertex. It follows that the set of vertices that are turn
vertices do not change when the orientation of the symmetry line
is between two consecutive angle values of this sorted list. For each
pair of consecutive angle values of the sorted list, we compute the
corresponding turn vertices (Fig. 7(e)). As a result, we obtain a set
of angle intervals with the corresponding turn vertices.

In our algorithm, we make the two following assumptions. First,
we suppose that all segments of the curves have different orien-
tation (different angle values «¢; 1). In other words, we suppose
that the polygonal curves do not have any segment parallel to
each other. If a polygonal curve is composed of a set of adjacent

a P2

a;)z a, a:;,z

‘ 0‘3,1 Oq2 . O3,1
’ 021 /

¢ Angle intervals for the Tumn
d e orientation of the vertices

symmetry line
lass cas P2, Pq
logr agz(P2
1oz o2] g
| o2z sz P2, P2
| 5.2 g2 Pz pa
1oz o[P2
lous oz 9
lozs osg| P2, P3

Fig. 7. In(a), the polygonal curve with the three vertices. In (b), p4 is a turn vertex
if the symmetry line I that goes through p, does not enter the sectors shown in grey.
In (c), the angle intervals for which the three vertices are turn vertices. In (d), the
sorted list of angles for the three vertices is shown. The table in (e) contains the
angle intervals with the corresponding turn vertices.

b2

Fig. 8. Computing the turn vertices of the polygon in (a) for the horizontal
symmetry line. The symmetry line is shown in a red dashed line. As shown in (b),
the angle value of the symmetry line is in the interval Jos 1; a4 1[. This implies that
p2 and p4 are turn vertices. The angle intervals for p,, p3 and p4 with the symmetry
line in shown in (c).

segments with same orientation, we replace these segments with
another whose extremities are the first endpoint of the first seg-
ment and the last endpoint of the last segment. If the curves
contain segments with the same orientation and which are not ad-
jacent, we slightly modify the position of the corresponding ver-
tices to change the orientation of the segments.

Second, we assume that our sketch is composed of smooth
polygonal curves. This implies that the angle intervals Jotit 125 o1 [

306 F. Cordier et al. /| Computer-Aided Design 45 (2013) 301-311

Fig. 9. In (a), the two polygonal curves comply with Proposition 3; they are the
orthogonal projection of mirror-symmetric curves. In (b), the turn vertex p € P has
more than one symmetric counterpart on P. In (c), p; € P is the symmetric vertex
of p1 € P.The vertices p, and p}, which are adjacent to p; and p respectively, are
not symmetric to each other. Dashed lines are the symmetry lines and black dots
and the turn vertices and endpoints.

and Jait1,1; @ 2[in the inequalities (7) are small enough so that we
can approximate each angle interval with one angle value (we take
median value). This angle value is the orientation of symmetry line
I; corresponding to the angle interval.

As a result, we have a list of angle intervals; each angle interval
is associated with a line (whose orientation is the median value of
the angle interval) and the corresponding turn vertices. The list of
symmetry lines corresponding to the angle intervals is denoted L =
{lo, l1,, 1, , I,}. Each line [; is associated with the corresponding
turn vertices ¢, ti 1, , tim—1. This list contains all the possible
candidates for the orientation of the symmetry lines.

5.2. Computing the maximum number of possible symmetric curves
for each candidate of the symmetry orientation

Now that we have a list of candidates for the symmetry orienta-
tions, the next step is to identify those that have the highest chance
of resulting in a valid symmetry relationship. For each candidate [;,
we compute the number of curves that are symmetric according
to the Proposition 2. To find if a polygonal curve is symmetric to
another one or self-symmetric, we write:

Proposition 3. A polygonal curve P is symmetric to another curve
P with respect to a symmetry line li if it complies with the following
conditions:

- Bijection. Each turn vertex p on P, has a unique symmetric turn
vertex p € P which is on the line parallel to I; and passing through
p. This proposition applies to endpoints as well.

- Continuity. Let p; and p, be two symmetric turn vertices
belonging to P and P respectively. Let p, be a turn vertex adjacent
to py along P. Then, p, must have a symmetric turn vertex p/,
adjacent to p} along P.

Similar to Proposition 2, Proposition 3 requires the generic
viewpoint assumption. Note that Proposition 3 is also valid for self-
symmetric curves. In this case, P and P are the same polygonal
curve. An important result of Proposition 3 is that two symmet-
ric polygonal curves must have the same number of turn vertices
and there must exist a one-to-one correspondence between their
turn vertices and their end-points (Fig. 9(a)). In addition, the turn
vertices should match to each other in the same order along the
two polygonal curves. If p; is symmetric to p}, then their adjacent
vertices p, and p, must be symmetric as well (see Fig. 9(c)).

Given a candidate [; for the symmetry line and the correspond-
ing turn vertices {t;o, t 1, , tim—1}, we compute the number of
curves that are symmetric and self-symmetric (Fig. 10). We first
compute the orthogonal projection of the turn vertices and end-
points of the polygonal curves onto a line I; which is perpendicu-
lar to I;. We sort the projected vertices by increasing order of their
coordinates. If the two vertices p; and pj project onto the same

P, and P, symmetric
Ps and P, non-
symmetric

P; and P, symmetric
P; self-symmetric
P4 non-symmetric

P; self-symmetric
Py, Pz and P, non-
symmetric

Fig. 10. Dashed lines are symmetry lines that pass through pairs of turn vertices or
pairs of endpoints. Symmetric curves are shown in thick lines. Matching endpoints
and turn vertices are shown with the same color. In (a), there are three symmetric
curves corresponding to the orientation of the symmetry line, only two in (b), and
only one in (c).

a

P
P Rs Re X

i D2

Fig. 11. In (a), P, to Ps are symmetric to each other. In (b), the sketch does not
correspond to a symmetric model. Its reconstruction is not possible. In (c), P; and
P, seem to be symmetric to each other. C; and C, are the reconstructed curves of
Py and P, respectively. If this symmetry is taken into account, the reconstruction is
not correct (d). In (e), the reconstruction is made with C; and C, as non-symmetric.
These two curves lie in the symmetry plane with C3 which also not symmetric.

point on [, these two vertices may be symmetric. Two vertices are
considered to project onto the same point if the distance between
their projections is smaller than a user-defined value. By default,
this value is equal to the length of the smallest line segment of
the polygonal curves; the user can increase this value to handle
inaccurate sketches. If we find a pair of curves whose endpoints
and turn vertices match to each other in a one-to-one manner, we
check if these two curves comply with Proposition 3. Once a curve
has been found to match with another one, it is no longer consid-
ered for matching with other curves. We apply the same process to
find self-symmetric curves.

Note that we compute the maximum number of possible sym-
metric curves, not the symmetry relationship. The curves that are
considered as symmetric according to Proposition 3 may violate
the generic viewpoint assumption (Fig. 11(c)). In some cases, a
curve is found symmetric to several other curves (Fig. 11(a)). In
this case, the maximum number of possible symmetric curves is
the number of pairs that can be constructed from this set of curves
that are symmetric to each other.

This process of computing the maximum number of possible
symmetric and self-symmetric curves is calculated for all symme-
try line candidates of the list L = {ly, l1,, 1, , l,_1}. The list L is
then sorted by order of decreasing number of symmetric curves.

F. Cordier et al. / Computer-Aided Design 45 (2013) 301-311 307

Fig. 12. The input sketch is composed of two curves P; and P,; the endpoint p of
Py is located on P,. One possible 3D reconstruction that complies with the generic
viewpoint assumption is shown in (b). The 3D reconstruction in (c) does not comply
with the generic viewpoint assumption.

Symmetry lines with the highest number of possible symmetric
curves will be processed first. This is because we want to avoid 3D
reconstruction with high number of non-symmetric curves. Non-
symmetric curves are located in the symmetry plane; 3D recon-
struction with only non-symmetric curves would result into a set
of curves that are coplanar with each other.

6. Computing the symmetry relationship

As mentioned in Section 5.2, the Proposition 3 is usually not suf-
ficient to define the symmetry relationship. The first problem is
that we rarely obtain exactly a one-to-one correspondence among
the symmetric curves because of the ambiguity of the sketch
(Fig. 11(a)). In such case, we have a set of more than two curves
which are all symmetric to each other according to Proposition 3.
Another problem is that two curves that are symmetric according
to Proposition 3 are not necessarily symmetric (Fig. 11(c)). There
are also sketches that do not represent symmetric models and
therefore, cannot be reconstructed using the symmetry relation-
ship (Fig. 11(b)).

To solve this problem, we propose an algorithm to define the
symmetry relationship which exploits the curve connectivity. For
cases where the ambiguity has not been fully resolved, we propose
another algorithm which maximizes the compactness of the recon-
structed curves.

These algorithms are applied for each candidate of the symme-
try orientation. We start with Iy, the first candidate for the ori-
entation of the symmetry line and iterate over the elements of
L = {lp, l1,, i, , I,_1} until we have computed the symmetry re-
lationship with the highest number of symmetric curves.

In the remaining of the paper, we denote P, the set of all the
curves of the sketch. Given a candidate [; of the symmetry ori-
entation, we compute two sets. Pc is the set of polygonal curves
for which the symmetry relation has been uniquely defined using
Proposition 3. This includes the curves for which no symmetry has
been found, the curves that are symmetric to only one curve, and
the curves that are symmetric only to themselves. We compute
Py, the set of the remaining curves (i.e. P = Pc U Py); these are
the curves that are symmetric to several other curves according to
Proposition 3.

6.1. Exploiting the curve connectivity

We assume the generic viewpoint. This implies that the recon-
struction of 3D curves is computed in a way that the viewpoint is
generic (Fig. 12). This assumption enables us to use the curve con-
nectivity to resolve ambiguities in the sketch.

We now have the following proposition.

Proposition 4. Let two polygonal curves P; and P; be in the sketching
plane. C; and C; are the reconstructed curves of P; and P; respectively. If
an endpoint of P; is located along P;, then the corresponding endpoint
of G is also located along C;.

Fig. 13. The polygonal curves P, to P; are all symmetric to each other according
to Proposition 3; the same problem occurs for curves Pg to Pis. We use their
connectivity (red dots) to compute the symmetry relationship.

Proposition 4 is used for two purposes. First, we check if the
symmetry relationship of the curves of P¢ calculated with Propo-
sition 3 is valid. If not, the algorithm tries to find a valid symme-
try relationship by changing symmetric curves into non-symmetric
ones. Second, we use Proposition 4 to find the one-to-one symme-
try relationship among the curves of Py. Py are the set of curves
that have several possible symmetric counterparts.

Checking the validity of the symmetry relationship of the curves
of Pc. Two curves which are symmetric according to Proposi-
tion 3 may violate Proposition 4 (Fig. 11(c)). To check the valid-
ity of the symmetry relationship of the curves of P, we find all
the connected curves of P¢ (curves whose endpoint is located onto
another curve). We then compute the 3D reconstruction of the
connected curves of Pc using Egs. (1)-(5) and check if the Propo-
sition 4 is violated. If so, we change one of the symmetric curves
into a non-symmetric curve. This process is repeated for all the
connected curves of P¢. In the worst case, all the symmetric curves
become non-symmetric and the number of symmetric curves be-
comes zero.

Finding of the symmetry relationship of the curves of Py. Py is
the set of curves which have more than one symmetric counter-
part; the symmetry relationship could not be uniquely defined. We
use Proposition 4 to compute the one-to-one symmetry correspon-
dence among these curves.

Our algorithm finds the symmetry relationship iteratively by
checking all possible combinations of pairs of curves and non-
symmetric curves from the set Py. At each iteration, we arbitrar-
ily define which curves of Py are symmetric or self-symmetric and
those which are not symmetric. Then, we compute their 3D posi-
tions using Egs. (1)-(5) and we check if they comply with Propo-
sition 4. Since a curve can be in three different states (symmetric,
self-symmetric, not symmetric), the complexity of the algorithm is
3" in the worst case, n being the number of curves of Py. Although
the time complexity is high, the computation time remains low be-
cause each iteration involves computing a small number of equa-
tions.

6.2. Maximizing the compactness of the reconstructed curves

For some sketches, Proposition 4 is not sufficient to uniquely
define the symmetry relationship. Ambiguity occurs in three dif-
ferent cases. The first case concerns the curves whose both end-
points share the same position and that comply with Proposition 3
(Fig. 14(a)). The second case concerns the curves whose one end-
point shares the same position. The other endpoints are aligned
along the symmetry line (see Fig. 14(b)). The third case is the curves
which comply with the Proposition 3 and whose endpoints do not
have the same position (see Fig. 14(c)).

Our algorithm is based on the work of Li et al. [13]. They have
shown that human beings interpret ambiguous sketches in a way

308 F. Cordier et al. /| Computer-Aided Design 45 (2013) 301-311

Fig. 14. In (a), (b) and (c), the three cases for which the symmetry relationship
is computed using the compactness criteria. In (d), we compute the symmetry
relationship such that convex hull of the reconstructed curves is the most compact.

to maximize the compactness of the reconstructed shape. The
compactness of a shape O is defined as follows:

_ V(0)?
T S(0)3°

V(0) and S(O) are the volume and the surface of shape respec-
tively. In our case, the reconstructed shape is composed of 3D
curves; we compute the compactness ratio of the convex hull of
the 3D curves; V(0) and S(O) are the volume and the surface of
the convex hull respectively.

We first identify a subset of curves from the set Py which are
all symmetric to each other with respect to the Proposition 3. Py
is the set of curves for which the symmetry relationship could
not be uniquely defined using Proposition 3 (see Section 6.1).
Then, we arbitrarily define the symmetry relationship among these
curves (by arbitrarily choosing which one is symmetric or self-
symmetric and which one is not symmetric). This enables us to
compute the 3D positions of the curves using Egs. (1)-(5), and then
the corresponding convex hull and its compactness. This process
is repeated for all possible pairs of symmetric curves and non-
symmetric curves from the set. In the end, we choose the symmetry
relationship whose compactness is the highest.

In some cases, this method does not uniquely define the sym-
metry relationship for all the curves. This case happens when all
the internal vertices of some curves (vertices other than the end-
points) are not part of the convex hull. The shape of the convex hull
remains the same however the symmetry relationship is defined
among these curves. The solution to this problem is to find these
curves that are not part of the convex hull and repeat the whole
process to compute their symmetry relationship.

c(0)

(8)

6.3. The criterion to find the best symmetry relationship

The symmetry relationship is calculated (Sections 6.1 and 6.2)
iteratively for each element of the list L = {lo, Iy, , l1, , l,_1} of the
candidates for the symmetry orientation, starting from ly. For each
candidate [;, we know the maximum number of possible symmetric
curves (Section 5.2) and these candidates are sorted by decreasing
order of this number. We stop the iterations over L when the
number of symmetric curves that has been found for [; while
computing the symmetry relationship (Sections 6.1 and 6.2) is
larger than the maximum number of possible symmetric curves for

Fig. 15. Given a set of symmetric curves (a), we compute the symmetry lines that
pass as close as possible through pairs of symmetric vertices (b). The coordinates of
curve vertices are then modified such that turn vertices and endpoints are located
on the symmetry lines (c). Dashed lines are symmetry lines and black dots are the
turn vertices and endpoints.

the next candidate [; 1. The goal is to find the symmetry orientation
with the highest number of symmetric curves. If there are several
symmetry orientations with same number of symmetric curves,
we select the one whose compactness is the largest.

7. 3D reconstruction

Once the symmetry relationship has been found, we compute
the 3D reconstruction of the curves by using Eqgs. (1)-(5). Prior to
this step, we compute an accurate approximation of the orientation
of the symmetry line. We also resample the curves such that the
symmetry relationship is defined at the vertex level.

7.1. Orientation of the symmetry lines

Because sketches are drawn by hand, the symmetry lines that
pass through pairs of symmetric vertices are never exactly parallel
to each other. Up to this stage of the algorithm, the orientation of
the symmetry line is taken as the median value of the correspond-
ing angle interval (Section 5.1). Since the symmetry relationship is
completely defined, it is now possible to compute the orientation
of the symmetry lines more accurately. The idea is to compute the
set of parallel lines that pass as close as possible through pairs of
turn vertices and endpoints. We do this using the linear regression
method. The equation of a straight line is:

y=ax+b. (9)

The coefficient a is the slope of the line; this value is identical for
all symmetry lines (all symmetry lines are parallel to each other).
The coefficient b depends on the coordinates of the pairs of sym-
metric turn vertices and endpoints. Let P = {pg, ..., Pi, - - - » Pn—1}
and P" = {pg,...,p}, ..., p,_} be two sets of turn vertices and
endpoints, each vertex p; being symmetric to p;. The coordinates
of p; and p; are (x;, y;) and (], y;) respectively. The lines that pass
through pairs of symmetric vertices give the following set of equa-
tions:

Xo 1 0 0 a Yo

X, 1 0 0 bo Yo

e =1 . (10)
Xn—1 0 0 1 Yn—1
Xy 00 1 bn_s Yoo

Since this system is over-determined (number of equations is
larger than the number of unknowns), we compute an approximate
solution with the least squares method. This enables us to compute
the orientation of the symmetry line (Fig. 15(b)). Note that this
method works best when the slope of the line is close to zero.
Before estimating the orientation of the symmetry lines, we apply
a rotation to the curve vertices so as to make the symmetry lines
parallel to the x-axis.

Next, we modify the shape and position of the curves so that
the turn vertices and endpoints are located on the symmetry
lines (Fig. 15(c)). Turn vertices and endpoints are translated to
their corresponding position on the symmetry line. The translation
of the other vertices is defined as a linear interpolation of the
translations of the two adjacent endpoints and/or turn vertices.

F. Cordier et al. / Computer-Aided Design 45 (2013) 301-311 309

7.2. Resampling of the curves

Given two symmetric curves, we first decompose these curves
into monotone pieces by cutting them at their turn vertices. The
result is a set of pairs of monotone pieces which are symmetric
to one another. Each pair is then resampled separately such that
symmetry relationship is defined at the vertex level.

7.3. 3D reconstruction

Once the curve resampling is complete, the 3D positions of the
curve vertices are calculated using Egs. (1)-(5). These equations
require the value zy of the normal vector of the symmetry plane.
This value is defined in a way that the compactness of the convex
hull of the reconstructed model is maximal. As mentioned in
Section 5, we measure the compactness of the reconstructed model
with the function V(0)?/5(0)3; V(0) and S(0) are the volume and
the surface of the convex hull of the curve points respectively.
It can be shown from the Egs. (1)-(5) that changing the value
of zy is equivalent to applying a scale transformation to the 3D
curves along the axis orthogonal the symmetry plane. In addition,
the vertices belonging to the convex hull do not change when
a scale transformation is applied to these vertices. It follows
that the compactness function is a rational function composed
of polynomial functions and square root of polynomial functions,
these functions having zy as a variable. This compactness function
has only one maximum, which is computed using the gradient
descent method. The compactness maximization method always
gives a solution. If the user is not satisfied with the result, this
means that the scale of the reconstructed model along the line
perpendicular to the symmetry plane is not correct. For instance,
the user draws a rectangular parallelepiped and the reconstructed
model looks more like a cube. In this case, the user can modify the
zy value.

8. Results, limitations and conclusion

Our sketch-based modeling tool has been implemented as a
plug-in to Maya. The steps to create curves in Maya are as follows.
The front view is first selected so that curves are created in the
plane (z = 0). Then, the user draws the curves by placing a set
of points in the front view. An alternative way is to use the pencil
tool with which the user creates a curve by dragging the mouse.
Once all the curves are created, the user clicks an icon to launch our
plug-in. If the input curves are Bezier curves, they are automatically
converted into polygonal curves. The 3D reconstruction is then
computed and the resulting 3D polygonal curves are shown in the
3D viewer of Maya.

Our method is demonstrated with several examples corre-
sponding to different cases of sketching, showing its versatility.
Some examples have been created by users (Fig. 19). The teapot
model has been created in several steps. The user draws some parts
of the model; the 3D reconstruction is computed; then the user ro-
tates the model and continues sketching. We have also tested our
system with models created with existing software [12] (Fig. 20).
To do this, we first compute the orthogonal projection of the 3D
curves of an existing model onto a plane. These projected curves
are then used as input to our system to recreate the original model.
These sketches generated from existing models are composed of
several dozens of curves; they are far more complex than what a
user can draw. The purpose is to demonstrate the robustness of our
approach. The computation time required to generate the 3D mod-
els ranges from a few seconds to about thirty seconds depending
on the number of curves that compose the hand drawn sketch. This
computation time becomes slow for models that require comput-
ing the convex hull (see Section 6.2).

V>

Fig. 16. All curves are connected at their endpoint. The fact that the user has
selected two curves as being symmetric does not give any clue for finding the
symmetry relationship of other curves.

One may think that the reconstruction process could be done
simply by letting the user select two symmetric curves. The orien-
tation of symmetry plane is then determined by using these two
symmetric curves and all the curves are reconstructed in 3D. How-
ever, some models exhibit inherent ambiguity; the selection of two
symmetric curves is not sufficient to find the symmetry relation-
ship for other curves (see Figs. 13, 15 and 16). To reconstruct such
model, the user would have to define all the pairs of symmet-
ric curves. The main advantage of our method over existing ap-
proaches is that it finds the symmetry relationship without user
intervention by using the curve connectivity and maximizing the
compactness of the reconstructed model.

8.1. Comparison with existing methods

In the system presented by Bae et al. [12], the modeling process
is done iteratively. To create a model such as those shown in Fig. 20,
the user has to alternate between drawing the curves and chang-
ing the viewpoint. In addition, the snapping feature has been inte-
grated; this helps the user to create accurate and complex sketches.
In our approach, the reconstruction process is done in a single step.
The user provides a set of planar curves and these curves are pro-
cessed all together at once. Compared to the work of Bae et al. [12],
our method is more faithful to the paradigm of sketching. Our
method is quite sensitive to the quality of the sketches; this draw-
back could be overcome by integrating the snapping feature into
our system.

The system presented by [8] aims at reconstructing 3D symmet-
ric shapes from a sketch. Their system takes as input a hand-drawn
sketch and automatically generates a surface whose silhouette
matches the input sketch. Similarly to our approach, one impor-
tant step of their approach is to detect the symmetry relationship
among the 2D curves of the sketch. The major difference is that
their method is limited to the detection of skewed mirror symme-
try and translational symmetry. Skewed-mirror symmetry depicts
a mirror-symmetric planar curve viewed from some (unknown)
viewing direction. This limits the method to the reconstruction of
shapes whose 3D silhouette curves are planar and lie in the same
plane.

310 F. Cordier et al. /| Computer-Aided Design 45 (2013) 301-311

Rs

R,

Fig. 17. The topology of the curves does not correspond to the symmetry of the
model.

a b

Fig. 18. (a) The ladder is composed of disconnected polygonal curves; (b), The 3D
reconstruction generated by our algorithm.

i

Fig. 19. Examples of sketches. The first row shows the input sketches. The two others rows show the 3D models from different viewpoints.

8.2. Limitations

The main limitation is that we assume that the topology of the
curves does not need to be modified. For instance, the reconstruc-
tion from the sketch in Fig. 17 is not possible because the topology
of the curves does not reflect the symmetry of the model.

Another limitation is that our method heavily relies on the con-
nectivity of the curves to find the symmetry relationship. In partic-
ular, our algorithm searches for curves whose endpoints share the
same location and uses this information to compute the symme-
try relationship. If the sketch is composed of disconnected polygo-
nal curves, our method computes the symmetry relationship that
maximizes the number of pairs of symmetric curves and the com-
pactness of the reconstructed model. This may lead to unexpected
results as shown in Fig. 18.

8.3. Future work

Our system can be extended in different ways. One extension
could be to generate a smooth surface that passes through the 3D
curves. An approach similar to that of [18] could be implemented.
For a given set of curves, this approach automatically constructs
a surface embedding. The shape of the surface is obtained by
applying an optimization method that minimizes the curvature
variation. Oztireli et al. [16] have also used a technique to generate
a smooth surface from points. Given a set of points with depth,
they compute a depth map function corresponding to the surface
passing through the vertices. This depth map function consists of
radial basis functions. Another way to extend our system would
be to compute the 3D reconstruction with perspective projection.
One main difference with respect to orthogonal projection is that
the perspective projection of a set of parallel lines is a set of lines
that meet at a point in the projection plane. It follows that the

F. Cordier et al. / Computer-Aided Design 45 (2013) 301-311 311

Fig. 20. The first row shows the input sketches. The two others rows show the 3D models from different viewpoints.
Source: Theses sketches are from Bae et al. [12].

symmetry lines are no more parallel; instead, they intersect each
other at one point.

References

[1] SchmidtR,Khan A, Kurtenbach G, Singh K. On Expert Performance in 3D Curve-
Drawing Tasks. SBM; 2009. 133-140.

[2] Brown E, Wang P. 3D object recovery from 2D images: A new approach. SPIE
Proc. Robotics and Computer Vision, vol. 2904. 1996. p. 138-45.

[3] Shoji K, Kato K, Toyama F. 3-D interpretation of single line drawings based on
entropy minimization principle. Proc. IEEE Conf. Computer Vision and Pattern
Recognition, vol. 2. 2001. p. 90-5.

[4] Liu], CaoL, LiZ, Tang X. Plane-based optimization for 3D object reconstruction
from single line drawings. IEEE Transactions on Pattern Analysis and Machine
Intelligence 2008;30(2):315-27.

[5] Igarashi T, Matsuoka S, Tanaka H. Teddy: A sketching interface for 3D freeform
design. SIGGRAPH 1999;409-16.

[6] Karpenko O, Hughes]. SmoothSketch: 3D free-form shapes from complex
sketches. ACM Transaction on Graphics 2006;25(3):589-98.

[7] Cordier F, Seo H. Free-form sketching of self-occluding objects. IEEE Computer
Graphics and Applications 2007;27(1):50-9. Special issue on Sketching.

[8] Cordier F, Seo H, Park], Noh JY. Sketching of mirror-symmetric shapes. IEEE
Transactions on Visualization and Computer Graphics 2011;17(11):1650-62.

[9] Cohen], Markosian L, Zeleznik R, Hughes], Barzel R. An interface for sketching

3D curves. ACM I3DG 1999 Symposium on Interactive 3D Graphics 1999;
17-21.

[10] Shen D, Ip H-S, Teoh EK. Robust detection of skewed symmetries by
combining local and semi-local affine invariants. Pattern Recognition 2001;
34(7):1417-28.

[11] Schmidt R, Khan A, Singh K, Kurtenbach G. Analytic drawing of 3D scaffolds.
ACM Transactions on Graphics 2009;28(5).

[12] Bae S-H, Balakrishnan R, Singh K. ILoveSketch: As-natural-as-possible
sketching system for creating 3D curve models. In: The Proceedings of ACM
Symposium on User Interface Software and Technology 2008. CA, USA:
Monterey; 2008. 151-160.

[13] LiY, Pizlo Z, Steinman RM. A computational model that recovers the 3D shape
of an object from a single 2D retinal representation. Vision Research. 2009;
49(9):979-91.

[14] Melkemi M, Cordier F, Sapidis NS. An algorithm to detect the weak-symmetry
of a simple polygon. ICIAR 2011;1:365-74.

[15] Melkemi M, Cordier F, Sapidis NS. A provable algorithm to detect the weak-
symmetry of a polygon, International Journal of Image and Graphics, World
Scientific (in press).

[16] Oztireli AC, Uyumaz U, Popa T, Sheffer A, Gross MH. 3D Modeling with a
Symmetric Sketch. SBM; 2011. 23-30.

[17] Freeman WT. The generic viewpoint assumption in a framework for visual
perception. Nature 1994;368:542-5.

[18] Nealen A, Igarashi T, Sorkine O, Alexa M. FiberMesh: Designing Freeform
Surfaces with 3D Curves. In: ACM Transactions on Computer Graphics. San
Diego, USA: ACM SIGGRAPH 2007; 2007.

	Inferring mirror symmetric 3D shapes from sketches
	Introduction
	Related work
	Overview
	Assumptions
	Overview of the approach

	Mirror symmetry
	Finding the candidates for the symmetry orientation
	Finding the turn vertices
	Computing the maximum number of possible symmetric curves for each candidate of the symmetry orientation

	Computing the symmetry relationship
	Exploiting the curve connectivity
	Maximizing the compactness of the reconstructed curves
	The criterion to find the best symmetry relationship

	3D reconstruction
	Orientation of the symmetry lines
	Resampling of the curves
	3D reconstruction

	Results, limitations and conclusion
	Comparison with existing methods
	Limitations
	Future work

	References

