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h i g h l i g h t s

• Our method reconstructs a piecewise helix curve from a 2D sketch.
• Helices are computed such that their projection matches the 2D curve.
• An optimization is performed to minimize the tangent discontinuity of the helices.
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a b s t r a c t

We describe a method for a reconstructing piecewise helix curve from its 2D sketch. The system takes
as input a hand-drawn polygonal curve and generates a piecewise helix curve such that its orthogonal
projection matches the input curve. The first step is an algorithm to generate a set of helices such that
their orthogonal projection approximates the input curve. This step is followed by a global optimization
tominimize the tangent discontinuity of the junctions of the helices while keeping the fitting error small.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Helices are curves whose curvature and torsion are constant.
These curves are very common in nature and among man-made
objects: hair curls, coiled phone cords, spring coils, tendrils of
climbing plants, etc. In this paper, we present a method to fit a
curvewhich is the orthogonal projection of a piecewise helix curve
to a 2D polygonal curve provided by the user. The main difficulty
resides in the fact that the helix and the curve that is the projection
of the helix have different curvature.

2. Related work

One of the most common approaches [1,2] of sketch-based
modeling is to let the user draw the 3D shape using straight line
segments. The main disadvantage of these approaches is that they
are limited to the reconstruction of rectilinear shapes; they cannot
be applied to free-form curves. Several researchers have worked
on the modeling of 3D surfaces [3,4] and 3D curves using sketches.
In the method proposed by Cohen et al. [5], the user generates a
3D curve by drawing the curve and its shadow on the floor plane.
Other researchers have proposed a 3D reconstruction method by
assuming that the reconstructed curves are mirror-symmetric [6].

Several researchers have worked on the problem of fitting a
piecewise helix curve, a so-called super-helix, to a 3D polygonal
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curve. Piuze et al. [7] proposed an optimizationmethod to fit piece-
wise generalized helicoids to 3D curves. Goriely et al. [8] have
shown a method to compute the polyhelices that pass through an
arbitrary set of points. A polyhelix is a curve consisting of a se-
quence of connected helical segments. Ghosh [9] introduced the
bi-helices, a G1 curve smoothly connecting 2 helices. Recently,
Derouet-Jourdan et al. [10] have presented an algorithm to approx-
imate Bezier curves with G1 piecewise helices.

The closest work to ours is a sketch-based interface for model-
ing virtual hair for 3D characters [11,12]. In this paper, the authors
describe a method to create 3D helices from a 2D sketch. Their
method only works under the assumption that themain axis of the
reconstructed helix is parallel to the sketching plane. In contrast,
our method is able to reconstruct piecewise helix curves with any
orientation.

In this paper, we address a different problem, which is the
fitting of a curve which is the orthogonal projection of a helix to a
2D polygonal curve. In contrast to the problem of fitting a helix to a
3Dpolygonal curve, the curvature of the 2Dpolygonal curve cannot
be directly used for generating the helix. This is because the helix
curve and its projection have different curvature. To the best of our
knowledge, such a problem has never been addressed until now.

3. Overview

A key element of our approach is a method to compute a helix
curve such that its orthogonal projection matches the entire or a
portion of a 2D polygonal curve CI . In Section 5, we describe some
properties of the projected helix curve. Based on these properties,
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Fig. 1. Overview of the approach: the first step, which is shown in (b), consists of
fitting a set of projected helix curves {H1,H2,H3} to different parts of the input
polygonal curve CI as shown in (a). In the second step, which is shown in (c),
the helices curves {H3D,1,H3D,2,H3D,3} are computed in 3D from their projection
{H1,H2,H3}. Then, a fine fitting is performed to reduce the tangent discontinuity at
the junctions of these helices.

we present a method to compute the fitting of a projected helix
curve to the input curve CI (Section 6).

In most cases, the reconstructed helix curve does not fit the
entire input curve CI ; it is rare that the user draws a curve which is
the exact projection of a helix curve. Thus, the matching is done in
a recursive manner with several helices. After fitting the first helix
H1 to CI , we identify the parts of CI for which the matching is not
good and compute the fitting on those parts with the next helixH2.
This process is repeated recursively until all parts of the input curve
have been fitted with a helix. The result is a piecewise helix curve
that approximates the entire curve CI . This process is explained in
Section 6.

Once the coefficients of the piecewise helix curve have been
generated, we compute its 3D position. The resulting curve is G1
discontinuous since it does not guarantee the tangent continuity at
the junctions between adjacent helices. Thus, we modify the helix
coefficients such as to minimize the tangent discontinuity at the
helix junctions while maintaining a small matching error. This last
step is explained in Section 7.

The user draws a 2D polygonal curve CI on the plane (z = 0),
the so-called sketching plane. This 2D polygonal curve CI is speci-
fied by a sequence of p vertices v1, v2 . . . vp and p−1 line segments
connecting consecutive vertices. This curve is the orthogonal pro-
jection of a piecewise helix curve onto the sketching plane (z = 0)
(Fig. 1(a)). This implies that the x and y coordinates of the 3D ver-
tices of the curves are known. The z coordinates have to be com-
puted.

4. Properties of helix curve

4.1. Helix curve

A helix curve is a 3D curve whose curvature and torsion are
constant. The equation of the helix curve that passes through the
origin of the coordinate system and whose main axis is parallel to
the y-axis is:

HPrim(t) =

x (t)
y (t)
z (t)


=

a (cos (t) − 1)
bt

a sin (t)


with a ≥ 0 and b ≥ 0.

a and b are respectively the radius and the pitch of the helix.
Now, we consider a helix curve with an arbitrary orientation and
its orthogonal projection onto a plane (z = 0). Among the three
possible rotations (about the x, y and z-axes), only the one about
the x-axis changes the curvature of the projected helix. The y-
rotation is reversible by substituting t with t = t + α and the
z-rotation is reversible by applying a rotation in the plane (x, y).
Without loss of generality, we only take into account the rotation
about the x-axis. Let c be the rotation angle about the x-axis. The
parametric equation H3D,R(t) of the helix with a rotation is:

H3D,R (t) =

H3D,R,x (t)
H3D,R,y (t)
H3D,R,z (t)


=

 a (cos (t) − 1)
bt cos (c) − a sin (c) sin (t)
bt sin (c) + a cos (c) sin (t)


.

The parametric equation of the helix curve after the projection
onto the plane (z = 0) is:

H (t) =

H3D,R,x (t) H3D,R,y (t) 0

T
.

4.2. Point of maximum curvature of the projected helix curve

The curvature of the projected helix curve H(t) is:

κH (t) =
|a (b cos (c) cos (t) − a sin (c))|

a2 sin (t)2 + (b cos (c) − a sin (c) cos (t))2
 3

2
.

Proposition 1. The value of κH (t) is maximum when t is a multiple
of π (i.e. t = 0 or t = π ).

This property is demonstrated in the Appendix. Given a polyg-
onal curve CI , we identify the vertex vs for which the curvature is
maximal. The above property implies that t is equal to 0 at vs; that
is, we have two points, vs and H(0) for which t has the same value.
This vertex vs is used as a starting point for computing the fitting
of the projected helix to CI .

4.3. Defining a local coordinate frame

In order to compute how well the projected helix curve fits to
the polygonal curve CI , wemust compute the distance between the
points of CI and the corresponding points of the projected helix
curve. Thus, a preliminary step is to align the two curves so that
the point coordinates of the two curves can be compared. To do so,
we define a local coordinate frame at the point t = 0. The y-axis is
the unit vector parallel to the curve tangent at t = 0 and the x-axis
is normal to the y-axis such that (x, y) is oriented clockwise. The
unit tangent of the projected helix curve H(t) is:

T̂H (t) =


−

a sin (t)
a2 sin (t)2 + (b cos (c) − a sin (c) cos (t))2

b cos (c) − a sin (c) cos (t)
a2 sin (t)2 + (b cos (c) − a sin (c) cos (t))2

0

 .

5. Estimation of the curvature and tangent of the polygonal
curve

Similar to the projected helix curve, the computation of the
curvature and unit tangent vector of the polygonal curve CI is also
needed. In this paper, we adopt the method described by Lewiner
et al. [13] which has been shown to provide good performance
compared to other methods. Let vi be a vertex of CI and for which
we want to estimate the curvature. The key idea is to compute
a quadratic parametric curve Ci(t) to approximate the polygonal
curve CI in the vicinity of vi. The equation of this curve is:

Ci (t) =


xi (t)
yi (t)


=

xi + x′
it +

1
2
x′′

it2

yi + y′
it +

1
2
y′′

it
2


xi and yi are the position of the vertex vi. x′

i, x′′
i, y′

i and y′′
i are the

1st and 2ndderivatives respectively of the x and y coordinates of vi;
t is the curve parameter. Given the quadratic parametric curveCi(t)
which approximates the curve CI in the vicinity of vi, we compute
the curvature κvi and unit tangent vector T̂vi at the point vi.

6. Fitting the projected helix to CI

The input of the algorithm is a polygonal curve CI with uniform
sampling. The curve CI is composed of p vertices v1, . . . , vp
connected with line segments of roughly equal length.
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First, we compute the curvature for all vertices of CI using the
method described in Section 5 and identify the vertex vs whose
curvature ismaximal. This vertex is the seed vertex fromwhichwe
start the fitting of the projected helix. The goal is to fit a projected
helix curve to the part of the polygonal curve in the neighborhood
of vs.

6.1. Alignment of CI to the helix curve

Next, we compute the unit tangent vector T̂vs at the vertex vs
belonging to CI using the method described in Section 5 and build
a local coordinate frame Fvs whose origin is vs and its y-axis is T̂vs ;
its x-axis is normal to the y-axis and its orientation is defined such
that (x, y) is counterclockwise. Then,we align the coordinate frame
Fvs to FH , FH being the local coordinate frame of the projected helix
curve at t = 0. This alignment requires applying a translation,
rotation and possibly a reflection to the vertex coordinates of CI .
After this transformation, vertices of CI and points of the projected
helix curve are now defined in the same coordinate system.

6.2. Estimating the helix coefficients using two vertices of CI

The next step is to estimate the unknown coefficients a, b and
c of the projected helix so that it best approximates the curve CI
in the neighborhood of vs. Note that t is also unknown except at vs
and its value changes along the projected helix curve. This is done
with two steps. First, we choose a vertex vn in the neighborhood
of vs and compute the unknown coefficients a, b and c with vs
and vn. Second, we estimate the overall matching error of the
projected helix to the polygonal curve CI with the coefficients a, b
and c previously computed. This process of choosing vn, computing
the unknown coefficients for vn and vs and computing the overall
matching error is repeated several times and the values of a, b and
c that give the lowest matching error are chosen.

Since the local coordinate frame of CI at vertex vs has been
alignedwith the coordinate frame of the projected helix curveH(t)
at t = 0, the curve point H(0) and vs have their coordinates equal
to 0. κvs is the curvature of CI at the vertex vs. We select one vertex
vn =


xvn yvn

T in the neighborhood of vs; its unit tangent vector

is T̂vn =

xT̂vn yT̂vn

T. We suppose that the projected helix curve
passes through the vertices vs and vn. In particular, vn is located on
the projected helix curve at t = α. Then, we write the system of
equations:

vn = H (α)

T̂vn = T̂H (α) .

The first equation implies that the points H (α) and vn must have
the same coordinates and the second equation implies that T̂vs , the
unit tangent vector at vn, and T̂H (α), the unit tangent vector at
H (α), must be equal.

The above system of equations does not have a solution; it is
solved in the least square sense using an optimization method
whose unknown variables are a, b and c and whose objective
function is:

E (a, b, c) = βD ∥vn − H (α)∥2
+ (1 − βD)

T̂vn − T̂H (α)

2 .

Also note that vn can be any vertex in the neighborhood of vs. In
our implementation, we set α to π/4. βD is a weight to balance the
importance of minimizing either ∥vn − H(α)∥2 or ∥T̂vn − T̂H(α)∥2.
The unknown variables a, b and c are not linearly related. Methods
such as the simplex search method proposed by Lagarias et al. [14]
are used to solve such an optimization problem. Fig. 2 shows pro-
jected helices computed for different vertices vn.
Fig. 2. Helix curve (shown in red) generated from different vertices vn . The
coefficients a, b and c of each helix are shown below the curve. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

6.3. Estimating the fitting of the helix to other vertices of CI

Now that we have computed the helix coefficients for the two
vertices vs and vn, the next step to check the fitting of the projected
helix curve to the other vertices. The goal is to find the number of
consecutive vertices along CI for which the fitting is good. Let vs+j
be a vertex in the neighborhood of vs and whose index is s+ jwith
j starting from 1. The vertex of index s+ j is the vertex after a walk
of j vertices from vs and by following the positive orientation of the
curve.

For each vertex vs+j, we first compute the parameter ts+j such
that the point on the projected helix curve H(ts+j) is the closest
point to vs+j. Next we compute a matching error which measures
the difference of coordinates between vs+j and its counterpart
H(ts+j) on the projected helix curve:

E (vs+n, ts+n) = ∥vs+n − H (ts+n)∥
2 .

The iterations over vs+j stopwhen thematching error E (vs+n, ts+n)
is larger than a user-defined threshold EMax. This threshold EMax
is small enough so that the two points are considered to have the
same location. Typically, its value is set to 0.1% of the total curve
length of CI .

The same process is repeated for the adjacent vertices vs−k in
the other side of vs with the vertex index k starting from 1. Finally,
we compute the value j + k which is the number of consecutive
vertices for which the matching error is below the threshold EMax.
This number of vertices indicates the portion of the curve CI which
iswell fittedwith the projected helix curvewhose coefficients have
been calculated.

The overall fitting process requires using the two algorithms
described in Sections 6.2 and 6.3 alternately. We choose a vertex
vn among the 2 by NMAX neighbors of vs and compute the helix
coefficients using vs and vn. Then we compute how well the
projected helix curve with the computed coefficients can fit the
rest of the curve. We choose the coefficients a, b and c for which
the helix curve covers the largest portion of the polygonal curve CI .

6.4. Approximating CI with multiple helices

A single helix curve is usually not sufficient to approximate the
entire curve CI . In such a case, we build a piecewise helix curve to
approximate CI .

The process is done iteratively. After fitting a helix to CI , we
identify the part of CI whose vertices have not been fitted yet. The
fitting of the next helix is done on those vertices. As mentioned in
Section 6, the fitting of a new projected helix start by finding vs,
the vertex of highest curvature among the vertices which have not
been fitted yet.

The output is a set of projected helices: {H1,H2 . . .Hn} sorted
according to their location along CI . Each projected helix Hi has a
common vertex with each of its two adjacent neighbors Hi−1 and
Hi+1. These common vertices are denoted as junction vertices. In
addition, the projected helix orientations are consistent with each
other, i.e. the curve Hi begins at the last endpoint of the previous
curve Hi−1.
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7. 3D reconstruction and fine fitting

Once the entire curve CI has been approximated with projected
helix curves, the next step is to compute the 3D coordinates of the
vertices of CI .We start at the first helix located at one endpoint of CI
and continue the 3D reconstruction by processing adjacent helices
until the opposite endpoint of CI . The z-coordinates are computed
using the equation H3D,R (t) and the helix coefficients previously
computed.

Note that there exist two helices that match the same projected
helix curve onto the plane (z = 0). These two helices are mirror
symmetric with respect to the plane (z = 0). The equations of the
3D helix H3D (t) and its symmetric counterpart H3D,S (t) are:

H3D (t) =

H3D,x (t)
H3D,y (t)
H3D,z (t)


=

 a (cos (t) − 1)
bt cos (c) − a sin (c) sin (t)
bt sin (c) + a cos (c) sin (t)


H3D,S (t) =


H3D,x (t) H3D,y (t) −H3D,z (t)

T
.

These two helices have the same coordinates except the z-
coordinate which has opposite sign.

When processing the next helix H3D,i+1, the translation along
the z-axis is calculated such that the first endpoint of H3Di+1 has
the same z-coordinate as the last endpoint ofH3D,i. This is to ensure
that the endpoints of neighboring helices have the same location.
In addition, we choose the helix curve H3D (t) or its symmetric
counterpart H3D,S (t) such that the tangent vectors of H3D,i and
H3D,i+1 at the junction between these two helices are the most
parallel.

As one may see, the curvature of the generated piecewise he-
lices is discontinuous at the points located at the junction between
adjacent helices. This is because the coefficients of the helices have
been computed independently for each helix. To overcome this
problem, wemodify the coefficients of the helices in such a way to
make the tangents of the helices at the junction vertices as equal as
possible while keeping the distance between the projected piece-
wise helix and the polygonal curve CI small. We formulate this
problem as an optimization problem for which the objective func-
tion measures (1) the tangent difference at the junction vertices of
the piecewise helix and (2) the overall matching error which is the
distance between the projected piecewise helix and the vertices
of CI .

Let H3D,1,H3D,2 . . .H3D,i . . .H3D,n be the set of n helices that
compose the piecewise helix. Let H1,H2 . . .Hi . . .Hn be the set
of n projected helices that approximate the curve CI ,Hi being
the projection of H3D,i. Let ai, bi and ci be the coefficients of the
projected helix Hi. Each projected helix Hi fits to a portion of CI .
Let Vi = {vi,1, vi,2 . . . vi,j . . . vi,ni} be the set of ni vertices located
along the part of CI which is fitted with Hi. Each set of vertices
Vi is associated with a transformation matrix. The purpose of this
transformation matrix is to align the vertices Vi with the projected
helix Hi in the 2-dimensional space (x, y) (see Section 6.1).

The first vertex of Hi is common with the last vertex vi−1,ni−1
of Hi−1. This vertex is the so-called junction vertex. Similarly, the
last vertex of Hi is common with the first vertex vi+1,1 of Hi+1.
Let {ti,1, ti,2 . . . ti,ni} be the ni parameters of the points along the
projected helix Hi such that

Fi · vi,j − Hi

ti,j
 is minimum for all

vi,j ∈ Vi.
The objective function tominimize the difference of the tangent

vectors at the junction vertices is defined as follows:

ET (a1, b1, c1 . . . an, bn, cn)

=

n
i=2

T̂H3D,i−1


ti−1,ni−1


− T̂H3D,i


ti,1
2 .

T̂H3D,i−1


ti−1,ni−1


and T̂H3D,i


ti,1

are the tangent at the second

endpoint of the helixH3D,i−1 and the first endpoint of the helixH3D,i
Fig. 3. Some examples of piecewise helices generated by our algorithm.

respectively. The objective function to compute the distance error
between CI and the projected helices is:

ED (a1, b1, c1 . . . an, bn, cn)

=

n
i=1


ni
j=1

Fi · vi,j − Hi

ti,j
2 .

Fi · vi,j − Hi

ti,j
 is the distance between a vertex of CI and its

closest point along the corresponding projected helix curveHi

ti,j

.

The equation of the projected helix curve Hi

ti,j

is a function of

ai, bi and ci.
The objective function is defined as follows:

E (a1, b1, c1 . . . an, bn, cn) = αTET (a1, b1, c1 . . . an, bn, cn)
+ (1 − αT ) ED (a1, b1, c1 . . . an, bn, cn) .

The weight αT is a value in the interval ]0, 1[ and which is
chosen by the user. If its value is close to 1, more importance
is given to reducing the tangent discontinuity at the helix junc-
tions. The objective function is not linear in the unknown variables
a1, b1, c1 . . . an, bn and cn. We use the simplex search method pro-
posed by Lagarias et al. [14] for computing the unknown variables
such that it is minimum.

8. Results

Wehave implemented our algorithmasMatlab scripts and have
tested our reconstruction method on different curves. The results
are shown in Fig. 3. The computation time is about 1min for curves
composed of 500 vertices. Most of the computation time is spent
for the fine fitting (Section 7).

The result of our algorithm is invariant up to translation, rota-
tion and uniform scale; that is, the reconstruction of two 2D curves
which are the same up to a rigid transformation and uniform scale
will give the same 3D piecewise helix curve. This is because a fun-
damental step of our algorithm is to align theprojectedhelix curves
with the input curve CI using the tangent vectors (Section 6.1).

The piecewise helix curves generated with our algorithm are
not G0 continuous. In practice, the distance between the endpoints
of two neighboring helices is small enough so that they can be
regarded as having the same position.

Our algorithm also does not produce a G1 continuous curve
although it tries to find the piecewise helix such that the tangent
discontinuity is the smallest possible at the junction vertices. Most
of the time, these tangent discontinuities are small enough so that
they are not noticeable. There are some cases where high tangent
discontinuity occurs in the reconstructed piecewise helix curve
(Fig. 4).



262 N. Cherin et al. / Computer-Aided Design 46 (2014) 258–262
Fig. 4. A case where the reconstructed piecewise helix exhibits tangent
discontinuity: the input polygonal curve CI is shown in (a); vj is the junction vertex.
The tangents of H3D,1 and H3D,2 at the junction vertex have different orientation.

9. Conclusion

In this paper, we have described a method for computing a 3D
piecewise helix curve from a 2D polygonal curve.

Appendix

Proposition 1. The value of κH (t) is maximum when t is a multiple
of π (i.e. t = π · d with d ∈ N).

Proof. To prove Proposition 1, we analyze the curvature of the el-
lipse O which is the projection of the osculating circle O3D to the
curve H3D(t). In order to determine the orientation of the osculat-
ing circle, we compute the Frenet frame along the curve H3D(t).

Let (X, Y , Z) be the orthonormal coordinate system in which
the helix curveH3D(t) is defined. Let (T̂H3D(t), N̂H3D(t), B̂H3D(t)) be
the Frenet frame at the point H3D(t); this coordinate system is or-
thonormal and its origin is the point H3D(t). The parametric equa-
tion of the osculating circle O3D to the helix curve H3D(t) is defined
in the Frenet frame as follows:

O3D (u) =


a2 + b2


a

sin (u)


a2 + b2


a

(1 − cos (u)) 0

T

.

Let T̂H3D (t) , N̂H3D (t) and B̂H3D (t) be the tangent, normal and bi-
normal vectors at the point respectively. To prove Proposition 1,
we highlight the following five properties:

(P1) The osculating circle O3D is in the osculating plane (T̂H3D(t),
N̂H3D(t)) of H3D(t) and its curvature is the same as that of
H3D(t).

(P2) The matrix which defines the transformation from the Frenet
frame


T̂H3D (t) , N̂H3D (t) , B̂H3D (t)


to the global coordinate

system (
−→
X ,

−→
Y ,

−→
Z ) is:

MF→G (t) =

T̂H3D (t) N̂H3D (t) B̂H3D (t)


.

(P3) The matrix MF→S (t) which defines the transformation from
the Frenet frame


T̂H3D (t) , N̂H3D (t) , B̂H3D (t)


to the orthog-

onal projection onto the plane (z = 0) is the sameasMF→G (t)
except that the last row is filled with zeros.

(P4) The projection of the osculating circleO3D onto the plane (z =

0) is the ellipseO. The length of themajor axis ofO is constant;
it is equal to the length of the osculating circle diameter. The
length of the minor axis is a function of the orientation of the
osculating plane with respect to the plane (z = 0). The para-
metric equation of the ellipseO isO (u, t) = MF→S (t)O3D (u).

(P5) The curvature of the ellipse O(u, t) at u = 0 is equal to the
curvature of the projected helix curve H(t). In fact, by setting
the value u to 0 in the equation to compute the curvature of
the ellipse O(u, t), we obtain the curvature expression of the
projected helix H(t).

To prove Proposition 1,wemake the following statements. First,
the orthogonal projection of the point O3D(0) located on the os-
culating circle O3D(u) is the point O(0, t) which is located on the
ellipse O(u, t),O(u, t) being the orthogonal projection of O3D(u)
such that O (u, t) = MF→S (t)O3D (u).

Second, the pointO(0, t) is located at one of the endpoints of the
major axis of the ellipse O(u, t) if the vectorMF→S (t) ·


0 1 0

T
is a unit vector. This is true when t = 0 or t = π . Since the curva-
ture of the ellipse is maximum at the endpoints of the major axis
and the length of themajor axis is constant, the curvature atO(0, t)
is maximum for t = 0 or t = π . Property (P5) states that the cur-
vature of the ellipse O(u, t) at u = 0 is equal to the curvature of
the projected helix H(t); we conclude that the curvature of H(t) is
maximal for t = 0 or t = π .
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