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On Spatio-Temporal Feature Point Detection for Animated Meshes 

 

Abstract Although automatic feature detection has been a 

long-sought subject by researchers in computer graphics and 

computer vision, feature extraction on deforming models 

remains as relatively unexplored area. In this paper, we 

develop a new method for automatic detection of spatio-

temporal feature points on animated meshes. Our algorithm 

consists of three main parts. We first define local deformation 

characteristics, based on strain and curvature values computed 

for each point at each frame. Next, we construct multi-

resolution space-time Gaussians and Difference-of-Gaussian 

(DoG) pyramids on the deformation characteristics 

representing the input animated mesh, where each level 

contains 3D smoothed and subsampled representation of the 

previous level. Finally, we estimate locations and scales of 

spatio-temporal feature points by using a scale-normalized 

differential operator. A new, precise approximation of spatio-

temporal scale-normalized Laplacian has been introduced, 

based on the space-time DoG. We have experimentally 

verified our algorithm on a number of examples, and conclude 

that our technique allows to detect spatio- and temporal- 

feature points in a reliable manner. 

Keywords  Feature detection · Animated mesh · Multi-scale 

representation, Difference of Gaussian 

1 Introduction 

With the increasing advances in animation techniques and the 

motion capture devices, animation data has become more and 

more available today. Coupled with this, almost all geometry 

processing techniques (alignment, reconstruction, indexing, 

compression, segmentation, etc.) began to evolve around the 

new, time-varying data, which is an active research area in 

Computer Graphics. Many applications in medicine and 

engineering benefit from the increased availability and 

usability of animation data.  

Since such data has considerably large sizes, it often becomes 

indispensable to be able to select distinctive features from it, 

so as to maintain efficiency in its representation and in the 

process applied to it. Consequently, the need for robust, 

repeatable, and consistent detection of meaningful features 

from animation data cannot be overemphasized. However, the 

feature detection in animated mesh remains as much less 

explored domain, despite the proliferation of feature detectors 

developed by many researchers in computer graphics and 

computer vision.  

In this paper, we develop a spatio-temporal feature detection 

framework on animated meshes (an ordered sequence of static 

mesh frames with fixed number of vertices and connectivity), 

based on the scale space approaches. Our algorithm, which we 

call AniM-DoG, extends the spatial IP (interest point) 

detectors on static meshes[PKG03][CCF*08][ZBV*09][DK12] 

to animated meshes, so as to detect spatio-temporal feature 

points on them. Based on a deformation characterestic 

computed at each vertex in each frame, we build the scale 

space by computing various smoothed versions of the given 

animation data. At the heart of our algorithm is a new space-

time Difference of Gaussian (DoG) operator, which is an 

approximation of the spatio-temporal, scale-normalized 

Laplacian. By computing the local extrema of the new 

operator in space-time and scale, we obtain repeatable sets of 

spatio-temporal feature points over different deforming 

surfaces modeled as triangle mesh animations. We then 

validate the proposed AniM-DoG algorithm for its 

robustness and consistency. To the best of our knowledge, 

our work is the first that addresses the spatio-temporal feature 

detector in animated meshes. 

The remainder of the paper is organized as follows. In Section 

2, we survey related works on local feature extraction in 

videos and (static) meshes. After recapitulating some basic 

terminologies and notions in Section 3, we present an 

overview of the method‟s pipeline overview in Section 4. Next, 

we describe the scale space representation and our AniM-DoG 

algorithm in Section 5. In Section 6 we show results of 

proposed feature point extraction algorithm and evaluate 

robustness of the method. Finally, we present some useful 

applications of the spatio-temporal feature detection in Section 

7 and conclude in Section 8. 

2 Previous works  

Feature extraction is essential in different domains of 

computer graphics and is frequently used for numerous tasks 

including registration, object query, object recognition etc. 

Scale-space representation has been widely used for feature 

extraction in image, video and triangle mesh data sets [Lin98]. 

However, almost no research has been done on the feature 

extraction of deforming surfaces, such as animated meshes.  

Interest point detection in images and videos. Perhaps one 

of the most popular algorithms of feature extraction on images 

is Harris-Stephens detector [HS88], which uses second 

moment matrix and its eigen-values to choose points of 

interest. However, Harris method is not invariant to scale. 

Lindeberg [Lin98] tackled that problem and introduced 

automatic scale selection technique, which allows feature 

point detection at their characteristic scales. As Lindeberg has 

shown, local scale estimation using the normalised Laplace 

operator allows robustly detect interest point of different 

extents. Mikolajczyk and Schmid [MS01] further developed 

Lindeberg’s idea. As an improvement to the work of 

Lindeberg, authors proposed to use simultaneously Harris and 

Laplacian operators to detect interest points in scale-space 
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representation of an image. First, feature point candidates are 

detected as local maxima of Harris function in the image plane.  

Further, in order to obtain a more compact representation, only 

those points are retained where Laplacian reaches maxima 

over scale space. This approach, however, requires dense 

sampling over the scale parameters and is therefore 

computationally expensive. As Lowe [Low04] proposed, 

Difference of Gaussians (DoG) is a good approximation of 

Laplacian and hence could be used to reduce computational 

complexity. 

More recently, Laptev and co-authors [LL03] investigated 

how the notion of scale-space could be generalized to the 

detection of feature points in space-time data such as image 

sequences or videos. Interest points are identified as 

simultaneous maxima of the spatio-temporal Harris corner 

function as well as extrema of the normalized spatio-temporal 

Laplace operator. In order to avoid computational burden 

authors proposed to capture interest points in only sparse scale 

pyramid and then track these points in spatio-temporal scale-

time-space towards the extrema of scale-normalized 

Laplacian. However, in their method there is no guarantee of 

convergence. In the work of [BET*08] a novel detector-

descriptor scheme SURF (Speeded up robust features) has 

been proposed. Authors extend existing Hessian-based 

approaches and introduce Fast-Hessian detector that employs 

integral images for fast Hessian approximation. 

Feature description and feature point (FP) extraction on 

static meshes. There have been several approaches proposed 

for detecting feature points on 3D meshes. Most of them 

extend the detectors proposed for images. Pauly et al. [PKG03] 

has used „surface variation‟ to measure the saliency of vertices 

on the mesh, from which they build multi-scale representation. 

After extracting points with high feature response values, they 

construct minimum spanning tree of the edge points to extract 

feature lines. 

Lee et al. [LVJ05] proposed algorithm to compute the saliency 

of mesh points based on the center-surround operator of 

Gaussian-weighted mean curvatures. First mean surface 

curvatures are computed. Then for each vertex, they estimate 

saliency as an absolute value of the difference between mean 

curvatures filtered with Gaussians of smaller and larger 

variances. They repeat the procedure at different scales by 

increasing Gaussian variance. Non-linearly normalized 

aggregate of saliency at all scales is defined as the final vertex 

saliency.  

Castellani et al. [CCF*08] build scale-space over vertices in a 

mesh with successive decimations of the original shape. The 

displacements of a vertex throughout the decimation are used 

as a measure of saliency. Then vertices with high response in 

its DoG operator (inter-octave local maxima), and with high 

saliency in the neighborhood (intra-octave local maxima) are 

selected as feature points.  

Zaharescu et al. [ZBV*09] use photometric properties 

associated with each vertex as a scalar function defined on a 

3D mesh. A discrete operator named as „MeshDoG‟ is applied 

on this function, on which they apply Hessian operator to 

detect corner-like feature points. They extend MeshDOG to 

what they call MeshHOG, a feature descriptor, which 

essentially is a histogram of gradients in the neighborhood. 

The extracted features along with their descriptors were used 

for matching 3D model sequences they obtained from multi-

view images. 

Sipiran and Bustos [SB10] have used 3D Harris operator 

which is essentially an extension of the Harris corner detector 

for images. After fitting quadratic patch to the neighborhood, a 

vertex is treated as an image, on which the Harris corner 

detector can be been applied. 

Darom and Keller [DK12] propose a scale-invariant local 

feature descriptor for the repeatable feature point extraction on 

3D mesh. Each point is characterized by its coordinates, and a 

scale-space is built by successive smoothing of each vertex 

with its 1-ring neighbors. Local maxima both in scale and 

location are chosen as features.  

All these methods, however, have been concerned with mesh 

data defined on the spatial domain only. In this work, we 

propose a new feature detection technique in animated meshes 

which extends existing methods based on linear scale-space 

theory to spatio-temporal domain.  

3 Preliminaries 

At the heart of our algorithm is a scale-space representation. In 

this section we briefly recapitulate some basic notions that 

have been previous studied. Later, we develop its extensions 

to animated mesh data, which are described in Section 5.2 and 

Section 5.3. 

Scale-space representations have been studied extensively in 

feature detection for images, and more recently, for videos. 

The basic idea is to represent an original image f :R
d
R at 

different scales as L: R
d 

R+R by convolution of f with a 

Gaussian kernel with variance   : 

 (    )   (     )   ( ), (1) 
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One of the most successful feature detectors is based on DoG 

(Difference of Gaussians). To efficiently detect feature points 

in scale space, Lowe [Low04] proposed using convolution of 

the input image with the DoG functions. It is computed from 

the difference of two nearby scales:  

 (    )  ( (      )   (     ))   ( ) 

                               (     )   (    )                        (3) 

where k is a constant multiplicative factor separating the two 

nearby scales. Note that DoG is particularly efficient to 

compute, as the smoothed images L need to be computed in 

any case for the scale space feature description, and D can 

therefore be computed simply by image subtraction.  

The DoG provides a close approximation to the scale-

normalized Laplacian of Gaussian [Lin94],      , which has 

been proven to produce the most stable, scale-invariant image 

features [MS01]. The DoG and scale-normalized LoG are 

related through the heat-diffusion equation:  

  ( )

  
     ( )     (4) 

where the Laplacian on the right side is taken only with 

respect to the   variables. From this, we see that    ( ) can 

be computed from the finite difference approximation to 

  ( )   ⁄ , using the difference of nearby scales at    and  : 

  ( )

  
       

 (    )  (   )

    
      ( ),                 (5)  

and therefore,   

              (    )   (   )  (   )                        (6) 
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4 Overview 

Our goal is to develop a feature detector on animated mesh 

based on space-time DoG, which has been reported to be 

efficient approximation of robust Laplacian blob detector in 

space domain. Note that animated meshes that we are dealing 

with are assumed to have no clutters or holes, and maintain 

fixed topology over time, without tearing or changing genus. 

The spatial samplings can vary from one mesh to another, but 

it is desirable to have uniform sampling across one surface. 

The temporal sampling rate can also vary (~30Hz in our 

experiments), depending on how the animation has been 

obtained. In any case, the temporal sampling is considered 

uniform.  

The features we want to extract are the corners/blob-like 

structures, which are located in regions that exhibit a high 

variation of deformation spatially and temporally. We first 

define local deformation attributes on the animated mesh, 

from which we build a multi-scale representation of it. One of 

the main motivations to base our method on local surface 

deformation rather than vertex trajectories can be explained by 

the fact that (1) local deformation on a surface can be 

effectively measured by some well-defined principles, and that 

(2) the domain has intrinsic dimension of 2D+time (rather than 

3D+time) with some reasonable assumption on the data, i.e. 

differentiable 2-manifold with time-varying embedding. 

We then compute the deformation characterestics at different 

scales, by defining an appropriate spatio-temporal Gaussian-

like smoothing method. However, real Gaussian smoothing on 

mesh animation is problematic and expensive. Therefore we 

follow the other alternative and approximate Gaussian low-

pass filter by a sequence of spatio-temporal box average filters 

of fixed width. We obtain different space and time scales of 

deformation field over animation by varying the number box 

filtering is applied in space and in time. 

To estimate positions and scales of mesh animation feature 

points, we define a scale-normalized differential operator that 

assumes simultaneous extrema over space-time and scale 

neighborhood. Theoretically, it is possible to compute spatio-

temporal, scale-normalized Laplacian on every vertex of the 

animated mesh. For example, one could extend the work by 

Zaharescu et al. and compute the 3D gradient and Laplacian 

on the animated mesh. However, it would be too much costly 

as it requires computing the normal plane, on which principal 

direction should be determined. Therefore, we introduce a new 

precise approximation of spatio-temporal scale-normalized 

Laplacian based on space-time Difference of Gaussian. Then 

local extrema of the space-time DoG operator are captured as 

featutre points. Space-time DoG operator is cheap to compute 

and allows to robustly detect feature points over mesh 

animation in a repetetive and consistent manner. 

5 Dynamic feature detector (AniM-DoG) 

5.1 Deformation characteristics definition 

We are interested in quantities that are related to local 

deformation characteristics associated to each point of the 

mesh, at each frame. Thus, we base our algorithm on locally 

computed strain and curvature values computed as follows. 

Strain computation. We first consider the degree of 

deformation associated to each triangle on the mesh at each 

frame. Our method requires to specify the reference pose, the 

rest shape of the mesh before deformation (Fig. 1). In certain 

cases the reference pose can be found in one of the frames of 

the animation. If none of the given frames is appropriate as the 

rest pose, some prior works [LGX13] could be adopted to 

compute a canonical mesh frame by taking the average of all 

frames.  

Let    and  ̃  be the vertices of a triangle before and after the 

deformation, respectively. A 3 by 3 affine matrix F and 

displacement vector d transforms    into  ̃  as follows. 

        ̃         

Similarly to Sumner et al. [SZG*05], we add a fourth vertex in 

the direction of the normal vector of the triangle and subtract 

the first equation from the others to eliminate d. Then, we get 

   ̃      where 

  ,                   -,  

and 

 ̃  , ̃   ̃    ̃   ̃    ̃   ̃ -. 

Non-translational component of F encodes the change in 

orientation, scale, and skew induced by the deformation. Note 

that this representation specifies the deformation in per-

triangle basis, so that it will be independent of the specific 

position and orientation of the mesh in world coordinates. 

Without loss of generality, we assume that the triangle is 

stretched first and then rotated. Then we have     , where 

R denotes the rotation tensor and U the stretch tensor. Since 

we want to describe the triangle only with its degree of stretch, 

we eliminate the rotation component of   by computing the 

right Cauchy deformation tensor C as defined by:  

      (  ) (  )     . 

It can be shown that     is equal to the square of the right 

stretch tensor. We obtain principal stretches by the Eigen-

analysis on   , and use the largest eigenvalue    (maximum 

principal strain) as the in-plane deformation of the triangle. 

  
  

Fig. 1 Rest shapes are chosen as the reference frame for 

defining the deformation characteristics. 

Curvature computation. Computing the curvature at the 

vertices of a mesh is known to be non-trivial because of the 

piecewise-linear nature of meshes. One simple way of 

computing the curvature would be to compute the angle 

between two neighboring triangles along an edge. However, 

such curvature measurement is too sensitive to the noise on 

the surface of the mesh because its computation relies on two 

triangles only. Instead, we compute the curvature over a set of 

edges as described in [ACD*03]. Given a vertex vi, we first 

compute the set of edges Ei whose two vertices are within a 

user-defined geodesic distance to vi. Next we compute the 

curvature at each of the edges of Ei. The curvature at vi is then 

calculated as the average of the curvatures at the edges of Ei.  
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Deformation measure. Let M with M frames and N vertices 

be a given deforming mesh. For each vertex   
 
   M (  

               ) on which we have computed strain 

 (  
 
)  and curvature  (  

 
) we define the deformation 

characteristics  (  
 
) as follows: 

 (  
 
)   (  

 
)       (  

 
)   (  

 )   

The first term is obtained by transferring the above described 

per-triangle strain values to per-vertex ones, computed at each 

frame. At each vertex, we take the average strain values of its 

adjacent triangles as its strain. 
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Fig. 2 Local deformation characteristics are shown on a 

bending cylinder mesh. 

The second term encodes the curvature change with respect to 

the initial, reference frame. Note that  (  
 
)    for    

 
, 

which we use later for the feature detection (Section 5.3).  We 

set   typically to 7 in our experiments. Color coded 

deformation characteristics on a bending cylinder data is 

shown in Fig. 2. 

5.2 Scale space construction (Multi-scale representation) 

Given the deformation measures d for all vertices of the input 

animated mesh M, we re-compute d at K L different scale 

representations, obtaining octaves    (    =0,…K,   
 =0,…L) of deformation characteristics at different spatio-

temporal resolutions. Theoretically, the octaves are obtained 

by applying an approximated Gaussian filter for meshes. In 

practice, the approximation consists of subsequent 

convolutions of the given mesh with a box (average) filter 

[DK12]. In our work, we define a spatio-temporal average 

filter on the deformation characteristics of the animated mesh 

and compute a set of filtered deformation scalar fields, which 

we call as anim-octaves. As shown in Fig. 3, we define spatio-

temporal neighborhood     of a vertex in animation as a union 

of its spacial and temporal neighborhoods. A spatio-temporal 

average smoothing over     is obtained by applying a local 

spatial filter followed by a local temporal one.  

More specifically, for each vertex   
 

 at an anim-octave of 

scale (     ) , we compute deformation measures at next 

spatial octave (       ) ,  by averaging deformation 

measurements in current vertex of current octave 

 (  
 
      ) and its 1-ring‟s spatial neighborhood 

 (  
 (  

 
)      )  i.e. at adjacent vertices. For the next 

temporal octave (       ) we repeat similar procedure but this 

time averaging deformation values in 1-ring temporal 

neighborhood   
 (  

 
) as in Fig. 3. And for the next spatio-

temporal octave, we start from deformations in octave 
(       ) and apply temporal average filter again in the way 

described above, which yields  (  
 
          )  We continue 

this procedure until we build the desired number of spatio-

temporal octaves. Fig. 4 illustrates our anim-octaves structure. 

We denote an anim-octave as      (       ) , where 

     ( ). We note that although the term octave is widely 

used to refer to a discrete interval in the scale space, it may be 

misleading since in a strict sense, our octaves do not represent 

the interval of half or double the frequency. In Fig.5, we 

illustrate multi-scale deformation characteristics we computed 

on an animated mesh. The horizontal axis represent the spatial 

scale   , and the vertical axis the temporal scale   . 
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Fig. 3 The smallest possible spatio-temporal neighborhood 

    of a vertex   
 

 (blue dot) is composed of 1-ring spatial 

neighbors in frame f (black vertices) and 1-ring temporal 

neighbors (red vertices). Note that considering the temporal 

neighbors implies considering their spatial neighbors (white 

vertices) as well. 
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Fig. 4 Scale space is built by computing a set of octaves of an 

input animated mesh.  

Widths of the average filters. We set the width of the spatial 

filter as the average edge length of the mesh taken at the initial 

frame, assuming that spatial sampling of the mesh is 

moderately regular, and that the edge lengths in the initial 

frame represent well those in other frames of animation. Note 

that it can be done in a per-vertex manner, by computing for 

each vertex the average distance to its 1-ring neighbors, as it 

has been proposed by Darom and Keller [DK12]. However, 

since this will drastically increase the computation time for the 

octave construction stage, we have chosen to use the same 

filter width for all vertices. 

Determining the width of the temporal filter is simpler than 

the spatial one, as almost all data have regular temporal 

sampling rate (fps) throughout the duration of animation. 

Similarly to the spatial case, the inter-frame time is used to set 

the width of the temporal filter. Instead of averaging over 

immediate neighbors, however, we consider larger number of 

frame neighbors, in most cases. This is especially true when 

the animated mesh is densely sampled in time. The filter 

widths we used for each dataset are summarized in Table 1 
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Fig. 5 Multi-scale deformation characteristics on an animated mesh. From left to right, spatial scale    increases, and from top 

to bottom, temporal scale    increases. 

Maximum number of smoothings. Since an animated mesh 

can be highly redundant and heavy in size, the memory space 

occupied by the anim-octaves can be large as the number of 

scales increases. This becomes problematic in practice. With 

an insufficient number of smoothings, on the other hand, 

features of large characteristic scale will not be detected. 

Indeed, when the variance of the Gaussian filter is not 

sufficiently large, only boundary features will be extracted. 

Fig. 6 illustrates the principle behind the characteristic scale 

and the maximum required scale level. Given a spatio-

temporal location on the mesh, we can evaluate the DoG 

response function and plot the resulting value as a function of 

the scale (number of smoothings). Here, the spatial scale has 

been chosen as a parameter for the simplicity. The 

characteristic scales of the chosen vertices are shown as 

vertical lines, which can be determined by searching for scale-

space extrema of the response function. To detect the feature 

points on the bending region in the middle (  ), for instance, 

the octaves should be built up to 12 level. This means the 

maximum number of smoothings must be carefully set in 

order to be able to extract feature points of all scales while 

maintaining moderate number of maximum smoothing.  
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v1 
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Fig. 6 The DoG response function has been evaluated as a 

function of the spatial scale (number of smoothings). The 

characteristic scales of the chosen vertices are shown as 

vertical lines. 

In order to make sure that the features representing blobs of 

large scale are detected, we start by an average filter. Multiple 

applications of a box (average) filter approximates a Gaussian 

filter [AC92]. More precisely, n averagings with a box filter of 

width w produce overall filtering effect equivalent to the 

Gaussian filter with a standard deviation of: 

                                  √
 (    )

  
                                     (8) 

When the Laplacian of Gaussian is used for detecting blob 

centers (rather than boundaries), the Laplacian achieves a 

maximum response with 

                                       
 

√ 
                                           (9) 

where r is the radius of the blob we want to detect. 

Now assuming that the maximum radius      of the blob we 

want to detect is known, we can compute the required number 

of average smoothing that is sufficient to detect blob centers 

from Eq. (8) and Eq. (9): 

    
  

 (    )

 
 (10) 

⇔   
   

    
  (11) 

The maximum number of application of box filter for each 

dataset is listed in Table 1. 

Maximum radius of all possible blobs. Along the spatial 

scale space, we consider the average edge length of the initial 

shape as the width of the average filter  , as described above. 

For the maximum possible radius of a blob, we compare the 

axis-length change of the tight bounding box of the mesh 

during animation, with respect to its initial shape. The half of 

the largest change in axis-length is taken as     . 

Along the temporal scale space, we assume that the maximum 

radius      of all possible blobs is the half of the total time of 

duration of animation. By fixing the maximum number of 
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smoothing to some moderate value, we obtain the desirable 

box filter width from Eq. (10) or Eq. (11). 

5.3 FP detection by DoG 

In this section, we extend the idea of scale representation in 

spatial domain to spatio-temporal domain and adopt it to the 

case of animated mesh. Next, we propose our feature point 

detector and discuss some of its implementation related issues.  

Spatio-temporal scale space principles. Given time varying 

input signal f(x, t),         , one could build its scale-

space representation  (        )  by convoluting f with 

anisotropic Gaussian 

 (       )         
     

The motivation behind the introduction of separate scale 

parameters in space   and time   is that the space- and the 

time- extents of feature points are independent in general 

[LL03].  

Alternatively, another useful formulation of spatio-temporal 

scale space was reported in the work of Salden et al. [SRV98]. 

The spatio-temporal scale space L(        ) for a signal f(x, t) 

could be defined as a solution of two diffusion equations 

 
  

  
 ∑

   

       ,   (12a) 

 
  

  
 

   

   
,            (12b) 

with an initial condition  

    
        

 (       )   (   )   

In our case, the input animated mesh M can be considered as 

2-manifold with time-varying embedding, i.e. m(u, v, t) in 3D 

Euclidean space. Measuring deformation scalar field  ( ) in 

2-manifold over space and time yields a 3D input signal of the 

form d(u, v, t),         , and its scale space of the 

form    (          )         
   . Given the scale 

space representation    (        ) of the input animated mesh, 

we proceed with the construction of the DoG feature response 

pyramid, which we as describe below. 

Computing DoG pyramid. To achieve the invariance in both 

space and time, we introduce a spatio-temporal DoG operator, 

which is a new contribution. Our idea is to combine the spatial 

and the temporal parts of Laplacian and Difference-of-

Gaussians. Given the property of DoG (Eq.6) and Eq. 12a, Eq. 

12b, we obtain the following:  

  (   )   (    )   (   )  ∑
   

       , (13a) 

  (   )   (      )   (     )  
   

   
  (13b) 

Then we propose to define the spatio-temporal Laplacian by 

adding (13a) and (13b): 

  (   )   (   )  ∑
   

        
   

   
     . (14) 

The new spatio-temporal Laplacian operator is just a sum of 

DoG in space scale and DoG in time scale, which is 

computationally very efficient. 

In order to be able to extract features of all scales correctly, we 

need to scale-normalize the DoG response function. Choosing 

the exponent coefficients for the spatial Eq.13a (rightmost-

hand term)  and the temporal Eq.13b (rightmost-hand term) 

parts of Laplacian  [LL03]: 

      
         ∑

   

      

 

       
   

   
 (15) 

Therefore, to achieve scale-normalized approximation of 

Laplacian through DoG, we multiply both sides of (13a) with 

       and both sides of (13b) with       obtaining 

        (   )        ∑
   

       , (16a) 

       (   )       
   

   
  (16b) 

And from (16a-16b) we see that  

     
          (   )         (   ). 

On the other hand, we can get a formulation of spatio-

temporal DoG that approximates scale-normalized Laplacian 

   (       )         (   )         (   ). 

Thus, given the definition of spatio-temporal Difference of 

Gaussians we can compute feature response pyramid in the 

following way. For each vertex (u,v,t) in the animated mesh 

 , and for every scale (     )      of the surface 

deformation pyramid we compute    (            ).  

FP detection. Once the spatio-temporal DoG pyramid 

*   (            )  (      )      } is constructed, we 

extract feature points by identifying local extrema of the 

adjacent regions in the space, time, and scales. In contrast to 

Mikolajczyk and Schmid [MS01] who computes Harris and 

Laplacian operators, our method requires only DoG, which 

makes itself computationally efficient. This is particularly 

interesting for the animated mesh data which is generally 

much heavier than the image. Considering that our surface 

deformation function is always non-negative (and 

consequently its scale-space representation), it is worth 

mentioning that Laplacian of Gaussian and its DoG 

approximation reach local minima in centers of blobs. Such 

specific LoG behavior is illustrated in Fig. 7. 

For each scale (     )      of 2D DoG pyramid, we first 

detect vertices in animation that are local minima in DoG 

response over their spatio-temporal neighborhood    : 

      *             ( )    ( )     (  )  

       ( )     +  

where    ( ) is a spatio-temporal neigbourhood of vertex   in 

the animation   (Fig. 3). 

Next, out of preselected feature candidates    , we retain only 

those vertices which are simultaneous minima over 

neighboring spatio-temporal scales of DoG pyramid : 

  *       (   )     (   )    ( )     ( ) 

        ( )     +  

where    (   ) is a set of eight neighboring scales 

   (   )  * (   )   (   )(   )  (   )(   )   (   )  
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  (   )  (   )   (   )(   )  (   )(   )+  

and    ,     are user-controlled thresholds. The spatial scale of 

a feature point corresponds to the size of the neighborhood 

where some distinctive deformation is exhibited. Similarly, the 

temporal scale corresponds to the duration (or speed) of the 

deformation. 

 
 

(a) Gaussian and LoG (b) Synthetic signal 

  

(c) LoG magnitude (d) LoG 

  

(e) Features as maxima of 

LoG magnitude response 

(f) Features as minima of as 

minima of LoG response 

Fig. 7 A 2D illustration of our feature detection method.  (a) 

LoG yields the valley in blob's center and peaks around the 

boundary, while the magnitude of LoG has peaks in both cases. 

(b) Synthetic input signal consisting of 3 Gaussian blobs in 2d. 

(c) Response of synthetic 2d signal as the absolute value of 

LoG. (d) Response of the 2d signal computed as LoG. (e) 

Working with LoG magnitude response we observe several 

false secondary blobs. (f) Features captured as the local 

minima of LoG response are reliable. 

Dealing with secondary (border) blobs. However, in case 

we consider local maxima of DoG (LoG) magnitude, we may 

detect artifacts. Undesirable secondary blobs are caused by the 

shape of Laplacian of Gaussian which yields peaks around the 

border of real blob (Fig. 7a). Consider a perfect Gaussian blob 

as an input signal. If we assume magnitude (i.e. absolute value) 

of LoG to be feature response, we get strong peak in the center 

of the blob and two other secondary peaks around edges, and 

that is troublesome. In contrast, dealing with signed LoG (not 

absolute) we observe valleys (local minima) in blob centers 

and peaks (local maxima) on borders. Hence searching for 

local minima of LoG, rather than local maxima of LoG 

magnitude, prevents from the detection of false secondary 

features (Fig. 7b-f). The other way around could be to use 

LoG magnitude but discard local maxima which are not strong 

enough in initial signal, and therefore are false findings. 

Though, previous works in feature extraction on 

images/video/static meshes [MS01, LL03, ZBV*09] often 

adopt Hessian detector, which does not detect secondary blobs. 

However, in contrast to DoG detector, estimation of Hessian 

on a mesh surface is significantly heavier. And even more 

problematic and challenging to estimate Hessian matrix on 

animated mesh.  

Implementation notes. Often, animated meshes are rather 

heavy data. As we increase the number of anim-octaves in the 

pyramid, we can easily run out of memory, since each octave 

is essentially a full animation itself but at different scale. 

Consequently, we have to address that issue in the 

implementation stage. In order to minimize memory footprint, 

we compute pyramids and detect feature points progressively. 

We fully load into main memory only space scale dimension 

of Gaussian and DoG pyramids. As for time scale, we keep 

only two neighboring time octaves simultaneously, which are 

required for DoG computation. Then we construct the pyramid 

from bottom to top by iteratively increasing time scale. On 

each iteration of Gausian/DoG pyramid movement along time 

scale, we apply our feature detection method to capture 

interest points (if any on current layer). We repeat the 

procedure until all pyramid scales have been processed. 

6 Experiments 

Deforming meshes used in our experiments include both 

synthetic animations and motion capture sequences, which are 

summarized in Table 1. We synthesized a simple deforming 

Cylinder animation by rigging and used it for initial tests.  

Also we captured two person‟s facial expressions using Vicon 

system [Vicon] and then transferred the expressions to the 

scanned faces of the two persons Face1 and Face2 (Table 1).  

Table 1 The animated meshes used in our experiments. 

Name 
No.vertices/ 

triangles 

No. 

frames 

Filter 

widths 

(space/time) 

Max. no. 

smoothings 

(space/time) 

Cylinder 587/1170 40 10.0/0.83 50/100 

Face1(happy) 608/1174 139 8.96/8.45 118/113 

Face1(surprise) 608/1174 169 9.39/13.2 96/107 

Face2(happy) 662/1272 159 9.31/13.2 112/94 

Face2(surprise) 662/1272 99 8.95/8.45 109/57 

Horse 5000/9984 48 3.48/5.33 77/54 

Camel 4999/10000 48 2.62/5.33 102/54 

Woman1 4250/8476 100 5.12/5.2 72/150 

Woman2 4250/8476 100 4.44/5.2 82/150 

Woman3 4250/8476 100 4.54/5.2 99/150 

Face3 5192/9999 71 5.18/3.65 90/114 

Head 7966/15809 71 9.06/3.65 28/114 

 

Fig. 10 shows selected frames of several animated meshes we 

used in our experiments. Spatio-temporal feature points we 

have extracted using our algorithm are illustrated as spheres. 

For the complete sequences along with the extracted feature 

points, please take a look at our accompanying demo video.  
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Face1 (happy), Face1 (surprise), Face2 (happy), Face2 

(surprise) contain facial expressions of happiness and surprise 

of those scanned subjects. The horse and the camel were 

obtained from results of Sumner and Jovan Popović‟s work 

[SP04] that are available online [Mesh]. Furthermore, we 

produced two mesh animations of seventy frames, Face3 and 

Head, by using nine facial expressions of the face and the head 

from [SP04]. More specifically, given an ordered sequence of 

nine facial expressions, we smoothly morphed each mesh to 

the next one through a linear interpolation of their vertex 

coordinates. We also used “walk and whirl” skeletal 

animations of three women models. Those models share the 

same mesh topology and were obtained by deforming a 

template mesh onto three body scans of different subjects. 

Note that there is high semantic similarity between animation 

pairs of Face1/Face2, horse/camel, Face3/Head. It is also the 

case for three women models. 

The color of a sphere represents the temporal scale (red color 

corresponds to more fast deformations) of the feature point, 

and radius of sphere indicates the spatial scale. Vertex color 

on surfaces corresponds to amount of deformation (strain and 

curvature change) observed in each of animation frame. 

During experiments we have discovered that our method 

captures spatio-temporal scales in a robust manner. For 

example, surface patches around joints of cylinder (Fig. 11 1a-

1e) exhibit different amount of deformation that occurs at 

different speed. The top joint is moving fast and consequently 

corresponding feature was detected at low temporal scale (red 

color). However, the mid-joint is deforming for a long time 

and we identify it at high temporal scale (blue color). 

Moreover large radii of deforming spheres for both joints 

make sense and indicate large deforming regions around the 

features, rather than very local deformation (Fig. 11 1c). 

Second row in (Fig. 11 2a-2e) depicts some of the feature 

points in Horse mesh animation, and third row (Fig. 8 3a-3e) 

corresponds to Camel animation. Those two meshes deform in 

a coherent manner [SP04], and eventually we detect their 

spatio-temporal features quite consistently. In the last two 

rows (Fig. 11 4a-4e, 5a-5e) we present feature points in 

mocap-driven face animations of two different subjects. Our 

subjects were asked to mimic of slightly exaggerated emotions 

during the mocap session. Notice that people normally use 

different set of muscles when they show up facial expressions, 

and therefore naturally we observe some variations in the way 

their skin deforms. 

Our algorithm is implemented in C++. All our tests have been 

conducted on an Intel Core i7–2600 3.4 GHz machine, with 

8GB of RAM. The computation time devoted to full pipeline 

of the algorithm is approximately 2 minutes for most of our 

example data. 

Invariance to rotation and scale. Invariance of our detector 

to rotation as well as scale is evident from the definition of our 

deformation characteristics. Both the strain and the curvature 

measure we use are invariant to rotation and scale of the 

animated mesh.  

Robustness to changes in spatial and temporal sampling. 

Robustness of our feature detector to changes in spatial 

sampling is obtained by the adaptive setting of the widths of 

the box filters. As described in Section 5.2, we set the width of 

the spatial filter as the average edge length of the mesh taken 

at the initial frame. In order to demonstrate the invariance to 

spatial density of the input mesh, we have conducted 

comparative experiments on two bending cylinders. These two 

cylinders have identical shape and deformation; they only 

differ by the number of vertices and the inter-vertex distance. 

As shown in the 1st and 3rd rows of Fig. 10, the features are 

extracted at the same spatio-temporal locations.  

Robustness to changes in temporal sampling is obtained 

similarly to the above, i.e. by the adaptive setting of the widths 

of the box filters. Similar experiments have been conducted by 

using the two bending cylinders as shown in the 1st and 2nd 

rows of Fig. 10. They are perfectly identical except that the 

temporal sampling of the first one is twice higher than that of 

the first one. Once again, the extracted feature points are 

identical in their locations in space and time.  

We have further experimented with datasets of similar 

animations, but with different shape, spatial- and temporal- 

samplings (4th row of Fig. 11, galloping animals and two face 

models in Fig. 11). Although the extracted features show a 

good level consistency, they are not always identical. For 

example, feature points for the galloping horse and camel do 

not have the same properties (location, time, tau and sigma). 

Similar results have been observed for the “face” models. This 

can be explained by the following facts: Firstly, although the 

two meshes have deformations that are semantically identical, 

the level of deformation (curvature and strain) might differ 

greatly. Secondly, most of these models have irregular vertex 

sampling whereas in our computation of the spatial filter width, 

we assume that the vertex sampling is regular. 

6.1 Consistency  

Since our method is based on deformation characteristics, it 

has an advantage of consistent feature point extraction across 

mesh animations with similar motions. To demonstrate mutual 

consistency among feature points in different animations, we 

used animation data that exhibit semantically similar motions. 

Our technique captures similarity of surface deformations and 

therefore ensures feature point detection consistency (Fig. 12). 

In most cases our method demonstrates high coherency not 

only in space and time locations of extracted features but also 

in their space-time scales   and  . The only data sets for 

which we observed relatively lower consistency of feature 

detection are the two face mocap sequences. The reason for 

this lies in inherent difference of people‟s facial expressions 

and underlying muscle anatomy. 

Additionally, we have performed the quantitative evaluation 

of the feature extraction consistency as follows. For all feature 

points we consider only their spatial locations disregarding the 

time coordinates. Then a pair of similarly deforming meshes 

  and    whose full correspondence        is known, 

we find the matching between their feature points    and    

based on the spatial proximity. More precisely, for each 

feature point   
    , the feature point   

 
   that minimizes 

  
  ‖ (  

 )    
 
‖ is considered to be the matching one. The 

distance   
  is what we call feature matching error. Histogram 

plots of feature matching errors are depicted in Fig. 8. 

Obtaining the full correspondence for walking women models 

was straightforward because they share the same mesh 

topology. For horse/camel, we obtained a full per-triangle 

correspondence from [SP04], which we converted to a per-

vertex correspondence.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 8 The error plots of feature points for pairs (a) Woman1-

Woman2, (b) Woman1 – Woman3, (c) Woman2 - Woman3, 

Camel-Horse (d). We depict the feature matching error on the x-

axis as the error (percentage of the error with respect to the 

diagonal length of the mesh bounding box). The percentage of 

features with prescribed matching error is depicted on the y-

axis. For all four pairs of animations, more than 90% of features 

have a matching error less than 0.05. 

6.2 Comparison to the ground truth 

We have validated our method by comparing the feature 

points to the manually defined ground truth. We asked six 

volunteers to paint feature regions on the animated meshes 

using an interactive tool. The task was to mark locations at 

which salient surface deformation behavior can be observed 

from the user point of view. Each of them could play and 

pause the animation at any moment and mark feature regions 

by a color. To simplify the task, the time duration of each 

feature region was not considered. Since the per-vertex 

selection can be error-prone, we deliberately allow users to 

select a region on the surface instead of a single vertex. By 

aggregating the feature regions from all volunteers, we 

generated a color map of feature regions. More specifically, 

for each vertex we summed up and averaged the number of 

times it has been included in the user-selected regions. The 

aggregated ground truth was then converted into a surface 

color map, as depicted in Fig. 9a, c. Note, that eyes do not 

belong to feature regions of face animations, since the user‟s 

task was to define features based on the surface deformation 

rather than geometric saliency or naturally eye-catching 

regions. 

To compare our results with respect to the ground truth, we 

compute for every feature point p its feature region of 

neighboring vertices q such that   *     (   )     + , 

where   (    ) is a within-surface geodesic distance and    is 

the corresponding scale value at which the feature was 

detected. Similarly to the ground truth, for each vertex of the 

mesh we count the number of occurrences in feature regions 

during the animation, and convert the numbers to the surface 

color map as shown in Fig. 9b, d. We observe a good level of 

positive correlation between the computed feature regions and 

the ground truth.  

 

  

(a) (b) 

  

(c) (d) 

Fig. 9 Comparison of the ground truth (a, c) to the feature 

regions computed by our method (b, d). For each vertex, color 

intensity depicts the accumulative number of its appearances 

during the animation. Green and blue colors were used for the 

ground truth and our computed feature regions, respectively.  

7 Discussion 

Our method and results could be extended and applied to a 

number of useful applications. We describe some of the ideas 

below while leaving their developments as future works. 

Animated mesh simplification. As it has been noted in 

earlier works on simplification of dynamic (deforming) 

meshes [SPB00][KG05], it is preferable to allocate bigger 

triangle budget for regions of high surface deformation while 

simplifying mostly rigid regions.  Our algorithm could be 

adopted in these as it detects feature points that are exactly in 

deforming regions. Their spatial scales    can be used to 
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define regions around features where the mesh must keep 

denser sampling during simplification. For instance, the spatial 

scale of the feature points can be used to define regions where 

the mesh must be densely sampled during simplification. The 

temporal scale can also be used to dynamically determine the 

triangle budget around the feature point, when designing a 

time-varying simplification technique. A very small temporal 

scale implies either a short duration or a high speed of the 

animation, thus one may assign low priority to the feature 

point. In the same way, the region around a feature point with 

large temporal scale will be prioritized when allocating the 

triangle budget. Another use of the temporal scale is in the 

maintenance of the hierarchy. When transferring the previous 

frame's hierarchy to one better suited for the current frame in a 

time-critical fashion, the algorithm can use the temporal scale 

of a FP as a “counter” to determine whether to update or reuse 

the node corresponding to the region around the FP. By 

processing the nodes corresponding to the spatio-temporal 

feature points in an order of decreasing temporal scale, one 

can economize the time for the per-frame maintenance of the 

hierarchy while keeping the animation quality as much as 

possible.  

Viewpoint selection. With increasing advances in scanning 

and motion capture technologies animated mesh data becomes 

more and more available today. Thus it is very practical to 

have a tool for automatic viewpoint selection for the preview 

of the motion in animation repositories. The idea behind that is 

to let a user to quickly browse the animation data from the 

point that maximizes the visibility of mesh deformations. With 

such viewpoint selection, the user benefits from a better 

perception of the animation. One equally handy and straight 

forward way to automatically select optimal viewpoint is to 

compute the one which maximizes the number of visible 

feature points through the optimization. We note that our 

spatio-temporal feature points can simplify the selection of 

good viewpoint(s). For instance, the quality of a viewpoint 

could be defined as a function of the visibility of the spatio-

temporal feature points in terms of the total number, temporal 

variability and the concavity of the projected feature region (as 

defined by the spatial and temporal scales), etc. Interested 

reader may refer to an optimization technique proposed in 

[LVJ05] on saliency-based viewpoint selection for static 

meshes. 

Animation alignment. Another interesting application could 

be animated mesh alignment. Considering the consistency of 

the extracted feature points, their scales values can be 

employed for the temporal alignment. Given sets of features P 

and    extracted from pair of similar animations, we consider 

corresponding sequences *(     )   (     )+  
*(  

    
 )   (  

    
 )+  of spatio-temporal feature scales 

aligned along the time they were detected. Existing algorithms 

of sequence alignment such as [Got90] can then be used to 

compute the temporal alignment between them. In addition to 

the spatial- and temporal- scales, more sophisticated feature 

descriptors can also be used to compose the sequences. 

Animation similarity. We can also think of extending the 

above mentioned animation alignment algorithm towards a 

measurement of animation similarity. From the feature 

sequence alignment map, we can sum up all penalty gaps i.e. 

some predefined costs for all features for which no match can 

be found. That cost function could serve as a distance metric 

between the animations and hence be a measure of 

dissimilarity/similarity. Note that an important byproduct of 

the animation similarity is the animated mesh retrieval, which 

is particularly beneficial in emerging dynamic data 

repositories. 

8 Conclusion 

We have presented a new feature detection technique on 

triangle mesh animations based on linear scale-space theory. 

We introduced a new spatio-temporal scale representation of 

surface deformation in mesh animations. Furthermore, we 

developed extension of classical DoG filter to spatio-temporal 

case. The later allows our method to robustly extract 

repeatable sets of feature points over different deforming 

surfaces modeled as triangle mesh animations. We carried out 

experimental validation of detected features on various types 

of data sets and observed consistent results. Our approach has 

shown robustness to spatial and temporal sampling of mesh 

animation.  In our future research, we intend to focus on 

feature point descriptor that could be useful for applications 

such as matching between animations. 

Descriptors. Our feature detector could be extended to 

detector-descriptor. One straightforward idea of the feature 

point descriptor could be the following. Given space –time 

neighborhood around feature point   
 
 which consists of its k-

ring space neighborhood over range of [f-l, …, f+l] frames. 

Note, that values of k and l could be adjusted to reflect 

characteristic scale of the feature. Next, flattening of k-ring 

regions for each frame of the range produces a volumetric 

stack of planar mesh patches. Then, proceeding in a spirit of 

robust 3D SIFT descriptor [SAS07], we can estimate 

histograms of DoG gradients computed inside the spatio-

temporal volume around the feature point. Further, Euclidean 

or Earth Mover‟s distance between the histograms could be 

used for measuring similarities of features within mesh 

animation or between different animations. 
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Fig. 10 Results we obtained on varying datasets of bending cylinder animations demonstrate the consistent behavior of 

our feature detector.  
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Fig. 11 Dynamic feature points detected by our AniM-DoG framework are illustrated on a number of selected frames of animated 

meshes. The color of a sphere represents the temporal scale (from blue to red) of the feature point, and radius of sphere indicates 

the spacial scale. 
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Fig. 12 Inter-subject consistency of feature points extracted from semantically similar mesh animations. Rows (a-b) depict subset 

of feature points extracted from walking subject sequences and (c-d) from face animations. Note that each column corresponds to 

identical frame of the animations. 

 


