
Vasyl Mykhalchuk · Hyewon Seo · Frederic Cordier

On Spatio-Temporal Feature Point Detection for Animated Meshes

Abstract Although automatic feature detection has been a

long-sought subject by researchers in computer graphics and

computer vision, feature extraction on deforming models

remains as relatively unexplored area. In this paper, we

develop a new method for automatic detection of spatio-

temporal feature points on animated meshes. Our algorithm

consists of three main parts. We first define local deformation

characteristics, based on strain and curvature values computed

for each point at each frame. Next, we construct multi-

resolution space-time Gaussians and Difference-of-Gaussian

(DoG) pyramids on the deformation characteristics

representing the input animated mesh, where each level

contains 3D smoothed and subsampled representation of the

previous level. Finally, we estimate locations and scales of

spatio-temporal feature points by using a scale-normalized

differential operator. A new, precise approximation of spatio-

temporal scale-normalized Laplacian has been introduced,

based on the space-time DoG. We have experimentally

verified our algorithm on a number of examples, and conclude

that our technique allows to detect spatio- and temporal-

feature points in a reliable manner.

Keywords Feature detection · Animated mesh · Multi-scale

representation, Difference of Gaussian

1 Introduction

With the increasing advances in animation techniques and the

motion capture devices, animation data has become more and

more available today. Coupled with this, almost all geometry

processing techniques (alignment, reconstruction, indexing,

compression, segmentation, etc.) began to evolve around the

new, time-varying data, which is an active research area in

Computer Graphics. Many applications in medicine and

engineering benefit from the increased availability and

usability of animation data.

Since such data has considerably large sizes, it often becomes

indispensable to be able to select distinctive features from it,

so as to maintain efficiency in its representation and in the

process applied to it. Consequently, the need for robust,

repeatable, and consistent detection of meaningful features

from animation data cannot be overemphasized. However, the

feature detection in animated mesh remains as much less

explored domain, despite the proliferation of feature detectors

developed by many researchers in computer graphics and

computer vision.

In this paper, we develop a spatio-temporal feature detection

framework on animated meshes (an ordered sequence of static

mesh frames with fixed number of vertices and connectivity),

based on the scale space approaches. Our algorithm, which we

call AniM-DoG, extends the spatial IP (interest point)

detectors on static meshes[PKG03][CCF*08][ZBV*09][DK12]

to animated meshes, so as to detect spatio-temporal feature

points on them. Based on a deformation characterestic

computed at each vertex in each frame, we build the scale

space by computing various smoothed versions of the given

animation data. At the heart of our algorithm is a new space-

time Difference of Gaussian (DoG) operator, which is an

approximation of the spatio-temporal, scale-normalized

Laplacian. By computing the local extrema of the new

operator in space-time and scale, we obtain repeatable sets of

spatio-temporal feature points over different deforming

surfaces modeled as triangle mesh animations. We then

validate the proposed AniM-DoG algorithm for its

robustness and consistency. To the best of our knowledge,

our work is the first that addresses the spatio-temporal feature

detector in animated meshes.

The remainder of the paper is organized as follows. In Section

2, we survey related works on local feature extraction in

videos and (static) meshes. After recapitulating some basic

terminologies and notions in Section 3, we present an

overview of the method‟s pipeline overview in Section 4. Next,

we describe the scale space representation and our AniM-DoG

algorithm in Section 5. In Section 6 we show results of

proposed feature point extraction algorithm and evaluate

robustness of the method. Finally, we present some useful

applications of the spatio-temporal feature detection in Section

7 and conclude in Section 8.

2 Previous works

Feature extraction is essential in different domains of

computer graphics and is frequently used for numerous tasks

including registration, object query, object recognition etc.

Scale-space representation has been widely used for feature

extraction in image, video and triangle mesh data sets [Lin98].

However, almost no research has been done on the feature

extraction of deforming surfaces, such as animated meshes.

Interest point detection in images and videos. Perhaps one

of the most popular algorithms of feature extraction on images

is Harris-Stephens detector [HS88], which uses second

moment matrix and its eigen-values to choose points of

interest. However, Harris method is not invariant to scale.

Lindeberg [Lin98] tackled that problem and introduced

automatic scale selection technique, which allows feature

point detection at their characteristic scales. As Lindeberg has

shown, local scale estimation using the normalised Laplace

operator allows robustly detect interest point of different

extents. Mikolajczyk and Schmid [MS01] further developed

Lindeberg’s idea. As an improvement to the work of

Lindeberg, authors proposed to use simultaneously Harris and

Laplacian operators to detect interest points in scale-space

2 Vasyl Mykhalchuk · Hyewon Seo · Frederic Cordier

representation of an image. First, feature point candidates are

detected as local maxima of Harris function in the image plane.

Further, in order to obtain a more compact representation, only

those points are retained where Laplacian reaches maxima

over scale space. This approach, however, requires dense

sampling over the scale parameters and is therefore

computationally expensive. As Lowe [Low04] proposed,

Difference of Gaussians (DoG) is a good approximation of

Laplacian and hence could be used to reduce computational

complexity.

More recently, Laptev and co-authors [LL03] investigated

how the notion of scale-space could be generalized to the

detection of feature points in space-time data such as image

sequences or videos. Interest points are identified as

simultaneous maxima of the spatio-temporal Harris corner

function as well as extrema of the normalized spatio-temporal

Laplace operator. In order to avoid computational burden

authors proposed to capture interest points in only sparse scale

pyramid and then track these points in spatio-temporal scale-

time-space towards the extrema of scale-normalized

Laplacian. However, in their method there is no guarantee of

convergence. In the work of [BET*08] a novel detector-

descriptor scheme SURF (Speeded up robust features) has

been proposed. Authors extend existing Hessian-based

approaches and introduce Fast-Hessian detector that employs

integral images for fast Hessian approximation.

Feature description and feature point (FP) extraction on

static meshes. There have been several approaches proposed

for detecting feature points on 3D meshes. Most of them

extend the detectors proposed for images. Pauly et al. [PKG03]

has used „surface variation‟ to measure the saliency of vertices

on the mesh, from which they build multi-scale representation.

After extracting points with high feature response values, they

construct minimum spanning tree of the edge points to extract

feature lines.

Lee et al. [LVJ05] proposed algorithm to compute the saliency

of mesh points based on the center-surround operator of

Gaussian-weighted mean curvatures. First mean surface

curvatures are computed. Then for each vertex, they estimate

saliency as an absolute value of the difference between mean

curvatures filtered with Gaussians of smaller and larger

variances. They repeat the procedure at different scales by

increasing Gaussian variance. Non-linearly normalized

aggregate of saliency at all scales is defined as the final vertex

saliency.

Castellani et al. [CCF*08] build scale-space over vertices in a

mesh with successive decimations of the original shape. The

displacements of a vertex throughout the decimation are used

as a measure of saliency. Then vertices with high response in

its DoG operator (inter-octave local maxima), and with high

saliency in the neighborhood (intra-octave local maxima) are

selected as feature points.

Zaharescu et al. [ZBV*09] use photometric properties

associated with each vertex as a scalar function defined on a

3D mesh. A discrete operator named as „MeshDoG‟ is applied

on this function, on which they apply Hessian operator to

detect corner-like feature points. They extend MeshDOG to

what they call MeshHOG, a feature descriptor, which

essentially is a histogram of gradients in the neighborhood.

The extracted features along with their descriptors were used

for matching 3D model sequences they obtained from multi-

view images.

Sipiran and Bustos [SB10] have used 3D Harris operator

which is essentially an extension of the Harris corner detector

for images. After fitting quadratic patch to the neighborhood, a

vertex is treated as an image, on which the Harris corner

detector can be been applied.

Darom and Keller [DK12] propose a scale-invariant local

feature descriptor for the repeatable feature point extraction on

3D mesh. Each point is characterized by its coordinates, and a

scale-space is built by successive smoothing of each vertex

with its 1-ring neighbors. Local maxima both in scale and

location are chosen as features.

All these methods, however, have been concerned with mesh

data defined on the spatial domain only. In this work, we

propose a new feature detection technique in animated meshes

which extends existing methods based on linear scale-space

theory to spatio-temporal domain.

3 Preliminaries

At the heart of our algorithm is a scale-space representation. In

this section we briefly recapitulate some basic notions that

have been previous studied. Later, we develop its extensions

to animated mesh data, which are described in Section 5.2 and

Section 5.3.

Scale-space representations have been studied extensively in

feature detection for images, and more recently, for videos.

The basic idea is to represent an original image f :R
d
R at

different scales as L: R
d

R+R by convolution of f with a

Gaussian kernel with variance :

 () () (), (1)

where

 ()

(√)
 (

). (2)

One of the most successful feature detectors is based on DoG

(Difference of Gaussians). To efficiently detect feature points

in scale space, Lowe [Low04] proposed using convolution of

the input image with the DoG functions. It is computed from

the difference of two nearby scales:

 () (() ()) ()

 () () (3)

where k is a constant multiplicative factor separating the two

nearby scales. Note that DoG is particularly efficient to

compute, as the smoothed images L need to be computed in

any case for the scale space feature description, and D can

therefore be computed simply by image subtraction.

The DoG provides a close approximation to the scale-

normalized Laplacian of Gaussian [Lin94], , which has

been proven to produce the most stable, scale-invariant image

features [MS01]. The DoG and scale-normalized LoG are

related through the heat-diffusion equation:

 ()

 () (4)

where the Laplacian on the right side is taken only with

respect to the variables. From this, we see that () can

be computed from the finite difference approximation to

 () ⁄ , using the difference of nearby scales at and :

 ()

 () ()

 (), (5)

and therefore,

 () () () (6)

3 Vasyl Mykhalchuk · Hyewon Seo · Frederic Cordier

4 Overview

Our goal is to develop a feature detector on animated mesh

based on space-time DoG, which has been reported to be

efficient approximation of robust Laplacian blob detector in

space domain. Note that animated meshes that we are dealing

with are assumed to have no clutters or holes, and maintain

fixed topology over time, without tearing or changing genus.

The spatial samplings can vary from one mesh to another, but

it is desirable to have uniform sampling across one surface.

The temporal sampling rate can also vary (~30Hz in our

experiments), depending on how the animation has been

obtained. In any case, the temporal sampling is considered

uniform.

The features we want to extract are the corners/blob-like

structures, which are located in regions that exhibit a high

variation of deformation spatially and temporally. We first

define local deformation attributes on the animated mesh,

from which we build a multi-scale representation of it. One of

the main motivations to base our method on local surface

deformation rather than vertex trajectories can be explained by

the fact that (1) local deformation on a surface can be

effectively measured by some well-defined principles, and that

(2) the domain has intrinsic dimension of 2D+time (rather than

3D+time) with some reasonable assumption on the data, i.e.

differentiable 2-manifold with time-varying embedding.

We then compute the deformation characterestics at different

scales, by defining an appropriate spatio-temporal Gaussian-

like smoothing method. However, real Gaussian smoothing on

mesh animation is problematic and expensive. Therefore we

follow the other alternative and approximate Gaussian low-

pass filter by a sequence of spatio-temporal box average filters

of fixed width. We obtain different space and time scales of

deformation field over animation by varying the number box

filtering is applied in space and in time.

To estimate positions and scales of mesh animation feature

points, we define a scale-normalized differential operator that

assumes simultaneous extrema over space-time and scale

neighborhood. Theoretically, it is possible to compute spatio-

temporal, scale-normalized Laplacian on every vertex of the

animated mesh. For example, one could extend the work by

Zaharescu et al. and compute the 3D gradient and Laplacian

on the animated mesh. However, it would be too much costly

as it requires computing the normal plane, on which principal

direction should be determined. Therefore, we introduce a new

precise approximation of spatio-temporal scale-normalized

Laplacian based on space-time Difference of Gaussian. Then

local extrema of the space-time DoG operator are captured as

featutre points. Space-time DoG operator is cheap to compute

and allows to robustly detect feature points over mesh

animation in a repetetive and consistent manner.

5 Dynamic feature detector (AniM-DoG)

5.1 Deformation characteristics definition

We are interested in quantities that are related to local

deformation characteristics associated to each point of the

mesh, at each frame. Thus, we base our algorithm on locally

computed strain and curvature values computed as follows.

Strain computation. We first consider the degree of

deformation associated to each triangle on the mesh at each

frame. Our method requires to specify the reference pose, the

rest shape of the mesh before deformation (Fig. 1). In certain

cases the reference pose can be found in one of the frames of

the animation. If none of the given frames is appropriate as the

rest pose, some prior works [LGX13] could be adopted to

compute a canonical mesh frame by taking the average of all

frames.

Let and ̃ be the vertices of a triangle before and after the

deformation, respectively. A 3 by 3 affine matrix F and

displacement vector d transforms into ̃ as follows.

 ̃

Similarly to Sumner et al. [SZG*05], we add a fourth vertex in

the direction of the normal vector of the triangle and subtract

the first equation from the others to eliminate d. Then, we get

 ̃ where

 , -,

and

 ̃ , ̃ ̃ ̃ ̃ ̃ ̃ -.

Non-translational component of F encodes the change in

orientation, scale, and skew induced by the deformation. Note

that this representation specifies the deformation in per-

triangle basis, so that it will be independent of the specific

position and orientation of the mesh in world coordinates.

Without loss of generality, we assume that the triangle is

stretched first and then rotated. Then we have , where

R denotes the rotation tensor and U the stretch tensor. Since

we want to describe the triangle only with its degree of stretch,

we eliminate the rotation component of by computing the

right Cauchy deformation tensor C as defined by:

 () () .

It can be shown that is equal to the square of the right

stretch tensor. We obtain principal stretches by the Eigen-

analysis on , and use the largest eigenvalue (maximum

principal strain) as the in-plane deformation of the triangle.

Fig. 1 Rest shapes are chosen as the reference frame for

defining the deformation characteristics.

Curvature computation. Computing the curvature at the

vertices of a mesh is known to be non-trivial because of the

piecewise-linear nature of meshes. One simple way of

computing the curvature would be to compute the angle

between two neighboring triangles along an edge. However,

such curvature measurement is too sensitive to the noise on

the surface of the mesh because its computation relies on two

triangles only. Instead, we compute the curvature over a set of

edges as described in [ACD*03]. Given a vertex vi, we first

compute the set of edges Ei whose two vertices are within a

user-defined geodesic distance to vi. Next we compute the

curvature at each of the edges of Ei. The curvature at vi is then

calculated as the average of the curvatures at the edges of Ei.

4 Vasyl Mykhalchuk · Hyewon Seo · Frederic Cordier

Deformation measure. Let M with M frames and N vertices

be a given deforming mesh. For each vertex

 M (

) on which we have computed strain

 (

) and curvature (

) we define the deformation

characteristics (

) as follows:

 (

) (

) (

) (

)

The first term is obtained by transferring the above described

per-triangle strain values to per-vertex ones, computed at each

frame. At each vertex, we take the average strain values of its

adjacent triangles as its strain.

R
es

t
sh

ap
e

C
u

rv
at

u
re

S

tr
ai

n

5
0

%
 o

f
cu

rv
at

u
re

w
it

h
 5

0
 %

 o
f

st
ra

in

Fig. 2 Local deformation characteristics are shown on a

bending cylinder mesh.

The second term encodes the curvature change with respect to

the initial, reference frame. Note that (

) for

,

which we use later for the feature detection (Section 5.3). We

set typically to 7 in our experiments. Color coded

deformation characteristics on a bending cylinder data is

shown in Fig. 2.

5.2 Scale space construction (Multi-scale representation)

Given the deformation measures d for all vertices of the input

animated mesh M, we re-compute d at K L different scale

representations, obtaining octaves (=0,…K,
 =0,…L) of deformation characteristics at different spatio-

temporal resolutions. Theoretically, the octaves are obtained

by applying an approximated Gaussian filter for meshes. In

practice, the approximation consists of subsequent

convolutions of the given mesh with a box (average) filter

[DK12]. In our work, we define a spatio-temporal average

filter on the deformation characteristics of the animated mesh

and compute a set of filtered deformation scalar fields, which

we call as anim-octaves. As shown in Fig. 3, we define spatio-

temporal neighborhood of a vertex in animation as a union

of its spacial and temporal neighborhoods. A spatio-temporal

average smoothing over is obtained by applying a local

spatial filter followed by a local temporal one.

More specifically, for each vertex

 at an anim-octave of

scale () , we compute deformation measures at next

spatial octave () , by averaging deformation

measurements in current vertex of current octave

 (

) and its 1-ring‟s spatial neighborhood

 (
 (

)) i.e. at adjacent vertices. For the next

temporal octave () we repeat similar procedure but this

time averaging deformation values in 1-ring temporal

neighborhood
 (

) as in Fig. 3. And for the next spatio-

temporal octave, we start from deformations in octave
() and apply temporal average filter again in the way

described above, which yields (

) We continue

this procedure until we build the desired number of spatio-

temporal octaves. Fig. 4 illustrates our anim-octaves structure.

We denote an anim-octave as () , where

 (). We note that although the term octave is widely

used to refer to a discrete interval in the scale space, it may be

misleading since in a strict sense, our octaves do not represent

the interval of half or double the frequency. In Fig.5, we

illustrate multi-scale deformation characteristics we computed

on an animated mesh. The horizontal axis represent the spatial

scale , and the vertical axis the temporal scale .

timeline

d(vk
f
)

d(vj
f
)

d(vi
f+1

) d(vi
f-1

)

d(vi
f
)

f-1 f+1 f

d(vl
f
)

d(vp
f
) d(vm

f
)

Fig. 3 The smallest possible spatio-temporal neighborhood

 of a vertex

 (blue dot) is composed of 1-ring spatial

neighbors in frame f (black vertices) and 1-ring temporal

neighbors (red vertices). Note that considering the temporal

neighbors implies considering their spatial neighbors (white

vertices) as well.

octave

scale

 O11 O12 O1k

 O21 O22 O2k

 Ol1 Ol2 Olk

Fig. 4 Scale space is built by computing a set of octaves of an

input animated mesh.

Widths of the average filters. We set the width of the spatial

filter as the average edge length of the mesh taken at the initial

frame, assuming that spatial sampling of the mesh is

moderately regular, and that the edge lengths in the initial

frame represent well those in other frames of animation. Note

that it can be done in a per-vertex manner, by computing for

each vertex the average distance to its 1-ring neighbors, as it

has been proposed by Darom and Keller [DK12]. However,

since this will drastically increase the computation time for the

octave construction stage, we have chosen to use the same

filter width for all vertices.

Determining the width of the temporal filter is simpler than

the spatial one, as almost all data have regular temporal

sampling rate (fps) throughout the duration of animation.

Similarly to the spatial case, the inter-frame time is used to set

the width of the temporal filter. Instead of averaging over

immediate neighbors, however, we consider larger number of

frame neighbors, in most cases. This is especially true when

the animated mesh is densely sampled in time. The filter

widths we used for each dataset are summarized in Table 1

R

es
t

sh
ap

e

Fig. 5 Multi-scale deformation characteristics on an animated mesh. From left to right, spatial scale increases, and from top

to bottom, temporal scale increases.

Maximum number of smoothings. Since an animated mesh

can be highly redundant and heavy in size, the memory space

occupied by the anim-octaves can be large as the number of

scales increases. This becomes problematic in practice. With

an insufficient number of smoothings, on the other hand,

features of large characteristic scale will not be detected.

Indeed, when the variance of the Gaussian filter is not

sufficiently large, only boundary features will be extracted.

Fig. 6 illustrates the principle behind the characteristic scale

and the maximum required scale level. Given a spatio-

temporal location on the mesh, we can evaluate the DoG

response function and plot the resulting value as a function of

the scale (number of smoothings). Here, the spatial scale has

been chosen as a parameter for the simplicity. The

characteristic scales of the chosen vertices are shown as

vertical lines, which can be determined by searching for scale-

space extrema of the response function. To detect the feature

points on the bending region in the middle (), for instance,

the octaves should be built up to 12 level. This means the

maximum number of smoothings must be carefully set in

order to be able to extract feature points of all scales while

maintaining moderate number of maximum smoothing.

Rest

shape

Deformed

shape

v1
v2

v3

v1

v2

v3

Fig. 6 The DoG response function has been evaluated as a

function of the spatial scale (number of smoothings). The

characteristic scales of the chosen vertices are shown as

vertical lines.

In order to make sure that the features representing blobs of

large scale are detected, we start by an average filter. Multiple

applications of a box (average) filter approximates a Gaussian

filter [AC92]. More precisely, n averagings with a box filter of

width w produce overall filtering effect equivalent to the

Gaussian filter with a standard deviation of:

 √
 ()

 (8)

When the Laplacian of Gaussian is used for detecting blob

centers (rather than boundaries), the Laplacian achieves a

maximum response with

√
 (9)

where r is the radius of the blob we want to detect.

Now assuming that the maximum radius of the blob we

want to detect is known, we can compute the required number

of average smoothing that is sufficient to detect blob centers

from Eq. (8) and Eq. (9):

 ()

 (10)

⇔

 (11)

The maximum number of application of box filter for each

dataset is listed in Table 1.

Maximum radius of all possible blobs. Along the spatial

scale space, we consider the average edge length of the initial

shape as the width of the average filter , as described above.

For the maximum possible radius of a blob, we compare the

axis-length change of the tight bounding box of the mesh

during animation, with respect to its initial shape. The half of

the largest change in axis-length is taken as .

Along the temporal scale space, we assume that the maximum

radius of all possible blobs is the half of the total time of

duration of animation. By fixing the maximum number of

6 Vasyl Mykhalchuk · Hyewon Seo · Frederic Cordier

smoothing to some moderate value, we obtain the desirable

box filter width from Eq. (10) or Eq. (11).

5.3 FP detection by DoG

In this section, we extend the idea of scale representation in

spatial domain to spatio-temporal domain and adopt it to the

case of animated mesh. Next, we propose our feature point

detector and discuss some of its implementation related issues.

Spatio-temporal scale space principles. Given time varying

input signal f(x, t), , one could build its scale-

space representation () by convoluting f with

anisotropic Gaussian

 ()

The motivation behind the introduction of separate scale

parameters in space and time is that the space- and the

time- extents of feature points are independent in general

[LL03].

Alternatively, another useful formulation of spatio-temporal

scale space was reported in the work of Salden et al. [SRV98].

The spatio-temporal scale space L() for a signal f(x, t)

could be defined as a solution of two diffusion equations

 ∑

 , (12a)

, (12b)

with an initial condition

 () ()

In our case, the input animated mesh M can be considered as

2-manifold with time-varying embedding, i.e. m(u, v, t) in 3D

Euclidean space. Measuring deformation scalar field () in

2-manifold over space and time yields a 3D input signal of the

form d(u, v, t), , and its scale space of the

form ()
 . Given the scale

space representation () of the input animated mesh,

we proceed with the construction of the DoG feature response

pyramid, which we as describe below.

Computing DoG pyramid. To achieve the invariance in both

space and time, we introduce a spatio-temporal DoG operator,

which is a new contribution. Our idea is to combine the spatial

and the temporal parts of Laplacian and Difference-of-

Gaussians. Given the property of DoG (Eq.6) and Eq. 12a, Eq.

12b, we obtain the following:

 () () () ∑

 , (13a)

 () () ()

 (13b)

Then we propose to define the spatio-temporal Laplacian by

adding (13a) and (13b):

 () () ∑

 . (14)

The new spatio-temporal Laplacian operator is just a sum of

DoG in space scale and DoG in time scale, which is

computationally very efficient.

In order to be able to extract features of all scales correctly, we

need to scale-normalize the DoG response function. Choosing

the exponent coefficients for the spatial Eq.13a (rightmost-

hand term) and the temporal Eq.13b (rightmost-hand term)

parts of Laplacian [LL03]:

 ∑

 (15)

Therefore, to achieve scale-normalized approximation of

Laplacian through DoG, we multiply both sides of (13a) with

 and both sides of (13b) with obtaining

 () ∑

 , (16a)

 ()

 (16b)

And from (16a-16b) we see that

 () ().

On the other hand, we can get a formulation of spatio-

temporal DoG that approximates scale-normalized Laplacian

 () () ().

Thus, given the definition of spatio-temporal Difference of

Gaussians we can compute feature response pyramid in the

following way. For each vertex (u,v,t) in the animated mesh

 , and for every scale () of the surface

deformation pyramid we compute ().

FP detection. Once the spatio-temporal DoG pyramid

* () () } is constructed, we

extract feature points by identifying local extrema of the

adjacent regions in the space, time, and scales. In contrast to

Mikolajczyk and Schmid [MS01] who computes Harris and

Laplacian operators, our method requires only DoG, which

makes itself computationally efficient. This is particularly

interesting for the animated mesh data which is generally

much heavier than the image. Considering that our surface

deformation function is always non-negative (and

consequently its scale-space representation), it is worth

mentioning that Laplacian of Gaussian and its DoG

approximation reach local minima in centers of blobs. Such

specific LoG behavior is illustrated in Fig. 7.

For each scale () of 2D DoG pyramid, we first

detect vertices in animation that are local minima in DoG

response over their spatio-temporal neighborhood :

 * () () ()

 () +

where () is a spatio-temporal neigbourhood of vertex in

the animation (Fig. 3).

Next, out of preselected feature candidates , we retain only

those vertices which are simultaneous minima over

neighboring spatio-temporal scales of DoG pyramid :

 * () () () ()

 () +

where () is a set of eight neighboring scales

 () * () ()() ()() ()

7 Vasyl Mykhalchuk · Hyewon Seo · Frederic Cordier

 () () ()() ()()+

and , are user-controlled thresholds. The spatial scale of

a feature point corresponds to the size of the neighborhood

where some distinctive deformation is exhibited. Similarly, the

temporal scale corresponds to the duration (or speed) of the

deformation.

(a) Gaussian and LoG (b) Synthetic signal

(c) LoG magnitude (d) LoG

(e) Features as maxima of

LoG magnitude response

(f) Features as minima of as

minima of LoG response

Fig. 7 A 2D illustration of our feature detection method. (a)

LoG yields the valley in blob's center and peaks around the

boundary, while the magnitude of LoG has peaks in both cases.

(b) Synthetic input signal consisting of 3 Gaussian blobs in 2d.

(c) Response of synthetic 2d signal as the absolute value of

LoG. (d) Response of the 2d signal computed as LoG. (e)

Working with LoG magnitude response we observe several

false secondary blobs. (f) Features captured as the local

minima of LoG response are reliable.

Dealing with secondary (border) blobs. However, in case

we consider local maxima of DoG (LoG) magnitude, we may

detect artifacts. Undesirable secondary blobs are caused by the

shape of Laplacian of Gaussian which yields peaks around the

border of real blob (Fig. 7a). Consider a perfect Gaussian blob

as an input signal. If we assume magnitude (i.e. absolute value)

of LoG to be feature response, we get strong peak in the center

of the blob and two other secondary peaks around edges, and

that is troublesome. In contrast, dealing with signed LoG (not

absolute) we observe valleys (local minima) in blob centers

and peaks (local maxima) on borders. Hence searching for

local minima of LoG, rather than local maxima of LoG

magnitude, prevents from the detection of false secondary

features (Fig. 7b-f). The other way around could be to use

LoG magnitude but discard local maxima which are not strong

enough in initial signal, and therefore are false findings.

Though, previous works in feature extraction on

images/video/static meshes [MS01, LL03, ZBV*09] often

adopt Hessian detector, which does not detect secondary blobs.

However, in contrast to DoG detector, estimation of Hessian

on a mesh surface is significantly heavier. And even more

problematic and challenging to estimate Hessian matrix on

animated mesh.

Implementation notes. Often, animated meshes are rather

heavy data. As we increase the number of anim-octaves in the

pyramid, we can easily run out of memory, since each octave

is essentially a full animation itself but at different scale.

Consequently, we have to address that issue in the

implementation stage. In order to minimize memory footprint,

we compute pyramids and detect feature points progressively.

We fully load into main memory only space scale dimension

of Gaussian and DoG pyramids. As for time scale, we keep

only two neighboring time octaves simultaneously, which are

required for DoG computation. Then we construct the pyramid

from bottom to top by iteratively increasing time scale. On

each iteration of Gausian/DoG pyramid movement along time

scale, we apply our feature detection method to capture

interest points (if any on current layer). We repeat the

procedure until all pyramid scales have been processed.

6 Experiments

Deforming meshes used in our experiments include both

synthetic animations and motion capture sequences, which are

summarized in Table 1. We synthesized a simple deforming

Cylinder animation by rigging and used it for initial tests.

Also we captured two person‟s facial expressions using Vicon

system [Vicon] and then transferred the expressions to the

scanned faces of the two persons Face1 and Face2 (Table 1).

Table 1 The animated meshes used in our experiments.

Name
No.vertices/

triangles

No.

frames

Filter

widths

(space/time)

Max. no.

smoothings

(space/time)

Cylinder 587/1170 40 10.0/0.83 50/100

Face1(happy) 608/1174 139 8.96/8.45 118/113

Face1(surprise) 608/1174 169 9.39/13.2 96/107

Face2(happy) 662/1272 159 9.31/13.2 112/94

Face2(surprise) 662/1272 99 8.95/8.45 109/57

Horse 5000/9984 48 3.48/5.33 77/54

Camel 4999/10000 48 2.62/5.33 102/54

Woman1 4250/8476 100 5.12/5.2 72/150

Woman2 4250/8476 100 4.44/5.2 82/150

Woman3 4250/8476 100 4.54/5.2 99/150

Face3 5192/9999 71 5.18/3.65 90/114

Head 7966/15809 71 9.06/3.65 28/114

Fig. 10 shows selected frames of several animated meshes we

used in our experiments. Spatio-temporal feature points we

have extracted using our algorithm are illustrated as spheres.

For the complete sequences along with the extracted feature

points, please take a look at our accompanying demo video.

8 Vasyl Mykhalchuk · Hyewon Seo · Frederic Cordier

Face1 (happy), Face1 (surprise), Face2 (happy), Face2

(surprise) contain facial expressions of happiness and surprise

of those scanned subjects. The horse and the camel were

obtained from results of Sumner and Jovan Popović‟s work

[SP04] that are available online [Mesh]. Furthermore, we

produced two mesh animations of seventy frames, Face3 and

Head, by using nine facial expressions of the face and the head

from [SP04]. More specifically, given an ordered sequence of

nine facial expressions, we smoothly morphed each mesh to

the next one through a linear interpolation of their vertex

coordinates. We also used “walk and whirl” skeletal

animations of three women models. Those models share the

same mesh topology and were obtained by deforming a

template mesh onto three body scans of different subjects.

Note that there is high semantic similarity between animation

pairs of Face1/Face2, horse/camel, Face3/Head. It is also the

case for three women models.

The color of a sphere represents the temporal scale (red color

corresponds to more fast deformations) of the feature point,

and radius of sphere indicates the spatial scale. Vertex color

on surfaces corresponds to amount of deformation (strain and

curvature change) observed in each of animation frame.

During experiments we have discovered that our method

captures spatio-temporal scales in a robust manner. For

example, surface patches around joints of cylinder (Fig. 11 1a-

1e) exhibit different amount of deformation that occurs at

different speed. The top joint is moving fast and consequently

corresponding feature was detected at low temporal scale (red

color). However, the mid-joint is deforming for a long time

and we identify it at high temporal scale (blue color).

Moreover large radii of deforming spheres for both joints

make sense and indicate large deforming regions around the

features, rather than very local deformation (Fig. 11 1c).

Second row in (Fig. 11 2a-2e) depicts some of the feature

points in Horse mesh animation, and third row (Fig. 8 3a-3e)

corresponds to Camel animation. Those two meshes deform in

a coherent manner [SP04], and eventually we detect their

spatio-temporal features quite consistently. In the last two

rows (Fig. 11 4a-4e, 5a-5e) we present feature points in

mocap-driven face animations of two different subjects. Our

subjects were asked to mimic of slightly exaggerated emotions

during the mocap session. Notice that people normally use

different set of muscles when they show up facial expressions,

and therefore naturally we observe some variations in the way

their skin deforms.

Our algorithm is implemented in C++. All our tests have been

conducted on an Intel Core i7–2600 3.4 GHz machine, with

8GB of RAM. The computation time devoted to full pipeline

of the algorithm is approximately 2 minutes for most of our

example data.

Invariance to rotation and scale. Invariance of our detector

to rotation as well as scale is evident from the definition of our

deformation characteristics. Both the strain and the curvature

measure we use are invariant to rotation and scale of the

animated mesh.

Robustness to changes in spatial and temporal sampling.

Robustness of our feature detector to changes in spatial

sampling is obtained by the adaptive setting of the widths of

the box filters. As described in Section 5.2, we set the width of

the spatial filter as the average edge length of the mesh taken

at the initial frame. In order to demonstrate the invariance to

spatial density of the input mesh, we have conducted

comparative experiments on two bending cylinders. These two

cylinders have identical shape and deformation; they only

differ by the number of vertices and the inter-vertex distance.

As shown in the 1st and 3rd rows of Fig. 10, the features are

extracted at the same spatio-temporal locations.

Robustness to changes in temporal sampling is obtained

similarly to the above, i.e. by the adaptive setting of the widths

of the box filters. Similar experiments have been conducted by

using the two bending cylinders as shown in the 1st and 2nd

rows of Fig. 10. They are perfectly identical except that the

temporal sampling of the first one is twice higher than that of

the first one. Once again, the extracted feature points are

identical in their locations in space and time.

We have further experimented with datasets of similar

animations, but with different shape, spatial- and temporal-

samplings (4th row of Fig. 11, galloping animals and two face

models in Fig. 11). Although the extracted features show a

good level consistency, they are not always identical. For

example, feature points for the galloping horse and camel do

not have the same properties (location, time, tau and sigma).

Similar results have been observed for the “face” models. This

can be explained by the following facts: Firstly, although the

two meshes have deformations that are semantically identical,

the level of deformation (curvature and strain) might differ

greatly. Secondly, most of these models have irregular vertex

sampling whereas in our computation of the spatial filter width,

we assume that the vertex sampling is regular.

6.1 Consistency

Since our method is based on deformation characteristics, it

has an advantage of consistent feature point extraction across

mesh animations with similar motions. To demonstrate mutual

consistency among feature points in different animations, we

used animation data that exhibit semantically similar motions.

Our technique captures similarity of surface deformations and

therefore ensures feature point detection consistency (Fig. 12).

In most cases our method demonstrates high coherency not

only in space and time locations of extracted features but also

in their space-time scales and . The only data sets for

which we observed relatively lower consistency of feature

detection are the two face mocap sequences. The reason for

this lies in inherent difference of people‟s facial expressions

and underlying muscle anatomy.

Additionally, we have performed the quantitative evaluation

of the feature extraction consistency as follows. For all feature

points we consider only their spatial locations disregarding the

time coordinates. Then a pair of similarly deforming meshes

 and whose full correspondence is known,

we find the matching between their feature points and

based on the spatial proximity. More precisely, for each

feature point
 , the feature point

 that minimizes

 ‖ (

)

‖ is considered to be the matching one. The

distance
 is what we call feature matching error. Histogram

plots of feature matching errors are depicted in Fig. 8.

Obtaining the full correspondence for walking women models

was straightforward because they share the same mesh

topology. For horse/camel, we obtained a full per-triangle

correspondence from [SP04], which we converted to a per-

vertex correspondence.

9 Vasyl Mykhalchuk · Hyewon Seo · Frederic Cordier

(a)

(b)

(c)

(d)

Fig. 8 The error plots of feature points for pairs (a) Woman1-

Woman2, (b) Woman1 – Woman3, (c) Woman2 - Woman3,

Camel-Horse (d). We depict the feature matching error on the x-

axis as the error (percentage of the error with respect to the

diagonal length of the mesh bounding box). The percentage of

features with prescribed matching error is depicted on the y-

axis. For all four pairs of animations, more than 90% of features

have a matching error less than 0.05.

6.2 Comparison to the ground truth

We have validated our method by comparing the feature

points to the manually defined ground truth. We asked six

volunteers to paint feature regions on the animated meshes

using an interactive tool. The task was to mark locations at

which salient surface deformation behavior can be observed

from the user point of view. Each of them could play and

pause the animation at any moment and mark feature regions

by a color. To simplify the task, the time duration of each

feature region was not considered. Since the per-vertex

selection can be error-prone, we deliberately allow users to

select a region on the surface instead of a single vertex. By

aggregating the feature regions from all volunteers, we

generated a color map of feature regions. More specifically,

for each vertex we summed up and averaged the number of

times it has been included in the user-selected regions. The

aggregated ground truth was then converted into a surface

color map, as depicted in Fig. 9a, c. Note, that eyes do not

belong to feature regions of face animations, since the user‟s

task was to define features based on the surface deformation

rather than geometric saliency or naturally eye-catching

regions.

To compare our results with respect to the ground truth, we

compute for every feature point p its feature region of

neighboring vertices q such that * () + ,

where () is a within-surface geodesic distance and is

the corresponding scale value at which the feature was

detected. Similarly to the ground truth, for each vertex of the

mesh we count the number of occurrences in feature regions

during the animation, and convert the numbers to the surface

color map as shown in Fig. 9b, d. We observe a good level of

positive correlation between the computed feature regions and

the ground truth.

(a) (b)

(c) (d)

Fig. 9 Comparison of the ground truth (a, c) to the feature

regions computed by our method (b, d). For each vertex, color

intensity depicts the accumulative number of its appearances

during the animation. Green and blue colors were used for the

ground truth and our computed feature regions, respectively.

7 Discussion

Our method and results could be extended and applied to a

number of useful applications. We describe some of the ideas

below while leaving their developments as future works.

Animated mesh simplification. As it has been noted in

earlier works on simplification of dynamic (deforming)

meshes [SPB00][KG05], it is preferable to allocate bigger

triangle budget for regions of high surface deformation while

simplifying mostly rigid regions. Our algorithm could be

adopted in these as it detects feature points that are exactly in

deforming regions. Their spatial scales can be used to

10 Vasyl Mykhalchuk · Hyewon Seo · Frederic Cordier

define regions around features where the mesh must keep

denser sampling during simplification. For instance, the spatial

scale of the feature points can be used to define regions where

the mesh must be densely sampled during simplification. The

temporal scale can also be used to dynamically determine the

triangle budget around the feature point, when designing a

time-varying simplification technique. A very small temporal

scale implies either a short duration or a high speed of the

animation, thus one may assign low priority to the feature

point. In the same way, the region around a feature point with

large temporal scale will be prioritized when allocating the

triangle budget. Another use of the temporal scale is in the

maintenance of the hierarchy. When transferring the previous

frame's hierarchy to one better suited for the current frame in a

time-critical fashion, the algorithm can use the temporal scale

of a FP as a “counter” to determine whether to update or reuse

the node corresponding to the region around the FP. By

processing the nodes corresponding to the spatio-temporal

feature points in an order of decreasing temporal scale, one

can economize the time for the per-frame maintenance of the

hierarchy while keeping the animation quality as much as

possible.

Viewpoint selection. With increasing advances in scanning

and motion capture technologies animated mesh data becomes

more and more available today. Thus it is very practical to

have a tool for automatic viewpoint selection for the preview

of the motion in animation repositories. The idea behind that is

to let a user to quickly browse the animation data from the

point that maximizes the visibility of mesh deformations. With

such viewpoint selection, the user benefits from a better

perception of the animation. One equally handy and straight

forward way to automatically select optimal viewpoint is to

compute the one which maximizes the number of visible

feature points through the optimization. We note that our

spatio-temporal feature points can simplify the selection of

good viewpoint(s). For instance, the quality of a viewpoint

could be defined as a function of the visibility of the spatio-

temporal feature points in terms of the total number, temporal

variability and the concavity of the projected feature region (as

defined by the spatial and temporal scales), etc. Interested

reader may refer to an optimization technique proposed in

[LVJ05] on saliency-based viewpoint selection for static

meshes.

Animation alignment. Another interesting application could

be animated mesh alignment. Considering the consistency of

the extracted feature points, their scales values can be

employed for the temporal alignment. Given sets of features P

and extracted from pair of similar animations, we consider

corresponding sequences *() ()+
*(

) (

)+ of spatio-temporal feature scales

aligned along the time they were detected. Existing algorithms

of sequence alignment such as [Got90] can then be used to

compute the temporal alignment between them. In addition to

the spatial- and temporal- scales, more sophisticated feature

descriptors can also be used to compose the sequences.

Animation similarity. We can also think of extending the

above mentioned animation alignment algorithm towards a

measurement of animation similarity. From the feature

sequence alignment map, we can sum up all penalty gaps i.e.

some predefined costs for all features for which no match can

be found. That cost function could serve as a distance metric

between the animations and hence be a measure of

dissimilarity/similarity. Note that an important byproduct of

the animation similarity is the animated mesh retrieval, which

is particularly beneficial in emerging dynamic data

repositories.

8 Conclusion

We have presented a new feature detection technique on

triangle mesh animations based on linear scale-space theory.

We introduced a new spatio-temporal scale representation of

surface deformation in mesh animations. Furthermore, we

developed extension of classical DoG filter to spatio-temporal

case. The later allows our method to robustly extract

repeatable sets of feature points over different deforming

surfaces modeled as triangle mesh animations. We carried out

experimental validation of detected features on various types

of data sets and observed consistent results. Our approach has

shown robustness to spatial and temporal sampling of mesh

animation. In our future research, we intend to focus on

feature point descriptor that could be useful for applications

such as matching between animations.

Descriptors. Our feature detector could be extended to

detector-descriptor. One straightforward idea of the feature

point descriptor could be the following. Given space –time

neighborhood around feature point

 which consists of its k-

ring space neighborhood over range of [f-l, …, f+l] frames.

Note, that values of k and l could be adjusted to reflect

characteristic scale of the feature. Next, flattening of k-ring

regions for each frame of the range produces a volumetric

stack of planar mesh patches. Then, proceeding in a spirit of

robust 3D SIFT descriptor [SAS07], we can estimate

histograms of DoG gradients computed inside the spatio-

temporal volume around the feature point. Further, Euclidean

or Earth Mover‟s distance between the histograms could be

used for measuring similarities of features within mesh

animation or between different animations.

7
3
4
 v

er
ti

ce
s

3
0
 f

p
s

0.166 sec. 0.7 sec. 0.9 sec. 1.466 sec. 1.933 sec.

7
3
4
 v

er
ti

ce
s

6
0
 f

p
s

4
9
2
 v

er
ti

ce
s

3
0
 f

p
s

6
1
4
 v

er
ti

ce
s

3
0
 f

p
s

Fig. 10 Results we obtained on varying datasets of bending cylinder animations demonstrate the consistent behavior of

our feature detector.

Acknowledgements

We acknowledge Robert W. Sumner for providing triangle

correspondences of the horse and camel models. We also

thank Frederic Larue and Olivier Génevaux for their

assistance with the facial motion capture. This work has been

supported by the French national project SHARED (Shape

Analysis and Registration of People Using Dynamic Data,

No.10-CHEX-014-01).

References

[AC92] R. Andonie, E. Carai: Gaussian Smoothing by

Optimal Iterated Uniform Convolutions, Computers and

Artificial Intelligence, 11(4): pp. 363-373, 1992.

[ACD*03] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Levy,

and M. Desbrun: Anisotropic Polygonal Remeshing, ACM

Transactions on Graphics, 2003.

[BET*08] H. Bay, A. Ess, T. Tuytelaars, L. van Gool:

Speeded-up Robust Features (SURF), Computer Vision and

Image Understanding (CVIU), Vol. 110, No. 3, pp. 346–

359, 2008.

[CCF*08] U. Castellani, M. Cristani, S. Fantoni, V. Murino:

Sparse points matching by combining 3D mesh saliency

with statistical descriptors. Comput. Graph. Forum 27(2):

643–652 (2008).

[DK12] T. Darom, Y. Keller: Scale-Invariant Features for 3-D

Mesh Models. IEEE Transactions on Image Processing

21(5): 2758-2769 (2012).

[Got90] O. Gotoh: Optimal sequence alignment allowing for

long gaps. Bull. Math. Biol. 52, 359-373, 1990.

[HS88] C. Harris, M. Stephens: A combined corner and edge

detector, In Proc. 4th Alvey Vision Conference, 147–151,

1988.

[KG05] S. Kircher, M. Garland: Progressive multiresolution

meshes for deforming surfaces, In ACM SIGGRAPH

Symposium on Computer Animation, 191–200, 2005.

[LGX13] Z. Lian, A. Godil, J. Xiao: Feature-Preserved 3D

Canonical Form, 102: pp.221-238, Int'l J. Computer Vision,

2013.

[LL03] I. Laptev, T. Lindeberg: Interest Point Detection and

Scale Selection in Space-Time. Scale-Space 2003: pp. 372–

387.

[Lin94] T. Lindeberg: Scale-space theory: A basic tool for

analyzing structures at different scales. Journal of Applied

Statistics, 21(2): 224-270, 1994.

[Lin98] T. Lindeberg: Feature detection with automatic scale

selection. International Journal of Computer Vision, 30,

pp.79–116,1998.

[Low04] D. Lowe: Distinctive Image Features from Scale-

Invariant Keypoints, 60(2): pp. 91–110, Int'l Journal of

Computer Vision, 2004.

[LVJ05] C.-H. Lee, A. Varshney, D. W. Jacobs: Mesh

Saliency, ACM Transactions on Graphics (Proc.

SIGGRAPH), 2005.

[Mesh] Mesh data, http://people.csail.mit.edu/sumner/

research/deft ransfer/data.html.

[MS01] K. Mikolajczyk and C. Schmid: Indexing based on

scale invariant interest points, IEEE International

Conference on Computer Vision (ICCV), pp. 525–531,

2001.

 [PKG03] M. Pauly, R. Keiser, M. Gross: Multi-scale Feature

Extraction on Point-Sampled Surfaces, Computer Graphics

Forum, 22(3), pp. 281–289, 2003.

[SAS07] P. Scovanner, S. Ali, and M. Shah: A 3-Dimensional

SIFT Descriptor and Its Application to Action Recognition.

Proceedings of the 15th International Conference on

Multimedia, pp. 357-360, (2007).

[SB10] I. Sipiran and B. Bustos: A Robust 3D Interest Points

Detector Based on Harris Operator, Eurographics workshop

on 3D Object Retrieval (3DOR), pp. 7–14 2010.

 [SP04] R. Sumner, J. Popovic: Deformation Transfer for

Triangle Meshes. ACM Transactions on Graphics. 23, 3.

August 2004.

[SPB00] A. Shamir, V. Pascucci and C. Bajaj: Multi-

resolution dynamic meshes with arbitrary deformations, pp.

423-430, Proc. IEEE Visualization, 2000.

[SRV98] A.H. Salden, B.M. ter Haar Romeny and M.A.

Viergever: Linear Scale-Space Theory from Physical

http://www.informatik.uni-trier.de/~ley/pers/hd/c/Cristani:Marco.html
http://www.informatik.uni-trier.de/~ley/pers/hd/f/Fantoni:Simone.html
http://www.informatik.uni-trier.de/~ley/pers/hd/m/Murino:Vittorio.html
http://www.informatik.uni-trier.de/~ley/db/journals/cgf/cgf27.html#CastellaniCFM08
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Keller:Yosi.html
http://www.informatik.uni-trier.de/~ley/db/journals/tip/tip21.html#DaromK12
http://www.informatik.uni-trier.de/~ley/db/journals/tip/tip21.html#DaromK12
http://www.informatik.uni-trier.de/~ley/pers/hd/l/Laptev:Ivan.html
http://www.informatik.uni-trier.de/~ley/db/conf/scalespace/scalespace2003.html#LaptevL03

12 Vasyl Mykhalchuk · Hyewon Seo · Frederic Cordier

Principles, In Journal of Mathematical Imaging and Vision,

Vol. 9, pp. 103-139, 1998.

 [SZG*05] R. W. Sumner, M. Zwicker, C. Gotsman, J.

Popović: Mesh-based inverse kinematics. ACM

Transactions on Graphics (TOG) 24(3), pp.488–495, 2005.

[Vicon] Vicon motion capture system, http://vicon.com.

[ZBV*09] A. Zaharescu, E. Boyer, K. Varanasi, R. Horaud:

Surface feature detection and description with applications

to mesh matching, IEEE Computer Vision and Pattern

Recognition (CVPR), pp. 373-380, 2009.

Fig. 11 Dynamic feature points detected by our AniM-DoG framework are illustrated on a number of selected frames of animated

meshes. The color of a sphere represents the temporal scale (from blue to red) of the feature point, and radius of sphere indicates

the spacial scale.

(1a) (1b) (1c) (1d) (1e)

(2a) (2b) (2c) (2d) (2e)

(4a) (4b) (4c) (4d) (4e)

(5a) (5b) (5c) (5d) (5e)

(3a) (3b) (3c) (3d) (3e)

http://www.informatik.uni-trier.de/~ley/pers/hd/b/Boyer:Edmond.html
http://www.informatik.uni-trier.de/~ley/pers/hd/v/Varanasi:Kiran.html
http://www.informatik.uni-trier.de/~ley/pers/hd/h/Horaud:Radu.html
http://www.informatik.uni-trier.de/~ley/db/conf/cvpr/cvpr2009.html#ZaharescuBVH09

a #frame 11 #frame 13 #frame 18 #frame 33 #frame 77

b

 c #frame 10 #frame 20 #frame 22 #frame 30 #frame 50

d

Fig. 12 Inter-subject consistency of feature points extracted from semantically similar mesh animations. Rows (a-b) depict subset

of feature points extracted from walking subject sequences and (c-d) from face animations. Note that each column corresponds to

identical frame of the animations.

