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Abstract. We describe the structure of the Voronoi diagram of lines for
a set of points in the plane, thereby making use of an extra dimension. In
contrast to previous results in this respect, which were based on the dual
representation of the Voronoi diagram under consideration, our approach
applies to the primal plane. We also generalize it to higher-dimensional
hyperplane spaces.
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1 Introduction

A Voronoi diagram is arguably the most widely known and applied geometric
structure. Much on its history, properties, and applications can be derived from
the survey by Aurenhammer [1] and the book by Okabe et al. [10]. At the same
time, a serious effort is now being put on investigating various kinds of generalized
Voronoi diagrams—see [4] for recent achievements. One of the directions explored
when generalizing the concept of Voronoi diagrams is consideration of novel
underlying spaces. In the present work, we shall follow this very way.

A two-dimensional line space is formed by all the lines in the Euclidean plane.
For a set P of point sites in the plane, its Voronoi diagram in the line space is
defined as a partition of the latter into Voronoi regions, each corresponding to a
distinct site p ∈ P and consisting of the lines being closer to p than to any other
site from P . This kind of Voronoi diagrams was first introduced by Rivière and
Schmitt [12]. In particular, they pointed out that such Voronoi diagrams can be
easily computed and visualized in dual space (where lines map to points), and
subsequently used for processing line localization queries.

One year later, Rivière [13] introduced and examined Voronoi diagrams of
order k in the line space, thereby also exploiting the concept of geometric duality.

Recently, an onion diagram was introduced by Bae and Shin [2], being a
Voronoi-like structure defined in a parametric space associated with the primal



plane. The onion diagram can be used, in particular, for efficiently processing
nearest-neighbor line queries for weighted points.

In our opinion, though the line space Voronoi diagram obviously cannot be
visualized in the primal plane, it is worth analyzing its primal structure as
well, for two reasons. First, such investigation may highlight some properties
of this Voronoi structure, which are more difficult to observe in the dual plane.
Second, the duality-based approaches do not generalize to higher-dimensional
line spaces, while it would be interesting to understand the respective—rather
sophisticated—Voronoi structures in higher-dimensional spaces as well.

The goal of this work is to provide a description of the structure of a Voronoi
diagram in the primal plane, making use of an extra dimension. We also give an
algorithm to construct and visualize the three-dimensional representation of the
planar line space Voronoi diagram. Finally, we show how to extend our method
to higher-dimensional hyperplane space Voronoi diagrams.

2 Two-Dimensional Case

Let L denote the set of all lines in R2. Consider a set P of n points in the plane,
to which we shall also refer as to sites. For any p ∈ P , its Voronoi region V (p)
in the Voronoi diagram VorL(P ) in L consists of all the lines in the plane being
closer to p than to any other site. Obviously, VorL(P ) cannot be visualized in the
plane. However, if we consider a duality transform that maps a point p = (px, py)
to a line p∗ : (y = px ·x+py), and a line l : (y = m ·x+b) to a point l∗ = (m,−b),
then the dual structure of VorL(P ) can be easily visualized (in the dual plane).

Despite the lack of a possibility to “see” VorL(P ), it will be useful to under-
stand its structure (in the primal plane).

To simplify the exposition, we shall assume that the points from P are in
general position (i.e. no three points lie on the same line and no two lines defined
by the points from P are parallel).

In order to provide a description of VorL(P ), we shall need to move from R2 to
a three-dimensional space SL = R2× [0, π] with a cylindrical topology, meaning
that points (x, y, 0) and (x, y, π) are identified. For any φ ∈ [0, π), the plane
R2
φ = R2×φ will contain the subset Lφ of lines from L forming the angle φ with

the x-axis, and each point p ∈ P with coordinates (px, py) will be mapped to an
interval pSL = (px, py)× [0, π) in SL. For any φ ∈ [0, π), let pφ = pSL ∩R2

φ.

Observe that pSL is perpendicular to any line under consideration. Conse-
quently, for any φ ∈ [0, π) and for any line lφ ∈ Lφ, the distance from lφ to pSL

equals the distance from lφ to pφ.

The Voronoi diagram VorL(P ) gets a natural representation VorSL(P ) in SL.

For any φ ∈ [0, π), the intersection VorφSL(P ) of VorSL(P ) with the plane R2
φ

has a fairly simple structure: it represents the Voronoi diagram of the set Pφ =
{pφ|p ∈ P} of points in the space of lines composing Lφ. Unless some two points

from Pφ lie on the same line from Lφ, VorφSL(P ) is formed of n−1 lines from Lφ
(Fig. 1a,b,d); in case the line through some two points pφ, qφ ∈ Pφ belongs to Lφ,
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Fig. 1. The structure of VorφSL(P ) for the given set P of points: a) φ = 3π/10, b)
φ = 2π/5, c) φ = π/2, d) φ = 3π/5. While φ increases from 3π/10 to 3π/5, the
sites p and q remain Voronoi neighbors, and the edge incident to their Voronoi cells is
represented by their bisector line lpq in Lφ. In the plane, lpq rotates around the middle
point of the segment pq as φ changes from 3π/10 to 3π/5. When φ = π/2, the line lpq
passes through p and q, and the gray vertical infinite strip is composed of the vertical
lines, for which p and q are the closest neighbors in P .

VorφSL(P ) contains an infinite strip filled by the lines from Lφ, for which both
pφ and qφ are the closest points from Pφ (Fig. 1c).

If we examine the structure of VorSL(P ) bottom-up (i.e. starting from φ = 0
and increasing it towards π), and attempt to interpret its evolution in terms
of R2, we shall observe the following. Unless some two points from P fall on
the same horizontal line, Vor0SL(P ) is represented in R2 by a set of (horizontal)
bisectors of consecutive points from P with respect to their vertical order. As we
move upwards, each line l being a Voronoi edge rotates in R2 counterclockwise
around the middle point of the segment connecting the two sites, the Voronoi
cells of which l bounds, thereby sweeping a two-dimensional face of VorSL(P ),
until one of those lines happens to pass through some two points p, q ∈ P .
Let lpq denote this line, and let lp′p (resp. lqq′) be the other line bounding the
Voronoi cell of p (resp. of q), if this line exists (see Fig. 1b). Clearly, one of lp′p
and lqq′ does not exist if and only if pq is an edge of the convex hull conv(P )
of P . None of them exists if n = 2. At that very moment when p, q ∈ lpq,
two horizontal (i.e. perpendicular to the direction of our movement) faces, each
being an infinite strip bounded on one side by lpq, are introduced in VorSL(P );
thus, lpq represents their common edge. Together those two faces form an infinite
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strip containing lpq inside. If lp′p exists, one face is delimited by the line lp′p,
which thus introduces another edge in VorSL(P ) (see Fig. 1c). Otherwise, the
respective face is unbounded on one side of lpq. The same happens on the other
side of lpq, depending on the fact whether lqq′ exists or not. Hence, one, two,
or three edges are introduced in VorSL(P ) when p, q ∈ lpq. Immediately after
that, the rotating line lpq starts tracing out the next curved two-dimensional face
of VorSL(P ). The line lp′p (if it exists) is replaced by the line lp′q that passes
through the midpoint of p′q and will trace out a new face of VorSL(P ), and at
this moment, coincides with lp′p (see Fig. 1d). In the same way, lqq′ is replaced
by lpq′ . Every other line l being a Voronoi edge in R2, continues tracing out a
same face of VorSL(P ), until some line hits some two points of P . And so on.
In case P contains two points lying on the same horizontal line, Vor0SL(P ) will
contain a horizontal infinite strip composed of two horizontal faces sharing an
edge.

Note that in the space SL, the vertical segment representing a point p ∈ P
will intersect the structure VorSL(P ) at the horizontal edges corresponding to
the lines through p and each of the points q ∈ P \ {p} (and namely, the edges
contained inside the infinite horizontal strips and splitting those into two faces).
Hence, each such vertical segment will intersect VorSL(P ) at precisely n − 1
points (see Fig. 3).

Moreover, observe that if we direct the sweeping lines in such a way that their
angles φ with the x-axis belong to [0, π], then at each moment of the sweeping, we
can sort from right to left the n−1 lines sweeping the curved faces of VorSL(P ).
Throughout the process, the lines that occur at the ith place together sweep
a connected set of faces of VorSL(P ), thus producing a ruled surface, which is
piecewise helicoidal with vertical axis. The n − 1 surfaces defined that way are
pairwise disjoint. To retrieve the topological structure of the diagram, we shall
need, in particular, to identify the ith line for φ = 0 with the (n − i)th line for
φ = π, thus forming dn/2e annuli.

Now, it is easy to compute the size of VorSL(P ), using the above description.
For every φ being an angle between a line through some two points p, q ∈ P and
the x-axis, the planeR2

φ contains exactly two horizontal faces of VorSL(P ). Since
all horizontal faces are contained in those planes, there are n(n− 1) such faces.
Each pair of faces is delimited by two or three edges of VorSL(P ) depending on
whether pq is an edge of conv(P ) or not (here we assume n > 2). Since all the
edges are defined that way, VorSL(P ) admits 3(n(n − 1))/2 − n′ edges, where
n′ is the number of vertices of conv(P ). These edges split the annular ruled
surfaces into the helicoidal faces of VorSL(P ), thus defining 3(n(n − 1))/2 − n′
such faces. Finally, we note that the n(n − 1) horizontal faces are the “floors”
and the “ceilings” of the n(n − 1) regions of VorSL(P ). Thus, the total size of
VorSL(P ) is in Θ(n2).
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3 Algorithm in Two Dimensions

A natural way to construct VorSL(P ) consists in simulating the sweeping of the
plane by a set of oriented parallel lines, by varying the angle φ they make with
the x-axis from 0 to π (π left out). The events of the sweeping are the n(n−1)/2
moments when a sweep-line hits two points of P . All the respective ordered pairs
of points (p, q) are first placed in the positions [1, . . . , n(n − 1)/2] of an event-
array E (here, p and q are ordered in such a way that the straight line (pq) is
oriented in the same direction as the sweep-lines). The array E is then sorted
by increasing φ angles, resulting in an O(n2 log n) initialization step.

The algorithm also needs three additional arrays:

– an array T [1, . . . , n] that contains at each moment φ of the sweeping, the
points of P in the order in which they are encountered by an oriented sweep-
line with angle φ moving from right to left. For φ = 0, the points in T are
sorted by increasing y-coordinates. The position of every point of P in T is
also maintained.

– two arrays first[1, . . . , n−1] and last[1, . . . , n−1] whose positions i contain
respectively the first and the last edge of VorSL(P ) already created on the
ith ruled surface (i.e., the ruled surface swept by the line that constantly
“separates” the cells of the ith and (i+1)th points in T ). Initially, all positions
of these arrays are NULL.

Once the four arrays are initialized, the following algorithm then constructs
VorSL(P ):

For every e ∈ [1, . . . , n(n− 1)/2]
let (p, q)←− E[e]
let i be the current position of p in T //here, q is necessarily in T [i+ 1]

if last[i] = NULL
initialize first[i] and last[i] with the line (pq)

else
add a face to VorSL(P ) between the lines last[i] and (pq), which is a

helicoidal surface with axis the vertical through the midpoint of pq
last[i]←− (pq)

endif

if i = 1 // pq is an edge of conv(P )
add a face to VorSL(P ), which is the horizontal half-plane on the right

of (pq)
else

let p′ ←− T [i− 1]
let lp′p be the line parallel to (pq) passing through the midpoint of p′p
if last[i− 1] = NULL

initialize first[i− 1] and last[i− 1] with the line lp′p
else
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add a face to VorSL(P ) between the lines last[i− 1] and lp′p, which
is a helicoidal surface with axis the vertical through the midpoint
of p′p

last[i− 1]←− lp′p
endif
add a face to VorSL(P ), which is the horizontal strip delimited by the

lines (pq) and lp′p
endif

if i+ 1 = n // pq is an edge of conv(P )
add a face to VorSL(P ), which is the horizontal half-plane on the left

of (pq)
else

let q′ ←− T [i+ 2]
let lqq′ be the line parallel to (pq) passing through the midpoint of qq′

if last[i+ 1] = NULL
initialize first[i+ 1] and last[i+ 1] with the line lqq′

else
add a face to VorSL(P ) between the lines last[i+ 1] and lqq′ , which

is a helicoidal surface with axis the vertical through the midpoint
of qq′

last[i+ 1]←− lqq′
endif
add a face to VorSL(P ), which is the horizontal strip delimited by the

lines (pq) and lqq′

endif

swap p and q in T
done

For every i ∈ [1, . . . , n− 1]
add a helicoidal face to VorSL(P ) between the lines last[i] and first[n− i]

done

Obviously, the complexity of this algorithm is in O(n2), that is, linear in the
size of VorSL(P ). Hence, the overall complexity of the construction of VorSL(P )
is dominated by the sorting of the event-array E.

In [12], it has been shown that, in dual space, the line space Voronoi dia-
gram of a set of points P can be constructed in O(n2) time, by first computing
the arrangement of the dual lines of P . Clearly, this algorithm can be adapted
to construct VorSL(P ) in O(n2) time. However, if we want to construct the line
space Voronoi diagram in O(n2) time without having to compute the dual line ar-
rangement, we have to use topological sweeping methods like those implemented
to sweep line arrangements [5]. Consider an ordered pair (p, q) of points that are
consecutive in T at a moment φ of the sweeping in our algorithm. Let p′ and q′

be the points that respectively precedes and follows p and q in T (the case when
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one of these points does not exist can be treated in a similar way). Suppose that,
while sweeping by increasing angles, the four points p′, p, q, and q′ remain con-
secutive in this order in T until the moment φ′ when a sweep line passes through
p and q. Clearly, the pair (p, q) can be treated by our algorithm at any moment
between φ and φ′, even if there exist pairs (s, t) making an angle with the x-axis
between φ and φ′. This shows that a topological sweep applies to our algorithm.
However, the usual topological sweeps only respect the following constraint: if
two pairs of points share a common point then the one defining the line making
the smallest angle with the x-axis must be treated first [11]. This constraint
is not sufficient for our algorithm, as shown in Fig. 2. Hence, the problem of
generating a sweeping order in O(n2) time to construct the line space Voronoi
diagram without calculating first the dual line arrangement remains open.

p

q

r
p’

lp’p

Fig. 2. Let φ and φ′ be the respective angles that the lines (rp′) and (pq) make with
the x-axis. In VorSL(P ), the ruled surface that contains lp′p is composed, between the
planes R2

0 and R2
φ, by a helicoidal face with axis the vertical through the midpoint of

p′p and, between the planes R2
φ and R2

φ′ , by a helicoidal face with axis the vertical
through the midpoint of rp. If our algorithm treats the pair (p, q) before (r, p′), it
constructs a single helicoidal face containing lp′p between R2

0 and R2
φ′ .

We implemented a procedure for visualizing the Voronoi structure VorSL(P )
in the space SL; two examples of the respective structures representing a Voronoi
diagram VorL(P ) in the line space L for a set P of 4 points and 6 points,
respectively, are provided in Fig. 3.

4 Higher-Dimensional Case

In the three-dimensional case, we consider the space H of all planes in R3, and
address the problems of interpreting the Voronoi diagram VorH(P ) of a set P
of three-dimensional points in the space H. Again, we assume that the points
from P are in general position, meaning that no three points lie in the same
plane.

As in the planar case, VorH(P ) can be represented by simpler Voronoi struc-
tures, as described below.

Recall that a direction in R3 can be specified by two angles (Fig. 4). For any
plane h in R3, let us assume that its outer normal n is defined by a pair of angles
(φ, θ), such that φ, θ ∈ [0, π). In what follows, when referring to a normal of a
plane, we shall mean its outer normal.
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Fig. 3. The Voronoi structure VorSL(P ) in the space SL = R2× [0, π] representing the
Voronoi diagram VorL(P ) in the line space L for a set P of 4 points (above) and 6 points
(below), restricted to the interior of a cube. The points from P are represented in SL
by vertical segments depicted green; to a point p ∈ P , a segment pSL = (px, py)× [0, π)
corresponds.

Let us fix some φ, θ ∈ [0, π), and consider a subset Hφ,θ of H consisting of
all the planes, the normal of which is defined by the pair (φ, θ). Unless some two

points from P fall in the same plane from Hφ,θ, the Voronoi diagram Vorφ,θH (P )
of P in the subspace Hφ,θ is represented by n − 1 planes, the normal nφ,θ of
each of which is defined by (φ, θ), and which pass through the middle points of
the segments connecting the consecutive points in a sequence obtained from P
by sorting it with respect to the direction nφ,θ. If P does contain two points
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Fig. 4. A direction r in three-dimensional space can be specified by two angles φ and θ.

p and q belonging to the same plane from Hφ,θ, then Vorφ,θH (P ) will contain
an infinite region consisting of the planes from Hφ,θ, for which p and q are the
closest neighbors in P .

Consequently, VorH(P ) can be represented in a five-dimensional space SH =
R3× [0, π]× [0, π], periodic on both “angular” dimensions, in such a way that for
any fixed φ, θ ∈ [0, π), the intersection of VorH(P ) with the three-dimensional

subspace of SH defined by φ and θ represents Vorφ,θH (P ).

In the general case, we consider the space H of all hyperplanes in Rd, and
are interested in the structure of the Voronoi diagram VorH(P ) of a set P of
d-dimensional points in the space H. Here we assume that no d points from P
belong to the same hyperplane.

First, let us recall the formulae defining the generalized polar transform:

x1 = r cosφ1

x2 = r sinφ1 cosφ2

x3 = r sinφ1 sinφ2 cosφ3

. . .

xd−1 = r sinφ1 sinφ2 . . . sinφd−2 cosφd−1

xd = r sinφ1 sinφ2 . . . sinφd−2 sinφd−1.

To a ball x21 +x22 + · · ·+x2d ≤ R2 in the space x1x2 . . . xd, a d-box 0 ≤ r ≤ R,
0 ≤ φ1 ≤ π, 0 ≤ φ2 ≤ π, . . . , 0 ≤ φd−2 ≤ π, 0 ≤ φd−1 ≤ 2π in the space
rφ1φ2 . . . φd−1 corresponds.

A direction in the d-dimensional space can thus be defined by a point on
the sphere x21 + x22 + · · · + x2d = 1, or, equivalently, by a (d − 1)-tuple of angles
(φ1, φ2, . . . , φd−1), where 0 ≤ φ1 ≤ π, 0 ≤ φ2 ≤ π, . . . , 0 ≤ φd−2 ≤ π, 0 ≤
φd−1 ≤ 2π.

As in the three-dimensional case, we shall decompose H into sets of hyper-
planes having the same outer normal, thereby assuming that the outer nor-
mal is the one defined by a (d − 1)-tuple of angles (φ1, φ2, . . . , φd−1), where
φ1, φ2, . . . , φd−1 ∈ [0, π).

Let us fix some φ1, φ2, . . . , φd−1 ∈ [0, π) and consider a subset Hφ1,φ2,...,φd−1

of H consisting of all hyperplanes with the outer normal defined by the (d− 1)-
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tuple (φ1, φ2, . . . , φd−1). As before, unless two points from P lie in the same

hyperplane from Hφ1,φ2,...,φd−1
, the Voronoi diagram Vor

φ1,φ2,...,φd−1

H (P ) of P in
the subspace Hφ1,φ2,...,φd−1

is represented by d − 1 hyperplanes with the outer
normal n defined by (φ1, φ2, . . . , φd−1), which pass through the middle points
of the segments connecting the neighbor points in a sequence obtained from P
by ordering it with respect to the direction n. In case some two points p, q ∈ P
happen to lie in the same hyperplane from Hφ1,φ2,...,φd−1

, the restricted Voronoi

diagram Vor
φ1,φ2,...,φd−1

H (P ) will contain an infinite region filled with the hyper-
planes from Hφ1,φ2,...,φd−1

, for which p and q are the closest neighbors in P .
We conclude that the Voronoi diagram VorH(P ) of hyperplanes for a set of

points in the d-dimensional space can be represented in a (2d − 1)-dimensional
space SH = Rd × [0, π] × · · · × [0, π], periodic on each of the d − 1 “angular”
dimensions, so that for any fixed set of angles φ1, φ2, . . . , φd−1 ∈ [0, π), the
intersection of VorH(P ) with the d-dimensional subspace of SH defined by φ1,

. . . , φd−1 represents Vor
φ1,φ2,...,φd−1

H (P ).

5 Conclusion

In this work, we have proposed a new way of interpreting the Voronoi diagram
of a planar set of points in the line space, which allows to visualize its structure
in a three-dimensional space. Our ideas extend to the three-dimensional case, in
which a Voronoi diagram of a set of points in the space of all planes is examined,
and generalize further to higher dimensions. Though these Voronoi structures are
unlikely to allow for a more efficient processing of the nearest neighbor queries
than by the existing methods (see [3, 7, 9] for two-dimensional case, [8] for three-
dimensional case, and a very recent work [6] for a novel general framework), our
results may help to develop a better intuition in regard of their properties, and
to admire their inherent beauty. We also hope that our approach will help to
study Voronoi diagrams in higher-dimensional line spaces (instead of hyperplane
spaces), where the methods based on the concept of duality do not work.
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