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Order-k Triangulations of Convex Inclusion Chains in the Plane

Wael El Oraiby*

Abstract

Given a set V' of n points in the plane, we show that
there is a strong connexion between the k-sets of a
convex inclusion chain of V introduced in [5] and
the centroid triangulations of V' defined in [8]. We
also show that one of these triangulations can be con-
structed in O(nlogn + k(n — k)log? k) time.

1 Introduction

Given a finite set V' of n points in the Euclidean plane
(no three of them being collinear) and an integer k
(0 < k < n), the k-sets of V' are the subsets of k
points of V' that can be strictly separated from the rest
by a straight line. The numbers of k-sets have been
studied in various ways in computational and combi-
natorial geometry (see [4], [12], and [10] for some best
bounds known in the plane). In [5], we have given
a new invariant of the number of k-sets, in connex-
ion with convex inclusion chains of V. Such a chain
is an ordering V = (v, va,...,v,) of the points of V
such that, for every i € {2,...,n}, v; does not belong
to the convex hull conv(S;—1) (with S; = {vy,...,v; },
for all ¢ € {1,...,n}). The set of k-sets of the convex
inclusion chain V is then the set of distinct k-sets of
Sk, Skt1, -y Sn- We have shown that the number of
these k-sets does not depend on the chosen chain and,
surprisingly, it is equal to the number of regions of the
order-k Voronoi diagram of V.

Independently, while studying multivariate splines,
Lyu and Snoeyink have introduced the notion of cen-
troid triangulation [8]. It is a generalization of the
order-k Delaunay diagram, which is dual to the order-
k Voronoi diagram [3, 11] (note that this order-k De-
launay diagram has nothing to do with the order-k
Delaunay triangulation of [6]). For k¥ < 3, Lyu and
Snoeyink have proven the correctness of there con-
structive definition of centroid triangulations and they
have conjectured that it also holds for k£ > 3.

In this paper we establish the relation between the
k-sets of the convex inclusion chains of a point set V'
and the centroid triangulations of V. More precisely,
we show that, for all k, the centroids of the k-sets
of a convex inclusion chain of V' are the vertices of a
centroid triangulation of V. We call this triangula-
tion the order-k triangulation of the convex inclusion
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Figure 1: Edges and vertices of a 4-set polygon of 12
points.

chain.

On the one hand, this result allows us to find, for
all k, a family of centroid triangulations that verify
the definition of Lyu and Snoeyink. On the other
hand, it is a first step toward the understanding why
the number of k-sets of a convex inclusion chain is
equal to the number of regions of the order-%k Voronoi
diagram.

Finally, we show that a particular centroid triangu-
lation can be constructed in O(n log n+k(n—k) log? k)
time. This improves the algorithm that follows from
the constructive definition of Lyu and Snoeyink whose
time complexity is at least O(nlogn + k?(n — k)).

2 k-set polygons

Given two points s and ¢ of V, we denote by st the
closed line segment with endpoints s and ¢ oriented
from s to ¢, by (st) the oriented straight line generated
by st, and by (st)~ the open half plane on the right
of (st). For any subset E of the plane, we denote by
E the closure of E.

Let g*(V) be the k-set polygon of V, i.e., the convex
hull of the centroids of all the k-element subsets of V.
Notice that, g'(V) is the convex hull conv(V) of V
and g™ (V) is a unique point, the centroid g(V') of V.

We first recall two important properties of the ver-
tices and edges of ¢gF(V) given by Andrzejak and
Fukuda [1], and by Andrzejak and Welzl [2] (see Fig-
ure 1 for an illustration).

Proposition 1 (i) g(T) is a vertex of g*(V) if and
only if T is a k-set of V.

(ii) g(T)g(T") is a counterclockwise oriented edge
of g¥(V) if and only if there exist two points s and t
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Figure 2: Construction of the 4-set polygon of SU{12}
from the 4-set polygon of S = {1,...,11}. The edges
to remove are in dashed lines and the edges to create
in bold lines.

of V and a subset P of k — 1 points of V such that
T=PU{s}, T"=PU{t}, and VN (st)” = P.

From now on, any such oriented edge will be de-
noted by ep(s,t). Obviously, ep(s,t) is parallel to
(st) and it is not difficult to see that the any line that
separates the vertex g(T') from the vertices of g*(V)
is parallel to a line that separates T' from V' (and con-
versely).

Let S be a non empty subset of V' and v be a point
of V'\ conv(S), and consider the edges to remove and
the ones to create when constructing g*(SU{v}) from
g*(S) (see Figure 2). From [5], we know that:

Proposition 2 (i) The edges to remove are the edges
ep(s,t) of g¥(S) with v € (st)~. Together with their
endpoints, they form a connected polygonal line ng,

(ii) The edges to create form a connected polygonal
line of at least two edges. The first (resp. last) of them
(in counterclockwise direction) is of the form ep(s,t)
with t = v (resp. s = v). The other edges to create
form a polygonal line Cg’v of edges of the form ep (s, t)
with v € P.

For every vertex g(T;) of Dg,v, let (T;) be the set:

e of vertices g(T) of C§_, such that T and T; can be
separated respectively from S U {v} and from S
by two parallel straight lines A and A’ with same
orientation and such that T C A~ and T; € A’

e and of edges of C ’g.ﬂ) that connect such vertices.

Using basic properties of convex hulls, it is easy to
see that ¢(T;) is a connected polygonal line and that:

Proposition 3 If (¢(Th),...,9(T)) is the counter-
clockwise-ordered sequence of vertices of ng"v, then

Clg',v = (@(Tl)v ey @(Tm))
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3 Triangulating g(V)

We show now that the centroids of the k-sets of a con-
vex inclusion chain of V' are the vertices of a triangu-
lation of g¥(V) that has some common characteristics
with the order-k Delaunay diagram of V. Recall that
this diagram is dual to the order-k£ Voronoi diagram
and that its vertices are the centroids of the k-element
subsets of V' that determine the order-k Voronoi re-
gions of V. The order-k Delaunay diagram is then
a triangulation of g¥(V') whose every edge g(T)g(T")
is such that |[TN7T'| = k— 1 [7, 11]. We show now
that the centroids of the k-sets of any convex inclusion
chain of V" are also the vertices of such a triangulation.
From Proposition 1, we already know that the edges
of every k-set polygon fulfill the property. Moreover:

Proposition 4 For every vertex g(T;) of Dgﬂ) and for
every vertex g(T) of p(T;), there exists s € T; such
that T = (T; \ {s}) U{v} and the segments g(T;)g(T)
triangulate the polygon P = gF(S U {v})\ g*(S).

Proof. (i) By definition, for every vertex ¢(T') of
©(T;), there exist two parallel oriented straight lines A
and A’ such that A~NS = T; and A’ N(SU{v}) =T.
Thus, there is a unique point s of S between A and
A’ and we have T' = (T; \ {s}) U {v}.

(ii) Now, it is not difficult to show that g(7) can be
separated from ¢*(S) by a straight line and thus that
9(T;)g(T) € P. Moreover, from Proposition 3, two
such segments can only intersect at their endpoints.

(iii) The boundary of P is composed of the edges
of Dg’v, of the edges of Cg’v, and of the two other
edges to create. From Proposition 3, for every edge
g(T)g(T") of C’gvﬂ), there exists a unique i € {1,...,m}
such that g(T)g(T") is an edge of ¢(T;). The triangle
9(T)g(T")g(T;) splits then P into two simple poly-
gons. In the same way, if ¢(7T;)g(T;11) is an edge of
DS, @(T;) and (Tiy1) have a common vertex g(7T)
and the triangle ¢g(T)g(T;)g(T;+1) splits P into two
simple polygons. By induction, P can thus be trian-
gulated by such triangles (see Figure 3). O

Now, if V = (v1,vs,...,v,) is a convex inclusion
chain of V| by applying Proposition 4 successively to
the subsets Sy = {v1,..., Uk}, ooy S = {v1, .oy}, We
get:

Theorem 5 The centroids of the k-sets of V are the
vertices of a triangulation of g* (V') whose every edge
g(T)g(T") is such that [T NT'| =k — 1.

The triangulation determined by this theorem is
called the order-k triangulation of V and is denoted
by T(V) (see Figure 4).

It is easy to see that, if the edges of a trian-
gulation fulfill Theorem 5 then, for every triangle
g(T)g(T")g(T") of this triangulation, either |[T°'NT" N
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T"| = k—1 (called a type-1 triangle), or |TUT'UT"| =
k + 1 (called a type-2 triangle).

4 Order-k triangulations and centroid triangula-
tions

Lee has proposed an algorithm to construct the order-
k Voronoi diagram by starting with the (order-1)
Voronoi diagram and iteratively computing the order-
i diagram from the order-(i — 1) diagram [7]. This
algorithm can be dualized to construct iteratively the
order-k Delaunay diagram starting with the (order-
1) Delaunay diagram [11]. The method to construct
the order-i Delaunay diagram from the order-(i — 1)
diagram is the following:

Algorithm 1

e For every type-1 triangle g(P U {r})g(P U {s})
g(P U {t}) of Del;_1(V) compute the triangle
g(PUA{r,s})g(PU{r,t})g(PU{s,t}).

e The set T of these triangles is the set of type-2
triangles of Del;(V').

e The type-1 triangles of Del;(V') are obtained by
computing the constrained (order-1) Delaunay

triangulation of g*(V) \ 7.

In [8], Lyu and Snoeyink conjectured that, starting
with any triangulation of the point set V' and com-
puting any constrained triangulation at every step,
this algorithm constructs triangulations whose edges
verify Theorem 5 (they proved the result for k < 3).
The triangulations generated in this way are called
centroid triangulations. Here we show that, for all k:

Theorem 6 The order-k triangulation of any convex
inclusion chain is a centroid triangulation.

Proof. For every point set S we call (centroid) trian-
gulation sequence of S, any sequence (A, ..., A8l of
centroid triangulations such that A is a triangulation
of S and, for all i € {2,...,|S|}, A’ is obtained from
A?~! by the generalization of Algorithm 1. Note that
A! contains only type-1 triangles, A/~ only type-2
triangles, and Al = ¢/51(.9) is reduced to the unique
point g(5).

Suppose by induction that, for every set .S of n — 1
points, for every convex inclusion chain § of S, and for
every positive integer k < n — 1, the order-k triangu-
lation 7%(S) of S is a centroid triangulation of S and
that (71(S),..., 7" 1(S)) is a triangulation sequence
of S. This is trivially true for n — 1 = 1.

Let now v be a point not belonging to conv(S),
V =8SU{v}, and V = (S,v). When v is added to S,
Céﬂ) is composed of the unique vertex v and Dy, is
composed of the edges and vertices of the boundary

Figure 3: A triangulation of g4(S U {12})\ ¢4(9),
with S = {1,...,11}. The white triangles are of type
1 and the grey triangles are of type 2.

of T71(S8) visible from v. By connecting these vertices
to v, we get 71(V) which is the first element of a
triangulation sequence of V. Assume now, as a sec-
ond induction hypothesis, that for a positive integer
h<n—1,(T*V),...,T"5(V)) is an initial part of a
triangulation sequence of V. 7"(V) verifies Theorem
5 and, from the proof of Proposition 4, 7"(V) \ T7"(S)
has two kinds of triangles: Triangles with one edge
on Dg,v and the opposite vertex on C’gvﬂ), and trian-
gles with one edge on C g"v and the opposite vertex on
Dg,v (see Figure 3). Using Proposition 4, it can be
shown that these triangles are respectively of type 1
and 2. With the argument that ep(s,t) is an edge

of C’gvﬂ) if and only if ep\ 3 (s,1) is an edge of Dg;l,

the type-2 triangles of 7(V) \ 7"(8) can be obtained
from the type-1 triangles of 7h=1(V)\ 7"-1(S) by
the generalization of Algorithm 1. From the first in-
duction hypothesis, 7"(V) can then also be obtained
from 77~1(V) by this algorithm and, from the sec-
ond induction hypothesis, (Z71(V),...,7"(V)) is an
initial part of a triangulation sequence of V', for all
h € {1,..,n — 1}. Since T™(V) is reduced to the
centroid ¢g"(V), it follows that (7*(V),...,7"(V)) is a
triangulation sequence of V. O

5 Construction of a centroid triangulation

As we know from [7] and [5], the order-k Delaunay di-
agram and the order-k triangulations of convex inclu-
sion chains have both 2kn —n — k> +1 — Z?;ll (V)
vertices (with 77(V) the number of j-sets of V and
2(1) = 0). Lyu and Snoeyink have conjectured that
any centroid triangulation has O(k(n — k)) vertices.
Thus, the generalization of Algorithm 1 constructs a
centroid triangulation in at least O(nlogn+k?(n—k))
time (at least O(nlogn) for the order-1 triangulation
and at least O(k(n — k)) for each of the k — 1 other
centroid triangulations). We show now that a par-
ticular centroid triangulation can be constructed in
O(nlogn + k(n — k) log® k) time.
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Figure 4: The order-4 triangulation of the convex in-
clusion chain (2,3,1,4,5,9,11,7,8,6,10,12).

To handle a centroid triangulation, we need to know
its combinatorial structure, to maintain for every edge
g(P U {s})g(P U{t}) a link to s and ¢, and to store
the set T for exactly one vertex ¢g(T'). Moreover, de-
noting by |D§,| and |C§ | the numbers of vertices
of D%, and of C§,, it has been shown in [5] that, if
¢*(S) and v are given, D§, and Cg,v can be found in
o(|Ds , | log? k+C§ ,|) time, provided that one vertex
9(T;) of DE, is known and that the convex hull of T;
is stored in a fully dynamic convex hull data structure
(see [9]). Then we have:

Theorem 7 V admits a centroid triangulation that
can be constructed in O(nlogn+k(n—k)log? k) time.

Proof. Let V = (v1,...,v,) be a sequence of the
points of V' sorted by increasing z-coordinates. Ob-
viously, V is a convex inclusion chain of V. For every
subset S; = {v1,...,v;} (j € {k,...,n —1}), it can be
shown that ng,vjﬂ contains a vertex of g(S;) with
maximal x-coordinate, i.e., the centroid of k£ points of
S; with maximal z-coordinates. If we maintain the
dynamic convex hull of these k points and use the
triangulation method of the proof of Proposition 4,
given g*(S;), a triangulation of g*(S;41) \ ¢*(S;) can

be constructed in O(|D§'j,vj+1 | log® k+|c>]§j,“j+1 |) time.
Starting with ¢¥(Sx) = ¢(Sk) and applying

this triangulation method for all j € {k,..,n —
1}, we get an order-k triangulation of V in
-1 2 -1k .
O(Z;L:k |D§’j,vj+1|log k + Z;L:k |CS_7,1)_7+1|) time.
Now, Z;:kl |C§jﬂ)j+1| + 1 is the total number of ver-
tices of the order-k triangulation of V and it is easy
-1 -1k .
to see that >"—, |D§j’vj+’1| <k |Csjyvj+1|..81nce
the total number of vertices of the order-k triangu-
lation of V is O(k(n — k)), this triangulation can be
constructed in O(k(n — k)log® k) time, after having
sorted V.
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6 Conclusion

In this paper, we have shown that the family of cen-
troid triangulations of a planar point set, which is
known to contain the order k-Delaunay diagram, also
contains the family of order-k triangulations of the
convex inclusion chains of the point set.

Now, if we were able to show that all the centroid
triangulations have the same number of vertices, this
would completely explain why the number of k-sets
of a convex inclusion chain is equal to the number of
regions of the order-k£ Voronoi diagram. To achieve
this goal, we will probably need to find a geometric
characterization of centroid triangulations.
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