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The Number of k-Point Subsets Separable by Convex Pseudo-Circles
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Abstract

We show that any set S of n points in the plane con-
tains 2kn−n−k2+1−

∑

k−1
i=1 a(i)(S) subsets of k points

that can be separated from the rest of S by convex
pseudo-circles (where a(i)(S) denotes the number of
i-sets of S). This value does not depend on the set of
pseudo-circles.

1 Introduction

Given a finite set S of n points in the plane (no three of
them being collinear) and an integer k ∈ {1, ..., n−1},
a classical geometric problem consists in searching
subsets of k points of S that can be separated from
the remaining points by different types of lines. Sepa-
ration by a straight line has been extensively studied.
In this case, the separable subsets are called k-sets.
Dey [4] has shown that the number of k-sets of S (de-

noted by a(k)(S)) is bounded by O(nk
1

3 ) and Tóth

[10] has constructed sets with n2Ω(
√
log k) k-sets. In

fact, Dey’s bound also holds when the separation lines
form a family of pseudo-lines, that is x-monotone un-
bounded curves that pairwise intersect at most once.
If the curves are x-monotone and if any two of them
may have up to s intersection points (with s even),
Buzaglo, Holzman, and Pinchasi [3] have shown that
the number of separable k-point subsets is O(n

s

2 k
s

2 )
and that the bound is tight.

When the separation lines are circles and no four
points of S are cocircular, Lee [5] proved that S ad-

mits 2kn−n−k2+1−
∑

k−1
i=1 a(i)(S) separable k-point

subsets (those inside the circles). When the separa-
tion lines are pseudo-circles, i.e., simple closed curves
that pairwise intersect at most twice, and if all these
pseudo-circles either pairwise intersect or enclose a
same point of the plane, then the number of separa-
ble k-point subsets is O(nk) [3]. The bound is tight.

In this paper we show that Lee’s result holds true
when the separation lines are convex pseudo-circles.
This means that the number of subsets of k points of
S that can be separated from the rest of S by convex
pseudo-circles is an invariant of S: It does not depend
on the set of pseudo-circles.
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2 Order-k Centroid Triangulations

A k-edge is a couple (P, {s, t}) of subsets of S such
that |P | = k and the straight line (st) separates P
from S\(P∪{s, t}). Relations between k-edges and k-
sets can be observed through the so-called k-set poly-
gon of S (denoted by gk(S)), which is the convex hull
of the centroids of all k-point subsets of S. Indeed [1]:

Proposition 1 (i) The centroid g(T ) of T is a vertex
of gk(S) if and only if T is a k-set of S.
(ii) The line segment g(T )g(T ′) is an edge of gk(S)

if and only if there exists a (k − 1)-edge (P, {s, t}) of
S such that T = P ∪ {s} and T ′ = P ∪ {t}.

In the same way, circularly separable k-point sub-
sets of S correspond to the regions of the order-k
Voronoi diagram of S. The edges and vertices of this
diagram are characterized by couples (P,Q) of sub-
sets of S such that Q lies on a circle and P is inside
the circle: For edges |Q| = 2 and |P | = k− 1, and for
vertices |Q| = 3 and either |P | = k− 1 or |P | = k− 2
(when no four points of S are cocircular) [5]. Taking
the centroids of all circularly separable k-point sub-
sets of S and connecting those corresponding to neigh-
bor order-k Voronoi regions, we get a triangulation of
the k-set polygon of S called the order-k (centroid)
Delaunay triangulation of S [2, 8]. Its edges and tri-
angles are characterized by the above defined couples
(P,Q). Here we define the same kind of triangulation,
but with convex pseudo-circles instead of circles.

Definition 1 A couple (P,Q) of disjoint subsets of
S is called a (convex) k-couple of S, if there exists
a simple closed strictly convex (Jordan) curve γ such
that Q lies on γ, P and S \ (P ∪ Q) lie respectively
in the bounded and in the unbounded open region of
the plane delimited by γ, and

• either Q = ∅ and |P | = k,
• or |P | < k < |P ∪Q| and 2 ≤ |Q| ≤ 3.

The second item corresponds to three kinds of k-
couples: |Q| = 2 and |P | = k − 1, |Q| = 3 and |P | =
k − 1, |Q| = 3 and |P | = k − 2.
The curve γ is said to define the k-couple (P,Q).

Definition 2 Two distinct k-couples (P,Q) and
(P ′, Q′) of S are said to be compatible (with each
other) if they admit two defining curves that inter-
sect in at most two points (here a tangent point is
considered as a double intersection point).
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Denoting, for every subset E of the plane, E̊ the
relative interior of E and conv(E) the convex hull of
E, it is easy to see that:

Proposition 2 (i) (P,Q) is a k-couple of S if and
only if P and Q are two disjoint subsets of S such
that conv(P ∪Q) ∩ S = P ∪Q and

• either Q = ∅ and |P | = k,

• or the points of Q are extremal points of P ∪Q,
|P | < k < |P ∪Q|, and 2 ≤ |Q| ≤ 3.

(ii) Two distinct k-couples (P,Q) and (P ′, Q′) are
compatible if and only if

˚conv((P ∪Q) \ P ′) ∩ ˚conv((P ′ ∪Q′) \ P ) = ∅.

Definition 3 For every k-couple (P,Q) of S, let be
the set of centroids of all k-point subsets of P ∪Q that
contain P . The convex hull of this set of centroids is
called the k-set polygon of (P,Q) and is denoted by
gk(P,Q).

Let us describe the shape of the k-set polygon for
every kind of k-couple (P,Q) of Definition 1:

• when Q = ∅, gk(P,Q) is the centroid of P ,

• when Q = {s, t}, gk(P,Q) is the line segment
g(P ∪ {s})g(P ∪ {t}),

• when Q = {r, s, t} and |P | = k − 1, gk(P,Q) is
the triangle g(P ∪{r})g(P ∪{s})g(P ∪{t}); such
a triangle is said of type 1,

• when Q = {r, s, t} and |P | = k − 2, gk(P,Q) is
the triangle g(P ∪{r, s})g(P ∪{s, t})g(P ∪{t, r});
such a triangle is said of type 2.

When k = 1, the 1-set polygons of the 1-couples
of S are the points of S, the segments connecting the
points of S, and the triangles with vertices in S and
with no point of S inside. Notice that in this case
all triangles are type-1. Furthermore, if the 1-couples
are pairwise compatible, their corresponding points,
open segments and open triangles are pairwise dis-
joint. The 1-set polygons of any maximal set of com-
patible 1-couples are then the set of vertices, edges,
and faces of a triangulation of S. Conversely, every
triangulation of S can be obtained in that way. We
extend this to higher values of k.
Using basic centroid properties it is not hard to

prove that:

Theorem 3 If (P,Q) and (P ′, Q′) are two distinct
compatible k-couples, g̊k(P,Q) and g̊k(P ′, Q′) are dis-
joint.

The converse of Theorem 3 is generally wrong. It
holds notably when P = P ′ or when P ∪Q = P ′∪Q′.

Proposition 4 The boundary of the k-set polygon
of any k-couple (P,Q) with |Q| ≥ 2 is composed of
k-set polygons of k-couples that are compatible with
(P,Q), compatible with each others, and compatible
with every k-couple that is compatible with (P,Q).

Observing precisely the boundary of each type of
k-set polygon we can see that:
• the endpoints of a segment k-set polygon

gk(P, {s, t}) are the k-set polygons of the k-
couples (P ∪ {s}, ∅) and (P ∪ {t}, ∅),

• the vertices of a type-1 triangle gk(P, {r, s, t}) are
the k-set polygons of the k-couples (P ∪ {r}, ∅),
(P ∪ {s}, ∅), and (P ∪ {t}, ∅). Its edges are
the k-set polygons of the k-couples (P, {r, s}),
(P, {s, t}), and (P, {t, r}),

• the vertices of a type-2 triangle gk(P, {r, s, t}) are
the k-set polygons of (P ∪{r, s}, ∅), (P ∪{s, t}, ∅),
and (P ∪ {t, r}, ∅). Its edges are the k-set poly-
gons of (P ∪ {r}, {s, t}), (P ∪ {s}, {t, r}) and
(P ∪ {t}, {r, s}).

Proposition 5 states the same kind of properties for
the boundary of the k-set polygon gk(S) of the whole
set S (they can be deduced from Proposition 1).

Proposition 5 The edges and vertices of the k-set
polygon of S are k-set polygons of k-couples that are
compatible with each others and with every other k-
couple of S.

The next result is a kind of reciprocal of Proposition
4.

Proposition 6 If k ≥ 2 and if (P1, {s1, t1}),
(P2, {s2, t2}), and (P3, {s3, t3}) are distinct pairwise
compatible k-couples whose k-set polygons form a tri-
angle t then
(i) t is the k-set polygon of a k-couple,
(ii) this k-couple is compatible with every k-couple

that is compatible with (P1, {s1, t1}), (P2, {s2, t2}),
and (P3, {s3, t3}).

Proposition 6 is a strong property of k-set polygons
of k-couples when k ≥ 2. Transposed to the case
where k = 1, it would mean that a triangle with ver-
tices in S cannot contain any point of S inside, which
is obviously wrong.
Statement (ii) is a consequence of the following

lemma:

Lemma 7 Let k ≥ 2 and let (P, {r, s, t}),
(P1, {s1, t1}), and (P2, ∅) be three compatible k-
couples such that gk(P1, {s1, t1}) is an edge of
gk(P, {r, s, t}) and g(P2) is its opposite vertex.

If |P | = k − 1 (resp. |P | = k − 2), every k-couple
(P ′, Q′) with P ′ 6= P (resp. P ′ ∪Q′ 6= P ∪Q) that is
compatible with (P1, {s1, t1}) and with (P2, ∅) is also
compatible with (P, {r, s, t}).

This lemma is also the basis of the proof of the
following fundamental result:

Theorem 8 The k-set polygons of any maximal set
of distinct compatible k-couples partition the k-set
polygon of S in vertices, edges, and triangular faces.
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The triangulation obtained in this way is called an
order-k centroid triangulation of S (see Figure 1).
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g({2,5,6,7})
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Figure 1: An order-4 centroid triangulation. Type-1
triangles are white and type-2 triangles grey.

An important consequence of Theorem 8, of Propo-
sitions 4 and 6, and of Lemma 7 is that:

Corollary 9 If C is a maximal set of distinct com-
patible k-couples then the subset of all k-couples of C
of the form (P,Q) with Q = ∅ (resp. |Q| = 2, resp.
|Q| = 3 and |P | = k−1, resp. |Q| = 3 and |P | = k−2)
is a maximal set of compatible k-couples of S of this
form.

3 Enumeration formulas

Let T k be an order-k centroid triangulation of S
(k ≥ 2) and let τ be the set of k-couples (P,Q) whose
k-set polygons are the type-2 triangles of T k (i.e.
|Q| = 3 and |P | = k− 2). The k-couples of τ are also
pairwise compatible (k − 1)-couples. The (k − 1)-set
polygons of these (k − 1)-couples are type-1 triangles
and, from Theorem 8, they belong to a same order-
(k−1) centroid triangulation T k−1 of S. These trian-
gles are the only type-1 triangles of T k−1: Otherwise
there would exist a (k − 1)-couple (P ′, Q′) /∈ τ with
|P ′| = k−2 and |Q′| = 3 compatible with the elements
of τ . Since (P ′, Q′) is also a k-couple compatible with
the elements of τ , this would be in contradiction with
Corollary 9. Hence:

Lemma 10 The number of type-2 triangles of T k is
equal to the number of type-1 triangles of T k−1.

There is also a relation between the vertices of T k

and the edges of T k−1.

Lemma 11 g(T ) is a vertex of T k if and only if there
exists an edge gk−1(P, {s, t}) in T k−1 with P∪{s, t} =
T .

Proof. One can show that every vertex g(T ) of T k is
adjacent to at least one type-2 triangle. This triangle
is then of the form gk(P, {r, s, t}) with T = P ∪{s, t}.

Thus, gk−1(P, {r, s, t}) is a type-1 triangle of T k−1

and gk−1(P, {s, t}) is one of its edges.
Conversely, if gk−1(P ′, {s′, t′}) is an edge of T k−1

with (P ′, {s′, t′}) 6= (P, {s, t}), it is easy to see that
(P ′ ∪ {s′, t′}, ∅) is a k-couple compatible with (P ∪
{s, t}, ∅) = (T, ∅) and, from Corollary 9, g(P ′∪{s′, t′})
is a vertex of T k. �

If, for a k-point subset T of S, the union of the
edges and triangles of T k−1 of the form gk(P,Q) with
P ∪Q = T is not empty, then this union is called the
domain of T in T k−1.
Clearly, every edge and every type-2 triangle of

T k−1 belongs to one and only one domain. The edges
of a type-2 triangle belong to the same domain as the
triangle. The type-1 triangles belong to no domain.
From Lemma 11, we then have:

Lemma 12 The number of vertices of T k is equal to
the number of domains of T k−1.

The right knowledge of the domains’ shape will be
needed to enumerate the vertices of T k.

Proposition 13 (i) The vertices of T k−1 that be-
long to a same domain are the extremal points of this
domain.
(ii) Every domain is convex.

Proof. (i) Every vertex in the domain of T is of the
form g(T \ {s}) since it is an endpoint of an edge of
the form gk−1(T \ {s, t}, {s, t}). Therefore, s is an
extremal point of T and, by an homothety centered
in g(T ), g(T \{s}) is an extremal point of the domain.
(ii) We show that the line segment connecting any

two vertices g(T \ {r}) and g(T \ {s}) of the do-
main of T also belongs to this domain. Let gk−1(T \
{s, t}, {s, t}) be an edge of the domain of T with end-
point g(T \ {s}). If t = r we are done. Otherwise,
since conv(T ) ∩ S = T , since |T | = k, and since r, s, t
are extremal points of T , (T \ {r, s, t}, {r, s, t}) is a
(k − 1)-couple of S. Now, gk−1(T \ {s, t}, {s, t}) and
g(T \ {r}) are respectively an edge and a vertex of
the type-2 triangle gk−1(T \ {r, s, t}, {r, s, t}). From
Lemma 7, Proposition 4, and Theorem 3, only (k−1)-
set polygons gk(P,Q) with P ∪ Q = T may cut the
edge g(T \{r})g(T \{s}) of gk−1(T \{r, s, t}, {r, s, t}).
Hence, this edge belongs to the domain of T . �

Theorem 14 The number of vertices of any order-k
centroid triangulation of S (k ∈ {1, . . . , n− 1}) is

2kn− n− k2 + 1−
∑

k−1
i=1 a(i)(S).

Proof. Consider a sequence (T 1, . . . , T k) of order-1,
. . . , order-k centroid triangulations of S such that, for
all i ∈ {2, . . . , k}, the type-1 triangles of T i−1 corre-

spond to the type-2 triangles of T i. Set v(k), e(k), t
(k)
1 ,
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t
(k)
2 the respective numbers of vertices, edges, type-1
and type-2 triangles of T k. Since T k is a triangula-
tion of gk(S) and since the number of vertices of gk(S)
equals the number a(k)(S) of k-sets of S, we get

e(k) = 3v(k) − a(k)(S)− 3, (1)

t
(k)
1 + t

(k)
2 = 2v(k) − a(k)(S)− 2. (2)

Denoting by e
(k−1)
T

and t
(k−1)
T

the numbers of edges
and of triangles of the domain of T in T k−1, Propo-
sition 13 implies

e
(k−1)
T

= 2t
(k−1)
T

+ 1.

Since every edge and every type-2 triangle of T k−1

belongs to one and only one domain, it then follows
from Lemma 12,

e(k−1) = 2t
(k−1)
2 + v(k).

Thus, from Lemma 10,

e(k−1) + e(k−2) = 2(t
(k−2)
1 + t

(k−2)
2 ) + v(k) + v(k−1)

and, using equations (1) and (2),

v(k) − 2v(k−1) + v(k−2) = a(k−2)(S)− a(k−1)(S)− 2.

The result follows by induction on k and by the fact
that v(1) = n (the vertices of T 1 are the points of S)
and that v(2) = 3n − a(1)(S) − 3 (the domains of T 1

are the edges of T 1). �

4 Discussion

Theorems 8 and 14 show that the number of subsets of
k points of S that can be separated from the rest of S
by convex pseudo-circles is equal to 2kn−n−k2+1−
∑

k−1
i=1 a(i)(S), and is an invariant of S. Furthermore,

the couples (P,Q) such that P is a k-point subset
separable by a convex pseudo-circle passing through
Q correspond to the edges (when |Q| = 2) and to the
type-1 triangles (when |Q| = 3) of an order-(k + 1)
centroid triangulation. Their numbers can be deduced
from proof of Theorem 14.
The convex pseudo-circles considered in this paper

are closed curves. The results also hold for curves
closing at infinity (as parabolas) if we consider the
separable subset as the one belonging to the convex
region of the plane delimited by the curve.
The separable subsets treated in this paper are

closely related to the following ones: Let F be a fam-
ily of subsets of S such that each member of F is
the intersection of S with a convex set and, for any
two members A and B of F , A 6⊆ B, B 6⊆ A, and
both conv(A) \ conv(B) and conv(B) \ conv(A) are
connected (or empty). Pinchasi and Rote [7] proved
that F contains at most 4

(

n

2

)

+ 1 members and that

the bound is tight (within a constant multiplicative
factor). Notice however that the constraints on the
convex hulls in this definition are stronger than our
compatibility condition.
In [5], Lee proposed an algorithm to construct the

order-k Voronoi diagram by deducing it from the
order-(k − 1) Voronoi diagram. This algorithm can
be dualized to iteratively construct the order-k cen-
troid Delaunay triangulation, starting with the clas-
sical (order-1) Delaunay triangulation [8]. In order
to generate suitable bases for multivariate B-spline
spaces, Liu and Snoeyink [6] proposed to extend this
algorithm, starting with any (order-1) triangulation.
When their algorithm succeeds in constructing a tri-
angulation, then this triangulation is called a centroid
triangulation. They proved that their algorithm actu-
ally works for k ≤ 3 and conjectured that it works for
all k. We can prove that our order-k centroid trian-
gulations can be generated by such an algorithm and,
conversely, that every execution of the algorithm gen-
erates such a triangulation [9]. This proves Liu and
Snoeyink’s conjecture.
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