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Abstract. Given a set S of line segments in the plane, we introduce a
new family of partitions of the convex hull of S called segment triangu-
lations of S. The set of faces of such a triangulation is a maximal set
of disjoint triangles that cut S at, and only at, their vertices. Surpris-
ingly, several properties of point set triangulations extend to segment
triangulations. Thus, the number of their faces is an invariant of S. In
the same way, if S is in general position, there exists a unique segment
triangulation of S whose faces are inscribable in circles whose interiors
do not intersect S. This triangulation, called segment Delaunay triangu-
lation, is dual to the segment Voronoi diagram. The main result of this
paper is that the local optimality which characterizes point set Delaunay
triangulations [10] extends to segment Delaunay triangulations. A sim-
ilar result holds for segment triangulations with same topology as the
Delaunay one.

1 Introduction

The Voronoi diagram of a set S of sites in the d-dimensional Euclidean space
E partitions E into regions, one per site; the region for a site s consists of all
points closer to s than to any other site. In very recent years, particular attention
has been paid to the study of the Voronoi diagram of a set of line segments in
three dimensions [13], [18], [9], ... However, the topology of this diagram is really
known only for a set of three lines [8]. The investigation for the point set Voronoi
diagram has been fairly facilitated by the well understanding of its dual, the De-
launay diagram. Recall that, if no d+1 points of S are cospherical, the Delaunay
diagram of S is the unique triangulation of S whose tetrahedra are inscribable in
empty spheres, that is, spheres whose interiors do not intersect S. Among all the
triangulations of S, the Delaunay diagram of S has many optimality properties,
some of them extending in any dimension [15], [17]. Until now, no such properties
have been given, even in the plane, for the dual of the segment Voronoi diagram
which has been introduced by Chew and Kedem [5]. Surprisingly, no family of
diagrams containing this dual diagram has been defined whereas many general-
izations of point set triangulations have been studied: constrained triangulations
[11], pseudo-triangulations [16], pre-triangulations [1], ...

In this paper, we introduce a new family of diagrams, called segment triangu-
lations, which decompose the convex hull of a set S of points and line segments
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in the plane. The set of faces of a segment triangulation of S is a maximal set of
disjoint triangles such that the vertices of each triangle belong to three distinct
sites of S and no other point of the triangle belongs to S. The edges of the seg-
ment triangulation are the (possibly two-dimensional) connected components of
the convex hull of S when the sites and open faces are removed. These definitions
are natural for, when S is a point set we recover the definitions of the faces and
the edges of a point set triangulation. The aim of this paper is to study this new
kind of triangulation in order to characterize by local properties the dual of the
segment Voronoi diagram among the set of segment triangulations.

The segment triangulations are studied for their own sake in the two first
sections. We show that they retain different geometrical and topological prop-
erties of point set triangulations and that they are intimately related to some
generalized constrained triangulations.

In the next section, we prove that there exists one and only one segment
triangulation of S whose faces are inscribable in empty circles. We show that this
triangulation, called segment Delaunay triangulation, is the dual, introduced by
Chew and Kedem, of the segment Voronoi diagram and can thus be constructed
in O(n log n) time.

The point set Delaunay triangulation admits an important local characteri-
zation which is used to prove many of its optimality properties and enables to
check in linear time whether a given triangulation is Delaunay or not. This local
property states that a triangulation is Delaunay if and only if every couple of
faces sharing a common edge is in Delaunay position with respect to its four
defining sites [10]. The main result of the second part of the paper is that this
property also characterizes the segment Delaunay triangulation among all the
segment triangulations of a given set of line segments. We also give another local
property that characterizes the set of segment triangulations having the same
topological structure as the segment Delaunay triangulation.

2 Segment Triangulations and Constrained Triangulations

Let S be a finite set of n ≥ 2 disjoint closed segments in the plane, which we
call sites. Throughout this paper, a closed segment may possibly be reduced to
a single point. We say that a circle is tangent to a site s if s meets the circle
but not its interior. The sites of S are supposed to be in general position, that
is, we suppose that no three segment endpoints are collinear and that no circle
is tangent to four sites.

Definition 1. A segment triangulation P of S is a partition of the convex hull
conv(S) of S in disjoint sites, edges and faces such that:

(i) Every face of P is an open triangle whose vertices belong to three distinct
sites of S and whose open edges do not intersect S,

(ii) No face can be added without intersecting another one,
(iii) The edges of P are the (possibly two-dimensional) connected components

of conv(S) \ (F ∪ S), where F is the set of faces of P .
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Fig. 1. A weakly constrained triangulation (dotted lines) of an S-polygon (in grey)

Such a triangulation always exists, that is, for any set S, there is a finite number
of faces verifying Definition 1. Indeed, it is not difficult to see that at most two
disjoint triangles can have their vertices on the same three sites (see Figure 3(a)).

There is a well-known triangulation defined on a set of points and line seg-
ments: The constrained triangulation. It is a triangulation of the set of points
and segment endpoints such that every given line segment is a side of a triangle.
These triangulations are mainly used to triangulate terrains with topographic
constraints (mountain crests, roads, ...) or interiors of polygons. However, the
triangles being mostly too irregular, so called Steiner points are added to the ini-
tial point set (see for example [3]). Steiner points added on the segments enable
to split them into subsegments and to generate a better constrained triangula-
tion. We show now that segment triangulations are intimately related to a kind
of generalized Steiner triangulation that we call weakly constrained triangula-
tion. In this triangulation (see Figure 1), a point added on a line segment does
not split the segment but becomes a vertex of triangles that are on one side of
the segment. Therefore, the two sides of a segment are independent. This en-
ables, for example, to independently triangulate two slopes on both sides of a
same mountain crest. We now define the weakly constrained triangulation of a
restricted region.

Definition 2

(i) Given a set S of sites, we call S-polygon (possibly with holes), any closed
two-dimensional subset A of conv(S), equal to the closure of its interior, such
that A \ S is connected and the boundary of A is composed of a finite number of
disjoint line segments that are of the two following forms:

– closed and contained in S,
– open, not intersecting S, and with their endpoints in S.

(ii) We call weakly constrained triangulation of A (with respect to S), any
partition of A in triangles whose vertices belong to S, whose interiors do not cut
S, and whose open sides either do not cut S or are contained in S.

When A = conv(S), such a triangulation is also called a weakly constrained
triangulation of S.

The following lemma will enable to establish the connection between segment
triangulations and weakly constrained triangulations.
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Lemma 1. If A is an S-polygon that intersects at least three sites of S then
every weakly constrained triangulation of A contains at least one triangle whose
vertices belong to three distinct sites of S.

Proof. Given a weakly constrained triangulation T of A, let ΔT (A) be the (pos-
sibly empty) set of triangles of T having one side in S. We show, by induction on
the number |ΔT (A)| of triangles of ΔT (A), that T contains at least one triangle
whose vertices belong to three distinct sites of S.

Obviously, if ΔT (A) = ∅, the vertices of every triangle of T belong to three
distinct sites. Suppose now the result true for every weakly constrained triangu-
lation T with |ΔT (A)| < k (k ≥ 1).

For every weakly constrained triangulation T of A with |ΔT (A)| = k and for
every closed triangle t of ΔT (A), the closure A \ t of A \ t intersects the same
sites as A. If A \ t is connected, A′ = A \ t is an S-polygon. Otherwise, A \ t
has two connected components, the closure of at least one of them being an
S-polygon. In the latter case, each of the S-polygons intersects the two sites to
which the vertices of t belong. It follows that at least one of these S-polygons
intersects at least three sites. Let A′ be this S-polygon. In both cases, if T ′ is
the restriction of T to A′, |ΔT ′(A′)| < |ΔT (A)|. Thus, by induction hypothesis,
T ′ contains at least one triangle whose vertices belong to three distinct sites of
S. It is the same for T . ��

It follows from this lemma that, in any weakly constrained triangulation of S,
the set F of triangles having their vertices on three distinct sites of S is maximal.
Indeed, the closure of every connected component e of conv(S)\ (F ∪S) is either
a line segment connecting two points of S or an S-polygon. In the second case, it
follows from Lemma 1 that e can only intersect two sites. Therefore no triangle
having its vertices on three distinct sites of S can be added without cutting
F ∪ S. Thus, the theorems:

Theorem 1. Every weakly constrained triangulation of S is a refinement of a
segment triangulation of S, that is, a segment triangulation whose edges are
decomposed in triangles.

Theorem 2. The closure of every edge of a segment triangulation of S intersects
exactly two sites of S.

This shows that an edge of a segment triangulation P of S is really an edge
in that sense that it “connects” exactly two sites of S. Its shape can also be
deduced from the discussion above. The closure of an edge either is reduced to
a line segment joining two points in two distinct sites of S, or is a triangle with
one side and its opposite vertex in S, or is a (possibly non-convex) quadrilateral
with two opposite sides in S (see Figure 2). Moreover, every edge of P contains

– either two sides of two triangles of P ,
– or one side of one triangle of P and one side of conv(S) that is not a site,
– or two such sides of conv(S).
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Fig. 2. Examples of edges (grey) connecting two sites in a segment triangulation

Here the edges of a segment triangulation are implicitly defined by comple-
mentarity with respect to the faces and to the sites. If we want to extend segment
triangulations in d dimensions, the faces of dimension less than d have to be de-
fined explicitly. In the plane, this could be done by defining the edges in the
following way: Take a maximal set E of open disjoint line segments that do
not cut S and whose endpoints belong to S (in general E is infinite). Then, it
can be proved that the connected components of E are the edges of a segment
triangulation of S.

3 Topological Properties of Segment Triangulations

Since every edge of a segment triangulation P of S “connects” two sites of S,
we can associate an abstract graph with P such that:

– the vertices of the graph are the sites of S,
– the edges connecting two sites s and t in the graph are the edges of P whose

closures intersect s and t.

Proposition 1. The abstract graph associated with a segment triangulation P
of S is planar.

Proof. For every site s of S, let γs be a convex closed Jordan curve such that:

– s is inside γs (i.e. in the subset of the plane bounded by γs),
– S \ s is outside γs,
– the interior of γs intersects only the edges of P whose closures intersect s.

Replace now every site s by a point ps inside γs. For every edge e of P that
intersects γs, replace the subset of e inside γs by a line segment connecting ps

to a point of e on γs. While doing this, the order of the edges around s remains
unchanged and the reduced edges do not intersect. Once this transformation is
fulfilled in every Jordan curve γs, replace every reduced edge by a Jordan arc
included in it. Finally, we get a planar representation G of the abstract graph
associated with P (see Figure 3(b)). ��

Theorem 3. Every segment triangulation P of a set S of n sites contains 3n−
n′ − 3 edges and 2n − n′ − 2 faces, where n′ is the number of edges of conv(S)
that are not sites.
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(a) (b)

Fig. 3. A segment triangulation (a) (the sites are in black, the edges in grey, and the
faces in white) and its associated graph (b)

Proof. Counting the edges and faces of P comes down to counting the edges and
bounded faces of the planar representation G constructed in the proof of Propo-
sition 1. Moreover, the unbounded face of G corresponds to the complementary
of conv(S). The result is then an immediate consequence of Euler’s relation, of
the fact that every bounded face of G has three edges, and that the edges adja-
cent to one (resp. no) bounded face appear once (resp. twice) while traversing
the boundary of the unbounded face of G. ��

An interesting consequence of this theorem is that the size of a segment trian-
gulation is linear with the number of sites. Moreover, it shows that the number
of triangles of the triangulation is an invariant of the set of sites. This is an
extension of a well-known property of the triangulations of planar point sets.

Using the planar representation G constructed in the proof of Proposition 1,
we can associate a combinatorial map M with the segment triangulation P :

– the underlying graph is the abstract graph associated with the triangula-
tion P ,

– for every vertex s of M , the cyclic ordering of the edges out of s agrees with
the counter-clockwise ordering of the associated Jordan arcs around s in the
planar representation G.

Note that, in general, the same map M is associated with different segment
triangulations of S. We say that:

Definition 3. Two segment triangulations of S have the same topology if they
have the same associated combinatorial map.

In order to use M as a data structure to store the segment triangulation P ,
we only need to add the coordinates of the vertices of the triangles of P in
the structure: One vertex per oriented edge. A segment triangulation of a set S
of n sites can thus be stored using O(n) space. Furthermore, from Theorem 1,
every constrained triangulation of S is a refinement of a segment triangulation of
S. There exists a sweep-line algorithm to construct a constrained triangulation
in O(n log n) time [7] and this algorithm can easily be adapted to construct a
segment triangulation also in O(n log n) time.
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4 Segment Delaunay Triangulation and Segment Voronoi
Diagram

Among the set of all segment triangulations, some are distinguished. For ex-
ample, we could look for the segment triangulation whose faces have a maximal
total area. Here we will be interested in the segment triangulation whose faces are
inscribable in empty circles. In this section, we prove the existence and unicity
of this special segment triangulation and we show that it is dual to the segment
Voronoi diagram (see Figure 4). Our proof uses some properties of the segment
Voronoi diagram, which can be found in [2], [4], and [14].

Let now F be the set of triangles of the plane such that the vertices of each
triangle belong to three distinct sites of S and such that the interior of the
circumcircle of each triangle does not intersect S.

Theorem 4

(i) The triangles of F are the faces of a segment triangulation P of S, which
we call the segment Delaunay triangulation.

(ii) The combinatorial map M associated with P is dual to the segment
Voronoi diagram of S.

Proof. Since the interior of the circumcircle of every triangle of F is empty, two
such triangles cannot intersect. Thus, they are faces of a segment triangulation.
On the one hand, the number of vertices of the Voronoi diagram V or(S) of S
is known and by Theorem 3, it is the same as the number of triangles of a seg-
ment triangulation of S. On the other hand, each vertex of the Voronoi diagram
corresponds to one triangle of F . Therefore, the number of triangles of F is max-
imal, which means that F is the set of triangles of a segment triangulation P .
Furthermore, by definition of the Voronoi diagram, there is a one-to-one corre-
spondence between the regions of V or(S) and the sites, which are, by definition,
the vertices of M .

It remains to study the edges of M and of V or(S). Let a be an edge of V or(S)
incident to the two Voronoi regions of s and t. Each point p in a is the center
of an empty circle Cp touching the two sites s and t at the points ps and pt. It
is not difficult to prove that such an open segment pspt never meets a triangle

Fig. 4. A segment Delaunay triangulation and an illustration of the duality
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of F . Thus, for each p in a, the open segment pspt is included in an edge of the
segment triangulation P . Furthermore, the union Ea of all the open segments
pspt, p ∈ a, is a connected subset of conv(S), therefore Ea is included in a single
edge e of P , which is incident to s and t. The last thing to see is that for each
edge e of P there is exactly one edge a of V or(S) such that Ea ⊂ e. Since the
numbers of edges of P and of V or(S) are equal, it suffices to prove that for each
edge e of P there is at least one edge a such that Ea ⊂ e. Now, any boundary
segment of an edge e linking two sites s and t, is of the previous kind pspt.
Therefore there is an edge a of V or(S) such that Ea ⊂ e. ��

It is easy to see that the segment Delaunay triangulation of S defined in this
theorem is equivalent to the dual of V or(S) introduced by Chew and Kedem,
which they called the edge Delaunay triangulation of S [5]. Using algorithms
that construct segment Voronoi diagrams, the segment Delaunay triangulation
can be computed in O(n log n) time [14].

5 Legality in Segment Triangulations

An interesting property of the Delaunay triangulation of a planar point set is
the legal edge property. Consider an edge of a point set triangulation and its
two adjacent triangles. The edge is illegal if a vertex of one of these triangles lies
inside the circumcircle of the other triangle. It is well-known that the Delaunay
triangulation of a point set is the unique triangulation of this point set without
illegal edge. In the following, we are going to prove a similar property for segment
triangulations.

Definition 4. An egde of a segment triangulation is legal if the circumcircles
of its adjacent triangles contain no point of the sites adjacent to these triangles
in their interiors.

Theorem 5. The segment Delaunay triangulation of S is the unique segment
triangulation of S whose all edges are legal.

Proof. Obviously, the segment Delaunay triangulation has no illegal edge. Let
P be a segment triangulation which is not Delaunay and let f be a face of P
whose circumcircle cf contains a point of S in its interior df . We have to prove
that P has an illegal edge. Let x be a point in f and p a point in df lying on
a site. We can assume that the interior of the segment xp does not intersect S.
Denote by k the number of edges crossed by the segment xp. Note that k ≥ 1,
for, by definition, p can neither be in f , nor in an edge adjacent to f . Denote e
the first edge crossed by xp, g the other face adjacent to e, cg its circumcircle,
dg the interior of cg, ab the side of g contained in e, and u the site that contains
the vertex of g that is not a vertex of e (see Figure 5). If k = 1, p lies on u and
therefore the edge crossed by xp is illegal. Now suppose that, if xp crosses k edges
then at least one of them is illegal. We have to prove that if xp crosses (k + 1)
edges then P has an illegal edge. If the edge e is illegal we are done. Otherwise
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Fig. 5. Illustration of the proof of Theorem 5

the points a and b cannot be in the disk df . Moreover the point y = ab ∩ xp
is in df . Therefore, the segment ab splits df into two parts. Denote d1 the part
containing the face f and d2 the other part. The disk dg must contain at least
d1 or d2, and since e is legal it can not contain d1. It follows that the segment
yp is in dg and crosses one edge less than xp. Using the induction hypothesis,
we conclude that P has an illegal edge. ��

As remarked in section 3, different segment triangulations of S can have the
same topology. Especially an infinite number of segment triangulations of S
have the topology of the segment Delaunay triangulation of S. As the segment
Delaunay triangulation can be easily computed when its topology is known, it
is useless to store the coordinates of the vertices, which, moreover, are usually
inexact. Thus it is interesting to know if a given segment triangulation of S has
the topology of the segment Delaunay triangulation of S. Furthermore, suppose
that a segment triangulation of S is Delaunay and that the sites of S are slightly
moved. Then we can wonder if the initial topology remains the topology of the
segment Delaunay triangulation of the new set S. For these reasons, we define
the edge legality for maps associated with segment triangulations.

Definition 5. Let f be a face of a segment triangulation of S. The tangency
triangle of f is the triangle such that:

– its vertices are on the same three sites as the vertices of f ,
– the interior of its circumcircle does not intersect these three sites,
– if f and its tangency triangle are traversed in counter-clockwise direction,

they encounter these three sites in the same order.

Definition 6. Let M be a map associated with a segment triangulation of S.
An edge e of M is legal in the two following cases:

1. e is adjacent to at most one internal triangle.
2. e is adjacent to two internal triangles T1 and T2 and the following property

holds. Denote t, r, u, v the sites such that t, r, u are incident to T1 and r, t,
v are incident to T2 in counter-clockwise direction. Let t1r1u1 and r2t2v2 be
the tangency triangles of T1 and T2 with ti ∈ t, ri ∈ r, u1 ∈ u, and v2 ∈ v.
Then:
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– The polygon t1t2r2r1 is either reduced to a segment or is a counter-
clockwise oriented simple polygon (with three or four edges),

– The circumcircles’ interiors of t1r1u1 and r2t2v2 do not intersect the
sites t, r, u, v.

Theorem 6. Let M be a map associated with a segment triangulation P of S.
Suppose that all the edges of this map are legal, then M is also the map associated
with the segment Delaunay triangulation of S.

Proof (sketch). We want to prove that the collection of tangency triangles gives
rise to the segment Delaunay triangulation. Making use of previous theorem, we
see that the only thing to prove is that the interiors of the tangency triangles
are the faces of a segment triangulation of S.

The main idea of the proof is to use a result of Devillers et al. [6] which asserts
that a representation of a combinatorial map by smooth curves in the plane is a
planar graph if:

– All the circuits of the map are represented by simple closed curves,
– The ordering at each vertex s of the map is given by the geometric ordering

of the curves emanating from the point representing s.

Actually, the result of Devillers et al. is stated with segments instead of smooth
curves but an approximation argument leads to the same result for smooth
curves.

First, for each ε > 0 sufficiently small, it is possible to construct a planar
graph as done in Figure 6(a). All edges of this graph are smooth curves that are
at a distance less than ε either from the sites or from the sides of the triangles
of P . This planar graph is a representation in the plane of a new combinatorial
map M ′ which does not depend on ε.

(a) (b)

Fig. 6. (a) Planar graph deduced from P . (b) A new representation of the map M ′.

Next, moving all the triangles T of P to their tangency positions T ′, we can
define a new representation of the map M ′:

– The curves associated with each triangle of P moves from the initial triangle
to the tangency triangle.
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– The new closed curves around the sites are slightly more difficult to define.
Suppose that T1 and T2 are two adjacent triangles of P incident to a site s.
Call γs the “old” curve around s. There is a point pi on γs associated with
the vertex of Ti lying on s and there is a point p′i on γs associated with the
vertex of the tangency triangle T ′

i lying on s. In the new representation of
the map M ′, we take the portion of the curve γs going from p′1 to p′2 turning
around s in the same direction as the portion of γs going from p1 to p2 (see
Figure 6(b)).

This process ensures that the geometric ordering of the curves emanating
from a vertex are the same for the old and the new representation of the map
M ′. Finally, thanks to the legality of all the edges, one can prove that the new
representation of the circuits of M ′ are simple closed curves. Then, it follows
by the result of Devillers et al. that the new representation of M ′ is a planar
graph. Letting ε going to zero, we see that the tangency triangles are the faces
of a segment triangulation. ��

Theorem 6 enables to test whether a segment triangulation has the topology of
the segment Delaunay triangulation by checking the edge legality. From
Theorem 3, the number of edges is in O(n) where n = card(S), thus this test
can be done in O(n) time. Hence:

Corollary 1. There is a linear time algorithm that checks whether a given seg-
ment triangulation has the same topology as the segment Delaunay triangulation.

By duality this allows to check in linear time the correctness of the topology of a
segment Voronoi diagram computed by a program. For more details on efficient
program checkers in computational geometry see, for example, [6] and [12].

6 Conclusion

In this paper, we have notably shown that the segment Delaunay triangulation is
the unique segment triangulation that is locally Delaunay in all its edges. As for
point set triangulations, this should enable to prove optimality properties of the
segment Delaunay triangulation and to give a flip algorithm that transforms any
segment triangulation in the segment Delaunay triangulation by a sequence of
local improvements. Together with this local characterization, there is a strong
hint which makes us believe that a kind of flip algorithm should work with
segment triangulations. Lifting a set of sites S onto the paraboloid z = x2 + y2,
it is not hard to see that the triangles of the segment Delaunay triangulation
are exactly the downward projection of the triangular faces of the lower convex
hull of the lift of S; whereas the lift of any non-Delaunay face is above this lower
convex hull, as in the case of point set triangulations. At last, we mention two
possible extensions of segment triangulations. On the one hand, it is possible to
define triangulations for a set S of disjoint compact convex subsets in the plane.
We think that most of the results of this paper might extend to this more general
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setting. On the other hand, we hope that segment triangulations can be defined
in higher dimensions and that it will help to better understand the topological
structure of the segment Voronoi diagram in higher dimensions.
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