
Two-dimensional line space Voronoi Diagram

Stéphane Rivière and Dominique Schmitt
Équipe Mage–LMIA– Université de Haute-Alsace

4 rue des Frères Lumière
68093 Mulhouse Cedex – France

stephane.riviere@uha.fr, dominique.schmitt@uha.fr

Abstract

Given a set of points called sites, the Voronoi diagram is
a partition of the plane into sets of points having the same
closest site. Several generalizations of the Voronoi diagram
have been studied, mainly Voronoi diagrams for different
distances (other than the Euclidean one), and Voronoi dia-
grams for sites that are not necessarily points (line segments
for example).

In this paper we present a new generalization of the
Voronoi diagram in the plane, in which we shift our interest
from points to lines, that is, we compute the partition of the
set of lines in the plane into sets of lines having the same
closest site (where sites are points in the plane). We first de-
fine formally this diagram and give first properties. Then we
use a duality relationship between points and lines to visu-
alize this data structure and give more properties. We show
that the size of this line space Voronoi diagram for n sites
is in Θ(n2) and give an optimal algorithm for its explicit
computation.

We then show a remarkable relationship between this di-
agram and the dual arrangement of the sites and give a new
result on an arrangement of lines: we show that the size of
the zone of a line augmented with its incident faces is still
in O(n). We finally apply this result to show that the size
of the zone of a line in the line space Voronoi diagram is in
O(n).

1. Introduction

Given a set of points called sites, the well-known
Voronoi diagram represents the sets of points closer to a
site than to the other ones. Several generalizations of this
diagram have already been studied (see e.g. [2] and [7]
for more informations). A first category of generalizations
consists in studying different ways of computing the dis-
tance between the points and the sites (other metric than the
classical euclidean one, weighted distances, . . . ). Another

category of generalizations consists in extending the types
of the sites (Voronoi diagram for line segments, for circles,
. . . ). We propose here a new generalization of the Voronoi
diagram in the plane by shifting our interest from points to
lines, that is, we compute the sets of lines closer to a site
than to the other ones.

We give a formal definition of this diagram and study its
properties.

Like many problems which deals with sets of lines, we
use a duality relationship between lines and points (see [3]
and [5]) to visualize more easily the components of the line
space Voronoi diagram. We can then give more properties
of the line space Voronoi diagram, compute its size, and
give an optimal algorithm for its computation.

Finally we show that the line space Voronoi diagram has
an interesting relationship with the dual arrangement of the
sites, that is, the arrangement of the dual lines of the sites.
The arrangement of lines in the plane is the decomposition
of the plane induced by the lines into faces, edges, and ver-
tices and has already received a lot of attention (see [1] for a
survey). In particular, the zone theorem states that the sum
of the sizes of the faces of an arrangement cut by a line is
linear. We extend this theorem by including the faces in-
cident to the ones cut by the line, and show that the overall
size remains linear. Finally we prove a zone theorem for the
line space Voronoi diagram.

2. Definition and first properties of the line
space Voronoi diagram

Given n points in the plane, called sites, we want to com-
pute for each site the set of lines closer to the site than to the
other ones. For the sake of simplicity we will assume that
sites are in general position, that is, that no more than two
sites are on a same line and that among the lines passing
through two sites, none are parallel: complexity is maximal
when sites are in general position.

We first state the empty strip property which will be use-
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ful in several proofs (in this paper, a strip will always denote
an open strip and "a line is closer to a site" will mean that
the line is closer to the site than to the other sites):

Property 1 Given a set of sites, a line l is strictly closer to
a site p if and only if the strip delimited by the parallel to
l passing through p and by its symmetric according to l is
empty of sites (figure 1).

}empty strip

p

l

Figure 1. Empty strip property when l is
closer to p

We can now define the two-dimensional line space
Voronoi Diagram:

Definition 1 Given n sites in the plane, we define the two-
dimensional line space Voronoi Diagram as being the parti-
tion of the set of lines in the plane into faces: maximal con-
nected components of lines strictly closer to a site, edges:
maximal connected components of lines equidistant to two
sites and strictly closer to these two sites (without pass-
ing through them), and vertices: lines passing through two
sites and lines equidistant to three sites and strictly closer
to these three sites.

Let us take a closer look at this definition and this dia-
gram (which will be called line space Voronoi diagram for
short in the remainder). A line strictly closer to a site p can
be moved with two degrees of liberty (for example trans-
lation and rotation) while remaining strictly closer to this
site p, that is why we call the sets of such lines faces. We
will say that a face made of lines strictly closer to a site p is
associated to the site p. We can give the following charac-
terization of a face:

Property 2 Two lines belong to a same face of the line
space Voronoi diagram if and only if they are strictly closer
to a same site and separate the other sites into the two same
sets.

Proof: If the sets of sites above and below the two lines are
different, then we cannot move continuously one line to the
other without passing through a site and so become closer
to this site. �

Given two sites, the intersection of the two sets of lines
(non strictly) closer to each site is the set of lines equidistant

to the two sites. There are two sorts of lines equidistant to
two points:

Property 3 A line is equidistant to two points p and q if and
only if it either is parallel to the line (pq), or passes through
the midpoint mpq of p and q.

From this property and the empty strip property we can
characterize the edges of the line space Voronoi diagram:

Property 4 Let p and q be two sites and mpq their mid-
point.

A line l parallel to the line (pq) belongs to an edge of the
line space Voronoi diagram if and only if the strip delimited
by (pq) and by its symmetric according to l is empty of sites
(figure 2a).

A line l passing through mpq belongs to an edge of the
line space Voronoi diagram if and only if the strip delimited
by the lines parallel to l and passing respectively through p
and q is empty of sites (figure 2b).

a) b)

p q

l empty
mpq

q

p

emptyl

Figure 2. Line l belonging to an edge: a) par-
allel to two sites b) passing through the mid-
point of two sites

We can move these lines with only one degree of liberty
(translation in the first case, rotation around the midpoint in
the second case), that is why we have called the sets of such
lines edges.

By studying how a line can pass through a midpoint and
either pass through another midpoint or be parallel to two
sites, we can see that the intersection of two sets of lines
equidistant to two sites is either a line equidistant to three
sites p, q, r, or a line passing through two sites p and q.

From the properties of the edges and the empty strip
property we can characterize the vertices of the line space
Voronoi diagram:

Property 5 The vertices of the line space Voronoi diagram
are the lines (pq) passing through two sites (figure 3a) and
the lines (mprmqr) passing through two midpoints such
that the strip delimited by (pq) and by the line parallel to
(pq) passing through r is empty of sites (figure 3b).
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Figure 3. Line l being a vertex: a) passing
through two sites b) equidistant to three sites

The first case, a line (pq), is the intersection of two sets
of lines: the set of lines parallel to (pq) and the set of lines
passing through the midpoint mpq . We will see that this
kind of vertex is incident to four edges.

The second case, a line l = (mprmqr) passing through
two midpoints of three sites, is the intersection of three sets
of lines: the set of lines passing through mpr, the set of
lines passing through mqr, and the set of lines parallel to
(pq). We will see that this kind of vertex is incident to three
edges.

3. The line space Voronoi diagram in dual
space

3.1. Duality and line space Voronoi diagram
for two sites

Sets of lines are difficult to represent and manipulate di-
rectly in the plane, so we will use a duality relationship be-
tween points and lines and work in the dual space where
things will be clearer and proofs easier to give (see e.g. [3]
for some uses of duality).

We use the following classical duality relationship be-
tween points and lines (which we orient from left to right):
a line l : y = ax + b is transformed into the dual point
l∗(a,−b), and a point p (a, b) is transformed into the dual
line p∗ : y = ax − b (vertical lines correspond to points at
−∞).

This duality relationship is an involution which preserves
incidence relationships between points and lines, that is, the
point p is above (resp. below, resp. on) the line l if and only
if the dual point l∗ is above (resp. below, resp. on) the dual
line p∗.

In the dual space, lines become points, and sets of points
are easier to deal with than sets of lines. In particular, the
set of lines lp passing through a given point p becomes a
set of dual points l∗p which is exactly the dual line p∗. We
can also notice that a set of parallel lines becomes in the
dual space a set of points on a vertical line. Finally, the dual
line m∗

pq passes through the intersection of p∗ and q∗ and is

vertically halfway between p∗ and q∗ (i.e., for any vertical
line lv, m∗

pq ∩ lv is the midpoint of p∗ ∩ lv and q∗ ∩ lv).
In the simplest case of two sites p and q, the line space

Voronoi diagram in the dual space is made of four faces
delimited by the dual line m∗

pq of the midpoint mpq of [pq]
and the vertical line //∗pq corresponding to the lines parallel
to (pq) (figure 4).

pq
m

1
l

l
2 p

q

a)

//*pq

l*
1

l*
2m*

pq

p*

q*

b)

Figure 4. a) Lines closer to p b) line space
Voronoi diagram of p and q in the dual space
and dual points of the lines

In figure 4, the two gray (resp. white) faces correspond
to lines closer to p (resp. q) than to the other site. The upper
left gray face represents lines having mpq above them and
a slope smaller than the slope of (pq) (e.g. l1), the lower
right gray face represents lines having mpq below them and
a slope greater than the slope of (pq) (e.g. l2).

We also have drawn the dual lines p∗ and q∗ of the sites
and we can see that the dual line p∗ is contained in the faces
associated to p and does not cross faces associated to q.

Given now n sites, the line space Voronoi diagram of
these sites can be thought as the intersection of all the O(n2)
line space Voronoi diagrams for each pair of sites, which
could result in a diagram of size O(n4). But in fact a lot
of incident faces would represent lines closer to a same site
and should be merged, so this brute-force approach is not
interesting. We will therefore study directly the line space
Voronoi diagram of n sites, show that its size is O(n2), and
give an optimal algorithm to compute it explicitly.

3.2. Representation in dual space and com-
binatorics

From the previous section, we know that the supporting
lines of the edges of the line space Voronoi diagram in dual
space are the dual lines of the midpoints mpq and the ver-
tical dual lines of the parallels to two points (pq). We give
more properties about faces and edges in the dual space.
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Property 6 (1) The dual line p∗ of a site p cuts all the faces
associated to p and no other face.

(2) The edges incident to a face associated to a site p
have for supporting line either m∗

pq (the dual line of the
midpoint of p and another site q) or //∗pq (the vertical dual
line of parallels to a line passing through p and another site
q). Moreover those supporting lines cannot cross any face
associated to p. Therefore, an edge with supporting line
m∗

pq or //∗pq separates a face associated to p and a face
associated to q.

Proof: (1) A line passing through a site p is strictly closer
to p so the dual line p∗ belongs to the faces associated with
p and a dual line q∗ cannot cut faces associated to p.

(2) Consequence of the property 3 of equidistant lines.
�

With these properties, we can draw the line space
Voronoi diagram in the dual space: Figure 5 shows the line
space Voronoi diagram of four sites. The dual lines of the
midpoints and of the parallels to two sites are drawn thin-
dashed, the dual lines of the sites are drawn thick-dashed,
and the faces associated to a same site are drawn with the
same level of gray.
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p q
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p*
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s*
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s* s*

Figure 5. line space Voronoi diagram of four
sites

Property 7 In the dual space, the faces of the line space
Voronoi diagram are convex.

Proof: Let l∗1 and l∗2 be two points of a same face associated
to p, let p12 be the intersection point of the corresponding
lines l1 and l2, and let psym be the point symmetric of p ac-
cording to p12. The line segment [l∗1, l

∗
2] corresponds to the

set of lines passing through p12 and having a slope between
those of l1 and l2. Since they belongs to a same face, l1 and
l2 are both closer to p and have the same sites above and be-
low (property 2). It follows that the double wedge between
l1 and l2 is empty and that the strips delimited by the par-
allels to l1 (resp. l2) passing through p and psym are also
empty. So the other sites are either above or below the four
parallels (to l1 and l2 passing through p and psym) and for
any line l passing through p12 in the double wedge of l1 and
l2, the strip delimited by the parallels of l passing through
p and psym is therefore empty (figures 6a and 6b). It shows
that l is closer to p and have the same other sites below and
above as l1 and l2, so l1, l2, and l belong to the same face.
�

a)

b)

l l

l 2

psym

p
12

empty

p
other sites

emptyempty l

other sites

l 2

l l

psymp
12 lp

empty

other sites

other sites

empty
empty

Figure 6. Configurations a) and b) of lines
corresponding to a line segment of a face in
the dual space

We now study more closely the vertices of this diagram,
which will allow us to show that the size of the diagram
is Θ(n2) and to give an optimal algorithm for computing
it. We saw that there are two kinds of vertices which cor-
respond to lines (pq) and lines (mprmqr). These vertices
are not independent. First (pq) and (mprmqr) are parallels,
and since the strip delimited by (pq) and its parallel passing
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through r is empty, they are vertices incident to a same edge
which corresponds to the parallels to (pq) between p (and
therefore q) and r.

More generally, let p and q be two sites, and r and s the
closest sites (other than p and q) to (pq) respectively above
and below. Then we have the configuration shown in fig-
ure 7b in the dual space around the vertex corresponding to
(pq). On the left (resp. right) figure 7a (resp. 7b) shows the
sets of lines closer to a site for slopes smaller (resp. greater)
than the slope of (pq). We can now clearly notice in the
dual space that the vertices corresponding to a line passing
through two sites are incident to four edges, and that the
other vertices (corresponding to a line passing through two
midpoints) are incident to three edges.

mpq

msq

m pr
mrq

mps s

r

p q

m ps
msq

m pq

mpr rqm

s

r

q
p

rqm*
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prm*

pqm*

sqm*

//*pq

a) b)

c)

q*

q*

r*

p*

p*

s*

Figure 7. Configuration around a vertex of the
line space Voronoi diagram a) b) in the scene
c) in the dual space

We can now give the complexity of the line space
Voronoi diagram:

Theorem 1 The line space Voronoi diagram of n sites has
3n(n−1)/2−CH vertices, n(5n−3)/2−1−CH edges, and
n2 faces (CH being the size of the convex hull of the sites).

Proof: Each line (pq) passing through two sites is a vertex,
and it always has another nearest site r on one side, which
gives rise to another vertex passing through the midpoints
mpr and mqr, and if [pq] is not on the convex hull, then it

has another nearest site on the other side which gives rise
to another vertex, so the number of vertices is n(n−1)/2 +
CH + 2(n(n−1)/2− CH).

There are n−1 semi-infinite edges on the left correspond-
ing to midpoints of two consecutive sites when sorted ac-
cording to their x-coordinate. When [pq] is on the convex
hull, it gives rise to 4 edges, otherwise to one more edge
(i.e. 5 edges), so the number of edges is n−1 + 4 CH +
5(n(n−1)/2− CH).

There are n semi-infinite faces on the left. Each vertex
(pq) gives rise to 2 faces, so the number of faces is n +
2n(n−1)/2. �

We show now how to compute the line space Voronoi
diagram with a topological sweep of its vertices.

The state of the sweep is represented by the cut of the
diagram by a “flexible” vertical pseudo-line, that is, by the
set of edges of the diagram cut by the vertical sweeping
line. In the dual space, −∞ corresponds to downward ver-
tical lines, so the edges in the initial cut correspond to verti-
cal lines passing through the midpoints of two consecutive
sites according to their x-coordinate (and can be computed
in O(n log n) time). Then we pass the vertices correspond-
ing to lines passing through two sites in topological order
(that is, if there is a strictly monotonous path in the diagram
from v1 to v2, then v1 must be passed before v2). When we
pass a vertex v = (pq), thanks to the topological sweep, we
have at hand the cut before the vertex, so we can compute
the new vertices (v itself and the neighboring vertices on
//∗pq) and edges, and update the cut in constant time.

The vertices v = (pq) of the line space Voronoi diagram
correspond to the vertices v = p∗ ∩ q∗ of the dual arrange-
ment of the sites, that is, the arrangement of the dual lines
of the sites. A topological sweep of an arrangement of n
lines can be done in optimal O(n2) time (see [4]), so the
line space Voronoi diagram can be swept and computed ex-
plicitly also in optimal O(n2) time.

4 Relationship between the line space
Voronoi diagram and the dual arrange-
ment of the sites

The classical Voronoi diagram of a set of sites in the
plane is a connected subset of the arrangement of the bisec-
tors of the sites. We have here something somehow similar:
in the dual space, the line space Voronoi diagram is a con-
nected subset of the arrangement of the dual lines m∗

pq and
//∗pq, lines which are some kind of vertical and horizontal
“bisectors” of the dual lines of the sites (any point on m∗

pq

is vertically halfway between p∗ and q∗, //∗pq is vertical and
passes through the intersection point of p∗ and q∗.)

We now shift our focus from the line space Voronoi di-
agram to the dual arrangement of the sites to show some

4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007)
0-7695-2869-4/07 $25.00  © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on April 30,2010 at 15:13:37 UTC from IEEE Xplore.  Restrictions apply. 



remarkable relationships between these two data structures.
It will allow us to show another way of computing the dia-
gram and to prove a zone theorem in this diagram.

From the properties of the previous sections, we can state
that:

Property 8 A line segment of m∗
pq is an edge if and only if

the first dual lines of a site above and below the line segment
are p∗ and q∗. Conversely, if p∗ and q∗ are two consecutive
dual lines of sites in a vertical cut of the diagram, then the
faces associated to p and q in this cut are separated by an
edge whose supporting line is m∗

pq.

With this property, we can compute the line space
Voronoi diagram by transforming each face of the dual ar-
rangement of the sites in the following way:

Property 9 The line space Voronoi diagram can be com-
puted by taking each face of the dual arrangement of the
sites, making a vertical decomposition of the face according
to its incident vertices, creating a vertex for each vertex of
the arrangement and a vertex at the midpoint of each ver-
tical segment of the decomposition, and creating an edge
between vertices incident to a same trapeze and between
vertices belonging to a same vertical segment (figure 8).

Proof: For a trapeze whose upper and lower segment are
supported by p∗ and q∗, we can see that the supporting line
of the edge linking the midpoints of the vertical segments
of the trapeze is m∗

pq . �

m*pq

p*

q*

Figure 8. Computing the part of the line space
Voronoi diagram contained in a face of the
dual arrangement of the sites

We can now restate some of the properties we already
have seen to sum up some properties between the line space
Voronoi diagram and the dual arrangement of the sites:

Property 10 A face f of the line space Voronoi diagram
contains exactly one edge e of the dual arrangement of the
sites and is cut into two by this edge. Moreover f is con-
tained in the two faces of the dual arrangement incident to
e.

The part of the line space Voronoi diagram contained in
a face of the dual arrangement of the sites of size (number
of incident edges) fa is made of:

– fa−2 vertices of degree 3, fa vertices of degree 4, and
2fa−3 edges if the face is bounded,

– fa−2 vertices of degree 3, fa−1 vertices of degree 4,
and 2fa−3 edges if the face is unbounded on the left
or on the right,

– fa − 1 vertices of degree 4 and fa − 1 edges for the
two vertically unbounded faces (on the top and on the
bottom).

By noticing that the sum of the sizes of the two verti-
cally unbounded faces is equal to the size of the convex hull
of the sites plus two, these properties give another way of
computing the size of the line space Voronoi diagram.

4.1. New zone theorems

In an arrangement of n lines, the set Z0(l) of the faces
of the arrangement cut by a line l is called the zone of the
line, and the zone theorem (see e.g. [3] and [6]) states that
the size of the zone (i.e., the sum of the sizes of its faces) of
a line is in O(n).

We give now a zone theorem for the zone of a line ex-
tended to its incident faces:

Theorem 2 Given an arrangement of n lines, given a line
l, let Z1(l) be the set of faces of the arrangement cut by l
and of faces incident (by an edge) to a face cut by l. Then
the sum of the sizes of the faces of Z1(l) is in O(n).

Proof: Our proof is based on the proof of the zone theorem
given in [3].

We say that an edge is connected to Z0(l) if it is not
incident to a face of Z0(l) but one of its incident vertex is.
Since in a non-degenerate arrangement of n lines a vertex
is incident to four edges, the number of edges connected to
Z0(l) is in O(n).

We count now the edges of Z1(l) located above l. Let
[a, b] be an edge with supporting line lab, a and b chosen
such that a is nearer than b to the intersection point pab of
l and lab. Now let la be the other line defining the vertex
a and let pa be the intersection point of l and la. The edge
[a, b] is called a right-edge (resp. left-edge) of la if pa is
on the right (resp. left) of pab (figure 9a). We show that
each line h of the arrangement has at most two right-edges
incident to a face of Z1(l) and not connected to Z0(l).

Let [a, b], [b, c], and [x, y] be three right-edges of h, [x, y]
being above [b, c] and [b, c] being above [a, b] (figure 9b).
On the right of h, both lines lab and lcd always hide [x, y]
from l, so [x, y] cannot be incident to a face of Z1(l) that
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is on the right of h. On the left of h, h always hides [x, y]
from l. So the only way for [x, y] to be incident to a face
of Z1(l) that is on the left of h, is to be incident to a face
incident to a face of the zone of l, which implies that x is a
vertex incident to a face of the zone.

So for each line of the arrangement, there are at most two
right-edges incident to a face of Z1(l) and not connected to
Z0(l), and the total number of edges connected to Z0(l) is
O(n), so finally the size of Z1(l) is in O(n). �

la

p
ab

lab

lxy

lab

lcd

laright−edge of

a)

l

b

a

a

b

h

l

y

x

c

two levels f
rom 

zone of l

b)

d

zone of l
a face cut by l

Figure 9. a) Right-edges of a line b) incident
to a face of Z1(l)

We can now state a zone theorem in the line space
Voronoi diagram:

Property 11 The size of the zone of a line in the line space
Voronoi diagram is in O(n).

Proof: The faces of the zone of a line l in the line space
Voronoi diagram are contained in the faces of Z1(l). Prop-
erty 10 shows that the size of the part of the line space
Voronoi diagram contained in a face of the dual arrange-
ment is proportional to the size of the face. Since the size
of Z1(l) is in O(n), the size of the zone in the line space
Voronoi diagram is also in O(n). �

5. Conclusion

From the formal definition of the line space Voronoi di-
agram, we have given some properties, computed its size,
and by using duality we have given an algorithm for com-
puting it. Then we have shown that there is a remarkable
close relationship between this diagram and the dual ar-
rangement of lines of the sites.

The line space Voronoi diagram simplifies algorithms
such that finding the site closer to a line in O(log n) time,
finding the largest empty strip containing a given point or
parallel to a given direction in O(n) time, which could have
been done by computing the vertical decomposition of the
dual arrangement of the sites.

The relationships between the line space Voronoi dia-
gram and the dual arrangement of the sites can allow us to
extend more easily the line space Voronoi diagram to other
types of sites than points, or to take visibility into account.
In the first case, when taking convex objects as sites, the
dual points of the tangents to an object give rise to two dis-
tinct curves in the dual space, so we can compute the ar-
rangement of theses dual curves, and from its faces compute
the line space Voronoi diagram. In the second case, when
we want to take visibility into account, that is, we want to
compute the set of maximal free line segments closer to a
site, then instead of computing the dual arrangement, we
can compute the visibility complex (see [8]), and try to ap-
ply the same decomposition process to its faces.

Finally, we are currently investigating the line space
Voronoi diagram of order k and trying to see if there are
still interesting relationships with the dual arrangement of
the sites.

Acknowledgments: We thank the reviewers for their
comments which helped to clarify some points.
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