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Abstract. Given a set V of n points in the plane, we introduce a new
number of k-sets that is an invariant of V : the number of k-sets of a
convex inclusion chain of V . A convex inclusion chain of V is an order-
ing (v1, v2, ..., vn) of the points of V such that no point of the ordering
belongs to the convex hull of its predecessors. The k-sets of such a chain
are then the distinct k-sets of all the subsets {v1, ..., vi}, for all i in
{k + 1, ..., n}. We show that the number of these k-sets depends only on
V and not on the chosen convex inclusion chain. Moreover, this number
is surprisingly equal to the number of regions of the order-k Voronoi di-
agram of V . As an application, we give an efficient on-line algorithm to
compute the k-sets of the vertices of a simple polygonal line, no vertex
of which belonging to the convex hull of its predecessors on the line.

1 Introduction

Given a finite set V of n points in the Euclidean plane (no three of them being
colinear) and an integer k (0 < k < n), the k-sets of V are the subsets of
k points of V that can be strictly separated from the rest by a straight line.
Due to the various applications of k-sets, the problems of constructing and of
counting them have been extensively studied in computational and combinatorial
geometry. Dey [5] has shown that the number γk(V ) of k-sets of a set V of n

points in the plane is at most O(nk
1
3 ) and Tóth [12] has shown how to construct

point sets with n2Ω(
√

log k) k-sets. Narrowing the gap between these two bounds
remains an important open problem. More precise results have been obtained
by adding up the number of k-sets for different values of k. Peck [11] has shown
that the number of (≤ k)-sets of V , i.e. the sum of the numbers γi(V ) over all
i in {1, ..., k}, is bounded by kn and that this bound is tight. In this paper we
propose a different approach which consists in fixing k and summing the number
of k-sets over different subsets of V . To this aim, we define the notion of convex
inclusion chain of the point set V which is an ordering V = (v1, v2, ..., vn) of the
points of V such that, for every i ∈ {2, ..., n}, vi does not belong to the convex
hull conv(Si−1) (with Si = {v1, ..., vi}, for all i ∈ {1, ..., n}). The set of k-sets of
the convex inclusion chain V is then the set of distinct k-sets of Sk+1, Sk+2, ..., Sn.

The main result of this paper is that the number of k-sets of a convex inclusion
chain of V is an invariant of the set V , that is, it does not depend on the choice
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of the convex inclusion chain. To prove this result, we use the notion of k-set
polygon introduced by Edelsbrunner, Valtr, and Welzl [6]: the k-set polygon
gk(V ) of V is the convex hull of the centroids of all the subsets of k elements of
V . Andrzejak and Fukuda [1] have shown that the vertices of this k-set polygon
are the centroids of the k-sets of V . Thus, counting the number of k-sets comes
to count the number of vertices or edges of the k-set polygon. In particular, we
show that, given a point v not belonging to conv(V ), the edges of gk(V ) that
are not edges of gk(V ∪ {v}) form a connected polygonal line on the boundary
δ(gk(V )) of gk(V ). This generalizes a result which is well known in the case of
convex hulls, that is, for k = 1. Using this result we show that:

Theorem 1. Any convex inclusion chain of a planar set V of n points admits
2kn − n − k2 + 1 −

∑k−1
j=1 γj(V ) k-sets (with

∑0
1 = 0).

Surprisingly, this number is independent of the choice of V and is also equal to
the number of regions of the order-k Voronoi diagram of V (see Lee [7]).

The best worst-case algorithm to construct the k-sets of a set V of n points
in the plane has been given by Cole, Sharir, and Yap and runs in O(n log n +
γk(V ) log2 k) time [4] (for bigger values of k this can be improved to O(n log n+
γk(V ) log1+ε n) [3]).

In the second part of this paper we give an algorithmic method to update
the set of k-sets of V when a point v that does not belong to conv(V ) is added.
We apply this result to the on-line construction of the k-set polygon of a simple
polygonal line V in the particular case where no vertex of V belongs to the
convex hull of its predecessors on V . This algorithm generalizes Melkman’s on-
line algorithm which constructs the convex hull of a simple polygonal line in
linear time [8]. We show that:

Theorem 3. The k-set polygon of the polygonal line V can be constructed on-
line in O(k(n − k) log2 k) time.

The cost per created k-set is O(log2 k), the same as in the algorithm of Cole,
Sharir, and Yap [4].

2 Counting k-Sets of Convex Inclusion Chains

Throughout this paper we will consider V to be a finite set of |V | = n points in
the Euclidean plane such that n ≥ 2 and no 3 points of V are colinear. k will be
an integer of {1, ..., n−1}. The aim of this section is to count the number of k-sets
of a convex inclusion chain of V . To this end we will use the boundary δ(gk(V ))
of the k-set polygon of V . This boundary is considered to be oriented in counter
clockwise direction. Moreover, given two points s and t of V , we denote by st
the closed oriented segment with endpoints s and t, by (st) the oriented straight
line generated by st, and by (st)+ (resp. (st)−) the open half plane on the left
(resp. right) of (st). (st)+ and (st)− denote the closure of (st)+ and (st)−.

Let us first recall two important properties of the vertices and edges of k-set
polygons given by Andrzejak and Fukuda [1], and by Andrzejak and Welzl [2]
(see Fig. 1 for an illustration).
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Proposition 1. The centroid g(T ) of a subset T of k points of V is a vertex of
gk(V ) if and only if T is a k-set of V . Moreover, the centroids of distinct k-sets
are distinct vertices.

Proposition 2. T and T ′ are two k-sets of V such that g(T )g(T ′) is an oriented
edge of gk(V ) if and only if there exist two points s and t of V and a subset P
of k − 1 points of V such that T = P ∪ {s}, T ′ = P ∪ {t}, and V ∩ (st)− = P .
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Fig. 1. A set of 12 points and its 4-set polygon

From now on, any oriented edge g(P ∪{s})g(P ∪{t}) of gk(V ) will be denoted
by eP (s, t).

Notice that, in the particular case where k = 1, gk(V ) is the convex hull of V
and its edges are of the form e∅(s, t). When V is reduced to two points s and t,
g1(V ) admits exactly two oriented edges e∅(s, t) = st and e∅(t, s) = ts.

We now characterize the edges of the k-set polygon that have to be created
and those that have to be removed, when a new point is added (see Fig. 2). The
following lemmas can easily be deduced from Proposition 2:

Lemma 1. If k < n − 1 then, for any subset S of V such that k < |S| < n and
for any point v of V \ S, an edge eP (s, t) of gk(S) is also an edge of gk(S ∪{v})
if and only if v ∈ (st)+.

Lemma 2. For any subset S of V such that k ≤ |S| < n and for any point v of
V \ S,

(i) an edge eP (s, t) of gk(S ∪ {v}) is not an edge of gk(S) if and only if
v ∈ P ∪ {s, t},

(ii) if v /∈ conv(S), gk(S ∪ {v}) admits one and only one edge of the form
eP (s, t) with s = v (resp. t = v).



342 W. El Oraiby and D. Schmitt

11

10

9

8

7

6

5

4

3

2

1

12

Fig. 2. The 4-set polygon of S = {1, ..., 11} and the 4-set polygon of S ∪ {12}. The
edges of gk(S) that are not edges of gk(S ∪ {12}) are in dashed lines and the edges of
gk(S ∪ {12}) that are not edges of gk(S) are in bold lines.

Note that, in Lemma 2, the definition of the k-set polygon has implicitly be
extended to the case k = |S|. In this case, gk(S) is a unique point of the plane
(the centroid of S) and, therefore, it admits no edge. This extended definition
will help to simplify the proof of Proposition 4.

Proposition 3. If k < n − 1 then, for any subset S of V such that k < |S| < n
and for any point v of V \ conv(S),

(i) the edges of gk(S∪{v}) that are not edges of gk(S) form an open connected
polygonal line with at least two edges, whose first (resp. last) edge in counter
clockwise direction is the unique edge of gk(S ∪ {v}) of the form eP (s, t) with
t = v (resp. s = v).

(ii) the edges of gk(S) that are not edges of gk(S∪{v}) form an open connected
and non empty polygonal line.

Proof. (i) From Lemma 2, the set C of edges of gk(S ∪ {v}) that are not edges
of gk(S) admits at least two edges. It can also be shown that at least one edge
of gk(S) is an edge of gk(S ∪ {v}) too. Thus, C admits at least one edge eP (s, t)
whose first endpoint is a vertex of gk(S), i.e. v /∈ P ∪ {s}. Hence, from Lemma
2, t = v and eP (s, t) is the only edge of gk(S ∪ {v}) of the form eP (s, v). In
the same way, there is a unique edge of C whose second endpoint is a vertex of
gk(S) and this edge is of the form eP (v, t). It follows that C is an open connected
polygonal line whose first (resp. last) edge in counter clockwise direction is of
the form eP (s, v) (resp. eP (v, t)).

(ii) Straightforward from (i). ��

This proposition generalizes a result which is well known in the case k = 1: The
edges of a convex hull that are visible from a point outside of the hull form an
open connected and non empty polygonal line. Moreover, if we want to update
the convex hull after the insertion of such a point, two new edges have to be
created. This means that the incremental construction of the convex hull of n
points, in such a way that every newly inserted point does not belong to the
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current convex hull, constructs always 2(n − 1) edges (two per inserted point
except for the first one). We now generalize this last result for k 	= 1.

Let (v1, v2, ..., vn) be a convex inclusion chain of V , that is, an ordering of
the points of V such that, for every i ∈ {1, ..., n − 1}, vi+1 /∈ conv(Si) (with
Si = {v1, ..., vi}, for every i ∈ {1, ..., n}).

For every k ∈ {1, ..., n − 1} and for every i ∈ {k + 1, ..., n}, let ck
i denote the

number of edges of gk(Si) that are not edges of gk(Si−1), i.e. the number of edges
to create while constructing the k-set polygon of Si = Si−1 ∪ vi from the k-set
polygon of Si−1. Since the number of edges of gk(Sk) is zero, ck =

∑n
i=k+1 ck

i

is the total number of edges to be created by an algorithm that incrementally
constructs gk(V ) by successively determining gk(Sk), gk(Sk+1), ..., gk(Sn).

From Proposition 1, for every j ∈ {1, ..., n − 1}, the number of edges (i.e. the
number of vertices) of the j-set-polygon of V is equal to the number γj(V ) of
j-sets of V .

Proposition 4. c1 = 2(n−1) and ck = k(2n−k−1)−
∑k−1

j=1 γj(V ) if 1 < k < n.

Proof. From Lemma 2, for every i ∈ {k + 1, ..., n}, gk(Si−1 ∪ {vi}) admits at
least two edges that are not edges of gk(Si−1). These two edges are of the form
eQ(vi, t) and eP (s, vi). All other edges of gk(Si−1 ∪ {vi}) that are not edges of
gk(Si−1) are of the form eP ′(s′, t′) with vi ∈ P ′. If k = 1, no such other edge
exists since P = ∅. Thus c1

i = 2, for every i ∈ {2, ..., n}, and

c1 =
n∑

i=2

2 = 2(n − 1) .

If k ∈ {2, ..., n− 1}, from Lemma 1, eP ′(s′, t′) is an edge of gk(Si−1 ∪ {vi}) with
vi ∈ P ′ if and only if eP ′\{vi}(s

′, t′) is an edge of gk−1(Si−1) and is not an edge
of gk−1(Si−1 ∪{vi}). Thus, denoting by dk−1

i the number of edges of gk−1(Si−1)
that are not edges of gk−1(Si), we have ck

i = 2 + dk−1
i . It follows that

ck =
n∑

i=k+1

ck
i = 2(n − k) +

n∑

i=k+1

dk−1
i .

Now, since the number of edges of gk−1(Sk−1) is zero, we have dk−1
k = 0

and
∑n

i=k+1 dk−1
i is the total number of edges to be deleted by an algorithm

that incrementally constructs gk−1(V ) by successively determining gk−1(Sk−1),
gk−1(Sk), ..., gk−1(Sn). Thus

n∑

i=k+1

dk−1
i = ck−1 − γk−1(V )

and
ck = 2(n − k) + ck−1 − γk−1(V ) .
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Solving this induction relation we get

ck = (k − 1)(2n − k − 2) + c1 −
k−1∑

j=1

γj(V ) = k(2n − k − 1) −
k−1∑

j=1

γj(V ) .

��
The result of this proposition is somewhat surprising since it shows that the
number of edges that have to be created for the incremental construction of a
k-set polygon does not depend on the order in which the points are treated,
provided that every new inserted point does not belong to the convex hull of
the previously inserted ones. In addition, since

∑k−1
j=1 γj(V ) is the number of

(≤ (k − 1))-sets of V and since this number is known to be bounded by (k − 1)n
(see [11]), it follows that:

Corollary 1. Any algorithm that incrementally constructs the k-set polygon of
n points, so that no point belongs to the convex hull of the points inserted before
him, has to create Θ(k(n − k)) edges.

Now, it is easy to find the number of k-sets of a convex inclusion chain of V :

Theorem 1. Any convex inclusion chain of a planar set V of n points admits
2kn − n − k2 + 1 −

∑k−1
j=1 γj(V ) k-sets (with

∑0
1 = 0).

Proof. Taking the previous notations, if V = (v1, v2, ..., vn) is a convex inclusion
chain of V , the number of k-sets of V is equal to the number of distinct k-set poly-
gon vertices created by an incremental algorithm that successively constructs
gk(Sk+1), ..., gk(Sn). The number of vertices of gk(Sk+1) is equal to the num-
ber ck

k+1 of its edges. Moreover, from Proposition 3, for every i ∈ {k + 2, ..., n},
the edges of gk(Si) that are not edges of gk(Si−1) form an open connected and
non empty polygonal line. Thus, the number of vertices of this line that are not
vertices of gk(Si−1) is ck

i − 1, where ck
i is the number of edges of the line. It

follows that the number of k-sets of V is ck
k+1 +

∑n
i=k+2 (ck

i − 1), that is, from
Proposition 4, 2kn − n − k2 + 1 −

∑k−1
j=1 γj(V ). ��

According to this theorem, the number of k-sets of a convex inclusion chain
of V only depends on the set V and not on the chosen chain. An even more
intriguing consequence of the theorem arises from its connection with order-k
Voronoi diagrams. The order-k Voronoi diagram of V is a partition of the plane
in regions which are the set of points in the plane having the same k nearest
neigbours in V . Lee [7] has shown that, if no four points of V are cocircular, the
order-k Voronoi diagram of V admits 2kn − n − k2 + 1 −

∑k−1
j=1 γj(V ) regions;

the same number as the one found in Theorem 1. Since a subset of k points of
V generates an order-k Voronoi region if and only if it can be separated from
the remaining points by a circle, it follows that:

Corollary 2. Given a set V of points in the plane, no three of them being co-
linear and no four of them being cocircular, the number of k-sets of a convex
inclusion chain of V is equal to the number of subsets of k points of V that can
be separated from the remaining by a circle.
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3 Constructing k-Sets of Convex Inclusion Chains

In this section we will consider the construction of the k-sets of a convex inclusion
chain of V . In particular, we will show how to update the set of k-sets of a subset
S of V when a new point, that does not belong to conv(S), is added. As in the
previous section, we will use the k-set polygon of V as a powerful tool.

For k ∈ {1, . . . , |V | − 2}, for S a subset of V such that k < |S| < n, and for v
a point of V \ conv(S), we set the following notations:

(i) Let CS,v (resp. DS,v) denote the counter clockwise oriented polygonal line of
edges of gk(S∪{v}) (resp. gk(S)) that are not edges of gk(S) (resp. gk(S∪{v})).

(ii) Let T1, T2, ..., Tm denote the k-sets of S such that (g(T1), g(T2), ..., g(Tm))
is the ordered sequence of vertices of DS,v (including its two endpoints).

(iii) For every i ∈ {1, ..., m}, let ePi(si, ti) denote the oriented edge of gk(S)
whose second endpoint is g(Ti) and let ePm+1(sm+1, tm+1) denote the oriented
edge whose first endpoint is g(Tm).

(iv) Set α1 = ωm = v and, for every i ∈ {2, ..., m}, set αi = ti and ωi−1 = si

(see Fig. 3 for an illustration).
(v) For every i ∈ {1, ..., m}, if αi 	= ωi, ϕ(Ti) denotes the oriented polygonal

line that connects αi to ωi in counter clockwise direction on δ(conv(Ti ∪ {v}))
and, if αi = ωi, set ϕ(Ti) = αi.

(vi) For every i ∈ {1, ..., m}, let Hi denote the homothety of center g(Ti∪{v})
and ratio − 1

k , that is, for any point x in the plane, Hi(x) = g((Ti ∪ {v}) \ {x}).

Notation (v) makes sense since, for every i ∈ {1, ..., m}, αi and ωi are vertices
of conv(Ti ∪ {v}). Indeed, α1 = ωm = v can be separated from S by a straight
line and is thus a vertex of conv(T1∪{v}) and of conv(Tm∪{v}). Moreover, from
Proposition 2, for every i ∈ {2, ..., m}, Ti \ ti = Pi ⊂ (siti)− and, from Lemma 1,
v ∈ (siti)−. Thus, αi = ti is a vertex of conv(Ti ∪ {v}), for all i ∈ {2, ..., m}. In
the same way, ωi = si+1 is a vertex of conv(Ti ∪ {v}), for all i ∈ {1, ..., m − 1}.

We now show that every vertex g(Ti) of DS,v can be associated to a subset of
CS,v.

v

rq

ti = αi

e(Ti∪{v})\{q,r}(r,q) =   i(qr)

ti+1

si+1= ωi

si

δ(conv(Ti∪{v}))

Fig. 3. siti and si+1ti+1 are such that ePi(si, ti) and ePi+1(si+1, ti+1) are the two
consecutive edges of DS,v sharing the vertex g(Ti)
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Lemma 3. For every i ∈ {1, ..., m} such that ϕ(Ti) is not reduced to a single
point and for every oriented edge qr of ϕ(Ti), Hi(qr) is the edge eTi∪{v}\{q,r}(r, q)
of CS,v.

Proof. (i) We first show that, if i ∈ {2, ..., m − 1}, then S \ Ti ⊂ (qr)−. Since
g(Ti) is the vertex shared by the edges ePi(si, ti) and ePi+1(si+1, ti+1), we have
g(Ti) = g(Pi ∪{ti}) = g(Pi+1 ∪{si+1}) and, from Proposition 1, Ti = Pi ∪{ti} =
Pi+1 ∪{si+1}. From Proposition 2, it follows that Ti ⊂ (siti)− ∩ (si+1ti+1)− and
that S \ Ti ⊂ (siti)+ ∩ (si+1ti+1)+. Thus, (siti) and (si+1ti+1) are the common
tangents of conv(Ti) and of conv(S \ Ti) such that conv(Ti) and conv(S \ Ti)
are on both sides of these tangents (see Fig. 3). Moreover, since {ti, si+1} ⊂ Ti

and {si, ti+1} ⊂ S \ Ti, the intersection point of the segments siti and si+1ti+1
is either the point ti = si+1 or a point of (si+1ti)+. Since ϕ(Ti) is not reduced
to a single point, ti 	= si+1 and, since v /∈ conv(S), it follows from Lemma 1
that v ∈ (siti)− ∩ (si+1ti+1)− ∩ (si+1ti)−. Thus, (siti) and (si+1ti+1) are also
common tangents of conv(Ti ∪ {v}) and of conv(S \ Ti). The edges of ϕ(Ti) are
then the edges of conv(Ti) included in (si+1ti)+ and the slopes of the oriented
straight lines generated by such edges are comprised between the slopes of (tisi)
and (ti+1si+1). Thus, the edges of ϕ(Ti) are the edges of conv(Ti ∪ {v}) visible
from every point of (siti)+∩(si+1ti+1)+ and, since S \Ti ⊂ (siti)+ ∩(si+1ti+1)+,
it follows that any edge qr of ϕ(Ti) is such that S \ Ti ⊂ (qr)−.

In a similar way, we can show that S \ T1 ⊂ (qr)− and S \ Tm ⊂ (qr)−.
(ii) Since every edge qr of ϕ(Ti) is an edge of conv(Ti ∪ {v}), for every i ∈

{1, ..., m}, we have (Ti∪{v})\{q, r} ⊂ (qr)+. Moreover, since |(Ti∪{v})\{q, r}| =
k−1, it follows from (i) and from Proposition 2 that e(Ti∪{v})\{q,r}(r, q) is an edge
of gk(S ∪{v}) and, from Lemma 2, that this edge belongs to CS,v. Moreover, the
endpoints g((Ti∪{v})\{q}) and g((Ti∪{v})\{r}) of this edge are the respective
images of q and r by the homothety Hi of center g(Ti ∪{v}) and ratio − 1

k . Thus
e(Ti∪{v})\{q,r}(r, q) = Hi(qr). ��

And thus, the complete characterization of the line CS,v:

Theorem 2. CS,v is the sequence of polygonal lines (H1(ϕ(T1)), ..., Hm(ϕ(Tm))).

Proof. (i) From Lemma 3, for every i ∈ {1, ..., m}, if ϕ(Ti) admits at least
one edge, Hi(ϕ(Ti)) is a connected polygonal line included in CS,v. Moreover, for
every j ∈ {1, ..., m} such that j 	= i, we have Ti 	= Tj and thus, for every edge qiri

of ϕ(Ti) and for every edge qjrj of ϕ(Tj), Hi(qiri) = e(Ti∪{v})\{qi,ri}(ri, qi) and
Hj(qjrj) = e(Tj∪{v})\{qj ,rj}(rj , qj) are distinct edges of CS,v. Hence, Hi(ϕ(Ti))
and Hj(ϕ(Tj)) share no edge.

(ii) Let us now show that all the polygonal lines Hi(ϕ(Ti)), i ∈ {1, ..., m}, fill
CS,v. By definition, the first edge of ϕ(T1) connects v to a point r of T1. This edge
always exists since the two endpoints α1 = v and ω1 = s2 of ϕ(T1) are distinct.
From Lemma 3 and Proposition 3, H1(vr) = eT1\{r}(r, v) is then the first edge of
CS,v and H1(ϕ(T1)) is an initial subsequence of CS,v. In the same way, Hm(ϕ(Tm))
is a final subsequence of CS,v. Moreover, for all i ∈ {1, ..., m − 1}, ωi = si+1 and
αi+1 = ti+1, that is Hi(ωi) = g((Ti ∪ {v}) \ {si+1}) and Hi+1(αi+1) = g((Ti+1 ∪
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{v}) \ {ti+1}). From Proposition 2, Ti \ {si+1} = Ti+1 \ {ti+1} and it follows that
Hi(ωi) = Hi+1(αi+1). Finally, CS,v = (H1(ϕ(T1)), ..., Hm(ϕ(Tm))). ��

The result of this theorem can now be used to develop an algorithm that updates
the k-set polygon of S when v is added. Let us first describe the data structure
to implement. The boundary of the k-set polygon of S can be stored in a circular
list L whose elements represent the edges of gk(S). To any element e of L which
represents an edge eP (s, t) of gk(S) are associated the two elements of L that
represent the predecessor and the successor of eP (s, t) on δ(gk(S)), as well as
the two points s and t of S. Note that, from Proposition 2, the k-sets defining
two consecutive vertices of gk(S) differ from each other by one site and thus it
suffices to know one k-set T of S and one edge with endpoint g(T ) to be able to
generate the whole k-sets of S while traversing L. It follows that a k-set polygon
with c edges can be stored in a data structure of size O(c+ k) and thus provides
a compact way to encode the k-sets of a given point set.

In our algorithm we also use a data structure CH that allows dynamic convex
hull maintenance. Using results given by Overmars and van Leeuwen [10] (see
also Overmars [9]), this structure needs O(h) size to store the convex hull of
h points of the plane, allows to get the predeccessor and the successor of any
edge in constant time, and can be updated in O(log2 h) time after inserting or
deleting a point.

For any polygonal line P , let now |P| denote the number of vertices of P .

Proposition 5. The edges of DS,v can be removed from L and the edges of
CS,v inserted in L in O(|DS,v| log2 k + |CS,v|) time provided that one edge e of L
belonging to DS,v is given, and that the convex hull of one k-set T of S whose
centroid is an endpoint of e is stored in CH.

Proof. From Theorem 2, determining CS,v comes, for every i ∈ {1, ..., m}, to
determine Hi(ϕ(Ti)) where ϕ(Ti) is a connected subset of conv(Ti∪{v}). Suppose
that an edge e of L belonging to DS,v is given, and that the convex hull of a
k-set T of S whose centroid is an endpoint of e is stored in CH . We first show
that conv(T1 ∪ {v}) can be determined from conv(T ) in O(|DS,v| log2 k) time.
From Lemma 1 and Proposition 3, DS,v is the polygonal line formed by the edges
eP (s, t) of gk(S) such that v is on the right of (st). Since the points s and t are
associated to the edge eP (s, t) in L, since constant time is needed to test on
which side of (st) v lies, and since the neighbours of any edge in L can also be
obtained in constant time, it follows that eP1(s1, t1) can be found, starting from
e, in O(|DS,v|) time. Moreover, from Proposition 2, Ti−1 = (Ti \ {ti}) ∪ {si},
for every i ∈ {2, ..., m}. Hence conv(Ti−1) can be computed from conv(Ti) in
O(log2 k) time. Thus, while searching eP1(s1, t1), conv(T ) can be replaced by
conv(T1) in CH in O(|DS,v| log2 k) time and conv(T1∪{v}) can then be deduced
in O(log2 k) time. Now, the polygonal line ϕ(T1) which connects α1 = v and
ω1 = s2 on δ(conv(T1 ∪ {v})) can be reported in O(|ϕ(T1)|) time. From Lemma
3, for every edge qr of ϕ(T1), the edge H1(qr) = e(T1∪{v})\{q,r}(r, q) is an edge
of CS,v. This comes to insert a new edge in L to which are associated its two
neigbours in L as well as the points r and q. Since the edges of H1(ϕ(T1))
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appear in L in the same order as their corresponding edges on ϕ(T1), it follows
that H1(ϕ(T1)) can be inserted in L in O(|ϕ(T1)|) time. In the same way, for
every i ∈ {2, ..., m}, Ti = (Ti−1 \ {si}) ∪ {ti} and thus conv(Ti ∪ {v}) can
be computed from conv(Ti−1 ∪ {v})) in O(log2 k) time. ϕ(Ti), which connects
αi = ti and ωi, can then be reported in O(|ϕ(Ti)|) time and Hi(ϕ(Ti)) can
also be inserted in L in O(|ϕ(Ti)|) time (note that, from Theorem 2, Hi(ϕ(Ti))
follows Hi−1(ϕ(Ti−1)) in L). Finally, L can be updated after the insertion of v
in total O(|DS,v| log2 k+

∑m
i=1 |ϕ(Ti)|), that is, O(|DS,v| log2 k+ |CS,v|) time. ��

Remark 1. Notice that at the end of the algorithm described by Proposition 5,
the data structure CH contains the convex hull of Tm, with g(Tm) a common
endpoint of DS,v and CS,v. Moreover, the edge of CS,v with endpoint g(Tm) is
the last edge inserted in L and therefore it can be easily maintained.

We will now show how Proposition 5 can be applied to the on-line construction
of the k-set polygon of a planar simple polygonal line V = (v1, v2, ..., vn) of
n vertices which is such that, for every i ∈ {2, ..., n}, vi /∈ conv(Si−1) (with
Si = {v1, ..., vi} for every i ∈ {1, ..., n}).

Theorem 3. The k-set polygon of the polygonal line V can be constructed on-
line in O(k(n − k) log2 k) time.

Proof. (i) We first show that the k-set polygon of Sk+1 = {v1, ..., vk+1} can be
computed in O(k) time. From Proposition 2, every edge of gk(Sk+1) is of the
form eSk+1\{s,t}(s, t) where ts is an edge of conv(Sk+1). Conversely, if ts is an
edge of conv(Sk+1), then eSk+1\{s,t}(s, t) is an edge of gk(Sk+1). In addition, if
eSk+1\{s′,t′}(s′, t′) is the successor of eSk+1\{s,t}(s, t) on δ(gk(Sk+1)), then (Sk+1\
{s, t}) ∪ {t} = (Sk+1 \ {s′, t′}) ∪ {s′}, that is, s = t′. ts and t′s′ are therefore
two consecutive edges of conv(Sk+1) and it follows that constructing gk(Sk+1)
comes to construct conv(Sk+1). The convex hull of a simple polygonal line of k+1
vertices can be constructed on-line in O(k) time using Melkman’s algorithm [8].

Moreover, let e = eSk+1\{s,t}(s, t) be an edge of gk(Sk+1). Setting T = Sk+1 \
{s}, g(T ) is an endpoint of e and conv(T ) can be stored in the data structure
CH in O(k log2 k) time.

(ii) We now show that, for every i ∈ {k + 2, ..., n}, gk(Si) can be computed
from gk(Si−1) in O((|DSi−1,vi |+|CSi−2,vi−1 |) log2 k+|CSi−1,vi |) time (here CSk,vk+1

denotes the boundary of gk(Sk+1)).
(ii.1) We first prove that at least one edge of DSi−1,vi is also an edge of

CSi−2,vi−1 . From the definition of V , vi−1 is a vertex of conv(Si−1) visible from
vi. Thus, there exists an oriented straight line Δ passing through vi−1, that is
not parallel to any straight line passing through any two points of Si−1, and
such that conv(Si−1) ⊂ Δ+ and vi ∈ Δ−. Let Δ′ be a straight line parallel to
Δ, oriented in the same direction as Δ and such that |Δ′− ∩ Si−1| = k. Let
U = Δ′− ∩ Si−1. Let (st) and (s′t′) be the oriented straight lines tangent to
both conv(U) and conv(Si−1 \ U) such that {s′, t} ⊆ U , conv(U) ⊂ (st)−, and
conv(Si−1 \ U) ⊂ (st)+ (resp. conv(U) ⊂ (s′t′)−, and conv(Si−1 \ U) ⊂ (s′t′)+).
Thus, from Proposition 2 and Lemma 2, eU\{t}(s, t) and eU\{s′}(s′, t′) are edges
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of gk(Si−1) that belong to CSi−2,vi−1 , since vi−1 ∈ U . Now, vi cannot belong
to both (st)+ and (s′t′)+ and, from Lemma 1, at least one of eU\{t}(s, t) and
eU\{s′}(s′, t′) belongs to DSi−1,vi . Hence, at least one edge of DSi−1,vi is also an
edge of CSi−2,vi−1 .

(ii.2) Now, from (i) and from Remark 1, after the construction of gk(Si−1),
an edge e of CSi−2,vi−1 is given and the convex hull of a k-set T whose centroid
is a vertex of e is known. From (ii.1), an edge e′ of DSi−1,vi can then be found,
starting from e, in O(|CSi−2,vi−1 |) time, as in the proof of Proposition 5. The
same, the convex hull of a k-set T ′ whose centroid is a vertex of e′ can be
constructed, starting from conv(T ), in O(|CSi−2,vi−1 | log2 k) time. Thus, from
Proposition 5, for every i ∈ {k+2, ..., n}, gk(Si) can be constructed from gk(Si−1)
in O((|DSi−1,vi | + |CSi−2,vi−1 |) log2 k + |CSi−1,vi |) time.

(iii) It follows from (i) and (ii) that the k-set polygon of V can be constructed
on-line in O(k log2 k+

∑n
i=k+2((|DSi−1,vi |+ |CSi−2,vi−1 |) log2 k+ |CSi−1,vi |)) time.

By setting, as in section 1, ck =
∑n

i=k+1 |CSi−1,vi |, we have
∑n

i=k+2((|DSi−1,vi |+
|CSi−2,vi−1 |) log2 k + |CSi−1,vi |) ≤ 2ck log2 k + ck. From Proposition 4, ck is in
O(k(n − k)) and the time complexity of the algorithm is O(k(n − k) log2 k). ��
From Corollary 1, any algorithm that incrementally constructs the k-set polygon
of the polygonal line V , has to generate Ω(k(n − k)) edges. It follows that the
time complexity of the above algorithm, per edge that has to be created, is
O(log2 k). This complexity can be compared to the one in the algorithm given
by Cole, Sharir, and Yap [4] which constructs the set of k-sets of n points in the
plane in O(n log n + c log2 k) time, where c is the total number of k-sets of the
n points.

4 Conclusion

In this paper we have shown that all the convex inclusion chains of a given set
V of points in the plane admit the same number of k-sets. This number is also
equal to the number of regions of the order-k Voronoi diagram of V . Up to now
we do not know any direct proof of this last result. Such a proof would provide a
completely different way to count the number of regions of the order-k Voronoi
diagrams in the plane. Studying these relations in higher dimensions would then
be of great interest since the size of the order-k Voronoi diagrams is not known
in dimension greater than two.

By using the properties of the k-set polygons, we have also given an algorithm
to update the set of k-sets of V when a new point that does not belong to conv(V )
is added. This algorithm has then be applied to the on-line construction of the
k-sets of certain simple polygonal lines. The time complexity of both algorithms
is O(log2 k) per created edge. This factor comes from the use of the dynamic
convex hull data structure of Overmars and van Leeuwen [10]. Chan [3] has given
a data structure that allows dynamic maintenance of the convex hull of n points
in O(lg1+εn) amortized time. Using this data structure, the overall complexity
of our second algorithm becomes O(k(n − k) lg1+ε n), which is interesting for
bigger values of k.
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