
1

Hybrid Differential Evolution Algorithms

for the Optimal Camera Placement Problem

Mathieu Brévilliers(a), Julien Lepagnot(a), Lhassane Idoumghar(a),

Maher Rebai(b) and Julien Kritter(a)

(a) IRIMAS (EA 7499) – Université de Haute-Alsace, Mulhouse, France
(b) Ecole Supérieure d'Ingénieurs Léonard de Vinci, Paris, France

Abstract:

Purpose – This paper investigates to what extent hybrid differential evolution (DE) algorithms can be

successful in solving the optimal camera placement problem.

Design/methodology/approach – This problem is stated as a unicost set covering problem (USCP)

and 18 problem instances are defined according to practical operational needs. Three methods are

selected from the literature to solve these instances: a CPLEX solver, a greedy algorithm, and a row

weighting local search (RWLS). Then, it is proposed to hybridize these algorithms with two DE

approaches designed for combinatorial optimization problems. The first one is a set-based approach

(DEset) from the literature. The second one is a new similarity-based approach (DEsim) that takes

advantage of the geometric characteristics of a camera in order to find better solutions.

Findings – The experimental study highlights that RWLS and DEsim-CPLEX are the best proposed

algorithms. Both easily outperform CPLEX, and it turns out that RWLS performs better on one class of

problem instances, whereas DEsim-CPLEX performs better on another class, depending on the

minimal resolution needed in practice.

Originality/value – Up to now, the efficiency of RWLS and the DEset approach has been investigated

only for a few problems. Thus, the first contribution is to apply these methods for the first time in the

context of camera placement. Moreover, new hybrid DE algorithms are proposed to solve the

optimal camera placement problem when stated as a USCP. The second main contribution is the

design of the DEsim approach that uses the distance between camera locations in order to fully

benefit from the DE mutation scheme.

Keywords: Optimal camera placement, combinatorial optimization, unicost set covering problem,

row weighting local search, differential evolution, hybridization.

Acknowledgments: This work was supported by the French Agence Nationale de la Recherche (ANR)

as part of the OPMoPS project (ANR-16-SEBM-0004).

Post-print version of the following published source: Mathieu Brévilliers, Julien Lepagnot, Lhassane

Idoumghar, Maher Rebai, Julien Kritter, (2018) "Hybrid differential evolution algorithms for the

optimal camera placement problem", Journal of Systems and Information Technology, Vol. 20

Issue: 4, pp.446-467, https://doi.org/10.1108/JSIT-09-2017-0081

https://doi.org/10.1108/JSIT-09-2017-0081

2

1 Introduction
Nowadays, camera networks are widely used to monitor areas of interest. When connected to an

intelligent video surveillance system, it can help to automatically identify targets, events or risks,

depending on the given operational requirements. In this context, determining the optimal

placement of the cameras is of high importance because of the underlying costs.

For this kind of optimization problem, the area to be monitored and the camera parameters (space

coordinates and orientation angles) can be discretized in order to define the following decision

problem: given a set of candidate camera locations that cover some discrete points of the area, find

an optimal subset that satisfies the operational constraints (Horster and Lienhart, 2009).

Up to now, several coverage models have been proposed in the literature (Mavrinac and Chen, 2013;

Zhang et al., 2015). In this paper, the problem is stated as a unicost set covering problem (USCP), and

this USCP model is used together with a three-dimensional model of the monitored area. As already

noticed in the literature, this 3D setting allows to avoid blind spot due to major simplifications in a 2D

setting (Zhang et al., 2013), but it leads to a significant increase of the computational cost (Liu et al.

2016). For example, a bi-objective variant of the problem (minimizing the total cost of the camera

network, while maximizing the area coverage) has been recently solved optimally with exact

methods (Rebai et al., 2016), but at least 4 hours of computation were needed for the largest

instance, which was limited to a 3D grid of 15x15x7 discrete 3D points. It is thus of high interest to

design new algorithms that can find high quality solutions in this much larger 3D search space. In this

work, the full coverage constraint is also considered: on the one hand, no blind spot is allowed

(which can be a strict requirement for some applications) and on the other hand, it is known to make

easier the development of person tracking algorithms (Liu et al. 2016).

According to a recent comprehensive survey (Liu et al. 2016), a wide range of methods have already

been implemented to solve different variants in this class of problems. Actually, the optimal camera

placement problem is often tackled by using binary integer programming methods at first (David et

al. 2007; Horster and Lienhart, 2009). However, as soon as the size of the problem increases, these

methods can not find an optimal solution within a reasonable run time. That’s why approximation

methods were also designed, including greedy heuristics (Horster and Lienhart, 2009; Zhao, 2011),

semi-definite programming (Ercan et al., 2006; Zhao, 2011), simulated annealing algorithms (Zhao,

2011; Liu et al., 2014), genetic algorithms (David et al. 2007; Van den Hengel et al., 2009), particle

swarm optimization algorithms (Morsly et al., 2012; Konda and Conci, 2013), and artificial bee colony

algorithms (Chrysostomou and Gasteratos, 2012).

This article focuses on a metaheuristic called differential evolution (DE), which was originally

designed for solving continuous optimization problems (Storn and Price, 1997). This simple and

efficient evolutionary algorithm is able to solve various theoretical and real-world optimization

problems (Das et al., 2016). In DE, a population of individuals (i.e. candidate solutions) is evolving

from generation to generation in order to converge on the global best solution. A generation is

composed of three evolutionary operators. Firstly, a mutation operator creates a mutant individual

by adding weighted differences to a reference individual. The most common DE mutation scheme,

called DE/rand/1, is formulated as follows. For each variable 𝑗 of each individual 𝑖 of the population

𝑃𝑜𝑝:

3

 Muti,j = Popr1,j + F × (Popr2,j − Popr3,j) (1)

where 𝑀𝑢𝑡 refers to the mutant population, 𝑟1 , 𝑟2 and 𝑟3 to three randomly chosen individuals of

𝑃𝑜𝑝 such that 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖, and 𝐹𝜖[0,1] to the DE scaling factor. As soon as a variable gets out of

the search space due to Equation 1, a new appropriate random value is generated. Secondly, a

crossover operator is applied, generating a trial individual from a current individual and its

corresponding mutant individual by using the classical so-called binomial crossover. Thirdly, a

selection operator replaces any current individual in 𝑃𝑜𝑝 with its corresponding trial individual, if the

latter performs better.

To the best of our knowledge, only one study applied a DE algorithm in order to optimize the camera

placement (Zhang et al., 2016). However, the considered problem significantly differs from the one

formulated above. Indeed, the area to be covered is represented by the set of triangles in an input

3D triangular mesh, the number of camera to be placed is known in advance, and the aim is to

maximize the number of covered triangles. Moreover, the classical above-mentioned DE algorithm is

implemented, and it is only compared to a greedy approach.

This paper proposes to investigate the efficiency of two hybrid DE approaches in order to solve the

optimal camera placement problem. The first one is a set-based method designed to solve general

combinatorial optimization problems (Maravilha et al., 2013). DE has already been adapted to

combinatorial optimization in various ways, but most of these adaptations can only be applied on

permutation-based combinatorial optimization problems, and even the more general list-of-

movements approach (Prado et al., 2010) is not well-suited for tackling the optimal camera

placement problem considered here. So, the set-based DE approach seems to be the most

appropriate method from the literature. Moreover, it provides promising results when solving the

capacitated centered clustering problem and the traveling salesman problem (Maravilha et al., 2013;

Maravilha et al., 2014). The second one is a new similarity-based method that takes advantage of the

geometric components of a camera location (i.e. space coordinates and orientation angles): it allows

to make sense of the DE mutation scheme in this camera placement application.

According to Talbi’s taxonomy of hybrid metaheuristics (Talbi, 2002), any implementation of both

approaches is a low-level teamwork hybrid (LTH) algorithm. Actually, the mutation operator allows to

define a much smaller subproblem, and the crossover consists in solving this subproblem with any

appropriate method. Three state-of-the art algorithms have been selected for hybridization with

these DE approaches: a CPLEX optimizer (IBM, 2017a), a greedy algorithm (Johnson, 1974), and a row

weighting local search (RWLS) algorithm (Gao et al., 2015). CPLEX and the greedy algorithm are

natural candidates to get first benchmark results: the former highlights where the limit of an exact

method is, while the latter provides a first upper bound for instances that are beyond this limit.

Furthermore, RWLS has been experimentally shown to be one of the best heuristic algorithms when

solving a large set of USCP benchmark problems. Regarding practical applications, RWLS has been

already implemented to solve test suite reduction problems (Chi et al., 2017). But, up to now, no use

of RWLS has been reported for solving the optimal camera placement problem.

The remaining of this article is organized as follows. Section 2 describes in detail the considered

optimal camera placement problem, specifies the problem modelling, and defines a set of instances

inspired by real-world applications. Section 3 first presents CPLEX, the greedy algorithm, RWLS, the

set-based DE approach, and the new similarity-based DE approach. Then, it explains the

4

experimental settings, and the reported results are discussed. Finally, Section 4 sums up the

contribution of this article and gives some perspectives for future work.

2 Problem description

2.1 Problem modelling
This paper deals with the following optimal camera placement problem: given the technical

specifications of a camera, given a three-dimensional area to monitor, and given the operational

need to meet, the objective is to find a minimum set of locations (i.e. position and angular

orientation) of this type of camera that ensures a total coverage of this area according to the

requested operational need.

The monitored area is a rectangular box whose point coordinates range from (0,0,0) to

(𝑋𝑚𝑎𝑥, 𝑌𝑚𝑎𝑥, 𝑍𝑚𝑎𝑥) in a Cartesian coordinate system of the three-dimensional Euclidean space 𝑅3,

where 𝑋𝑚𝑎𝑥, 𝑌𝑚𝑎𝑥 and 𝑍𝑚𝑎𝑥 are user-defined values. This area is discretized and approximated by a

regular grid of points, where the step size 𝑈 between two adjacent points is a user-defined

parameter. If each of these points is covered by at least one camera, the area is said to be fully

covered by the cameras.

A camera is defined by the following technical specifications: its horizontal resolution 𝐻𝑟𝑒𝑠, its

vertical resolution 𝑉𝑟𝑒𝑠, and its horizontal field of view 𝐻𝑓𝑜𝑣 (angle in degrees). It has a pyramid of

vision, whose base is a rectangle with length
𝐻𝑟𝑒𝑠

𝑂𝑝𝑁𝑒𝑒𝑑
 and width

𝑉𝑟𝑒𝑠

𝑂𝑝𝑁𝑒𝑒𝑑
 (in meters), where 𝑂𝑝𝑁𝑒𝑒𝑑 is

the operational need to be met (in pixels per meter). The height of this right pyramid corresponds to

the maximal depth of view 𝐷𝑚𝑎𝑥 of the camera (in meters), which depends on the operational need.

Figure 1 clearly illustrates the horizontal field of view 𝐻𝑓𝑜𝑣 and the height 𝐷𝑚𝑎𝑥 of the pyramid of

vision. 𝐷𝑚𝑎𝑥 is computed with the following equation:

 𝐷𝑚𝑎𝑥 =

1

2
×

𝐻𝑟𝑒𝑠
𝑂𝑝𝑁𝑒𝑒𝑑

tan(
𝐻𝑓𝑜𝑣

2
×

𝜋

180
)
. (2)

Any point of the monitored area is said to be covered by a camera if it lies in the pyramid of vision of

this camera.

A camera location is characterized by a point in the considered discrete grid together with discrete

pan and tilt angles. Camera coordinates can range from (0,0, 𝑍𝑚𝑖𝑛
𝑐𝑎𝑚) to (𝑋𝑚𝑎𝑥, 𝑌𝑚𝑎𝑥, 𝑍𝑚𝑎𝑥

𝑐𝑎𝑚) with a

step size 𝑈, where 𝑍𝑚𝑖𝑛
𝑐𝑎𝑚 and 𝑍𝑚𝑎𝑥

𝑐𝑎𝑚 are user-defined values such that 𝑍𝑚𝑎𝑥 ≤ 𝑍𝑚𝑖𝑛
𝑐𝑎𝑚 ≤ 𝑍𝑚𝑎𝑥

𝑐𝑎𝑚. A

camera can thus be placed anywhere in the grid, provided that it is above or at least on the top of

the monitored area. The angular orientation of a camera is then given by two angles: 𝛼 is the pan

angle, that is the rotation angle of the camera along the 𝑍 axis, and 𝛽 is the tilt angle, that is the

rotation angle along the 𝑌 axis (see Figure 2). Values of 𝛼 and 𝛽 are discretized with the help of a

user-defined integer 𝐴, which fixes the step size to the value 𝜋/𝐴. It means that 𝛼 can take 𝑁𝛼=2A

different values that range in [0,2𝜋[. Regarding 𝛽, one can see that values in]𝜋, 2𝜋[are not needed,

since each camera is placed above the points to be covered, and thus, it has to be oriented

downward. Moreover, since 𝛼 ranges in [0,2𝜋[, any camera location with pan angle 𝛼 and tilt angle

𝛽 = 𝑘
𝜋

𝐴
 such that 𝛽 <

𝜋

2
, will be identical to the camera location with same coordinates and pan

5

angle 𝛼’ = 𝛼 + 𝜋 and tilt angle 𝛽′ = 𝜋 − 𝑘
𝜋

𝐴
. It means that 𝛽 can be limited to 𝑁𝛽=⌊𝐴 2⁄ ⌋ + 1

different values that range in [0, ⌊𝐴 2⁄ ⌋ ×
𝜋

𝐴
].

Figure 1: Example of a camera 𝐶 with horizontal field of view 𝐻𝑓𝑜𝑣, and whose pyramid of vision has

height 𝐷𝑚𝑎𝑥.

Figure 2: Example of camera location with coordinates (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐), pan angle 𝛼, and tilt angle 𝛽.

Given that the objective is to find as few cameras as possible that can completely cover the space to

be monitored, it follows that this camera placement problem can be formulated as a unicost set

covering problem (USCP) in a straightforward manner. Actually, the points of the monitored area can

be labelled with integers, representing the set of elements to be covered. Each camera location can

then be modelled as a set of integers, corresponding to the labels of the points it covers. Now, given

the set 𝐸 of elements (i.e. points) and a collection 𝑆 of sets (i.e. camera locations), solving the

optimal camera placement problem comes down to find the minimum subset of 𝑆 that covers 𝐸.

Once the problem is stated as a USCP, the following decision variables can be defined:

 ∀𝑐𝜖𝑆, 𝑥𝑐 = {
1 if camera location 𝑐 is used,
0 otherwise.

 (3)

𝐷𝑚𝑎𝑥

𝐻𝑓𝑜𝑣

𝐶

𝑂 𝑥

𝑦

𝑧

𝛼
𝛽

𝑥𝑐

𝑦𝑐

𝑧𝑐

𝑋𝑚𝑎𝑥

𝑍𝑚𝑎𝑥

𝑌𝑚𝑎𝑥

6

Then, the corresponding binary integer linear programming model can be written as follows:

 𝑀𝑖𝑛 ∑ 𝑥𝑐𝑐𝜖𝑆 (4)

subject to

 ∀𝑝𝜖𝐸, ∑ 𝑥𝑐𝑐𝜖𝑆:𝑝𝜖𝑐 ≥ 1 (5)

 ∀𝑐𝜖𝑆, 𝑥𝑐𝜖{0,1}. (6)

The objective function (see Equation 4) minimizes the total number of used cameras. The set of

constraints (see Equation 5) indicates that each point of 𝐸 has to be covered by at least one camera

location of 𝑆: it ensures the full coverage of the monitored area. Equation 6 gives the set of binary

constraints needed for the decision variables (see Equation 3).

2.2 Problem instances
In this study, the efficiency of the proposed methods is investigated by using several problem

instances inspired by real-world settings (see Table 1). In these instances, the size of the monitored

area goes from 5×5×2 meters to 70×70×2 meters. The areas are discretized with a step size of 0.5

meter. Cameras have a resolution of 1920×1080 pixels with a horizontal field of view of 65 degrees,

and are supposed to be fixed to the ceiling at a standard height of 2.5 meters (𝑍𝑚𝑖𝑛
𝑐𝑎𝑚 = 𝑍𝑚𝑎𝑥

𝑐𝑎𝑚). The

pan and tilt angles are discretized with a step size of
𝜋

4
.

Table 1: List of instances.

Instance 𝑋𝑚𝑎𝑥 𝑌𝑚𝑎𝑥 𝑍𝑚𝑎𝑥 𝑍𝑚𝑖𝑛
𝑐𝑎𝑚 𝑍𝑚𝑎𝑥

𝑐𝑎𝑚 𝑈 𝑂𝑝𝑁𝑒𝑒𝑑 𝐻𝑟𝑒𝑠 𝑉𝑟𝑒𝑠 𝐻𝑓𝑜𝑣 𝐴

1 5 5 2 2.5 2.5 0.5 100 1920 1080 65 4

2 10 10 2 2.5 2.5 0.5 100 1920 1080 65 4

3 15 15 2 2.5 2.5 0.5 100 1920 1080 65 4

4 20 20 2 2.5 2.5 0.5 100 1920 1080 65 4

5 25 25 2 2.5 2.5 0.5 100 1920 1080 65 4

6 30 30 2 2.5 2.5 0.5 100 1920 1080 65 4

7 40 40 2 2.5 2.5 0.5 100 1920 1080 65 4

8 50 50 2 2.5 2.5 0.5 100 1920 1080 65 4

9 5 5 2 2.5 2.5 0.5 500 1920 1080 65 4

10 10 10 2 2.5 2.5 0.5 500 1920 1080 65 4

11 15 15 2 2.5 2.5 0.5 500 1920 1080 65 4

12 20 20 2 2.5 2.5 0.5 500 1920 1080 65 4

13 25 25 2 2.5 2.5 0.5 500 1920 1080 65 4

14 30 30 2 2.5 2.5 0.5 500 1920 1080 65 4

15 40 40 2 2.5 2.5 0.5 500 1920 1080 65 4

16 50 50 2 2.5 2.5 0.5 500 1920 1080 65 4

17 60 60 2 2.5 2.5 0.5 500 1920 1080 65 4

18 70 70 2 2.5 2.5 0.5 500 1920 1080 65 4

There are two main classes of instances (1 to 8, and 9 to 18) that differ in the operational need: 100

or 500 pixels per meter. The aim is to provide adequate resolutions for face recognition, human

detection and gait recognition applications, as discussed below.

7

Regarding automatic face recognition, current commonly-used methods, such as principal

component analysis (PCA), linear discriminant analysis (LDA) and local binary pattern (LBP), can reach

high success rates (from 70% to 100%) with face image resolution of at least 64×64 pixels (Huang and

Wang, 2008; Marciniak et al., 2015; Mahmood et al., 2016). In addition to that, according to recent

anthropometric studies (Zhuang et al., 2010; Gordon et al., 2014), the average face width of human

people is about 14 centimeters, and the average head height is about 23.5 centimeters. Now, when

considering an operational need of 500 pixels per meter, any face covered by a camera will have a

resolution of at least 70×118 pixels, which meets the above-mentioned face recognition

requirements. It also satisfies the requirements from the European norm “EN 50132-7: CCTV and

alarm systems” (Marciniak et al., 2015), where a resolution of at least 330 pixels per meter is

recommended for precise identification.

For automatic human detection, it has been shown that a high success rate (higher than 70%) can be

achieved with a resolution between 20 and 60 pixels per meter (Miyazaki et al., 2015). In the field of

gait recognition, a recent study shows that current methods perform very well (success rate higher

than 90%) with a resolution of at most 140 pixels per meter (Liang et al., 2016). However, another

work points out that good results can also be achieved with lower resolution between 10 and 80

pixels per meter (Zhang et al., 2010). In this paper, a resolution of 100 pixels per meter is considered

as the requirement for automatic human detection or gait recognition applications.

It is also worth noting that the selected operational needs are consistent with the requirements

suggested by network video companies (Axis, 2017).

2.3 Data pre-processing
In order to solve the problem instances given in Section 2.2, they have to be processed in order to

become standard USCP instances as defined in Section 2.1. Two types of pre-processing are

implemented. The first one consists in computing the coverage of each possible camera location. The

second one aims at reducing the problem by removing useless camera locations.

For any instance whose characteristics are given in Table 1, the set of points and the set of possible

camera locations can be created. Then, for each camera location and for each point, it has to be

decided whether this point is visible or not from this camera location: the resulting sets of covered

points correspond to the input sets needed for the USCP. The visibility test is performed in the

following way (Zhang et al., 2013): new coordinates of the tested point are computed in a coordinate

system centered on the camera, i.e. the origin is the camera position, the pyramid height from the

base to the apex is included in the 𝑋 axis, and the length of the rectangular base is parallel to the 𝑌

axis (see Figure 3).

So, the original coordinates 𝑃 = [𝑥, 𝑦, 𝑧] are transformed into the new ones 𝑃′ = [𝑥′, 𝑦′, 𝑧′] with the

help of homogeneous coordinate transformations by using the following equation:

 𝑃′ = 𝑃𝑇𝑅𝑍𝑅𝑌 (7)

Where 𝑇 = [

1 0 0 0
0 1 0 0
0 0 1 0

−𝑥𝑐 −𝑦𝑐 −𝑧𝑐 1

], 𝑅𝑍 = [

cos 𝛼 − sin 𝛼 0 0
sin 𝛼 cos 𝛼 0 0

0 0 1 0
0 0 0 1

], 𝑅𝑌 = [

cos 𝛽 0 sin 𝛽 0
0 1 0 0

− sin 𝛽 0 cos 𝛽 0
0 0 0 1

]

are respectively: a translation such that [𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐] are the camera coordinates in the monitored

8

area, a rotation about the 𝑍 axis by angle 𝛼, and a rotation about the 𝑌 axis by angle 𝛽. Once 𝑃’ is

computed, the tested point lies inside the pyramid of vision if the following conditions are met:

 0 ≤ 𝑥′ ≤ 𝐷𝑚𝑎𝑥 (8)

 |𝑦′| ≤
1

2
×

𝐻𝑟𝑒𝑠

𝑂𝑝𝑁𝑒𝑒𝑑
×

𝑥′

𝐷𝑚𝑎𝑥
 (9)

 |𝑧′| ≤
1

2
×

𝑉𝑟𝑒𝑠

𝑂𝑝𝑁𝑒𝑒𝑑
×

𝑥′

𝐷𝑚𝑎𝑥
 (10)

Figure 3: Coordinate system centered on the camera.

It is worth noting that these geometric computations are costly when increasing the size of the

instance: for example, 1 756 920 visibility tests are needed for instance 1 (605 points and 2 904

camera locations), and 1 661 500 920 visibility tests are needed for instance 6 (18 605 points and

89 304 camera locations). This remark is even more important if 𝐴 is increased to get better angles, if

𝑈 is increased to get a better coverage, or if the cameras are allowed to be placed at different

heights (i.e. 𝑍𝑚𝑖𝑛
𝑐𝑎𝑚 ≠ 𝑍𝑚𝑎𝑥

𝑐𝑎𝑚). However, since the visibility tests are independent, this first type of pre-

processing can benefit from the SIMD architecture of GPU devices in order to accelerate the

geometric computations. Indeed, compared to the sequential C/C++ implementation on a Intel Core

processor i5-3330 CPU (3.00GHz) with 4 GB of RAM, up to a 15 times speedup can be observed by

using a simple CUDA C implementation on a NVIDIA GeForce GTX680. A better acceleration can

certainly be achieved with a more clever and fine-tuned GPU implementation and with a more

powerful GPU device.

The second type of pre-processing consists in reducing the resulting USCP instance, mainly by

decreasing the number of possible camera locations. At first, the camera locations that can not cover

any point in the monitored area are removed. Then, so called dominated camera locations are

removed: a camera location 𝑐 is said to be dominated by another camera location 𝑑 if 𝑑 covers at

least the same points as 𝑐.

These two types of pre-processing allow to provide reduced USCP instances related to the original

optimal camera placement problems given in Table 1. Generally, the USCP input data are presented

as a zero-one matrix, where the rows are the elements, and the columns are the sets: a one in row 𝑖

and column 𝑗 means that the 𝑖-th element is covered by the 𝑗-th set. According to this remark, the

characteristics of the resulting USCP instances are presented in Table 2: instance number, number of

rows (i.e. elements to be covered, or points to be monitored), number of columns (i.e. sets of the

𝑂 𝑥

𝑦

𝑧

9

USCP, or available camera locations) in the reduced instance and in the original instance in brackets,

percentage of ones and maximum number of ones per row in the corresponding sparse matrix. The

corresponding input data files are available on line for download[1].

Table 2: Characteristics of the reduced USCP instances.

Instance
Rows

(i.e. elements, or points)
Columns

(i.e. sets, or camera locations)
Density of
ones (%)

Maximum number
of ones per row

1 605 1 292 (2 904) 12.9 292

2 2 205 908 (10 584) 13.7 628

3 4 805 924 (23 064) 38.8 684

4 8 405 4 572 (40 344) 24.9 2 144

5 13 005 9 852 (62 424) 17.0 3 484

6 18 605 16 732 (89 304) 12.3 4 568

7 32 805 35 291 (157 464) 7.2 4 656

8 51 005 60 251 (244 824) 4.8 4 656

9 605 1 672 (2 904) 6.8 212

10 2 205 7 352 (10 584) 2.0 216

11 4 805 17 032 (23 064) 0.9 216

12 8 405 30 712 (40 344) 0.5 216

13 13 005 48 392 (62 424) 0.4 216

14 18 605 70 072 (89 304) 0.2 216

15 32 805 125 431 (157 464) 1.4e-3 216

16 51 005 193 791 (244 824) 9.1e-4 216

17 73 205 284 151 (351 384) 6.3e-4 216

18 99 405 387 511 (477 144) 4.7e-4 216

3 Optimization methods

3.1 State-of-the-art algorithms
This section presents the three state-of-the art algorithms selected for solving the optimal camera

placement problem defined in Section 2. These algorithms will also be used in the next sections in

order to design new hybrid algorithms and to see to what extent these hybridizations can help to

improve the solution found so far.

The first algorithm is IBM ILOG CPLEX optimizer (IBM, 2017a), which is commonly used for solving

large integer programming problems, including the USCP. As noticed in the literature (Yelbay et al.,

2015; Demirović et al., 2016), general purpose optimizers can solve quite easily weighted instances of

the set covering problem, but USCP instances are much harder to solve. In this paper, it is interesting

to investigate where is the limit of CPLEX for the practical application of USCP in the context of

camera placement, and to compare it with some state-of-the-art and also some new approximation

algorithms.

The second algorithm is a greedy one that uses a very intuitive idea to solve the USCP: starting from

an empty solution, iteratively add in the solution the set that maximizes the number of new covered

elements, i.e. elements covered by this set that were not covered so far (Johnson, 1974). Table 3

shows how this idea is adapted to the context of optimal camera placement. With an adequate

implementation (i.e. with 𝑂(𝑛 log 𝑛) complexity), such a greedy algorithm can quickly provide a

10

feasible solution. But, it has been proven that the size of a solution given by this algorithm is at most

𝐻𝑑 times the size of an optimal solution (Johnson, 1974; Chvatal, 1979), where 𝐻𝑖 = ∑
1

𝑗
𝑖
𝑗=1 is the

𝑖-th harmonic number and 𝑑 is the size of the largest set 𝑐𝑜𝑣(𝑐), ∀𝑐 ∈ 𝐶 , knowing that 𝐶 is the set of

possible camera locations. In this paper, the greedy algorithm is used as a benchmark when CPLEX

fails solving the instances defined in Section 2.2.

Table 3: Greedy algorithm for the optimal camera placement problem formulated as a USCP.

 Input : The set 𝐶 of possible camera locations.
The set 𝑃 of points to be covered.
∀𝑐 ∈ 𝐶, 𝑐𝑜𝑣(𝑐) = {𝑝 ∈ 𝑃: 𝑐 covers 𝑝}.

 Output : A set 𝑆 of camera locations that covers 𝑃, i.e. such that ⋃ 𝑐𝑜𝑣(𝑐) = 𝑃𝑐∈𝑆 .
1 𝑆 = ∅
2 While ⋃ 𝑐𝑜𝑣(𝑐) ≠ 𝑃𝑐∈𝑆 do
3 𝑆 = 𝑆 ∪ {𝑏}, where 𝑏 ∈ 𝐶\𝑆 such that |𝑐𝑜𝑣(𝑏)| is maximized
4 ∀𝑐 ∈ 𝐶\𝑆, 𝑐𝑜𝑣(𝑐) = 𝑐𝑜𝑣(𝑐)\𝑐𝑜𝑣(𝑏)
5 End while

The third algorithm is a row weighting local search (RWLS) algorithm (Gao et al., 2015). The main

feature of RWLS is its row weighting scheme that helps to identify hard-to-cover rows and to

prioritize the columns to be selected in the candidate solution. Each row starts with a weight of 1.

Then, after each iteration of the local search procedure, the weights of the uncovered rows are

increased by 1. Since the local search first removes sets to get a partial solution and, then, add a new

set to try to get a full coverage, the set of uncovered rows is changing at each iteration. Thus, with

time, the rows that are harder to cover will get larger weights, given that they will be more often

uncovered. These weights are used to define a score for each column as follows. On the one hand,

when a column is not in the candidate solution, its score is set to the sum of the weights of all

uncovered rows it can cover. Thus, the more a column can cover uncovered rows, especially hard-to-

cover uncovered rows (i.e. with larger weights), the more this column has a higher score, and the

more it is likely this column will be selected to be added in the candidate solution. On the other

hand, when a column is part of the candidate solution, its score is set to the negation of the sum of

the weights of rows which are only covered by this column in the candidate solution. Thus, the more

a column of the candidate solution is the only one that covers some rows, especially hard-to-cover

rows (i.e. with larger weights), the more this column has a lower score, and the less it is likely this

column will be removed from the candidate solution. The outline of RWLS is given in Table 4.

This row weighting scheme together with two tabu strategies and a timestamp method allow RWLS

to be very efficient (Gao et al., 2015). Actually, to the best of our knowledge, RWLS is the heuristic

algorithm that leads to the best results when solving a large number of instances from the OR-Library

(Beasley, 1990) and Steiner triple systems (Fulkerson et al., 1974). In the case of optimal camera

placement, RWLS is used as an other (and more interesting) benchmark in order to highlight the

benefits or the loss of the methods proposed in Sections 3.2 and 3.3.

3.2 Set-based DE approach
This section presents a set-based DE approach that was designed to solve general combinatorial

optimization problems (Maravilha et al., 2013). In their work, a solution is formulated as a subset

11

(instead of a permutation) of combinatorial elements: for instance, a solution of the travelling

salesman problem (TSP) is a subset of all possible edges between cities, instead of a permutation of

all cities to be visited. In the case of the optimal camera placement problem, a solution is a subset of

all the possible camera locations.

Table 4: Outline of RWLS for the optimal camera placement problem.

 Input: The set 𝐶 of possible camera locations.
The set 𝑃 of points to be covered.
∀𝑐 ∈ 𝐶, 𝑐𝑜𝑣(𝑐) = {𝑝 ∈ 𝑃: 𝑐 covers 𝑝}.

 Output: A set 𝑆𝑏𝑒𝑠𝑡 of camera locations that covers 𝑃, i.e. such that ⋃ 𝑐𝑜𝑣(𝑐) = 𝑃𝑐∈𝑆𝑏𝑒𝑠𝑡
.

1 Greedily compute an initial solution 𝑆
2 Initialize point weights and camera location scores according to 𝑆
3 While the stopping condition is not met do
4 While ⋃ 𝑐𝑜𝑣(𝑐) = 𝑃𝑐∈𝑆 do
5 Update 𝑆𝑏𝑒𝑠𝑡 with 𝑆 if |𝑆| < |𝑆𝑏𝑒𝑠𝑡|
6 Remove from 𝑆 the camera location with the highest score
7 End while
8 Remove from 𝑆 the camera location with the highest score
9 Randomly select an uncovered point 𝑝

10 Add in 𝑆 the camera location with the highest score and that covers 𝑝
11 Update point weights and camera location scores
12 End while

According to this representation of the solution, DE/rand/1 mutation scheme is modified by using

operations on sets in the following way, for each individual 𝑖 in the current population 𝑃𝑜𝑝:

 𝑀𝑢𝑡𝑖 = 𝑆𝑜𝑙𝑟𝑎𝑛𝑑 ∪ 𝐹 ∙ (𝑃𝑜𝑝𝑟1
⊕ 𝑃𝑜𝑝𝑟2

) (11)

Where 𝑆𝑜𝑙𝑟𝑎𝑛𝑑 is a randomly generated feasible solution, 𝑃𝑜𝑝𝑟1
≠ 𝑃𝑜𝑝𝑟2

≠ 𝑃𝑜𝑝𝑖 are individuals

randomly chosen in the current population, and ⊕ is the XOR operator on sets. The arithmetic

operations of the original DE/rand/1 mutation operator (see Equation 1) are replaced by union and

XOR operations: given that the individuals are sets, these operations can be applied in a

straightforward manner. Regarding the scaling factor 𝐹, the authors suggest to use one of the

strategies defined in the literature (Prado et al., 2010) in order to control the size of the resulting set

𝑀𝑢𝑡𝑖. Actually, in this paper, neither of those strategies is preferred since 𝐹 is set to 1 for the

experimental study (see Table 9), which means that no elements are removed from the sets.

Then, the crossover operator generates a trial solution by selecting only elements that are present in

𝑃𝑜𝑝𝑖 ∪ 𝑀𝑢𝑡𝑖. In other words, creating a good trial solution comes down to solve a subproblem of the

original one. Since this subproblem is much smaller, the authors suggest to solve it with exact

algorithms.

It is proposed here to hybridize this set-based DE approach with the three state-of-the-art algorithms

given in Section 3.1, in order to solve the optimal camera placement problems defined in Section 2.

Table 5 gives the outline of the set-based DE approach (DEset, for short) in this context.

12

3.3 Similarity-based DE approach
In the original DE/rand/1 mutation scheme (see Equation 1), the equation is applied for each variable

𝑗 of each individual 𝑖. It makes sense when solving continuous optimization problems, where each

decision variable represents one characteristic of the problem. However, in the case of the optimal

camera placement problem, a solution is a set of unordered camera locations: it is the same solution

whatever the permutation of its camera locations. Moreover, solutions in the population can have

different sizes, i.e. two solutions can have different numbers of camera locations. Thus, it has no real

sense to directly apply such a mutation equation in this context.

Table 5: Outline of DEset for the optimal camera placement problem.

 Input: The set 𝐶 of possible camera locations.
The set 𝑃 of points to be covered.
∀𝑐 ∈ 𝐶, 𝑐𝑜𝑣(𝑐) = {𝑝 ∈ 𝑃: 𝑐 covers 𝑝}.

 Output: A set 𝑆𝑏𝑒𝑠𝑡 of camera locations that covers 𝑃, i.e. such that ⋃ 𝑐𝑜𝑣(𝑐) = 𝑃𝑐∈𝑆𝑏𝑒𝑠𝑡
.

1 Generate a population 𝑃𝑜𝑝 of random feasible solutions
2 Initialize 𝑆𝑏𝑒𝑠𝑡 with the best solution of 𝑃𝑜𝑝
3 While the stopping condition is not met do
4 For each individual 𝑃𝑜𝑝𝑖 do
5 Randomly select 𝑃𝑜𝑝𝑟1

 and 𝑃𝑜𝑝𝑟2
 such that 𝑟1 ≠ 𝑟2 ≠ 𝑖

6 Generate 𝑀𝑢𝑡𝑖 by following Equation 11
7 Generate a trial solution 𝑇𝑖 by solving the optimal camera placement

 subproblem where 𝐶 = 𝑃𝑜𝑝𝑖 ∪ 𝑀𝑢𝑡𝑖
8 Update 𝑃𝑜𝑝𝑖 and eventually 𝑆𝑏𝑒𝑠𝑡 if 𝑇𝑖 is better
9 End for

10 End while

The main feature of the similarity-based DE approach aims at overcoming this drawback by

improving the DE mutation operator. Here, it generates a mutant individual 𝑀𝑢𝑡𝑖 for each individual

𝑖 of 𝑃𝑜𝑝, by using the following DE/rand/1-like mutation equation:

 𝑀𝑢𝑡𝑖,𝑗 = 𝑃𝑜𝑝𝑟1,𝑗 + 𝐹 × (𝑃𝑜𝑝𝑟2,𝑢𝑗
− 𝑃𝑜𝑝𝑟3,𝑣𝑗

), (12)

Where 𝑃𝑜𝑝𝑟1
≠ 𝑃𝑜𝑝𝑟2

≠ 𝑃𝑜𝑝𝑟3
≠ 𝑃𝑜𝑝𝑖 are individuals randomly chosen in the current population,

and 𝑢𝑗 and 𝑣𝑗 are camera locations of 𝑃𝑜𝑝𝑟2
 and 𝑃𝑜𝑝𝑟3

 selected according to the similarity rule

explained hereafter. The key point is that the camera locations coming from 𝑃𝑜𝑝𝑟2
 and 𝑃𝑜𝑝𝑟3

 are

selected depending on their similarity with the camera location coming from 𝑃𝑜𝑝𝑟1
. Actually, for

each camera location 𝑗 of 𝑃𝑜𝑝𝑟1
, the camera location 𝑢𝑗 of 𝑃𝑜𝑝𝑟2

 that is the most similar to 𝑃𝑜𝑝𝑟1,𝑗 is

selected. In the same way, the camera location 𝑣𝑗 of 𝑃𝑜𝑝𝑟3
 that is the most similar to 𝑃𝑜𝑝𝑟1,𝑗 is

selected. This strategy is inspired by the similar-metavariable recombination for genetic algorithms,

in order to solve variable-length optimization problems (Ryerkerk et al., 2017). But, it is applied here

in the mutation operator and with a different similarity definition. Actually, the similarity is defined

as the Euclidean distance as follows:

 𝑑𝑐1,𝑐2
= √(𝑥𝑐2

− 𝑥𝑐1
)

2
+ (𝑦𝑐2

− 𝑦𝑐1
)

2
+ (𝑧𝑐2

− 𝑧𝑐1
)

2
+ (𝛼𝑐2

− 𝛼𝑐1
)

2
+ (𝛽𝑐2

− 𝛽𝑐1
)

2
 (13)

13

Where 𝑐1 and 𝑐2 are two camera locations whose coordinates are (𝑥𝑐1
, 𝑦𝑐1

, 𝑧𝑐1
) and (𝑥𝑐2

, 𝑦𝑐2
, 𝑧𝑐2

)

respectively, and whose orientation angles are (𝛼𝑐1
, 𝛽𝑐1

) and (𝛼𝑐2
, 𝛽𝑐2

) respectively.

A first remark is that the size of 𝑀𝑢𝑡𝑖 is the same as 𝑃𝑜𝑝𝑟1
, i.e. 𝑀𝑢𝑡𝑖 contains exactly as many camera

locations as 𝑃𝑜𝑝𝑟1
. It is also worth noting that a camera location 𝑐 can be defined as a metavariable

which is composed of five design variables (𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 , 𝛼𝑐 , 𝛽𝑐). Thus, Equation 12 is actually applied on

each of these design variables, and the resulting real values are rounded down in order to generate a

camera location that exists in the discrete search space. Due to the arithmetic computations in

Equation 12, the design variables of 𝑀𝑢𝑡𝑖 can take values that are out of the search space. In case of

a coordinate, it is randomly regenerated inside the search space. In case of an angle, possible values

are considered as a cycle from which a new feasible value is deduced. Then, it remains to check

whether the camera locations of 𝑀𝑢𝑡𝑖 are desirable camera locations or not. Firstly, each dominated

camera location is replaced with the one which dominates it. Secondly, redundant or blind camera

locations are removed.

The second main feature of the approach proposed here is a diversification strategy that helps the

algorithm to escape from local optima. Stagnation is detected by using a user-defined integer 𝑔 that

defines how many generations are allowed without improving the best solution found so far. In case

of stagnation, each individual of the current population is replaced by a randomly generated feasible

solution with a user-defined probability 𝜌.

The crossover operator used here in the DE framework is the same as the one defined in Section 3.2:

it has to solve the optimal camera placement subproblem with camera locations in 𝑃𝑜𝑝𝑖 ∪ 𝑀𝑢𝑡𝑖.

Given that 𝑀𝑢𝑡𝑖 has the same size as 𝑃𝑜𝑝𝑟1
, it follows that these subproblems are smaller than those

of DEset. In the same way as DEset, this similarity-based DE approach (DEsim, for short) is hybridized

with the algorithms given in Section 3.1. Table 6 gives the outline of the DEsim approach in the

context of optimal camera placement.

3.4 Experimentations
In this section, two experimentations are presented. The first one aims at comparing the three state-

of-the art algorithms from Section 3.1 and their hybridization with the set-based DE and the

similarity-based DE approaches proposed in Section 3.2 and Section 3.3, respectively. This study

focuses on the smallest problem instances (in term of volume to monitor, i.e. in term of points to

cover) in order to investigate which hybridization is the most appropriate to solve the optimal

camera placement problem defined in this paper. The second one compares more specifically the

best proposed hybridization with the best state-of-the art algorithm on a larger set of instances in

order to analyze the type of situations where it can get better results.

3.4.1 Comparison of the proposed algorithms

A first experimental study has been performed, where the above-mentioned algorithms were used to

solve the 12 smallest problem instances (1 to 6, and 9 to 14) defined in Tables 1 and 2. For these

experimentations, all the corresponding programs are written in C/C++ and executed with a time

limit of 1 000 seconds, on a computer with an Intel Core i5-3330 processor (3.00GHz) and 4 GB of

RAM.

14

Regarding the algorithms of Section 3.1, the first one is implemented by calling CPLEX 12.7.0 with the

help of ILOG Concert Technology. Here, CPLEX optimizer is set up in order to use only one single

thread: it implies that the algorithm is deterministic and runs sequentially (IBM, 2017b). This setting

allows a fair comparison with the other tested algorithms, and only one run per instance is needed

for comparison. The greedy algorithm is also deterministic and thus only one run per instance has

been performed. The third algorithm is RWLS: since it uses random numbers (as depicted in Table 4),

30 runs per instance have been performed in order to see its average behavior. Results of these

three algorithms (CPLEX, Greedy, RWLS) are reported in Table 7.

Table 6: Outline of DEsim for the optimal camera placement problem.

 Input: The set 𝐶 of possible camera locations.
The set 𝑃 of points to be covered.
∀𝑐 ∈ 𝐶, 𝑐𝑜𝑣(𝑐) = {𝑝 ∈ 𝑃: 𝑐 covers 𝑝}.

 Output: A set 𝑆𝑏𝑒𝑠𝑡 of camera locations that covers 𝑃, i.e. such that ⋃ 𝑐𝑜𝑣(𝑐) = 𝑃𝑐∈𝑆𝑏𝑒𝑠𝑡
.

1 Generate a population 𝑃𝑜𝑝 of random feasible solutions
2 Initialize 𝑆𝑏𝑒𝑠𝑡 with the best solution of 𝑃𝑜𝑝
3 Set to 0 the counter 𝑐𝑛𝑡 of generations without improvement
4 While the stopping condition is not met do
5 If 𝑐𝑛𝑡 = 𝑔 then
6 For each individual 𝑃𝑜𝑝𝑖 do
7 Replace 𝑃𝑜𝑝𝑖 by a new random feasible solution with probability 𝜌
8 End for
9 End if

10 For each individual 𝑃𝑜𝑝𝑖 do
11 Randomly select 𝑃𝑜𝑝𝑟1

, 𝑃𝑜𝑝𝑟2
 and 𝑃𝑜𝑝𝑟3

 such that 𝑟1 ≠ 𝑟2 ≠ 𝑟3 ≠ 𝑖

12 For each camera location 𝑗 in 𝑃𝑜𝑝𝑟1
 do

13 Select 𝑃𝑜𝑝𝑟2,𝑢𝑗
 and 𝑃𝑜𝑝𝑟3,𝑣𝑗

 according to similarity-based approach

14 Generate 𝑀𝑢𝑡𝑖,𝑗 by following Equation 12

15 End for
16 Generate a trial solution 𝑇𝑖 by solving the optimal camera placement

 subproblem where 𝐶 = 𝑃𝑜𝑝𝑖 ∪ 𝑀𝑢𝑡𝑖
17 Update 𝑃𝑜𝑝𝑖 and eventually 𝑆𝑏𝑒𝑠𝑡 if 𝑇𝑖 is better
18 Update 𝑐𝑛𝑡
19 End for
20 End while

For this experimental study, the three previous algorithms (CPLEX, Greedy, RWLS) have also been

used as crossover operators of the DE algorithms presented in Sections 3.2 and 3.3 (DEset and DEsim,

respectively).

CPLEX and RWLS algorithms are set up with a 10 seconds time limit. It means that either CPLEX can

solve the sub-problem within 10 seconds and returns the corresponding optimal solution, or CPLEX

returns a feasible solution that is not optimal. Regarding RWLS, it means that the algorithm always

runs 10 seconds and it returns the best solution found so far. On the contrary, no time limit is given

for the greedy algorithm, since it can not provide a feasible solution before it ends. Anyway, it never

needs more than 10 seconds to solve the full problem, even the largest instance (see Table 7). Thus

15

the greedy algorithm should not take longer than 10 seconds to solve the sub-problem when used as

a crossover operator.

Table 7: Results and statistics for CPLEX, Greedy and RWLS (best results are depicted in bold font).

CPLEX Greedy RWLS

Instance Solution Lower bound Gap Time Solution Time Mean Best STD

1 7 7.00 0.00% 1.11 9 0.01 7.00 7 0.00

2 4 4.00 0.00% 0.33 4 0.02 4.00 4 0.00

3 3 3.00 0.00% 5.30 4 0.13 3.00 3 0.00

4 5 5.00 0.00% 10.58 7 1.06 5.00 5 0.00

5 7 7.00 0.00% 330.94 11 2.74 7.03 7 0.18

6 16 732 0.00 100.00% - 15 6.22 10.53 10 0.51

9 21 17.02 18.97% 1 000.00 24 0.01 20.00 20 0.00

10 71 52.21 26.47% 1 000.09 83 0.11 67.77 67 0.63

11 17 032 0.00 100.00% 1 000.59 173 0.53 151.67 150 0.99

12 30 712 0.00 100.00% 1 000.15 299 1.75 270.63 267 1.69

13 48 392 0.00 100.00% 1 000.63 441 4.32 428.33 422 3.12

14 70 072 0.00 100.00% 1 001.14 641 9.16 626.80 619 3.91

From Table 5 and Table 6, DEset and DEsim need a random feasible solution generator: Table 8

shows the method used in this experimentation. In addition to that, the parameter settings of DEset

and DEsim are given in Table 9.

Table 8: Random feasible solution generation.

 Input : The set 𝐶 of possible camera locations.
The set 𝑃 of points to be covered.
∀𝑐 ∈ 𝐶, 𝑐𝑜𝑣(𝑐) = {𝑝 ∈ 𝑃: 𝑐 covers 𝑝}.

 Output : A set 𝑆 of camera locations that covers 𝑃, i.e. such that ⋃ 𝑐𝑜𝑣(𝑐) = 𝑃𝑐∈𝑆 .
1 𝑆 = ∅
2 While ⋃ 𝑐𝑜𝑣(𝑐) ≠ 𝑃𝑐∈𝑆 do
3 Randomly select an uncovered point 𝑝
4 Randomly select an unused camera location 𝑐 that covers 𝑝
5 𝑆 = 𝑆 ∪ {𝑐}
6 End while

Table 9: Parameter settings for DEset and DEsim.

Parameter DEset DEsim

Population size 20 20
Scaling factor 𝐹 1 0.6

Number 𝑔 of allowed
generations without

improvement

- 50

Probability 𝜌 for an individual to
be randomly regenerated

- 1

3

16

The results of the 6 proposed hybridizations are given in Table 10 and Table 11 (based on 30 runs per

instance for each algorithm).

Table 10: Results and statistics for DEset-CPLEX, DEset-Greedy and DEset-RWLS (best results are

depicted in bold font).

Deset-CPLEX DEset-Greedy DEset-RWLS

Instance Mean Best STD Mean Best STD Mean Best STD

1 7.00 7 0.00 7.00 7 0.00 7.00 7 0.00

2 4.00 4 0.00 4.00 4 0.00 4.00 4 0.00

3 3.00 3 0.00 3.00 3 0.00 3.00 3 0.00

4 5.00 5 0.00 5.27 5 0.45 5.03 5 0.18

5 7.93 7 0.25 8.53 8 0.51 8.00 8 0.00

6 11.03 11 0.18 13.17 12 0.46 11.70 11 0.47

9 20.47 20 0.51 23.70 22 0.70 21.33 21 0.48

10 76.50 74 1.22 97.93 93 1.68 75.53 74 0.68

11 183.63 179 3.08 212.73 208 2.16 172.40 170 1.48

12 566.80 558 5.24 371.77 365 2.81 326.53 317 2.66

13 876.00 864 6.18 571.60 564 3.66 518.07 510 2.74

14 1 247.33 1 226 8.35 818.83 812 3.59 748.30 737 3.46

Table 11: Results and statistics for DEsim-CPLEX, DEsim-Greedy and DEsim-RWLS (best results are

depicted in bold font).

DEsim-CPLEX DEsim-Greedy DEsim-RWLS

Instance Mean Best STD Mean Best STD Mean Best STD

1 7.00 7 0.00 7.10 7 0.31 7.00 7 0.00

2 4.00 4 0.00 4.00 4 0.00 4.00 4 0.00

3 3.00 3 0.00 3.00 3 0.00 3.00 3 0.00

4 5.00 5 0.00 5.27 5 0.45 5.00 5 0.00

5 7.53 7 0.51 7.83 7 0.46 8.00 8 0.00

6 10.97 10 0.18 11.77 11 0.43 11.93 11 0.25

9 21.07 21 0.25 24.30 23 0.88 21.27 21 0.45

10 70.97 70 0.67 99.43 97 1.91 73.60 72 0.97

11 152.13 149 1.41 230.07 217 6.78 163.87 159 2.43

12 268.27 262 4.47 413.00 408 2.24 318.23 293 10.98

13 424.47 414 5.36 638.70 629 5.10 532.80 520 5.48

14 612.33 600 6.59 912.30 902 5.07 790.70 772 6.50

From Table 7, one can see that CPLEX finds the optimal solution within the time limit for instances 1

to 5. For instance 6, no runtime is reported: CPLEX stops because it needs more RAM than available

on the computer. By default, the solution is thus set to the number of possible camera locations in

the reduced instance (taken from Table 2). Regarding the second group of instances (9 to 14), CPLEX

17

gets decent solutions only for instances 9 and 10. For instances 11 to 14, CPLEX provides no better

solution than the number of possible camera locations available in the reduced instance. These

results clearly show that CPLEX can not be used to solve large instances within the given time limit.

On the contrary, Greedy succeeds to find a solution for all instances. It is fast whatever the size of the

instance, but it gives poor results in comparison with RWLS, which beats Greedy and CPLEX on 11

instances.

From Table 10, DEset-CPLEX is slightly better than DEset-RWLS when solving instances 1 to 6 and

instance 9. However, when the size of the solutions increases (as in instances 10 to 14), DEset-RWLS

outperforms DEset-CPLEX. The main reason is that the XOR operation in Equation 11 is not so helpful

for the considered problem: the probability of having exactly the same camera location in 𝑃𝑜𝑝𝑟1
 and

𝑃𝑜𝑝𝑟2
 is very low, thus the XOR operation removes only a few camera locations. As a consequence, it

can not reduce the size of 𝑃𝑜𝑝𝑖 ∪ 𝑀𝑢𝑡𝑖, which means that the subproblem in the crossover is harder

to solve within the given time limit: CPLEX do not have enough time to find interesting solutions. On

the contrary, RWLS is faster and is able to reach better solutions for the subproblem, which leads to

the final better results of DEset-RWLS. Not surprisingly, DEset-Greedy can not compete with DEset-

RWLS. However, as it is fast compared to CPLEX, it outperforms DEset-CPLEX as soon as the size of

the solutions increases (instances 12 to 14).

From Table 11, DEsim-CPLEX clearly outperforms the other hybridizations. Compared to DEsim-

RWLS, the gap grows up to about 22.5% for instance 14 (according to the reported mean values). The

similarity-based approach allows to reduce the size of 𝑃𝑜𝑝𝑖 ∪ 𝑀𝑢𝑡𝑖, which makes the subproblem

easier to solve for CPLEX.

When comparing the results of Table 7 and Table 10, it can be observed that CPLEX clearly benefits

from the hybridization with DEset: obviously, the subproblem in the crossover is much smaller than

the full instance, and thus it is easier to solve. DEset-Greedy succeeds in improving the results of

Greedy for instances 1 to 6 and for instance 9, but it fails for the largest instances (10 to 14).

Regarding RWLS, no improvement is achieved by using DEset-RWLS.

When focusing on Table 10 and Table 11, it turns out that the DEsim-CPLEX hybridization benefits

most from the DEsim approach with more than 50% of improvement (with regard to DEset-CPLEX) on

the largest instances (12 to 14), and it is equivalent to or better than DEset-CPLEX for all instances

except instance 9. Moreover DEsim-CPLEX outperforms DEset-RWLS for all instances. In the

meantime, DEsim-Greedy gets not convincing results: it improves the results of DEset-Greedy for

instances 5 and 6, but it is worse regarding instances 1 and 9 to 14. It is the same for DEsim-RWLS,

which improves the results of DEset-RWLS for 5 instances (4 and 9 to 12) and fails for 3 other

instances (6, 13 and 14).

Now, from Table 7 and Table 11, DEsim-Greedy provides equivalent or better results compared to

Greedy for instances 1 to 6, but it is not successful for instances 9 to 14. Similar results are observed

for DEsim-RWLS against RWLS: the latter wins for instances 5 and 6 and for instances 9 to 14 while

the former is equivalent only for instances 1 to 4. However, DEsim-CPLEX is equivalent or competitive

with regard to RWLS for instances 1 to 6, and 9 to 11. And it is worth noting that DEsim-CPLEX

outperforms RWLS for the largest instances (12 to 14).

18

Finally, a global comparison between CPLEX, Greedy, RWLS, and their hybridizations with DEset and

DEsim, is presented in Table 12. In this table, statistical significance is tested using the Kruskal-Wallis

statistical test at 95% confidence level followed by Fisher's least significant difference post hoc test.

The results that are significantly better than the ones of the other algorithms, according to this

statistical test, are preceded with a star symbol. As one can see, RWLS obtains the best results for all

the considered small instances. However, DEsim-CPLEX achieves a similar performance for instances

1 to 4, instance 6, and instances 11 to 14, i.e. no significant difference is found between RWLS and

DEsim-CPLEX for these instances. It is especially interesting to notice that these two algorithms are

the only ones to obtain significantly better results than the others for instances 11 to 14, which are

the largest among the considered ones.

Table 12: Results for all tested algorithms (best results are depicted in bold font, and a star denotes

the results that are significantly better than the others according to the Kruskal-Wallis statistical test

at 95% confidence level followed by Fisher's least significant difference post hoc test).

 CPLEX Greedy RWLS
DEset-
CPLEX

DEset-
Greedy

DEset-
RWLS

DEsim-
CPLEX

DEsim-
Greedy

DEsim-
RWLS

Inst. Solution Solution Mean Mean Mean Mean Mean Mean Mean

1 * 7 9 * 7.00 * 7.00 * 7.00 * 7.00 * 7.00 * 7.10 * 7.00

2 * 4 * 4 * 4.00 * 4.00 * 4.00 * 4.00 * 4.00 * 4.00 * 4.00

3 * 3 4 * 3.00 * 3.00 * 3.00 * 3.00 * 3.00 * 3.00 * 3.00

4 * 5 7 * 5.00 * 5.00 5.27 * 5.03 * 5.00 5.27 * 5.00

5 * 7 11 * 7.03 7.93 8.53 8.00 7.53 7.83 8.00

6 16 732 15 * 10.53 * 11.03 13.17 11.70 * 10.97 11.77 11.93

9 21 24 * 20.00 * 20.47 23.70 21.33 21.07 24.30 21.27

10 71 83 * 67.77 76.50 97.93 75.53 70.97 99.43 73.60

11 17 032 173 * 151.67 183.63 212.73 172.40 * 152.13 230.07 163.87

12 30 712 299 * 270.63 566.80 371.77 326.53 * 268.27 413.00 318.23

13 48 392 441 * 428.33 876.00 571.60 518.07 * 424.47 638.70 532.80

14 70 072 641 * 626.80 1 247.33 818.83 748.30 * 612.33 912.30 790.70

This first experimentation points out that RWLS is the best algorithm for solving the considered

instances. Moreover, DEsim-CPLEX is the best proposed hybridization. It seems also competitive with

RWLS when the size of the problem increases, and the next section is devoted to a more detailed

comparison of these two algorithms.

3.4.2 Comparison of RWLS and DEsim-CPLEX

A second experimental study has been performed by solving the largest problem instances (7 to 8,

and 15 to 18) with RWLS and DEsim-CPLEX. This setting allows to compare these algorithms on the

whole set of problem instances defined in Tables 1 and 2. For these additional experimentations, the

runtime limit depends on the size of the problem instance in the following way. The considered large

instances have been solved first by using Greedy (results are reported in Table 13), then it is decided

that 100 × ⌈𝑡𝑖⌉ seconds are allowed for each run, where 𝑡𝑖 refers to the runtime of Greedy when

solving instance 𝑖. This setting is similar to the one observed for instance 14 in Section 3.4.1 (i.e. 9.16

seconds for Greedy, and a time limit of 1 000 seconds). Regarding DEsim-CPLEX, the time limit for the

crossover is set to ⌈𝑡𝑖⌉, which is also similar to the setting defined in Section 3.4.1 (where 10 seconds

19

are allowed for the crossover, i.e. 1% of the allowed total runtime). The results of RWLS and DEsim-

CPLEX are given in Table 13 (based on 30 runs per instance for each algorithm). In Table 13, results

for instance 1 to 6 and 9 to 14 are taken from Table 7 and Table 11.

Table 13: Results for Greedy, RWLS and DEsim-CPLEX (best results are depicted in bold font, and a

star denotes which algorithm, between DEsim-CPLEX and RWLS, significantly outperforms the other

according to the Wilcoxon-Mann-Whitney statistical test at 95% confidence level).

Greedy RWLS DEsim-CPLEX

Instance Solution Time Mean Best STD Mean Best STD Gap (%)

1 9 0.01 * 7.00 7 0.00 * 7.00 7 0.00 0.00

2 4 0.02 * 4.00 4 0.00 * 4.00 4 0.00 0.00

3 4 0.13 * 3.00 3 0.00 * 3.00 3 0.00 0.00

4 7 1.06 * 5.00 5 0.00 * 5.00 5 0.00 0.00

5 11 2.74 * 7.03 7 0.18 7.53 7 0.51 7.11

6 15 6.22 * 10.53 10 0.51 10.97 10 0.18 4.11

7 25 18.40 * 18.07 17 0.45 19.50 19 0.51 7.93

8 38 46.21 * 28.69 28 0.65 30.80 30 0.41 7.32

9 24 0.01 * 20.00 20 0.00 21.07 21 0.25 5.33

10 83 0.11 * 67.77 67 0.63 70.97 70 0.67 4.72

11 173 0.53 * 151.67 150 0.99 * 152.13 149 1.41 0.31

12 299 1.75 270.63 267 1.69 * 268.27 262 4.47 -0.87

13 441 4.32 428.33 422 3.12 * 424.47 414 5.36 -0.90

14 641 9.16 626.80 619 3.91 * 612.33 600 6.59 -2.31
15 1 139 30.56 1 108.70 1 095 6.79 * 1 061.93 1 043 7.60 -4.22
16 1 748 75.16 1 723.33 1 710 7.83 * 1 621.27 1 601 13.57 -5.92
17 2 498 156.44 2 482.93 2 468 8.16 * 2 299.47 2 277 12.26 -7.39
18 3 415 290.31 3 393.50 3 352 20.62 * 3 127.67 3 104 19.48 -7.83

The mean values in Table 13 show that both algorithms are equivalent for the smallest instances of

the first class (1 to 4). Moreover, RWLS performs better for the largest instances of the first class (5

to 8) and for the smallest instances of the second class (9 to 11). However, DEsim-CPLEX wins for the

7 largest instances of the second class (12 to 18) and the percentage gap increases with the size of

the problem instance (see last column of Table 13, and Figure 4).

In addition to that, the Wilcoxon-Mann-Whitney statistical test is used, at 95% confidence level, to

determine which algorithm, between DEsim-CPLEX and RWLS, obtains significantly better results

than the other. In Table 13, for each instance, the result obtained by the best performing algorithm is

preceded with a star symbol. If the results of both algorithms are preceded with a star, then no

significant difference is found for the corresponding instance. One can see that RWLS significantly

outperforms DEsim-CPLEX for instances 5 to 10. However, for the largest instances 12 to 18, the

opposite situation occurs, i.e. DEsim-CPLEX significantly outperforms RWLS, which confirms the

above analysis of the reported mean values.

From this second experimentation, it can be concluded that RWLS is best suited when an operational

need of 100 pixels per meter is needed (instances 1 to 8), whereas DEsim-CPLEX is best suited for

20

large problems with an operational need of 500 pixels per meter (instances 9 to 18). In term of USCP,

DEsim-CPLEX seems more appropriate when the zero-one input matrix (see Section 2.3 and Table 2)

is sparser and when the number of ones per row is lower. But this observation can not extend to

general USCP benchmark problems, since the DEsim approach uses a context-dependent information

of the given sets (i.e. the similarity between the camera locations), which is not available in case of

general USCP.

Figure 4: Evolution of the gap percentage between DEsim-CPLEX and RWLS for instances 9 to18.

4 Conclusion
This paper deals with the optimal camera placement problem with the constraint that a full three-

dimensional coverage of the monitored area is needed.

After explaining in detail the problem modelling, this optimization problem is stated as a unicost set

covering problem (USCP). Then, 18 instances inspired by real-world applications are provided in

order to investigate the efficiency of the proposed algorithms.

The aim of this work is to estimate the benefit of the differential evolution (DE) paradigm in the

context of this combinatorial optimization problem. A selection of 3 state-of-the-art algorithms

(CPLEX, Greedy and RWLS) is presented, and 2 differential evolution approaches (DEset and DEsim)

are proposed for the purpose of hybridization. The main contribution consists in the design of DEsim,

which is a simple similarity-based approach that allows to make sense of the DE mutation scheme for

the considered optimization problem.

An experimental study has been performed in order to compare all these algorithms when solving

the considered instances. The reported results show that RWLS and DEsim-CPLEX are the most

interesting. Each of them can find better results on different class of problem instances, depending

on the operational need and, thus also, on the nature of the input visibility matrix.

-10

-5

0

5

9 10 11 12 13 14 15 16 17 18

Gap (%)

Instance

21

A first perspective is to achieve a comprehensive study of the influence of the algorithm parameters.

For example, regarding the DEset approach, the impact of the scaling factor strategies from the

literature (Prado et al., 2010) can be determined. Then, the DEsim can be certainly fine-tuned by

testing a large set of values for 𝐹, 𝑔 and 𝜌. And for both approaches, other stopping conditions can

be proposed when using RWLS in the crossover operator. It can also be considered to add self-

adaptive techniques so that the proposed algorithms will be less user-dependent and will potentially

give better results. Since the similarity-based DE approach takes advantage of the real nature of the

sets (camera locations, here), another perspective would be to examine to what extent it can help to

improve the solution quality in other real-world applications that can be stated as USCP. In future

work, it can also be planned to try other hybridizations by considering other exact methods or local

search heuristics when solving the subproblem given in the crossover operator: it will be interesting

to determine which method is the most appropriate for such an hybridization. Another direction

would be to consider different coverage models from the literature (Mavrinac and Chen, 2013) in

order to investigate the efficiency of the proposed methods for other practical applications, such as

inspection or measurement of industrial products.

Notes
[1] http://www.mage.fst.uha.fr/brevilliers/data/

References
Axis (2017), “Pixel density”, available at:

https://www.axis.com/us/en/learning/web-articles/perfect-pixel-count/pixel-density

(accessed 8 September 2017).

Beasley, J.E. (1990), “OR-Library: Distributing Test Problems by Electronic Mail”, Journal of the

Operational Research Society, Vol. 41 No. 11, pp. 1069-1072.

Chi, Z., Xuan, J., Ren, Z., Xie, X. and Guo H. (2017), “Multi-Level Random Walk for Software Test Suite

Reduction”, IEEE Computational Intelligence Magazine, Vol. 12 No. 2, pp. 24-33.

Chrysostomou, D. and Gasteratos, A. (2012), “Optimum multi-camera arrangement using a bee

colony algorithm”, in 2012 IEEE International Conference on Imaging Systems and Techniques,

Manchester, UK, 16-17 July 2012, IEEE, pp. 387-392.

Chvatal, V. (1979), “A Greedy Heuristic for the Set-Covering Problem”, Mathematics of Operations

Research, Vol. 4 No. 3, pp. 233-235.

Das, S., Mullick, S.S. and Suganthan, P.N. (2016), “Recent Advances in Differential Evolution – An

Updated Survey”, Swarm and Evolutionary Computation, Vol. 27, pp. 1-30.

David, P., Idasiak, V. and Kratz F. (2007), “A Sensor Placement Approach for the Monitoring of Indoor

Scenes”, in Kortuem, G., Finney, J., Lea, R. and Sundramoorthy V. (Eds), European Conference on

Smart Sensing and Context (EuroSSC 2007), Kendal, England, 23-25 Oct. 2007, Springer, Berlin, pp.

110-125.

http://www.mage.fst.uha.fr/brevilliers/data/
https://www.axis.com/us/en/learning/web-articles/perfect-pixel-count/pixel-density

22

Demirović, E., Le Calvar, T., Musliu, N. and Inoue, K. (2016), “An Exact Algorithm for Unicost Set

Covering”, paper presented at the Doctoral Program of the 22nd International Conference on the

Principles and Practice of Constraint Programming (CP 2016), 5-9 September 2016, Toulouse, France,

available at:

https://www.dbai.tuwien.ac.at/user/demir/papers/An%20Exact%20Algorithm%20for%20Unicost%2

0Set%20Covering.pdf

(accessed 12 September 2017).

Ercan, A.O., Yang, D.B., El Gamal A. and Guibas L.J. (2006), “Optimal Placement and Selection of

Camera Network Nodes for Target Localization”, in Gibbons, P.B., Abdelzaher, T., Aspnes J. and Rao

R. (Eds), International Conference on Distributed Computing in Sensor System (DCOSS 2006), San

Francisco, CA, USA, 18-20 June 2006, Springer, Berlin.

Fulkerson, D.R., Nemhauser, G.L. and Trotter, L.E. (1974), “Two Computationally Difficult Set

Covering Problems that Arise in Computing the 1-width of Incidence Matrices of Steiner Triple

Systems”, in Balinski, M.L. (Ed.), Approaches to Integer Programming, Springer, Berlin, Heidelberg,

pp. 72-81.

Gao, C., Yao, X., Weise, T. and Li, J. (2015), “An Efficient Local Search Heuristic with Row Weighting

for the Unicost Set Covering Problem”, European Journal of Operational Research, Vol. 246 No. 3, pp.

750-761.

Gordon, C.L., Blackwell, C.L., Bradtmiller, B., Parham, J.L., Barrientos, P., Paquette, S.P., Corner, B.D.,

Carson, J.M., Venezia, J.C., Rockwell, B.M., Mucher, M. and Kristensen, S. (2014), “2012

Anthropometric Survey of U.S. Army Personnel: Methods and Summary Statistics”, Technical Report,

NATICK/TR-15/007, U.S. Army Natick Soldier Research, Development and Engineering Center, Natick,

MA, USA.

Horster, E. and Lienhart, R. (2009), “Optimal Placement of Multiple Visual Sensors”, in Aghajan, H.

and Cavallaro, A. (Ed.), Multi-Camera Networks: Principles and Applications, Elsevier, pp. 117-138.

Huang, P. and Wang Y. (2008), “The Impact of Changing Resolutions on Face Recognition”, 2008

International Workshop on Education Technology and Training & 2008 International Workshop on

Geoscience and Remote Sensing, Shanghai, China, 21-22 Dec. 2008, IEEE, pp. 622-625.

IBM (2017a), “CPLEX Optimizer”, available at:

 https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

(accessed 12 September 2017).

IBM (2017b), “global thread count”, available at:

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.cplex.help/CPLEX/Param

eters/topics/Threads.html

(accessed 12 September 2017).

Johnson, D.S. (1974), “Approximations Algorithms for Combinatorial Problems”, Journal of Computer

and System Sciences, Vol. 9 No. 3, pp. 256-278.

https://www.dbai.tuwien.ac.at/user/demir/papers/An%20Exact%20Algorithm%20for%20Unicost%20Set%20Covering.pdf
https://www.dbai.tuwien.ac.at/user/demir/papers/An%20Exact%20Algorithm%20for%20Unicost%20Set%20Covering.pdf
https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.cplex.help/CPLEX/Parameters/topics/Threads.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.odms.cplex.help/CPLEX/Parameters/topics/Threads.html

23

Konda, K.R. and Conci, N. (2013), “Global and local coverage maximization in multi-camera networks

by stochastic optimization”, Infocommunications Journal, Vol. 5 No. 1, pp. 1-8.

Liang, Y., Li, C.T., Guan, Y. and Hu, Y. (2016), “Gait Recognition Based on the Golden Ratio”, EURASIP

Journal on Image and Video Processing, 2016:22.

Liu, J., Sridharan, S. and Fookes, C. (2016), “Recent Advances in Camera Planning for Large Area

Surveillance: A Comprehensive Review”, ACM Computing Surveys (CSUR), Vol. 49 No. 1.

Liu, J., Sridharan, S., Fookes, C. and Wark T. (2014), “Optimal Camera Planning Under Versatile User

Constraints in Multi-Camera Image Processing Systems”, IEEE Transactions on Image Processing,

Vol. 23 No. 1, pp. 171-184.

Mahmood, Z., Ali, T. and Khan, S.U. (2016), “Effects of Pose and Image Resolution on Automatic Face

Recognition”, IET Biometrics, Vol. 5 No. 2, pp. 111-119.

Maravilha, A.L., Ramirez, J.A. and Campelo, F. (2013), “A New Algorithm Based on Differential

Evolution for Combinatorial Optimization”, in 2013 BRICS Congress on Computational Intelligence

and 11th Brazilian Congress on Computational Intelligence (BRICS-CCI & CBIC), Ipojuca, Brazil, 8-11

Sept. 2013, IEEE.

Maravilha, A.L., Ramirez, J.A. and Campelo, F. (2014), “Combinatorial optimization with differential

evolution: a set-based approach”, in Proceedings of the Companion Publication of the 2014 Annual

Conference on Genetic and Evolutionary Computation (GECCO Comp ’14),Vancouver, BC, Canada, 12-

16 July 2014.

Marciniak, T., Chmielewska, A., Weychan, R., Parzych, M. and Dabrowski, A. (2015), “Influence of Low

Resolution of Images on Reliability of Face Detection and Recognition”, Multimedia Tools and

Applications, Vol. 74 No. 12, pp 4329-4349.

Mavrinac, A. and Chen, X. (2013), “Modeling Coverage in Camera Networks: A Survey”, International

Journal of Computer Vision, Vol. 101 No. 1, pp. 205-226.

Miyazaki, N., Tsuji, K., Zheng, M., Nakashima, M., Matsuda, Y. and Segawa, E. (2015), “Privacy-

conscious human detection using low-resolution video”, 3rd IAPR Asian Conference on Pattern

Recognition (ACPR), Kuala Lumpur, Malaysia, 3-6 Nov. 2015, IEEE, pp. 326-330.

Morsly, Y., Aouf, N., Djouadi, M.S. and Richardson, M. (2012), “Particle Swarm Optimization Inspired

Probability Algorithm for Optimal Camera Network Placement”, IEEE Sensors Journal, Vol. 12 No. 5,

pp. 1402-1412.

Prado, R.S., Silva, R.C.P., Guimarães, F.G. and Neto, O.M. (2010), “Using Differential Evolution for

Combinatorial Optimization: A General Approach”, 2010 IEEE International Conference on Systems

Man and Cybernetics (SMC), Istanbul, Turkey, 10-13 Oct. 2010, IEEE.

Rebai, M., Le Berre, M., Hnaien, F. and Snoussi, H. (2016), “Exact Biobjective Optimization Methods

for Camera Coverage Problem in Three-Dimensional Areas”, IEEE Sensors Journal, Vol. 16 No. 9,

pp. 3323-3331.

24

Ryerkerk, M.L., Averill, R.C., Deb, K. and Goodman, E.D. (2017), “Solving Metameric Variable-Length

Optimization Problems Using Genetic Algorithms”, Genetic Programming and Evolvable Machines,

Vol. 18 No. 2, pp. 247-277.

Storn, R. and Price, K. (1997), “Differential Evolution – A Simple and Efficient Heuristic for global

Optimization over Continuous Spaces”, Journal of Global Optimization, Vol. 11 No. 4, pp. 341-359.

Talbi, E.G. (2002), “A Taxonomy of Hybrid Metaheuristics”, Journal of Heuristics, Vol. 8 No. 5, pp. 541-

564.

Van den Hengel, A., Hill, R., Ward, B., Cichovski, A, Detmold, H., Madden, C., Dick, A. and Bastian, J.

(2009), “Automatic camera placement for large scale surveillance networks”, in 2009 Workshop on

Applications of Computer Vision (WACV), Snowbird, UT, USA, 7-8 Dec. 2009, IEEE.

Yelbay, B., Birbil S.I. and Bülbül, K. (2015), “The Set Covering Problem Revisited: An Empirical Study of

the Value of Dual Information”, Journal of Industrial and Management Optimization, Vol. 11 No. 2,

pp. 575-594.

Zhang, B., Zhang, X., Chen, X. and Fang , Y. (2016), “A differential evolution approach for coverage

optimization of visual sensor networks with parallel occlusion detection”, in 2016 IEEE International

Conference on Advanced Intelligent Mechatronics (AIM), Banff, AB, Canada, 12-15 July 2016,

pp. 1246-1251.

Zhang, H., Xia, L., Wang, P., Cui, J., Tang, C., Deng, N. and Ma, N. (2013) “An Optimized Placement

Algorithm for Collaborative Information Processing at a Wireless Camera Network”, 2013 IEEE

International Conference on Multimedia and Expo (ICME), San Jose, CA, USA, 15-19 July 2013, IEEE,

pp. 1-6.

Zhang, J., Pu, J., Chen, C. and Fleischer, R. (2010), “Low-Resolution Gait Recognition”, IEEE

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 40 No. 4, pp. 986-996.

Zhang, X., Chen, X., Alarcon-Herrera, J.L. and Fang, Y. (2015), “3-D Model-Based Multi-Camera

Deployment: A Recursive Convex Optimization Approach”, IEEE/ASME Transactions on Mechatronics,

Vol. 20 No. 6, pp 3157-3169.

Zhao, J. (2011), “Camera Planning and Fusion in a Heterogeneous Camera Network”, Unpublished

Manuscript, Ph.D. dissertation, University of Kentucky, USA.

Zhuang, Z., Landsittel, D., Benson, S., Roberge, R. and Shaffer, R. (2010), “Facial Anthropometric

Differences among Gender, Ethnicity, and Age Groups”, The Annals of Occupational Hygiene, Vol. 54

No. 4, pp. 391-402.

