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Chapter 1

Introduction

Engineers and decision makers are daily confronted with problems that can be

involved in several technical fields such as image processing, chemistry, biology

and mechanics. Often, these problems can be modeled as optimization problems:

an objective function is defined to be maximized or minimized with the respect of a

set of decision variables. According to [9], optimization problems can be classified

as: combinatorial, continuous, mono-objective, multi-objective, static, dynamic,

with or without constraints.

Indeed, several algorithms have been proposed to solve optimization problems

in the last decades such as exact optimization methods [94], where optimal so-

lutions are guaranteed to be found. Several exact methods have been proposed

as the dynamic programming, branch and bound algorithm and constraint pro-

gramming. Unfortunately, due to the high computational time, these methods are

only effective when small instances of optimization problems are handled [94]. For
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this reason, metaheuristics have been introduced to provide near optimal solutions

within a reasonable time. Indeed, they can be defined as approximated solution

methods which insure interaction between local and global procedure improvement

to escape local optima. Thanks to their simple implementation, metaheuristics can

be easily adopted to a wide range of optimization problems. They can be classified

into two categories.

• Population-based metaheuristics, that start the search with an initial set of

solutions. Then, the set is evolved using an ensemble of search operators. As

examples of population-based metaheuristics, we can cite Genetic algorithms

(GA) [32], particle swarm optimization (PSO) [43], differential evolution

(DE) [78].

• Single-solution-based metaheuristics which start with only one solution. Then,

the solution is evolved by introducing the concept of neighborhood, that is

the algorithm chooses one of the actual solution neighbors based on a prede-

fined selection criterion. Numerous proposals have been introduced within

this category such as tabu search (TS) [31] and simulated annealing (SA)

[45].

According to the no free lunch theorem, no metaheuristic is able to solve all

the existent problems to the optimality. However, researchers are paying their

attention to propose new optimization architectures in order to provide relatively

resilient algorithms. Following the current state-of-the-art metaheuristics, it can

be seen that designing new metaheuristics relies on three axes:
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1- Hybridization of two or more metaheuristics: hybridization can be an effec-

tive choice, because it allows to benefit from the advantages of sevral algorithms

[6]. Generally speaking, hybridization combines the algorithmic components of

two or more metaheuristics in order to balance exploration and exploitation ca-

pabilities of the combined metaheuristics. Several hybridization models have been

proposed as:

• Collaborative hybrids, where two or more metaheuristics are performed in

multi-stage, sequentially or in parallel. These algorithmic scenarios usually

starts with a metaheuristic favoring exploration. Then, the solutions are

provided to an exploitative metaheuristic to improve them using local search

procedures.

Figure 1.1: Collaborative framework of hybrid algorithm, depicting multi-stage,
sequential, and parallel structures [85]

• Integrative hybridization, where a search operator is integrated in a meta-

heuristic to enhance its capability.

2- Adaptation/tuning of metaheuristic parameters: the parameter values of a

given algorithm can have a great influence on the final results [10]. Sometimes,

fixed values tend to be ineffective due to the complex landscapes of optimization

3



Figure 1.2: Integrative structure of a hybrid algorithm[85]

problems. Several proposals have been introduced to tune optimization algorithms

such as iRace software [5], or to auto-adapt them for each iteration based on their

successful history [10]. We are interested in new self-adaptation strategies where a

given algorithm try to find by itself parameter values that are as much as possible

appropriate to the considered problem.

3- The integration of learning approaches: the integration of machine learning

techniques into existing algorithms has become a very important area of research.

Indeed, several algorithms have exploited these techniques on different contexts,

such as improving the initial solutions quality, incorporating historical search ex-

perience, classifying the current solutions and the intelligent choice between the

search operators [101]. In addition, many problems are very expensive to solve (in

terms of computational time) because of the complexity of the objective function.

However, it is possible to reduce the computational time by using surrogate models

instead of systematically using the objective function.

Following these considerations may increase the computational time. More-
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over, the complexity and the high dimensionality of optimization problems can

be a serious burden when evaluating solutions. In the attempt to remediate these

issues, new hardware/software technologies have been proposed to reduce the com-

putational time:

• Distributed algorithms, where independent tasks are synchronously/asynchronously

performed within different machines or different interconnected processors

(cluster). Indeed, distributed algorithms can be implemented using different

technologies. For instance, Message passing interface (MPI), which is an in-

terface that insures communication between nodes (machines or processors)

and manages the computation specified for each node.

• Massively parallel algorithms, where the algorithms are fully/partially im-

plemented using graphics processing units (GPU). The tasks of parallel algo-

rithms can be executed within kernels, which represent parallel computation

routines. Afterwards, the kernels are launched in order by CPU. Thanks to

the cheap cost and the simple interfaces of GPUs, it has become relatively

straight-forward to implement parallel metaheuristics. GPUs frameworks

are single instruction/multiple data architectures, which is appropriate in

the context of metaheuristics. They can leverage efficiently large instances

of optimization problems (parallel evaluation of solutions). Besides, search

operators of algorithms can be easily handled in parallel thanks to their

general independent nature.

This thesis mainly focuses on proposing new algorithms that rely on the three

axes mentioned above. Besides, a parallel counterpart is provided when a serious
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computational time is noticed. Our proposals are applied on a proposed engineer-

ing problem. In order to validate the results of the proposed algorithms, different

real-world applications from the literature are optimized

Chapter 2 is devoted to survey several state-of-the-art of optimization algo-

rithms in the context of continuous optimization. First, well-known metaheuris-

tics are covered, such as cuckoo search and differential evolution. Secondly, dif-

ferent hybridization and parallelization models are presented. Finally, a set of

self-adaptive differential evolution proposals are discussed to show the advantage

of parameter adaptation strategies.

Chapter 3 defines the test suites and the engineering problem used in the

experimentation. Moreover, a technical definition of the engineering problem is

given to show its advantage as a real-world application.

Chapter 4 represents the contribution of this thesis by by proposing five algo-

rithms. Each algorithm is explained in detail revealing its performance compared

to recent state-of-the-art algorithms, where statistical tests are performed to show

the significance superiority of our proposals compared to several powerful opti-

mization algorithms, which are surveyed in chapter 3. Finally, a comparison of

some proposals is conducted.

Chapter 5 concludes the thesis showing how the proposals are relevant to its

main axes. Besides, an ensemble of potential perspectives are given to show the

possible extensions of this thesis.
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Chapter 2

Related Work

Metaheuristics are solution methods that ensure an interaction between local im-

provement procedure (local search) and high level strategies (global search). This

interact on allows to escape from the local optima and achieves a certain bal-

ance between exploration and exploitation. These approaches transit from one

solution/one population to another by applying a set of search operators and a

predefined selection criterion.

2.1 State-of-the-art of metaheuristics

Generally speaking, metaheuristics are not able to guarantee the optimality of

the final solutions compared to the exact methods. However, an appropriate ad-

justment of their algorithmic components can achieve satisfying results for a wide

range of problems.

In the following subsections, several metaheuristics are explained.
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2.1.1 Differential evolution

Differential evolution (DE) is a population-based metaheuristic which starts the

search process with random initial solutions (population). Then, solutions are

evolved using three search operators: mutation, crossover, selection. These search

operators are applied until a termination criterion is met. DE phases can be

organized as follows:

1. Initialization: mutation parameter F , crossover parameter CR, the popula-

tion size PS, the problem dimension D, and the number of generations Gmax

are initialized. The initial individuals are randomly initialized.

2. Mutation: for each solution xGi in the parent population, a mutant vector

vG+1
i is computed as follows:

vG+1
i = xGr1 + F.(xGr2 − xGr3) (2.1)

where r1, r2 and r3 are distinct randomly generated integers within the

range [1, PS] and different from the index i.

3. Binomial crossover: for each individual xGi , a trial vector uG+1
i is generated

as follows:

uG+1
i =

 vG+1
i,j if j = σj or Rj < CR

xGi,j otherwise
(2.2)

where σj is a random integer generated within the range [1,D], and Rj is

randomly generated number within the range [0,1].

8



4. Evaluation: The trial vector is evaluated and replaces the parent individual

if it has a lower fitness (minimization).

5. G is incremented and phases 2 to 5 are repeated while G is less than Gmax.

It should be stated that different mutation and crossover strategies have been

proposed to improve DE performance.

1- Mutation: several mutation strategies have been proposed for DE, and the

most popular among them are listed below:

DE/rand/2 [70]:

vG+1
i = xGr1 + F .(xGr2-x

G
r3 ) + F .(xGr4-x

G
r5 )

DE/best/2 [77]:

vG+1
i = xGbest + F .(xGr1-x

G
r2 )+ F .(xGr3-x

G
r4 )

DE/current-to-best/1 [77]:

vG+1
i = xGi + F .(xGbest-x

G
i )+ F .(xGr1-x

G
r2 )

DE/current-to-best/2 [70]:

vG+1
i = xGbest + F .(xGbest-x

G
i ) + F .(xGr1-x

G
r2+x

G
r3-x

G
r4 )

where xGbest is the best individual in the population at generation G and r1,r2,r3

and r4 are randomly generated numbers within the discrete range [1,PS]

2- Besides to the binomial crossover, several crossover operators have been pro-

posed such as:
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• Exponential crossover [105]: First, a randomly generated integer n is gener-

ated among [1, D]. n represents the starting point where the crossover or

exchange of components with the donor vector starts. Another randomly

integer L from the numbers in [1, D] is also generated. L represents the

number of components the donor vector contributes to the target vector.

The exponential crossover is depicted as follows:

uG+1
i =

 vG+1
i,j if j = n, j = n+ 1, j = n+ 2, ..., j = n+ L− 1

xGi,j otherwise
(2.3)

• The arithmetic recombination [69]: the trial vector can be produced as a

combination of the target vector and a donor vector as follows:

uG+1
i = xGi + ki,j(v

G
i − xGi ) (2.4)

where ki,j is a scalar combination coefficient generated between [0,1].

The algorithmic structure of DE is depicted in Algorithm 1

2.1.2 Cuckoo search

Cuckoo Search (CS) is a population based metaheuristic designed to solve contin-

uous optimization problems. CS is inspired by the brood parasitism behaviour of

cuckoo birds [96], where the three following rules are used:

• Each cuckoo lays one egg at a time, and leaves its egg in randomly chosen

nest.
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Algorithm 1 Pseudo-code of DE.

1: Generate initial population pop of PS individuals
2: while stopping criterion is not met do
3: popold ← pop
4: for Each individual i in the population do
5: Generate a mutated vector Vi /*mutation step*/
6: Generate a trial vector Ui using Vi and popoldi /*crossover step*/
7: if f(popoldi) > f(Ui) then
8: popi ← Ui
9: end if
10: end for
11: end while

• The best nests with high quality of eggs will be kept to the next generations.

• The number of available host nests is fixed, and the egg laid by a cuckoo is

discovered by the host bird with a probability p ∈ [0, 1]. If the host bird

discovers the strange egg, it throws the egg away or it abandons the nest and

builds completely new one.

Based on these three rules, the basic steps of CS are summarized in Algorithm 2.

In CS, a balanced combination of local random walk and a global random walk is

obtained through a switching parameter Pa. The local random walk is written as:

xt+1
i = xti + s⊕H ∗ (Pa− ε)⊕ (xtj − xtk) (2.5)

where xtj, x
t
k are solutions randomly selected and H is heaviside function. ε and s

are random numbers generated from a uniform distribution. The global random
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Algorithm 2 Pseudocode of the Cuckoo Search (CS).

1: Generate initial population of n host nests xi (i=1,2, ..., n)
2: while (t < MaxGeneration) or (stopping criterion is not met) do
3: Get a cuckoo randomly by Lévy flights
4: Evaluate its fitness Fi
5: Choose a nest among n (say,j) randomly
6: if Fi > Fj then
7: Replace j by the new solution
8: end if
9: A fraction Pa of worse nests are abandoned and new ones are built
10: Keep the best solutions
11: Rank the solutions and find the current best solution
12: end while

walk is handled using Levy flights as follows:

xt+1
i = xti + α⊕ levy(λ) (2.6)

where

α = α0 ⊕ (xtj − xti) (2.7)

levy(λ) =
u

|v|
1

α

(2.8)

α0 is a step size scaling factor and α is levy Flight exponent. Finally, u and v are

two predefined numbers with zero means and associated variance.

CS has shown to be competitive ahead well-known metaheuristics such GA

and PSO [96]. Besides, CS has been exploited to optimize several combinatorial
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problems such as in [47, 61, 65]

2.1.3 CMA-ES

The Covariance Matrix Adaptation Evolution Strategy (CMAES) is a an evolu-

tionary algorithm where a new population is produced by sampling from a proba-

bility distribution constructed during the search process [37]. CMAES is explained

in Algorithm 3. In CMAES, solutions are generated using a multivariate normal

Algorithm 3 Pseudocode of CMAES.

1: λ ← number of samples per iteration
2: µ ← number of recombination points
3: Initialize state variables m, σ, C = I, pσ = 0, pc = 0
4: while Stopping criterion is not met do
5: for i=1 to λ do
6: xt+1

i ← sample ith solution according to (2.9)
7: fi ← evaluate ith solution
8: end for
9: Sort the new solutions and find the first µ solutions
10: mt+1 ← update the mean value according to (2.10)
11: pt+1

c ← update anisotropic evolution path according to (2.12)
12: Ct+1 ← update the covariance matrix according to (2.13)
13: pt+1

σ ← update isotropic evolution path according to (2.14)
14: σt+1 ← update the step size using isotropic path length according to (2.15)
15: end while

distribution N with mean m and a covariance C. A new solution xt+1 is generated

as follows:

xt+1 = mt + σtN(0, Ct) (2.9)

13



mt =

µ∑
i=1

wix
t
i:λ (2.10)

wi = log(µ+ 1/2)− log(i),

µ∑
i=1

wi = 1 (2.11)

where mt is the weighted mean of the µ best solutions, xti:λ is the tth ranked

individual, λ is the number of samples, σt is the step size parameter. Besides, a

covariance matrix Ct is adapted using an evolution path pt+1
c . It is generated with

the following equation:

pct+ 1 = (1− cc)ptc +
√
cc(2− cc)

√
µ

σt
(mt+1 −mt) (2.12)

Ct+1 = (1− ccov)Ct + ccovp
t+1
c (pt+1

c )T (2.13)

where cc and ccov ∈ [0, 1] are learning rates for pt+1
c and Ct+1 respectively. The

step size parameter is updated using the evolution path pt+1
σ as follows:

pt+1
σ = (1− cσ)ptσ +

√
cσ(2− cσ)

√
µBtmt+1 (2.14)

where cσ is a learning rate controller, and Bt is the normalized eigenvectors of Ct.

Then, σt+1 is updated as follows:

σt+1 = σtexp(
||pt+1

σ || − Tn
dσTn

) (2.15)
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Tn =
√
n(1− 1

4n
+

1

21n2
) (2.16)

where n represents the problem dimension and dσ > 1 is a damping parameter.

2.1.4 Hybrid metaheuristics for continuous optimization

Hybrid metaheuristics are considered as one of the major contributions in the

field of optimization. According to [6], the main objective of hybridization is

to exploit the complementary aspect of metaheuristics. However, choosing the

best synergy is the key to attain the best results, which is not a straight-forward

task. Indeed, finding the best combination of algorithmic components requires

optimization expertises. Moreover, since the hybridization itself is an optimization

algorithm, it can not be guaranteed to solve all the optimization problems. In other

words, one hybridization design can be successful for one problem and can work

poorly for another. Even though, several hybridization models have shown to be

effective in tackling a wide range of applications. It should be stated that there

are hundreds of similar hybridizations proposed in the literature. However, in this

subsection, we only cover some works in the hope to give the reader a general

idea about the designs proposed so far. [6] Generally speaking, population-based

hybridization models are frequently used. Population-based hybridization methods

apply an explorative population based on a global search procedure to identify the

promising regions of the search space. Then, a local search procedure is performed

to quickly obtain better solutions. However, there are other prominent examples

which will be illustrated in this sub-section.
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A real-world application called digital filter design problem has been optimized

by a hybrid algorithm based on DE and CMA-ES [89]. On the one hand, DE per-

forms the global exploration and optimizes the parameters of exponential functions

that define the bounded search space. On the other hand, CMA-ES is used as a

local search engine. Its initial search point and boundary constraint estimates are

provided by DE. Additionally, periodic feedback from CMA-ES is provided to the

DE. The goal of the algorithm is to optimize the finite impulse response (FIR)

filter coefficients which minimizes the error between the actual and the ideal filter

frequency response.

In the same context, a different hybridization has been introduced between

an adaptive version of DE and CMAES [63]. The hybridization called LSHADE-

SPACMA, where a modified version of CMAES undergoes the crossover opera-

tion to improve the exploration capability of DE. The performance of LSHADE-

SPACMA has been investigated on CEC 2017 test suite comparing the hybridiza-

tion to CMAES and LSHADE.

A hybrid CMAES/CS algorithm has been proposed in [103]. It has been stated

that the self adaptive mutation distribution and the cumulative path of CMAES

can ultimately speed up the convergence rate of CS. Comparative experiments

using the CEC 2008 test suite and one engineering problem of CEC 2011 has been

performed. The results reveal the advantage of the hybridization compared to CS

and CMAES.

Another hybridization of CMAES and CS called S-CSCMAES has been intro-

duced in [73]. The hybridization relies on integrating the recombination operator

16



of CMAES into CS procedure. By using the recombinationo of CMAES (ms),

the weighted means are computed. In order to produce the new solutions, the

best solutions gained from CS algorithm and ms are combined to produce the new

solutions Xs with as follows:

Xs = Xs
CS +ms (2.17)

In order to prove the efficiency of S-CSCMAES, a set of constrained and Un-

constrained test functions are optimized revealing an encouraging performance

compared to CS, CMAES, PSO, firefly algorithm.

Other hybridizations models have been introduced using other promising al-

gorithms. For instance, in 2013, a hybridization between PSO and artificial bee

colony (ABC) has been introduced in [44]. This hybridization is based on a recom-

bination procedure, where the global best solutions of PSO and ABC are recom-

bined. Then, the new solution is used to evolve solutions of both algorithms. The

proposal has been compared using CEC 2005 test suite and an energy demand

estimation problem revealing better performance compared to ABC and PSO.

A different hybridization has been proposed in [64], where the algorithmic com-

bination consists in incorporating SaDE [71], which is a modified version of DE

and a local search procedure (LS). During the search process, SaDE and the lo-

cal search procedure are iteratively performed. Besides, the current best solution

improved by LS is integrated into SaDE to guide its search. LS phase contains sev-

eral local search methods, where each method is performed based on a probability

17



computed as follows:

PLSM
=

ILSM∑
m∈LS ILSm

(2.18)

where ILSM
represents the number of improvement obtained by LSM . This hy-

bridization has been tested on the CEC 2015 test suite of large scale global opti-

mization showing a competetive performance compared to DE-CC-CG [98], SACC

[92].

In [25], GA, PSO and symbiotic organisms search (SOS) [13] have been incor-

porated. In the main loop of this hybridization, one iteration of GA (selection,

mutation and crossover) is firstly performed. The output population is given in

order to perform one iteration of PSO. However, PSO only updates the best ex-

perience of each solution (best local solution). In the last phase, one iteration of

SOS (mutualism, commonsalism, parastism) is applied using the best experience

updated by PSO. The hybrid algorithm has been tested on several unimodal and

multimodal benchmark functions. Furtheromore, it has been tested on cluster-

ing problems, where it was confirmed that the proposed algorithm shows a better

accuracy and error rate.

Another hybridization of GA and cross entropy method (CE) [72] has been pro-

posed in [55]. The novel algorithm divides the population into two sub-populations.

Then, one iteration of each algorithm is performed on its associated population.

Finally, an elitism phase takes place. In this phase, the best solution found so

far is checked whether it is present in the current population or not. If not, it

will be inserted replacing the worst solution. The proposed method is tested on

24 continuous benchmark functions, with four different dimension configurations,
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where GACE revealed better results compared to several modified versions of GA.

In the attempt to overcome the premature convergence of harmony search

algorithm [29] (HS), SA has been proposed to complement the search procedure of

HS [2]. Inspired by SA, the proposal HS-SA accepts worse solutions (harmonies in

HS) considering a probability parameter called temperature. temperature value

is linearly decreased to shift the set of solutions from exploration to exploitation.

HS-SA has been tested on the CEC 2014 test suite and a real-world problem from

computer vision field called camera calibration problem. The numerical results

demonstrate the advantage of HS-SA over SA and HS.

Bat algorithm (BA) [95] is a population-based metaheuristic inspired by the

echolocation process of bats to sense distance. BA may suffer sometimes from

premature convergence problem because of its poor local search capability. In the

attempt to improve BA performance, some modifications have been introduced in

[54]. First, a chaotic initialization is performed to ensure well diversified initial

population. Secondly, the time factor parameter used in BA search operators

is decreased to gradually shorten the step size of bats (solutions). Finally, the

modified BA is hybridized with a local search method called external optimization

(EO) [8]. The statistical test results reveal that the hybridization is significantly

better than GA, PSO, DE, CMAES and a modified version of DE called L-SHADE

[82].

Another hybrid BA has been developed for economic dispatch problem [51],

where the objective function is to minimize the operating costs for all committed

generators while meeting the supply-demand balance and a set of constraints de-
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fined in [50]. In this proposal, a chaotic map procedure to adjust BA parameters

is incorporated to prevent premature convergence. Moreover, a random black hole

model [102] is introduced in order to accelerate the convergence rate. A compar-

ison with BA, ABC and PSO was conducted, where the proposal has shown a

competitive performance. In Table 2.1, The covered hybrid algorithms are sum-

marized.

Table 2.1: Different examples of hybrid algorithms

Ref The algorithmic components Benchmark
[89] CMAES + DE digital filter design problem
[63] CMAES + DE CEC 2017 test suite
[103] CMAES + CS CEC 2008 + one problem of CEC 2011
[73] CMAES + CS Welded beam design, Tension compression string design.
[44] PSO + ABC CEC 2005 test suite
[64] SaDE + local search strategy CEC 2015
[25] GA + PSO + SOS Clustering problems
[55] GA + CE 24 benchmark functions from BBOB 2009
[2] HS + SA CEC 2014 + camera calibration problem
[54] BA + EO CEC 2014
[54] BA + random black hole model Economic dispatch problem

2.1.5 Self-adaptive DE

In the last years, It has been noticed that DE performance is sensitive to its

parameters. Therefore, researchers turned their attention to propose different

strategies in order to find the most suitable parameters for a given problem. DE

parameters have been considered by proposing offline/online control parameters

strategies. These strategies tend to tune the parameters based on trial-and-error

procedures (offline), or adaptively modifying them, where a feedback from the

search history is considered [1, 15].
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An interesting self-adaptive DE (SaDE) has been proposed in 2006 [11]. DE

parameters are adapted by collecting a feedback from the search history. Mu-

tation scale factor F is produced for each solution using a normal distribution

with a mean value 0.5 and standard deviation 0.3. The crossover parameter CR

is generated using the previous successful CR values. Another DE variant called

JADE has been introduced in [99]. In JADE, F and CR are generated by modi-

fying parameters of probability distribution from which they are produced at each

generation. JADE performance has been improved by proposing success-history

archive [80]. The idea is to store successful values of F and CR in memory archives

MF and MCR. Afterwards, using these archives to generate new F and CR close

to the stored parameters. This variant is called successful history-based parameter

adaptation for differential evolution (SHADE). The approach has been proposed

for CEC 2013 competition, where it was ranked the first among DE variants. In

2014, the population size parameter in SHADE has been studied by [82]. A linear

reduction of the population size is proposed to accelerate the convergence rate.

The algorithm showed interesting results. It ranked the first in IEEE CEC 2014

competition. This proposal has been again improved in [33], where an eigenvector-

based crossover is introduced. The new search operator tends to be effective when

highly correlated variables are present.

Meanwhile, ensemble of parameters and mutation strategies (EPSDE) has been

proposed in 2011 by [59]. EPSDE provides a pool of discrete values for F and CR,

which serves in keeping the successful pair (F/CR) to the next generation. EPSDE

has been investigated using IEEE CEC 2005 revealing resilient performance for the
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whole benchmark. Nevertheless, the proposal has been reconsidered in [58]. The

new extension finds the best parameters by modeling the issue as an optimization

problem. Then, it is solved using harmony search algorithm [29].

Finally, adopting a hybridization model and/or a parameter adaptation strat-

egy may involve a high computational time due to the extra computation. In the

attempt to overcome this issue, parallel computing may be an interesting alter-

native to reduce the high computational time. In the following section, several

GPU-based parallel metaheuristics are surveyed in order to illustrate the advan-

tage of the parallel computing in reducing the computational time of optimization

algorithms.

2.1.6 Self-adaptive CS

Similarly, CS is strognly dependent to its parameters. Pa parameter is investigated

in [49], where it has been stated that Pa controls the diversity of the population.

This parameter has been adapted using two new parameters setting, which can be

described as follows:

Pa = 0.05 + 0.15 ∗ rand (2.19)

Pa = 0.85 + 0.05 ∗ rand (2.20)

The algorithm selects one of these equations based on their successful performance

in the previous iteration. The proposal has been tested on 16 benchmark functions

chosen from literature revealing superior performance compared to the original CS
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and several variants of DE.

Another adaptive CS has been introduced, where α step size parameter is

modified in each iteration. According to [104], the search step size has to be

gradually modified during the search process. In the first iterations, the broadest

possible access to information is required. Therfore, a larger step size is needed.

In the last iterations, in order to improve CS exploitation, the search should be

conducted in a small neighbourhood of individuals and then a small step size is

needed. α is gradually decreased as follows:

α = αmin +
FEmax − FE

FEmax

m

∗ (αmax − αmin) (2.21)

where FEmax, FE are the maximum number and the current number of evalua-

tions respectively, αmin, αmax, α are the max, the current and the min value of step

size respectively. The proposal has been tested on several benchmark functions

from CEC 2005 test suite revealing competetive performance compared to CS.

In order to improve the exploitation capability of CS, the latter has been com-

bined with a simulated annealing-based strategy to update the detection probabil-

ity and step size. The new algorithm has been tested on a bus scheduling problem,

where it shown optimal scheduling models compared to the original CS.

Despite these interesting strategies, it could be noticed that the parameter

adaptation in the context of CS and CMAES are not deeply studied. For instance,

the experimental studies of adaptive CS works were conducted only in particular

real-world problems. Their performance remains not known when compared to

recent state-of-the-art powerful algorithms.
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2.2 State-of-the-art of parallel metaheuristics

Unfortunately, most of metaheuristics performance decreases in both terms of

time complexity and effectiveness when facing high dimensional problems. In the

attempt to overcome this drawback, parallel metaheuristics have been proposed as

an alternative. Nowdays, parallel metaheuristics are attracting a growing interest

from researchers in order to reduce the execution time and to improve the quality

of the solutions found. According to [79], the parallel design of metaheuristics is

classified into three classes:

1. Algorithmic level: this level allows launching many algorithms in parallel.

The algorithms can run independently with different initial solutions and/or

different parameters and choose the best results of the run. In this level,

algorithms can be cooperative and exchange solutions in order to improve

the results.

2. Iteration level: this level allows a parallelization in each iteration. It concerns

the evaluation of solutions and/or the generation of the neighborhood.

3. Solution level: this level allows a deep parallelization of a single solution. For

instance, the objective function or constraints for a generated solution can

be implemented in parallel. The objective of achieving this level is mainly

the speed up of the search.

Thanks to graphics processing units (GPU), solving high dimensional continuous

problems has become straightforward. By exploiting GPU, the three levels men-

tioned above can be efficiently achieved. In this section, we outline a set of papers
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addressed to solve continuous optimization problems. We conclude it with Ta-

ble 2.2 that presents the characteristics of the implementations.

A CUDA implementation of CS has been implemented in [41]. In the parallel

CS, separate threads are dedicated to individual nests. Besides, the algorithmic

structure of CS requires sorting solutions to abondon the worst ones. To sort

solutions, a partial parallel reduction sorting is performed. The proposal has been

tested on a set of numerical functions, where a significant decrease of 25 times has

been exhibited compared to the sequential version.

In 2016, a parallel implementation of PSO using GPU has been presented in

[39]. The implementation has been tested on a set of continuous functions. The

implementation has achieved a speedup of 46 times faster than the sequential al-

gorithm. Their GPU proposition consists in seven kernels with a ring topology to

form a virtual neighborhood for particles. The first kernel allocates memory on

GPU, where each thread uses Curand library to generate random numbers. The

second kernel initializes positions and velocity of particles. The third kernel gener-

ates ((n+32-1)/32) blocks of 32 threads to compute the fitness function (Solution

level) where n is the number of individuals in the swarm. It performs a reduction

process to sort the fitness values. Then, via these values, Pbest is updated. The

fourth kernel is responsible of calculating local best Lbest. In this kernel, each par-

ticle compares his Pbest with its neighbors Pbest (left and right neighbors). The

fifth kernel computes the velocities and positions for the next iteration(solution

level/iteration level). A sixth kernel computes the global best position of the whole
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swarm. The last kernel liberates the structures used on GPU. The results have

shown the positive impact of coalesced memory on the acceleration. However, the

speedup is decreasing when the population size is more than 2000 and dimension

size is more than 50.

Obtaining a speedup of 17x, Dynamic Cooperative Hybrid MPSO+GA has

been designed in [27]. MPSO+GA alternates between Multi-Swarm PSO (MPSO)

and genetic algorithm (GA). The proposed design includes the following genetic

operations: mutation, crossover, and selection into the update phase of PSO.

Besides, particles are divided into sub-swarms forming a ring topology (algorithmic

level). GA applies the three operators on the population. GA uses tournament

selection to pick groups of individuals. Then, the best individual is selected within

each group for crossover (each group is performed in parallel). During mutation

phase, genes in individuals are mutated with a predefined probability. Moreover,

a heuristic is used to change the algorithm if it does not improve the best solution

found during a certain number of iterations. The parallel version of this design is

expressed in 8 kernels and they are implemented as follows:

1. Particle Initialization Kernel: using one thread per particle dimension (so-

lution level), this kernel initializes the positions and the velocities vectors

(iteration level), i.e. position is randomly initialized between [−xmax,+xmax]

and velocity is initialized to zero.

2. Update Fitness Kernel: in this kernel, multiple threads cooperate to compute

the fitness of each particle. First, each thread reads four position values

from global memory, computes the values of the corresponding four terms
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to perform a partial sum for them. Next, all the partial results are used

to perform reduction, in order to compute the fitness value of one particle.

Finally, the final fitness of all particles are written back to the global memory

fitness buffer.

3. Update Bests Kernel: it uses one thread per particle. First, each thread

compares the new and old local fitness for its particle in order to update

the best local position. Next, the kernel performs a reduction operation to

update the best global position for each swarm.

4. Update Position/Velocity: it uses one thread per dimension. Velocity and

position are computed using the equations of PSO. Afterwards, mutation is

performed on both position and velocity with a defined probability β. 5-Find

Best/Worst Particles: this kernel performs a reduction operation to find the

best and the worst particles in each sub-swarm.

5. Swap Particles Kernel: this kernel performs the exchange between sub-

swarms. Each thread represents one dimension to be exchanged, and a given

number of the best particles in sub-swarm j overwrite the worst particles in

sub-swarm j+1 mod s (ring topology).

6. Mutation Restoration Kernel: this kernel is proposed to recover the fitness,

velocities and positions of unhealthy sub-swarms if the mutation performed

on the previous iteration has led to very bad results. In this kernel, each

thread restores 4 dimensions of each particle after checking if the sub-swarm

is unhealthy. To do so, it compares the current fitness with the last fitness
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that was before mutation. If it is worse, old position and velocity from their

saved buffers are restored.

7. Crossover and Mutation Kernel: for each particle, t/4 threads randomly se-

lect 4 particles, and perform a parallel reduction in order to find the best

fitness. With a probability γ, a single point crossover is performed by ran-

domly choosing a shared crossover point between all the threads. Besides,

half of the threads reads the right half of the first parent, and the other half

reads the left half of the second parent. Afterwards, one thread combines

these chunks. In the same kernel, mutation is applied by all the threads to

their chunks of values.

In 2015, a parallel PSO has been designed in [48] using CUDA. This design

is implemented in a collection of remote computing services, called Amazon Web

Services Cloud (AWS). According to the authors, the PSO computation is pro-

portional to the size of the particle. It means that the larger the particle is, the

greater the pressure is. The following phases are parallelized:

• Calculation of the fitness values of particles: one particle represents one block

and each thread computes one of its dimensions (solution level/iteration

level). Then, partial results are reduced to thread 0 writing the final fitness

value in the global memory.

• Update best local position and best global position: since updating positions

needs to update each dimension of each particle, each particle is represented
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by one block, and each thread updates each dimension of the particle. Fi-

nally, the last kernel updates position and velocity of each particle.

The experimentation has been performed by comparing CPU implementation with

GPU local implementation, and GPU AWS implementation. Their results show

that the GPU AWS based PSO runs 80 times faster than the sequential algorithm,

and 64 times faster compared to GPU local implementation.

A parallel DE algorithm has been proposed in [106], which was combined with

an elite opposition-based learning strategy (EOBL). The proposed parallel EOBDE

includes two parts which are DE and EOBL strategy [86]. First, a population

is randomly initialized (iteration level). Then, EOBL is applied. The strategy

chooses the best 20% individuals as a set of elite individuals. Then, opposite

solutions are generated according to a model mentioned in [106]. Finally, the best

individuals are inserted in the population. The algorithm handles these operations

by implementing three kernels: the first kernel finds maximum and minimum

values of each dimension. The second kernel generates opposite solutions of the

elite individuals. The last one selects the best individuals to insert them into the

next population. To perform this task in parallel, 2 x NP individuals are assigned

to each thread block (iteration level). Each individual is compared with other

2 x NP −1 individuals to calculate its rank value in order to find the members

of the new population. Afterwards, DE is applied. To perform DE operators,

individuals are represented by threads within a separate kernel. This Algorithm

has been tested on 10 functions with dimensions 500 and 1000. Besides, it has

been compared with four algorithms. The results show that EOBDE achieves the
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best results compared to the other algorithms. Besides, EOBDE shows an average

speedup of 4.475x compared to the sequential implementation.

A hybridization between DE and Backtracking Search Optimization Algorithm

(BSA) and Simulated Annealing (SA) has been proposed in [12]. The algorithm

consists mainly in two stages. The first stage consists in five phases. The first,

called Selection-I is a backtracking strategy to store the old population of the pre-

vious generation (history). This populations is replaced by the current population

with a probability of 0.5. Afterwards, the mutation phase takes place, where a

hybrid equation is proposed by combining mutation equations of both BSA and

DE/target-to-best/1 in which a SA schedule is proposed to decrease the scaling

factor. Next, two crossover strategies are randomly used (with probability 0.5) to

generate a new trial population T from the current and the mutant population.

The first strategy depends on a parameter that controls how many dimensions

of the mutant will be incorporated in the trial individual. The second strategy

ensures that only one dimension from the mutant individual will be concerned in

the new trial individual. Finally, in Selection-II phase, Ti replaces an individual

Pi if it is better. The second stage performs a DE/target-to-best/1 iteration on

the worst individual. In their GPU based implementation, for the most of the

phases (for example, mutation, evaluation) the algorithm assigns to each individ-

ual a block (iteration level), and to each dimension a thread (solution level) to

compute it (kernel of N blocks of D threads). However, sometimes another data

decomposition is needed: for example, a thread is assigned to each individual in

order to update the global best solution.
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According to [88], detecting objects in images is a well-known problem in com-

puter vision and pattern recognition. This problem can be modeled as a continuous

optimization problem, as it is proposed in [88]. A parallel PSO and DE have been

proposed to tackle two problems in this field: hippocampus localization in histo-

logical images and human body pose estimation in video sequences. The objective

of human body pose estimation in video sequences is to estimate accurately the

posture of human body in a video stream. In this problem, the input is N views of

the body from several angles. Afterwards, the silhouette of the body within each

image is extracted. The silhouette is a binary image where all pixels belonging to

the body are set to 1. To solve the problem, three steps are followed. First, a pose

estimation is generated by the search algorithm using an appropriate parametric

model. Then, a 3D rendering of the body is applied for the pose. Finally, a set of N

images, corresponding to the projections of the rendered body (silhouettes) on the

image planes of the input is computed. For further details about the parametric

model used, we refer the reader to [88].

In CUDA-based implementations of PSO and DE, three kernels are implemented.

For PSO, the first kernel initializes and updates the velocity and position of all

particles. The second kernel evaluates the fitness. Finally, the third kernel up-

dates the best positions. In DE, the first kernel generates the offspring solutions.

The second kernel evaluates the fitness of all produced solutions. Then, the third

kernel performs the selection of the new population. PSO and DE have the same

structure, each thread block is responsible of one particle (iteration level), where

each thread updates one dimension of the problem (solution level). The experi-
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mentation shows that PSO gives more accurate results than DE when dealing with

human body pose estimation. However, DE gives slightly better results in case

of hippocampus localization in histological images without mentioning any details

about the speedup gained by GPU implementation over CPU.

A new memetic algorithm, called MA-SW-Chains is presented in [46] for GPU

architecture. Its main idea is to combine a steady-state genetic algorithm (SSGA)

[93] with a local search procedure, called Solis Wets search method [76]. The steps

that have been parallelized in the algorithm are: evaluation of the fitness function,

adaptation of the crossover operator to the GPU, optimization of the local search,

random number generation process, and population sorting.

1. Fitness function evaluation: each thread block processes a set of dimensions

of each individual (iteration level). Within each block, each thread processes

several variables (bucket). Each processed bucket is composed of interleaved

elements to make thread warps access consecutive elements (coalesced mem-

ory). Afterwards, a reduction operation is performed to compute the partial

result for each thread. The final fitness function of an individual is then

computed by another reduction operation.

2. Crossover: each thread processes a bucket of pairs of dimensions (solution

level). Then, it writes the result in the memory. In fact, the crossover opera-

tion is designed such that each thread crosses BucketSize elements of the two

parent individuals. It means that each block generates ThreadsPerBlock ∗

BucketSize elements for the new individual. In the proposed design, n cross-

ing operations are performed in parallel to increase the thread parallelism
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where n is the number of individuals. Another operation has been paral-

lelized which is the Euclidean distance to select the parents to be crossed.

3. Local search: the operations that have been parallelized are: individual

change operations, bias values increment and decrement operations, individ-

ual substitution in the population, and fitness evaluation.

4. The generation of random numbers and population sorting.

A parallel GA has been proposed in [75] to solve continuous functions. In

their proposition, the selection procedure is implemented using Roulette wheel

selection function with a separate kernel, and it is performed by generating random

numbers between 0 and the sum of the fitness values of the population. If the

fitness of the corresponding individual is greater than the random number, then

it becomes a parent chromosome. Afterwards, another kernel performs a uniform

distribution crossover with a fixed ratio. Unlike single and double point crossover,

where mixing is performed at segment level, uniform distribution crossover creates

child chromosome at gene level (solution level). It was stated that it is more

suitable for the large populations. Finally, mutation is implemented in a single

kernel, where each individual is mutated by a thread (iteration level). The parallel

GA has been tested on seven test functions and it shows to be faster with 4.15x

than the sequential version.

A parallel bee algorithm (CUBA) has been proposed in [56]. CUBA is a multi-

colony bee algorithm that obtains a good efficiency and a high speedup. The al-

gorithm initializes the population and evaluates the fitness of individuals through
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parallel threads (iteration level/solution level). To find the best sites, the popula-

tion is sorted using OddEven Sorting algorithm. In this proposal, bees are grouped

into colonies. Each thread is assigned to its colony according to the thread ID. In

the standard bee algorithm, more bees are recruited for the best sites. However, in

this proposition, the authors aims to balance the loading among the threads. They

have proposed to assign nep bees to recruit m sites. The algorithm overcomes the

overhead due to the communication between the colonies by using shared mem-

ory and adapting 2 phase communication strategy. CUBA has been applied on 9

minimization functions, and has achieved a speedup of 13x times compared to the

standard sequential bee algorithm.

Table 2.2: Characteristics of GPU-accelerated metaheuristics on continuous prob-
lems

Ref Algorithm Parallelism
level

Acceleration Benchmark Quality improvement

[41] CS Iteration
level

20x Functions from CEC 2005 No improvement

[106] DE Iteration
level

4.475x Functions from CEC 2008 [84], and [38] Results improved compared to CHC, DE,
SOUPDE and GODE

[12] DE-BSA-SA Iteration
level + Solu-
tion level

40x Functions taken from [14] No improvement

[88] DE+PSO Iteration
level + Solu-
tion level

Not men-
tioned

4 test sequences made by the CVSSP, Uni-
versity of Surrey for Human body pose esti-
mation + 15 images of hippocampi by man-
ually segmenting the anatomical structures
for Hippocampus localization in histological
images

PSO performs better in human body pose
estimation in video sequences but DE is
better in hippocampus localization in his-
tological images

[46] MA-SW
chains

Iteration
level + Solu-
tion level

82.17x CEC 2010 [83] + a benchmark setup men-
tioned in [46]

No improvement

[39] PSO Iteration
level + Solu-
tion level

46x Sphere, Rosenbrock, Rastrigin, Griewank,
Ackley, De Jong, Easom

Quality improved in Sphere and Griewank
function compared to the CPU sequential
implementation

[75] GA Iteration
level

1.18 to
4.15x

Function taken from [40] No improvement

[27] PSO Algorithmic
level+Iteration
level + Solu-
tion level

17x CEC 2010 [83] Quality improved compared to Static
MPSO+GA and CPU sequential imple-
mentation but it doesn’t achieve the best
results of MPSO-MCS

[56] CUBA Iteration
level + Solu-
tion level

13x Functions from [68] No improvement

[48] PSO Iteration
level + Solu-
tion level

80x Sphere, Rastrigin, Griewank, Rosenbrock No improvement
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2.3 Discussion and conclusion

In this chapter, state-of-the-art of hybrid and parallel metaheuristics were defined.

Besides, a brief review of adaptive DE proposals was considered to show the im-

portance of the parameters on the overall performance of DE.

It should be stated that there are hundreds of algorithms proposed in the

literature thanks to the variety and explosion of real-world problems. However,

we only covered some works to demonstrate the prominent designs of hybrid and

parallel metaheuristics. It has been noticed that most of the proposed algorithms

are population-based hybridization, where an exploratory metaheuristic is applied

to explore the search space. Afterwards, a local search procedure is performed in

order to improve the quality of the found solutions. Furthermore, leveraging large

instances of optimization problems and accelerating search operators have become

relatively easier thanks to the graphics processing units (GPU). Indeed, different

designs of parallel metaheuristics have been proposed, which reflects the growing

interest of researchers towards this category of algorithms. Following this context,

our main focus is to develop efficient optimization algorithms, which are able to

produce competitive results compared to the recent state-of-the-art algorithms.
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Chapter 3

Applications

In this section, we present a set of problems, which will be solved by our proposals.

This set is a well-known test suite designed for testing algorithms performance.

Moreover, the real-world problem at hand is defined.

3.1 Test suite for numerical optimization

CEC 2011 [18] test suite is a well-known benchmark of real-world problems, which

have been used to test several optimization algorithms. In the following sub-

sections, the test suite is presented.

3.1.1 CEC 2011 test suite

The CEC 2011 test suite represents a set of difficult real-world applications. The

benchmark contains 22 functions to be minimized with a limited budget of 150000

evaluations [18]. Table 3.1 shows details about each problem. It is important to

36



point out that this set is chosen because it represents the most known test suite

for real-world applications.

Table 3.1: Problems description

Problem No. Description D
F1 Parameter Estimation of FM Sound Waves 6
F2 Lennard-Jones Potential 30
F3 Bi-functional Catalyst Blend Optimal Control 1
F4 Optimal Control of a Non-Linear Stirred Tank Reactor 1
F5 Tersoff Potential Function Min. ProblemSi(B) 30
F6 Tersoff Potential Function Min. ProblemSi(C) 30
F7 Spread Spectrum Radar Polly phase Code Design 20
F8 Transmission Network Expansion Planning 7
F9 Large Scale Transmission Pricing 126
F10 Circular Antenna Array Design 12
F11 Dynamic Economic Dispatch - Instance 1 120
F12 Dynamic Economic Dispatch - Instance 2 240
F13 Static Economic Load Dispatch Instance 1 6
F14 Static Economic Load Dispatch Instance 2 13
F15 Static Economic Load Dispatch Instance 3 15
F16 Static Economic Load Dispatch Instance 4 40
F17 Static Economic Load Dispatch Instance 5 140
F18 Hydrothermal Scheduling - Instance 1 96
F19 Hydrothermal Scheduling - Instance 2 96
F20 Hydrothermal Scheduling - Instance 3 96
F21 Messenger: Spacecraft Trajectory Optimization 26
F22 Cassini 2: Spacecraft Trajectory Optimization 22

3.2 Electric motor design

Our optimization algorithms are employed in order to optimize the design of an

electrical machine used as main propulsion unit for an electric vehicle (EV). By

investigating the mechanical characteristics of the electrical motorization of todays
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cars it is obvious that the trend is to have higher operating speeds on the electric

motor [26] . The clear advantage of having higher speed is with respect to the

power density of the electric motor, meaning to maximize the ratio between the

output power and weight of the machine (and consequently of its volume). This

will involve also the decrease of iron losses in the machine, and finally the efficiency

of the propulsion motor is improved.

3.2.1 The technical definition of the problem

The most common solution in terms of electric propulsion for the current manu-

factured light electric cars is the use of a permanent magnet synchronous motor

(PMSM) [30], with top speeds beyond 10 000 r/min (like in the case of the Hybrid

Toyota Prius, Nissan Leaf, BMW-i3 etc.). Of course, a special care should be

paid to the mechanical constraints involved at such high speeds. Instead, with the

improvement on the iron material in terms of mechanical stability, and since the

higher operating speed permits to reduce the outer rotor diameter, the use of a

high speed PMSM becomes an advantage. By increasing the power density of the

electric propulsion unit, and consequently by reducing its weight, a more reduced

volume will be obtained, which will be a benefit from the cars autonomy point

of view. Moreover, a decreased weight will engage a reduced investment on the

electric propulsion, which is critical in the automotive industry [26, 30]. That is

why, we have considered for our application to evaluate an electric motorization

running at high speeds. The main data of the propulsion electric motor are: 20

kW for the output power, 22 000 r/min for the rated speed. The machine will be
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supplied from a battery of 380 Vdc, via an inverter. Perhaps the best candidate

for such operating conditions is a PMSM with inset magnets, see Fig 3.1, where

one can see the main components of the machine, as well as the magnetization of

the two magnetic poles (a parallel magnetization was considered in order to in-

crease the chances of obtaining a smoother output torque). Before passing to the

optimization of the high speed PMSM, the machine was designed and the analyt-

ical approach has been validated numerically by using the finite element analysis,

via Flux2D software. From this analysis we will be verifying if the desired perfor-

mances have been obtained and in what conditions (efficiency, smoother output

torque etc.). In Fig 3.2 is shown the magnetic behavior of the studied machine

(the saturation level on a very good iron material, Vacoflux50). (After employing

the optimization algorithm, the proposed solution will be numerically validated,

as trustworthy approach.)

Figure 3.1: Cross-section view of the considered high-speed PMSM.
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Figure 3.2: Field lines and flux density distribution on the high speed PMSM.

3.2.2 Electric motor design as an optimization problem

The main objective is to improve EVs autonomy through reducing HS-PMSM

weight. The problem at hand can be modeled as a multi-objective problem, where

the objective functions are represented as follows:

• The first objective function concerns the mass of the electric motor matot:

matot = mcooper +mstat +mrot +mpm (3.1)

where mcooper is the cooper mass, mstat is the stator iron mass, mrot is the

rotor iron mass, and mpm is the magnets mass.

• The second objective function is to maximize the output power density which

is defined as follows:

Pout = Pin +
∑

losses (3.2)

where Pout is the output power density, Pin is the input density, and the sum
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of losses mainly contains the mechanical, iron and copper loss component.

The two objective functions are aggregated to obtain the following new objective

function which will be optimized using the proposed algorithm:

minJ(x) = −Pout/matot + penality (3.3)

where

penality = 104

7∑
i=1

Ci (3.4)

In (3.4), Ci=0 if the constraint i is satisfied, 1 otherwise. The set of constraints

are presented in Table 3.2.

It has to be stated that we have two versions of the problem, where the set

of constraints and variation limits are different. Table 3.2 presents the set of

constraints of version 1 of the problem at hand. The parameters of the problem

Table 3.2: The set of constraints

Parameter Symbol Unity Variation limits of version 1 Variation limits of version 2
Output power Pout W [19995; 20005] [3998; 4005]

Current consumption Is A [20 ; 56] [20; 37]
Motor torque Tm Nm [8.5 ; 8.6] [18.6; 18.63]

Motors efficiency n - [0.9; 0.99] [0.91; 0.99]
Motors power factor PF - [0.81; 0.99] [0.94; 0.99]
Rotor inner diameter Dir mm [22; 70] [20; 40]

Slot filling factor T - [0.1; 0.5] [0.1; 0.5]

are hand are presented in Table 3.3.
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Table 3.3: The geometrical parameters for the weight optimization

Symbol Description Variation limits of version 1 Variation limits of version 2
Dis Inner stator diameter [50; 80] mm [99; 150] mm
hjr Rotor yoke height [7; 15] mm [10.5; 20] mm

histm Tooth isthmus [0.5; 2] mm [0.5; 2] mm
hjs Stator yoke height [8; 15] mm [8; 13] mm
wt Tooth width [3.5; 8] mm [5.5; 10] mm

gap0 Air-gap length [0.5; 1.5] mm [0.5; 1.5] mm
hmp PM height [4; 8] mm [4; 8] mm
Lm Machines length [100; 160] mm [100; 160.1] mm

42



Chapter 4

Contribution

This chapter represents the major contributions of this thesis. Three directions of

research are followed for proposing new powerful algorithms (hybridization, adap-

tation of methauristics parmaters, integrating learning techniques). Indeed, this

chapter covers several proposals that have been introduced during this thesis. The

proposals are classified into two categories: hybrid algorithms and self-adaptive al-

gorithms, which will be explained in the following sub-sections. The proposals are

tested using The CEC 2011 test suite along with the optimization of the electric

motor

4.1 Hybrid algorithms

It has been stated that hybrid algorithms can be effective in solving a wide a range

of algorithms [6, 7, 9]. Following this context, we have proposed several algorithms

that combines different metaheuristics or search operators in order to introduce
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stable hybrid algorithms.

4.1.1 A Hybrid Optimization Algorithm for Electric Motor De-

sign (HOA)

The first contribution of this thesis is the proposition of a hybrid optimization

algorithm, that was mainly designed to address the optimization of the electric

motor topology.

The algorithm can be seen as a combination of several algorithms: CS, CMAES,

an adaptive version of DE called LSHADE [82] and K-means [57]. Besides, a radial

basis function (RBF) surrogate model [36] is incorporated to provide an intelligent

choice between search operators.

The proposal starts with a CMAES-enhanced CS initialization technique to

produce NP well-distributed points over the search space. The objective is to ex-

ploit the capability of CS in exploring the search space as well as ensuring a high

quality solutions with a small number of evaluations, which is potentially ensured

by CMAES. First, CMAES algorithm is run for a small number α of evaluations.

Then, the produced solution is provided along with a randomly generated popula-

tion to CS procedure, which will be performed for a small number λ of evaluations.

The solution produced by CMAES can be seen as a guiding information to speed

up the convergence rate of CS. Afterwards, the population pop produced by CS is

used to train the RBF model. Then, it will be provided to the main loop of our

proposal.

The main loop of the algorithm consists in two major procedures: global search
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and local search procedure. Each procedure is performed based on a simple yet

efficient switching technique. In fact, it is decided with a probability PLV whether

the algorithm performs the global search procedure, or the local search procedure

is performed. After applying one of the procedures, PLV parameter is linearly

decreased using the following equation:

PLV = max(0, PLV − CurrentFes

MaxFes
) (4.1)

Indeed, decreasing PLV parameter will gradually force the algorithm to perform

the local search procedure in the last iteration.

4.1.1.1 The global search procedure

The global search procedure consists of a clustering algorithm and a Lévy Flight

perturbation. The clustering is used thanks to its high capability of avoiding re-

dundant search points [67], which enhances the exploration of undiscovered regions

[28, 35]. The clustering is considered as a multi-parent crossover that exploits the

information of the whole population in order to produce a predefined number of

centers (new individuals). As a clustering algorithm, one step of K-means algo-

rithm is chosen because it has experimentally shown a superior performance than

other algorithms which will be noticed in the results. K-means is exploited in

order to generate K central individuals of the current population. Then, the cen-

tral individuals are shifted to potentially more promising areas using lévy flight

perturbation. The lévy flight movement is inspired by the global search of CS [97]
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and it is performed according to:

StepSizei = 0.001 ∗ stepi ∗ (zi − best)i = 1, 2, ..k (4.2)

where stepi is generated according to 2.8, best is the best solution so far and z is

the set of the central individuals. Then, the new trial solutions are produced as

follows:

zi = zi + StepSizei (4.3)

Afterwards, the best NP individuals of pop
⋃
z are selected for the next iteration.

It is important to point out that the global search procedure is repeated for T

iterations.

4.1.1.2 The local search procedure

The proposed local search procedure consists of a modified version of SHADE [82]

which is an adaptive version of DE that exploites success-history-based parameter

adaptation. The performance of SHADE could be enhanced by using the mutation

strategy current to-pBest/1/bin [99] to produce mutant vectors, where p represents

the fraction of the best solutions in the current population. It has been stated that

this mutation strategy is efficient for the generation of promising individuals [99].

Current to-pBest/1/bin is expressed as follows:

vi,g = xi,g + F (xbest,g − xi,g) + F (xr1,g − xr2,g) (4.4)
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where xbest,g is a randomly selected parent from the best individuals of the current

population. Furthermore, an archive A of size Ainit is proposed in order to maintain

the diversity of the population. It should be stated that xr2,g is taken from pop

∪ A. The parent solutions that are not selected are inserted into this archive.

Besides, success-history-based parameter adaptation is a strategy employed to

store successful CR, F values that were successful in the past generations. After

the generation of a new trial vector ui, it is compared with its parent. If ui is

better, then the CR and F parameters are stored in the sets SCR, SF respectively.

Finally, the memories MCR and MF are updated using these successful parameters

according to the following equations:

MCR =

 meanwA(SCR) if SCR 6= ∅

MCR otherwise
(4.5)

MF =

 meanwL(SF ) if SF 6= ∅

MF otherwise
(4.6)

where meanwA is the weighted mean and meanwL is the Lehmar mean. SHADE

uses two different mean equations because they have experimentally shown better

results than using one equation to generate MCR and MF .

In our local search procedure, a surrogate model-based SHADE (S-SHADE)

algorithm is proposed, which is summarized in Algorithm 4. In S-SHADE, we

insert an additional mutation equation that ultimately favors exploitation and a

surrogate based-switching technique to choose the best mutation operator for the
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next generation. The additional mutation equation can be also seen as a linear

recombination that forces the current solution to move towards the best solution

[19]. The mutation equation is is represented as follows:

vi,g = xi,g + (xi,best − xi,g) ∗ F (4.7)

and xi,best is the ith best solution in the population. To save the budget of eval-

uations, the RBF surrogate model is used for an approximated evaluation. After

applying the two search operators, RBF is used to approximate the fitness of the

two mutant populations. The mutant population that contains the best approxi-

mated solution is then used in crossover.

4.1.1.3 The algorithmic combination

First, the proposed initialization strategy takes place in order to provide well-

distributed solutions. Afterwards, the global search and the local search proce-

dures are performed based on a complex criterion. If less than a parameter maxfes

, and if PLV parameter is greater than a value randomly generated in [0,1], then,

the global search procedure is performed. Otherwise, one generation of S-SHADE

is applied as a local search procedure. Besides, in order to gradually shift the algo-

rithm into exploitation, PLV parameter is linearly decreased after each iteration.

Finally, linear reduction of the population takes place to remove a fraction of the

worst individuals at each iteration. It has to be mentioned that the RBF model is

updated using the current population after each quarter of the available budget.

The pseudo-code of the full proposal is depicted in Algorithm 5.
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Algorithm 4 One generation of our S-SHADE algorithm

1: Given a population pop of NP individuals
2: PopOld ← pop
3: Given SCR, SF
4: Compute MCR, and MF according to 4.5 and 4.6
5: Generate a mutant population popa according to 4.4
6: Generate a mutant population popb according to 4.7
7: Evaluate approximately popa and popb using RBF surrogate model
8: if popa contains the best approximated solution then
9: popbest ← popa
10: else
11: popbest ← popb
12: end if
13: for Each xi in popbest do
14: Use binomial crossover to generate the trial vector ui using popbest and

PopOld
15: Evaluate ui using the real objective function.
16: if f(ui) < f(popi) then
17: popi ← ui
18: A ← xi , SCR ← CRi , SF ← Fi
19: end if
20: end for

49



Algorithm 5 Pseudocode of the proposed approach

1: Archive A ← ∅
2: SCR ← ∅, SF ← ∅
3: Set all values in MCR, and MF to 0.5
4: Generate a solution using CMA-ES for a number of evaluation α
5: Perform CS to generate a population pop of NP individuals for a number of

evaluation λ
6: Train the RBF surrogate model using each individual in pop and its fitness
7: while currentfes < Budget do
8: if currentfes < maxfes and rand < PLV then
9: for i=1:T do
10: Generate K central individuals of pop using Kmeans
11: Generate a step size for each center using Lévy flights
12: Generate new individuals according to 4.3
13: Evaluate individuals and select the NP best individuals of the popula-

tion
14: currentfes ← currentfes + K
15: end for
16: Decrease PLV according to 4.1
17: else
18: Perform S-SHADE (pop, SCR, SF )
19: end if
20: Apply a linear reduction of the population
21: Update the RBF model using the current population after each quarter of

the budget
22: end while
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Table 4.1: Parameter setting of the compared algorithms

Algorithm Parameters Electric motor design problem CEC 2011
α D*1000 D*1000
λ D*1000 D*1000
NP 200 200

Our proposition k NP / 4 NP / 4
PLV 0.8 0.8

Budget 106 D*10000
maxfes 2/3 * Budget 1/3 * Budget
T 100 1

EPSDE Parameters taken from [90] = =
SADE Parameters taken from [11] = =
JADE Parameters taken from [100] = =

SHADE Parameters taken from [80] = =

4.1.1.4 Experimental results

Our proposal has been tested on the CEC 2011 test suite as well as the optimization

problem at hand with its two versions. It has been compared with powerful state-

of-the-art algorithms as JADE [100], SADE [11], EPSDE [90] and SHADE [82].

First, the parameter setting of our algorithm is shown as well as the parameters

of the compared algorithms, which are presented in Table 4.1

4.1.1.5 Comparison on CEC 2011

To study the importance of each component, an experimentation has been con-

ducted to compare the proposed algorithm with other versions of the proposal. In

the first version, the initialization method is disabled (variant-1). In the second

version, the global search procedure is removed. The algorithm becomes a hy-

bridization between the proposed initialization method and S-SHADE (variant-2).
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Moreover, to show the clustering influence, K-means algorithm has been replaced

by the FCM clustering algorithm (variant-3). Each column from Table 4.2 shows

best and mean of each algorithm for each function. The best fitness found for

each function is in bold. Mean results that are significantly better than the ones

of the other algorithms, according to the Kruskal-Wallis statistical test at 95%

confidence level followed by a Tukey-Kramer post hoc test are also in bold.

The results presented in Table 4.3 reveal a superior performance of our propo-

sition compared to the other algorithms. It can significantly outperform SHADE

in 8 functions, SADE in 9 functions, JADE in 7 functions and EPSDE in 12.

Moreover, the comparison with the three variants of our proposal reveals that our

proposition achieved better performance as well. It could outperform variant-1

and variant-2 in 6 functions, which shows the importance of the proposed initial-

ization method and the global search. Variant-3 shows better performance when

compared to variant-1 and variant-2. Even-though, the proposition can outper-

form it in 2 functions. It is observed that both clustering methods can significantly

improve the performance of the proposed algorithm.

4.1.1.6 Comparison on the optimization problem at hand

The proposed algorithm has been run 30 times. The best, the mean, the median,

the worst, and the standard deviation of each algorithm are collected. It is stated

from Table 4.4 that the proposal achieves the best solution compared to the other

algorithms. Besides, a stable performance is obtained, since the proposal could

achieve the best solution in each run.
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Table 4.2: Comparison of HOA with state-of-the-art algorithms on the CEC 2011
test suite

SHADE SADE JADE EPSDE Variant-1 Variant-2 Variant-3 HOA
F1 Best 2.73E-02 6.31E-01 2.57E-10 5.45E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Mean 1.85E+01 7.59E-01 2.26E+00 9.10E+00 1.95E+00 1.87E+00 2.08E+00 1.62E+00
F2 Best -2.44E+01 -1.95E+01 -2.45E+01 -2.19E+01 -2.31E+01 -2.47E+01 -2.69E+01 -2.69E+01

Mean -2.30E+01 -1.70E+01 -2.34E+01 -2.02E+01 -2.15E+01 -2.34E+01 -2.35E+01 -2.39E+01
F3 Best 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05

Mean 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05
F4 Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F5 Best -3.66E+01 -3.32E+01 -3.64E+01 -3.60E+01 -3.62E+01 -3.54E+01 -3.66E+01 -3.69E+01

Mean -3.60E+01 -3.22E+01 -3.56E+01 -3.22E+01 -3.47E+01 -3.45E+01 -3.48E+01 -3.49E+01
F6 Best -2.91E+01 -2.63E+01 -2.92E+01 -2.88E+01 -2.90E+01 -2.89E+01 -2.91E+01 -2.91E+01

Mean -2.90E+01 -2.41E+01 -2.90E+01 -2.01E+01 -2.48E+01 -2.43E+01 -2.65E+01 -2.66E+01
F7 Best 9.06E-01 1.24E+00 9.10E-01 1.12E+00 1.17E+00 1.05E+00 8.72E-01 5.00E-01

Mean 1.12E+00 1.37E+00 1.17E+00 1.30E+00 1.32E+00 1.22E+00 1.05E+00 8.80E-01
F8 Best 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02

Mean 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02
F9 Best 1.14E+03 7.69E+02 1.13E+03 3.98E+04 3.67E+03 3.28E+03 3.37E+03 2.15E+03

Mean 2.22E+03 1.73E+03 2.40E+03 9.28E+04 4.45E+03 3.67E+03 3.85E+03 3.37E+03
F10 Best -2.18E+01 -2.18E+01 -2.18E+01 -2.02E+01 -2.15E+01 -2.16E+01 -2.16E+01 -2.14E+01

Mean -2.16E+01 -2.16E+01 -2.14E+01 -1.74E+01 -1.55E+01 -1.63E+01 -1.69E+01 -1.69E+01
F11 Best 5.15E+04 5.12E+04 5.15E+04 5.21E+04 5.17E+04 5.23E+04 5.17E+04 5.16E+04

Mean 5.32E+04 5.21E+04 5.24E+04 5.86E+04 5.34E+04 5.42E+04 5.32E+04 5.32E+04
F12 Best 1.07E+06 1.07E+06 1.07E+06 1.07E+06 1.08E+06 1.07E+06 1.07E+06 1.07E+06

Mean 1.10E+06 1.09E+06 1.07E+06 1.09E+06 1.07E+06 1.07E+06 1.07E+06 1.07E+06
F13 Best 1.55E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04

Mean 1.55E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04
F14 Best 1.80E+04 1.81E+04 1.80E+04 1.83E+04 1.80E+04 1.80E+04 1.80E+04 1.80E+04

Mean 1.81E+04 1.81E+04 1.83E+04 1.86E+04 1.85E+04 1.87E+04 1.83E+04 1.83E+04
F15 Best 3.27E+04 3.28E+04 3.27E+04 3.29E+04 3.26E+04 3.27E+04 3.26E+04 3.26E+04

Mean 3.27E+04 3.28E+04 3.29E+04 3.30E+04 3.27E+04 3.27E+04 3.27E+04 3.27E+04
F16 Best 1.26E+05 1.26E+05 1.26E+05 1.31E+05 1.28E+05 1.31E+05 1.27E+05 1.24E+05

Mean 1.29E+05 1.28E+05 1.33E+05 1.42E+05 1.33E+05 1.41E+05 1.28E+05 1.26E+05
F17 Best 1.88E+08 1.87E+06 1.87E+06 1.93E+06 1.91E+06 1.92E+06 1.91E+06 1.91E+06

Mean 1.91E+06 1.90E+06 1.91E+06 2.06E+06 1.93E+06 1.93E+06 1.93E+06 1.93E+06
F18 Best 9.37E+05 9.33E+05 9.35E+05 3.24E+06 9.35E+05 9.35E+05 9.34E+05 9.34E+05

Mean 9.40E+05 9.38E+05 9.39E+05 6.06E+06 9.38E+05 9.38E+05 9.38E+05 9.38E+05
F19 Best 9.39E+05 9.41E+05 9.39E+05 4.47E+06 9.39E+05 9.41E+05 9.39E+05 9.39E+05

Mean 9.52E+05 9.46E+05 9.92E+05 7.16E+06 9.42E+05 9.44E+05 9.42E+05 9.42E+05
F20 Best 9.34E+05 9.35E+05 9.36E+05 4.16E+06 9.35E+05 9.34E+05 9.33E+05 9.33E+05

Mean 9.40E+05 9.37E+05 9.40E+05 6.21E+06 9.38E+05 9.40E+05 9.37E+05 9.37E+05
F21 Best 1.41E+01 1.66E+01 1.31E+01 1.66E+01 1.33E+01 1.27E+01 1.16E+01 1.15E+01

mean 1.75E+01 1.97E+01 1.72E+01 1.97E+01 1.39E+01 1.41E+01 1.38E+01 1.35E+01
F22 Best 1.31E+01 1.68E+01 1.19E+01 1.68E+01 1.12E+01 1.25E+01 9.24E+00 9.26E+00

Mean 1.99E+01 2.18E+01 1.66E+01 2.18E+01 1.37E+01 1.42E+01 1.32E+01 1.36E+01
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Table 4.3: Comparison of HOA using Kruskal-Wallis test on CEC 2011 test suite

vs Our proposition D=30
+(better) 2

SHADE -(worse) 8
=(no sig) 12
+(better) 5

SADE -(worse) 9
=(no sig) 8
+(better) 2

JADE -(worse) 7
=(no sig) 13
+(better) 0

EPSDE -(worse) 12
=(no sig) 10
+(better) 0

Variant-1 -(worse) 6
=(no sig) 16
+(better) 0

Variant-2 -(worse) 6
=(no sig) 16
+(better) 0

Variant-3 -(worse) 2
=(no sig) 20
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Table 4.4: Comparison of HOA with state-of-the-art algorithms on the first version
of the problem at hand

Best Mean Worst Std

SADE -3.271E+03 -2.920E+03 -2.780E+03 81.49
JADE -3.194E+03 -2.840E+03 -2.420E+03 96.23
EPSDE -3.200E+03 -2.850E+03 -2.430E+03 102.65
SHADE -3.097E+03 -2.944E+03 -2.697E+03 44.28
Variant-1 -3.397e+03 -3.114e+03 -2.935e+03 112.10
Variant-2 -3.318e+03 -3.202e+03 -3.130e+03 49.03
Variant-3 -3.380e+03 -3.188e+03 -3.085e+03 58.36
HOA -3.397E+03 -3.397E+03 -3.397E+03 0

Further details about the best solution found by our proposal are shown in

Table 4.5. The proposed algorithm could obtain an important gain of 28% in the

mass. Moreover, it could achieve a gain of 17% and 29% decreasing the mechanical

loss and the iron loss stator respectively. Similarly, HOA has been applied on the

second version of the problem, where it revealed a stable performance compared

to the other algorithms. Besides, it has been noticed that variant-3 (HOA with

FCM) has shown the same performance. The results are depicted in Table 4.6.

The gain and the power density obtained after optimizing the topology of the

second version can be expressed in Table 4.7. It can be seen that the optimized

weight matot = 9.27 Kg.

Finally, as it has been mentioned above, the proposal has shown a competitive

performance on the problems at hand. However, it can be noticed that the proposal
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Table 4.5: The best geometrical parameters with the optimized factors

Symbol Original motor Optimized motor Gain %
matot 8.2513 kg 5.8885 kg + 28.63
Pout 20000 W 20005 W + 0.25e-3
Pout / mtot 2.42 kW/kg 3.39 kW/kg + 28.653
Iron loss stator 225.73 W 158.9 W + 29.60
Mechanical loss 352.69 W 292.15 W + 17.16
Efficiency 0.9596 0.9607 + 1.01
Power factor 0.8187 0.8100 - 1.06
Dis 63 mm 66.7 mm
hjr 10.5 mm 9.3 mm
histm 1.5 mm 1 mm
hjs 11.8 mm 9.8 mm
wt 5 mm 4 mm
gap 1 mm 0.9 mm
hmp 6 mm 4 mm
Lm 135 mm 100 mm

Table 4.6: Comparison of HOA with state-of-the-art algorithms on the second
version of the problem at hand

Best Mean Worst std
SADE -4.3065E+02 -4.2523E+02 -4.1173E+02 3.5328E+00
JADE -4.3065E+02 -4.2356E+02 -4.0376E+02 5.1813E+00
EPSDE -4.2842E+02 -4.1968E+02 -4.0693E+02 5.1628E+00
SHADE -4.3065E+02 -4.2370E+02 -4.0569E+02 6.9628E+00
Variant-1 -4.3065E+02 -4.2467E+02 -4.2256E+02 4.2569E+00
Variant-2 -4.3065E+02 -4.2823E+02 -4.2701E+02 2.1257E+00
Variant-3 -4.3065E+02 -4.3065E+02 -4.3065E+02 0
HOA -4.3065E+02 -4.3065E+02 -4.3065E+02 0
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Table 4.7: The best geometrical parameters for the second version

Symbol Optimized parameters
matot 9.27 kg
Pout / mtot 430.6538 W/kg
Dis 99mm
hjr 10.5 mm
histm 0.5 mm
hjs 8 mm
wt 5 mm
gap 1.2 mm
hmp 7.99 mm
Lm 114.2 mm

combines several complicated algorithms. Despite the low computational time of

the proposal, it is not straight-forward to be re-implemented due to the several

parameters that have to be tuned before the optimization process. In the next

sub-section, a novel hybrid DE algorithm is presented, where the new proposal is

ultimately easy to understand and re-implement.

4.1.2 A hybrid differential evolution algorithm for real world

problems (HDE)

It has been mentioned that several mutation strategies have been proposed to

improve DE performance. Unfortunately, none of these strategies can be successful

for all the optimization problems. In this proposition, we propose to exploit two

mutation strategies of DE in one framework: one for exploration and one for
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exploitation. The novelty of this algorithm can be summarized as follows:

• A multi-criteria-based selection operator to obtain balance between explo-

ration and exploitation.

• A new self-adaptive strategy based on a pheromone matrix to adapt the DE

parameters.

• A restart strategy when early convergence is detected.

4.1.2.1 Mutation strategies

Indeed, multiple mutation strategies could achieve a resilient performance [15],

[16]. In the context of our hybridization, DE/current-to-best/1 and DE/rand/2

are used in order to enhance the exploitation and exploration capabilities of DE:

DE/current-to-best/1 is a powerful strategy that relies on the best current individ-

ual to evolve the population which accelerate the convergence rate. This strategy

has shown promising performance in several works [17], [18]. In the context of

enhancing exploration, DE/rand/2 evolves the current individual using five ran-

dom parents from the population. DE/rand/2 behavior would potentially shift

the population towards undiscovered search regions [7], [19].

4.1.2.2 Pheromone matrix based self-adaptive strategy

Recent studies have shown the importance of controlling DE parameters on the

final results. To this issue, we propose pheromone matrix based self-adaptive

(PMS) strategy to enhance the performance of DE. PMS provides a set of discrete
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values of F and CR. Each individual selects the best F and CR. After, it updates

the pheromone matrix entry that corresponds to the chosen combination based

on its performance. Updating the pheromone matrix makes the algorithm more

cooperative by sharing the information with the other individuals. If the chosen

combination could improve the current individual, it will be rewarded by adding a

pheromone quantity to the corresponding matrix entry. This operation is applied

as follows:

M(i, j) = 0.5 ∗M(i, j) + 0.5 ∗ (f(i)− f ∗(i)) (4.8)

Otherwise, it will be penalized as follows:

M(i, j) = 0.5 ∗M(i, j)− 0.5 ∗ (f(i)− f ∗(i)) (4.9)

where M is the pheromone matrix, i is the index of F parameter, j is the index

of CR parameter, f(i) is the fitness of the parent individual and f ∗(i) is the

fitness of the new generated offspring. The entry update is based on how much

the fitness is improved/degraded which offers a kind of heuristic information to

the other individuals. It is important to point out that a different pheromone

matrix is updated for each mutation strategy, i.e. one for DE/current-to-best/1

and another one for DE/rand/2. Algorithm 6 shows the pseudo-code of DE using

PMS.
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Algorithm 6 One generation of DE algorithm using PMS

1: Input: population pop of NP individuals and pheromone matrix M , popold←
pop

2: Output: pop
3: for each individuals in popold do
4: Choose the best combination of F and CR from M
5: Apply the mutation strategy
6: Apply binomial crossover
7: if the offspring is better than the parent then
8: Replace the parent in pop with the offspring
9: Reward the corresponding entry according to (4.8)
10: else
11: Penalize the corresponding entry according to (4.9)
12: end if
13: end for

4.1.2.3 Multi-criteria selection

The balance between exploration and exploitation is essential for successful algo-

rithms [16]. A very elitist based-selection strategy highly favors exploitation and

may loss the diversity during the search process. In the contrast, adopting diversi-

fied selection strategy would consume a large number of iterations to reach a local

optimum. In the attempt to overcome this situation, a multi-criteria selection

strategy is proposed, which considers two criteria; the fitness value as an exploita-

tion criterion and the distance to the centroid individual of the current population

as a exploration criterion. The selection procedure is applied by performing a

non-dominated sorting [22] on a given population using these two conflicting cri-

teria. Non-dominated sorting allows sorting individuals based on several criteria.
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Accordingly, the less dominated individuals are selected. In other words, the selec-

tion procedure takes only in account the best and the furthest individuals from the

centroid point of the population. The proposed multi-criteria selection is depicted

in Algorithm 7.

Algorithm 7 Multi-criteria selection strategy

1: Input: population pop of NP individuals, fitness
2: Output: pop∗ of NP individuals
3: Compute the centroid point of pop
4: Compute the distance of each individual to the centroid point
5: Apply a non-dominated sorting on pop
6: Choose the N best ranked individuals

4.1.2.4 The proposed restart strategy

DE algorithm can suffer from an early convergence rate [20] and several works

have been introduced to tackle this issue [81], [60]. The early convergence causes

two issues:

• A stagnation issue due to a number of non-improving generations.

• A close distance between individuals which makes the algorithm more ex-

ploitative.

A simple technique is used to detect these two situations. The stagnation issue

can be discovered by counting the non-successful generations at improving the best

solution. While the close distance between individuals is detected by computing

the standard deviation of each dimension. A small standard deviation value means

that the whole population is stuck in one region, which potentially means early
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convergence. Our proposition stores at each generation an archive A of individuals

that represents the previous state of the population before the early convergence.

When early convergence is detected, the archive A is used to visit new points in

the search space as follows:

ui = xi + 0.5 ∗ (Ai − xi) (4.10)

where xi is the current individual, Ai is the previous state of xi before early

convergence. Here, ui is used in a binomial crossover with xi to generate a new

point as:

xji =

 uji if j = σj or Rj < 0.5

xGi,j otherwise
(4.11)

where Rj is a randomly generated number within the range [0,1], i is the current

individual index, j is the current dimension and σj is a randomly generated integer

within the range [1,D]. The proposed restart strategy is performed on the p

worst individuals of the population. The main aim here is to shift a fraction

of the population towards new search areas. The restart strategy is depicted in

Algorithm 8.

4.1.2.5 Combination of the algorithmic components

Each phase in the proposed approach is explained in this sub-section. First, a

population pop of NP individuals is randomly generated, the archive A is ini-

tialized with pop and the pheromone matrix is filled with real values randomly
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Algorithm 8 The restart strategy

1: Input: population pop of NP individuals
2: Output: pop
3: Choose p worst individuals from pop
4: for each individual among the NP/4 worst individuals do
5: Compute ui according to (4.10)
6: Perform a binomial crossover according to (4.11)
7: Update the current individual and compute its fitness
8: end for

generated within the range [0, 1]. Afterwards, Algorithm 6 is performed on pop

twice by using the two search operators DE/current-to-best/2 and DE/rand/2 to

produce a new population pop∗ of 2*(NP ) individuals. Then, the multi-criteria

selection strategy is applied selecting the NP best individuals to be evolved in the

next generations. In the case of a non-successful generation, a stagnation counter

STGcounter is increased by one. In each generation, the average standard deviation

of the population, denoted by meanstd is computed as follows:

meanstd = mean(std(i)) (4.12)

where std(i) is standard deviation value of the population in the dimension i. If

meanstd is less than a parameter ε, then the population is in exploitative state

and STGcounter is increased by one. When STGcounter reaches a threshold σ, the

restart strategy is performed on the p worst individuals of the population. The

archive A is updated only if meanstd is greater or equal to ε or the current best

solution could be improved. All the mentioned steps are presented in Algorithm
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9.

Algorithm 9 The proposed approach

1: Generate randomly a population pop of size NP
2: A ← pop
3: while the stopping criterion is not satisfied do
4: Apply Algorithm 6 on pop using DE/current-to-best/1 to generate pop1
5: Apply Algorithm 6 on pop using DE/rand/2 to generate pop2
6: pop∗ ← pop1 U pop2
7: Apply Algorithm 7 on pop∗ and update pop
8: Compute the average of standard deviation meanstd as in (4.12)
9: if the best individual is not improved or meanstd < ε then
10: STGcounter ← STGcounter + 1
11: else
12: STGcounter ← STGcounter - 1
13: A ← pop
14: end if
15: if STGcounter >= σ then
16: Apply Algorithm 8 on pop using the archive A
17: STGcounter ← 0
18: end if
19: end while

4.1.2.6 Experimental results

This proposal has been tested on the CEC 2011 test suite and the first version

of the problem at hand. Indeed, our proposal has a small number of parameters

which is illustrated in Table 4.8. Our hybrid algorithm has been compared with

powerful state-of-the-art DE variants as well as CS [97] and ABC [42] which have

been proved to be efficient when solving engineering problems [66, 87]. Further-

more, the algorithmic components of HDE are investigated by conducting another

experimentation with three variants. The variants are expressed as follows:
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• HDE1: HDE without the parameter adaptation strategy. F=0.5 and CR=0.9

• HDE2: HDE without the multi-criteria strategy. Instead, the selection pro-

cedure of DE is set.

• HDE3: HDE without the restart strategy.

Table 4.8: Parameter setting of the compared algorithms

Algorithm Parameters
Our proposition NP=200, ε = 5, σ=10, p= NP/4

SHADE Parameters taken from [42]
SADE Parameters taken from [11]
JADE Parameters taken from [100]

EPSDE Parameters taken from [90]

4.1.2.7 Comparison on CEC 2011

The comparison has been conducted using the CEC 2011 test suite. The obtained

results of all the algorithms can be seen in Table 4.9. In this table, the rows show

best and mean values of 30 runs of each algorithm for each function. The best

fitness found for each function is in bold. Besides, Kruskal-Wallis statistical test at

95% confidence level followed by a Tukey-Kramer post hoc test is performed, where

mean results that are significantly better than the ones of the other algorithms

are illustrated in bold. The results shown in Table 4.10 reveal a the advantage of

our proposition over the other algorithms. It can significantly outperform SHADE

and SADE in 8 functions, JADE in 5 functions and EPSDE in 18 functions.
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Table 4.9: Comparison of HDE with state-of-the-art algorithms on the CEC 2011
test suite

SHADE SADE JADE EPSDE The approach
F1 Best 2.73E-02 6.31E-01 2.57E-10 5.45E+00 0.00E+00

Mean 1.85E+00 2.49E+00 2.26E-01 9.10E+00 2.72E-23
F2 Best -2.44E+01 -1.95E+01 -2.45E+01 -2.19E+01 -2.84E+01

Mean -2.30E+01 -1.70E+01 -2.34E+01 -2.02E+01 -2.69E+01
F3 Best 1.15E-05 1.15E-05 1.15E-05

¯
1.15E-05 1.15E-05

Mean 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05
F4 Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F5 Best -3.66E+01 -3.32E+01 -3.64E+01 -3.60E+01 -3.69E+01

Mean -3.60E+01 -3.22E+01 -3.56E+01 -3.22E+01 -3.53E+01
F6 Best -2.91E+01 -2.63E+01 -2.92E+01 -2.88E+01 -2.92E+01

Mean -2.90E+01 -2.41E+01 -2.90E+01 -2.01E+01 -2.76E+01
F7 Best 9.06E-01 1.24E+00 9.10E-01 1.12E+00 5.51E-01

Mean 1.12E+00 1.37E+00 1.17E+00 1.30E+00 7.76E-01
F8 Best 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02

Mean 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02
F9 Best 1.14E+03 7.69E+02 1.13E+03 3.98E+04 1.15E+03

Mean 2.22E+03 1.73E+03 2.40E+03 9.28E+04 2.32E+03
F10 Best -2.18E+01 -2.18E+01 -2.18E+01 -2.02E+01 -2.18E+01

Mean --2.16E+01 -2.16E+01 -2.14E+01 -1.74E+01 -2.13E+01
F11 Best 5.15E+04 5.12E+04 5.15E+04 5.21E+04 5.12E+04

Mean 5.32E+04 5.21E+04 5.24E+04 5.86E+04 5.22E+04
F12 Best 1.07E+06 1.07E+06 1.07E+06 1.07E+06 1.07E+06

Mean 1.10E+06 1.09E+06 1.07E+06 1.09E+06 1.07E+06
F13 Best 1.55E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04

Mean 1.55E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04
F14 Best 1.80E+04 1.81E+04 1.80E+04 1.83E+04 1.80E+04

Mean 1.81E+04 1.81E+04 1.83E+04 1.86E+04 1.81E+04
F15 Best 3.27E+04 3.28E+04 3.27E+04 3.29E+04 3.27E+04

Mean 3.27E+04 3.28E+04 3.29E+04 3.30E+04 3.28E+04
F16 Best 1.26E+05 1.26E+05 1.26E+05 1.31E+05 1.26E+05

Mean 1.29E+05 1.28E+05 1.33E+05 1.42E+05 1.28E+05
F17 Best 1.88E+08 1.87E+06 1.87E+06 1.93E+06 1.89E+06

Mean 1.91E+06 1.90E+06 1.91E+06 2.06E+06 1.91E+06
F18 Best 9.37E+05 9.33E+05 9.35E+05 3.24E+06 9.36E+05

Mean 9.40E+05 9.38E+05 9.39E+05 6.06E+06 9.42E+05
F19 Best 9.39E+05 9.41E+05 9.39E+05 4.47E+06 9.43E+05

Mean 9.46E+05 9.46E+05 9.92E+05 7.16E+06 1.03E+06
F20 Best 9.34E+05 9.35E+05 9.36E+05 4.16E+06 9.37E+05

Mean 9.40E+05 9.37E+05 9.40E+05 6.21E+06 9.42E+05
F21 Best 1.41E+01 1.66E+01 1.31E+01 1.66E+01 9.53E+00

Mean 1.75E+01 1.97E+01 1.72E+01 1.97E+01 1.14E+01
F22 Best 1.31E+01 1.68E+01 1.19E+01 1.68E+01 8.74E+00

Mean 1.99E+01 2.18E+01 1.66E+01 2.18E+01 1.04E+01
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Table 4.10: Comparison of HDE with state-of-the-art algorithms using the statis-
tical test

VS Our proposition 22 functions of CEC 2011 test suite
+(better) 0

SHADE -(worse) 8
=(no sign) 14
+(better) 1

SADE -(worse) 8
=(no sign) 13
+(better) 1

JADE -(worse) 5
=(no sign) 16
+(better) 0

EPSDE -(worse) 18
=(no sign) 4

Another experimentation of HDE is conducted with its variants. Table 4.11

demonstrates the results obtained in CEC 2011 test suite, where a statistical test is

applied. Similarly, the best means are in bold. After applying the statistical test,

it has been found that HDE ultimately outperform HDE1 in 18 functions, which

reveals the importance of the adopted parameter adaptation strategy. In the same

context, HDE could outperform HDE2 in 11 functions, where the proposed multi-

criteria selection strategy has shown to be efficient in F1, F2, F5, F7, F9, F15,

F16, F17, F18, F19 and F21. It was also stated that HDE outperforms HDE3

in 13 functions, where it is demonstrated that the global search procedure (the

restart strategy) is necessary for an efficient optimization. Table 4.12 summarizes
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Table 4.11: Comparison of HDE with its variants

HDE1 HDE2 HDE3 HDE
F1 Best 2.74E+00 0.00E+00 0.00E+00 0.00E+00

Mean 5.36E+00 1.27E-05 1.96E-07 2.72E-23
F2 Best -1.67E+01 -2.55E+01 -2.34E+01 -2.84E+01

Mean -1.19E+01 -2.37E+01 -1.97E+01 -2.69E+01
F3 Best 1.15E-05 1.15E-05 1.15E-05 1.15E-05

Mean 1.15E-05 1.15E-05 1.15E-05 1.15E-05
F4 Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F5 Best -3.05E+01 -3.55E+01 -3.12E+01 -3.69E+01

Mean -3.11E+01 -3.19E+01 -3.05E+01 -3.53E+01
F6 Best -2.25E+01 -2.91E+01 -2.71E+01 -2.92E+01

Mean -1.87E+01 -2.72E+01 -2.32E+01 -2.76E+01
F7 Best 1.16E+00 8.29E-01 9.85E-01 5.51E-01

Mean 1.58E+00 1.01E+00 1.15E+00 7.76E-01
F8 Best 2.20E+02 2.20E+02 2.20E+02 2.20E+02

Mean 2.20E+02 2.20E+02 2.20E+02 2.20E+02
F9 Best 2.57E+03 1.19E+03 1.62E+03 1.15E+03

Mean 3.75E+03 2.79E+03 1.93E+03 2.32E+03
F10 Best -2.12E+01 -2.18E+01 -2.18E+01 -2.18E+01

Mean -1.89E+01 -2.14E+01 -2.16E+01 -2.13E+01
F11 Best 5.23E+04 5.12E+04 5.12E+04 5.12E+04

Mean 5.46E+04 5.23E+04 5.27E+04 5.22E+04
F12 Best 1.07E+06 1.07E+06 1.07E+06 1.07E+06

Mean 1.09E+06 1.07E+06 1.07E+06 1.07E+06
F13 Best 1.55E+04 1.54E+04 1.54E+04 1.54E+04

Mean 1.54E+04 1.54E+04 1.54E+04 1.54E+04
F14 Best 1.87E+04 1.80E+04 1.80E+04 1.80E+04

Mean 1.89E+04 1.81E+04 1.81E+04 1.81E+04
F15 Best 3.29E+04 3.27E+04 3.28E+04 3.27E+04

Mean 3.31E+04 3.29E+04 3.29E+04 3.28E+04
F16 Best 1.32E+05 1.28E+05 1.27E+05 1.26E+05

Mean 1.36E+05 1.30E+05 1.29E+05 1.28E+05
F17 Best 2.12E+06 1.91E+06 1.92E+06 1.89E+06

Mean 2.65E+06 1.92E+06 1.93E+06 1.91E+06
F18 Best 9.40E+05 9.39E+05 9.38E+05 9.36E+05

Mean 9.67E+05 9.46E+05 9.45E+05 9.42E+05
F19 Best 9.55E+05 9.52E+05 9.51E+05 9.43E+05

Mean 1.06E+06 1.05E+06 1.07E+05 1.03E+06
F20 Best 9.45E+05 9.39E+05 9.38E+05 9.37E+05

Mean 9.74E+05 9.42E+07 9.42E+05 9.42E+05
F21 Best 1.28E+01 9.56E+00 9.57+00 9.53E+00

Mean 2.56E+01 1.23E+01 1.25E+01 1.14E+01
F22 Best 1.71E+01 8.82E+00 9.52E+00 8.74E+00

Mean 2.28E+01 1.07E+01 1.28E+01 1.04E+01
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the results of the statistical test.

Table 4.12: Comparison of HDE with HDE1, HDE2 and HDE3 using the statistical
test

VS Our proposition 22 functions of CEC 2011 test suite
+(better) 0

HDE1 -(worse) 18
=(no sign) 4
+(better) 0

HDE2 -(worse) 11
=(no sign) 11
+(better) 0

HDE3 -(worse) 13
=(no sign) 9

4.1.2.8 Comparison on the optimization problem at hand

This sub-section represents of our algorithm performance on the problem at hand.

The results can be seen in Table 4.13 and 4.14, where unfortunately our hybrid pro-

posal have shown relatively worse results on the problem at hand in terms of mean

compared to HOA. However, compared to the state-of-the-art DE algorithms, it

could achieve promising results. Moreover, it can obtain the best solution known

so far, which has been obtained by the previous algorithm.

Finally, as mentioned above, the contribution of this hybrid DE algorithm con-

sists in combining two mutation strategies, and a multi-criteria selection strategy

to potentially achieve balance between exploration and exploitation. Moreover,

our proposal includes also a self-adaptive strategy to control F and CR. This

strategy has shown promising success in improving the final results. This point
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Table 4.13: Comparison of HDE with state-of-the-art algorithms on the first ver-
sion of the problem at hand

Best Mean Worst Std
SHADE -3.097E+03 -2.944E+03 -2.697E+03 4.42E+01
SADE -3.27E+03 -2.92E+03 -2.78E+03 3.97E+01
JADE -3.19E+03 -2.84E+03 -2.42E+03 4.03E+01

EPSDE -3.20E+03 -2.85E+03 -2.43E+03 4.12E+01
Our proposition -3.39E+03 -3.14E+03 -2.79E+03 5.17E+01

Table 4.14: Comparison of HDE with state-of-the-art algorithms on the second
version of the problem at hand

Best Mean Worst Std
SHADE -4.3065E+02 -4.2370E+02 -4.0569E+02 6.9628E+00
JADE -4.3065E+02 -4.2356E+02 -4.0376E+02 5.1813E+00

EPSDE -4.2842E+02 -4.1968E+02 -4.0693E+02 5.1628E+00
SADE -4.3065E+02 -4.2523E+02 -4.1173E+02 3.5328E+00
HDE -4.3065E+02 -4.2754E+02 -4.2597E+02 2.3471E+00

has motivated us to turn our attention to propose novel self-adaptive strategies

for DE, which will be discussed in detail in the next section.

4.2 Self-adaptive algorithms

Due to the rapid developement of optimization problems in terms of complex land-

scapes and high dimensionality, DE may not always achieve acceptable solutions

in a reasonable time [1]. Indeed, it has been shown by several studies that DE
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may get trapped in local optima and involves a slow convergence rate[80, 99, 71].

The aformentioned drawbacks can be potentially overcame by proposing flexible

search operators and/or introducing novel self-adaptive strategies for DE param-

eters. These strategies tend to tune the parameters based on trial-and-error pro-

cedures (offline), or adaptively modifying them, where a feedback from the search

history is considered [1, 15]. Following this context, we are focusing to propose

new online self-adaptive strategies. These strategies are integrated in different

proposed DE variants, which will be explained in the next sub-sections.

4.2.1 A dimension-based adaptive differential evolution for op-

timization problems (DADE)

Following the same context, another adaptive differential evolution algorithm is

proposed. The proposed parameter adaptation strategy relies on a hybrid self-

adaptive technique to adapt F parameter. Furthermore, a novel dimension-based

adaptation strategy is proposed to control CR parameter for each dimension. To

the best of our knowledge, it is the first technique attempting to control CR pa-

rameter for each dimension instead of each individual. In the following subsections,

the proposed strategies and the algorithmic combination are explained in detail.

4.2.1.1 A hybrid approach to adapt F parameter

Our hybrid strategy for F parameter is slightly similar to the proposition used in

JADE [100] which computes the Lehmer mean of the successful set of F parameters
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denoted as SF at each generation as follows:

meanL(SF ) =

∑
F∈SF

F 2∑
F∈SF

F
(4.13)

Then, a location parameter µF is computed as follows:

µF = (1− c).µF + c.meanL (4.14)

where c is is a positive constant between 0 and 1 and µF is initialized by 0.5.

Afterwards, F value parameter for each individual is generated using Cauchy dis-

tribution as follows:

Fi = randc(µF , 0.1); (4.15)

It has been stated that this procedure forces the algorithm to produce permanently

large values for F which ultimately decrease the exploitation capability[100]. In

order to achieve balance between exploration and exploitation, a switching mech-

anism randomly chooses between this technique and a simple procedure [10] to

produce smaller F values as follows:

F = 0.1 + α ∗ 0.9 (4.16)

where α is a randomly generated number from uniform distribution in [0,1]. The

switching between the strategies is performed by randomly generating a value be-

tween [0,1]. If this value is smaller than a parameter λ, then the F values are

generated using 4.15. Otherwise, F values are generated using 4.16 . Our param-
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eter adaptation strategy for the mutation scale factor is depicted in Algorithm 10.

Algorithm 10 Mutation parameter adaptation strategy

1: Input: successful F parameters set denoted as SF
2: Output: New F for each individual
3: if rand < λ then
4: if SF is not empty then
5: Compute the Lehmer mean of SF using (4.13)
6: Compute the location parameter µF using (4.14)
7: Generate a different value F for each individual using Cauchy distribution

with µF
8: else
9: Generate a different value F for each individual using Cauchy distribution

with µF = 0.5
10: end if
11: else
12: Generate a different value F for each individual using (4.16)
13: end if

4.2.1.2 A reinforcement learning technique to adapt CR parameter

A novel yet simple reinforcement learning technique is proposed to efficiently con-

trol CR parameter for each dimension. After applying the crossover between the

offspring population and the parents, a data structure called MatrixCR is ex-

ploited to record whether a given dimension is taken from the parent or from the

offspring. Then, the evaluation phase takes place. If an individual i is improved,

a fitness reward reward(i) is computed as follows:

reward(i) = 0.5 ∗ reward(i) + 0.5 ∗ (f(i)− f ∗(i)) (4.17)
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Otherwise, it will be penalized as follows:

reward(i) = 0.5 ∗ reward(i)− 0.5 ∗ (f(i)− f ∗(i)) (4.18)

where f(i) and f ∗(i) are the fitness of the parent and the new individual respec-

tively. Then, it will be normalized as follows:

NormReward(i) =
reward(i)−min(reward)

max(reward)−min(reward)
(4.19)

Afterwards, a parent and offspring scores are computed for each dimension using

NormReward(i), which stores the reward of all individuals. The objective is to

estimate the contribution of the parents and offspring in improving the fitness. If

the parent weight is larger than the offspring one, then the CR value for the given

dimension is decreased. This scenario would force sharing the value of the parent

for this dimension during the crossover procedure. Otherwise, the CR value is

increased. Computing the weights and updating CR parameters are depicted in

Algorithm 11.

This proposition is considered as a dimension-based parameter adaptation

strategy. To the best of our knowledge, it is the first work that adapts CR param-

eter for each dimension instead of each individual. Indeed, having a unified CR

value for all the dimensions might not be always successful due to the potential

weak correlation between dimensions. Moreover, although parameter adaptation

strategies does not involve a serious computational burden [70, 10], other strate-

gies in the litterature may need serious computational time [17] as noticed in
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Algorithm 11 Crossover parameter adaptation strategy

1: Input: MatrixCR, NormReward, dim, PopSize, parentweight,
offspringweight

2: Output: new CR for each dimension
3: while i < dim do
4: while j < PopSize do
5: if MatrixCR(j, i) = 0 then
6: parentweight(i) + = NormReward(j)
7: else
8: offspringweight(i) + = NormReward(j)
9: end if
10: end while
11: if parentweight(i) = offspringweight(i) then
12: CR(i) = 0.5
13: else
14: if parentweight(i) < offspringweight(i) then
15: CR(i) = 0.6 + rand *(0.3)
16: else
17: CR(i) = 0.4 - rand *(0.3)
18: end if
19: end if
20: end while
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[58] where DE parameters are adapted using the optimization process of Har-

mony Search (HS). Therefore, adapting the parameters for each dimension can

considerably reduce the computational time involved in the learning process of the

algorithm.

4.2.1.3 Combination of the algorithmic components

Initially, our algorithm randomly generates F values (for each individual) and CR

values (for each dimension) to be applied. Afterwards, a simple DE algorithm is

applied involving DE/current-to-pbest/1 [100] which is expressed as follows:

vG+1
i = xGbest + F .(xGpbest-x

G
i ) + F .(xGr1-x

G
r2 )

where xGpbest is one of the best (100p) percent of the solutions in the current popu-

lation, xGr1 and xGr2 are randomly chosen individuals from the current population.

It is important to point out that p represent the fraction of the best individuals

to be used in the mutation. This mutation strategy has been succesfully applied

within several DE variants [80, 82, 100] thanks to its balance capability between

exploration and exploitation. However, our proposition picks individuals randomly

only from the current population (no archive), which simplifies the algorithm and

reduces its memory complexity. Furthermore, the success of any proposed pa-

rameter adaptation strategy depends on a mutation strategy that slightly favors

exploitation [74]. Following the same context, we have set p=0.02 (p ∈ [0.05,0.2]

in other proposals [82, 100]). Then, a binomial crossover is performed to generate

vectors. During this phase, MatrixCR is used to record whether a given dimen-

sion in the trial to be generated is taken from the parent or the offspring. This
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procedure is applied as an initial step to adapt CR parameter for the next gener-

ation. After performing one generation of DE, the proposed parameter adaptaion

strategy takes place to generate F and CR for the next generation. Finally, a

linear reduction of the population size is performed. It eliminates a fraction of the

worst individuals to accelerate the convergence rate during the search process [82].

The new population size is computed as follows:

NPG+1 = round(
NPmin −NP init

MaxIT
.IT +NP init) (4.20)

where NPmin is the smallest possible population size, NP init is the starting pop-

ulation size, MaxIT is the maximum number of iterations and IT is the current

iteration. The proposition is depicted in Algorithm 12.

4.2.1.4 Experimental results

An evaluation of our proposal is presented on the first version of the problem at

hand. Similarly, our algorithm is evaluated as well on the CEC 2011 test suite. The

algorithm is compared with several state-of-the-art DE variants. The parameter

setting of the compared algorithms are given in Table 4.15.

Table 4.15: Parameter setting of the compared algorithms

Algorithm Parameters
Our proposition PopSize = dim*7, λ = 0.5, p = 0.02, c = 0.3
EPSDE Parameters taken from [90]
SADE Parameters taken from [11]
JADE Parameters taken from [100]
SHADE Parameters taken from [80]
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Algorithm 12 Dimension-based adaptive differential evolution (DADE)

1: Input: population pop of PopSize individuals, dim, MatrixCR, reward
2: Output: pop
3: while Budget is not consumed do
4: popold ← pop
5: Apply Algorithm 1 to generate F value for each individual
6: Apply Algorithm 2 to generate CR value for each dimension
7: for each individuals i in popold do
8: Apply the mutation strategy to generate mutantij
9: while j < dim do
10: if rand < CR(j) then
11: uG+1

j ← popoldij
12: MatrixCR(i, j) ← 1
13: else
14: uG+1

j ← mutantij //crossover procedure
15: MatrixCR(i, j) ← 0
16: end if
17: j ← j + 1
18: end while
19: if uG+1

j is better than popoldij then

20: popij ← uG+1
j

21: Update the corresponding entry in reward according to (2.14)
22: else
23: Penalize the corresponding entry in reward according to (2.15)
24: end if
25: Normalize reward according to (2.16)
26: Apply linear reduction of the population size to eliminate a fraction of

the worst individuals using (3.1)
27: end for
28: end while
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4.2.1.5 Comparison on CEC 2011 benchmark

The results of our proposal as well as the other algorithms are depicted in Table

4.16. This table shows the best and mean values of 25 runs of each algorithm

for each problem (CEC 2011 experimentation protocol). The best fitness found

for each function is in bold. Mean results that are significantly better than the

ones of the other algorithms, according to the Kruskal-Wallis statistical test at

95% confidence level followed by a Tukey-Kramer post hoc test, are also in bold.

The results presented in Table 4.17 show that our proposal outperforms the other

DE variants. It can significantly outperform SHADE in 8 functions, SADE in 10

functions, JADE in 6 functions and EPSDE in 13 functions.

4.2.1.6 Comparison with variants of the proposition

In order to discuss the influence of each algorithmic component on the performance

of our proposition, a comparative study has been conducted. The first variant is

without linear size reduction is named DADE1, and the second is the proposal

without the proposed control parameter strategy named DADE2. To conduct

the comparison, the convergence rate of the aforementioned variants is presented,

where an ensemble of functions has been picked to show the convergence rate of

each variant. Figure 4.1, 4.2 and 4.4 represents the convergance rate of DADE and

its variants, where the horizontal axe represents the fitness value and the vertical

one represents the number of iterations. DADE exhibits a quicker convergence

rate towards the best solutions in functions 2, 5 and 10 compared to its variants.

The results reveal that DADE1 can obtain similar performance compared to our
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Table 4.16: Comparison of DADE with state-of-the-art algorithms on the CEC
2011 test suite

SHADE SADE JADE EPSDE DADE

F1 Best 2.73E-02 6.31E-01 2.57E-10 5.45E+00 0.00E+00
Mean 1.85E+01 7.59E-01 2.26E-01 9.10E+00 0.00E+00

F2 Best -2.44E+01 -1.95E+01 -2.45E+01 -2.19E+01 -2.78E+01
Mean -2.30E+01 -1.70E+01 -2.34E+01 -2.02E+01 -2.31E+01

F3 Best 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05
Mean 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05

F4 Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

F5 Best -3.66E+01 -3.32E+01 -3.64E+01 -3.60E+01 -3.70E+01
Mean -3.60E+01 -3.22E+01 -3.56E+01 -3.22E+01 -3.36E+01

F6 Best -2.91E+01 -2.63E+01 -2.92E+01 -2.88E+01 -2.91E+01
Mean -2.90E+01 -2.41E+01 -2.90E+01 -2.01E+01 -2.76E+01

F7 Best 9.06E-01 1.24E+00 9.10E-01 1.12E+00 6.30E-01
Mean 1.12E+00 1.37E+00 1.17E+00 1.30E+00 1.04E-01

F8 Best 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02
Mean 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02

F9 Best 1.14E+03 7.69E+02 1.13E+03 3.98E+04 2.82E+04
Mean 2.22E+03 1.73E+03 2.40E+03 9.28E+04 8.22E+04

F10 Best -2.18E+01 -2.18E+01 -2.18E+01 -2.02E+01 -2.18E+01
Mean -2.16E+01 -2.16E+01 -2.14E+01 -1.74E+01 -2.16E+01

F11 Best 5.15E+04 5.12E+04 5.15E+04 5.21E+04 5.17E+04
Mean 5.32E+04 5.21E+04 5.24E+04 5.86E+04 5.25E+04

F12 Best 1.07E+06 1.07E+06 1.07E+06 1.07E+06 1.08E+06
Mean 1.10E+06 1.09E+06 1.07E+06 1.09E+06 1.22E+06

F13 Best 1.55E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04
Mean 1.55E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04

F14 Best 1.80E+04 1.81E+04 1.80E+04 1.83E+04 1.80E+04
Mean 1.81E+04 1.81E+04 1.83E+04 1.86E+04 1.81E+04

F15 Best 3.27E+04 3.28E+04 3.27E+04 3.29E+04 3.27E+04
Mean 3.27E+04 3.28E+04 3.29E+04 3.30E+04 3.27E+04

F16 Best 1.26E+05 1.26E+05 1.26E+05 1.31E+05 1.25E+05
Mean 1.29E+05 1.28E+05 1.33E+05 1.42E+05 1.26E+05

F17 Best 1.88E+08 1.87E+06 1.87E+06 1.93E+06 1.87E+06
Mean 1.91E+06 1.90E+06 1.91E+06 2.06E+06 1.89E+06

F18 Best 9.37E+05 9.33E+05 9.35E+05 3.24E+06 9.38E+05
Mean 9.40E+05 9.38E+05 9.39E+05 6.06E+06 9.41E+05

F19 Best 9.39E+05 9.41E+05 9.39E+05 4.47E+06 9.38+05
Mean 9.52E+05 9.46E+05 9.92E+05 7.16E+06 9.45+05

F20 Best 9.34E+05 9.35E+05 9.36E+05 4.16E+06 9.37E+05
Mean 9.40E+05 9.37E+05 9.40E+05 6.21E+06 9.40E+05

F21 Best 1.41E+01 1.66E+01 1.31E+01 1.66E+01 8.66E+00
mean 1.75E+01 1.97E+01 1.72E+01 1.97E+01 1.38E+01

F22 Best 1.31E+01 1.68E+01 1.19E+01 1.68E+01 1.50E+01
Mean 1.99E+01 2.18E+01 1.66E+01 2.18E+01 1.88E+01
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Table 4.17: Comparison of DADE with state-of-the-art algorithms using the sta-
tistical test

VS DADE 22 functions of CEC 2011 test suite

+(better) 0
EPSDE -(worse) 13

=(no sign) 9
+(better) 3

SADE -(worse) 10
=(no sign) 9
+(better) 2

JADE -(worse) 6
=(no sign) 14
+(better) 1

SHADE -(worse) 8
=(no sign) 13

algorithm, which can be concluded from Figure 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10.

Moreover, Figure 4.3 shows that DADE2 outperforms DADE for the function

9. It can be noticed as well that DADE1 has a slower convergence rate when

compared with the other variants. Indeed, these results show that our proposed

control parameter strategy has a great impact on the proposition performance.
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Figure 4.1: Convergence rate of DADE variants in function 2
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Figure 4.2: Convergence rate of DADE variants in function 5
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Figure 4.3: Convergence rate of DADE variants in function 9
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Figure 4.4: Convergence rate of DADE variants in function 10
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Figure 4.5: Convergence rate of DADE variants in function 11
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Figure 4.6: Convergence rate of DADE variants in function 14
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Figure 4.7: Convergence rate of DADE variants in function 15
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Figure 4.8: Convergence rate of DADE variants in function 20
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Figure 4.9: Convergence rate of DADE variants in function 21
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Figure 4.10: Convergence rate of DADE variants in function 22

4.2.1.7 Comparison on the problem at hand

It should be noted that PopSize is set to 400 in our experimentation protocol. The

proposal has been run 30 times. The best, mean, worst solutions and the standard

deviation of each algorithm have been gathered. It is stated from Table 4.18 that
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our proposal could obtain the best solution compared to the other variants on the

first version of the problem at hand.

Table 4.18: Comparison of DADE with state-of-the-art algorithms on the first
version of the problem at hand

Best Mean Worst Std

SADE -3.271E+03 -2.920E+03 -2.780E+03 81.49
JADE -3.194E+03 -2.840E+03 -2.420E+03 96.23
EPSDE -3.200E+03 -2.850E+03 -2.430E+03 102.65
SHADE -3.097E+03 -2.944E+03 -2.697E+03 44.28
DADE -3.397E+03 -3.275E+03 -3.163E+03 29.49

Moreover, Figure 4.11 shows the advantage of our proposition in terms of con-

vergence rate compared to DADE1 and DADE2. It is noticed that removing the

control parameter strategy ultimately decreases the convergence rate, which con-

firms the results found for CEC 2011 test suite.
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Figure 4.11: Convergence rate of DADE variants in the problem at hand
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Table 4.19: Comparison of DADE with state-of-the-art algorithms on the second
version of the problem at hand

Best Mean Worst Std

SADE -4.3065E+02 -4.2523E+02 -4.1173E+02 3.5328E+00
JADE -4.3065E+02 -4.2356E+02 -4.0376E+02 5.1813E+00
EPSDE -4.2842E+02 -4.1968E+02 -4.0693E+02 5.1628E+00
SHADE -4.3065E+02 -4.2370E+02 -4.0569E+02 6.9628E+00
DADE -4.3065E+02 -4.2654E+02 -4.2397E+02 2.0171E+00

Similarly, the proposed algorithm could obtain the best solution known so far

for the second version of the problem at hand. The results are depicted in 4.19.

Besides, DADE could outperform the other variants in terms of mean and worst

solutions.

As it can be noticed, DADE relies on a simple reinforcement learning technique

to control CR parameter, which has shown to be competitive compared to several

state-of-the-art self-adaptive DE algorithms. Indeed, this technique has motivated

us to propose other machine learning-based parameter adaptation strategies. Fol-

lowing this context, novel parameter adaptation strategies are proposed in the

following sub-sections.
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4.2.2 An eigenvector-enhanced parallel adaptive differential evo-

lution for electric motor design (PEADE)

This sub-section is devoted to explain our proposal entitled Parallel eigenvector-

enhanced adaptive DE (PEADE). The main contribution of PEADE can be seen

as:

• The proposition of a new adaptive differential evolution algorithm.

• The parallelization of the approach using GPU platforms.

• The topology optimization of a recent electric motor.

4.2.2.1 Modified Pheromone matrix-based adaptation strategy

The first component of PEADE is a modified version of PMS, which was proposed

in HDE (see Section 1). Our modified strategy relies on a matrix called Pheromone

Matrix (PM). PM represents a pool of 100 discret combinations of F and CR,

where each combination has a score. It should be stated that PM rows represent

F values, and the culumns represent CR values. The combination values varie in

the discret range [0.1, 1] as it can be seen in Figure 4.12. The first phase called

”learning phase”, which consumes 10% of the budget. In this phase, a combination

is randomly selected from PM to be applied on the search operators. Afterwards,

a score is assigned to the current combination by updating the corresponding entry

in PM . Assigning a score depends on the contribution of the given combination

on each individual. If it could improve a given individual, it is rewarded according

to equation 4.8. It is penalized according to equation 4.9 otherwise. PM values
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Figure 4.12: The pheromone matrix

are then normalized as follows:

PM(i, j) =
PM(i, j)−min(PM)

max(PM)−min(PM)
(4.21)

After the learning phase, the next phase called ”deduction phase” takes place. A

new combination for the population is computed using the weighted Lehmer mean.

The weighted Lehmer mean is applied using the best 10 combinations. Indeed,

using the weighted Lehmer mean allows generating new combination closed to

the combinations that has highest weight (highest score), which can not achieved

applying the arithmetic mean. The new combination is generated as follows:

F =

∑n
k=1 PMk(i, j).(i/10)2∑n
k=1 PMk(i, j).(i/10)

(4.22)
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and

CR =

∑n
k=1 PMk(i, j).(j/10)2∑n
k=1 PMk(i, j).(j/10)

(4.23)

where i and j are the kth best indices of PM respectively.

4.2.2.2 The proposed mutation framework

A simple mutation framework is introduced in order to gradually enhance the

exploitation of the algorithm. The algorithm starts with DE/current-to-pbest/1

which is presented as follows:

vG+1
i = xGi + F.(xGpbest − xGi ) + F.(xGr1 − xGr2) (4.24)

where xGpbest is one of the p% best individuals in the current population. DE/current-

to-pbest/1 has been introduced in [99], where a balance between exploration and

exploitation has been achieved. However, it has been stated that while linear

reduction of the population is applied, this strategy performance can be limited

when very small population size is present. Accordingly, a high possibility that

the difference between xGpbest and xGi is zero may occur. In other words, the par-

ent vector can be one of the xpbest individuals. As a consequence, the mutation

would perturb the parent vector using two random individuals from the popula-

tion. To potentially overcome this scenario, a modified mutation equation called

DE/current-to-centroid/1 is introduced. DE/current-to-centroid/1 computes the

centroid individual of the p% best individuals using arithmetic mean. Afterwards,

the centroid will be involved in equation (4.24) instead of xGpbest. This scenario
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would allow all the individuals to evolve in the same manner, where they would

move toward a promising region that shares the information of all xpbest. Be-

sides, a switching technique to choose between the two strategies is proposed.

SwitchingProbability parameter is introduced to select DE/current-to-pbest/1

during the first iterations. Then, gradually, SwitchingProbability is decreased to

favor DE/current-to-centroid/1 in the last phases of the search process in order

to enhance the exploitation capability of the approach. The general framework is

summarized in Algorithm 13.

Algorithm 13 The proposed mutation framework

1: Input: The population, SwitchingProbability
2: Output: The mutant population
3: if rand < SwitchingProbability then
4: Apply DE/current-to-pbest/1
5: else
6: Apply DE/current-to-centroid/1
7: end if

4.2.2.3 The proposed crossover framework

A recent crossover search operator called eigenvector-based crossover is introduced.

Indeed, eigenvector-based crossover can be appropriate when tackling landscapes

of highly correlated individuals. According to [21], exploiting information such

as mean value, variance and covariance matrix during the crossover phase may

have an impact on the final results. It has been shown that the normal binomial

crossover does not take such information in consideration [91]. In order to relax DE

dependence on the original coordinate system, a covariance matrix is computed to
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provide an eigen coordinate system [33, 91]. The new system is then used to apply

the crossover. The eigenvector-based crossover can be explained in the following

steps:

Step 1: Calculate the covariance matrix C of the current population.

Step 2: Perform eigen decomposition as follows:

C = BD2BT (4.25)

where B and BT are orthogonal matrices and D is a diagonal matrix composed of

Eigen values.

Step 3: Move the parent and the mutant vectors to the new cordinate system

as follows:

x
′

i,G = BT .xi,G (4.26)

v
′

i,G = BT .vi,G (4.27)

Step 4: Perform the binomial crossover on x
′
i,G and v

′
i,G:

u
′

i,j,G+1 =

 v
′
i,j,G if j = σj or Rj < CR

x
′
i,j,G otherwise

(4.28)
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Step 5: Transfer u
′
i,j,G+1 to the original coordinate system as follows:

ui,j,G+1 = B.u
′

i,j,G+1 (4.29)

The contribution of the eigenvector-based crossover on DE performance has been

deeply investigated in several studies, such as [33, 34]. However, we have no-

ticed that applying this crossover ignoring its powerful exploitation capability can

make the algorithm stuck in a local optimum. In our study, the normal bino-

mial crossover can be seen as an exploration phase of PEADE. We propose to

hybridize the two search operators in a single framework, where the exploitation is

gradually enhanced by decreasing SwitchingProbability parameter that favors the

eigenvector-based crossover as time goes by. Our proposed crossover framework

can be summarized in Algorithm 14.

Algorithm 14 The proposed crossover framework

1: Input: The population, SwitchingProbability
2: Output: The mutant population
3: if rand < SwitchingProbability then
4: Apply binomial crossover
5: else
6: Apply eigenvector-based crossover
7: end if

4.2.2.4 Combination of the algorithmic components

This subsection is devoted to present how the explained algorithmic components

are combined for our proposal.

First, a population of NP individuals is generated and SwitchingProbability
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is initialized with 0.9. Afterwards, the proposed parameter adaptation strategy

is performed. In the learning phase, a randomly generated pair (F/CR) is ap-

plied on the population. The objective of this step is to update PM in or-

der to exploit its results afterwards. Using a chosen combination, the mutation

framework is applied, where DE/current-to-pbest/1 is favored to be applied since

SwitchingProbability value is large during the first iterations. Then, the crossover

framework phase takes place favoring the binomial crossover to be performed at

the beginning. The eigenvector-based crossover is favored in the last iterations

since it enhances DE exploitation capability on landscapes of highly correlated

variables. It should be mentioned that SwitchingProbability is linearly decreased

using the following equation:

SwitchingProbability = max

{
0, 0.9− CurrentIteration

Budget

}
(4.30)

At the end of each iteration of PEADE, a linear reduction of the population size

is applied, where a fraction of the worst individuals are removed. This procedure

tends to be useful in several proposals such as [4, 33, 82], where it could accelerate

the convergence rate. The new population size is computed as follows:

NPG+1 = round(
NPmin −NPinit

Budget
.CurrentIteration+NPinit) (4.31)

where NPmin is the smallest population size, NPinit is the initial population size,

Budget is the maximum number of iterations and CurrentIteration is the current

iteration. The whole approach can be depicted in Algorithm 15.
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Algorithm 15 Parallel eigenvector-enhanced adaptive DE (PEADE)

1: Randomly initialize the population pop of NP individuals
2: SwitchingProbability ← 0.9
3: while Budget is not consumed do
4: Apply pheromone matrix-based adaptation strategy
5: Apply the proposed mutation framework using Algorithm 13
6: Apply the proposed crossover framework using Algorithm 14
7: Apply the selection procedure of DE
8: Apply linear reduction of SwitchingProbability using equation 4.30
9: Apply linear reduction of the population using equation 4.31
10: end while

4.2.2.5 Empirical study

The obtained results of PEADE for the application at hand as well as a set of

22 real world problems of the CEC 2011 test suite are presented. It can be no-

ticed that PEADE does not contain a big number of parameters compared to

recent self-adaptive DE variants. Indeed, there are just four parameters, which

are the maximum population size, the minimum population size, the initial value

of SwitchingProbability and the fraction of the best solutions in the current pop-

ulation p. PEADE parameters can be summarized in Table 4.20. PEADE per-

Table 4.20: Algorithm parameters

Parameter Parameter value
maximum population size D * 7
minimum population size 10
SwitchingProbability 0.9

p 0.1
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formance is investigated by conducting a comparison with recent state-of-the-art

adaptive DE such as JADE [99], SHADE [80], L-SHADE [82], SPS-EIG-LSHADE

[33] and our hybrid DE previously proposed since it also includes a parameter

adaptation strategy and we call it (HDE). Besides, another comparison is per-

formed with several variants of PEADE to show how the algorithmic components

influence PEADE performance. PEADE variants are set as follows:

• PEADE 1: the proposal without eigenvectors-based crossover.

• PEADE 2: the proposal with only DE/current-to-pbest/1.

• PEADE 3: the proposal without the proposed parameter adaptation strat-

egy.

Finally, a comparison in terms of acceleration time is conducted with the parallel

version.

4.2.2.6 Comparison on CEC 2011

Table 4.21 summarizes the obtained results in terms of mean and best values for

each application of CEC 2011 test suite. It is noticed that PEADE outperforms

the other algorithms. To validate the results, a Kruskal-Wallis statistical test is

performed, where the best means of each function are set in bold as it can be seen

in Table 4.21, the rows show best and mean values of 25 runs of each algorithm for

each function. Table 4.21 shows the advantage of PEADE over the other adaptive

DE approaches. It can significantly outperform SPS-EIG-LSHADE in 9 functions,
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Table 4.21: Comparison of PEADE with state-of-the-art algorithms on the CEC
2011 test suite

EPSDE SADE JADE SHADE L-SHADE SPS-EIG-LSHADE PEADE
F1 Best 5.45E+00 2.57E-10 2.57E-10 2.73E-02 0.00E+00 0.00E+00 0.00E+00

Mean 9.10E+00 2.26E-01 2.26E-01 1.85E+01 1.62E-04 2.35E-07 2.87E-18
F2 Best -2.19E+01 -2.45E+01 -2.45E+01 -2.44E+01 -2.82E+01 -2.84+01 -2.73+01

Mean -2.02E+01 -2.34E+01 -2.34E+01 -2.30E+01 -2.62E+01 -2.61E+01 -2.29+01
F3 Best 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05

Mean 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05
F4 Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F5 Best -3.60E+01 -3.64E+01 -3.64E+01 -3.66E+01 -3.68E+01 -3.68E+01 -3.68E+01

Mean -3.22E+01 -3.56E+01 -3.56E+01 -3.60E+01 -3.63E+01 -3.62E+01 -3.19E+01
F6 Best -2.88E+01 -2.92E+01 -2.92E+01 -2.91E+01 -2.91E+01 -2.91E+01 -2.74E+01

Mean -2.01E+01 -2.90E+01 -2.90E+01 -2.90E+01 -2.90E+01 -2.92E+01 -2.24E+01
F7 Best 1.12E+00 9.10E-01 9.10E-01 9.06E-01 9.63E-01 7.11E-01 7.29E-01

Mean 1.30E+00 1.17E+00 1.17E+00 1.12E+00 1.22E+00 1.12E+00 9.91E-1
F8 Best 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02

Mean 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02
F9 Best 3.98E+04 1.13E+03 1.13E+03 1.14E+03 1.12E+03 1.72E+03 1.04E+03

Mean 9.28E+04 2.40E+03 2.40E+03 2.22E+03 8.17E+03 2.77E+03 1.78E+03
F10 Best -2.02E+01 -2.18E+01 -2.18E+01 -2.18E+01 -2.16E+01 -2.18E+01 -2.18E+01

Mean -1.74E+01 -2.14E+01 -2.14E+01 -2.16E+01 -2.15E+01 -2.16E+01 -2.16E+01
F11 Best 5.21E+04 5.15E+04 5.15E+04 5.15E+04 5.11E+04 5.10E+04 4.99E+04

Mean 5.24E+04 5.24E+04 5.24E+04 5.22E+04 5.20E+04 5.19E+04 5.08E+04
F12 Best 1.07E+06 1.07E+06 1.07E+06 1.07E+06 1.07E+06 1.07E+06 1.07E+06

Mean 1.09E+06 1.07E+06 1.07E+06 1.10E+06 1.07E+06 1.07E+06 1.07E+06
F13 Best 1.54E+04 1.54E+04 1.54E+04 1.55E+04 1.54E+04 1.54E+04 1.54E+04

Mean 1.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04
F14 Best 1.83E+04 1.80E+04 1.80E+04 1.80E+04 1.80E+04 1.80E+04 1.81E+04

Mean 1.83E+04 1.83E+04 1.83E+04 1.81E+04 1.81E+04 1.81E+04 1.81E+04
F15 Best 3.29E+04 3.27E+04 3.27E+04 3.27E+04 3.27E+04 3.27E+04 3.27E+04

Mean 3.30E+04 3.29E+04 3.29E+04 3.27E+04 3.27E+04 3.27E+04 3.27E+04
F16 Best 1.31E+05 1.26E+05 1.26E+05 1.22E+05 1.22E+05 1.23E+05 1.23E+05

Mean 1.42E+05 1.33E+05 1.33E+05 1.29E+05 1.26E+05 1.24E+05 1.23E+05
F17 Best 1.93E+06 1.87E+06 1.87E+06 1.88E+08 1.83E+06 1.87E+06 1.81E+06

Mean 2.06E+06 1.91E+06 1.91E+06 1.91E+06 1.86E+06 1.85E+06 1.82E+06
F18 Best 3.24E+06 9.35E+05 9.35E+05 9.37E+05 9.29E+05 9.33E+05 9.29E+05

Mean 6.06E+06 9.39E+05 9.39E+05 9.40E+05 9.33E+05 9.33E+05 9.31E+05
F19 Best 4.47E+06 9.39E+05 9.39E+05 9.39E+05 9.38E+05 9.42E+05 9.37+05

Mean 7.16E+06 9.92E+05 9.92E+05 9.52E+05 9.40E+05 9.40E+05 9.39E+05
F20 Best 4.16E+06 9.36E+05 9.36E+05 9.34E+05 9.30E+05 9.29E+05 9.28E+05

Mean 6.21E+06 9.40E+05 9.40E+05 9.40E+05 9.32E+05 9.32E+05 9.31E+05
F21 Best 1.66E+01 1.31E+01 1.31E+01 1.41E+01 1.44E+01 1.07E+01 9.45E+00

Mean 1.97E+01 1.72E+01 1.72E+01 1.75E+01 1.61E+01 1.38E+01 1.49E+01
F22 Best 1.19E+01 1.68E+01 1.19E+01 1.31E+01 8.60E+00 8.61E+00 1.64E+01

Mean 2.18E+01 1.66E+01 1.66E+01 1.99E+01 1.42E+01 1.24E+01 1.83E+01
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L-SHADE in 10 functions, SHADE and JADE and SADE in 12 functions. Finally,

it can outperform EPSDE in 13 functions as it can be seen in Table 4.22.

Table 4.22: Comparison of PEADE using Kruskal-Wallis statistical test

VS Our proposition 22 functions of CEC 2011 test suite
+(better) 4

SPS-EIG-LSHADE -(worse) 9
=(no sign) 9
+(better) 3

L-SHADE -(worse) 10
=(no sign) 9
+(better) 2

SHADE -(worse) 12
=(no sign) 8
+(better) 1

JADE -(worse) 12
=(no sign) 9
+(better) 0

EPSDE -(worse) 13
=(no sign) 9
+(better) 2

SADE -(worse) 12
=(no sign) 8

The importance of each algorithmic components of PEADE can be noticed

by running a different experimentation. This experimentation is performed to

compute convergence rate, where functions 17, 18, 19 and 20 are considered.

It is noticed from Figure 4.14 that PEADE 1 and PEADE 3 have a slower

convergence rate compared to PEADE and PEADE 2. It confirms the importance

of the introduced eigenvectors-based crossover and parameter adaptation strate-

gies. In the other hand, PEADE 2 could slightly obtain a similar performance
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Figure 4.13: The average convergence rate of PEADE variants on functions 17, 18
after 25 runs. 100
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compared to PEADE in the first iterations. Even-though, its performance de-

creases gradually in the last iterations. This behavior reveal the importance of

eigenvectors-based crossover for improving the final results.

4.2.2.7 Comparison on the problem at hand

PEADE has been tested on both versions of the problem at hand. PEADE has

been run 30 times, where the best, mean and worst of each algorithm are collected.

It is observed from Table 4.23 and Table 4.24 that PEADE can achieve the best

performance compared to the other algorithms in terms of mean and best. More-

over, it is noticed that PEADE has a stable performance (standard deviation =

0).

Table 4.23: Comparison of PEADE with state-of-the-art algorithms on the first
version of the problem at hand

Best Mean Worst Std

SADE -3.271E+03 -2.920E+03 -2.780E+03 81.49
JADE -3.194E+03 -2.840E+03 -2.420E+03 96.23
EPSDE -3.200E+03 -2.850E+03 -2.430E+03 102.65
SHADE -3.097E+03 -2.944E+03 -2.697E+03 44.28
L-SHADE -3.197e+03 -3.044e+03 -2.797e+03 107
SPS-eig-LSHADE -3.214e+03 -3.107e+03 -2.897e+03 98.42
PEADE -3.397E+03 -3.397E+03 -3.397E+03 0
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Table 4.24: Comparison of PEADE with state-of-the-art algorithms on the second
version of the problem at hand

Best Mean Worst Std

SADE -4.3065E+02 -4.2523E+02 -4.1173E+02 3.5328E+00
JADE -4.3065E+02 -4.2356E+02 -4.0376E+02 5.1813E+00
EPSDE -4.2842E+02 -4.1968E+02 -4.0693E+02 5.1628E+00
SHADE -4.3065E+02 -4.2370E+02 -4.0569E+02 6.9628E+00
L-SHADE -4.3065E+02 -4.3043E+02 -4.301E+02 2.7463E-01
SPS-eig-LSHADE -4.3065E+02 -4.3050E+02 -4.3010E+02 2.4922E-01
PEADE -4.3065E+02 -4.3065E+02 -4.3065E+02 0

4.2.2.8 The parallel implementation

The main reason behind proposing a parallel implementation is the high compu-

tational time of some components of PEADE. We have noticed that computing

covariance matrix, the eigenvectors and the evaluation of individuals with some

problems from CEC 2011 test suite are time-consuming. The algorithmic struc-

ture of PEADE has not been changed while implementing the parallel version.

All the components have been parallelized using separate GPU kernels while CPU

launches them in the correct order. On the one hand, seven kernels have been in-

troduced for the parallel version. Six kernels of NP blocks and dim threads have

been implemented for the initialization, the mutations, the crossover and the eval-

uation, whereas one kernel of NP threads has been implemented for the parameter

adaptation strategy. On the other hand, three procedures has been implemented
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using different CUDA libraries. The procedures are depicted as follows:

• Covariance matrix procedure: it is implemented to compute covariance ma-

trix, where CUDA libraries such as CUBLAS and THRUST are involved.

• Eigenvectors procedure: it is implemented to compute the eigenvectors of

the computed covariance matrix, where cuSolver CUDA library has been

exploited.

• Linear reduction procedure: It has been stated that erasing the worst individ-

uals from the population can be computationally expensive since it involves

an intensive memory access. This procedure has been proposed to compute

the new reduced population size. Then, the population is sorted based on

the fitness of each individual using thrust CUDA library. Finally, the worst

individuals will be placed at the end and they will be just ignored. Besides,

this procedure linearly reduce SwitchingProbability value.

4.2.2.9 Comparison with the parallel implementation

The results of parallel version of PEADE are presented in this sub-section. It has

been noticed that some problems of the CEC 2011 test suite are appropriate to be

parallelized such as functions 12, 17 and 18. It can be stated from Table 4.25 that

the sequential PEADE can slightly achieve the same effeciency compared to the

parallel version in case NP=400. Neverthless, the computational time decreases

when we increase the population size achieving a speed up of 2.75x when NP =

1000.
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Table 4.25: Comparison in terms of computational time on functions 12, 17 and
18 between the sequential and the parallel implementation of PEADE

NP=400 NP=600 NP=800 NP=1000

F17 Sequential 35.23s 40.52s 55.57s 59.61s

Parallel 34.68s 27.67s 24.07s 21.66s

F18 Sequential 55.58s 62.02s 73.54s 75.24s

Parallel 18.24s 14.39s 14.28s 12.18s

F12 Sequential 184.46s 249.69s 316.80s 386.46s

Parallel 25.91s 20.87s 17.86s 15.94s

The acceleration achieved in function 18 is investigated. It can be observed

that the computational time decreases each time we increase the population size,

which is justified thanks to the high occupation of GPU device. The parallel imple-

mentation could achieve an approximated speedup from 3x up to 6.17x. Similarly,

Table 4.25 shows the acceleration achieved for function 12, where D = 240. It has

been noticed that the computational time decreases clearly, which is ensured by

increasing the population size and the high dimensionality of the given problem

(high occupation of GPU device). The parallel implementation could obtain an

approximated speedup from 7x up to 24.24x.
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4.2.3 Hybrid parameter adaptation strategy for differential evo-

lution to solve real-world problems (HADE)

This sub-section is devoted to investigate the influence of a novel hybrid strategy

for controling DE parameters. Besides, a modified mutation strategy and a novel

population reduction strategy are introduced.

4.2.3.1 The proposed mutation strategy

Several proposals have been introduced to achieve a satisfying balance between

exploration and exploitation. For instance, sub-population-based mutation strate-

gies, where the solutions involved in the mutation can only be from their associated

sub-population [53, 59]. A different concept is to use one of the p best solutions

in the population, in order to decrease the mutation greediness [82, 81, 100]. In

the same context, the mutation strategy introduced in this algorithm attempts to

achieve this balance. However, according to [74], parameter adaptation strategies

should be often associated with a mutation strategy that slightly favors exploita-

tion. Based on this recommendation, the proposed mutation equation can be

described as follows:

vG+1
i = xGi + F.(xGpbest − xGi ) + F.(xGRandBetter − xGRandWorse) (4.32)

where xGpbest is randomly chosen among a fraction p of the best solutions in the

current population. xGRandBetter and xGRandWorse are randomly chosen in the current

population such that RandBetter 6= RandWorse 6= i and the fitness of xGRandBetter
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is better than the one of xGRandWorse. This scenario would keep a reasonable ex-

ploration capability because the population is following multiple good solutions.

Meanwhile, exploitation is slightly enhanced thanks to the second part of the equa-

tion. In fact, the difference between xbetter and xworse gives a vector that indicates

a direction in which xi is moved to continue the search towards potentially better

solutions.

4.2.3.2 The proposed parameter adaptation strategy

First, it should be mentioned that this mechanism is inspired by the strategy

used in L-SHADE algorithm. Our modification consists in incorporating a k-

nearest neighbors (KNN) algorithm to judge whether a generated combination

F/CR can be promising in the next iteration or not. KNN uses a training set

of the recently-used F/CR combinations. They are labeled as promising or not

promising according to the following concepts. An F/CR combination is called

successful if it could improve its associated individual. In this phase, an F/CR

combination is called promising if it is successful or if its associated individual

is among the best half of the population. Otherwise, this combination is labeled

not promising. Our proposed adaptation strategy can then be explained in the

following steps:

• Step 1: if less than 10% of the budget has been used so far, random values for

F and CR are uniformly generated in the range [0.1,1] for each individual.

Otherwise, go to step 2.

• Step 2: successful F/CR combinations from the previous iteration are gath-
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ered in SF and SCR respectively, and a weighted Lehmer mean is computed

for F and CR as follows:

WeightedLehmar(SF ) =

∑|SF |
i=1 (Wi ∗ Fi)2∑|SF |
i=1 (Wi ∗ Fi)

(4.33)

WeightedLehmar(SCR) =

∑|SF |
i=1 (Wi ∗ CRi)

2∑|SF |
i=1 (Wi ∗ CRi)

(4.34)

where SF and SCR represent the sets of successful F and CR respectively

and

Wi =
∆fi∑|SF |
l=1 ∆fl

(4.35)

where ∆fi is the fitness difference between the offspring vi and the parent

xi.

• Step 3: the computed Lehmer means are inserted in MF and MCR, which

are archives for lehmar mean values from the search process history. Their

size is fixed to D (problem dimension) values and their D values are first

initialized with 0.5. Each new lehmar mean value replaces the oldest value

in MF and MCR.

• Step 4: for each individual k, random values MFr and MCRr from MF and

MCR are selected.

• Step 5: generate new Fk and CRk using cauchy distribution as follows:

Fk = Cauchy(MFr, 0.1) (4.36)
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CRk = Cauchy(MCRr, 0.1) (4.37)

It should be stated that Fk and CRk are updated to 0.1 if negative values

occur or to 1 if values more than 1 occur.

• Step 6: the new Fk and CRk are classified using KNN classifier with k=50.

If they are not promising, return to Step 4.

4.2.3.3 The parabolic reduction scheme

It has been proven in [62] that the linear reduction of the population size [82]

implies a quick reduction of the population size at the beginning of the search

process. As a result, a bad exposition of the landscape problem may occur. The

parabolic reduction scheme has been proposed in [62] as an attempt to overcome

this issue. The scheme can be described as follows:

PSG+1 = round[
PSmin − PSmax
nfemax − PSmax

.(nfe− PSmax)
2 + PSmax] (4.38)

where PSG+1 is the new population size, PSmin is the minimum population size,

PSmax is the maximum population size, nfe is the number of function evaluations

already used, nfemax is the total budget.

4.2.3.4 The algorithmic combination

This sub-section describes the whole proposal. Firstly, the parameter adaptation

strategy is performed at the beginning of each iteration in the main loop of DE.

For the first 10% of the budget, step 1 is applied here as an exploration phase,
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where random F/CR combinations are produced. For the remaining budget, steps

2 to 6 are performed: our purpose is to produce promising F/CR values based

on the successful F/CR values from the last iteration, and with the help of a

KNN classifier whose training set contains recent past F/CR values. It should

be mentioned that the size of the training set is fixed to PSmax combinations,

and it contains the most recently-used F/CR values. Afterwards, one iteration

of DE is performed (i.e. the proposed mutation equation along with the binomial

crossover). Thirdly, the new F/CR values (i.e. those produced by the parameter

adaptation strategy at the beginning of the iteration) are evaluated and labeled as

promising or not promising. Fourthly, KNN training set is updated by replacing

the oldest F/CR combinations with the current set of new ones. Finally, the

parabolic population size reduction scheme is applied in order to gradually enhance

the exploitation capability of the approach. The whole proposal is depicted in

Algorithm 16.

4.2.3.5 Experimental results

This section demonstrates the results of our proposition on second version of the

problem at hand. The algorithm is compared with several recent self-adaptive

DE variants such as EPSDE [90], JADE [100], SADE [11], L-SHADE [82], Dif-

ferential Crossover Strategy based on covariance matrix learning with euclidean

neighborhood for solving real-world problems (L-ConvSHADE) [3] and our hybrid

differential evolution algorithm for real-world problems (HDE). In order to validate

the results, 22 real-world problems of the CEC 2011 test suite have been optimized
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Algorithm 16 The proposed algorithm

1: Output: Best solution
2: Generate population pop of PSmax individuals and popold ← pop
3: while Budget is not consumed do
4: Apply the proposed parameter adaptation
5: for Each individual k in popold do
6: Apply the mutation strategy according to (4.32)
7: Apply binomial crossover
8: if The offspring is better than the parent then
9: Replace the parent in pop with the offspring
10: end if
11: end for
12: for Each individual k in pop do
13: if the combination Fk/CRk was successful then
14: SCR ← [SCR, CRk], SF ← [SF , Fk]
15: Label Fk/CRk combination as promising
16: else
17: if The individual is among the best half of the population then
18: Label Fk/CRk combination as promising
19: else
20: Label Fk/CRk combination as not promising
21: end if
22: end if
23: end for
24: Update KNN training set using the new set of F/CR combinations
25: Apply the parabolic reduction using (4.38)
26: popold ← pop
27: end while
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as well. There are nine parameters in our proposal, which are the maximum pop-

ulation size, the minimum population size, the archive size of MCR and MF , the

initial value of MCR and MF , standard deviation of the used cauchy distribution,

number of evaluation for the training phase, the number of nearest neighbors of

KNN algorithm, the size of training set and the fraction of the best solutions to

be used in the mutation equation. Further details about the proposal parameters

can be found in Table 4.26. The parameters of the other proposals have been kept

Table 4.26: HADE parameters

Parameter Parameter value
Maximum population size PSmax D*10
Minimum population size PSmin 10

Archive size of MCR and MF D
The initial value of MCR and MF 0.5

Standard deviation of the cauchy distribution 0.1
Number of evaluation for the training phase 10% of the budget

The parameter k of KNN 50
Size of training set D*10

p 0.1

during the configuration as it can be seen in Table 4.27.

4.2.3.6 CEC 2011 test suite

The obtained results by all the proposals are given in Table 4.28. The rows show

the mean value, the best value and standard deviation of 25 runs for each problem.

These results have been validated by a Kruskal-Wallis statistical test at 95% confi-

dence level followed by a Tukey-Kramer post hoc test. According to the statistical
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Table 4.27: The parameters of the DE variants

Algorithm Parameters
EPSDE Parameters taken from [90]
SADE Parameters taken from [11]
JADE Parameters taken from [100]

SHADE Parameters taken from [80]
L-SHADE Parameters taken from [82]

L-ConvSHADE Parameters taken from [3]

tests, for each function, the mean values of the best algorithms are in bold font in

Table 4.28.

The results in Table 4.29 show that our proposal shows a better performance

compared to the other adaptive DE variants. It can significantly outperform

EPSDE in 8 functions, L-ConvSHADE in 9 functions, L-SHADE in 10 functions,

SADE in 13 functions, JADE in 11 functions and SHADE in 12 functions.

4.2.3.7 Comparison on the problem at hand

Our proposal and the other algorithms have been performed 30 times. The best,

mean, worst and the standard deviation of each algorithm are collected. It can

be stated from Table 4.30 and Table 4.31 that the proposed algorithm achieves

the best solution known so far compared to the other algorithms. Besides, we can

notice the stable performance (std very small), which reveals the resilience of our

proposal.
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Table 4.28: Comparison of HADE with state-of-the-art algorithms on the CEC
2011 test suite

EPSDE SADE JADE SHADE L-SHADE L-ConvSHADE The proposal
F1 Mean 9.10E+00 2.49E+00 2.26E-01 2.73E-02 3.24E-08 1.06E-06 0.00E+00

Best 5.45E+00 6.31E-01 2.57E-10 1.85E+00 0.00E+00 0.00E+00 0.00E+00
F2 Mean -2.02E+01 -1.70E+01 -2.34E+01 -2.30E+01 -2.61E+01 -2.61E+01 -2.58E+01

Best -2.19E+01 -1.95E+01 -2.45E+01 -2.44E+01 -2.82E+01 -2.68E+01 -2.69E+01
F3 Mean 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05

Best 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05
F4 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F5 Mean -3.22E+01 -3.22E+01 -3.56E+01 -3.63E+01 -3.63E+01 -3.61E+01 -3.64E+01

Best -3.60E+01 -3.32E+01 -3.64E+01 -3.66E+01 -3.68E+01 -3.68E+01 -3.68E+01
F6 Mean -2.01E+01 -2.41E+01 -2.90E+01 -2.90E+01 -2.91+01 -2.91+01 -2.86E+01

Best -2.88E+01 -2.63E+01 -2.92E+01 -2.91E+01 -2.91E+01 -2.91E+01 -2.91E+01
F7 Mean 1.30E+00 1.37E+00 1.17E+00 1.12E+00 1.21E+00 1.12E+00 8.05E-01

Best 1.12E+00 1.24E+00 9.10E-01 9.06E-01 9.63E-01 1.01E+00 7.2E-01
F8 Mean 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02

Best 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02
F9 Mean 9.28E+04 1.73E+03 2.40E+03 2.22E+03 8.16E+03 2.76E+04 5.87E+03

Best 3.98E+04 7.69E+02 1.13E+03 1.14E+03 1.12E+03 3.76E+03 1.82E+03
F10 Mean -1.74E+01 -2.16E+01 -2.14E+01 -2.16E+01 -2.15E+01 -2.15E+01 -2.15E+01

Best -2.02E+01 -2.18E+01 -2.18E+01 -2.18E+01 -2.16E+01 -2.18E+01 -2.18E+01
F11 Mean 5.86E+04 5.21E+04 5.24E+04 5.22E+04 5.20E+04 5.18E+04 5.18E+04

Best 5.21E+04 5.12E+04 5.15E+04 5.15E+04 5.11E+04 5.08E+04 5.10E+04
F12 Mean 1.09E+06 1.09E+06 1.07E+06 1.10E+06 1.07E+06 1.07E+06 1.07E+06

Best 1.07E+06 1.07E+06 1.07E+06 1.07E+06 1.07E+06 1.06E+06 1.07E+06
F13 Mean 1.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04

Best 1.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04
F14 Mean 1.83E+04 1.81E+04 1.83E+04 1.81E+04 1.80E+04 1.80E+04 1.81E+04

Best 1.83E+04 1.81E+04 1.80E+04 1.80E+04 1.80E+04 1.80E+04 1.80E+04
F15 Mean 3.30E+04 3.28E+04 3.29E+04 3.27E+04 3.27E+04 3.27E+04 3.26E+04

Best 3.29E+04 3.28E+04 3.27E+04 3.27E+04 3.27E+04 3.27E+04 3.26E+04
F16 Mean 1.42E+05 1.28E+05 1.33E+05 1.29E+05 1.23E+05 1.23E+05 1.23E+05

Best 1.31E+05 1.26E+05 1.26E+05 1.22E+05 1.22E+05 1.23E+05 1.23E+05
F17 Mean 2.06E+06 1.90E+06 1.91E+06 1.91E+06 1.85E+06 1.84E+06 1.83E+06

Best 1.93E+06 1.87E+06 1.87E+06 1.88E+08 1.83E+06 1.82E+06 1.80E+06
F18 Mean 6.06E+06 9.38E+05 9.39E+05 9.40E+05 9.33E+05 9.33E+05 9.32E+05

Best 3.24E+06 9.33E+05 9.35E+05 9.37E+05 9.29E+05 9.31E+05 9.30E+05
F19 Mean 7.16E+06 9.46E+05 9.92E+05 9.52E+05 9.40E+05 9.39E+05 9.39E+05

Best 4.47E+06 9.41E+05 9.39E+05 9.39E+05 9.38E+05 9.37E+05 9.38E+05
F20 Mean 6.21E+06 9.37E+05 9.40E+05 9.40E+05 9.32E+05 9.31E+05 9.30E+05

Best 4.16E+06 9.35E+05 9.36E+05 9.34E+05 9.30E+05 9.29E+05 9.29E+05
F21 Mean 1.97E+01 1.97E+01 1.72E+01 1.75E+01 1.54E+01 1.52E+01 1.60E+01

Best 1.66E+01 1.66E+01 1.31E+01 1.41E+01 1.44E+01 1.17E+01 1.30E+01
F22 Mean 2.18E+01 2.18E+01 1.66E+01 1.99E+01 1.12E+01 1.13E+01 1.44E+01

Best 1.68E+01 1.68E+01 1.19E+01 1.31E+01 8.60E+00 8.60E+00 1.05E+01
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Table 4.29: The aggregate results of HADE using the statistical test

VS Our proposition 22 functions of CEC 2011 test suite
+(better) 0

EPSDE -(worse) 8
=(no sign) 14
+(better) 1

SADE -(worse) 13
=(no sign) 8
+(better) 1

JADE -(worse) 11
=(no sign) 10
+(better) 1

SHADE -(worse) 12
=(no sign) 9
+(better) 1

L-SHADE -(worse) 10
=(no sign) 11
+(better) 1

L-ConvSHADE -(worse) 9
=(no sign) 12

Table 4.30: Comparison of HADE with state-of-the-art algorithms on the first
version of the problem at hand

Best Mean Worst Std

SADE -3.271E+03 -2.920E+03 -2.780E+03 81.49
JADE -3.194E+03 -2.840E+03 -2.420E+03 96.23
EPSDE -3.200E+03 -2.850E+03 -2.430E+03 102.65
SHADE -3.097E+03 -2.944E+03 -2.697E+03 44.28
L-SHADE -3.197e+03 -3.044e+03 -2.797e+03 107
L-ConvSHADE -3.347e+03 -3.216e+03 -3.158e+03 74.13
HADE -3.397E+03 -3.397E+03 -3.397E+03 0

115



Table 4.31: Comparison of HADE with state-of-the-art algorithms on the second
version of the problem at hand

Best Mean Worst Std

EPSDE -4.2842E+02 -4.1968E+02 -4.0693E+02 5.1628E+00
SADE -4.3065E+02 -4.2270E+02 -4.0869E+02 4.7628E+00
JADE -4.3065E+02 -4.2527E+02 -4.1701E+02 1.2785E+00
SHADE -4.3065E+02 -4.2370E+02 -4.0569E+02 6.9628E+00
L-SHADE -4.3065E+02 -4.3043E+02 -4.301E+02 2.7463E-01
L-ConvSHADE -4.3065E+02 -4.2970E+02 -4.270E+02 1.2745E+00
Our proposition -4.3065E+02 -4.3065E+02 -4.3065E+02 1.0387E-05

4.3 Overall Comparison of the algorithms

In this section, the proposed algorithmic components are shown in Table 4.32 to

summarize the metaheuristics and the contribution of each proposal.

An overall comparison of the introduced proposals is presented. Since the

context of this thesis is to optimize real-world applications, it is better to present

a comprehensive comparison using the CEC 2011 test suite. All the proposed

algorithms are concerned in the comparison, where finally, a statistical test is

performed in order to prove their advantage. As it was used in the experimentation

phase of each proposal, the comparative table 4.33 is introduced to present the

results of each algorithm on each problem. The mean results of each algorithm

are in bold when it can significantly outperform the other algorithms.

Finally, a Friedman test is performed, where the result of each proposal is

computed. Table 4.34 summarizes the score of each algorithm proposed in this
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Table 4.32: Metaheuristics and the contribution of each algorithm

HOA HDE DADE PEADE HADE
Metaheuristics DE, CMEAS

and CS
DE DE DE DE

Mutations - - - DE/current-to-
centroid/1

-

Crossover - - - A framework to
switch between
normal binomial
crossover and
eigevector-based
crossover

-

Selection - Multi-criteria se-
lection

- - -

Other search op-
erators

a global search
procedure based
on clustering
and lévy flight

- - - -

Parameter adap-
tation strategies

- Pheromone
matrix-based
strategy

Hybrid strategy
for F and a rein-
forcement learn-
ing strategy for
CR

Modified
pheromone
matrix-based
strategy

Hybrid strategy
between the
technique of
LSHADE and
KNN
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Table 4.33: Comparison of our proposals on the CEC 2011 test suite

HOA PEADE HDE DADE HADE
F1 Mean 1.62E+00 2.87E-18 2.72E-23 0.00E+00 0.00E+00

Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 Mean -2.39E+01 -2.29+01 -2.69E+01 -2.31E+01 -2.58E+01

Best -2.69E+01 -2.73E+01 -2.84E+01 -2.78E+01 -2.69E+01
F3 Mean 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05

Best 1.15E-05 1.15E-05 1.15E-05 1.15E-05 1.15E-05
F4 Mean 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F5 Mean -3.49E+01 -3.19E+01 -3.53E+01 -3.36E+01 -3.64E+01

Best -3.68E+01 -3.68E+01 -3.69E+01 -3.70E+01 -3.68E+01
F6 Mean -2.66E+01 -2.24E+01 -2.76E+01 -2.76E+01 -2.86E+01

Best -2.91E+01 -2.74E+01 -2.92E+01 -2.91E+01 -2.91E+01
F7 Mean 8.80E-01S 9.91E-1 7.76E-01 1.04E-01 8.05E-01

Best 5.00E-01 7.29E-01 5.51E-01 6.30E-01 7.2E-01
F8 Mean 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02

Best 2.20E+02 2.20E+02 2.20E+02 2.20E+02 2.20E+02
F9 Mean 3.37E+03 1.78E+03 2.32E+03 8.22E+04 5.87E+03

Best 2.15E+03 1.04E+03 1.15E+03 2.82E+04 1.82E+03

F10 Mean -1.69E+01 -2.15E+01 -2.13E+01 -2.16E+01 -2.15E+01
Best -2.14E+01 -2.18E+01 -2.18E+01 -2.18E+01 -2.18E+01

F11 Mean 5.32E+04 5.08E+04 5.22E+04 5.25E+04 5.18E+04
Best 5.16E+04 4.99E+04 5.12E+04 5.17E+04 5.10E+04

F12 Mean 1.07E+06 1.07E+06 1.07E+06 1.22E+06 1.07E+06
Best 1.07E+06 1.07E+06 1.07E+06 1.08E+06 1.07E+06

F13 Mean 1.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04
Best 11.54E+04 1.54E+04 1.54E+04 1.54E+04 1.54E+04

F14 Mean 1.83E+04 1.81E+04 1.81E+04 1.81E+04 1.81E+04
Best 1.80E+04 1.81E+04 1.80E+04 1.80E+04 1.80E+04

F15 Mean 3.27E+04 3.27E+04 3.28E+04 3.27E+04 3.26E+04
Best 3.26E+04 3.27E+04 3.27E+04 3.27E+04 3.26E+04

F16 Mean 1.26E+05 1.23E+05 1.28E+05 1.25E+05 1.23E+05
Best 1.24E+05 1.23E+05 1.26E+05 1.26E+05 1.23E+05

F17 Mean 1.93E+06 1.89E+06 1.91E+06 1.89E+06 1.83E+06
Best 1.91E+06 1.87E+06 1.82E+06 1.87E+06 1.80E+06

F18 Mean 9.38E+05 9.37+05 9.42E+05 9.41E+05 9.32E+05
Best 9.34E+05 9.29E+05 9.36E+05 9.38E+05 9.30E+05

F19 Mean 9.42E+05 9.39E+05 1.03E+06 9.45+05 9.39E+05
Best 9.39E+05 9.31E+05 9.43E+05 9.38+05 9.38E+05

F20 Mean 9.37E+05 9.31E+05 9.42E+05 9.40E+05 9.30E+05
Best 9.33E+05 9.28E+05 9.37E+05 9.37E+05 9.29E+05

F21 Mean 1.35E+01 9.45E+00 1.14E+01 1.38E+01 1.60E+01
Best 1.15E+01 1.49E+01 9.53E+00 8.66E+00 1.30E+01

F22 Mean 1.36E+01 1.83E+01 1.04E+01 1.88E+01 1.44E+01
Best 9.26E+00 1.64E+01 8.74E+00 1.50E+01 1.05E+01
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thesis. After performing the Friedman test, a critical value CV=16.35 is obtained.

According to Table 4.34, it can be noticed that HOA is significantly outperformed

Table 4.34: Pairwise score of our proposals

VS PEADE HDE DADE HADE
HOA 13.50 9.00 3.00 25.50

PEADE - 4.50 16.50 12.00
HDE - - 12.00 16.50

DADE - - - 28.50

by only HADE. PEADE and HDE are outperformed by DADE and HADE respec-

tively. Finally, HADE outperforms DADE, which is the last algorithm proposed

in this thesis. These results reveal that HADE has not been outperformed by the

other algorithms, which can reveal the advantage of this algorithm.

4.4 Conclusion

In this chapter, several hybrid and self-adpative algorithms have been introduced.

It can be stated that our proposals mainly rely on DE algorithm, which is shown to

be successful when an appropriate adjustment is applied on its canonical structure.

Furthermore, several strategies have been considered in order to balance between

exploration and exploitation phases. These strategies can be represented as:

• Integrating intelligent choice techniques between search operators, as it can

be stated in HOA and HDE.
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• Integrating new algorithms and/or new search operators such as HOA and

PEADE, where a new search operator called ”eigenvector-based crossover”

has been introduced to enhance the exploitation phase of the proposal.

• Controling the parameters of DE algorithm: indeed, several strategies have

proposed in this thesis to adapt DE parameters. The proposed strategies

rely on efficient machine learning techniques, as it can be noticed in PEADE,

DADE and HADE.

Our effort has focused on optimizing real-world problems, where recent topologies

of a given electric motor have been optimized. Furthermore, our proposals perfor-

mance have been validated on the CEC 2011 test suite, which represents the most

recent benchmark that contains real-world applications. It can be noticed from

the experimental results that the introduced algorithms have been compared with

several recent state-of-the-art algorithms revealing satisfying results.
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Chapter 5

Conclusion and perspectives

Nowadays, numerous real-world problems are considered as optimization problems

due to the existence of one or many objective functions to be optimized. These

problems represent an actual challenge to propose new efficient algorithms provid-

ing high quality solutions. In this context, metaheuristics have become well-known

optimization algorithms thanks to their relatively simple structure and their low

computational time. Indeed, they have shown to be a promising alternative to

common mathematical methods.

Furthermore, metaheuristics have been recently improved by integrating several

considerations, such as the combination of algorithms, parameter tuning/adaptation,

proposing new search operators etc. This thesis is mainly focused on proposing new

optimization algorithms by considering the aforementioned issues. Besides, it can

be sometimes noticed that a given proposal is computationally time-consuming.

In order to overcome this issue, a parallel version of the concerned algorithm is
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implemented when a serious computational burden is stated.

The first part of this thesis has covered on the one hand several classic algo-

rithms and hybridization designs between metaheuristics. Besides, several self-

adaptive DE and CS proposals have been addressed to investigate the influence of

the parameters on their results. On the other hand, several GPU-based parallel

algorithms have been covered to show the advantage of parallelization on reducing

the computational time of optimization algorithms.

The effort is continued in the second part, where recent topologies of an elec-

tric motor have been addressed. In this chapter, the problem at hand has been

modeled as an optimization problem and a corresponding objective function has

been defined. It should be stated that the two topologies are distinguished by

different constraints. Moreover, the CEC 2011 test suite has been used to validate

the results of our algorithms.

The third part represents the major chapter of this thesis. Following the con-

siderations mentioned above, we have proposed five optimization algorithms. The

contribution of these algorithms can be stated as follows:

• Efficient hybridization designs between metaheuristics and/or search opera-

tors.

• The adoption of recent search operators within proposed frameworks in order

to provide better results.

• The proposition of novel parameter adaptation strategies.

• The optimization of a recent engineering problem.
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Our proposals have been described in details, and a comprehensive comparison has

been conducted with recent state-of-the-art optimization algorithms. Our propos-

als are mainly designed to optimize real-world applications, where the problem

at hand is optimized as well as the well-known CEC 2011 test suite. Finally, an

overall comparison between the proposals has been performed.

This thesis has covered several improved optimization algorithms to solve a

diverse set of real-world optimization problems. However, several research direc-

tions can be considered in the near future. Our perspectives can be organized as

follows:

• Automatic generation of optimization algorithms: it can be noticed that

metaheuristics rely on a static structure. Indeed, predefined search opera-

tors are set and then applied for a given problem. Our aim is to exploit sev-

eral techniques, such as machine learning and genetic programming methods

to provide dynamic algorithms. In fact, dynamic optimization algorithms

would provide flexible search operators thanks to their potential capability

to exploit useful information from the problem at hand. This information

would help afterwards in generating appropriate search operators for the

problem at hand.

• Machine learning-based parameter adaptation strategies: in fact, we have

focused on proposing several adaptation strategies for DE parameters. It

can be noticed that the proposed strategies exploit several simple machine

learning techniques, which could improve to the final results. This issue has

motivated us to boost our effort towards this direction, where pure machine
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learning-based techniques can be proposed. Besides, our aim is to investigate

these strategies on other metaheuristics such as PSO and CS, where few

studies have proven the critical influence of their parameters on the final

performance.

• Solving other real-world problems: real-world applications have emerged in

numerous fields, such as mechanical engineering, transportation, chemistry,

biology, security etc. Our aim is to test our proposals in order to inves-

tigate their scalability and resilience when different problems are handled.

Moreover, parallel versions of the proposals could be proposed using graphics

processing units (GPU) where a serious computational time is noticed.

124



Bibliography

[1] Rawaa Dawoud Al-Dabbagh, Ferrante Neri, Norisma Idris, and

Mohd Sapiyan Baba. Algorithmic design issues in adaptive differential evolu-

tion schemes: review and taxonomy. Swarm and Evolutionary Computation,

2018.

[2] Assif Assad and Kusum Deep. A hybrid harmony search and simulated

annealing algorithm for continuous optimization. Information Sciences,

450:246–266, 2018.

[3] N. H. Awad, M. Z. Ali, P. N. Suganthan, R. G. Reynolds, and A. M. Shat-

nawi. A novel differential crossover strategy based on covariance matrix

learning with euclidean neighborhood for solving real-world problems. In

2017 IEEE Congress on Evolutionary Computation (CEC), pages 380–386,

June 2017.

[4] Noor H Awad, Mostafa Z Ali, Ponnuthurai N Suganthan, and Robert G

Reynolds. An ensemble sinusoidal parameter adaptation incorporated with

125



l-shade for solving cec2014 benchmark problems. In CEC, pages 2958–2965,

2016.

[5] Mauro Birattari, Zhi Yuan, Prasanna Balaprakash, and Thomas Stützle.
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