
On the optimal placement of cameras
for the surveillance of urban events:
a real-world, human-assisted combinatorial

approach for decision support systems

A report submitted in partial fulfilment of the
degree of Doctor of Philosophy in the field of

Computer Science by

Julien Kritter

PhD thesis report
Director Pr. Lhassane Idoumghar
Advisors Dr. Mathieu Brévilliers

Dr. Julien Lepagnot
Reviewers Pr. Edward Keedwell

Pr. Abderrafiaa Koukam
Viva committee Pr. Sébastien Verel

Pr. Clarisse Dhaenens
Pr. Pierre Collet

Thanks

W hile it is often said—rightfully so perhaps—that writing a PhD thesis is a naturally
solitary enterprise to undertake, I can think of quite a handful of people whose support
it would be incredibly naive of me to belittle. Before we begin with the subject matter

of this report, I would therefore like to take a moment for gratitude, and sincerely apologise in
advance for any mention I may forget to make.

I will begin, as I believe is customary, with the people who have been closest to me profes-
sionally during the last three years. I would first like to thank Dr. Mathieu Brévilliers, for his
continuous availability and unwavering rigour, both of which I have found to be very valuable
throughout this project. Now, of course, there were four of us around this thesis, and I must
therefore also mention Dr. Julien Lepagnot, the coordinator for the OPMoPS project, for his
guidance, as well as Pr. Lhassane Idoumghar, the supervisor for my thesis and, in fact, our
entire research team. I thank you both for your support and for making this thesis possible.

As the people close to me will no doubt attest, it would have been atypical of me to undertake
such a project for any reason other than passion and sheer intellectual entertainment. While
I believe I have lived with such spirit for a while now, there are several people I would like to
thank for having been able to cultivate my eagerness to learn. I will begin with retired Pr. Bruno
Taconet from the University of Le Havre–Normandy. Your commitment to passionate teaching
and to your values as an academic has been a steady and, at times, much needed source of hope.
From the same institution, I must also thank Dr. Cédric Joncour, Dr. Sophie Michel-Loyal and
Dr. Xavier Schepler for taking me under their wing during my Masters thesis. The field you have
introduced me to truly fascinates me and I cannot thank you enough for having done so with
such a refreshing approach to academic research. I also want to mention Dr. Laurent Amanton,
Pr. Eric Sanlaville, Dr. Antoine Dutot, Dr. Claude Duvallet, Pr. Damien Olivier, Pr. Frédéric
Guinand, Dr. Stefan Balev, Dr. Yoann Pigné, Dr. Véronique Jay and Dr. Abderrazak Zahour.
Learning from you all has more than once put a smile on my face, and I am grateful to have
been taught by so many truly passionate individuals.

Still close to the workplace, I must also thank the colleagues and fellow PhD students I have
worked with these last three years. The latter have included Dr. Hojjat Rakhshani, soon-to-be
Drs. Soheila Ghambari and Imène Zaidi, Dr. Mokhtar Essaid as well as M. Maxime Pinard.
Among my colleagues, I also thank Dr. Laurent Moalic and Dr. Dominique Schmitt for their
support on a couple of side research projects. I must also mention Pr. Mahmoud Melkemi and,
of course, Dr. Karine Zampieri, who has been a great guide to me as we were giving basic
algorithmics classes together, a first for me.

To conclude on a more personal level, there are a couple of people I simply cannot forget
about. I will quite naturally begin with my mother for her unconditional love and support, and
without whom this thesis would have ended prematurely. Finally, to friends, all of whom I shall
mention through nicknames, for only they need to recognise themselves. Thank you, then, to
my fellow gunpowder plotter, to her Ladyship, and to all of you from Uni: the enchanter, the
other Julien, the other guy with a hat, the dessert, the modern hacker and all the others! You
have all helped make this journey quite fun, and I hope I can keep up with you for yet another
couple of years.

And now... to surveillance!

Summary

As part of a French-German joint research
project, this thesis tackles issues related
to video-based surveillance networks, more
specifically their design in terms of optimal
camera placement and the integration of
user input for deployment in the context
of decision support systems. We begin
with an in-depth review of two bodies
of literature, one related to our practical
application and the other to a popular and
closely related theoretical problem. This
survey covers both problem modelling and
solving, and highlights several open lines of
research. In terms of modelling, we begin
by focusing on the design of a middle ground
between unrealistic simplicity and prohibitive
complexity, both popular extremes in optimal
camera placement literature. We design an
instance generation and preprocessing frame-
work which uses real-world data to extract
accurate information about our surveillance
area. Taking advantage of the availability
of such instances, we then move on to
benchmarking the state of the art, a study
which had so far not been performed, most
likely due to the large number of problem
variants and constraints in the literature.
Our results suggest several hypotheses on
the complexity of the problem, which we
investigate further. Our conclusions lead
us to the construction of a new model for
our problem, which we then use to design a
time-efficient solving algorithm. The latter is
then integrated into a small decision support
system through which a user can negotiate
solutions with the solver until the output is
deemed satisfactory.

Résumé

Cette thèse, contribution à un projet de
recherche franco-allemand, s’intéresse aux
réseaux de vidéo-protection, plus particuliè-
rement au problème de placement optimal
de cameras et à l’intégration de cette
problématique au sein de systèmes d’aide à
la décision. Nous commençons avec une revue
approfondie de deux corpus, l’un portant sur
notre application et l’autre sur un populaire
problème théorique lié à cette dernière.
Cette étude couvre à la fois modélisation et
résolution, et met en avant diverses pistes
de recherche. En terme de modélisation, nous
nous intéressons particulièrement à la mise au
point d’un compromis entre les deux extrêmes
typiques de la littérature : trop simpliste ou
trop coûteux. Nous implémentons ainsi un
système de génération et de pré-traitement
d’instances basé sur des données réelles et
capable d’extraire une représentation fidèle
de la zone à couvrir. Ces instances nous
permettent ensuite de mettre en place une
étude comparative de l’état de l’art, jusqu’ici
resté sans point de référence en raison du
large panorama de variantes et de contraintes
autour de notre problème. Nos résultats
posent plusieurs hypothèses au sujet de la
complexité de ce dernier. Nos conclusions
associées nous permettent de construire un
nouveau modèle, que nous utilisons afin de
définir un algorithme de résolution efficace,
et directement intégrable à un système d’aide
à la décision. Un prototype est d’ailleurs
implémenté afin de permettre à un utilisateur
de négocier avec l’algorithme jusqu’à obtenir
une solution jugée satisfaisante.

Contents

Introduction 3

I Literature review 7
I.1 Origins and introductory applications . 8
I.2 Camera placement for global and persistent surveillance 11
I.3 The set covering problem . 23

II Problem formulation and instance generation 33
II.1 Problem formulation and generation overview . 34
II.2 Sampling procedures . 36
II.3 First instances and observations . 47

III Stress-testing and validation 59
III.1 A stress-test for the state of the art: hypotheses . 60
III.2 Measuring the impact of sampling frequencies . 64
III.3 Relaxing the full-coverage constraint . 67

IV Human-assisted optimisation 75
IV.1 Model, application-specific constraints and preprocessing 76
IV.2 User interactions and assisted solving . 78

Conclusion 85

Bibliography 87

Glossary 111

List of Figures 113

List of Tables 114

List of Algorithms 115

1

Introduction

The OPMoPS project
This thesis is part of a joint research project called OPMoPS which brings together
the French Agence Nationale de la Recherche (ANR) and the German Bundesmin-
isterium für Bildung und Forschung (BMBF) on the subject of organised pedestrian
movement in public spaces. The project focuses on the preparation and crisis man-
agement for urban parades and demonstration marches with high conflict potential.
It was launched in 2017 and is currently coordinated by Dr. Julien Lepagnot from the
Université de Haute-Alsace, France. The official translated summary of the project
is given below.

Parades of highly controversial groups and political demonstration marches
are considered a major threat to urban security, since the diametrically
opposed opinions of the participants and opponents may result in violence
or even terror attacks. Due to the movement of the urban parades and
demonstration marches (in the following abbreviated by UPM) through
large parts of cities and the resulting space and time dynamics, it is par-
ticularly difficult for forces of civil security (abbreviated in the following
by FCS) to guarantee safety at these types of urban events without en-
dangering one of the most important indicators of a free society. In this
proposal, partners representing the FCS (police and industry) will coop-
erate with researchers from academic institutions to develop a decision
support tool which can help them both in the preparation phase and
crisis management situations of UPMs. The development of this tool
will be driven by the needs of the FCS but also by research results on
the social behaviour of the participants and opponents. The latter and
the assessment of legal and ethical issues related to proposed technical

3

4 CONTENTS

solutions are an important part of the proposed research. Specific tech-
nical issues which the French-German consortium will have to include
the following: optimisation methods to plan UPM routes, transportation
to and from the UPM, location and personnel planning of FCS, control
of UPMs using stationary and moving cameras, as well as simulation
methods, including their visualisation, with specific emphasis on social
behaviour. The methods will be applicable to the preparation for and
organisation of UPMs as well as to crisis management for ad-hoc UPMs
or unexpected events. At the end of the funding period a decision tool
will be available which shows the potential of the approach and which
will be marketable under a foreseeable amount of time and work.

(ANR:
Agence Nationale de la Recherche, anr.fr/Project-ANR-16-SEBM-0004)

The OPMoPS project brings together partners with various backgrounds in the
fields of psychology, sociology, law enforcement, software engineering, mathematics,
computer science, crowd dynamics simulation and law. The full list of institutions
involved in this joint effort is given below, along with a diagram which illustrates the
role of each partner and highlights ours.

• The University of Koblenz and Landau ;

• The Munich University of Applied Sciences ;

• The University of Kaiserslautern ;

• The University of Upper Alsace ;

• INRIA Rennes ;

• ONHYS SAS ;

• virtualcitySYSTEMS GmbH ;

• VdS Schadenverhutung GmbH ;

• The Rhineland-Palatinate Police School ;

• Le Centre de Recherche de l’École des Officiers de la Gendarmerie Nationale.

https://anr.fr/Project-ANR-16-SEBM-0004

CONTENTS 5

Thesis outline
One of the first questions which arise when designing video surveillance infrastructure
is that of determining the appropriate positions and orientations for cameras such
that our coverage and cost objectives are met. From a computational standpoint,
this problem is widely recognised as complex, and a significant amount of research
has been put into solving it efficiently. This interest has only been vivified in the last
few years with the launch of a handful of defence projects by countries around the
globe, all of them conscious of today’s need for a better approach to global security.

In this thesis, we introduce a different approach to solving the optimal camera
placement problem in such a context. While most of the literature has so far focused
on defining clear operational constraints and aiming for optimality from there, it
would appear that such approaches tend to be rather difficult to implement for town
officials and law enforcement officers working on the field. Through discussions with
our partners, including the aforementioned field experts, it has become clear that any
new approach should be designed with a user at its centre. In other words, an ideal
system would not provide just one solution, but rather would continuously take in
feedback from a user and adjusting until a satisfying solution is found. We describe
such an approach in this report.

We begin in Chapter I with a review of two bodies of literature: that of optimal
camera placement, and that of the very closely related set cover problem. We then
move on to Chapter II in which a new instance generation and preprocessing frame-

6 CONTENTS

work is introduced to reach a compromise between the extremes typically found in
the literature. Several hypotheses about the complexity of our problem are then sug-
gested for Chapter III. This part of our study includes a benchmark of the state of
the art as well as the confirmation of several observations made earlier. These serve
as the basis for the design of our human-assisted optimisation approach, which we
describe in Chapter IV. More detailed introductions can be found at the beginning
of each chapter.

Chapter I

Literature review

Introduction

W e begin by reviewing the current state of the art for both the optimal
camera placement problem and its underlying set covering problem. We
start with the former and introduce its origins as well as its influence

in the field of computer vision. We quickly move on to surveillance applications,
namely target tracking and, of course, global and persistent surveillance. We then
focus on this last aspect and review the literature on surveillance area modelling,
sensor representation and visibility analysis approaches. With these foundations in
place, we proceed to studying solving methods, both deterministic and stochastic.
We then move on to the popular set covering problem, the structure of which is
fundamentally identical to that of basic camera placement models. We highlight
the strong relationship between the two problems, a connection which we found
was seldom made in the literature. This allows us to continue on to solving methods
which we extensively review and compare while regularly referring to optimal camera
placement when possible.

Related publication

[119] Julien Kritter et al. “On the optimal placement of cameras for surveillance
and the underlying set cover problem”. In: Applied Soft Computing 74 (Jan. 2019),
pp. 133–153. doi: 10.1016/j.asoc.2018.10.025

7

https://doi.org/10.1016/j.asoc.2018.10.025

8 CHAPTER I. LITERATURE REVIEW

I.1 Origins and introductory applications
The optimal camera placement problem finds its root in a famous geometry problem
dating back 1987: the art gallery problem (AGP). Seminal work on the AGP is cred-
ited to O’Rourke for his contribution Art Gallery Theorems and Algorithms [153],
although earlier references can be found, namely work by Klee (published by Hons-
berger [94]) and Chvátal [39]. An art gallery is given as a two-dimensional simple
polygon which corresponds to the building’s floor plan. The goal is to place guards
inside the gallery such that for any point inside the polygon, there is at least one
guard to which it can be connected by a segment without intersecting with any of
the polygon’s edges. We say that the polygon’s area must be entirely covered by
the guards (Figure I.1). It has been shown that for any polygon with n vertices,
the optimal solution (which minimises the number of guards) requires no more than
⌈n
3
⌉ guards, all of which can be placed on the polygon’s vertices [74, 39]. Several

variants of the problem exist such as the watchmen route problem [36], which
uses mobile guards, or the floodlight illumination problem [22], in which light
sources replace the guards. For more information about these variants, the reader is
referred to [106, 31, 61, 65, 181, 86].

Figure I.1: An instance of the Art Gallery Problem with n = 9, and a solution with
3 guards

The optimal camera placement problem is of course a much more constrained
variant of the AGP. To begin with, cameras do not have unlimited range. In fact,
due to image quality requirements which are usually enforced by applications, the
range of a camera is often much more limited than one might expect. Furthermore, no
camera model can achieve 360-degree visibility, although some can achieve something
very close, as we will see later.

Computer vision is one of the most active fields of research when it comes to
optimal camera placement, and has introduced many of the constraints and objectives
used in modern models. This is particularly true with photogrammetry problems
for scene or object reconstruction from camera images. In this case, finding the next

I.1. ORIGINS AND INTRODUCTORY APPLICATIONS 9

best view [167] is particularly important, and an optimal placement of the cameras
is essential to achieve high-quality solutions and remodels. A typical example of
this problem can be found in work by Olague and Mohr [154]. For earlier and more
generic work, the reader is referred to “A survey of sensor planning in computer
vision” by Tarabanis, Allen, and Tsai [183].

Still in computer vision, feature extraction also appears to significantly benefit
from optimal camera positions. In this case, strong image quality requirements are
typically enforced, since the images produced by the cameras feed sensitive image
analysis algorithms. Work by Fehr, Fiore, and Papanikolopoulos [69] can be cited
here, as it formalises not only camera fields of view, but also the elements which
are to be covered and around which the images must be of sufficiently high qual-
ity. Distinctions are made between the requirements for gait classification, facial
recognition and other image processing problems, and a new quality function taking
into account issues such as foreshortening, ground coverage or resolution is defined.
For more details about how such image-related constraints typically integrate into
optimisation models, the reader is referred to a 2016 survey by Liu, Sridharan, and
Fookes [125].

Regarding surveillance applications, target tracking is a very popular problem,
which often benefits from progress in both computer vision and optimisation. Work
by Ercan et al. [62] tackles one of the problem’s variants: target localisation. The
authors therefore attempt to locate objects in a given environment while attempting
to minimise communication costs. A recurrent idea in such application is that of
hand-off rates. This new constraint forces optimisation algorithms to not only
cover the targets but also to ensure there is always a coverage overlap between two
neighbouring cameras (see Figure I.2). This ensures that when a target reaches the
edge of one camera’s frustum, it also enters that of another to secure the hand-off
and ensure the network never loses track of the target.

Authors for such an approach include Bodor, Schrater, and Papanikolopoulos,
who worked from a set of predefined target trajectories in a given surveillance perime-
ter, and optimised the network layout so as to maximise image quality for motion
coverage along these paths [19]. This work has been extended in [20] so as to include
mobile cameras, and in [148, 149], Natarajan et al. used partially observable Markov
processes to control the orientation of cameras as targets move freely across the
surveillance area. For this approach, Fusco and Gupta [78] had previously worked
on target coverage, and defined the objective function as the minimisation of each
point’s dark (uncovered) time. A similar application has also been studied by Konda
and Conci [116], who used the cameras’ feeds to switch them from global area cover-
age to target tracking and back, depending on whether or not individuals were being

10 CHAPTER I. LITERATURE REVIEW

detected within the coverable perimeter.

Figure I.2: Hand-off margins in a generic sensor network. Objects may leave the
range of any sensor but always remain visible to the network

When it comes efficient tracking, static camera infrastructures can often be seen
as insufficient. Targets can indeed be unpredictable and unless there are many of
them, most of the infrastructure will likely be inactive most of the time. To better
tackle this issue, modern literature has started to include mobile cameras. In real-
world applications, these often represent UAVs (unmanned aerial vehicles), although
some camera models can still pan and tilt after setup while having a fixed mounting
point. For this, references include Bodor et al. [20] who positioned cameras so as to
maximise activity detection accuracy in a given area, and Natarajan et al. [148, 149]
who allowed the cameras to rotate when necessary.

Bringing UAVs into the model, an early search-theoretic approach to the problem
can be found in [10], in which Baum and Passino split the search area into smaller
regions and minimise the time required to cover the whole environment with a given
fleet of UAVs. Allowing for some a priori probabilistic data about target distribution,
Flint, Polycarpou, and Fernandez-Gaucherand [76] lay out a dynamic programming
algorithm for path planning which maximises information gain for static targets.
Considering both known and unknown target locations, Sinha, Kirubarajan, and
Bar-Shalom proposed a fully decentralised algorithm with which UAVs are able to
track known targets while detecting unknown ones, and share available information
with other drones in range, for later path planning [173]. Others authors include
Tang and Ozguner [182], who focus on information age, and minimise the overall
time between two observations of a target in the environment. A gradient algorithm
is used when only one UAV is available, and a decentralised implementation tackles
the problem with a fleet. At this stage, a 2006 review of heuristics for coordinated
target tracking was published by Wise and Rysdyk in [187]. Later work along those
lines involves Kim and Kim [110], who consider single target tracking with multiple

I.2. CAMERA PLACEMENT FOR GLOBAL AND PERSISTENT
SURVEILLANCE 11

UAVs in an occluded environment. Starting from a circular path around the target,
the algorithm adjusts the route so as to take into account buildings for occlusion,
and ensures that the target is visible by at least one drone at all times. This work
was inspired by Rafi et al. [161] and Peot et al. [158], although the environment is
free of possible occlusion in the former, and the latter is limited to static objects.
An extension to evasive targets was later suggested by Kim and Crassidis [109]. In a
simpler environment, Ding, Rahmani, and Egerstedt also published work related to
target (convoy) tracking when the trajectories are known and paths may be planned
in advance [55]. More recently, Zorbas et al. made additional contributions on this
problem [201, 160, 202] and used linear programming as well as greedy heuristics to
minimise both fleet size and energy consumption. Extensions have allowed for moving
targets using time windows, and clustering methods to reduce problem size. In less
deterministic conditions, work by Capitán, Merino, and Ollero involving partially
observable Markov processes may also be mentioned here [28].

I.2 Camera placement for global and persistent
surveillance

Overview
In the context of surveillance applications, global area coverage is certainly among the
most studied problems in the literature. It is typically concerned with the placement
of cameras across a given surveillance area following one of two strategies: (1) to
maximise coverage with a limited number of cameras or (2) to minimise cost, or the
number of cameras, under the constraint that no region of the surveillance area should
remain unwatched. One of the first papers to consider complete area coverage while
minimising network cost was authored by Horster and Lienhart [95], although Erdem
and Sclaroff [63] provide an applicable and more general approach. These papers were
later frequently referenced for further research and more specific applications. This
is the case in work by David, Idasiak, and Kratz [53], which minimises the cost per
covered unit, therefore relaxing the complete coverage constraint. Another variant
can be found in one of two problems modelled by Murray et al. in [145], for which
exactly p cameras must be distributed over regions of varying importance. A simpler
model for this problem, without the network size constraint (p), was also proposed
by Yabuta and Kitazawa [190]. More generally, the idea of partitioning the area into
weighted regions (and defining so-called essential regions) is very recurrent, [41, 98]
being two more examples.

12 CHAPTER I. LITERATURE REVIEW

The use of the hand-off rate (see Section I.1) in fitness evaluation has also ap-
peared in area coverage problems. Murray et al. [145] derived a multiobjective backup
coverage location problem from [52] in order to aim at a trade-off between primary
coverage, with at least one camera, and backup (or overlapping) coverage, supported
by at least two cameras at any time. The problem’s reduction to a single objective
formulation using the weighted sum method highlights the contradictory nature of
the two goals. For further work on this case, the same authors proposed another
solving approach in [111]. A study of the impact of hand-off rates was performed by
Yao et al. [193, 192], who compare their work to that of Erdem and Sclaroff [63]. Re-
sults must however be put into perspective as the solving methods are very different
in nature.

Surveillance applications with a clearer focus on security have also emerged lately,
adding constraints on network robustness or defining the objective function in terms
of how efficient the solution would be in case of an emergency. With this in mind,
Morsly, Djouadi, and Aouf [140] define the best interceptor placement problem, for
which cameras are set up to maximise the efficiency of human agents, should an in-
truder be detected. For a variant, Konda and Conci [115] consider the possibility of
network reconfigurations in scenarios involving the sudden shutting down of cameras.
With similar concerns, Rebai et al. [163] adjust the typical problem formulation to
add so-called network protection constraints according to which a feasible solution
must ensure that cameras watch each other as well as the surveillance area. With a
different end goal, Zhang et al. have also approached the problem with connectivity
constraints in [196], and suggest the design of a collaborative network of nodes for
information processing. Beyond the specifics of camera networks, such issues are
often encountered when positioning wireless sensors: recent work along those lines
includes [162, 164]. Finally, although it does not address security itself, work from
Zhao and Cheung [198, 199] may also be mentioned here, as it addresses privacy
concerns. Using methods previously studied by the authors [35], the approach opti-
mises the placement of cameras in order to ensure the cutting-out and inpainting of
preselected individuals wearing visual tags on their chests.

Extending on the mention of mobiles cameras in Section I.1, a smaller amount
of research has also been conducted on area surveillance with UAVs. Early work
has involved Girard, Howell, and Hedrick [82], with an application to border or
perimeter control. A five-layer implementation spans across operation planning and
low-level control. Considering dynamic perimeters such as those emerging in forest
fires and oil spills, Kingston, Beard, and Holt also tackled the problem and allowed
for perimeter variation and fleet reinforcement [113]. This work was later specialised
for road surveillance in [112]. More generically, another approach was later suggested

I.2. CAMERA PLACEMENT FOR GLOBAL AND PERSISTENT
SURVEILLANCE 13

by Savla, Bullo, and Frazzoli [170]. Rather than to seek coverage of the entire area,
the authors used the facility location problem as a model and minimised the worst-
case travel time required by any UAV to reach any given point in the environment.
For persistent surveillance, work by Nigam and Kroo can be mentioned instead,
as the authors consider the problem of minimal information age across a sampled
surveillance area [151, 152]. Using 3D models as a basis for space representation,
Cheng, Keller, and Kumar extended typical mission planning work and proposed an
algorithm which ensures that the trajectory followed by a UAV covers all buildings
in the area at one time or another [34]. Regarding dynamic camera representation,
work by Ahmadzadeh et al. may also be referenced here, as it tackles a coverage
problem through path planning, and considers the changes in the field of view of a
UAV as it banks and turns [2]. A distributed approach to coverage was later studied
by Schwager, Julian, and Rus [171], although the paper only considers simple two-
dimensional polygons as a potential surveillance area.

Surveillance areas
The following sections will provide more details about each of the core aspects of
optimal camera placement. They will focus on our application, that is, area coverage
or global surveillance. We begin with the modelling of the surveillance area.

In the art gallery problem (see Section I.1), the surveillance area is modelled
using a two-dimensional polygon. The coverage area is therefore continuous and the
solution’s feasibility is measured by intersecting the guards’ ranges with the gallery.
While this may appear to be the most straightforward approach, there has been,
to the best of our knowledge, no significant study of optimal camera placement in
continuous space. In every reference mentioned in this review, surveillance areas
are modelled using discrete components. This may be explained by several reasons.
The first, computational, is that a realistic environment model would likely require
the use of complex geometrical constructs, for which computations such as area
and volume intersection are either unknown or prohibitively expensive. Another
motivation comes from the very nature of the optimisation methods used, which
often require the definition of a discrete solution neighbourhood. In any case, while
often being computationally more expensive, the discrete approach also displays some
important realistic elements for both space and cameras, such as the fact that the
latter simply cannot be placed anywhere in space to begin with.

In order to bring the problem into the discrete domain however, a sampling
procedure must be designed. The literature includes several options, most of which
work in two-dimensional space, as is the case in the AGP. Early work can be at-

14 CHAPTER I. LITERATURE REVIEW

tributed to Erdem and Sclaroff [63], and Horster and Lienhart [95], who used linear
integer programs which cannot work without discrete points to cover. The approach
here is quite simple: a sampling frequency is chosen and applied to both the x- and
y-axes to yield a discrete grid of points. An example of this approach can be found
in Figure I.3. It should be noted that while a very significant amount of research has
used this model [5, 53, 198, 193, 199, 140, 37, 164], it has in fact been extended to
three-dimensional spaces by Andersen and Tirthapura [4].

Figure I.3: A sampled floor plan, similar to the exhibition hall example found in
several papers, with example coverage points

Other approaches for space sampling include the use of square rectangular grids,
as is the case in [145, 111] : for their work on both primary and overlapping coverage,
Murray et al. lay a regular grid on the surveillance area and consider each cell as a
unit of coverage demand, to be satisfied by at least one camera. Similar work can be
found in [41, 196, 77]. In their privacy-aware work [198], Zhao and Cheung reuse the
work done by Horster and Lienhart but use dynamic sampling frequencies, adjusted
based on the results of the optimisation process so far. Yabuta and Kitazawa [190]
have chosen to sample their floor plan by extending wall lines to draw large, variable-
sized, weighted rectangular regions, the centres of which act as the points to cover.
Although this method appears to simplify the sampling process, it does come at the
cost of a lesser degree of accuracy and applicability to arbitrary environments. A
similar model was used by Indu et al. [98], who sample the 3D surveillance area by
extracting rectangular boxes of varying importance.

At the other end of the spectrum comes a set of methods which use the full
strength of 3D modelling and rendering software to evaluate the quality of a solution.

I.2. CAMERA PLACEMENT FOR GLOBAL AND PERSISTENT
SURVEILLANCE 15

In [101], Janoos et al. define the environment using a detailed triangular mesh, which
includes a ground plane to surveil and several types of structures which may cause
occlusion. The concept of region importance is also brought forward through the use
of so-called saliency and activity maps, which respectively quantify the structural
importance of a point, and the amount of human activity recorded on it.

Camera representation
Next comes the matter of modelling the coverage of a single camera. This effectively
provides us with the required geometrical data to determine which of the ground
samples are covered by placing a camera in a given configuration. The actual process
will be introduced in the next section.

Although space can be modelled in both 2D and 3D using rather similar ap-
proaches, the representation of a camera’s viewing frustum (the polytope in which
all points are visible to the sensor) has taken many forms in the literature, with good
reasons. To begin with, it is worth considering three types of cameras: static, pan-
tilt-zoom (PTZ) and omnidirectional. Static cameras are placed and orientated once
using the values output by the optimisation method. PTZ cameras are initialised in
the same way, but can later be instructed to pan (vertical axis), tilt (horizontal axis),
zoom, or any combination of those within given ranges. Omnidirectional cameras
are static, but have a distorted torus-shaped viewing frustum, with 360-degree cov-
erage around their mounting points. In two dimensions, these cameras are usually
defined by their sole position (x, y), while static and PTZ cameras, which need to
be oriented, take the form of a 5-tuple (x, y, ϕ, θ, ζ) which includes the pan, tilt and
zoom parameters, in that order. In 3D, a z parameter is simply added. Throughout
this document, we will use the term camera candidate to represent those 5-tuples.

In two dimensions, Horster and Lienhart [95] have chosen to use simple isosceles
triangles, with the vertex angle on the camera, to represent a sensor’s coverage of
the ground plane. Visibility analysis can then be conducted in advance by running a
point-in-triangle test for every ground sample, and every possible assignment of
the aforementioned camera parameters. To allow for such an approach, parameters
ϕ, θ and ζ must be subjected to the same sampling procedure as the environment. As
was the case for these authors’ space models, this representation has been reused in
several papers including [193, 140, 192] and [87] which also includes omnidirectional
cameras. For a variant, Yabuta and Kitazawa [190] slightly adjust the representation
by replacing triangles with circular sectors, which tend to be more recurrent in early
2D-oriented literature [148, 143].

While extending the problem from two to three dimensions doesn’t strongly affect

16 CHAPTER I. LITERATURE REVIEW

space representation, it does raise a problem for camera modelling. A paper by Zhang
et al. [196] actually highlights this problem: if a camera, placed at a given height,
is modelled as a triangle or circular sector, then a blind spot is created right under
the camera’s nose (Figure I.4). A small area within the sector, near the camera,
is in fact not visible in practice. Given the camera parameters given above, and
technical specifications (resolution, focal length or Charge-Coupled Device width and
height [77]), it is possible to use projection matrices to compute the coordinates of a
parallelepipedic region ahead of the camera’s nose, which delimits the true section of
the ground plane visible by a camera. Work using this approach has included [69],
in which Fehr, Fiore, and Papanikolopoulos use the projected region, taking into
account the camera’s height, to treat the problem in two dimensions. A similar
projection is used in [140], although in this case the cameras are set up looking
straight down from the ceiling, which eliminates any possible blind spot as far as
ground coverage is concerned. Konda and Conci have also used this approach for
their work towards network robustness [115] and later for a tracking problem [116].
Zhang et al. also suggested the use of a simpler model using a cone in [196] (reused
in [164]), which therefore projects a disk rather than a polygon on the ground plane.
While it does solve the blind spot problem, this representation is less accurate as
far as the camera’s field of view is concerned. A 2012 survey by Mavrinac and Chen
which surveys geometric models for coverage can be found in [134].

Figure I.4: The blind spot problem created by 2D space representation and 3D
camera placement. A part of the red area is covered in the 2D model, but becomes
invisible as the camera is placed in practice

Visibility analysis procedures
As was mentioned in the previous section, defining the camera model’s representation
allows us to determine which ground samples are seen or covered by which camera
candidates. The methods used to actually perform this computation for a given

I.2. CAMERA PLACEMENT FOR GLOBAL AND PERSISTENT
SURVEILLANCE 17

camera model are numerous, and optimal camera placement literature includes a
good number of them.

In 2D, simple point-in-triangle or point-in-sector algorithms may be used, and
extended to 3D (point in cone, point in pyramid). While these methods show several
advantages, including straightforward parallelisability, it is worth mentioning some
authors who have decided to use more applied approaches. They include Angella,
Reithler, and Gallesio [5], who used OpenGL [88] depth maps, and a potentially
expensive ray tracing algorithm, to determine whether an object or point is visible.
Hengel et al. use a similar approach in [91].Fantini and Chaimowicz [68], on the
other hand, delegated the modelling work and visibility analysis to full-blown game
engines, namely Half-Life and Irrlicht, although these are closer to the original AGP
formulation in that they model human vision (in first-person shooter games) rather
than camera coverage. Another technique may also be found in work by Murray
et al. [145], who used GIS technology to compute each camera’s viewshed (a more
generic definition for the viewing frustum). In spite of their higher computational
cost, an advantage of these approaches is that they are able to tackle problems
which arise in realistic environments such as occlusion. Targeting that problem,
in [138], Mittal and Davis detail the formulation of a probabilistic framework for
dynamic occlusion caused by moving objects (humans), which was integrated into
their tracking tool, M2Tracker [136]. An application of the approach can be found
in [137] by the same authors, and an insight into how static occlusion may be tackled
in complex environments has been given in [101] by Janoos et al.

Solving the problem deterministically
While most of the work in exact methods comes from a transformation to a known
Karp problem [105] (see Section I.3), some deterministic approaches which address
the camera placement problem are worth mentioning. Early work towards exact
solving must be attributed to Erdem and Sclaroff [63] and Horster and Lienhart
[95], who formulated the 2D camera placement problem using binary linear integer
programs (BIPs). Horster and Lienhart formulated the problem in a straightforward
fashion, including coverage constraints and minimising the size or cost (when several
types of cameras were available) of the infrastructure. In the objective function (I.1)
and its associated constraints (I.2), xxyφ is set to 1 when a camera is placed at (x, y)
with orientation φ. The binary function c maps every camera candidate to the set of
grid cells it is able to cover. The program was solved to optimality using LPSolve [17]
on two space grids: 12x12 with 2 possibles orientations, and 8x6 with 16 possible
orientations. These configurations correspond to 288 and 768 camera candidates

18 CHAPTER I. LITERATURE REVIEW

(variables) respectively, and typically incur rather large, fast-growing search spaces.
The paper concludes by highlighting the need for a more scalable approach.

min
sx∑
x=1

sy∑
y=1

sφ∑
φ=1

xxyφ (I.1)

sφ∑
φ′=1

sx∑
x′=0

sy∑
y′=0

xx′y′φ′ · c(x′, y′, φ′, x, y) ≥ 1 ∀ 1 ≤ x ≤ sx, 1 ≤ y ≤ xy (I.2)

Work by Erdem and Sclaroff goes further along the lines of BIP solving and ap-
proaches the problem from a more AGP-like angle. The surveillance area is modelled
as a convex polygon with convex polygonal holes (obstacles), and a section of the
paper is dedicated to visibility analysis algorithms applicable in such a setting. Tak-
ing into considerations the need of higher-level image processing tasks, Erdem and
Sclaroff suggest the inclusion of visibility or resolution constraints into the visibility
algorithms. This creates a distinction between a camera’s original visibility polygon,
as it would be considered for the AGP, and a camera’s feasibly visible region: the
set of grid cells for which it can ensure sufficient image quality. To apply this addi-
tional restriction, the authors reduce the visibility polygon to points within a certain
radius, effectively using partially occluded circular sectors as a field of view repre-
sentation. The resulting visibility matrix is then used to construct the binary linear
program, which is solved in MATLAB [133]. Experiments were run with a resolution
of 100x100 grid cells, on floor plans including an exhibition hall and a parking lot.
It is inferred that while a denser sampling of space and camera parameters would
pull the solution towards the continuous optimum, it is often unnecessary to sample
extensively to achieve satisfying near-optimality.

Giving up optimality, several papers can be mentioned which use heuristic ap-
proaches to solve the problem. Angella, Reithler, and Gallesio [5] introduce a branch-
ing greedy algorithm which maintains a memory of solutions near its construction
path: whenever a tie has to be broken, the greedy registers both solutions so that it
may eventually explore them both. The approach helps the algorithm escape from
local optima by exploring several greedy routes in that fashion. For their camera
orientation problem [144], Munishwar and Abu-Ghazaleh suggest a greedy approach
over the set of all possible pans, and the availability of known camera locations allows
for a hierarchical approach. Cameras are clustered based on their position, and a
cluster leader solves the panning problem in its cluster before broadcasting its local
solution. Another paper [143] from the same authors adds a distributed approach
to the problem, for which clusters are assigned priorities to avoid overlaps between
local solutions: the overlapping cover is allocated to the cluster with higher priority.

I.2. CAMERA PLACEMENT FOR GLOBAL AND PERSISTENT
SURVEILLANCE 19

In their approach to 3D space sampling [4], Andersen and Tirthapura compare the
results of a basic CPLEX [97] configuration for Branch-and-Bound, an adapted ran-
domised greedy and ITEG, a greedy-based improvement heuristic introduced in [132].
In an attempt to compromise between network cost and coverage quality, Rebai et al.
formulated the problem as a multiobjective binary linear program in [163], and com-
bined the objectives into one through three approaches. The first, the weighted-sum
method, simply aggregates the two contradictory objectives into one linear expres-
sion, with weights λ and 1 − λ. Another solution is the two-phase method, based
on the adaptive exploration of a Pareto front between the two objectives. Finally,
the ϵ-constraint method converts one of the objectives into a constraint, and can
be likened to a reverse Lagrangian relaxation [73]. All three methods were tested
using a default CPLEX configuration [97]. Other papers using a greedy algorithm
for either solving or initialisation include [78], and a 2013 review by Zhao et al. on
BIP formulations and approximation methods can be found in [200].

Recent literature includes work by Yaagoubi et al. [189], who proposed a Voronoi
segmentation of the surveillance areas using the buildings as cell generators, based
on work by Dong [56]. A deterministic algorithm is applied which places cameras
uniformly along the Voronoi edges such that they may cover the building entrances.
The authors use omnidirectional cameras and focus on covering building walls and
the roads in-between buildings, which approximately lay on the Voronoi edges.

For works which provided details on both environment modelling and solving
approaches, a summary of this section can be found in Table I.1. The “space” column
refers to the dimensionality of the surveillance area, while the “viewsheds” column
indicates which camera representation model is used in the paper. The “occlusion”
column holds a checkmark when the paper considers this additional constraint when
performing visibility analysis computations. It is worth mentioning at this stage
that due to the high diversity of applications and variants of the OCP, there is, to
this day, no established benchmark to perform a fair numerical comparison of the
algorithms applied to it. In this section, we therefore focus on design-related aspects
but do not attempt to compare propositions based on their efficiency, as we feel this
would inevitably create a bias.

Metaheuristic approaches
Given the NP-hardness of the problem, the use of exact, optimality-oriented meth-
ods, becomes prohibitive as dimensionality increases. For this reason, researchers
have come up with a variety of metaheuristic algorithms which aim at providing
good approximations in a budgeted amount of time.

20 CHAPTER I. LITERATURE REVIEW

Ref. Type Space Viewsheds Occlusion
[63] Single-objective BIP 2D Circular sectors 3

[95] Single-objective BIP 2D Triangles 7

[5] Greedy (branching) 3D Depth maps 3

[144, 143] Greedy (distributed) 2D Circular sectors 7

[163] Multi-objective BIP 3D Cones 7

[189] Voronoi segmentation 3D Disks (projection) 3

Table I.1: Deterministic solving methods for the optimal camera placement problem

In the branch of evolutionary methods, genetic algorithms (GAs) [93] have been
regularly tested on that problem. David, Idasiak, and Kratz [53] compare their
implementation to an exact Branch-and-Bound algorithm. Their objective function
uses bonuses for coverage and penalties for sensor setup, therefore relaxing the full
coverage constraint. A parameter, the gain, defines how much more coverage a
camera must provide to the current solution in order to be selected by the genetic
operators. With a concern for backup coverage, Kim, Murray, and Xiao [111] used
a GA to tackle the problem from a multiobjective angle and build a Pareto front
of metaheuristic solutions. The algorithm is based on elitism, through which only
non-dominated solutions can be carried into the next generation, and infeasibility
is tackled by adjusting the chromosome structure before crossover. The results are
two pools of individuals, one for each objective, defining the Pareto front. Similar
work with GAs by Indu et al. [98] can be noted, although the authors focus on
maximising both primary and overlapping coverage. With their game-based model,
Fantini and Chaimowicz [68] also used GAs when the instance size exhausted their
exact algorithm. In this case, the fitness function used to evaluate individuals focused
on the number of watchmen and the ground samples they collectively covered.

Similar in their nature-inspired aspect, particle swarm optimisation (PSO) algo-
rithms [107] have also displayed some popularity. Early work includes Conci and
Lizzi [41] for coverage with essential regions, although very few details are given
about the algorithm. In two papers [140, 141], Morsly, Djouadi, and Aouf focus on
PSO for their best interceptor strategy, and for camera placement in general. The
earlier paper introduces probability-inspired binary particle swarm optimisation for
this problem, and compares it favourably to two PSO variants: improved [80] and
novel [108], along with other metaheuristics. The method improves on the standard
binary PSO algorithm by computing particle velocities based on each bit’s likelihood
to be 1. This probability is based on the bit’s value in the current best global solu-

I.2. CAMERA PLACEMENT FOR GLOBAL AND PERSISTENT
SURVEILLANCE 21

tion. More recently, this approach has been extended by Fu, Zhou, and Deng [77],
who used a different update operator once the new velocities have been computed.
PSO can also be found in work by Konda and Conci [115], which remains in the
continuous domain for camera parameters, but evaluates a particle’s fitness using
the sampled floor plan and a ray tracing algorithm. Further experiments with PSO
were conducted in [188] by Xu, Lei, and Hendriks. The paper compares three ways
of handling violating dimensions in infeasible solutions: absorbing (reset to its initial
value), reflecting (set to its opposite value), penalising (strong fitness penalty for
infeasibility).

Artificial bee colonies (ABCs) [104] and artificial spiders have also been tested on
the problem, with two publications [37, 38] by Chrysostomou and Gasteratos. In this
work, additional visibility constraints are formulated (resolution, viewing distance,
occlusion) and aggregated into the fitness function for evaluation. The algorithm
then proceeds as usual, identifying elite sites for neighbourhood exploration (local
search) and dispatching the remaining bees randomly (global search). The authors
later provided summarised results for both coverage maximisation and cost minimi-
sation [37], however the absence of more numerical data renders the comparison with
other algorithms rather unfair. An extension involving so-called artificial spiders to
the process is also attributed to the same authors [38]. In this paper, artificial bees
are used to determine the optimal number of cameras, while the spiders algorithm
computes their actual positions and orientations. Unfortunately, the inner workings
of this newly added bio-inspired method are not thoroughly defined. Table I.2 brings
together the aforementioned nature-inspired methods.

Ref. Type Space Viewsheds Occlusion
[53] GA 3D Depth maps 3

[111] GA – – –
[98] GA 3D Circular sectors 7

[41] PSO 2D Circular sectors 3

[140] PSO 2D Triangles 7

[141] PSO 2D Pyramids (projection) 7

[68] GA 3D Human eyesight 3

[115] PSO 3D Pyramids 3

[188] PSO 2D Circular sectors 7

[77] PSO 2D Pyramids (projection) 7

[37, 38] ABC 3D Pyramids 3

Table I.2: Nature-inspired approaches to the optimal camera placement problem

22 CHAPTER I. LITERATURE REVIEW

Other metaheuristics for optimal camera placement (Table I.3) have included
simulated annealing (SA) [114] and its transdimensional variant (TDSA) [26], differ-
ential evolution (DE) [177], and custom local search algorithms. Simulated annealing
has been used by Janoos et al. [101] in order to help the Nelder–Mead method [150],
used for solving, escape the local optima it tends to easily fall into. Transdimensional
simulated annealing has been explored by Liu et al. [126, 127] for the same prob-
lem. The idea is to consider a stochastic optimisation framework which allows SA to
evaluate both changes in parameter values (moving a camera) and in dimensionality
(adding or removing a camera). Attempts to use differential evolution for optimal
camera placement are still very recent, with first one work [195] by Zhang et al. The
metaheuristic requires the same adjustment as PSO to tackle combinatorial prob-
lems, and behaves similarly to genetic algorithms, save that the crossover operator is
based on a problem-specific difference function between individuals rather than on a
selective union of their properties. In their paper, Zhang et al. represent an individ-
ual as a vector of camera indices, and the following crossover operator is iteratively
applied. For every individual in the population, two others are randomly selected,
and their element-wise difference is computed. The result is then scaled down using
a fixed zoom factor, and added to the first individual to create a so-called mutant.
Then, when constructing the next generation, each gene of the original individual is
replaced with the corresponding one in the mutant, with given crossover probability.
A small bias in the algorithm ensures that at least one mutant bit is carried over.
More recent work involving DE for the OCP can also be found in [25] by Brévilliers
et al. While the paper focuses on preprocessing distribution and parallelisability, it
also includes a hybrid set-based DE algorithm inspired from work by Maravilha,
Ramı́rez, and Campelo [130]. In their implementation, mutant individuals are gen-
erated by combining a random solution with two others taken from the population.
Once set operators have been applied, a mutant is defined which consists only of
cameras registered in the aforementioned solutions. A smaller instance, restricted to
this mutant’s cameras, is then solved exactly using CPLEX [97], which effectively
serves as a crossover operator. The resulting solution can then be evaluated for
selection into the next generation.

For the sake of completeness, the following papers may also be noted which in-
troduce other search procedures for the problem. In [141], Morsly et al. include a
tabu search (TS) algorithm [84, 85], along with generic GA and SA implementations
for comparison with their own PSO work. Fantini and Chaimowicz define a back-
tracking exhaustive search algorithm in [68], and use it whenever the instance size
permits it. Finally, for their work in generic sensors network design [164], Rebai
et al. propose a local search procedure, the neighbourhood for which is defined by

I.3. THE SET COVERING PROBLEM 23

adding a so far unused sensor location to the graph, and removing existing elements
which were made redundant by the new node.

Ref. Type Space Viewsheds Occlusion
[101] Nelder–Mead/SA 3D OpenGL 3

[68] Backtracking 3D Human eyesight 3

[127] TDSA 2D Disks 3

[195] DE 3D Pyramids 3

[25] DE 3D Pyramids 7

Table I.3: Other metaheuristics for the optimal camera placement problem

I.3 The set covering problem

Definition and relationship to camera placement
Most of the specifics for the optimal camera placement problem are usually treated
in the visibility analysis phase, during which the instance translates into a visibility
matrix from each camera to each point in the discretised space. As an example,
consider the Figure I.3 floor plan used in Section I.2. The sampling process for this
case defines an OCP instance with 37 ground samples. Using the walls around and
inside the building, 60 possible camera locations can be selected. For the sake of
simplicity, we will assume that the orientation sampling process ran on a 2π range
for all positions. Given a π

6
pan sampling frequency (12 possible pan angles) and

one possible tilt angle, the 60 aforementioned positions correspond to 60 ∗ 12 ∗ 1 =
720 possible camera candidates for the optimisation process to choose from (see
Figure I.5b).

Before this can happen however, the ground samples and camera candidates
need to be matched. In other words, the optimisation algorithm needs to know
which candidates can cover which points. This stage was discussed in more details
in Section I.2, and typically yields a visibility graph of which Figure I.5a shows a
subgraph. From this perspective, the reader may recognise the popular dominating
set graph theory problem, whose combinatorial equivalent is one of Karp’s well-known
NP-hard problems: set cover [105]. In a generic manner, it is usually formulated as
follows:

24 CHAPTER I. LITERATURE REVIEW

(a) The frustum for
one candidate and
its associated visi-
bility subgraph

(b) All possible frustums

Figure I.5: Bottom-right corner of the Figure I.3 floor plan with the associated
camera candidates. The horizontal field-of-view was set to 65° and the range to 2
units

Problem (set cover). Given a set of elements I (rows) to be covered, and a collection
of sets J (columns) such that the union of all sets in J is I, find the smallest subset
C ⊂ J such that

∪
e∈C e = I. In other words, determine the smallest subset of J

which covers I. By assigning a cost to each column, the problem can also be that of
finding the subset with minimal cost.

For convenience, we will also be using the notations Ij for the set of rows covered
by column j, and Ji for that of the columns which cover i. Letting I be the set of
all coverable ground samples in the surveillance area, and J the covers of all camera
candidates, expressed as subsets of I determined through visibility analysis (see
Section I.2 and Figure I.5), the optimal camera placement problem is structurally
identical to set cover, and is therefore NP-hard.

In spite of this relationship, to the best of our knowledge, most set cover literature
has yet to find its way into work done on optimal camera placement. Furthermore,
there appears to have been no published works which bring knowledge acquired from
the OCP into SCP literature. Given that the former is a specialisation of the latter,
the reader might argue that this comes as no surprise. It is also worth noting that
any extension of the surveillance area in an OCP instance, or worse, the inclusion of
an additional dimension, generates a significant growth of I, making transformations
to set cover highly sensitive to dimension changes in the original camera placement
problem.

I.3. THE SET COVERING PROBLEM 25

Instance reduction
To lighten the curse of dimensionality for the SCP, two main instance reduction
procedures were defined by Beasley [12]. The first, column domination, identifies
dominated columns—that is, columns whose covers are subsets of others. More
formally, the set of removable dominated columns is given by:

D = {j ∈ J | ∃j′ ∈ J , j ⊂ j′}

It is worth noting that this pruning procedure is more straightforward on unicost
instances, since weighted variants would have to take cost into consideration [165].
The second method, column inclusion, is a look-ahead procedure identifying columns
which have a monopoly over some rows. In that case, to ensure coverage, the columns
are immediately added to the solution and removed from the instance before solving.
More formally, the set of included columns is given by:

I = {j ∈ J |
∪
j′∈J
j′ ̸=j

j′ ̸= I}

These procedures have found their way into many pieces of recent set cover optimi-
sation literature, including but not limited to [123, 165, 51]. They have been used
and extended in this thesis, although the second procedure (inclusion) was found to
not be suitable for human-assisted optimisation, as will be shown in Chapter IV.

Greedy and heuristic algorithms
As a well-known problem, set cover has obviously attracted a lot of attention from re-
search in deterministic methods, even though itsNP-hardness makes the use of exact
methods highly impractical. Pioneering work on the problem is usually attributed
to Chvátal who designed a greedy procedure [40] for the problem, and proved that
it would never overshoot the optimal solution by more than a factor of

∑d
i=1

1
i
with

d = maxe∈J |e|, the maximal cardinality in J . A tighter bound was later found by
Parekh [157], and more recently, Felici et al. pointed out an a-priori upper bound
using probabilistic methods [71]. Since these early papers, the development of better
greedy algorithms for set cover has remained a popular line of research, and many
algorithms, both deterministic and stochastic, still use them to build or repair solu-
tions. A recent paper by Chandu [33] reports on tests involving a generic set-based
greedy, which includes several columns at once. Ablanedo-Rosas and Rego [1] also
suggested the use of surrogate models for problem relaxation and compared several

26 CHAPTER I. LITERATURE REVIEW

update rules including Chvátal’s. A 2016 review of various greedy heuristics was
published by Vasko, Lu, and Zyma in [186].

As a note on the connection between our two problems, it is worth noting that
OCP literature has in fact included the use of greedy algorithms, as we have seen
in Section I.2. While the algorithms mentioned there were typically tailored for
the OCP, the key ideas remain quite similar. In fact, when considering Chvátal’s
selection operator—which maximises coverage at every iteration—one can draw a
parallel with the work of Angella, Reithler, and Gallesio [5] and Munishwar and
Abu-Ghazaleh [144, 143].

In any case, although greedies are very attractive in that they quickly provide
acceptable primal bounds for other heuristics on which to build, the usual Branch-
and-Bound scheme remains the only way to explore the search space exhaustively
and find a provably optimal solution. While the usual approach—which uses the
problem’s linear relaxation, the simplex algorithm and variable-based branching—
has remained prohibitive for NP-hard problems, several observations on the SCP
have allowed the implementation to be customised so as to speed up gap reduction.
Early success along those lines must be credited to Etcheberry [66] who suggested a
new branching strategy and the use of Lagrangian [73] rather than linear relaxation
at every node. The enumeration algorithm uses subgradient optimisation to acquire
better Lagrange multipliers and a possibly better lower bound at every step. Balas
and Ho later designed a primal-dual enumeration algorithm [9] using dual and greedy
primal heuristics, as well as cutting planes and variable fixing for gradual instance
reduction. The branching scheme is taken from [66], and Beasley extended the work
with a three-phase algorithm for dual bounds in [12]. This paper also elaborated on
the previous instance reduction procedure, which uses the latest Lagrangian costs and
dual bound to eliminate columns at every iteration. Further work on this approach
can be found in [13, 15, 8, 29, 191, 32] and a review entitled “Algorithms for the Set
Covering Problem” by Caprara, Toth, and Fischetti can be found in [30].

Moving on to other approaches, a paper [131] by Marchiori and Steenbeek intro-
duces an elitist algorithm which gradually reduces the problem by maintaining a core
of elite columns. At every iteration a randomised greedy is restarted from the most
frequently selected columns so far, and the score of every column in the resulting
cover increases. An optimisation routine then prunes the solution using a pairwise
variant of the column domination algorithm introduced earlier. In a similar attempt
to avoid local optima, Lan, DePuy, and Whitehouse introduced a non-deterministic
greedy algorithm [123] which sometimes selects columns within an acceptable range
of the greedy choice. A neighbourhood search heuristic is then used to improve the
resulting solution, and the overall proposition has proven to be quite effective.

I.3. THE SET COVERING PROBLEM 27

With a focus on the more difficult unicost variant of the SCP, Gao et al. propose
a row-weighting local search algorithm (RWLS) in [79]. In this approach, every row
is first assigned a weight, initialised at 1. Every column which is not in the current
solution is then given a score corresponding to the sum of its uncovered rows’ weights.
Columns in the current cover are scored negatively, by summing up the weights of
the rows they are the only ones to cover, and assigning the opposite values. Given
these attributes, a local search algorithm is then run which first breaks feasibility by
removing selected columns with high, albeit negative scores. An additional column is
then removed, and a uncovered row is chosen randomly. The highest-scoring column
for this row is added to the solution, and the weights of the remaining uncovered
rows increased. A tabu list is used to prevent loops, and timestamps help break ties
by ensuring that recently selected columns cannot be reused immediately. As will be
confirmed in Chapter III, this proposition by Gao et al. is among the most promising
approaches for both the unicost SCP and the OCP.

Nature-inspired methods
Although some of the algorithms introduced earlier can reach thousands of rows and
columns, the sampling processes used for optimal camera placement can generate
SCP instances which can reach as far as or beyond the challenges of the standard OR-
Library [13] (typically used for SCP benchmarking), even for simplistic surveillance
areas. Acknowledging the existence of such large instances in practice, the set cover
community has given a significant amount of time to metaheuristics, which effectively
sacrifice optimality in order to yield acceptable solutions in a limited amount of time.

Among those, the greedy randomised adaptive search procedure (GRASP) was
introduced using the SCP Feo and Resende [72] and effectively removes the determin-
ism in Chvátal’s algorithm. Instead of always choosing the column with the most un-
covered elements in its cover, the algorithm picks one randomly among those within
a given factor of that maximum gain. To benefit from randomness, the procedure
is repeated several times, and the best solution across all iterations is returned with
its redundant columns removed. Following up on GRASPs, Bautista and Pereira
derive a specialised routine in [11], inspired from efficient SAT-solving heuristics,
for the reputably harder to solve unicost SCP. The instance is reduced to SAT, the
original NP-complete problem [42], for which many heuristics and solvers have been
designed.

Another early and influential paper to tackle the SCP metaheuristically was pub-
lished by Beasley and Chu in 1996 [14]. The authors introduced an efficient genetic
algorithm for set cover which, to this day, remains a good reference for comparison.

28 CHAPTER I. LITERATURE REVIEW

The selection operator is tournament-based: the population is randomly split in two
groups, and the best of each are matched iteratively until both groups are empty.
The crossover operator is fitness-biased, meaning that the value of each of the child’s
bits is more likely to come from the parent with better fitness. The mutation operator
flips each bit with some probability, and the authors decided to dynamically adjust
the mutation rate as the algorithm converges. Infeasible solutions are repaired using
a greedy heuristic, duplicate solutions are ignored, and a steady-state replacement
policy is used for population updating: new solutions replace below-average individ-
uals. This implements elitism, in that above-average individuals cannot be replaced.
A 1997 review [128] of GAs for the SCP was later published by Lorena and de Souza
Lopes which highlights the high performance of even a classical GA implementation
on this problem.

Later work includes [3] by Aickelin, which tackles the problem less directly.
Rather than to attempt to solve the problem straightforwardly by manipulating
columns, the algorithm aims at finding the best ordering of rows, using a so-called
decoder as a fitness function. Once an ordering has been generated within the GA’s
population, it is deterministically decoded into an SCP solution by a greedy algo-
rithm which iterates over the rows and for each one selects the most interesting
column. The greedy’s parameters, which define a column’s attractiveness, are also
part of the GA’s individuals and are optimised along with the ordering.

A more straightforward GA implementation has also been attempted for the
SCP by Kornilakis and Stamatopoulos in [117], with an application to airline crew
pairing. The objective function uses application-specific penalties, while the other
components are typical of the usual GAs. The selection operator uses a fitness-
biased roulette wheel, the crossover operator is uniform, meaning genes may come
from either parents with equal probability. The mutation operator is less standard:
a fixed number of genes is selected in the individual, and each of them is flipped with
a probability based on the density of zeros in the population’s fittest individual.

Solar, Parada, and Urrutia also extend regular GAs in [174] by introducing a
parallel implementation of the algorithm. The authors generate several populations,
running their own GAs independently and waiting for each other at the end of each
generation. Then, each algorithm sends its best individual to a designated master
node, which picks the best among them and broadcasts it back to all other nodes.
Individuals follow a binary representation, and infeasible solutions are repaired greed-
ily. Another, more recent attempt involving parallel genetic algorithms can be found
in [197] by Zhang et al.

An example which tackles the infeasibility cases emerging during crossover can
be found in [64] by Eremeev. Rather than to use an indicator vector mapping J →

I.3. THE SET COVERING PROBLEM 29

{0, 1}, a chromosome is made up of |I| genes, the values of which are indices of J . A
gene therefore represents a row, and its value corresponds to a column which covers it.
Once two parents have been randomly selected with the usual fitness bias, the union
of their columns is used to define a small SCP subproblem, which can be reduced
and solved. Given a valid initial population, in which all genes reference columns
actually covering their rows, and considering the above crossover operator, one can
see that the algorithm will indeed never generate infeasible solutions. The mutation
operator does not compromise this property, and simply changes a row’s column to
another which covers it, with given probability for each gene. It is worth noting that
the infeasibility problem tackled here has been the subject of more recent work, with
Bilal, Galinier, and Guibault proposing an unconstrained set cover formulation in
[18], based on gains and penalties in the objective function.

Acknowledging the efficiency of genetic algorithms on the SCP, Crawford et al.
proposed a variant called cultural algorithms [46, 44] which adds longer-term memory
into the original GA design. The authors defined a so-called belief space which,
across generations, retains two individuals, used during crossover: best fitness and
most diverse so far. The belief space is updated at the end of every generation if a
new individual acquires a better value for one of these two metrics. The mutation
operator and the repair function are taken from Beasley and Chu [14].

Genetic algorithms made up the first references in OCP Section I.2 earlier. The
constraint relaxation approach found in both Bilal, Galinier, and Guibault [18] and
David, Idasiak, and Kratz [53] is one of very few elements found in both bodies of
literature, in spite of the approach’s popularity in SCP papers. The reader will note
that this relates to the weighted SCP, which may explain this discrepancy.

Ant colony optimisation (ACO) algorithms [57] have been applied to the SCP,
with early work by Lessing, Dumitrescu, and Stützle in [124]. The paper high-
lights the importance of good initial heuristic information, which is used before the
pheromones trails are sufficiently strong, and compares several approaches. In their
work, Lessing, Dumitrescu, and Stützle use these seven sources of heuristic data and
compare them using three ACO algorithms: the original ant colony system [57] by
Dorigo, Maniezzo, and Colorni, the MAX -MIN ant system [178] by Stützle and
Hoos, and a hybrid variant combining the previous two [179]. The approximate non-
deterministic tree-search (ANTS) algorithm [129] by Maniezzo is also included for
comparison, and a local r-flip search is used for neighbourhood exploration (within
r column changes). This local search algorithm, which has been applied standalone
on the SCP, was brought forward by Yagiura, Kishida, and Ibaraki in [191]. Lessing,
Dumitrescu, and Stützle concluded that without local search, cover gain was the
most interesting source of heuristic data. When a local search procedure was added,

30 CHAPTER I. LITERATURE REVIEW

Lagrangian lower bounds proved more efficient.
Later work with ACOs has included [43] by Crawford and Castro, who suggested

the use of constraint programming and restricted arc consistency to detect infeasible
partial solutions ahead of time, as well as solution postprocessing as an alternative
to local search. Inspired by the original ACO results on the travelling salesman
problem, Ren et al. proposed another approach [165] and tackled the problem in
a row-oriented fashion. At every iteration, the ants select uncovered rows at ran-
dom and columns are chosen, using the ant colony’s information, among those which
can cover them. A similar approach which appears to be less dependent on local
search improvement can be found in [142] by Mulati and Constantino. Valenzuela
et al. [185] later referenced both Aickelin [3] and Crawford and Castro [43], and pro-
posed a hybrid method involving ACO, scatter search [83], and a genetic algorithm
to tune the parameters of the previous two. The latter uses fitness-biased random
selection, single-point crossover and random uniform mutation. The ant colony fol-
lows its original implementation. More recently, Al-Shihabi, Arafeh, and Barghash
proposed the use of linear relaxations for initial problem reduction, and adjusted
the implementation of theMAX -MIN ant system for the SCP [172]. To this day
and to the best of our knowledge, ACOs have yet to yield interesting results on the
unicost SCP or on the OCP.

As far as nature-inspired methods are concerned, two others popular metaheuris-
tics are also worth mentioning here. Crawford et al. suggest the use of an artificial
bee colony for the SCP in [48]. The population is initialised by selecting a random
column for each row, and worker bees adjust their position by adding and removing
columns based on a randomly selected food source. Infeasible solutions are repaired,
presumably greedily, although the paper does not provide more information. The
results seem to suggest that ABCs are particularly efficient on large-scale SCP in-
stances. Earlier work had included [180] by Sundar and Singh which combined the
method with a local search procedure, with promising results. More recently, Bal-
aji and Revathi [7] proposed PSO as an approach for the SCP. The authors used a
variant [81] introduced by Garcia and Perez, inspired from frogs rather than birds,
and designed for combinatorial problems. Similar inspiration can be found in [51], in
which Crawford et al. apply the shuffled frog leaping algorithm, originally formulated
by Eusuff and Lansey in [67], to the SCP. The algorithm was adjusted for binary-
encoded individuals through the use of transformation functions originally studied by
Mirjalili and Lewis in [135]. Other metaheuristics inspired from nature include [103]
by Joshi, Rowe, and Zarges who exploited recent advances on our understanding of
the human immune system to develop a parallel germinal centre artificial immune
system algorithm. Work along the same lines can be found in [184] by Tasnim, Rouf,

I.3. THE SET COVERING PROBLEM 31

and Rahman.
As the reader may recall from Section I.2, ABCs have not been tremendously

popular in OCP literature (see work by Chrysostomou and Gasteratos [37, 38]). PSO,
on the other hand, ranks among the most popular approaches. The designs however
remain very different as far as their key features are concerned: SCP literature seems
to bring forward the idea of different neighbourhoods or clusters used in the update
equations, while OCP papers stray further away from the continuous versions of the
algorithm.

Among other approaches, simulated annealing has also been applied to the SCP,
with a 1995 publication [100] by Jacobs and Brusco. For this algorithm, the initial
solution is built by iteratively selecting a random row, and including the first col-
umn to cover it into the solution. Redundant columns are then removed, and the
cooling process begins. Neighbourhood search is performed by first dropping a fixed
proportion of columns from the solution, and repairing it by adding columns the
costs of which are within a given factor of the maximum column cost in the instance.
The algorithm was tested for various parameter values, and improved many of the
best known solutions at the time. Brusco, Jacobs, and Thompson later explored the
idea again in [27], for instances with strong cost-to-coverage correlation and using
a so-called morphing procedure for local search on partial solutions. For another
single-solution approach, Musliu define a local-search procedure [146] using a move-
oriented neighbourhood, which allows for the easy use of a tabu list to avoid cycles.
The authors define a constructive and a destructive move, and set rules on their
usability at each given stage of the algorithm.

Finally, being a popular problem, the SCP has also led to the creation or testing
of recent algorithms, inspired from concepts mostly unexplored in the field of meta-
heuristics. These include physics ([147, 6, 166, 175]), chemistry ([194]), wildlife ([49,
45, 47]), pyrotechnics ([50]), music ([168]) and sports ([102]), among others. The list
of all such propositions is quite extensive: we therefore refer the reader to [119] for
complete details and numerical comparisons.

Review
While we were able to establish some connections between OCP and SCP litera-
ture, this relationship is clearly under-exploited. Very little of the knowledge we
have about the set covering problem has found its way into camera placement lit-
erature, or vice-versa. As will be shown in Chapter II, OCP instances do tend to
have specific characteristics which call for tailored algorithms. Nonetheless, a better

32 CHAPTER I. LITERATURE REVIEW

understanding of the leading algorithms for set cover does provide valuable insight.
As a summary, we provide a list of said algorithms in Table I.4, focusing on the
weighted set cover problem. As far as the unweighted variant is concerned, the state
of the art is much simpler. The RWLS algorithm mentioned earlier remains mostly
unchallenged, although very recent work seems to suggest hybridising approaches
might be promising [159].

Year Ref. Type Proposition
1999 [29] Heuristic Lagrangian-based framework
2000 [131] Metaheuristic Elitist evolutionary algorithm
2006 [191] Heuristic 3-flip neighbourhood search
2007 [123] Heuristic Non-deterministic greedy algorithm
2010 [6] Metaheuristic Gravity-inspired search algorithm
2010 [180] Metaheuristic Artificial bee colony with local search
2014 [194] Metaheuristic Chemical reaction optimisation
2015 [172] Metaheuristic MAX -MIN ant colony optimisation

Table I.4: The 8 algorithms which reached 100% BKS on the 1987 and 1990 OR-
Library instances

In this thesis, several elements will be taken from set cover literature and inte-
grated into our approach. This includes extended reduction procedures, weighting
schemes, greedy heuristics as well as another, closely-related problem variant which
we introduce in Chapter IV.

Chapter II

Problem formulation and
instance generation

Introduction

H aving reviewed the wide variety of variants, constraints, objectives and ap-
plications which surround the optimal camera placement problem, we now
establish the modelling basis for this thesis. In this chapter, we begin by rein-

troducing a basic set cover, full coverage formulation of our problem. This model,
combined with feedback from other research partners, then serves as a basis for the
design of an instance generation procedure which brings optimal camera placement
into the real world. We introduce tailored sampling procedures which capture knowl-
edge from the layout of the given area, using real world, publicly available data. The
integration and extension of reduction procedures from set cover literature is also
discussed and a first solve using three basics algorithms yields interesting hypotheses
to be studied in Chapter III and used in Chapter IV.

Related publication

[120] Julien Kritter et al. “On the real-world applicability of state-of-the-art algo-
rithms for the optimal camera placement problem”. In: 6th 2019 International Con-
ference on Control, Decision and Information Technologies (CoDIT). IEEE, Apr.
2019. doi: 10.1109/CoDIT.2019.8820295

33

https://doi.org/10.1109/CoDIT.2019.8820295

34CHAPTER II. PROBLEM FORMULATION AND INSTANCE GENERATION

II.1 Problem formulation and generation
overview

In order to first focus on real-world data processing, we begin with a very simple
formulation, which follows that of the set cover problem or early camera placement
literature [63, 95]. We therefore work from a set of ground samples I, defined
as points in a 3D cartesian coordinate system, and a set of camera candidates J
for which we add orientation information in the form of a normalised 3D vector.
A visibility matrix A with elements aij is also available and maps sets I and J
together. The problem is therefore given by the following binary integer program, in
which decision variables xj determine whether or not a candidate is selected.

min

|J |∑
j=1

xj (II.1)

|J |∑
j=1

aijxj ≥ 1 ∀i, 1 ≤ i ≤ |I| (II.2)

This formulation is of course that of the unicost set cover problem, and enforces
full coverage across the entire surveillance area while minimising cost.

Before such a model can be used however, a procedure needs to be designed to
acquire I, J and elements aij of the visibility matrix. Several approaches have been
put forward by the authors reviewed in Chapter I, however those approaches tend
to be either overly simplistic or very computationally expensive. In this thesis, we
propose a middle ground between those two extremes, which captures information
from the real world while mostly keeping algorithm complexity down. To this end,
our approach uses data sources. The first is the OpenStreetMap (OSM) database
[155].

OpenStreetMap is a free, editable map of the whole world that is be-
ing built by volunteers largely from scratch and released with an open-
content license.

(The OpenStreetMap wiki: about OpenStreetMap)

OSM is a very complete, user-contributed world map (Figure II.1) which not
only provides layout information such as roads or buildings but also an extensive
tagging system which stores a significant amount of metadata for each element. In

II.1. PROBLEM FORMULATION AND GENERATION OVERVIEW 35

Figure II.1: The OpenStreetMap web viewer

this thesis, we use OSM to set the bounds of our surveillance area and generate both
ground samples and camera candidates.

One drawback of OSM however is that, as a map, its data is two-dimensional.
While building dimensions are available through the tagging system, ground elevation
remains unknown and our instances remain flat. To solve this issue, we introduce
another data source: NASA’s Shuttle Radar Topography Mission (SRTM) data [176].
With over 80% of the Earth covered, the SRTM provides ground elevation data for
every 1-degree longitude, 1-degree latitude square on the planet. At 1 arc second
resolution, this represents an elevation value in meters for every 30 meters square.

With this data available, our instance generation procedure is as follows. First,
OSM entities which are relevant to our problem are parsed and sorted. The geo-
graphic coordinates of each element are then transformed into a local three-dimensional
cartesian coordinate system, which greatly simplifies our computations while remain-
ing very accurate for our use cases. Elevation is then brought in, and the sampling
process can begin. Ground elements such as roads and open areas are processed to
yield ground samples, while buildings and walls provide camera candidates. Every
pair is then passed on to the visibility analysis and instance reduction algorithms
before the instance can be stored on disk.

36CHAPTER II. PROBLEM FORMULATION AND INSTANCE GENERATION

II.2 Sampling procedures

OpenStreetMap entities and coordinate system transform

OpenStreetMap data revolves around four main entities: nodes, ways, relations
and tags. Nodes are points in space given by a latitude and a longitude coordinates.
They may represent elements of interest on their own such as traffic lights or electric
poles, but are mostly used to build ways. These are sequences of nodes which can
form lines or polygons to represent roads, buildings, open areas and various sorts
of infrastructure. Relations do not correspond to physical elements but rather serve
as a way to associate nodes and ways together. It is therefore common to find
relations which group several building ways to represent them as parts of institutions
or administrative regions. Finally, tags are key-value pairs which can be associated
with any of the aforementioned entities. They provide extensive metadata about the
nature and description of every feature on the map. They allow us, for example, to
determine whether a polygon way is a building or a park.

Before we use this information to classify and process entities, we first need to
move into a more convenient coordinate system. While we could, indeed, work in
the geographic system from beginning to end, this seems like an unnecessary struggle
given that our transform will only incur a minor precision loss, provided that our
surveillance areas do not span across extremely large regions. This can reasonably
be assumed since, in practice, CCTV infrastructure is designed locally and hardly
ever goes beyond the scale of a city or conurbation. At this level, the loss of accuracy
remains barely perceptible.

Our transform requires two stages. The first will convert the geographic co-
ordinates (latitude, longitude) into Earth-Centred, Earth-Fixed (ECEF) geocentric
cartesian coordinates. In other words, our nodes are repositioned into a system which
has its origin at the Earth’s centre. Its horizontal axes (x and y) are aligned with
the prime meridian and the equator line, while the vertical (z) axis follows the di-
rection of the true north. For a node at latitude ϕ and longitude λ, the transform
is given by Equation (II.4). Equation (II.3) is an intermediary step for the compu-
tation of the prime vertical radius of curvature at latitude ϕ. This corresponds to
the perpendicular distance from the surface at latitude ϕ to the polar axis [23]. It is
computed using two parameters a and b which are the lengths of the Earth’s major
and minor semi-axes respectively. In Equation II.4, E represents the Earth’s squared

II.2. SAMPLING PROCEDURES 37

eccentricity and is given by
(
b
a

)2.
n =

a2√
a2cos2(ϕ) + b2sin2(ϕ)

(II.3)

ecefϕλ =

ncos(ϕ)cos(λ)
ncos(ϕ)sin(λ)
nEsin(ϕ)

 (II.4)

Since we are working on small areas (relative to the Earth surface), the coordinates of
our points in the ECEF system are bound to be very close. Since such a configuration
does not exactly agree with a computer’s approach to floating point numbers, our
selected transform includes a second step to move from ECEF to ENU (East, North,
Up) coordinates. This second system relies on the use of a local tangent plane.
Given a reference point at (ϕ0, λ0), such a plane is defined by its normal vector,
tangent to the Earth’s surface at the reference. For our work, we have consistently
chosen this point at the centre of the surveillance area’s bounding box. The two
other (orthogonal) axes are then set in the direction of the Earth’s true north axis
for one, and that of the east for the other. ECEF coordinates can then be translated
onto this plane using Equation (II.7). Equation (II.5) computes the difference vector
between a given node’s ECEF coordinates (ϕ, λ) and that of the reference point.
Equation (II.6) is included for notational convenience.

d = (dx, dy, dz) = ecefϕλ − ecefϕ0λ0
(II.5)

t = dxcos(λ0) + dysin(λ0) (II.6)

enuϕλ =

x
y
z

 =

−dxsin(λ0) + dycos(λ0)
−tsin(ϕ0) + dzcos(ϕ0)
tcos(ϕ0) + dzsin(ϕ0)

 (II.7)

Note that by using the meter as the unit in the first step, we ensure that the ENU
coordinates also follow this rule, save for the minor loss of precision incurred in the
second step.

Now that each node is associated with cartesian coordinates local to our surveil-
lance area, we are ready to integrate our elevation data. As was mentioned earlier,
the SRTM data provides an elevation value in meters for every 30-meter square on
Earth. A straightforward approach is therefore to add this value to the z coordinate
of every node in each square. This however would generate a tiling effect on the floor,
especially where the nodes are too densely packed together. To compensate for this,
we have implemented smoothing into our elevation process. For a given node, we

38CHAPTER II. PROBLEM FORMULATION AND INSTANCE GENERATION

first locate the associated SRTM tile in the dataset and determine in which quadrant
of this tile our node lies. Based on this, we also fetch the two neighbouring tiles. For
example, if our node is in the north-west quadrant of its tile, we fetch the northern
and western neighbours. A weighted average elevation value is then computed based
on the distances between our node and the centres of the three aforementioned tiles.
This effectively transforms the original tiled landscape into a smooth curved surface
which better represents the ground.

With the transform and elevation complete, we can now move up to the other
OSM entities. It should be noted that while they are essential for the implementation,
relations can effectively be ignored by conceptually transferring their tags over to
their node or way members. In the rest of this section, we will therefore focus on
nodes (points) and ways (polylines and polygons).

Using the tagging system and filtering rules dictated by the users and the study
case, we separate nodes and ways into what well call ground and structural entities.
Put simply, ground entities yield ground samples, that is, points in space that must
be covered and which represent our continuous surveillance area. Structural entities
yield camera candidates which can provide said coverage. Note that this topology will
be reformulated in Chapter IV as we integrate more application-specific constraints
into our model.

Ground entities
Ground entities are divided into three categories for processing. Ground points are
single points of interest represented as nodes in the data. They typically include
pedestrian crossings but may represent all sorts of elements. Only one location is of
interest in this case: that of the node. Ground lines are OSM ways and represent
various types of roads. Finally, ground polygons are used for open areas such as
parks, parking lots, pedestrian areas, and so on.

Locations of interest along a ground line are computed using a simple 3D poly-
line walk. Starting at the first node, the algorithm advances along the line at a
predetermined frequency and registers its location at every stop. When the sam-
pling frequency does not exactly divide the way’s length, the samples are centred by
removing the excess margin at both ends. At every registered location so far, the
algorithm also takes into account the road’s width, which we extract from tags or
default values set to represent regulatory lane widths. This information is used by
walking orthogonally to the lane at a preset frequency and registering new locations.
Two parameters are therefore required for ground line sampling: the ground length
frequency f l

g for the walk along the way and the ground width frequency fw
g for the

II.2. SAMPLING PROCEDURES 39

orthogonal walks (both in meters). Their exact use is illustrated in Figure II.2: the
darker samples follow the line using parameter f l

g while the lighter ones surround
them at distance fw

g .

node
sampling location

Figure II.2: Illustration for the ground line sampling procedure

Ground polygons require more steps, especially as there are no guarantees about
their convexity. Various approaches have been tried to sample these geometries and
we have selected the following, which we illustrate in Figure II.3. First, the polygon
is triangulated using an ear-slicing algorithm. We used an implementation from
Mapbox [59] which the authors reported to be inspired from [75, 58]. Each triangle
is then processed individually. First, the vertex which connects the two longest
edges is identified. Lines are then drawn parallel to the remaining edge at frequency
f l
g and locations of interest are registered by walking those lines at frequency fw

g

following the same process as for ground lines. When the triangle is too small for
the length-wise walk, a single location is registered in its centre instead.

Now that locations of interest have been extracted from all available entities, the
third dimension must be taken into consideration. To account for human height,
additional locations are registered above the ones available so far, using three new
parameters: amin

g and amax
g will bound the coverage altitude levels while fa

g will
determine the frequency at which new locations are to be registered.

All the coordinates computed so far serve as our set of ground samples I. The
sampling process has ensured that this set is a fair representation of the surveillance
area’s layout as it is described on the map. Of course, as the reader will no doubt
notice, this process already requires a significant number of parameters. These will
be further studied in Chapter III and effectively eliminated in Chapter IV.

40CHAPTER II. PROBLEM FORMULATION AND INSTANCE GENERATION

f l
g

fw
g

Figure II.3: Illustration for the ground polygon sampling procedure

Structural entities
Once again, structural entities are divided into three groups: First, structure points
represent traffic lights and electric poles, among other things: they are nodes of
interest on which cameras can be set up. Then come structure lines which correspond
to walls and other similar elements. Finally, structure polygons describe buildings.

The process once again starts by identifying locations of interest, only this time,
two more elements must be identified: a normal vector which will serve as the starting
axis for pan sampling, and an angle which bounds the process. Structure nodes
consist of a single location of interest, with a normal vector set to an arbitrary vector
parallel to the ground, and a pan angle of 360 degrees. Structure lines are walked just
like ground lines, although at each stop the algorithm registers two configurations:
one of each side of the OSM way with the associated normal vectors and pan angles
of 180 degrees. Note that this requires a new parameter, f l

s, which represents the
sampling frequency along a wall.

Structure polygons require a little bit more thought since a lot of them will share
walls or corners. In order to avoid sampling along those and to determine valid pan
angles at every location, we propose the following approach, illustrated in Figure II.4.
The algorithm proceeds iteratively on triplets of consecutive nodes: previous, current
and next until all nodes have been set as current once. For every triplet, two angles
are first computed: αp and αn: they represent the available openings between the
building’s walls and those of any other structure. This is achieved by keeping track

II.2. SAMPLING PROCEDURES 41

of node-to-way mappings in the OSM data. Whenever one angle is zero, then the
associated wall (current to previous or current to next) is shared and should not
be sampled. When possible however, configurations are registered much like for
structure lines, with only the outward normal vectors considered. The αp and αn

angles also determine whether or not cameras can be placed at the current node
itself, both towards the previous and next nodes. They then serve as pan angle
values, and their bisector is used as the normal vector for sampling (again, parallel
to the ground).

previous current next

αp

αn

Figure II.4: Illustration for the structure polygon sampling procedure

At this point, our algorithm has only registered possible locations, with the associ-
ated normal vectors and pan angles. Just as we did in the previous section, we begin
the actual sampling by duplicating those locations at several altitude values, this
time using parameters amin

g , amax
g and fa

s , similar to those used earlier for ground
sampling. This time however, these parameters take into account the building’s
height configuration to ensure no camera is placed in the air.

Pan angle sampling may then begin. The available angle is divided into smaller
sectors using parameter fp

s (typically, a fraction of π) again centring the subdivision
by padding away from the wall. Whenever the available angle is too small for the
selected parameter, a single pan angle is chosen at the bisector. For every selected pan
vector, it is then possible to compute the final orientation samples using parameter
f t
s for the tilt angles. Here, the available interval is given by the pan vector, parallel
to the ground, and the wall, orthogonal to it. The available tilting room is therefore
always π

2
and experiments suggest that the tilting frequency should not be set above

π
6
to ensure optimisation algorithms are given enough options to chose from (see

Chapter III).

42CHAPTER II. PROBLEM FORMULATION AND INSTANCE GENERATION

Visibility analysis and online instance reduction
With both ground samples and camera candidates now available (see Figure II.5 for
a visual example), we are now able to compute the visibility matrix which maps
them together. In other words, for each sample i and each candidate j, we compute
the binary value aij which is set to one if and only if j sees i in our surveillance
area. As we have seen in Section I.2, the literature includes a wide variety of options
for this process. One issue however is that those tend to be at both extremes of
the complexity spectrum, using either simple two-dimensional geometrical tests or
full-blown game engines or ray tracing algorithms.

Figure II.5: Result of the sampling procedure for a subarea of the city of Strasbourg,
France. Ground level does not match building base level in renders.

As will be seen later on, our instance generation process tends to create very
heavy instances as it is able to tackle large surveillance areas. It would therefore be
very impractical to use expensive visibility analysis algorithms which would require
way too much time and scale poorly. Since realism is one of the main foci of our
work however, we cannot simplify the process too much. As a middle ground, we
propose the following approach. First, we define three consecutive tests to be applied
to sample-candidate pairs, with one failure short-circuiting the sequence. The first is
a simple range test: the distance between the sample and the candidate is measured,
and the test succeeds if that value is below the range of the camera model. This
range r is computed beforehand using Equation (II.8), which depends on the model’s
horizontal resolution Rh in pixels, its horizontal field of view fh in radians and an
operational parameter P which enforces an image quality constraint in pixels-per-
meter. This approach was borrowed from earlier work on optimal indoor camera
placement [24] although, as we will mention later, we have used much more tolerant

II.2. SAMPLING PROCEDURES 43

values for P . It is indeed not the goal of our research to design CCTV infrastructure
for facial recognition or similar image processing pipelines. Our focus is on crowd
analysis, for which high-resolution video capture is not really desirable (and in fact
requires more constraints to be considered, many of them legal).

r =
Rh

2P · tan
(
Fh

2

) (II.8)

The second check to be performed relates to the orientation of the candidate.
We have chosen to use oblique square pyramids to represent a candidate’s frustum,
with the orientation vector aligned with the segment which connects the apex to the
centre of the base. When projected onto the ground plane, the frustum has a paral-
lelepipedic shape and therefore takes into account the blind spot problem mentioned
in Section I.2. Our use of this particular model was inspired from work by Fu, Zhou,
and Deng [77] to which the reader is referred for more details. Our implementation
however differs and tends to be more intuitive given our use of vectors for candidate
representation. To check whether or not a sample lies within a candidate’s frustum,
we begin by computing the four side planes of the pyramid (see Figure II.6). To
do so, we first compute the vertical plane in which the orientation vector lies. We
use a dot-normal notation for planes and attach them to the candidate’s mounting
position. This first plane is then rotated by half the camera’s horizontal field-of-view
angle around the vertical axis at the candidate’s position, once in each direction, to
yield the left and right planes. For the other two planes, we start with the verti-
cal plane from earlier and rotate it around the candidate’s orientation vector by π

2

radians. We then compute the second axis of rotation by acquiring a vector orthog-
onal to the orientation vector in this plane. We then rotate around that vector by
half the camera’s vertical field-of-view angle in both directions to acquire the top
and bottom planes. For these computations, we make sure to proceed such that each
plane’s normal vector is oriented inwards. The relative position of the ground sample
is then easily checked with four dot products between each plane’s normal and the
vector which connects the attach points to the sample. If all four dot products are
positive, the point lies within the camera’s frustum. Note that we do not compute
the pyramid’s base plane at any point. This is unnecessary thanks to the previous
range check. It is also very convenient since the pyramid’s base can have almost any
shape now that the ground has been elevated.

If we reach this point, we know that in an empty environment, our candidate
would cover our sample. This brings us to our last check: occlusion. With trees,
walls, street corners and other elements taken into account, there is no certainty that
the line of sight between the candidate and the sample is clear. As we have seen

44CHAPTER II. PROBLEM FORMULATION AND INSTANCE GENERATION

+Fh

2
-Fh

2

(a) Top view (outside, to-
wards the top plane)

-Fv

2

+Fv

2

(b) Side view (outside, towards
the left plane)

Figure II.6: Computing bounding planes for a vector-defined square pyramid frustum

earlier, several authors have chosen to use complex ray-tracing algorithms to tackle
occlusion. To save on computational cost, we have decided to reuse the data we al-
ready have and generate a three-dimensional triangular mesh of all registered sources
of occlusion in the surveillance area, which can easily be identified and reconstructed
using a set of filter rules on OSM tags (see Figure II.7 for an example). This idea
for using meshes had already been applied to the AGP by Fantini and Chaimowicz
[68] who mentioned an implementation for the Half-Life game and the Illricht game
engine [99]. For our implementation, we decided to use the available OSM data and
the Möller-Trumbore algorithm for ray-triangle intersection [139]. Our first experi-
ments used OSM2World [156] for mesh generation, which had been extended to use
our coordinate system, however we integrated the process into our code base later
on.

For each pair which passes the range and frustum checks, we go through the
available mesh faces and look for intersections with the candidate-sample segment.
When no such intersection can be found, the occlusion check passes and the pair is
registered. As the reader will probably notice, this process can still be quite expensive
if implemented in a straightforward manner. Iterating over all ground samples and
all camera candidates would indeed make the algorithm extremely sensitive to the
size and complexity of the surveillance area. We can however significantly alleviate
this computational burden with two tricks: localised visibility analysis and online
instance reduction. The former starts with a simple observation. As the surveillance
area grows, the number of possible samples for a candidate increases, however the
proportion of positively checked pairs decreases. For every new ground sample, only
the pairs which involve nearby candidates will be validated, while a huge number of
others will fail the range check. The same can be said about occlusion faces, with
only a small subset being of interest for every pair. As it so happens, even this simple

II.2. SAMPLING PROCEDURES 45

Figure II.7: An example of an occlusion mesh built using OSM data

check can turn out to be very costly as instances scale up, not to mention the even
simpler instructions related to iterating over such large sets. We have been able to
eliminate this overhead by running an entity-oriented analysis. Rather than iterate
over candidates after the sampling procedure has completed, we instead iterate over
the OSM elements (buildings, walls, ...) which yield them. For every structure en-
tity, we begin by computing its bounding box and extending it in all directions by
the camera model’s range r. This box is then used as a query to an r-tree spatial
index data structure which contains all ground entities (a similar query is performed
to fetch the relevant occlusion faces). This allows us to quickly acquire a list of all
nearby ground entities which may have samples within the aforementioned coverage
box. We can then sample both the structure entity and the local ground entities
to yield camera candidates and ground samples. The analysis is then performed on
those small subsets only, since any other pair for the current structure entity would
necessarily fail the range check. After comparing with straightforward implemen-
tations, the advantage of r-trees has proven to be major, beating even our initial
massively parallel implementation on GPU devices. The reader is referred to [89] by
Guttman for more information about these spatial indices and their performance.
For our work, we have chosen to use the Boost.Geometry implementation [21] with
the R∗ balancing algorithm [16].

As the visibility analysis validates pairs, those need to be stored for further pro-
cessing, including instance reduction. Given the algorithms which we plan to apply
to this problem, the following characteristics are desirable. First, iterating over a
candidate’s sample set should be quick. Similarly, we should be able to efficiently

46CHAPTER II. PROBLEM FORMULATION AND INSTANCE GENERATION

access all covering candidates for a sample. Samples and candidates should therefore
ideally be consecutively indexed for a random-access container, which should con-
tain ordered coverage sets on which intersections and differences can be efficiently
computed. The first approach which comes to mind is the use of maps (or any other
indexed tree-like structure). One would connect candidates to their samples and
another would map entries in the other direction. This however has two drawbacks:
insertion is very costly and reduction would require even more costly reindexing op-
erations if we are to have constant-time access to our coverage sets. Additionally,
this structure would not exactly agree with the reduction algorithms, which require
sets to be sorted by size rather than by candidate index.

We instead propose the following approach: when a pair is validated by the
analysis, we store it as a tuple of indices in a random-access container. After a first
candidate sort, we can tag each pair with the size of its candidate’s cover. Domination
and inclusion checks can then be performed rather efficiently by repetitively applying
a quicksort algorithm [92]. The process for both reduction checks is described in
Algorithms 1 and 2. It should however be noted that these two procedures affect
each other. For example, a reduction performed while checking for inclusion can
create the conditions necessary for additional domination reduction. For this reason,
these procedures are to be repeated until there are no more changes.

Once all pairs have been processed, samples and candidates can be efficiently rein-
dexed by sorting the container twice again. It can then be transformed into actual
sets, which we store in random-access containers again. The final data structures al-
low us to access the cover set for any sample or candidate in constant-time and iterate
over said sets in linear time. The analysis process itself will have used constant-time
insertions while the final reindexing and packing into sets can be brought down to lin-
ear time thanks to the repetitive use of the quicksort algorithm. The latter of course
performs in logarithmic time on average and linear time in worst-case scenarios. The
overall process as it was first implemented is summarised in Algorithm 3.

As we started working on even larger surveillance areas however, we noticed that
the space complexity of the first phase (pair registration) became unmanageable. We
started storing this data using disk-backed, memory-cached containers but the I/O
overhead also became impractical eventually. This is where our second trick comes
in: online instance reduction. The important observation here has to do with the way
the visibility analysis loops are structured: pairs will not be registered in a random
order, but rather one structure entity at a time. This means that consecutive pairs
are very likely to involve nearby candidates and samples. In other words: pairs are
being processed in a sensible positional order, one area of the map at a time. It
can also be noted that once we move on to another candidate, we are certain no

II.3. FIRST INSTANCES AND OBSERVATIONS 47

more pair will appear for the previous one. This is a very useful piece of information
for the domination checks: pairs are coming in such that two consecutive candidate
blocks actually correspond to nearby areas and therefore have a high probability of
dominating one another. This enables us to save a lot of time on instance reduction
by performing partial domination checks as the analysis is being performed, and a
final domination check on the pairs at the end. The overall process, to be run with
C CPU cores available, is best described using pseudocode, which we provide in
Algorithm 4 and illustrate in Figure II.8.

II.3 First instances and observations
For our first set of tests, we selected 8 areas extracted from the following 8 European
cities, most of them home to fellow OPMoPS collaborators: Berlin, Kaiserlautern,
London, Munich, Rennes, Mulhouse, Valbonne and Mainz. The area codes as well as
the associated OpenStreetMap identifiers are summarised in Table II.1. The symbol
column refers to a code we will be using later on to label our instances.

OSM ID Symbol Location (postal code)
1402158 b Berlin Mitte (10117)
1186690 k Kaiserslautern (67655)

51800 l City of London (various)
1100773 m München city centre (80335)
6796357 r Rennes city centre (various)
Custom u Mulhouse city centre (various)
92482 v Valbonne (06560)

1236525 z Mainz city centre (55118)

Table II.1: The 8 locations used as our first test set

For these instances, our filtering rules for sampling and occlusion handling were
rather simple. Anything tagged as a road or an open public area such as a park or
pedestrian way was registered as a ground entity. Buildings, walls and poles were
used as structure ways, and the first two also served as the basis for the construction
of the occlusion mesh.

As we mentioned earlier in Chapter II, generating an instance from an area also
requires us to set sampling parameters. In order to understand their influence bet-
ter, we created a set of 4 sampling configurations, which we indexed from 0 (su-
perficial) to 3 (intensive). The corresponding parameter values are reported in Ta-

48CHAPTER II. PROBLEM FORMULATION AND INSTANCE GENERATION

bles II.2 and II.3. The camera model used has resolution 1920×1080 and is expected
to perform at 25 pixels-per-meter.

Cfg. f l
g fw

g fa
g amin

g amax
g

0 10 2 1 0 1
1 7 2 1 0 1
2 5 1 1 0 2
3 3 1 1 0 2

Table II.2: First set of ground sampling parameter values

Cfg. f l
s fa

s amin
s amax

s fp
s f t

s

0 6 1 3 3 π
3

π
4

1 5 1 3 3 π
4

π
4

2 4 1 3 4 π
5

π
6

3 3 1 3 4 π
6

π
6

Table II.3: First set of candidate sampling parameter values

We labelled our instances using the symbol for the area suffixed with the config-
uration number such that, for example, applying configuration 3 to the Berlin area
yields instance b3. The generation was performed at the Tier 2 Strasbourg high-
performance computing cluster [96] using 2.5-2.67GHz Intel processors. The basic
statistics for this first set of 32 instances are reported in Table II.4. The last three
columns provide the numbers of ground samples and camera candidates, as well as
the density of the visibility matrix. All instances have been reduced.

The first observation to be made is that of scale. To date, the only widely
recognised benchmark for set covering problems is the OR Library [13] which we
mentioned in Chapter I. Looking at the statistics, our instances are clearly much
larger. In fact, only the 4 largest RAIL instances exceed our own statistics, and
only so in regards to set J . It should also be noted that these instances have not
been reduced. When it comes to density however, our values are several orders of
magnitude below that of the benchmark.

In order to get a first idea of the solution landscape for our instances, we ran
three basic solving algorithms. The first is random: it processes ground samples
in a random sequence and for each of them selects a random candidate, unless the
sample is already covered. The second is greedy and selects the most interesting

II.3. FIRST INSTANCES AND OBSERVATIONS 49

candidate (ie. the one which brings the most new samples into the solution) at every
iteration, breaking ties randomly. The last one is CPLEX’s default configuration,
which involves a Branch-and-Cut algorithm at its core, which we stopped after 1 hour
(we will label this as BIP for Binary Integer Program). The random and greedy
algorithms were both run 30 times and the average solution size was computed.
Table II.5 reports on the results. The last two columns are the difference between
the BIP and greedy results, which we take as a measure of the effective solving range.
Indeed, the greedy algorithm is among the most time-efficient approaches, while the
BIP strives for optimality, which makes it fitness-efficient. In the last column, we
scale this absolute gap over the size of J .

As we can see, the improvement on the solutions is relatively small when we
move from a greedy to a one hour BIP solve, especially given that CPLEX reported
duality gaps below 10% (many below 5%) for all instances except b3. Since the
greedy algorithm performs much more time-efficiently, it therefore appears as though
striving for optimality on our instances comes at very high computational cost and
does not yield much of a reward. The results also suggest that our instances are much
simpler to solve than standard benchmarks or previous work using high-resolution,
uniform sampling grids by Brévilliers et al. [24]. In the latter, many of the instances
remained unsolved by CPLEX. The only clear element of difference between this
work and ours is the average instance density. It would appear that our instance
generation framework yields very low-density matrices which severely lower the curse
of dimensionality for the problem. In Chapter III, we take a closer look at this
observation and bring forward hypotheses which will help us approach the problem
from a different angle.

Review
Being able to create instances from open real-world data presents two main ad-
vantages. First, our process has no dependency whatsoever on limited-access data
sources and is designed to work on an area without any data preprocessing required.
Second, we ensure that the instances are always tailored for their study cases and
avoid making assumptions regarding the area’s geometry or complexity. In this
chapter, we therefore introduced such an instance generation framework and covered
coordinate system changes, ground sampling, camera candidate sampling, occlusion
modelling, as well as efficient visibility analysis and reduction algorithms.

Instances were then generated using several cities involved in our research project.
From these, we were able to acquire a first picture of the solution landscape when

50CHAPTER II. PROBLEM FORMULATION AND INSTANCE GENERATION

using a full-coverage set covering model, as has so far typically been done in the
literature. After running several basic algorithms, we noticed a significant difference
in complexity between our instances and previous works. We suspect this is due to
our generation framework and our particular application, which yield simpler, lower-
density instances. We believe interesting hypotheses could stem from this knowledge
and may reveal new solving approaches, perhaps better suited to the specifics of our
research project. We explore these possibilities in Chapter III.

II.3. FIRST INSTANCES AND OBSERVATIONS 51

Symbol Cfg. |I| |J | Density

b

0 9645 3854 0.0018
1 12526 4301 0.0018
2 168773 51245 0.0010
3 288968 87287 0.0010

k

0 8610 3829 0.0014
1 12374 4548 0.0013
2 158528 53003 0.0010
3 263767 87843 0.0009

l

0 13881 5800 0.0012
1 19940 7608 0.0011
2 190677 61722 0.0008
3 309447 98309 0.0008

m

0 6862 2846 0.0028
1 7978 2861 0.0034
2 112457 33517 0.0017
3 193275 54800 0.0016

n

0 2678 1160 0.0059
1 2778 967 0.0087
2 42209 12458 0.0044
3 69902 19625 0.0040

u

0 900 446 0.0131
1 1688 675 0.0100
2 15926 6255 0.0073
3 28927 10898 0.0072

v

0 7840 3132 0.0019
1 11337 4054 0.0017
2 214874 47462 0.0006
3 374447 79237 0.0005

z

0 5027 1618 0.0042
1 6218 1752 0.0047
2 95283 20952 0.0022
3 155398 32992 0.0022

Table II.4: Basic statistics for our first set of 32 real-world instances

52CHAPTER II. PROBLEM FORMULATION AND INSTANCE GENERATION

Symbol Cfg. Random Greedy BIP Greedy-BIP gap
Absolute Relative to |J |

b

0 1176.53 845.03 774 71.03 0.0184
1 1227.07 875.03 796 79.03 0.0184
2 2685.73 1597.40 1285 312.40 0.0061
3 2971.30 1703.20 1412 291.20 0.0033

k

0 1350.10 982.03 922 60.03 0.0157
1 1516.50 1095.97 1014 81.97 0.0180
2 2797.80 1630.17 1311 319.17 0.0060
3 2941.87 1661.93 1354 307.93 0.0035

l

0 1832.13 1305.17 1202 103.17 0.0178
1 2153.03 1519.27 1397 122.27 0.0161
2 3909.20 2287.27 1901 386.27 0.0063
3 4285.10 2446.17 2002 444.17 0.0045

m

0 805.80 563.33 516 47.33 0.0166
1 747.97 526.37 484 42.37 0.0148
2 1799.77 1038.40 851 187.40 0.0056
3 2046.63 1137.77 958 179.77 0.0033

n

0 371.30 268.93 249 19.93 0.0172
1 281.13 203.27 188 15.27 0.0158
2 723.50 429.23 340 89.23 0.0072
3 776.53 448.23 361 87.23 0.0044

u

0 147.17 106.47 101 5.47 0.0123
1 199.43 136.50 130 6.50 0.0096
2 367.93 208.27 167 41.27 0.0066
3 406.73 226.53 177 49.53 0.0045

v

0 1033.73 747.53 693 54.53 0.0174
1 1177.70 829.43 760 69.43 0.0171
2 4101.43 2490.60 2061 429.60 0.0091
3 4673.73 2751.53 2240 511.53 0.0065

z

0 528.73 375.03 349 26.03 0.0161
1 507.20 362.23 338 24.23 0.0138
2 1243.70 749.27 596 153.27 0.0073
3 1309.77 762.07 609 153.07 0.0046

Table II.5: First basic solving results for the first set of real-world instances

II.3. FIRST INSTANCES AND OBSERVATIONS 53

Algorithm 1 Our implementation of domination checks on sample-candidate pairs
1: procedure Domination(P , n) ▷ Vector of pairs and its size
2: sort P by ascending candidate cover size, ascending candidate index
3: βstart ← 0
4: while βstart < n do
5: βend ← βstart

6: while candidate(P [βstart]) = candidate(P [βend]) do
7: βend ← βend + 1
8: end while
9: if any pair has been marked unnecessary between βstart and βend then

10: continue to the next iteration
11: end if
12: removed← false
13: αstart ← βend

14: Sβ ← all sample indices which appear between βstart and βend

15: while removed = false and αstart < n do
16: αend ← αstart

17: while candidate(P [αstart]) = candidate(P [αend]) do
18: αend ← αend + 1
19: end while
20: if any pair has been marked unnecessary between αstart and αend then
21: continue to the next iteration
22: end if
23: Sα ← all sample indices which appear between αstart and αend

24: if Sβ ⊆ Sα then
25: mark all pairs between βstart and βend as unnecessary
26: removed← true
27: end if
28: end while
29: end while
30: end procedure

54CHAPTER II. PROBLEM FORMULATION AND INSTANCE GENERATION

Algorithm 2 Our implementation of inclusion checks on sample-candidate pairs
1: procedure Inclusion(P , n) ▷ Vector of pairs and its size
2: sort P by sample index
3: i← 0
4: Jinc ← ∅ ▷ Building the set of included candidates
5: while i < n do
6: i′ ← i
7: c← 0
8: j ← candidate(P [i′])
9: while sample(P [i]) = sample(P [i′]) and i < n do

10: if pair i is not marked as unnecessary then
11: j ← candidate(P [i])
12: c← c+ 1
13: end if
14: i← i+ 1
15: end while
16: if c = 1 then
17: Jinc ← Jinc ∪ {j}
18: end if
19: end while
20: Iaff ← ∅ ▷ Recording all directly affected samples
21: P ′ ← {p | p < n, candidate(P [p]) ∈ Jinc}
22: for p ∈ P ′ do ▷ Marking directly affected pairs
23: mark P [p] as unnecessary
24: Iaff ← Iaff ∪ {sample(P [p])}
25: end for
26: P ′′ ← {p | p < n, sample(P [p]) ∈ Iaff}
27: for p ∈ P ′′ do ▷ Marking indirectly affected pairs
28: mark P [p] as unnecessary
29: end for
30: end procedure

II.3. FIRST INSTANCES AND OBSERVATIONS 55

Algorithm 3 A simple sequential visibility analysis implementation
1: procedure SequentialVA(G, S, F) ▷ Ground and structure entities,

occlusion faces
2: P ← ∅
3: n← 0
4: for s ∈ S do
5: b← the bounding box for s, extended by r
6: G′ ← all ground entities which intersect b
7: F ′ ← all occlusion faces which intersect b
8: J ← the camera candidates yielded by s
9: I ← the ground samples yielded by the entities in G′

10: for j ∈ J do
11: for i ∈ I do
12: if all 3 visibility checks pass for i and j given F ′ then
13: P ← P ∪ {(i, j)}
14: n← n+ 1
15: end if
16: end for
17: end for
18: end for
19: while the reduction checks alter P do
20: Domination(P , n)
21: Inclusion(P , n)
22: end while
23: reindex P and generate cover sets
24: end procedure

56CHAPTER II. PROBLEM FORMULATION AND INSTANCE GENERATION

Algorithm 4 A more efficient online visibility analysis implementation
1: P ← ∅ ▷ Global pair container
2: P ′ ← {∅}C ▷ Secondary pair containers (limited capacities)
3: P ′′ ← ∅ ▷ Temporary candidate buffer
4:
5: procedure OnlineVA(G, S, F) ▷ Ground and structure entities, occlusion faces
6: for s ∈ S do
7: b← the bounding box for s, extended by r
8: G′ ← all ground entities which intersect b
9: F ′ ← all occlusion faces which intersect b

10: J ← the camera candidates yielded by s
11: I ← the ground samples yielded by the entities in G′

12: for j ∈ J do
13: for i ∈ I do
14: if all 3 visibility checks pass for i and j given F ′ then
15: RegisterPair(i, j)
16: end if
17: end for
18: end for
19: end for
20: for P ′

full ∈ P ′ in parallel do
21: Domination(P ′

full, |P ′
full|)

22: P ← P ∪ P ′
full

23: P ′
full ← ∅

24: end for
25: P ← P ∪ P ′′

26: while the reduction checks alter P do
27: Domination(P , |P |)
28: Inclusion(P , |P |)
29: end while
30: reindex P and generate cover sets
31: end procedure
32:
33: procedure RegisterPair(i, j)
34: if P ′′ is not empty and the pairs in P ′′ do not involve j then
35: P ′

open ← the first buffer in P ′ with sufficient capacity to store P ′′

36: if no viable P ′
open could be found then

37: for P ′
full ∈ P ′ in parallel do

38: Domination(P ′
full, |P ′

full|)
39: P ← P ∪ P ′

full

40: P ′
full ← ∅

41: end for
42: P ′

open ← P ′[0]
43: end if
44: P ′

open ← P ′
open ∪ P ′′

45: P ′′ ← ∅
46: end if
47: P ′′ ← P ′′ ∪ {(i, j)}
48: end procedure

II.3. FIRST INSTANCES AND OBSERVATIONS 57

P

P ′

P ′′

(a) Step 1: REGISTER_PAIR enqueues pairs for a candidate
(blue) into P ′′

P

P ′

P ′′

(b) Step 2: pairs for a new candidate (purple) arrive in P ′′,
the previous contents are moved into the first P ′ vector which
can hold them

P

P ′

P ′′

(c) Step 3: the process continues until all P ′ vectors are full

P

P ′

P ′′

(d) Step 4: domination checks are performed in parallel in each
P ′ vector, the pairs for the dominating candidates are moved
to the main vector P and the process repeats

Figure II.8: An illustration for Algorithm 4

Chapter III

Stress-testing and validation

Introduction

N ow that the problem has been given a basic formulation and preprocessing
stages, we can begin to focus on the various aspects of solving. In the pre-
vious chapter, we concluded by providing statistics for our instance set and

running three basic algorithms to get a first picture of the solution landscape. It was
suggested that solving the problem based on a standard set covering model might not
be the most efficient approach and that our instances appear to display application-
specific characteristics which make it less sensitive to the curse of dimensionality. In
this chapter, we first go further along those lines and run a uniform benchmark of the
state of the art, as reviewed in Chapter I and applied to optimal camera placement.
Due to the wide variety of variants around the problem, and to the best of our knowl-
edge, no such analysis has ever been performed. Based on our results, we categorise
existing approaches and attempt to identify efficient algorithmic components to be
reused. We also formalise two hypotheses about our instances (and more generally
our application) which we validate through independent simulations in continuous
space. From this study, we begin to outline a human-assisted optimisation approach
which we will develop further in Chapter IV.

Related publications
[120] Julien Kritter et al. “On the real-world applicability of state-of-the-art algo-
rithms for the optimal camera placement problem”. In: 6th 2019 International Con-

59

60 CHAPTER III. STRESS-TESTING AND VALIDATION

ference on Control, Decision and Information Technologies (CoDIT). IEEE, Apr.
2019. doi: 10.1109/CoDIT.2019.8820295
[118] Julien Kritter et al. “On the computational cost of the set cover approach
for the optimal camera placement problem and possible trade-offs for surveillance
infrastructure design”. In: RAIRO Operations Research (2020). Submitted

III.1 A stress-test for the state of the art:
hypotheses

In the previous chapter, we used three basic algorithms in order to evaluate the ranges
between typical good and bad solutions for our instances. These tests revealed that
there is in fact very little room for fitness improvement between a greedy and an
exact solve.

In this first section, we begin by extending those results by performing a complete
benchmark of OCP and unicost SCP state-of-the-art literature on our instances. As
we have seen in Chapter I, such an analysis has never really been performed in
the past: with OCP variants being so numerous, comparing them fairly without
establishing a new test-bed is bound to result in some bias at some point. Because
we have formulated our problem as a set cover application from the start however,
our instances represent a good opportunity for such a test. Additionally, the results
will allow us to compare more tailored approaches and hopefully identify algorithmic
components which perform well on the OCP and could be further exploited, a study
which is much harder to perform using only greedy or branch-and-bound algorithms.

Based on the study presented in Chapter I, we propose to evaluate the following
algorithms. First, we extend the baseline acquired in Chapter II by replacing the
greedy algorithm with its non-deterministic variant GRASP [72], which can be tuned
through its α ∈ [0; 1] parameter (from absolute randomness to absolute greediness).
We ran the algorithm for α ∈ {1, 0.7, 0.5}. For an actual lower (dual) bound, we are
also including a linear relaxation solve performed by CPLEX.

We then included five algorithms from OCP and unicost SCP literature, which
we selected based on their originality and reported performance (our objective being
to study various algorithmic components).

• Marchiori and Steenbeek’s ITEG algorithm as referenced by Andersen and
Tirthapura [4] for their work on 3D sensor placement ;

• For its efficiency on the OR-Library CLR instances, Meta-RaPS by Lan, DePuy,
and Whitehouse [123] ;

https://doi.org/10.1109/CoDIT.2019.8820295

III.1. A STRESS-TEST FOR THE STATE OF THE ART: HYPOTHESES 61

• For the STS instances, 3-FNLS by Yagiura, Kishida, and Ibaraki [191], the
code for which was generously provided by the authors ;

• As the overall best to date, RWLS by Gao et al. [79] ;

• Finally, the OCP DEsim algorithm by Brévilliers et al. [25] for its efficiency on
toy OCP instances for global area surveillance.

Every algorithm was given one hour on Intel Xeon processors to yield their best
solutions. Nondeterministic methods were ran 30 times each for better statistical
reliability. Parameter setting was left to the respective authors’ discretion based on
the results they reported. Figure III.1 reports on the average results obtained by
every algorithm on our instance set.

Starting with the baseline and without too much surprise, the random algorithm
provides a rather generous upper bound on every instance and confirms the appeal
in designing optimisation algorithms for this problem. It also shows a significant
standard deviation between runs, which makes sense for random guessing.

Regarding GRASP, the algorithm shows poor performance when compared to
the rest of the benchmark, but nevertheless provides a much tighter upper bound
on the problem, which might explain why so many propositions use a greedy for
initialisation. Slightly more surprising however are the variations between the differ-
ent GRASP parameter values. Indeed, while GRASP was originally introduced as
an improvement over Chvátal’s greedy algorithm [40], such a conclusion cannot be
drawn using our instances: the three sets of results are extremely similar. Looking
at both best and average results, the pure greedy variant slightly outperforms the
others on 13 (best) and 12 (average) instances. The α = 0.5 and α = 0.7 setups rank
next with 11 instances on both measures for the former and between 8 (best) and 9
(average) for the latter.

Looking at Figure III.1, a first observation is that there is very little variation
between algorithms in configurations 0 and 1. All algorithms are indeed able to settle
between GRASP’s upper bound and the linear relaxation. Regarding average results
in configurations 2 and 3 however, the divide in performance is clearer and highlights
the performance of CPLEX, RWLS and DEsim. More precisely, CPLEX and RWLS
both report the best average on 25 out of 32 instances and cover all the instances
when taken together, while other algorithms could only do it for instances u0 and u1.
DEsim managed to stay reasonably close behind and joined the rankings for one more
instance. Intermediary instances such as u2, u3 and n2 also isolate ITEG and Meta-
RaPS in another cluster, however these algorithms still report poorer performance
at a larger scale.

62 CHAPTER III. STRESS-TESTING AND VALIDATION

1000

1500

2000

2500

3000

b0 b1 b2 b3

1000

1500

2000

2500

3000

k0 k1 k2 k3

1000

1500

2000

2500

3000

3500

4000

l0 l1 l2 l3

400

600

800

1000

1200

1400

1600

1800

2000

m0 m1 m2 m3

200

300

400

500

600

700
n0 n1 n2 n3

100

150

200

250

300

350

400

u0 u1 u2 u3

500

1000

1500

2000

2500

3000

3500

4000

4500

v0 v1 v2 v3

400

600

800

1000

1200

z0 z1 z2 z3

LPR
Random

B&C
GRASP 1

GRASP 0.7
GRASP 0.5

ITEG
Meta-RaPS

3-FNLS
RWLS
DEsim

Figure III.1: Average state-of-the-art results for every instance from our first set

III.1. A STRESS-TEST FOR THE STATE OF THE ART: HYPOTHESES 63

Some of these results may seem surprising for a problem we might have assumed
to be more severely cursed byNP-hardness. Experiments conducted on toy instances
so far had actually shown the problem to be extremely sensitive to dimensionality,
and to quickly exhaust a Branch-and-Cut algorithm, sometimes to a point where no
feasible solutions could be found [95, 63, 25]. For 25 out of 32 instances however,
CPLEX ranked first and reached global optimum on 16. More importantly, it man-
aged to find feasible solutions to all instances, something it could not always achieve
on the OR-Library instances [13] or the toy instances used in [25, 24]. Most of these
sets are significantly smaller than the instances used in this paper when looking at
|I| and |J |, however a key difference which may explain the results is our instance
density, which ranges several orders of magnitude below of these benchmarks. Echo-
ing the hypothesis suggested in Chapter II, this can be easily understood as follows:
for a given candidate, the proportion of samples it can cover (w.r.t |I|) is bound to
be very low and get lower as the surveillance area grows. In other words, for every
sample, the set of eligible candidates does not depend so much on the size of the
surveillance area as it does on the sampling frequencies used in the instance genera-
tion process. This means that for every constraint of the BIP formulation, a solver
only has a very limited set of variables to work with.

These algorithms bring forward the following hypotheses. First, candidate weight-
ing schemes alone seem insufficient and can bring algorithms closer to greedy results
as the instances grow in size. ITEG, Meta-RaPS and 3-FNLS all use such approaches.
The results of the latter also suggest that the usually-efficient Lagrangian framework
is less appealing for unicost low-density instances, even though the algorithm was
able to obtain reasonable best results. In any case, RWLS proved efficient and also
uses a weighting scheme, but this time focuses on rows rather than columns. The
algorithm seems to identify samples which are easily lost and favours them as it re-
builds its solution. DEsim on the other hand seems to make good use of its similarity
measure, suggesting that a good solution may often be neighbouring several others.
This hypothesis appears to be supported by CPLEX, which reports low duality gaps
and suggests that good and optimal solutions may often be surrounded by many
alternatives with similar costs, making the gap more difficult to close.

From these last few observations, the following elements appear to be of interest.
First, the complexity of our instances appears to depend more on the sampling
frequencies than it does on the size of the surveillance area. This is observed from
the clear divide between configuration 1 and configuration 2, where the instance sizes
jump and algorithm performance begins to deteriorate. So far however, we have no
evidence that finer sampling frequencies are worth the additional computational cost.
Since our model always reports 100% coverage, it is very difficult to truly determine

64 CHAPTER III. STRESS-TESTING AND VALIDATION

whether choosing configuration 3 over configuration 0 does indeed lead to better
network performance in practice.

Second, it is suggested that a lot of the allocated computational budget is spent on
minor improvements to the solutions (closing the gap). Algorithms appear to improve
their incumbent solutions most significantly in the very early stages of their runs,
and then spend the rest of the available time polishing. We believe this behaviour
is strongly influenced by the full-coverage requirement. In other words, it is possible
that we could significantly reduce our solving time and overall complexity by allowing
for small relaxations of this constraint. Again, its impact has yet to be confirmed
outside of the scope of our model.

Finally, two algorithmic components seem to be efficient when combined. The
first are dynamic weighting schemes applied to either samples or candidates, which
guide the algorithm’s focus as it satisfies the coverage constraints. The second is that
of keeping the algorithm very close to the feasibility edge by repetitively breaking
and repairing solutions by small amounts. This coincides with previous observations
about algorithms spending most of their budget on small improvements.

III.2 Measuring the impact of sampling
frequencies

The first element we attempted to verify was the impact of our sampling frequencies,
which appear to significantly impact algorithm performance and computational cost.
In most cases, when sampling for continuous optimisation problems, the typical
observation is that as the sampling resolution increases, the solutions improve and get
closer to a limit which we could visualise as being the optimal solution to the original
continuous problem. In this first section however, we show that this phenomenon
does not really occur for optimal camera placement for area coverage when using
a set cover model. While the solutions do use more candidates when the sampling
is finer, this does not necessarily reflect an increase in quality when the solution is
evaluated with regards to the application at hand. In other words: the additional
cameras do not actually offer significantly more area coverage.

To visualise the actual impact of the sampling frequencies, we propose to use
an agent-based simulation algorithm. For each city, we create a simulation scene
which includes all known obstacles extracted from the available map data. This
is similar (but simpler) to the process we used in Chapter II to generate occlusion
meshes. Agents are then created and given a start location as well as a destination,
both located close to building walls. A camera placement solution is also chosen and

III.2. MEASURING THE IMPACT OF SAMPLING FREQUENCIES 65

the corresponding infrastructure is set up on the various structure entities available
in the area. At every step of the simulation, the agents are allowed to move 1.4
meters, which is the average distance walked by a human in a second. Every step
therefore represents one second in the simulated world. Once all agents have moved
in an iteration, the visibility checks described in Chapter II are used to determine
which agents are being recorded by at least one camera in the selected solution.
Their number is then recorded as a percentage of the total number of agents and
the simulation moves on to its next iteration. For all tests, we ran this algorithm for
3600 iterations, which correspond to one hour in the simulated world.

In order for the agents to find their way around the city, a routing system had to
be designed. Our implementation is as follows. First, the geometry of all recorded
obstacles is simplified: entities which share edges are ground together using a graph
search algorithm. In graph theory, this correspond to the problem of identifying
connected components. At every node in this graph, we then run a simple visibility
check to determine which other nodes (across all components) can be reached. These
pairs are registered as edges which we will call visibility edges, in contrast with wall
edges which represent the connected components previously identified. The final
result is a routing graph for our agents to follow. An simple example of such a graph
is given in Figure III.2.

Because this graph is typically very dense, even more so as the OSM data gets
more precise in large cities, it allows our agents to walk virtually anywhere in the area,
even under the constraint that they should always follow the shortest path from their
start locations to their destinations. This is achieved by using the A* path-finding
algorithm [90, 54] in the routing graph for every agent, which will follow its optimal
route until it reaches its destination and randomly respawns at another location
for another trip. We determined the number of agents using a simple auto-scaling
algorithm which computes it from the approximate outdoor area of the city and a
given density parameter. The former is estimated by computing an alpha-shape of
the area’s nodes, a generalisation of the concept of convex hulls [60]. The indoor area,
which is easily computed from the recorded buildings, is then subtracted. For our
experiments, we used a density value of 0.0035 agents per square meter, a reasonable
albeit empirical assumption which most importantly maintains uniformity across our
instances.

Before running these simulations, we also adjusted our candidate sampling pa-
rameters. As we observed earlier, configurations 0 and 1 appear to be particularly
simple to solve. We also observed that using a tilt frequency below π

6
led to many

ground samples being impossible to cover, since the available candidates focused on
areas near buildings and left larger open areas uncovered. The new set of candidate

66 CHAPTER III. STRESS-TESTING AND VALIDATION

Figure III.2: An example routing graph with wall and visibility edges

sampling parameters is given in Table III.1. The ground sampling parameters remain
unchanged (see Table II.2) although we will be using configuration numbers 4 to 7
from now on. Table III.4 reports on the basic statistics for our new instances. The
reader will note that the Valbonne instances have been removed. This particular
area contains a large forest which leads to the surveillance area being very empty:
a lot of ground samples are impossible to reach because no structure entity can be
found nearby. It should also be noted that for this part of our work, we removed the
elevation data from our instance generation process to simplify the representation
used in our simulation algorithm.

To study sampling frequencies, we conducted the following simulation experi-
ment. For every instance, the greedy full-coverage set cover solution was computed
and used to define the infrastructure set up in the simulated world. In each city,
we then ran a simulation for each sampling configuration. The proportion of visible
agents (effective coverage rate) was recorded at every step. Figure III.3 reports on

III.3. RELAXING THE FULL-COVERAGE CONSTRAINT 67

Cfg. f l
s fa

s amin
s amax

s fp
s f t

s

4 6 1 3 3 π
3

π
6

5 5 1 3 3 π
4

π
8

6 4 1 3 4 π
5

π
10

7 3 1 3 4 π
6

π
12

Table III.1: Second set of candidate sampling parameter values

our results.
As we can see, the effective coverage rate barely increases with the sampling

frequencies: the difference between configurations 4 and 7 is barely perceptible for all
our instances. The instance generation and solving times however vary significantly,
costs which can no longer be justified. We believe this result is a consequence of the
design of our instance generation framework. By using such a tailored approach and
not relying on uniform sample distributions for all areas, it appears we are able to
capture more knowledge about the study case and reach a stable level of performance
across all configurations. The reader will most likely note that the effective rates are
relatively low, with a 75% maximum when the model guarantees 100%. This gap is
due to missing OSM data and agent restrictions, on which we will elaborate in the
next section.

III.3 Relaxing the full-coverage constraint
The second hypothesis brought forward in Chapter II is that the enforcement of a full
coverage constraint for our application leads to a significant increase in computational
cost but does not proportionately improve the quality of the corresponding CCTV
infrastructure. In other words, it appears possible to considerably reduce cost by
allowing for relatively minor tolerance margins in the theoretical (SCP) solution.

In order to explore this hypothesis, we propose the following approach. For
each instance, we first generate a front of solutions which provide varying levels of
coverage, from a single camera being set up to the use of the complete full coverage
greedy SCP solution. To generate these solutions, we need to introduce another yet
similar combinatorial problem: maximum k-set cover (MkCP).

Problem (maximum cover). Given an integer k, a set of elements I (rows), a
collection of sets J (columns) such that the union of all sets in J is I, find the
subset C ⊂ J with |C| = k such that |

∪
e∈C e| is maximised. In other words, identify

68 CHAPTER III. STRESS-TESTING AND VALIDATION

Figure III.3: Effective coverage rates when using full coverage solutions in simulations

the k-subset of J which covers the most elements from I. By assigning a gain to
each row, the problem can also be that of finding the subset with maximum gain.

While the search for a somewhat universally efficient algorithm for the SCP is still
ongoing, research on the MkCP now considers the greedy algorithm (Algorithm 5)
as the best possible polynomial-time approximation of the problem with a factor
guarantee (from optimality) of 1 − 1

e
[70]. The problem therefore appears to be

a good candidate for a tool to navigate partial solutions for the OCP efficiently.
As a quick preview of the algorithm’s performance for our problem, Table III.3
reports on its theoretical coverage rates when k is set to the best-known full-coverage
(SCP) solution (Table III.2). In the worst-case (instance k5), the algorithm still
covers 98.3% of the samples and terminates under 30 seconds on 2.5-2.67GHz Intel

III.3. RELAXING THE FULL-COVERAGE CONSTRAINT 69

processors.

Algorithm 5 The greedy algorithm for the maximum k-set covering problem
1: procedure MkCP-Greedy(I,J , k)
2: z ← an empty solution
3: i← 0
4: while i < k and |J \ z| > 0 do
5: j ← argmaxj′∈(J\z) |j′ \ ∪j′′∈zj

′′|
6: z ← z ∪ {j}
7: i← i+ 1
8: end while
9: return z

10: end procedure

Cfg.
City b k l m n u z

4 1448 1500 2086 1000 392 185 742
5 1368 1403 2027 982 374 181 673
6 1408 1358 2078 1075 350 172 642
7 1649 1500 2943 1304 426 195 744

Table III.2: Best-known full-coverage (SCP) solutions to the second set of real-world
instances

To compute our solution front, we begin to compute the extrema: one camera
and greedy full coverage. Once these have been identified, the other solutions can
be identified as follows. A number n of solutions is set which defines the accuracy
of the front: more solutions help define a more precise front, but also require more
computation time. If z is the full coverage greedy solution mentioned earlier and the
front is to hold n solutions, the front’s frequency is defined as f = |z|−1

n
. The first

point is therefore an MkCP solution with k = 1 + f . The other points are defined
incrementally up to k = |z| − f and the associated solutions are computed using
Algorithm 5.

Figure III.4 draws the fronts defined above, one plot per city. The x-axis repre-
sents the number of cameras while the y-axis is a measure of the theoretical coverage
rate. The vertical lines are the best known full coverage solutions reported in Table
III.2. The squares are the curve knees, defined as the points of strongest devia-
tion and computed using the Kneedle algorithm designed by Satopaa et al. [169].

70 CHAPTER III. STRESS-TESTING AND VALIDATION

Cfg.
City b k l m n u z

4 0.988 0.987 0.991 0.992 0.985 0.986 0.990
5 0.988 0.983 0.991 0.993 0.987 0.986 0.988
6 0.993 0.988 0.995 0.997 0.988 0.985 0.989
7 0.997 0.993 0.997 0.998 0.996 0.994 0.995

Table III.3: MkCP greedy coverage rates when setting k to the best known SCP
solution value

We chose to highlight these values because they represent clearly-defined breaking
points beyond which decision makers should expect their coverage rates to drop more
significantly. In other words, the section of a front on the right-hand side of its knee
can be consider as room for cost/coverage trade-offs. As Figure III.4 shows, this
section spans across the majority of the cost range.

Figure III.4 suggests that there is indeed a significant margin available for cost-
coverage trade-offs. As of right now however, all measures have relied on the SCP
model: the (theoretical) coverage rates are based on the number of samples, which
have to be covered, at least partially, due to the model’s combinatorial constraints.
The shape of the front, and therefore of the trade-off range, could be different when
measured outside of the scope of the SCP model. Taking Berlin as an example: the
front knees roughly represent a 50% cost reduction for a 25% sample loss. The actual
coverage loss may however be different if measured independently, in continuous
space.

It is therefore necessary to ensure that the shape of the fronts computed here
matches that of the effective coverage rate when measuring the efficiency of the
corresponding CCTV networks. In order to do so, we propose a second round of
simulations using the same experimental setup as before. We began by regenerating
the front’s solutions, but this time at regular intervals based on coverage rates: a
solution at 10%, another at 20%, and so on, with a focus on the 70%-100% for
which we used a 5% interval. An issue arises however: because the fronts are not
linear, the number of cameras cannot help target specific coverage rates directly. To
circumvent this, we propose a binary-search method to help locate solutions with
specific coverage rates (Algorithm 6).

Figure III.5 reports on our results for this section, and allows for a comparison
of theoretical and effective coverage rates. In other words, it enables validation of
the theoretical fronts by evaluating coverage in continuous space for various MCP
solutions. Note that given the conclusions reached in the previous section regarding

III.3. RELAXING THE FULL-COVERAGE CONSTRAINT 71

Figure III.4: MkCP solution fronts (solution costs and coverage rates)

sampling frequencies, we now only consider configuration 4.
The reported theoretical coverage rates correspond to the fronts presented earlier

in Figure III.4, with the configuration 4 knee point to help delimit the expected
trade-off range. The second curve is the average effective coverage rate observed
during a simulation run (i.e. over 3600 steps). The x-axis still represents cost, while
the y-axis keeps track of coverage, either in terms of samples (theoretical) or agents
(effective).

As the reader will notice, both measures follow the same pattern, save for an offset
which can be attributed to missing OSM data. Indeed, in continuous space, agents
are allowed to wander into open areas which were never sampled as they correspond
to undocumented private lots. In cities where OSM contributors are more numerous
(e.g. London) or where most of the open space is public, the curves remain closer

72 CHAPTER III. STRESS-TESTING AND VALIDATION

Algorithm 6 The binary search algorithm for MkCP solutions at given coverage
rates

1: procedure MCP-Binary-Search(I,J , r)
2: z+ ←SCP-Greedy(I,J)
3: z− ←MCP-Greedy(I,J , 1)
4: while |z+| ̸= |z−| do

5: k ←
[
|z+|+ |z−|

2

]
6: z′ ←MCP-Greedy(I,J , k)

7: r′ ← | ∪j∈z′ j|
|I|

8: if r′ < r then
9: z− ← z′

10: else
11: z+ ← z′

12: end if
13: end while
14: return z+

15: end procedure

together.
Should these gaps in the available data be filled, the simulations make it safe to

assume that the OCP/MkCP models are indeed suited to our application. The the-
oretical fronts, which remain easy to compute, faithfully mirror the data recovered
from simulations in continuous space. They can therefore be used by decision makers
to balance cost and coverage. Knee points can help identify the range in which to
negotiate costs, and the efficient MkCP greedy algorithm can be used to yield appro-
priate solutions. This framework effectively provides users with good and applicable
solutions and allows the optimality requirement to be dropped when applying such
models to the area coverage problems in urban areas.

Review
This chapter covered three sets of related experiments. The first was a numerical
benchmark of the state of the art for OCP and applied SCP literature, a study
which, to the best of our knowledge, had not been performed before due to the
large variety of applications and problem variants. Our results showed that instances

III.3. RELAXING THE FULL-COVERAGE CONSTRAINT 73

Figure III.5: Theoretical and average effective coverage rates in configuration 4

generated with our framework, introduced in Chapter II, are generally easier to solve.
Larger instances however still allowed us to categorise the approaches found in the
literature and identify valuable algorithmic components to be used in Chapter IV.
These experiments also suggests several hypotheses regarding sampling frequencies
and the impact of full coverage constraints. The next two sets of experiments were
aimed at confirming those hypotheses and indeed confirmed them: high-resolution
sampling frequencies and full coverage constraints do not lead to a boost in the quality
of the corresponding CCTV networks, and therefore do not justify the associated
computational cost increase. Our efforts should therefore turn to approaches which
help users better control and guide coverage trade-offs. Such an approach is presented
in Chapter IV.

74 CHAPTER III. STRESS-TESTING AND VALIDATION

Symbol Cfg. |I| |J | Density Generation time

b

4 45797 14288 0.0011 00h 11m 05.79s
5 66913 25562 0.0011 00h 25m 56.08s
6 269158 51836 0.0010 08h 25m 50.67s
7 460703 79899 0.0010 17h 55m 59.42s

k

4 42679 13114 0.0010 00h 03m 09.53s
5 61394 24337 0.0010 00h 13m 38.34s
6 247730 55091 0.0009 06h 40m 01.66s
7 423524 84145 0.0009 07h 06m 51.65s

l

4 60230 17002 0.0008 00h 05m 58.58s
5 87792 32241 0.0008 00h 21m 13.65s
6 334519 74494 0.0007 06h 02m 36.11s
7 588612 109137 0.0007 08h 41m 47.76s

m

4 33169 8915 0.0017 00h 03m 14.80s
5 48285 16206 0.0017 00h 08m 28.35s
6 191366 38927 0.0015 03h 36m 47.60s
7 329800 55871 0.0015 07h 09m 46.58s

n

4 12561 3436 0.0044 00h 02m 01.06s
5 18242 6244 0.0044 00h 02m 51.24s
6 70279 13958 0.0042 01h 03m 50.87s
7 120786 19430 0.0039 03h 17m 07.06s

u

4 4881 1424 0.0083 00h 00m 55.96s
5 7245 2810 0.0081 00h 01m 24.49s
6 25700 6650 0.0070 00h 27m 21.06s
7 45691 9458 0.0069 01h 23m 12.48s

z

4 27390 6102 0.0021 00h 02m 02.61s
5 39410 11286 0.0022 00h 02m 40.98s
6 156439 22550 0.0022 01h 10m 26.82s
7 268640 32692 0.0021 01h 57m 32.43s

Table III.4: Basic statistics for our second set of 28 real-world instances

Chapter IV

Human-assisted optimisation

Introduction

C oncluding on the work done so far, we now move on to the final stage of
this thesis and propose both a model and a solving implementation to tackle
optimal camera placement in the context of decision support systems. More

specifically, we focus on a use case in which users are invited to regularly provide
input based on their own appreciation of the current solution. The algorithms are
therefore expected to run and react quickly to user input to provide solution updates
at a pace which maintains interactability. We make use of the conclusions reached in
Chapter III in order to propose a mixed model which brings together the two com-
binatorial problems discussed so far. The instance generation framework introduced
in Chapter II is also adjusted to better suit our specific application. Finally, we
make use of our observations from Chapter III regarding coverage constraints and
propose a greedy-based solving algorithm which interprets user input into ground
sample weights for targeted coverage.

Related publication

[121] Julien Kritter et al. “On the use of human-assisted optimisation for the optimal
camera placement problem and the surveillance of urban events”. In: 7th 2020 Inter-
national Conference on Control, Decision and Information Technologies (CoDIT).
IEEE, June 2020

75

76 CHAPTER IV. HUMAN-ASSISTED OPTIMISATION

IV.1 Model, application-specific constraints and
preprocessing

Before we can proceed to effectively solving the optimal camera placement problem,
several practical aspects related to our application and decision support systems
must be taken into consideration and integrated into our model and approach.

The first element to consider is the budget. So far, we have mostly addressed
the problem using a standard set covering model with full coverage constraints. This
leaves the cost of the infrastructure loose, which means there are no restrictions as to
how much can be invested in CCTV infrastructure. Unfortunately for some, however,
money and human labour are two limited resources and one cannot simply ask a city
or region to set up an arbitrarily expensive network of cameras. On this aspect, the
use of the maximum k-set covering model introduced in Chapter III seems to be
more appropriate.

Removing the full coverage constraint does however create a new problem: if
coverage also becomes a limited resource, one must decide which parts of the surveil-
lance areas are not important enough to be allocated cameras. This is where another
aspect of our use case needs to be considered. The goal of our work is to provide an
approach for decision support systems. In other words, our algorithms are not meant
to be run once and yield a final non-debatable solution. The availability of a user for
input should definitely be exploited. To this end, it is necessary to come up with an
approach which takes in input for the user and translates it into a weighting system
through which the solving algorithm can decide where to focus coverage and which
areas can be left in the dark. Provided that the algorithms run quickly enough, this
would enable users (law enforcement agencies, town officials, ...) to continuously
review solutions and provide feedback iteratively until the proposed infrastructure
meets their needs. This is particularly well suited to our application as it would be
very difficult to acquire and formalise such knowledge from standard datasets, which
simply cannot capture the added value of field experience and predictions made by
officers regarding the upcoming urban events.

While the trade-off approach introduced in Chapter III does seem to meet the
above requirements, it should be noted that some parts of a surveillance area simply
cannot be left uncovered. For such cases, full coverage constraints still need to be
enforced. The solving approach should therefore allow the user to specify so-called
critical areas for which the typically full coverage formulation is to be used. To
combine both the weighting scheme and the critical areas, we propose the following
model, which combines the SCP and the MkCP. The notations used are explained

IV.1. MODEL, APPLICATION-SPECIFIC CONSTRAINTS AND
PREPROCESSING 77

in Table IV.1.

max

|I|∑
i=1

wiyi (IV.1)

|J |∑
j=1

xj ≤ k (IV.2)

|J |∑
j=1

aijxj ≥ yi ∀i, 1 ≤ i ≤ |I| (IV.3)

yi ≥ ri ∀i, 1 ≤ i ≤ |I| (IV.4)

Notation Description
wi Weight of sample i
yi Decision variable for sample i’s coverage
xj Decision variable for candidate j
k Overall budget

aij Entries in the binary visibility matrix
ri Critical status for sample i

Table IV.1: Notation summary for the mixed SCP-MkCP model

In this new model, Equation (IV.1) is a typical MkCP coverage maximisation
objective. Equation (IV.2) enforces the budget while (IV.4) ensures full coverage of
the critical areas. Equation IV.3 binds the two sets of decision variables together.

Solving aside, other practical elements must also be taken into account and can
easily be integrated into the instance generation and preprocessing framework pre-
sented in Chapter II. When creating an instance, it should be possible to force
subareas to remain in the dark: any camera candidate which covers a sample in
those areas should be discarded. A common example in France as to when this is
necessary are residential buildings: windows into private lots should not be covered
as this would go against national privacy laws [122]. Another example are embassies
and consulates which are to be considered as foreign territory and for which surveil-
lance is typically left to the associated nation. On the other hand, it should also be
possible to cover important structures and buildings, and not just the ground. This
typically applies to popular monuments, administrative buildings and so on. These
can also be subject to specific rules which prevent their use for camera mounting, in
which case they should be excluded from candidate sampling. All these constraints

78 CHAPTER IV. HUMAN-ASSISTED OPTIMISATION

require us to review the way we categorise map elements: samples can no longer be
associated to the ground (horizontal surfaces). Similarly, we can also detach cameras
from walls if we allow them to be placed on non-vertical surfaces like porches. More
generally, we will now categorise samplables (map elements which provide samples)
using 4 questions:

1. Should we ignore (no sampling), cover or hide the element?

2. Should we sample horizontally (road, roof, open ground area, ...) or vertically
(pole, wall) ?

3. Will we work on a single node, a line or a polygon?

4. Will we be sampling targets (former ground samples) or candidates?

The combined answers to these questions give the category of an element. For
example, a horizontal line target samplable is a road to be covered. A vertical node
candidate samplable is an electric pole or traffic light on which cameras can be set
up. A horizontal polygon candidate samplable is a porch or any kind of roof to the
underside of which cameras can be attached. Only two combinations are ignored:
horizontal node candidate and horizontal line candidate, although they could cer-
tainly be conceived in particularly elaborate schemes. Note that the answer to the
first question does not really affect the method used for sampling, only the mean-
ing of the resulting samples (if any). For all the others combinations, the sampling
algorithm are either known (see Chapter II) or easily derived for our previous ap-
proaches (for example, sampling porches combines the strategies for structure points
and ground polygons, which were both introduced earlier). It should be noted that
the categorisation is not actually part of our code base: users get to decide how each
element is categorised and processed through filter rules. This allows us to fine-tune
the sampling process based on local regulations and practices.

Finally, we integrated our earlier conclusions on sampling frequencies and re-
placed all sampling parameters with a single integer value which we named rigour.
A rigour value of 1 corresponds to configuration 4 (1 for target sampling) from
Chapter II. Higher values yield finer sampling frequencies in a linear fashion which
we summarise in Table IV.2.

IV.2 User interactions and assisted solving
Based on our results from Chapter III, we propose to use a combination of two
greedy algorithms, primarily motivated by their demonstrated efficiency of the MkCP

IV.2. USER INTERACTIONS AND ASSISTED SOLVING 79

Parameter f l
g fw

g fg
a amin

g amax
g f l

s fa
s amin

s amax
s fp

s f t
s

Value 10

r

10

r

10

r
0 3 10

r

10

r
3.5 5.5 π

5 + r

π

5 + r

Table IV.2: Parameter values derived from the general rigour value r

(constraint (IV.2), see Table III.3). The first stage of the algorithm aims at fulfilling
constraints (IV.4): the critical areas registered by the user are therefore covered first.
The use of a greedy algorithm at this stage has two advantages: it is fast, and it allows
us to insert a look-ahead bias for the second phase of our approach. This is achieved
by breaking ties favouring candidates which offer the best coverage on nearby non-
critical targets. As it so happens, tie-breaking tends to happen very often when
solving an SCP subproblem, an observation which coincides with our conclusions
from Chapter III). The reader might argue that using a greedy algorithm at this
stage represents a significant loss in solution quality. Given that we are typically
working with very small critical subsets however (wrt. the size of the instance), we
observe that the time savings are certainly worth this trade-off. Besides, as was shown
in our earlier benchmark (see Figure III.1), greedy algorithms are not significantly
outperformed on smaller problems.

The second stage of our algorithm is an implementation of the greedy heuristic
for the MkCP. We chose to structure the process in a target-oriented fashion, which is
slightly different from the original implementation which ranks candidates and picks
them in order. This decision was made after we observed a rather unfair bias which
caused candidates with large covers to severely overpower our weighting scheme and
led to less favourable outcomes in larger surveillance areas. The overall algorithm
is illustrated in Algorithm 8. The column redundancy checks are simple procedures
which remove candidates for which all associated samples are covered by more than
one candidate in the solution. Both these checks and the greedy components run in
polynomial time, rendering the overall algorithm very efficient and therefore suitable
for our use case.

We implemented our algorithm as part of our initial code base, which we then
extended to include a user interface. As we have mentioned earlier, our algorithm’s
efficiency can only truly be exploited if user input is regularly provided. This is done
through a map-based interface which communicates with our higher-performance
code in order to request solutions based on user input and render them. Figure IV.1
gives an overview of the interface on a use case in the city of Strasbourg, France.

The solving process typically goes as follows. First, project specifications are

80 CHAPTER IV. HUMAN-ASSISTED OPTIMISATION

Figure IV.1: Basic user interface components for decision support systems

provided and define the surveillance area as well as the various filtering rules used
for sampling and occlusion detection. Instance generation may then begin: the area
is sampled, visibility analysis is performed, the instance is reduced and stored. The
user can then log into the interface and open the project. The map will appear
along with a panel used for input. The user may then set a budget limit, which
we cap at the greedy SCP solution value. Contextualisation may then be provided:
routes and areas can be weighted using arbitrary integers, or set as critical. These
parameters can then be sent over to the solver which responds with a set of camera
setup directives. The associated locations are then rendered on the map and the user
can review their settings to adjust specific areas. The process continues iteratively
until the user is satisfied with the solution.

IV.2. USER INTERACTIONS AND ASSISTED SOLVING 81

An important note should be made regarding user-provided weights. It is clear
from our problem formulation that target weights are bound to have a strong influ-
ence over the solving algorithm’s decisions. These weights are provided by the user
and lie within the [1; 100] range. While this indeed allows the user to guide the
algorithm through frequent weight adjustments, it does so in a very abrupt fashion,
leaving weighted areas as soon as they are covered and quickly moving on to can-
didates with larger covers. While this might be the desired result when weights are
very finely defined, it would make much more sense for our application if the areas
surrounding weighted ones would have some importance as well. For this reason,
we have made it possible to have weights propagated across the area before solving.
This process is illustrated in Algorithm 7 and Figure IV.2, in which d(i, i′) is used to
denote the Euclidean distance between targets i and i′. The process simply computes
a new weight for every target based on its distance from the nearest user-weighted
target. This effectively means that targets which are close to weighted areas gain
weight and that this gain weakens as the targets get further away. It also lessens the
impact of user-provided weights and prevents the algorithm from making somewhat
extreme choices.

Algorithm 7 Weight gradation algorithm
procedure Weight-Gradation(I, J , w)
W ← {i | i ∈ I, wi > 1} ▷ user-weighted points
N ← {argmini′∈W {d(i, i′)} | i ∈ I}
dmax ← max{d(i,Ni) | i ∈ I}
for i ∈ I \W do

wi ← 1 + (1− d(i,Ni)
dmax

)(wNi
− 1)

end for
end procedure

To illustrate our approach, we used a simple study case on a part of the city of
Strasbourg, France. We defined a small set of roads as important by giving them
weight, and set a military area as critical. Figure IV.3 demonstrates the impact of
user-provided weight and the smoothing behaviour which can be requested from the
algorithm by toggling gradation.

We observe that the base solution distributes cameras all over the area but fo-
cuses on large open spaces such as parks (Figure IV.2). This is because a lot of
the candidates around these areas have large covers: there is no occlusion. Adding
weights overrides this default behaviour and indeed focuses coverage on a selection
of main roads (Figure IV.2). However, as was stated earlier, this behaviour is lim-

82 CHAPTER IV. HUMAN-ASSISTED OPTIMISATION

AwA = 3B
wB = 5

C wC = 2

D
wD = 3 E

wE = 6

F
wF = 6

1

2

3

4

5

d1

d2

d3

d4 = dmax

d5

Figure IV.2: Illustration for Algorithm 7. Unweighted (black) point 4 remains at
weight 1 as it is furthest away from a weighted (blue) point (A). Unweighted point
1 is assigned w1 = 1 + 4 di

dmax
, which tends towards wB = 5 as d(1, B) decreases.

ited and the algorithm returns to large covers quickly. This is compensated for
using gradation: weights are balanced across the area and elements surrounding the
main roads (crossroads, endpoints, nearby paths, ...) are now more densely covered
(Figure IV.2).

Review
This chapter has brought together the hypotheses and conclusions tackled in earlier
work. We introduced final changes to our instance generation procedure, taking into
account additional application-specific needs as well as the upcoming integration into
a decision support system. Most of the parameters of the sampling procedures have
effectively been removed following our conclusions from Chapter III. Based on those
same results, we then proposed a greedy-based solving approach. The algorithm is
able to take into account user input and runs quickly enough so as not to impede user
interaction. A solving process is therefore designed through which the user is able
to visualise the incumbent solution on a map and provide new weight adjustments
iteratively until the solution is deemed satisfactory. We presented the impact of all
the above components using a small study case in the city of Strasbourg, France.

IV.2. USER INTERACTIONS AND ASSISTED SOLVING 83

(a) Base solution (b) Setting weights (blue) and a critical area (red)

(c) Toggling weights gradation

Figure IV.3: Example solutions

84 CHAPTER IV. HUMAN-ASSISTED OPTIMISATION

Algorithm 8 A greedy-based solving algorithm for our SCP-MkCP model
1: procedure SCP-MkCP-Solve(I,J , w)
2: crit← a zero vector of |J | elements
3: ncrit← a zero vector of |J | elements
4: for i ∈ I do
5: for j ∈ Ji do
6: if ri then
7: critj ← critj + 1
8: else
9: ncritj ← ncritj + wi

10: end if
11: end for
12: end for
13: z ← ∅
14: while |z| < k and max{crit} ̸= 0 do
15: J ′ ← {j ∈ J | j ̸∈ z, critj = max{crit}}
16: J ′′ ← {j ∈ J ′, ncritj = max{ncrit}}
17: j ← a random candidate from J ′′

18: z ← z ∪ {j}
19: for i ∈ Ij do
20: for j ∈ Ji \ z do
21: if ri then
22: critj ← critj − 1
23: else
24: ncritj ← ncritj − wi

25: end if
26: end for
27: end for
28: prune redundant columns created by j in z
29: end while
30: while |z| < k and ∪j∈z{Ij} ̸= I do
31: I ′ ← {i ∈ I | Ji ∪ z = ∅}
32: I ′′ ← {i ∈ I ′ | wi = maxi′∈I′{wi′}}
33: i← a random sample in I ′′
34: j ← argmaxj′∈Ji

{ncritj′}
35: z ← z ∪ {j}
36: for i ∈ Ij do
37: for j ∈ Ji \ z do
38: ncritj ← ncritj − wi

39: end for
40: end for
41: prune redundant columns created by j in z
42: end while
43: end procedure

Conclusion

In addition to the individual chapter reviews found throughout this report, we may
now take time to look back at our research work, evaluate its overall suitability with
regards to our project objectives and highlight its shortcomings as possible open lines
of research.

Our literature review had as its main objective to bring forward a relationship
between an application, optimal camera placement, and a popular combinatorial
problem, set cover. So far, authors had chosen to set that relationship aside and the
two subjects of research were mostly left isolated. It is our hope that our survey
has successfully highlighted this discrepancy and may encourage further optimal
camera placement research to more regularly integrate work done on the set cover
problem. This in turn may prove to be of interest for the latter: as we have seen in
Chapters II and III, applications may yield specific instances which could be further
studied from a combinatorial standpoint. Aside from this, we believe the review may
serve as a useful reference about the various models and algorithmic components
which have been used, more or less successfully on our problem and its variants.

Chapter II has addressed problem modelling, with a focus on reconciling the
extremes found in the literature. We proposed an instance generation and prepro-
cessing framework capable of extracting an accurate representation of any publicly
documented area, and generating the associated combinatorial instances through
efficient visibility analysis and reduction algorithms. We currently believe that the
level of realism granted by our approach is sufficient for our specific application. One
can however probably find many ways to further improve the process, for example
by using more advanced building model (BIM) databases.

By selecting a few study cases, we were later able to establish a clear baseline
for the state of the art. In Chapter III, we performed such a study and highlighted
new hypotheses about the complexity of our problem. It would undoubtedly be
interesting to further study our instances to better isolate the elements which most
significantly impact complexity.

85

86 CHAPTER IV. HUMAN-ASSISTED OPTIMISATION

Our conclusions on the aforementioned hypotheses finally led us to design a
human-assisted optimisation approach which not only exploits the trade-offs made
possible in the previous chapter, but also addresses the problem in a user-centric fash-
ion such that input and feedback may continuously be integrated into solutions. The
approach is consistent with the specifications of a decision support system, an exam-
ple of which we also presented. Again, several improvements could still be considered,
in particular the use of existing use-case-specific datasets to extract more knowledge
about the city’s layout and habits. Better integration may also be achieved by taking
into account existing CCTV infrastructure and therefore working more extensively
with several camera models at the same time. Finally, as part of a decision support
system, our approach may find ways to benefit from other components, for example
by taking account real-time crowd behaviour data or the availability of additional
support provided by officers on site or devices such as drones.

Bibliography

[1] José H. Ablanedo-Rosas and César Rego. “Surrogate constraint normalization for the set
covering problem”. In: European Journal of Operational Research 205.3 (Sept. 2010), pp. 540–
551. doi: 10.1016/j.ejor.2010.02.008. url: https://doi.org/10.1016%2Fj.ejor.
2010.02.008.

[2] Ali Ahmadzadeh et al. “An Optimization-Based Approach to Time-Critical Cooperative
Surveillance and Coverage with UAVs”. In: Experimental Robotics. Springer Berlin Heidel-
berg, 2008, pp. 491–500. doi: 10.1007/978-3-540-77457-0_46. url: https://doi.org/
10.1007%2F978-3-540-77457-0_46.

[3] Uwe Aickelin. “An indirect genetic algorithm for set covering problems”. In: Journal of the
Operational Research Society 53.10 (Oct. 2002), pp. 1118–1126. doi: 10.1057/palgrave.
jors.2601317. url: https://doi.org/10.1057%2Fpalgrave.jors.2601317.

[4] Tycho Andersen and Srikanta Tirthapura. “Wireless sensor deployment for 3D coverage
with constraints”. In: 2009 Sixth International Conference on Networked Sensing Systems
(INSS). IEEE, June 2009. doi: 10.1109/inss.2009.5409946. url: https://doi.org/10.
1109%2Finss.2009.5409946.

[5] Franck Angella, Livier Reithler, and Frederic Gallesio. “Optimal deployment of cameras
for video surveillance systems”. In: 2007 IEEE Conference on Advanced Video and Signal
Based Surveillance. IEEE, Sept. 2007. doi: 10.1109/avss.2007.4425342. url: https:
//doi.org/10.1109%2Favss.2007.4425342.

[6] S. Raja Balachandar and K. Kannan. “A meta-heuristic algorithm for set covering problem
based on gravity”. In: International Journal of Computational and Mathematical Sciences
4.5 (2010), pp. 223–228.

[7] S. Balaji and N. Revathi. “A new approach for solving set covering problem using jumping
particle swarm optimization method”. In: Natural Computing 15.3 (July 2015), pp. 503–517.
doi: 10.1007/s11047-015-9509-2. url: https://doi.org/10.1007%2Fs11047-015-
9509-2.

[8] Egon Balas and Maria C. Carrera. “A Dynamic Subgradient-Based Branch-and-Bound Pro-
cedure for Set Covering”. In: Operations Research 44.6 (Dec. 1996), pp. 875–890. doi:
10.1287/opre.44.6.875. url: https://doi.org/10.1287%2Fopre.44.6.875.

87

https://doi.org/10.1016/j.ejor.2010.02.008
https://doi.org/10.1016%2Fj.ejor.2010.02.008
https://doi.org/10.1016%2Fj.ejor.2010.02.008
https://doi.org/10.1007/978-3-540-77457-0_46
https://doi.org/10.1007%2F978-3-540-77457-0_46
https://doi.org/10.1007%2F978-3-540-77457-0_46
https://doi.org/10.1057/palgrave.jors.2601317
https://doi.org/10.1057/palgrave.jors.2601317
https://doi.org/10.1057%2Fpalgrave.jors.2601317
https://doi.org/10.1109/inss.2009.5409946
https://doi.org/10.1109%2Finss.2009.5409946
https://doi.org/10.1109%2Finss.2009.5409946
https://doi.org/10.1109/avss.2007.4425342
https://doi.org/10.1109%2Favss.2007.4425342
https://doi.org/10.1109%2Favss.2007.4425342
https://doi.org/10.1007/s11047-015-9509-2
https://doi.org/10.1007%2Fs11047-015-9509-2
https://doi.org/10.1007%2Fs11047-015-9509-2
https://doi.org/10.1287/opre.44.6.875
https://doi.org/10.1287%2Fopre.44.6.875

88 BIBLIOGRAPHY

[9] Egon Balas and Andrew Ho. “Set covering algorithms using cutting planes, heuristics, and
subgradient optimization: A computational study”. In: Mathematical Programming Studies.
Springer Berlin Heidelberg, 1980, pp. 37–60. doi: 10 . 1007 / bfb0120886. url: https :
//doi.org/10.1007%2Fbfb0120886.

[10] Michael Baum and Kevin Passino. “A Search-Theoretic Approach to Cooperative Control
for Uninhabited Air Vehicles”. In: AIAA Guidance, Navigation, and Control Conference and
Exhibit. American Institute of Aeronautics and Astronautics, Aug. 2002. doi: 10.2514/6.
2002-4589. url: https://doi.org/10.2514%2F6.2002-4589.

[11] Joaquı́n Bautista and Jordi Pereira. “A GRASP algorithm to solve the unicost set covering
problem”. In: Computers & Operations Research 34.10 (Oct. 2007), pp. 3162–3173. doi:
10.1016/j.cor.2005.11.026. url: https://doi.org/10.1016%2Fj.cor.2005.11.026.

[12] John E. Beasley. “An algorithm for set covering problem”. In: European Journal of Opera-
tional Research 31.1 (July 1987), pp. 85–93. doi: 10.1016/0377-2217(87)90141-x. url:
https://doi.org/10.1016%2F0377-2217%2887%2990141-x.

[13] John E. Beasley. “OR-Library: Distributing Test Problems by Electronic Mail”. In: Journal
of the Operational Research Society 41.11 (Nov. 1990), pp. 1069–1072. doi: 10.1057/jors.
1990.166. url: https://doi.org/10.1057%2Fjors.1990.166.

[14] John E. Beasley and Paul C. Chu. “A genetic algorithm for the set covering problem”. In:
European Journal of Operational Research 94.2 (Oct. 1996), pp. 392–404. doi: 10.1016/
0377-2217(95)00159-x. url: https://doi.org/10.1016%2F0377-2217%2895%2900159-
x.

[15] John E. Beasley and K. Jørnsten. “Enhancing an algorithm for set covering problems”. In:
European Journal of Operational Research 58.2 (Apr. 1992), pp. 293–300. doi: 10.1016/
0377-2217(92)90215-u. url: https://doi.org/10.1016%2F0377-2217%2892%2990215-
u.

[16] Norbert Beckmann et al. “The R∗-tree: an efficient and robust access method for points
and rectangles”. In: Proceedings of the 1990 ACM SIGMOD international conference on
Management of data - SIGMOD ’90. ACM Press, 1990. doi: 10.1145/93597.98741. url:
https://doi.org/10.1145%2F93597.98741.

[17] Michel Berkelaar, Kjell Eikland, and Peter Notebaert. LPSolve. 2004.
[18] Nehme Bilal, Philippe Galinier, and Francois Guibault. “A New Formulation of the Set Cov-

ering Problem for Metaheuristic Approaches”. In: ISRN Operations Research 2013 (2013),
pp. 1–10. doi: 10.1155/2013/203032. url: https://doi.org/10.1155%2F2013%2F203032.

[19] Robert Bodor, Paul Schrater, and Nikolaos Papanikolopoulos. “Multi-camera positioning
to optimize task observability”. In: Proceedings. IEEE Conference on Advanced Video and
Signal Based Surveillance, 2005. IEEE, 2005. doi: 10.1109/avss.2005.1577328. url:
https://doi.org/10.1109%2Favss.2005.1577328.

[20] Robert Bodor et al. “Optimal Camera Placement for Automated Surveillance Tasks”. In:
Journal of Intelligent and Robotic Systems 50.3 (Oct. 2007), pp. 257–295. doi: 10.1007/
s10846-007-9164-7. url: https://doi.org/10.1007%2Fs10846-007-9164-7.

https://doi.org/10.1007/bfb0120886
https://doi.org/10.1007%2Fbfb0120886
https://doi.org/10.1007%2Fbfb0120886
https://doi.org/10.2514/6.2002-4589
https://doi.org/10.2514/6.2002-4589
https://doi.org/10.2514%2F6.2002-4589
https://doi.org/10.1016/j.cor.2005.11.026
https://doi.org/10.1016%2Fj.cor.2005.11.026
https://doi.org/10.1016/0377-2217(87)90141-x
https://doi.org/10.1016%2F0377-2217%2887%2990141-x
https://doi.org/10.1057/jors.1990.166
https://doi.org/10.1057/jors.1990.166
https://doi.org/10.1057%2Fjors.1990.166
https://doi.org/10.1016/0377-2217(95)00159-x
https://doi.org/10.1016/0377-2217(95)00159-x
https://doi.org/10.1016%2F0377-2217%2895%2900159-x
https://doi.org/10.1016%2F0377-2217%2895%2900159-x
https://doi.org/10.1016/0377-2217(92)90215-u
https://doi.org/10.1016/0377-2217(92)90215-u
https://doi.org/10.1016%2F0377-2217%2892%2990215-u
https://doi.org/10.1016%2F0377-2217%2892%2990215-u
https://doi.org/10.1145/93597.98741
https://doi.org/10.1145%2F93597.98741
https://doi.org/10.1155/2013/203032
https://doi.org/10.1155%2F2013%2F203032
https://doi.org/10.1109/avss.2005.1577328
https://doi.org/10.1109%2Favss.2005.1577328
https://doi.org/10.1007/s10846-007-9164-7
https://doi.org/10.1007/s10846-007-9164-7
https://doi.org/10.1007%2Fs10846-007-9164-7

BIBLIOGRAPHY 89

[21] Boost.Geometry, spatial indices, r-trees. https://www.boost.org/doc/libs/1_63_0/
libs/geometry/doc/html/geometry/spatial_indexes/introduction.html. Accessed:
2020-08-04.

[22] Prosenjit Bose et al. “The Floodlight Problem”. In: International Journal of Computational
Geometry & Applications 07.01n02 (Feb. 1997), pp. 153–163. doi: 10.1142/s0218195997000090.
url: https://doi.org/10.1142%2Fs0218195997000090.

[23] B. R. Bowring. “NOTES ON THE CURVATURE IN THE PRIME VERTICAL SECTION”.
In: Survey Review 29.226 (Oct. 1987), pp. 195–196. doi: 10.1179/sre.1987.29.226.195.
url: https://doi.org/10.1179%2Fsre.1987.29.226.195.

[24] Mathieu Brévilliers et al. “Hybrid differential evolution algorithms for the optimal camera
placement problem”. In: Journal of Systems and Information Technology (Nov. 2018). doi:
10.1108/jsit-09-2017-0081.

[25] Mathieu Brévilliers et al. “Parallel Preprocessing for the Optimal Camera Placement Prob-
lem”. In: International Journal of Modeling and Optimization 8.1 (Feb. 2018), pp. 33–40.
doi: 10.7763/ijmo.2018.v8.621.

[26] Stephen P. Brooks, Nial Friel, and Ruth King. “Classical model selection via simulated
annealing”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
65.2 (May 2003), pp. 503–520. doi: 10.1111/1467-9868.00399. url: https://doi.org/
10.1111%2F1467-9868.00399.

[27] Michael J. Brusco, Larry W. Jacobs, and Gary M. Thompson. In: Annals of Operations
Research 86 (1999), pp. 611–627. doi: 10.1023/a:1018900128545. url: https://doi.
org/10.1023%2Fa%3A1018900128545.

[28] Jesús Capitán, Luis Merino, and Aníbal Ollero. “Cooperative Decision-Making Under Un-
certainties for Multi-Target Surveillance with Multiples UAVs”. In: Journal of Intelligent &
Robotic Systems 84.1-4 (Sept. 2015), pp. 371–386. doi: 10.1007/s10846-015-0269-0. url:
https://doi.org/10.1007%2Fs10846-015-0269-0.

[29] Alberto Caprara, Matteo Fischetti, and Paolo Toth. “A Heuristic Method for the Set Cover-
ing Problem”. In: Operations Research 47.5 (Oct. 1999), pp. 730–743. doi: 10.1287/opre.
47.5.730. url: https://doi.org/10.1287%2Fopre.47.5.730.

[30] Alberto Caprara, Paolo Toth, and Matteo Fischetti. “Algorithms for the Set Covering Prob-
lem”. In: Annals of Operations Research 98.1/4 (2000), pp. 353–371. doi: 10.1023/a:
1019225027893. url: https://doi.org/10.1023%2Fa%3A1019225027893.

[31] Svante Carlsson, Bengt J. Nilsson, and Simeon Ntafos. “Optimum guard covers and m-
watchmen routes for restricted polygons”. In: Lecture Notes in Computer Science. Springer-
Verlag, 1991, pp. 367–378. doi: 10.1007/bfb0028276. url: https://doi.org/10.1007%
2Fbfb0028276.

[32] Marco Caserta. “Tabu Search-Based Metaheuristic Algorithm for Large-scale Set Covering
Problems”. In: Metaheuristics. Springer US, 2007, pp. 43–63. doi: 10.1007/978-0-387-
71921-4_3. url: https://doi.org/10.1007%2F978-0-387-71921-4_3.

[33] Drona Pratap Chandu. “Big Step Greedy Algorithm for Maximum K-coverage Problem”.
In: CoRR abs/1506.06163 (2015). arXiv: 1506.06163. url: http://arxiv.org/abs/1506.
06163.

https://www.boost.org/doc/libs/1_63_0/libs/geometry/doc/html/geometry/spatial_indexes/introduction.html
https://www.boost.org/doc/libs/1_63_0/libs/geometry/doc/html/geometry/spatial_indexes/introduction.html
https://doi.org/10.1142/s0218195997000090
https://doi.org/10.1142%2Fs0218195997000090
https://doi.org/10.1179/sre.1987.29.226.195
https://doi.org/10.1179%2Fsre.1987.29.226.195
https://doi.org/10.1108/jsit-09-2017-0081
https://doi.org/10.7763/ijmo.2018.v8.621
https://doi.org/10.1111/1467-9868.00399
https://doi.org/10.1111%2F1467-9868.00399
https://doi.org/10.1111%2F1467-9868.00399
https://doi.org/10.1023/a:1018900128545
https://doi.org/10.1023%2Fa%3A1018900128545
https://doi.org/10.1023%2Fa%3A1018900128545
https://doi.org/10.1007/s10846-015-0269-0
https://doi.org/10.1007%2Fs10846-015-0269-0
https://doi.org/10.1287/opre.47.5.730
https://doi.org/10.1287/opre.47.5.730
https://doi.org/10.1287%2Fopre.47.5.730
https://doi.org/10.1023/a:1019225027893
https://doi.org/10.1023/a:1019225027893
https://doi.org/10.1023%2Fa%3A1019225027893
https://doi.org/10.1007/bfb0028276
https://doi.org/10.1007%2Fbfb0028276
https://doi.org/10.1007%2Fbfb0028276
https://doi.org/10.1007/978-0-387-71921-4_3
https://doi.org/10.1007/978-0-387-71921-4_3
https://doi.org/10.1007%2F978-0-387-71921-4_3
https://arxiv.org/abs/1506.06163
http://arxiv.org/abs/1506.06163
http://arxiv.org/abs/1506.06163

90 BIBLIOGRAPHY

[34] Peng Cheng, J. Keller, and V. Kumar. “Time-optimal UAV trajectory planning for 3D urban
structure coverage”. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, Sept. 2008. doi: 10.1109/iros.2008.4650988. url: https://doi.org/
10.1109%2Firos.2008.4650988.

[35] Sen-ching Cheung, Jian Zhao, and M. Venkatesh. “Efficient Object-Based Video Inpainting”.
In: 2006 International Conference on Image Processing. IEEE, 2006. doi: 10.1109/icip.
2006.312432. url: https://doi.org/10.1109%2Ficip.2006.312432.

[36] Weipang Chin and Simon Christos Ntafos. “Optimum watchman routes”. In: Proceedings
of the second annual symposium on Computational geometry - SCG ’86. ACM Press, 1986.
doi: 10.1145/10515.10518. url: https://doi.org/10.1145%2F10515.10518.

[37] Dimitrios Chrysostomou and Antonios Gasteratos. “Optimum multi-camera arrangement
using a bee colony algorithm”. In: 2012 IEEE International Conference on Imaging Systems
and Techniques Proceedings. IEEE, July 2012. doi: 10.1109/ist.2012.6295580. url:
https://doi.org/10.1109%2Fist.2012.6295580.

[38] Dimitrios Chrysostomou, Georgios C. Sirakoulis, and Antonios Gasteratos. “A bio-inspired
multi-camera system for dynamic crowd analysis”. In: Pattern Recognition Letters 44 (July
2014), pp. 141–151. doi: 10.1016/j.patrec.2013.11.020. url: https://doi.org/10.
1016%2Fj.patrec.2013.11.020.

[39] Václav Chvátal. “A combinatorial theorem in plane geometry”. In: Journal of Combinatorial
Theory, Series B 18.1 (Feb. 1975), pp. 39–41. doi: 10.1016/0095-8956(75)90061-1. url:
https://doi.org/10.1016%2F0095-8956%2875%2990061-1.

[40] Václav Chvátal. “A Greedy Heuristic for the Set-Covering Problem”. In: Mathematics of
Operations Research 4.3 (Aug. 1979), pp. 233–235. doi: 10.1287/moor.4.3.233. url:
https://doi.org/10.1287%2Fmoor.4.3.233.

[41] Nicola Conci and Leonardo Lizzi. “Camera placement using particle swarm optimization
in visual surveillance applications”. In: 2009 16th IEEE International Conference on Image
Processing (ICIP). IEEE, Nov. 2009. doi: 10.1109/icip.2009.5413833. url: https:
//doi.org/10.1109%2Ficip.2009.5413833.

[42] Stephen A. Cook. “The complexity of theorem-proving procedures”. In: Proceedings of the
third annual ACM symposium on Theory of computing - STOC ’71. ACM Press, 1971. doi:
10.1145/800157.805047. url: https://doi.org/10.1145%2F800157.805047.

[43] Broderick Crawford and Carlos Castro. “Integrating Lookahead and Post Processing Proce-
dures with ACO for Solving Set Partitioning and Covering Problems”. In: Artificial Intelli-
gence and Soft Computing – ICAISC 2006. Springer Berlin Heidelberg, 2006, pp. 1082–1090.
doi: 10.1007/11785231_113. url: https://doi.org/10.1007%2F11785231_113.

[44] Broderick Crawford, Ricardo Soto, and Eric Monfroy. “Cultural Algorithms for the Set
Covering Problem”. In: Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013,
pp. 27–34. doi: 10.1007/978-3-642-38715-9_4. url: https://doi.org/10.1007%2F978-
3-642-38715-9_4.

[45] Broderick Crawford et al. “A Binary Cat Swarm Optimization Algorithm for the Non-
Unicost Set Covering Problem”. In: Mathematical Problems in Engineering 2015 (2015),
pp. 1–8. doi: 10.1155/2015/578541. url: https://doi.org/10.1155%2F2015%2F578541.

https://doi.org/10.1109/iros.2008.4650988
https://doi.org/10.1109%2Firos.2008.4650988
https://doi.org/10.1109%2Firos.2008.4650988
https://doi.org/10.1109/icip.2006.312432
https://doi.org/10.1109/icip.2006.312432
https://doi.org/10.1109%2Ficip.2006.312432
https://doi.org/10.1145/10515.10518
https://doi.org/10.1145%2F10515.10518
https://doi.org/10.1109/ist.2012.6295580
https://doi.org/10.1109%2Fist.2012.6295580
https://doi.org/10.1016/j.patrec.2013.11.020
https://doi.org/10.1016%2Fj.patrec.2013.11.020
https://doi.org/10.1016%2Fj.patrec.2013.11.020
https://doi.org/10.1016/0095-8956(75)90061-1
https://doi.org/10.1016%2F0095-8956%2875%2990061-1
https://doi.org/10.1287/moor.4.3.233
https://doi.org/10.1287%2Fmoor.4.3.233
https://doi.org/10.1109/icip.2009.5413833
https://doi.org/10.1109%2Ficip.2009.5413833
https://doi.org/10.1109%2Ficip.2009.5413833
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145%2F800157.805047
https://doi.org/10.1007/11785231_113
https://doi.org/10.1007%2F11785231_113
https://doi.org/10.1007/978-3-642-38715-9_4
https://doi.org/10.1007%2F978-3-642-38715-9_4
https://doi.org/10.1007%2F978-3-642-38715-9_4
https://doi.org/10.1155/2015/578541
https://doi.org/10.1155%2F2015%2F578541

BIBLIOGRAPHY 91

[46] Broderick Crawford et al. “A Cultural Algorithm for Solving the Set Covering Problem”.
In: Analysis and Design of Intelligent Systems using Soft Computing Techniques. Springer
Berlin Heidelberg, 2007, pp. 408–415. doi: 10 . 1007 / 978 - 3 - 540 - 72432 - 2 _ 41. url:
https://doi.org/10.1007%2F978-3-540-72432-2_41.

[47] Broderick Crawford et al. “An Artificial Fish Swarm Optimization Algorithm to Solve Set
Covering Problem”. In: Trends in Applied Knowledge-Based Systems and Data Science.
Springer International Publishing, 2016, pp. 892–903. doi: 10.1007/978-3-319-42007-
3_76. url: https://doi.org/10.1007%2F978-3-319-42007-3_76.

[48] Broderick Crawford et al. “Application of the Artificial Bee Colony Algorithm for Solving
the Set Covering Problem”. In: The Scientific World Journal 2014 (2014), pp. 1–8. doi:
10.1155/2014/189164. url: https://doi.org/10.1155%2F2014%2F189164.

[49] Broderick Crawford et al. “Binary Firefly algorithm for the set covering problem”. In: 2014
9th Iberian Conference on Information Systems and Technologies (CISTI). IEEE, June 2014.
doi: 10.1109/cisti.2014.6877090. url: https://doi.org/10.1109%2Fcisti.2014.
6877090.

[50] Broderick Crawford et al. “Fireworks Explosion Can Solve the Set Covering Problem”. In:
Advances in Intelligent Systems and Computing. Springer International Publishing, 2016,
pp. 477–490. doi: 10.1007/978-3-319-33625-1_43. url: https://doi.org/10.1007%
2F978-3-319-33625-1_43.

[51] Broderick Crawford et al. “Solving the Set Covering Problem with a Shuffled Frog Leaping
Algorithm”. In: Intelligent Information and Database Systems. Springer International Pub-
lishing, 2015, pp. 41–50. doi: 10.1007/978-3-319-15705-4_5. url: https://doi.org/
10.1007%2F978-3-319-15705-4_5.

[52] Mark S. Daskin and Edmund H. Stern. “A Hierarchical Objective Set Covering Model for
Emergency Medical Service Vehicle Deployment”. In: Transportation Science 15.2 (May
1981), pp. 137–152. doi: 10.1287/trsc.15.2.137. url: https://doi.org/10.1287%
2Ftrsc.15.2.137.

[53] Pierre David, Vincent Idasiak, and Frédéric Kratz. “A Sensor Placement Approach for the
Monitoring of Indoor Scenes”. In: Lecture Notes in Computer Science. Springer Berlin Hei-
delberg, 2007, pp. 110–125. doi: 10.1007/978-3-540-75696-5_7. url: https://doi.
org/10.1007%2F978-3-540-75696-5_7.

[54] E. W. Dijkstra. “A note on two problems in connexion with graphs”. In: Numerische Math-
ematik 1.1 (Dec. 1959), pp. 269–271. doi: 10.1007/bf01386390. url: https://doi.org/
10.1007%2Fbf01386390.

[55] Xu Chu Ding, A.R. Rahmani, and M. Egerstedt. “Multi-UAV Convoy Protection: An Op-
timal Approach to Path Planning and Coordination”. In: IEEE Transactions on Robotics
26.2 (Apr. 2010), pp. 256–268. doi: 10.1109/tro.2010.2042325. url: https://doi.org/
10.1109%2Ftro.2010.2042325.

[56] Pinliang Dong. “Generating and updating multiplicatively weighted Voronoi diagrams for
point, line and polygon features in GIS”. In: Computers & Geosciences 34.4 (Apr. 2008),
pp. 411–421. doi: 10.1016/j.cageo.2007.04.005. url: https://doi.org/10.1016%2Fj.
cageo.2007.04.005.

https://doi.org/10.1007/978-3-540-72432-2_41
https://doi.org/10.1007%2F978-3-540-72432-2_41
https://doi.org/10.1007/978-3-319-42007-3_76
https://doi.org/10.1007/978-3-319-42007-3_76
https://doi.org/10.1007%2F978-3-319-42007-3_76
https://doi.org/10.1155/2014/189164
https://doi.org/10.1155%2F2014%2F189164
https://doi.org/10.1109/cisti.2014.6877090
https://doi.org/10.1109%2Fcisti.2014.6877090
https://doi.org/10.1109%2Fcisti.2014.6877090
https://doi.org/10.1007/978-3-319-33625-1_43
https://doi.org/10.1007%2F978-3-319-33625-1_43
https://doi.org/10.1007%2F978-3-319-33625-1_43
https://doi.org/10.1007/978-3-319-15705-4_5
https://doi.org/10.1007%2F978-3-319-15705-4_5
https://doi.org/10.1007%2F978-3-319-15705-4_5
https://doi.org/10.1287/trsc.15.2.137
https://doi.org/10.1287%2Ftrsc.15.2.137
https://doi.org/10.1287%2Ftrsc.15.2.137
https://doi.org/10.1007/978-3-540-75696-5_7
https://doi.org/10.1007%2F978-3-540-75696-5_7
https://doi.org/10.1007%2F978-3-540-75696-5_7
https://doi.org/10.1007/bf01386390
https://doi.org/10.1007%2Fbf01386390
https://doi.org/10.1007%2Fbf01386390
https://doi.org/10.1109/tro.2010.2042325
https://doi.org/10.1109%2Ftro.2010.2042325
https://doi.org/10.1109%2Ftro.2010.2042325
https://doi.org/10.1016/j.cageo.2007.04.005
https://doi.org/10.1016%2Fj.cageo.2007.04.005
https://doi.org/10.1016%2Fj.cageo.2007.04.005

92 BIBLIOGRAPHY

[57] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. “Ant system: optimization by a
colony of cooperating agents”. In: IEEE Transactions on Systems, Man and Cybernetics,
Part B (Cybernetics) 26.1 (1996), pp. 29–41. doi: 10.1109/3477.484436. url: https:
//doi.org/10.1109%2F3477.484436.

[58] Martin Held. Triangulation by Ear Clipping. https://www.geometrictools.com/Documentation/
TriangulationByEarClipping.pdf. Accessed: 2020-02-04.

[59] earcut.hpp: Fast, header-only polygon triangulation. https://github.com/mapbox/earcut.
hpp. Accessed: 2020-02-04.

[60] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. “On the shape of a set of points in the
plane”. In: IEEE Transactions on Information Theory 29.4 (July 1983), pp. 551–559. doi:
10.1109/tit.1983.1056714. url: https://doi.org/10.1109%2Ftit.1983.1056714.

[61] Alon Efrat et al. “Sweeping Simple Polygons with a Chain of Guards”. In: Proceedings of the
Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’00. San Francisco,
California, USA: Society for Industrial and Applied Mathematics, 2000, pp. 927–936. isbn:
0-89871-453-2. url: http://dl.acm.org/citation.cfm?id=338219.338660.

[62] Ali O. Ercan et al. “Optimal Placement and Selection of Camera Network Nodes for Target
Localization”. In: Distributed Computing in Sensor Systems. Springer Berlin Heidelberg,
2006, pp. 389–404. doi: 10 . 1007 / 11776178 _ 24. url: https : / / doi . org / 10 . 1007 %
2F11776178_24.

[63] Uğur Murat Erdem and Stan Sclaroff. “Automated camera layout to satisfy task-specific and
floor plan-specific coverage requirements”. In: Computer Vision and Image Understanding
103.3 (Sept. 2006), pp. 156–169. doi: 10 . 1016 / j . cviu . 2006 . 06 . 005. url: https :
//doi.org/10.1016%2Fj.cviu.2006.06.005.

[64] Anton V. Eremeev. “A Genetic Algorithm with a Non-Binary Representation for the Set
Covering Problem”. In: Operations Research Proceedings 1998. Springer Berlin Heidelberg,
1999, pp. 175–181. doi: 10.1007/978-3-642-58409-1_17. url: https://doi.org/10.
1007%2F978-3-642-58409-1_17.

[65] Vladimir Estivill-Castro et al. “Illumination of polygons with vertex lights”. In: Information
Processing Letters 56.1 (Oct. 1995), pp. 9–13. doi: 10.1016/0020-0190(95)00129-z. url:
https://doi.org/10.1016%2F0020-0190%2895%2900129-z.

[66] Javier Etcheberry. “The Set-Covering Problem: A New Implicit Enumeration Algorithm”.
In: Operations Research 25.5 (Oct. 1977), pp. 760–772. doi: 10.1287/opre.25.5.760. url:
https://doi.org/10.1287%2Fopre.25.5.760.

[67] Muzaffar M. Eusuff and Kevin E. Lansey. “Optimization of Water Distribution Network
Design Using the Shuffled Frog Leaping Algorithm”. In: Journal of Water Resources Planning
and Management 129.3 (May 2003), pp. 210–225. doi: 10.1061/(asce)0733-9496(2003)
129:3(210). url: https://doi.org/10.1061%2F%28asce%290733-9496%282003%29129%
3A3%28210%29.

[68] Eduardo Penha Castro Fantini and Luiz Chaimowicz. “Coverage in Arbitrary 3D Envi-
ronments: The Art Gallery Problem in Shooter Games”. In: (Universidade Presbiteriana
Mackenzie, Oct. 16–18, 2013). São Paulo: IEEE, Oct. 2013. url: http://www.sbgames.
org/sbgames2013/proceedings/comp/17-full-paper.pdf.

https://doi.org/10.1109/3477.484436
https://doi.org/10.1109%2F3477.484436
https://doi.org/10.1109%2F3477.484436
https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
https://www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf
https://github.com/mapbox/earcut.hpp
https://github.com/mapbox/earcut.hpp
https://doi.org/10.1109/tit.1983.1056714
https://doi.org/10.1109%2Ftit.1983.1056714
http://dl.acm.org/citation.cfm?id=338219.338660
https://doi.org/10.1007/11776178_24
https://doi.org/10.1007%2F11776178_24
https://doi.org/10.1007%2F11776178_24
https://doi.org/10.1016/j.cviu.2006.06.005
https://doi.org/10.1016%2Fj.cviu.2006.06.005
https://doi.org/10.1016%2Fj.cviu.2006.06.005
https://doi.org/10.1007/978-3-642-58409-1_17
https://doi.org/10.1007%2F978-3-642-58409-1_17
https://doi.org/10.1007%2F978-3-642-58409-1_17
https://doi.org/10.1016/0020-0190(95)00129-z
https://doi.org/10.1016%2F0020-0190%2895%2900129-z
https://doi.org/10.1287/opre.25.5.760
https://doi.org/10.1287%2Fopre.25.5.760
https://doi.org/10.1061/(asce)0733-9496(2003)129:3(210)
https://doi.org/10.1061/(asce)0733-9496(2003)129:3(210)
https://doi.org/10.1061%2F%28asce%290733-9496%282003%29129%3A3%28210%29
https://doi.org/10.1061%2F%28asce%290733-9496%282003%29129%3A3%28210%29
http://www.sbgames.org/sbgames2013/proceedings/comp/17-full-paper.pdf
http://www.sbgames.org/sbgames2013/proceedings/comp/17-full-paper.pdf

BIBLIOGRAPHY 93

[69] Duc Fehr, Loren Fiore, and Nikolaos Papanikolopoulos. “Issues and solutions in surveillance
camera placement”. In: 2009 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, Oct. 2009. doi: 10.1109/iros.2009.5354252. url: https://doi.org/
10.1109%2Firos.2009.5354252.

[70] Uriel Feige. “A threshold of ln n for approximating set cover”. In: Journal of the ACM 45.4
(July 1998), pp. 634–652. doi: 10.1145/285055.285059. url: https://doi.org/10.1145%
2F285055.285059.

[71] Giovanni Felici et al. “A-priori upper bounds for the set covering problem”. In: Annals of
Operations Research 238.1-2 (Dec. 2015), pp. 229–241. doi: 10.1007/s10479-015-2069-0.
url: https://doi.org/10.1007%2Fs10479-015-2069-0.

[72] Thomas A. Feo and Mauricio G.C. Resende. “A probabilistic heuristic for a computationally
difficult set covering problem”. In: Operations Research Letters 8.2 (Apr. 1989), pp. 67–71.
doi: 10.1016/0167- 6377(89)90002- 3. url: https://doi.org/10.1016%2F0167-
6377%2889%2990002-3.

[73] Marshall L. Fisher. “An Applications Oriented Guide to Lagrangian Relaxation”. In: Inter-
faces 15.2 (Apr. 1985), pp. 10–21. doi: 10.1287/inte.15.2.10. url: https://doi.org/
10.1287%2Finte.15.2.10.

[74] Steve Fisk. “A short proof of Chvátal’s Watchman Theorem”. In: Journal of Combinatorial
Theory, Series B 24.3 (June 1978), p. 374. doi: 10.1016/0095-8956(78)90059-x. url:
https://doi.org/10.1016%2F0095-8956%2878%2990059-x.

[75] Martin Held. FIST: Fast Industrial-Strength Triangulation of Polygons. http://www.cosy.
sbg.ac.at/~held/projects/triang/triang.html. Accessed: 2020-02-04.

[76] M. Flint, M. Polycarpou, and E. Fernandez-Gaucherand. “Cooperative control for multiple
autonomous UAV’s searching for targets”. In: Proceedings of the 41st IEEE Conference on
Decision and Control, 2002. IEEE, 2003. doi: 10.1109/cdc.2002.1184272. url: https:
//doi.org/10.1109%2Fcdc.2002.1184272.

[77] Yi-Ge Fu, Jie Zhou, and Lei Deng. “Surveillance of a 2D Plane Area with 3D Deployed
Cameras”. In: Sensors 14.2 (Jan. 2014), pp. 1988–2011. doi: 10.3390/s140201988. url:
https://doi.org/10.3390%2Fs140201988.

[78] Giordano Fusco and Himanshu Gupta. “Placement and Orientation of Rotating Directional
Sensors”. In: 2010 7th Annual IEEE Communications Society Conference on Sensor, Mesh
and Ad Hoc Communications and Networks (SECON). IEEE, June 2010. doi: 10.1109/
secon.2010.5508238. url: https://doi.org/10.1109%2Fsecon.2010.5508238.

[79] Chao Gao et al. “An efficient local search heuristic with row weighting for the unicost set
covering problem”. In: European Journal of Operational Research 246.3 (Nov. 2015), pp. 750–
761. doi: 10.1016/j.ejor.2015.05.038. url: https://doi.org/10.1016%2Fj.ejor.
2015.05.038.

[80] Fang Gao et al. “Application of improved discrete particle swarm algorithm in partner
selection of virtual enterprise”. In: International Journal of Computer Science and Network
Security 6.3 (2006), pp. 208–212.

https://doi.org/10.1109/iros.2009.5354252
https://doi.org/10.1109%2Firos.2009.5354252
https://doi.org/10.1109%2Firos.2009.5354252
https://doi.org/10.1145/285055.285059
https://doi.org/10.1145%2F285055.285059
https://doi.org/10.1145%2F285055.285059
https://doi.org/10.1007/s10479-015-2069-0
https://doi.org/10.1007%2Fs10479-015-2069-0
https://doi.org/10.1016/0167-6377(89)90002-3
https://doi.org/10.1016%2F0167-6377%2889%2990002-3
https://doi.org/10.1016%2F0167-6377%2889%2990002-3
https://doi.org/10.1287/inte.15.2.10
https://doi.org/10.1287%2Finte.15.2.10
https://doi.org/10.1287%2Finte.15.2.10
https://doi.org/10.1016/0095-8956(78)90059-x
https://doi.org/10.1016%2F0095-8956%2878%2990059-x
http://www.cosy.sbg.ac.at/~held/projects/triang/triang.html
http://www.cosy.sbg.ac.at/~held/projects/triang/triang.html
https://doi.org/10.1109/cdc.2002.1184272
https://doi.org/10.1109%2Fcdc.2002.1184272
https://doi.org/10.1109%2Fcdc.2002.1184272
https://doi.org/10.3390/s140201988
https://doi.org/10.3390%2Fs140201988
https://doi.org/10.1109/secon.2010.5508238
https://doi.org/10.1109/secon.2010.5508238
https://doi.org/10.1109%2Fsecon.2010.5508238
https://doi.org/10.1016/j.ejor.2015.05.038
https://doi.org/10.1016%2Fj.ejor.2015.05.038
https://doi.org/10.1016%2Fj.ejor.2015.05.038

94 BIBLIOGRAPHY

[81] Francisco Javier Martinez Garcia and José A. Moreno Perez. “Jumping frogs optimization:
a new swarm method for discrete optimization”. In: Documentos de Trabajo del DEIOC 3
(2008).

[82] Anouck R. Girard, Adam S. Howell, and J. Karl Hedrick. “Border patrol and surveillance
missions using multiple unmanned air vehicles”. In: 2004 43rd IEEE Conference on Decision
and Control (CDC) (IEEE Cat. No.04CH37601). IEEE, 2004. doi: 10.1109/cdc.2004.
1428713. url: https://doi.org/10.1109%2Fcdc.2004.1428713.

[83] Fred Glover. “Heuristics for integer programming using surrogate constraints”. In: Decision
Sciences 8.1 (Jan. 1977), pp. 156–166. doi: 10.1111/j.1540-5915.1977.tb01074.x. url:
https://doi.org/10.1111%2Fj.1540-5915.1977.tb01074.x.

[84] Fred Glover. “Tabu Search—Part I”. In: ORSA Journal on Computing 1.3 (Aug. 1989),
pp. 190–206. doi: 10.1287/ijoc.1.3.190. url: https://doi.org/10.1287%2Fijoc.1.3.
190.

[85] Fred Glover. “Tabu Search—Part II”. In: ORSA Journal on Computing 2.1 (Feb. 1990),
pp. 4–32. doi: 10.1287/ijoc.2.1.4. url: https://doi.org/10.1287%2Fijoc.2.1.4.

[86] Héctor González-Banos. “A randomized art-gallery algorithm for sensor placement”. In:
Proceedings of the seventeenth annual symposium on Computational geometry - SCG ’01.
ACM Press, 2001. doi: 10.1145/378583.378674. url: https://doi.org/10.1145%
2F378583.378674.

[87] Jose-Joel Gonzalez-Barbosa et al. “Optimal camera placement for total coverage”. In: 2009
IEEE International Conference on Robotics and Automation. IEEE, May 2009. doi: 10.
1109/robot.2009.5152761. url: https://doi.org/10.1109%2Frobot.2009.5152761.

[88] Khronos Group. OpenGL - The Industry Standard for High Performance Graphics. 1992.
[89] Antonin Guttman. “R-trees”. In: Proceedings of the 1984 ACM SIGMOD international con-

ference on Management of data - SIGMOD ’84. ACM Press, 1984. doi: 10.1145/602259.
602266. url: https://doi.org/10.1145%2F602259.602266.

[90] Peter Hart, Nils Nilsson, and Bertram Raphael. “A Formal Basis for the Heuristic Determi-
nation of Minimum Cost Paths”. In: IEEE Transactions on Systems Science and Cybernetics
4.2 (1968), pp. 100–107. doi: 10.1109/tssc.1968.300136. url: https://doi.org/10.
1109%2Ftssc.1968.300136.

[91] Anton van den Hengel et al. “Automatic camera placement for large scale surveillance net-
works”. In: 2009 Workshop on Applications of Computer Vision (WACV). IEEE, Dec. 2009.
doi: 10.1109/wacv.2009.5403076. url: https://doi.org/10.1109%2Fwacv.2009.
5403076.

[92] C. A. R. Hoare. “Algorithm 64: Quicksort”. In: Communications of the ACM 4.7 (July 1961),
p. 321. doi: 10.1145/366622.366644. url: https://doi.org/10.1145%2F366622.366644.

[93] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control, and Artificial Intelligence. 1992. isbn: 0262581116.
url: https://www.amazon.com/Adaptation-Natural-Artificial-Systems-Introductory/
dp/0262581116.

https://doi.org/10.1109/cdc.2004.1428713
https://doi.org/10.1109/cdc.2004.1428713
https://doi.org/10.1109%2Fcdc.2004.1428713
https://doi.org/10.1111/j.1540-5915.1977.tb01074.x
https://doi.org/10.1111%2Fj.1540-5915.1977.tb01074.x
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1287%2Fijoc.1.3.190
https://doi.org/10.1287%2Fijoc.1.3.190
https://doi.org/10.1287/ijoc.2.1.4
https://doi.org/10.1287%2Fijoc.2.1.4
https://doi.org/10.1145/378583.378674
https://doi.org/10.1145%2F378583.378674
https://doi.org/10.1145%2F378583.378674
https://doi.org/10.1109/robot.2009.5152761
https://doi.org/10.1109/robot.2009.5152761
https://doi.org/10.1109%2Frobot.2009.5152761
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145/602259.602266
https://doi.org/10.1145%2F602259.602266
https://doi.org/10.1109/tssc.1968.300136
https://doi.org/10.1109%2Ftssc.1968.300136
https://doi.org/10.1109%2Ftssc.1968.300136
https://doi.org/10.1109/wacv.2009.5403076
https://doi.org/10.1109%2Fwacv.2009.5403076
https://doi.org/10.1109%2Fwacv.2009.5403076
https://doi.org/10.1145/366622.366644
https://doi.org/10.1145%2F366622.366644
https://www.amazon.com/Adaptation-Natural-Artificial-Systems-Introductory/dp/0262581116
https://www.amazon.com/Adaptation-Natural-Artificial-Systems-Introductory/dp/0262581116

BIBLIOGRAPHY 95

[94] Ross Honsberger. Mathematical Gems II (Dolciani Mathematical Expositions, No. 2) (Pt.
2). Mathematical Assn of Amer, 1976. isbn: 0883853027. url: https://www.amazon.com/
Mathematical-Gems-Dolciani-Expositions-No/dp/0883853027.

[95] Eva Horster and Rainer Lienhart. “Approximating Optimal Visual Sensor Placement”. In:
2006 IEEE International Conference on Multimedia and Expo. IEEE, July 2006. doi: 10.
1109/icme.2006.262766. url: https://doi.org/10.1109%2Ficme.2006.262766.

[96] Calcul scientifique, services numériques de l’Université de Strasbourg. https://services-
numeriques.unistra.fr/les-services-aux-usagers/hpc.html. Accessed: 2020-10-04.

[97] IBM®. IBM CPLEX Optimiser. 1988.
[98] S. Indu et al. “Optimal sensor placement for surveillance of large spaces”. In: 2009 Third

ACM/IEEE International Conference on Distributed Smart Cameras (ICDSC). IEEE, Aug.
2009. doi: 10.1109/icdsc.2009.5289398. url: https://doi.org/10.1109%2Ficdsc.
2009.5289398.

[99] Irrlicht Engine, a free open source 3D engine. http://irrlicht.sourceforge.net/.
Accessed: 2020-08-04.

[100] Larry W. Jacobs and Michael J. Brusco. “Note: A local-search heuristic for large set-covering
problems”. In: Naval Research Logistics 42.7 (Oct. 1995), pp. 1129–1140. doi: 10.1002/
1520-6750(199510)42:7<1129::aid-nav3220420711>3.0.co;2-m. url: https://doi.
org/10.1002%2F1520-6750%28199510%2942%3A7%3C1129%3A%3Aaid-nav3220420711%
3E3.0.co%3B2-m.

[101] Firdaus Janoos et al. “Sensor configuration for coverage optimization for surveillance appli-
cations”. In: Videometrics IX. Ed. by Jean-Angelo Beraldin, Fabio Remondino, and Mark R.
Shortis. SPIE, Jan. 2007. doi: 10.1117/12.704062. url: https://doi.org/10.1117%
2F12.704062.

[102] Adrián Jaramillo et al. “Solving the Set Covering Problem with the Soccer League Competi-
tion Algorithm”. In: Trends in Applied Knowledge-Based Systems and Data Science. Springer
International Publishing, 2016, pp. 884–891. doi: 10.1007/978-3-319-42007-3_75. url:
https://doi.org/10.1007%2F978-3-319-42007-3_75.

[103] Ayush Joshi, Jonathan E. Rowe, and Christine Zarges. “An Immune-Inspired Algorithm for
the Set Cover Problem”. In: Parallel Problem Solving from Nature – PPSN XIII. Springer
International Publishing, 2014, pp. 243–251. doi: 10.1007/978-3-319-10762-2_24. url:
https://doi.org/10.1007%2F978-3-319-10762-2_24.

[104] Dervis Karaboga. An idea based on honey bee swarm for numerical optimization. Tech. rep.
Erciyes University, 2005.

[105] Richard M. Karp. “Reducibility among Combinatorial Problems”. In: Complexity of Com-
puter Computations. Springer US, 1972, pp. 85–103. doi: 10.1007/978-1-4684-2001-2_9.
url: https://doi.org/10.1007%2F978-1-4684-2001-2_9.

[106] Giorgos D. Kazazakis and Antonis Argyros. “Fast positioning of limited-visibility guards
for the inspection of 2D workspaces”. In: IEEE/RSJ International Conference on Intelligent
Robots and System. IEEE, 2002. doi: 10.1109/irds.2002.1041701. url: https://doi.
org/10.1109%2Firds.2002.1041701.

https://www.amazon.com/Mathematical-Gems-Dolciani-Expositions-No/dp/0883853027
https://www.amazon.com/Mathematical-Gems-Dolciani-Expositions-No/dp/0883853027
https://doi.org/10.1109/icme.2006.262766
https://doi.org/10.1109/icme.2006.262766
https://doi.org/10.1109%2Ficme.2006.262766
https://services-numeriques.unistra.fr/les-services-aux-usagers/hpc.html
https://services-numeriques.unistra.fr/les-services-aux-usagers/hpc.html
https://doi.org/10.1109/icdsc.2009.5289398
https://doi.org/10.1109%2Ficdsc.2009.5289398
https://doi.org/10.1109%2Ficdsc.2009.5289398
http://irrlicht.sourceforge.net/
https://doi.org/10.1002/1520-6750(199510)42:7<1129::aid-nav3220420711>3.0.co;2-m
https://doi.org/10.1002/1520-6750(199510)42:7<1129::aid-nav3220420711>3.0.co;2-m
https://doi.org/10.1002%2F1520-6750%28199510%2942%3A7%3C1129%3A%3Aaid-nav3220420711%3E3.0.co%3B2-m
https://doi.org/10.1002%2F1520-6750%28199510%2942%3A7%3C1129%3A%3Aaid-nav3220420711%3E3.0.co%3B2-m
https://doi.org/10.1002%2F1520-6750%28199510%2942%3A7%3C1129%3A%3Aaid-nav3220420711%3E3.0.co%3B2-m
https://doi.org/10.1117/12.704062
https://doi.org/10.1117%2F12.704062
https://doi.org/10.1117%2F12.704062
https://doi.org/10.1007/978-3-319-42007-3_75
https://doi.org/10.1007%2F978-3-319-42007-3_75
https://doi.org/10.1007/978-3-319-10762-2_24
https://doi.org/10.1007%2F978-3-319-10762-2_24
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007%2F978-1-4684-2001-2_9
https://doi.org/10.1109/irds.2002.1041701
https://doi.org/10.1109%2Firds.2002.1041701
https://doi.org/10.1109%2Firds.2002.1041701

96 BIBLIOGRAPHY

[107] James Kennedy and Russell Eberhart. “Particle swarm optimization”. In: Proceedings of
ICNN’95 - International Conference on Neural Networks. IEEE, 1995. doi: 10.1109/icnn.
1995.488968. url: https://doi.org/10.1109%2Ficnn.1995.488968.

[108] Mojtaba Ahmadieh Khanesar, Mohammad Teshnehlab, and Mahdi Aliyari Shoorehdeli. “A
novel binary particle swarm optimization”. In: 2007 Mediterranean Conference on Control
& Automation. IEEE, June 2007. doi: 10.1109/med.2007.4433821. url: https://doi.
org/10.1109%2Fmed.2007.4433821.

[109] Jongrae Kim and J L Crassidis. “UAV path planning for maximum visibility of ground
targets in an urban area”. In: 2010 13th International Conference on Information Fusion.
IEEE, July 2010. doi: 10.1109/icif.2010.5711852. url: https://doi.org/10.1109%
2Ficif.2010.5711852.

[110] Jongrae Kim and Yoonsoo Kim. “Moving ground target tracking in dense obstacle areas
using UAVs”. In: IFAC Proceedings Volumes 41.2 (2008), pp. 8552–8557. doi: 10.3182/
20080706- 5- kr- 1001.01446. url: https://doi.org/10.3182%2F20080706- 5- kr-
1001.01446.

[111] Kamyoung Kim, Alan T Murray, and Ningchuan Xiao. “A multiobjective evolutionary al-
gorithm for surveillance sensor placement”. In: Environment and Planning B: Planning and
Design 35.5 (2008), pp. 935–948. doi: 10.1068/b33139. url: https://doi.org/10.1068%
2Fb33139.

[112] Derek Kingston. “Road surveillance using a team of small UAVs”. In: Unmanned Systems
Technology XI. Ed. by Grant R. Gerhart, Douglas W. Gage, and Charles M. Shoemaker.
SPIE, May 2009. doi: 10.1117/12.818774. url: https://doi.org/10.1117%2F12.
818774.

[113] Derek Kingston, Randal W. Beard, and Ryan S. Holt. “Decentralized Perimeter Surveillance
Using a Team of UAVs”. In: IEEE Transactions on Robotics 24.6 (Dec. 2008), pp. 1394–1404.
doi: 10.1109/tro.2008.2007935. url: https://doi.org/10.1109%2Ftro.2008.2007935.

[114] Scott Kirkpatrick, C.D. Gelatt, and Mario P. Vecchi. “Optimization by Simulated Anneal-
ing”. In: Science 220.4598 (May 1983), pp. 671–680. doi: 10.1126/science.220.4598.671.
url: https://doi.org/10.1126%2Fscience.220.4598.671.

[115] Krishna Reddy Konda and Nicola Conci. “Optimal configuration of PTZ camera networks
based on visual quality assessment and coverage maximization”. In: 2013 Seventh Interna-
tional Conference on Distributed Smart Cameras (ICDSC). IEEE, Oct. 2013. doi: 10.1109/
icdsc.2013.6778202. url: https://doi.org/10.1109%2Ficdsc.2013.6778202.

[116] Krishna Reddy Konda and Nicola Conci. “Real-time reconfiguration of PTZ camera net-
works using motion field entropy and visual coverage”. In: Proceedings of the International
Conference on Distributed Smart Cameras - ICDSC ’14. ACM Press, 2014. doi: 10.1145/
2659021.2659051. url: https://doi.org/10.1145%2F2659021.2659051.

[117] Harry Kornilakis and Panagiotis Stamatopoulos. “Crew Pairing Optimization with Genetic
Algorithms”. In: Methods and Applications of Artificial Intelligence. Springer Berlin Heidel-
berg, 2002, pp. 109–120. doi: 10.1007/3-540-46014-4_11. url: https://doi.org/10.
1007%2F3-540-46014-4_11.

https://doi.org/10.1109/icnn.1995.488968
https://doi.org/10.1109/icnn.1995.488968
https://doi.org/10.1109%2Ficnn.1995.488968
https://doi.org/10.1109/med.2007.4433821
https://doi.org/10.1109%2Fmed.2007.4433821
https://doi.org/10.1109%2Fmed.2007.4433821
https://doi.org/10.1109/icif.2010.5711852
https://doi.org/10.1109%2Ficif.2010.5711852
https://doi.org/10.1109%2Ficif.2010.5711852
https://doi.org/10.3182/20080706-5-kr-1001.01446
https://doi.org/10.3182/20080706-5-kr-1001.01446
https://doi.org/10.3182%2F20080706-5-kr-1001.01446
https://doi.org/10.3182%2F20080706-5-kr-1001.01446
https://doi.org/10.1068/b33139
https://doi.org/10.1068%2Fb33139
https://doi.org/10.1068%2Fb33139
https://doi.org/10.1117/12.818774
https://doi.org/10.1117%2F12.818774
https://doi.org/10.1117%2F12.818774
https://doi.org/10.1109/tro.2008.2007935
https://doi.org/10.1109%2Ftro.2008.2007935
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126%2Fscience.220.4598.671
https://doi.org/10.1109/icdsc.2013.6778202
https://doi.org/10.1109/icdsc.2013.6778202
https://doi.org/10.1109%2Ficdsc.2013.6778202
https://doi.org/10.1145/2659021.2659051
https://doi.org/10.1145/2659021.2659051
https://doi.org/10.1145%2F2659021.2659051
https://doi.org/10.1007/3-540-46014-4_11
https://doi.org/10.1007%2F3-540-46014-4_11
https://doi.org/10.1007%2F3-540-46014-4_11

BIBLIOGRAPHY 97

[118] Julien Kritter et al. “On the computational cost of the set cover approach for the optimal
camera placement problem and possible trade-offs for surveillance infrastructure design”. In:
RAIRO Operations Research (2020). Submitted.

[119] Julien Kritter et al. “On the optimal placement of cameras for surveillance and the un-
derlying set cover problem”. In: Applied Soft Computing 74 (Jan. 2019), pp. 133–153. doi:
10.1016/j.asoc.2018.10.025.

[120] Julien Kritter et al. “On the real-world applicability of state-of-the-art algorithms for the
optimal camera placement problem”. In: 6th 2019 International Conference on Control,
Decision and Information Technologies (CoDIT). IEEE, Apr. 2019. doi: 10.1109/CoDIT.
2019.8820295.

[121] Julien Kritter et al. “On the use of human-assisted optimisation for the optimal camera
placement problem and the surveillance of urban events”. In: 7th 2020 International Con-
ference on Control, Decision and Information Technologies (CoDIT). IEEE, June 2020.

[122] La vidéosurveillance, vidéoprotection sur la voie publique. https://www.cnil.fr/fr/la-
videosurveillance- videoprotection- sur- la- voie- publique. Accessed: 2020-15-03.
Commission Nationale de l’Informatique et des Libertés (CNIL).

[123] Guanghui Lan, Gail W. DePuy, and Gary E. Whitehouse. “An effective and simple heuristic
for the set covering problem”. In: European Journal of Operational Research 176.3 (Feb.
2007), pp. 1387–1403. doi: 10.1016/j.ejor.2005.09.028. url: https://doi.org/10.
1016%2Fj.ejor.2005.09.028.

[124] Lucas Lessing, Irina Dumitrescu, and Thomas Stützle. “A Comparison Between ACO Algo-
rithms for the Set Covering Problem”. In: Ant Colony Optimization and Swarm Intelligence.
Springer Berlin Heidelberg, 2004, pp. 1–12. doi: 10.1007/978-3-540-28646-2_1. url:
https://doi.org/10.1007%2F978-3-540-28646-2_1.

[125] Junbin Liu, Sridha Sridharan, and Clinton Fookes. “Recent Advances in Camera Planning
for Large Area Surveillance”. In: ACM Computing Surveys 49.1 (May 2016), pp. 1–37. doi:
10.1145/2906148. url: https://doi.org/10.1145%2F2906148.

[126] Junbin Liu et al. “On the Statistical Determination of Optimal Camera Configurations in
Large Scale Surveillance Networks”. In: Computer Vision – ECCV 2012. Springer Berlin
Heidelberg, 2012, pp. 44–57. doi: 10.1007/978-3-642-33718-5_4. url: https://doi.
org/10.1007%2F978-3-642-33718-5_4.

[127] Junbin Liu et al. “Optimal Camera Planning Under Versatile User Constraints in Multi-
Camera Image Processing Systems”. In: IEEE Transactions on Image Processing 23.1 (Jan.
2014), pp. 171–184. doi: 10.1109/tip.2013.2287606. url: https://doi.org/10.1109%
2Ftip.2013.2287606.

[128] Luiz A. N. Lorena and L. de Souza Lopes. “Genetic algorithms applied to computationally
difficult set covering problems”. In: Journal of the Operational Research Society 48.4 (Apr.
1997), pp. 440–445. doi: 10.1057/palgrave.jors.2600380. url: https://doi.org/10.
1057%2Fpalgrave.jors.2600380.

https://doi.org/10.1016/j.asoc.2018.10.025
https://doi.org/10.1109/CoDIT.2019.8820295
https://doi.org/10.1109/CoDIT.2019.8820295
https://www.cnil.fr/fr/la-videosurveillance-videoprotection-sur-la-voie-publique
https://www.cnil.fr/fr/la-videosurveillance-videoprotection-sur-la-voie-publique
https://doi.org/10.1016/j.ejor.2005.09.028
https://doi.org/10.1016%2Fj.ejor.2005.09.028
https://doi.org/10.1016%2Fj.ejor.2005.09.028
https://doi.org/10.1007/978-3-540-28646-2_1
https://doi.org/10.1007%2F978-3-540-28646-2_1
https://doi.org/10.1145/2906148
https://doi.org/10.1145%2F2906148
https://doi.org/10.1007/978-3-642-33718-5_4
https://doi.org/10.1007%2F978-3-642-33718-5_4
https://doi.org/10.1007%2F978-3-642-33718-5_4
https://doi.org/10.1109/tip.2013.2287606
https://doi.org/10.1109%2Ftip.2013.2287606
https://doi.org/10.1109%2Ftip.2013.2287606
https://doi.org/10.1057/palgrave.jors.2600380
https://doi.org/10.1057%2Fpalgrave.jors.2600380
https://doi.org/10.1057%2Fpalgrave.jors.2600380

98 BIBLIOGRAPHY

[129] Vittorio Maniezzo. “Exact and Approximate Nondeterministic Tree-Search Procedures for
the Quadratic Assignment Problem”. In: INFORMS Journal on Computing 11.4 (Nov. 1999),
pp. 358–369. doi: 10.1287/ijoc.11.4.358. url: https://doi.org/10.1287%2Fijoc.11.
4.358.

[130] André L. Maravilha, Jaime A. Ramı́rez, and Felipe Campelo. “Combinatorial Optimiza-
tion with Differential Evolution: A Set-based Approach”. In: Proceedings of the Compan-
ion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computa-
tion. GECCO Comp ’14. ACM, 2014, pp. 69–70. isbn: 978-1-4503-2881-4. doi: 10.1145/
2598394.2598463. url: http://doi.acm.org/10.1145/2598394.2598463.

[131] Elena Marchiori and Adri Steenbeek. “An Evolutionary Algorithm for Large Scale Set Cov-
ering Problems with Application to Airline Crew Scheduling”. In: Real-World Applications of
Evolutionary Computing. Springer Berlin Heidelberg, 2000, pp. 370–384. doi: 10.1007/3-
540-45561-2_36. url: https://doi.org/10.1007%2F3-540-45561-2_36.

[132] Elena Marchiori and Adri Steenbeek. An Iterated Heuristic Algorithm for the Set Covering
Problem. 1998.

[133] MathWorks®. MATLAB. 1984.
[134] Aaron Mavrinac and Xiang Chen. “Modeling Coverage in Camera Networks: A Survey”. In:

International Journal of Computer Vision 101.1 (Nov. 2012), pp. 205–226. doi: 10.1007/
s11263-012-0587-7. url: https://doi.org/10.1007%2Fs11263-012-0587-7.

[135] Seyedali Mirjalili and Andrew Lewis. “S-shaped versus V-shaped transfer functions for bi-
nary Particle Swarm Optimization”. In: Swarm and Evolutionary Computation 9 (Apr.
2013), pp. 1–14. doi: 10.1016/j.swevo.2012.09.002. url: https://doi.org/10.
1016%2Fj.swevo.2012.09.002.

[136] Anurag Mittal and Larry S. Davis. In: International Journal of Computer Vision 51.3 (2003),
pp. 189–203. doi: 10.1023/a:1021849801764. url: https://doi.org/10.1023%2Fa%
3A1021849801764.

[137] Anurag Mittal and Larry S. Davis. “A General Method for Sensor Planning in Multi-Sensor
Systems: Extension to Random Occlusion”. In: International Journal of Computer Vision
76.1 (July 2007), pp. 31–52. doi: 10.1007/s11263-007-0057-9. url: https://doi.org/
10.1007%2Fs11263-007-0057-9.

[138] Anurag Mittal and Larry S. Davis. “Visibility Analysis and Sensor Planning in Dynamic
Environments”. In: Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2004,
pp. 175–189. doi: 10.1007/978-3-540-24670-1_14. url: https://doi.org/10.1007%
2F978-3-540-24670-1_14.

[139] Tomas Möller and Ben Trumbore. “Fast, Minimum Storage Ray-Triangle Intersection”. In:
Journal of Graphics Tools 2.1 (Jan. 1997), pp. 21–28. doi: 10.1080/10867651.1997.
10487468.

[140] Yacine Morsly, Mohand Said Djouadi, and Nabil Aouf. “On the best interceptor placement
for an optimally deployed visual sensor network”. In: 2010 IEEE International Conference
on Systems, Man and Cybernetics. IEEE, Oct. 2010. doi: 10.1109/icsmc.2010.5642200.
url: https://doi.org/10.1109%2Ficsmc.2010.5642200.

https://doi.org/10.1287/ijoc.11.4.358
https://doi.org/10.1287%2Fijoc.11.4.358
https://doi.org/10.1287%2Fijoc.11.4.358
https://doi.org/10.1145/2598394.2598463
https://doi.org/10.1145/2598394.2598463
http://doi.acm.org/10.1145/2598394.2598463
https://doi.org/10.1007/3-540-45561-2_36
https://doi.org/10.1007/3-540-45561-2_36
https://doi.org/10.1007%2F3-540-45561-2_36
https://doi.org/10.1007/s11263-012-0587-7
https://doi.org/10.1007/s11263-012-0587-7
https://doi.org/10.1007%2Fs11263-012-0587-7
https://doi.org/10.1016/j.swevo.2012.09.002
https://doi.org/10.1016%2Fj.swevo.2012.09.002
https://doi.org/10.1016%2Fj.swevo.2012.09.002
https://doi.org/10.1023/a:1021849801764
https://doi.org/10.1023%2Fa%3A1021849801764
https://doi.org/10.1023%2Fa%3A1021849801764
https://doi.org/10.1007/s11263-007-0057-9
https://doi.org/10.1007%2Fs11263-007-0057-9
https://doi.org/10.1007%2Fs11263-007-0057-9
https://doi.org/10.1007/978-3-540-24670-1_14
https://doi.org/10.1007%2F978-3-540-24670-1_14
https://doi.org/10.1007%2F978-3-540-24670-1_14
https://doi.org/10.1080/10867651.1997.10487468
https://doi.org/10.1080/10867651.1997.10487468
https://doi.org/10.1109/icsmc.2010.5642200
https://doi.org/10.1109%2Ficsmc.2010.5642200

BIBLIOGRAPHY 99

[141] Yacine Morsly et al. “Particle Swarm Optimization Inspired Probability Algorithm for Op-
timal Camera Network Placement”. In: IEEE Sensors Journal 12.5 (May 2012), pp. 1402–
1412. doi: 10.1109/jsen.2011.2170833. url: https://doi.org/10.1109%2Fjsen.2011.
2170833.

[142] M. H. Mulati and A. A. Constantino. “Ant-Line: A Line-Oriented ACO Algorithm for the
Set Covering Problem”. In: 2011 30th International Conference of the Chilean Computer
Science Society. IEEE, Nov. 2011. doi: 10.1109/sccc.2011.34. url: https://doi.org/
10.1109%2Fsccc.2011.34.

[143] Vikram P. Munishwar and Nael B. Abu-Ghazaleh. “Coverage algorithms for visual sensor
networks”. In: ACM Transactions on Sensor Networks 9.4 (July 2013), pp. 1–36. doi: 10.
1145/2489253.2489262. url: https://doi.org/10.1145%2F2489253.2489262.

[144] Vikram P. Munishwar and Nael B. Abu-Ghazaleh. “Scalable target coverage in smart camera
networks”. In: Proceedings of the Fourth ACM/IEEE International Conference on Distributed
Smart Cameras - ICDSC ’10. ACM Press, 2010. doi: 10.1145/1865987.1866020. url:
https://doi.org/10.1145%2F1865987.1866020.

[145] Alan T. Murray et al. “Coverage optimization to support security monitoring”. In: Com-
puters, Environment and Urban Systems 31.2 (Mar. 2007), pp. 133–147. doi: 10.1016/j.
compenvurbsys.2006.06.002. url: https://doi.org/10.1016%2Fj.compenvurbsys.
2006.06.002.

[146] Nysret Musliu. “Local Search Algorithm for Unicost Set Covering Problem”. In: Advances
in Applied Artificial Intelligence. Springer Berlin Heidelberg, 2006, pp. 302–311. doi: 10.
1007/11779568_34. url: https://doi.org/10.1007%2F11779568_34.

[147] Zahra Naji-Azimi, Paolo Toth, and Laura Galli. “An electromagnetism metaheuristic for the
unicost set covering problem”. In: European Journal of Operational Research 205.2 (Sept.
2010), pp. 290–300. doi: 10.1016/j.ejor.2010.01.035. url: https://doi.org/10.
1016%2Fj.ejor.2010.01.035.

[148] Prabhu Natarajan et al. “Decision-theoretic coordination and control for active multi-camera
surveillance in uncertain, partially observable environments”. In: 2012 Sixth International
Conference on Distributed Smart Cameras (ICDSC). Oct. 2012, pp. 1–6. isbn: 978-1-4503-
1772-6.

[149] Prabhu Natarajan et al. “Scalable Decision-Theoretic Coordination and Control for Real-
time Active Multi-Camera Surveillance”. In: Proceedings of the International Conference
on Distributed Smart Cameras - ICDSC ’14. ACM Press, 2014. doi: 10.1145/2659021.
2659042. url: https://doi.org/10.1145%2F2659021.2659042.

[150] John A. Nelder and Roger Mead. “A Simplex Method for Function Minimization”. In: The
Computer Journal 7.4 (Jan. 1965), pp. 308–313. doi: 10.1093/comjnl/7.4.308. url:
https://doi.org/10.1093%2Fcomjnl%2F7.4.308.

[151] Nikhil Nigam and Ilan Kroo. “Persistent Surveillance Using Multiple Unmanned Air Vehi-
cles”. In: 2008 IEEE Aerospace Conference. IEEE, Mar. 2008. doi: 10.1109/aero.2008.
4526242. url: https://doi.org/10.1109%2Faero.2008.4526242.

https://doi.org/10.1109/jsen.2011.2170833
https://doi.org/10.1109%2Fjsen.2011.2170833
https://doi.org/10.1109%2Fjsen.2011.2170833
https://doi.org/10.1109/sccc.2011.34
https://doi.org/10.1109%2Fsccc.2011.34
https://doi.org/10.1109%2Fsccc.2011.34
https://doi.org/10.1145/2489253.2489262
https://doi.org/10.1145/2489253.2489262
https://doi.org/10.1145%2F2489253.2489262
https://doi.org/10.1145/1865987.1866020
https://doi.org/10.1145%2F1865987.1866020
https://doi.org/10.1016/j.compenvurbsys.2006.06.002
https://doi.org/10.1016/j.compenvurbsys.2006.06.002
https://doi.org/10.1016%2Fj.compenvurbsys.2006.06.002
https://doi.org/10.1016%2Fj.compenvurbsys.2006.06.002
https://doi.org/10.1007/11779568_34
https://doi.org/10.1007/11779568_34
https://doi.org/10.1007%2F11779568_34
https://doi.org/10.1016/j.ejor.2010.01.035
https://doi.org/10.1016%2Fj.ejor.2010.01.035
https://doi.org/10.1016%2Fj.ejor.2010.01.035
https://doi.org/10.1145/2659021.2659042
https://doi.org/10.1145/2659021.2659042
https://doi.org/10.1145%2F2659021.2659042
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093%2Fcomjnl%2F7.4.308
https://doi.org/10.1109/aero.2008.4526242
https://doi.org/10.1109/aero.2008.4526242
https://doi.org/10.1109%2Faero.2008.4526242

100 BIBLIOGRAPHY

[152] Nikhil Nigam et al. “Control of Multiple UAVs for Persistent Surveillance: Algorithm and
Flight Test Results”. In: IEEE Transactions on Control Systems Technology 20.5 (Sept.
2012), pp. 1236–1251. doi: 10.1109/tcst.2011.2167331. url: https://doi.org/10.
1109%2Ftcst.2011.2167331.

[153] Joseph O’Rourke. Art Gallery Theorems and Algorithms. Vol. 3. International Series of
Monographs on Computer Science. Oxford University Press, 1987. isbn: 0195039653. url:
https://www.amazon.com/Theorems-Algorithms-International-Monographs-Computer/
dp/0195039653.

[154] Gustavo Olague and Roger Mohr. “Optimal camera placement for accurate reconstruction”.
In: Pattern Recognition 35.4 (Apr. 2002), pp. 927–944. doi: 10.1016/s0031- 3203(01)
00076-0. url: https://doi.org/10.1016%2Fs0031-3203%2801%2900076-0.

[155] OpenStreetMap. https://www.openstreetmap.org/. Accessed: 2020-31-03.
[156] OSM2World. http://osm2world.org/. Accessed: 2020-11-04.
[157] Abhay K. Parekh. “A note on the greedy approximation algorithm for the unweighted set

covering problem”. In: (1988).
[158] Mark A. Peot et al. “Planning sensing actions for UAVs in urban domains”. In: Unmanned/Unattended

Sensors and Sensor Networks II. Ed. by Edward M. Carapezza. SPIE, Oct. 2005. doi:
10.1117/12.634899. url: https://doi.org/10.1117%2F12.634899.

[159] Maxime Pinard et al. “A Memetic Approach for the Unicost Set Covering Problem”. In:
Proceedings of the 14th Learning And Intelligent Optimization Conference. Athens, Greece,
June 2020.

[160] Luigi Di Puglia Pugliese et al. “Modelling the mobile target covering problem using flying
drones”. In: Optimization Letters 10.5 (Aug. 2015), pp. 1021–1052. doi: 10.1007/s11590-
015-0932-1. url: https://doi.org/10.1007%2Fs11590-015-0932-1.

[161] Fahd Rafi et al. “Autonomous target following by unmanned aerial vehicles”. In: Unmanned
Systems Technology VIII. Ed. by Grant R. Gerhart, Charles M. Shoemaker, and Douglas W.
Gage. SPIE, May 2006. doi: 10.1117/12.667356. url: https://doi.org/10.1117%2F12.
667356.

[162] Maher Rebai et al. “A Branch and Bound Algorithm for the Critical Grid Coverage Problem
in Wireless Sensor Networks”. In: International Journal of Distributed Sensor Networks 10.2
(Jan. 2014), p. 769658. doi: 10.1155/2014/769658. url: https://doi.org/10.1155%
2F2014%2F769658.

[163] Maher Rebai et al. “Exact Biobjective Optimization Methods for Camera Coverage Problem
in Three-Dimensional Areas”. In: IEEE Sensors Journal 16.9 (May 2016), pp. 3323–3331.
doi: 10.1109/jsen.2016.2519451. url: https://doi.org/10.1109%2Fjsen.2016.
2519451.

[164] Maher Rebai et al. “Sensor deployment optimization methods to achieve both coverage and
connectivity in wireless sensor networks”. In: Computers & Operations Research 59 (July
2015), pp. 11–21. doi: 10.1016/j.cor.2014.11.002. url: https://doi.org/10.1016%
2Fj.cor.2014.11.002.

https://doi.org/10.1109/tcst.2011.2167331
https://doi.org/10.1109%2Ftcst.2011.2167331
https://doi.org/10.1109%2Ftcst.2011.2167331
https://www.amazon.com/Theorems-Algorithms-International-Monographs-Computer/dp/0195039653
https://www.amazon.com/Theorems-Algorithms-International-Monographs-Computer/dp/0195039653
https://doi.org/10.1016/s0031-3203(01)00076-0
https://doi.org/10.1016/s0031-3203(01)00076-0
https://doi.org/10.1016%2Fs0031-3203%2801%2900076-0
https://www.openstreetmap.org/
http://osm2world.org/
https://doi.org/10.1117/12.634899
https://doi.org/10.1117%2F12.634899
https://doi.org/10.1007/s11590-015-0932-1
https://doi.org/10.1007/s11590-015-0932-1
https://doi.org/10.1007%2Fs11590-015-0932-1
https://doi.org/10.1117/12.667356
https://doi.org/10.1117%2F12.667356
https://doi.org/10.1117%2F12.667356
https://doi.org/10.1155/2014/769658
https://doi.org/10.1155%2F2014%2F769658
https://doi.org/10.1155%2F2014%2F769658
https://doi.org/10.1109/jsen.2016.2519451
https://doi.org/10.1109%2Fjsen.2016.2519451
https://doi.org/10.1109%2Fjsen.2016.2519451
https://doi.org/10.1016/j.cor.2014.11.002
https://doi.org/10.1016%2Fj.cor.2014.11.002
https://doi.org/10.1016%2Fj.cor.2014.11.002

BIBLIOGRAPHY 101

[165] Zhi-Gang Ren et al. “New ideas for applying ant colony optimization to the set covering
problem”. In: Computers & Industrial Engineering 58.4 (May 2010), pp. 774–784. doi: 10.
1016/j.cie.2010.02.011. url: https://doi.org/10.1016%2Fj.cie.2010.02.011.

[166] Victor Reyes et al. “A Beam-Search Approach to the Set Covering Problem”. In: Advances
in Intelligent Systems and Computing. Springer International Publishing, 2016, pp. 395–402.
doi: 10.1007/978-3-319-33625-1_35. url: https://doi.org/10.1007%2F978-3-319-
33625-1_35.

[167] Sumantra Dutta Roy, Santanu Chaudhury, and Subhashis Banerjee. “Active recognition
through next view planning: a survey”. In: Pattern Recognition 37.3 (Mar. 2004), pp. 429–
446. doi: 10.1016/j.patcog.2003.01.002. url: https://doi.org/10.1016%2Fj.
patcog.2003.01.002.

[168] Juan Salas et al. “Binary Harmony Search Algorithm for Solving Set-Covering Problem”.
In: Trends in Applied Knowledge-Based Systems and Data Science. Springer International
Publishing, 2016, pp. 917–930. doi: 10.1007/978- 3- 319- 42007- 3_78. url: https:
//doi.org/10.1007%2F978-3-319-42007-3_78.

[169] Ville Satopaa et al. “Finding a ”Kneedle” in a Haystack: Detecting Knee Points in Sys-
tem Behavior”. In: 2011 31st International Conference on Distributed Computing Systems
Workshops. IEEE, June 2011. doi: 10.1109/icdcsw.2011.20. url: https://doi.org/10.
1109%2Ficdcsw.2011.20.

[170] Ketan Savla, Francesco Bullo, and Emilio Frazzoli. “The coverage problem for loitering
Dubins vehicles”. In: 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. doi:
10.1109/cdc.2007.4435017. url: https://doi.org/10.1109%2Fcdc.2007.4435017.

[171] Mac Schwager, Brian J. Julian, and Daniela Rus. “Optimal coverage for multiple hovering
robots with downward facing cameras”. In: 2009 IEEE International Conference on Robotics
and Automation. IEEE, May 2009. doi: 10.1109/robot.2009.5152815. url: https:
//doi.org/10.1109%2Frobot.2009.5152815.

[172] Sameh Al-Shihabi, Mazen Arafeh, and Mahmoud Barghash. “An improved hybrid algo-
rithm for the set covering problem”. In: Computers & Industrial Engineering 85 (July 2015),
pp. 328–334. doi: 10.1016/j.cie.2015.04.007. url: https://doi.org/10.1016%2Fj.
cie.2015.04.007.

[173] A. Sinha, T. Kirubarajan, and Y. Bar-Shalom. “Autonomous surveillance by multiple co-
operative UAVs”. In: Signal and Data Processing of Small Targets 2005. Ed. by Oliver E.
Drummond. SPIE, Aug. 2005. doi: 10.1117/12.619266. url: https://doi.org/10.1117%
2F12.619266.

[174] Mauricio Solar, Víctor Parada, and Rodrigo Urrutia. “A parallel genetic algorithm to solve
the set-covering problem”. In: Computers & Operations Research 29.9 (Aug. 2002), pp. 1221–
1235. doi: 10.1016/s0305-0548(01)00026-0. url: https://doi.org/10.1016%2Fs0305-
0548%2801%2900026-0.

[175] Ricardo Soto et al. “Solving the non-unicost set covering problem by using cuckoo search
and black hole optimization”. In: Natural Computing 16.2 (Jan. 2017), pp. 213–229. doi:
10.1007/s11047-016-9609-7. url: https://doi.org/10.1007%2Fs11047-016-9609-7.

https://doi.org/10.1016/j.cie.2010.02.011
https://doi.org/10.1016/j.cie.2010.02.011
https://doi.org/10.1016%2Fj.cie.2010.02.011
https://doi.org/10.1007/978-3-319-33625-1_35
https://doi.org/10.1007%2F978-3-319-33625-1_35
https://doi.org/10.1007%2F978-3-319-33625-1_35
https://doi.org/10.1016/j.patcog.2003.01.002
https://doi.org/10.1016%2Fj.patcog.2003.01.002
https://doi.org/10.1016%2Fj.patcog.2003.01.002
https://doi.org/10.1007/978-3-319-42007-3_78
https://doi.org/10.1007%2F978-3-319-42007-3_78
https://doi.org/10.1007%2F978-3-319-42007-3_78
https://doi.org/10.1109/icdcsw.2011.20
https://doi.org/10.1109%2Ficdcsw.2011.20
https://doi.org/10.1109%2Ficdcsw.2011.20
https://doi.org/10.1109/cdc.2007.4435017
https://doi.org/10.1109%2Fcdc.2007.4435017
https://doi.org/10.1109/robot.2009.5152815
https://doi.org/10.1109%2Frobot.2009.5152815
https://doi.org/10.1109%2Frobot.2009.5152815
https://doi.org/10.1016/j.cie.2015.04.007
https://doi.org/10.1016%2Fj.cie.2015.04.007
https://doi.org/10.1016%2Fj.cie.2015.04.007
https://doi.org/10.1117/12.619266
https://doi.org/10.1117%2F12.619266
https://doi.org/10.1117%2F12.619266
https://doi.org/10.1016/s0305-0548(01)00026-0
https://doi.org/10.1016%2Fs0305-0548%2801%2900026-0
https://doi.org/10.1016%2Fs0305-0548%2801%2900026-0
https://doi.org/10.1007/s11047-016-9609-7
https://doi.org/10.1007%2Fs11047-016-9609-7

102 BIBLIOGRAPHY

[176] Shuttle Radar Topography Mission. https://www2.jpl.nasa.gov/srtm/. Accessed: 2020-
31-03.

[177] Rainer Storn and Kenneth Price. In: Journal of Global Optimization 11.4 (1997), pp. 341–
359. doi: 10.1023/a:1008202821328. url: https://doi.org/10.1023%2Fa%3A1008202821328.

[178] Thomas Stützle and Holger H. Hoos. “MAX -MIN Ant System”. In: Future Generation
Computer Systems 16.8 (June 2000), pp. 889–914. doi: 10.1016/s0167-739x(00)00043-1.
url: https://doi.org/10.1016%2Fs0167-739x%2800%2900043-1.

[179] Thomas Stützle and Holger H. Hoos. “The MAX -MIN Ant System and Local Search for
Combinatorial Optimization Problems”. In: Meta-Heuristics: Advances and Trends in Local
Search Paradigms for Optimization. Springer US, 1999, pp. 313–329. doi: 10.1007/978-1-
4615-5775-3_22. url: https://doi.org/10.1007%2F978-1-4615-5775-3_22.

[180] Shyam Sundar and Alok Singh. “A hybrid heuristic for the set covering problem”. In: Oper-
ational Research 12.3 (Sept. 2010), pp. 345–365. doi: 10.1007/s12351-010-0086-y. url:
https://doi.org/10.1007%2Fs12351-010-0086-y.

[181] Ichiro Suzuki et al. “Searching a polyonal region from the boundary”. In: International
Journal of Computational Geometry & Applications 11.05 (Oct. 2001), pp. 529–553. doi:
10.1142/s0218195901000638. url: https://doi.org/10.1142%2Fs0218195901000638.

[182] Zhijun Tang and U. Ozguner. “Motion planning for multitarget surveillance with mobile
sensor agents”. In: IEEE Transactions on Robotics 21.5 (Oct. 2005), pp. 898–908. doi:
10.1109/tro.2005.847567. url: https://doi.org/10.1109%2Ftro.2005.847567.

[183] Konstantinos A. Tarabanis, Peter K. Allen, and Roger Y. Tsai. “A survey of sensor planning
in computer vision”. In: IEEE Transactions on Robotics and Automation 11.1 (1995), pp. 86–
104. doi: 10.1109/70.345940. url: https://doi.org/10.1109%2F70.345940.

[184] Masruba Tasnim, Shahriar Rouf, and M. Sohel Rahman. “A CLONALG-based Approach
for the Set Covering Problem”. In: Journal of Computers 9.8 (Aug. 2014). doi: 10.4304/
jcp.9.8.1787-1795. url: https://doi.org/10.4304%2Fjcp.9.8.1787-1795.

[185] Claudio Valenzuela et al. “A 2-level Metaheuristic for the Set Covering Problem”. In: Inter-
national Journal of Computers Communications & Control 7.2 (Sept. 2014), p. 377. doi:
10.15837/ijccc.2012.2.1417. url: https://doi.org/10.15837%2Fijccc.2012.2.
1417.

[186] Francis J. Vasko, Yun Lu, and Kenneth Zyma. “What is the best greedy-like heuristic for the
weighted set covering problem?” In: Operations Research Letters 44.3 (May 2016), pp. 366–
369. doi: 10.1016/j.orl.2016.03.007. url: https://doi.org/10.1016%2Fj.orl.2016.
03.007.

[187] Richard Wise and Rolf Rysdyk. “UAV Coordination for Autonomous Target Tracking”.
In: AIAA Guidance, Navigation, and Control Conference and Exhibit. American Institute
of Aeronautics and Astronautics, Aug. 2006. doi: 10.2514/6.2006- 6453. url: https:
//doi.org/10.2514%2F6.2006-6453.

[188] Yi-Chun Xu, Bangjun Lei, and Emile A. Hendriks. “Constrained particle swarm algorithms
for optimizing coverage of large-scale camera networks with mobile nodes”. In: Soft Com-
puting 17.6 (Jan. 2013), pp. 1047–1057. doi: 10.1007/s00500-012-0978-2. url: https:
//doi.org/10.1007%2Fs00500-012-0978-2.

https://www2.jpl.nasa.gov/srtm/
https://doi.org/10.1023/a:1008202821328
https://doi.org/10.1023%2Fa%3A1008202821328
https://doi.org/10.1016/s0167-739x(00)00043-1
https://doi.org/10.1016%2Fs0167-739x%2800%2900043-1
https://doi.org/10.1007/978-1-4615-5775-3_22
https://doi.org/10.1007/978-1-4615-5775-3_22
https://doi.org/10.1007%2F978-1-4615-5775-3_22
https://doi.org/10.1007/s12351-010-0086-y
https://doi.org/10.1007%2Fs12351-010-0086-y
https://doi.org/10.1142/s0218195901000638
https://doi.org/10.1142%2Fs0218195901000638
https://doi.org/10.1109/tro.2005.847567
https://doi.org/10.1109%2Ftro.2005.847567
https://doi.org/10.1109/70.345940
https://doi.org/10.1109%2F70.345940
https://doi.org/10.4304/jcp.9.8.1787-1795
https://doi.org/10.4304/jcp.9.8.1787-1795
https://doi.org/10.4304%2Fjcp.9.8.1787-1795
https://doi.org/10.15837/ijccc.2012.2.1417
https://doi.org/10.15837%2Fijccc.2012.2.1417
https://doi.org/10.15837%2Fijccc.2012.2.1417
https://doi.org/10.1016/j.orl.2016.03.007
https://doi.org/10.1016%2Fj.orl.2016.03.007
https://doi.org/10.1016%2Fj.orl.2016.03.007
https://doi.org/10.2514/6.2006-6453
https://doi.org/10.2514%2F6.2006-6453
https://doi.org/10.2514%2F6.2006-6453
https://doi.org/10.1007/s00500-012-0978-2
https://doi.org/10.1007%2Fs00500-012-0978-2
https://doi.org/10.1007%2Fs00500-012-0978-2

BIBLIOGRAPHY 103

[189] Reda Yaagoubi et al. “HybVOR: A Voronoi-Based 3D GIS Approach for Camera Surveil-
lance Network Placement”. In: ISPRS International Journal of Geo-Information 4.2 (May
2015), pp. 754–782. doi: 10 . 3390 / ijgi4020754. url: https : / / doi . org / 10 . 3390 %
2Fijgi4020754.

[190] Kenichi Yabuta and Hitoshi Kitazawa. “Optimum camera placement considering camera
specification for security monitoring”. In: 2008 IEEE International Symposium on Circuits
and Systems. IEEE, May 2008. doi: 10.1109/iscas.2008.4541867. url: https://doi.
org/10.1109%2Fiscas.2008.4541867.

[191] Mutsunori Yagiura, Masahiro Kishida, and Toshihide Ibaraki. “A 3-flip neighborhood local
search for the set covering problem”. In: European Journal of Operational Research 172.2
(July 2006), pp. 472–499. doi: 10.1016/j.ejor.2004.10.018. url: https://doi.org/
10.1016%2Fj.ejor.2004.10.018.

[192] Yi Yao et al. “Can You See Me Now? Sensor Positioning for Automated and Persistent
Surveillance”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cyber-
netics) 40.1 (Feb. 2010), pp. 101–115. doi: 10.1109/tsmcb.2009.2017507. url: https:
//doi.org/10.1109%2Ftsmcb.2009.2017507.

[193] Yi Yao et al. “Sensor planning for automated and persistent object tracking with multiple
cameras”. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition. IEEE,
June 2008. doi: 10.1109/cvpr.2008.4587515. url: https://doi.org/10.1109%2Fcvpr.
2008.4587515.

[194] James J. Q. Yu, Albert Y. S. Lam, and Victor O. K. Li. “Chemical reaction optimization for
the set covering problem”. In: 2014 IEEE Congress on Evolutionary Computation (CEC).
IEEE, July 2014. doi: 10.1109/cec.2014.6900233. url: https://doi.org/10.1109%
2Fcec.2014.6900233.

[195] Boyu Zhang et al. “A differential evolution approach for coverage optimization of visual
sensor networks with parallel occlusion detection”. In: 2016 IEEE International Conference
on Advanced Intelligent Mechatronics (AIM). IEEE, July 2016. doi: 10.1109/aim.2016.
7576941. url: https://doi.org/10.1109%2Faim.2016.7576941.

[196] Hongguang Zhang et al. “An optimized placement algorithm for collaborative information
processing at a wireless camera network”. In: 2013 IEEE International Conference on Mul-
timedia and Expo (ICME). IEEE, July 2013. doi: 10.1109/icme.2013.6607594. url:
https://doi.org/10.1109%2Ficme.2013.6607594.

[197] Xin-Yuan Zhang et al. “Kuhn–Munkres Parallel Genetic Algorithm for the Set Cover Prob-
lem and Its Application to Large-Scale Wireless Sensor Networks”. In: IEEE Transactions
on Evolutionary Computation 20.5 (Oct. 2016), pp. 695–710. doi: 10.1109/tevc.2015.
2511142. url: https://doi.org/10.1109%2Ftevc.2015.2511142.

[198] Jian Zhao and Sen-ching S. Cheung. “Multi-Camera Surveillance with Visual Tagging and
Generic Camera Placement”. In: 2007 First ACM/IEEE International Conference on Dis-
tributed Smart Cameras. IEEE, Sept. 2007. doi: 10.1109/icdsc.2007.4357532. url:
https://doi.org/10.1109%2Ficdsc.2007.4357532.

[199] Jian Zhao and Sen-ching S. Cheung. “Optimal visual sensor planning”. In: 2009 IEEE In-
ternational Symposium on Circuits and Systems. IEEE, May 2009. doi: 10.1109/iscas.
2009.5117711. url: https://doi.org/10.1109%2Fiscas.2009.5117711.

https://doi.org/10.3390/ijgi4020754
https://doi.org/10.3390%2Fijgi4020754
https://doi.org/10.3390%2Fijgi4020754
https://doi.org/10.1109/iscas.2008.4541867
https://doi.org/10.1109%2Fiscas.2008.4541867
https://doi.org/10.1109%2Fiscas.2008.4541867
https://doi.org/10.1016/j.ejor.2004.10.018
https://doi.org/10.1016%2Fj.ejor.2004.10.018
https://doi.org/10.1016%2Fj.ejor.2004.10.018
https://doi.org/10.1109/tsmcb.2009.2017507
https://doi.org/10.1109%2Ftsmcb.2009.2017507
https://doi.org/10.1109%2Ftsmcb.2009.2017507
https://doi.org/10.1109/cvpr.2008.4587515
https://doi.org/10.1109%2Fcvpr.2008.4587515
https://doi.org/10.1109%2Fcvpr.2008.4587515
https://doi.org/10.1109/cec.2014.6900233
https://doi.org/10.1109%2Fcec.2014.6900233
https://doi.org/10.1109%2Fcec.2014.6900233
https://doi.org/10.1109/aim.2016.7576941
https://doi.org/10.1109/aim.2016.7576941
https://doi.org/10.1109%2Faim.2016.7576941
https://doi.org/10.1109/icme.2013.6607594
https://doi.org/10.1109%2Ficme.2013.6607594
https://doi.org/10.1109/tevc.2015.2511142
https://doi.org/10.1109/tevc.2015.2511142
https://doi.org/10.1109%2Ftevc.2015.2511142
https://doi.org/10.1109/icdsc.2007.4357532
https://doi.org/10.1109%2Ficdsc.2007.4357532
https://doi.org/10.1109/iscas.2009.5117711
https://doi.org/10.1109/iscas.2009.5117711
https://doi.org/10.1109%2Fiscas.2009.5117711

104 BIBLIOGRAPHY

[200] Jian Zhao et al. “Approximate Techniques in Solving Optimal Camera Placement Problems”.
In: International Journal of Distributed Sensor Networks 9.11 (Jan. 2013), p. 241913. doi:
10.1155/2013/241913. url: https://doi.org/10.1155%2F2013%2F241913.

[201] Dimitrios Zorbas et al. “Energy Efficient Mobile Target Tracking Using Flying Drones”. In:
Procedia Computer Science 19 (2013), pp. 80–87. doi: 10.1016/j.procs.2013.06.016.
url: https://doi.org/10.1016%2Fj.procs.2013.06.016.

[202] Dimitrios Zorbas et al. “Optimal drone placement and cost-efficient target coverage”. In:
Journal of Network and Computer Applications 75 (Jan. 2016), pp. 16–31. doi: 10.1016/
j.jnca.2016.08.009. url: https://doi.org/10.1016%2Fj.jnca.2016.08.009.

https://doi.org/10.1155/2013/241913
https://doi.org/10.1155%2F2013%2F241913
https://doi.org/10.1016/j.procs.2013.06.016
https://doi.org/10.1016%2Fj.procs.2013.06.016
https://doi.org/10.1016/j.jnca.2016.08.009
https://doi.org/10.1016/j.jnca.2016.08.009
https://doi.org/10.1016%2Fj.jnca.2016.08.009

Glossary

camera candidate A pair of discrete components (position and orientation) obtained from sam-
pling possible camera configurations in a given surveillance area. 10

facial recognition In computer vision, facial recognition is the process of identifying a person
based on images of their face. 5

feature extraction In computer vision, feature extraction is the process of isolating selected
components (features) from an image for further interpretation and processing. 5

field of view The combination of the horizontal and vertical aperture angles which delimit a
camera’s frustum. 5

floodlight illumination problem Variant of the art gallery problem in which guards are replaced
by light sources. The key difference is that a floodlight has a limited field of action, given as
an angle: it therefore provides coverage in one direction only. 5

foreshortening Visual effect which causes measurements to appear shorter on an image than they
actually are. 5

frustum The area or volume visible by a camera in a given configuration. 6

full coverage An optimal camera placement problem instance is solved at full coverage when
every ground sample it contains has to be covered by at least one camera candidate in the
solution, regardless of its importance or location. 24

gait classification In computer vision, gait classification is the process of identifying the current
gait (walking, running, crawling, ...) of a person based on an image. 5

ground sample Discrete component (position) obtained from sampling a given surveillance area.
Refered to as target in Chapter IV. 10

guard In the art gallery problem, a guard is a selected point in space from which 360-degree
coverage must be taken into account with unlimited range. 4

hand-off rate The amount or proportion of overlapping coverage provided by a camera infras-
tructure to ensure the proper hand-off of targets. 5

105

106 GLOSSARY

next best view In photogrammetry or related fields, the next best view problem is that of de-
termining the best position from which the next image should be taken given those that are
already available. 5

node An OpenStreetMap node is a point in the geographic coordinate system which represents an
element of interest on the map, or serves as a component to build ways. 25

pan The horizontal angle at which a camera is set up. 6

photogrammetry Field of research which focuses on the extraction of measurements from pho-
tographs. Among other things, it tackles the issue of constructing 3D models of scenes and
objects from images. 5

point-in-triangle test Algorithm which determines whether or not a point lies within a triangle.
10

relation An OpenStreetMap relation is an association of several nodes or ways which gives them
semantic meaning as a collection. They are typically used to bring together several buildings
of the same institution or delimit areas which fall under the same administrative authority.
25

sampling procedure Sampling is the process of reducing a continuous portion of space into a set
of discrete points which represent it. 9

simple polygon In geometry, a polygon is said to be simple if none of its edges intersect. 4

tag An OpenStreetMap tag a key-value pair which provides metadata related to the node, way or
relation it is attached to. 25

target localisation The problem of determining the location of selected targets in an environment
using sensors, typically cameras. 5

tilt The vertical angle at which a camera is set up. 6

UAV Unmanned aerial vehicles or drones are remotely-controled robots typically used for adaptive
surveillance and monitoring. 6

watchmen route problem Variant of the art gallery problem in which only one moving guard is
available. The problem is then that of computing the optimal route the guard must follow
to cover the entire gallery during their shift. 5

way An OpenStreetMap way is an ordered sequence of nodes which forms a line or polygon to
represent roads, buildings, open areas and so on. 25

List of Figures

I.1 An instance of the Art Gallery Problem with n = 9, and a solution with 3 guards . . . 8
I.2 Hand-off margins in a generic sensor network. Objects may leave the range of any

sensor but always remain visible to the network . 10
I.3 A sampled floor plan, similar to the exhibition hall example found in several papers,

with example coverage points . 14
I.4 The blind spot problem created by 2D space representation and 3D camera placement.

A part of the red area is covered in the 2D model, but becomes invisible as the camera
is placed in practice . 16

I.5 Bottom-right corner of the Figure I.3 floor plan with the associated camera candidates.
The horizontal field-of-view was set to 65° and the range to 2 units 24

II.1 The OpenStreetMap web viewer . 35
II.2 Illustration for the ground line sampling procedure . 39
II.3 Illustration for the ground polygon sampling procedure 40
II.4 Illustration for the structure polygon sampling procedure 41
II.5 Result of the sampling procedure for a subarea of the city of Strasbourg, France. . . . 42
II.6 Computing bounding planes for a vector-defined square pyramid frustum 44
II.7 An example of an occlusion mesh built using OSM data 45
II.8 An illustration for Algorithm 4 . 57

III.1 Average state-of-the-art results for every instance from our first set 62
III.2 An example routing graph with wall and visibility edges 66
III.3 Effective coverage rates when using full coverage solutions in simulations 68
III.4 MkCP solution fronts (solution costs and coverage rates) 71
III.5 Theoretical and average effective coverage rates in configuration 4 73

IV.1 Basic user interface components for decision support systems 80
IV.2 Illustration for Algorithm 7 . 82
IV.3 Example solutions . 83

107

List of Tables

I.1 Deterministic solving methods for the optimal camera placement problem 20
I.2 Nature-inspired approaches to the optimal camera placement problem 21
I.3 Other metaheuristics for the optimal camera placement problem 23
I.4 The 8 algorithms which reached 100% BKS on the 1987 and 1990 OR-Library instances 32

II.1 The 8 locations used as our first test set . 47
II.2 First set of ground sampling parameter values . 48
II.3 First set of candidate sampling parameter values . 48
II.4 Basic statistics for our first set of 32 real-world instances 51
II.5 First basic solving results for the first set of real-world instances 52

III.1 Second set of candidate sampling parameter values . 67
III.2 Best-known full-coverage (SCP) solutions to the second set of real-world instances . . . 69
III.3 MkCP greedy coverage rates when setting k to the best known SCP solution value . . 70
III.4 Basic statistics for our second set of 28 real-world instances 74

IV.1 Notation summary for the mixed SCP-MkCP model . 77
IV.2 Parameter values derived from the general rigour value r 79

108

List of Algorithms

1 Our implementation of domination checks on sample-candidate pairs 53
2 Our implementation of inclusion checks on sample-candidate pairs 54
3 A simple sequential visibility analysis implementation 55
4 A more efficient online visibility analysis implementation 56
5 The greedy algorithm for the maximum k-set covering problem 69
6 The binary search algorithm for MkCP solutions at given coverage rates 72
7 Weight gradation algorithm . 81
8 A greedy-based solving algorithm for our SCP-MkCP model 84

109

	Introduction
	Literature review
	Origins and introductory applications
	Camera placement for global and persistent surveillance
	The set covering problem

	Problem formulation and instance generation
	Problem formulation and generation overview
	Sampling procedures
	First instances and observations

	Stress-testing and validation
	A stress-test for the state of the art: hypotheses
	Measuring the impact of sampling frequencies
	Relaxing the full-coverage constraint

	Human-assisted optimisation
	Model, application-specific constraints and preprocessing
	User interactions and assisted solving

	Conclusion
	Bibliography
	Glossary
	List of Figures
	List of Tables
	List of Algorithms

