
Arti�cial Evolution 2017

13th Biennal International Conference on Arti�cial Evolution

Proceedings

25-27 October 2017, Paris, France

Evelyne Lutton, Pierrick Legrand, Pierre Parrend

Nicolas Monmarché, Marc Schoenauer

ISBN: 978-2-9539267-7-4

Chair

Evelyne Lutton - INRA Versailles-Grignon, France

Steering Committee

Nicolas Monmarché - Univ. of Tours, France
Marc Schoenauer -INRIA Saclay, France

Organizing Committee
Marc Barnabé - INRA Versailles-Grignon, France
Nadia Boukhelifa - INRA Versailles-Grignon, France
Emmanuel Cayla - Galerie Louchard, Paris, France
Thomas Chabin - INRA Versailles-Grignon, France
Pierre Collet - Univ. of Strasbourg, France
Aurélien Dumez - INRIA Grenoble, France
Benoît Génot - INRA Versailles-Grignon, France
Lhassane Idhoumgar - Univ. of Mulhouse, France
Anne Jeannin-Girardon - Univ. of Strasbourg, France
Laetitia Jourdan - Univ. of Lille 1, France
Pierrick Legrand - Univ. of Bordeaux, France
Pierre Parrend - Univ. of Strasbourg, France
Alberto Tonda - INRA Versailles-Grignon, France

Program Committee
Hernan Aguirre - Univ. of Shinshu, Japan
Anne Auger - INRIA Saclay, France
Sebastien Aupetit - Univ. of Tours, France
Stefan Balev - Univ. of Le Havre, France
Sana Ben Hamida - Univ. of Paris Ouest, France
Christian Blum - IIIA-CSIC, Spain
Stéphane Bonnevay - Univ. of Lyon 1, France
Nadia Boukhelifa - INRA Versailles-Grignon, France
Amine Boumaza - Univ. of Lorraine, France
Nicolas Bredeche - Univ. Pierre & Marie Curie, France
Stefano Cagnoni - Univ. of Parma, Italy
Maurice Clerc - Independent Scholar, France
Manuel Clergue - U.A.G., France
Pierre Collet - Univ. of Strasbourg, France
Fabio Daolio - Univ. of Shinshu, Japan
Fatima Debbat - Univ. of Mascara, Algeria
Laurent Deroussi - Univ. of Clermont-Ferrand, France
Carola Doerr - Sorbonne Univ., France
Nicolas Durand - ENAC, Toulouse, France
Marc Ebner - Univ. of Greifswald, Germany
Francisco Fernández de Vega - Extremadura Univ., Spain
Cyril Fonlupt - Univ. of Littoral, France
Edgar Galvan - Trinity College, Dublin, Ireland
Mario Giacobini - Univ. of Turin, Italy
Jin-Kao Hao - Univ. of Angers, France
Lhassane Idoumghar - Univ. of Mulhouse, France
Thomas Jansen - Univ. of Aberystwyth, UK
Anne Jeannin-Girardon - Univ. of Strasbourg, France
Laetitia Jourdan - Univ. of Lille 1, France
Bill Langdon - Univ. College London, UK
Pierrick Legrand - Univ. of Bordeaux, France
Julien Lepannot - Univ. of Haute-Alsace, France
Arnaud Liefooghe - Univ. of Lille 1, France
Manuel López-Ibáñez - Free Univ. of Brussels, Belgium

Jean Louchet - INRIA Saclay, France
Evelyne Lutton - INRA Versailles-Grignon, France
Virginie Marion-Poty - Univ. of Littoral, France
Eric Medvet - Univ. of Trieste, Italy
Juan Julián Merelo Guervós - Univ. of Granada, Spain
Nicolas Monmarché - Univ. of Tours, France
Amir Nakib - Univ. of Paris, France
Gabriela Ochoa - Univ. of Stirling, Scotland, UK
Damien Olivier - LITIS, Univ. of Le Havre, France
Luis Paquete - Univ. of Coimbra, Portugal
Andrew Parkes - Univ. of Nottingham, UK
Pierre Parrend - Univ. of Strasbourg, France
Francisco Pereira - Univ. of Coimbra, Portugal
Nathalie Perrot - INRA Versailles-Grignon, France
Alain Petrovsky - Telecom Sud Paris, France
Denis Robilliard - Univ. of Littoral, France
Eduardo Rodriguez-Tello - CINVESTAV, Mexico
Frédéric Saubion - Univ. of Angers, France
Marc Schoenauer - INRIA Saclay, France
Ines Sghir - Univ. of Manouba, Tunisia
Patrick Siarry - Univ. of Paris-Est Creteil, France
Sara Silva - Univ. of Coimbra, Portugal
Dan Simon - Univ. of Cleveland State, USA
Christine Solnon - INSA Lyon, France
Giovanni Squillero - Royal Turin Polytechnic, Italy
Thomas Stützle - IRIDIA, Brussels, Belgium
El-Ghazali Talbi - INRIA Lille, France
Fabien Teytaud - Univ. of Littoral, France
Alberto Tonda - INRA Versailles-Grignon, France
Leonardo Trujillo - Tijuana Inst. of Tech., Mexico
Paulo Urbano - Univ. of Lisboa, Portugal
Sébastien Verel - Univ. of Littoral, France
Nicolas Zu�erey - Univ. of Geneva, Switzerland

Contents

Committees 2

Table of Contents 3

Invited Conferences 5

Gabriela Ochoa: The Cartography of Computational Search Spaces . 5
Jean-Daniel Fekete: Progressive Data Analysis: a new computation paradigm for scalability in exploratory

data analysis . 6

Papers 7

Session 1 - Theory . 8
On the Design of a Master-Worker Adaptive Algorithm Selection Framework,

Christopher Jankee, Sébastien Verel, Bilel Derbel and Cyril Fonlupt 9
Comparison of Acceptance Criteria in Randomized Local Searches,

Alberto Franzin, Thomas Stützle . 23
Session 2 - Fitness Landscapes . 37
A �tness landscape view on the tuning of an asynchronous master-worker EA for nuclear reactor design,

Mathieu Muniglia, Sébastien Verel, Jean-Charles Le Pallec, Jean-Michel Do 38
Sampled Walk and Binary Fitness Landscapes Exploration,

Sara Tari, Matthieu Basseur, Adrien Goë�on . 52
Session 3 - Genetic Programming . 64
Semantics-based Crossover for Program Synthesis in Genetic Programming,

Stefan Forstenlechner, David Fagan, Miguel Nicolau, Michael O'Neill 65
Semantics-based Crossover for Program Synthesis in Genetic Programming,

Edgar Galván-López, Lucia Vázquez-Mendoza, Marc Schoenauer, Leonardo Trujillo 79
Session 4 - Cooperation-Coevolution . 93
MEMSA: a robust Parisian EA for multidimensional multiple sequence alignment,

Julie D. Thompson, Renaud Vanhoutrève, Pierre Collet . 94
Basic, Dual, Adaptive, and Directed Mutation Operators in the Fly Algorithm,

Zainab Ali Abbood, Franck Vidal . 105
Session 5 - Metaheuristics . 119
A New High-Level Relay Hybrid Metaheuristic for Black-Box Optimization Problems,

Julien Lepagnot, Lhassane Idoumghar, Mathieu Brévilliers, Maha Idrissi-Aouad 120
Improved Hybrid Iterative Tabu Search for QAP using Distance Cooperation,

Omar Abdelka�, Lhassane Idoumghar, Julien Lepagnot . 134
H-ACO: A Heterogeneous Ant Colony Optimisation approach with Application to the Travelling Salesman

Problem,
Ahamed Tuani Ibrahim Fayeez, Edward Keedwell, Matthew Collett 148

Session 6 - Applications . 162

3

Evolutionary learning of �re �ghting strategies,
Martin Kretschmer, Elmar Langetepe . 163

Evolutionary Optimization of Tone Mapped Image Quality Index,
Xihe Gao, Jeremy Porter, Stephen Brooks, Dirk V. Arnold . 177

LIDeOGraM : An interactive evolutionary modelling tool,
Thomas Chabin, Marc Barnabé, Nadia Boukhelifa, Fernanda Fonseca, Alberto Tonda, Hélène Velly,
Benjamin Lemaitre, Nathalie Perrot, Evelyne Lutton . 189

Automatic con�guration of GCC using irace,
Leslie Pérez Cáceres, Federico Pagnozzi, Alberto Franzin, Thomas Stützle 201

Session 7 - Learning . 215
Reinforcement Learning as a model of aposematism,

Jan Teichmann, Eduardo Alonso, Mark Broom . 216
O�ine Learning for Selection Hyper-heuristics with Elman Networks,

William Yates, Edward Keedwell . 230

Posters 244

Reinforcement learning is an e�ective strategy to create phenotypic variation and a potential mechanism
for the initial evolution of learning,
Jan Teichmann, Eduardo Alonso, Mark Broom . 245

Learning new Term Weighting Schemes with Genetic Programming,
Ahmad Mazyad, Fabien Teytaud, Cyril Fonlupt . 253

The Ant Reconciliation Algorithm (ARA): Ant-hill learning for label matching,
Pierre Parrend, Camille Maller, Etienne Dietrich . 264

An improved particle swarm optimization algorithm for MRI image segmentation,
Thuy Xuan Pham, Patrick Siarry, Hamouche Oulhadj . 276

Crowd-Sourced Optimisation of Procedural Animation Systems,
Gareth I. Henshall, William J. Teahan, Llyr ap Cenydd . 284

Discussion of a More Practice-Aware Runtime Analysis for Evolutionary Algorithms,
Eduardo Carvalho Pinto, Carola Doerr . 297

Side EVENT: Art & Science in Evolutionary Computation 305

Index of authors 313

4

Foreword

These proceedings collect all papers presented at the 13th Biennial International Conference on Arti�cial Evolution,
EA1 2017, held in Paris (France). This conference proceeds a long series of previous issues, that took place in Lyon
(2015), Bordeaux (2013), Angers (2011), Strasbourg (2009), Tours (2007), Lille (2005), Marseille (2003), Le Creusot
(2001), Dunkerque (1999), Nimes (1997), Brest (1995), and Toulouse (1994).

We sought original contributions relevant to Arti�cial Evolution, including, but not limited to: evolutionary
computation, evolutionary optimisation, co-evolution, arti�cial life, population dynamics, theory, algorithmics and
modelling, implementations, application of evolutionary paradigms to the real world (industry, biosciences, ...), other
biologically-inspired paradigms (swarm, arti�cial ants, arti�cial immune systems, cultural algorithms...), memetic
algorithms, multi-objective optimisation, constraint handling, parallel algorithms, dynamic optimisation, machine
learning and hybridisation with other soft computing techniques.

Each submitted paper was reviewed by four members of the International Program Committee. Among the 33
submissions received, 17 papers were selected for oral presentation and 7 other papers for poster presentation. As
for the previous editions (see LNCS volumes 1063, 1363, 1829, 2310, 2936, 3871, 4926, 5975 and 7401), a selection
of best papers presented at the conference will be published as a post-conference volume of Springer's LNCS series,
after further revisions.

As usual, the EA2017 success is indebted to dedicated team work, for which I would like to express my gratitude:

• Gabriela Ochoa and Jean-Daniel Fekete, who accepted to be our keynote speakers;
• The Program Committee for their careful work: the high quality of the selected papers is a proof of their
strong commitment;

• The Organising Committee for their e�cient work and kind availability, in particular the local team, Nadia
Boukhelifa, Alberto Tonda and our student volunteers, Marc Barnabé, Thomas Chabin and Benoît Génot ;

• The ISC-PIF who hosted this event: David Chavalarias, his director, and the local ISC organisation team,
Margaux Calon and Franck Leclerc, for their kind, e�cient and everyday help;

• The members of the Steering Committee for their valuable assistance;
• Aurélien Dumez and Pierrick Legrand for the administration of the conference website;
• Marc Schoenauer and Anne Jeannin-Girardon for their support and management of the MyReview system;
• Laetitia Jourdan for publicity;
• Pierrick Legrand and Pierre Parrend for the edition of the proceedings;
• Lhassane Idoumghar for registrations;
• Emmanuel Cayla and Nicolas Monmarché for the organisation of the Twin Event: "Art and Arti�cial Evolu-
tion" at Galerie Louchard.

I take this opportunity to thank the di�erent partners whose �nancial and material support were precious: the
MIA department of INRA, the INRIA Saclay research unit, AgroParisTech, ISC-PIF, Polytech-Tours, the Local
Solver company, RO and MACS GDR of CNRS.

We are as always deeply grateful to all authors who submitted their research work to the conference, to all
artists who contribute to the art exposition, and to all attendees who make the conference so lively. The scienti�c
quality as well as the warm and friendly atmosphere of this series of conferences is the result of a rare alchemy that
is still maintained. Thank you for all these years of �delity, thank you for EA 2017.

Evelyne Lutton

EA 2017 Chair
INRA Versailles-Grignon, France

1As for previous editions of the conference, the EA acronym is based on the original French name �Évolution Arti�cielle�.

5

Invited conferences

Gabriela Ochoa

The Cartography of Computational Search Spaces

Gabriela Ochoa2 has worked on Evolutionary Computation since the late 90s. Her
very �rst article used genetic algorithms to evolve plant-like structures encoded as Lin-
denmayer systems. During her PhD at the University of Sussex, UK she worked with
the notion of error thresholds in genetic algorithms. She held academic positions at
the University Simon Bolivar in Caracas, Venezuela and the University of Nottingham,
UK before joining the University of Stirling, Scotland in 2012. Her current research
includes autonomous search and hyper-heuristics, �tness landscape analysis and ap-
plications to combinatorial optimisation, software engineering and healthcare. She is
an associate editor of the Journal of Evolutionary Computation, MIT Press and the
IEEE Transactions of Evolutionary Computation. She has served as an organiser for
EvoCOP, FOGA and PPSN, is a member of the board of ACM SIGEVO, and served
as the Editor-in-Chief for GECCO 2017.

Abstract

This talk will present our recent �ndings and visual (static and animated) maps characterising combinatorial and
program search spaces. We seek to lay the foundations for a new perspective to understand problem structure and
improve heuristic search algorithms: search space cartography.

A multitude of heuristic and bio-inspired search algorithms has been proposed, each trying to be more powerful
and innovative. However, little attention has been devoted to understanding the problems' structure and what
makes them hard to solve for a given algorithm. Formal theoretical results are di�cult to obtain, and they may
only apply to problem classes and algorithms chosen more for their amenability to analysis than for their relevance
and di�culty.

Heuristic methods operate by searching a large space of candidate solutions. The search space can be regarded
as a spatial structure where each point (candidate solution) has a height (objective or �tness function value) forming
a �tness landscape surface. The performance of optimisation algorithms crucially depends on the �tness landscape
structure, and the study of landscapes o�ers an alternative to problem understanding where realistic formulations
and algorithms can be analysed.

Most �tness landscapes analysis techniques study the local structure of search spaces. There is currently a lack
of tools to study instead their global structure, which is known to impact algorithms' performance. Our recently
proposed model, local optima networks, �lls this gap by bringing tools from complex networks to study optimisation.
This model provides fundamental new insight into the structural organisation and the connectivity pattern of a
search space with given move operators. Most importantly, it allows us to visualise realistic search spaces in ways
not previously possible and brings a whole new set of quantitative network metrics for characterising them.

2http://www.cs.stir.ac.uk/∼goc

6

http://www.cs.stir.ac.uk/~goc

Jean-Daniel Fekete

Progressive Data Analysis: a new computation paradigm for scalability

in exploratory data analysis

Jean-Daniel Fekete3 is Senior Research Scientist (DR1) at INRIA, Scienti�c
Leader of the INRIA Project Team AVIZ that he founded in 2007.

He received his PhD in Computer Science in 1996 from Université Paris-Sud.
From 1997 to 2001, he joined the Graphic Design group at the Ecole des Mines
de Nantes that he led from 2000 to 2001. He was then invited to join the Human-
Computer Interaction Laboratory at the University of Maryland in the USA in 2001-
2002. He was recruited by INRIA in 2002 as a con�rmed researcher and became
Senior Research Scientist in 2006. In 2015, he was on Sabbatical at the Visualization
and Computer Graphics group at NYU-Poly, and at the Visual Computing Group
at Harvard.

His main Research areas are Visual Analytics, Information Visualization and Human Computer Interaction. He
published more than 150 articles in multiple conferences and journals, including the most prestigious in visualization
(TVCG, InfoVis, EuroVis, Paci�cVis) and Human-Computer Interaction (CHI, UIST).

He is the chair of the IEEE Information Visualization Conference Steering Committee, member of the IEEE VIS
Executive Committee, member of the Eurographics EuroVis Steering Committee, and member of the Eurographics
publication board. He is also an ACM Distinguished Speaker.

Jean-Daniel Fekete was the General Chair of the IEEE VIS Conference in 2014, the �rst time it was held outside
of the USA in Paris, Associate Editor of the IEEE Transactions on Visualization and Computer Graphics (TVCG)
2011-2015, the President of the French-Speaking HCI Association (AFIHM) 2009-2013, he was Conference Chair of
the IEEE InfoVis Conference in 2011, Paper Co-Chair of the IEEE Paci�c Visualization conference in 2011.

Jean-Daniel Fekete is a member of the Association for Computer Machinery (ACM) and Senior Member of the
IEEE.

Abstract

Exploring data requires a short feedback loop, with a latency of at most 10 seconds because of human cognitive
capabilities and limitations. When data becomes large or analyses become complex, sequential computations can
no longer be completed in a few seconds and interactive exploration is severely hampered. This talk will describe
a novel computation paradigm called Progressive Data Analysis that brings at the programming language level
the low-latency guarantee by performing computations in a progressive fashion. Moving this progressive compu-
tation at the language level relieves the programmer of exploratory data analysis systems from implementing the
whole analytics pipeline in a progressive way from scratch, streamlining the implementation of scalable exploratory
analytics systems. I will describe the new paradigm, report on novel experiments showing that human can cope
e�ectively with progressive systems, and show demos using a prototype implementation called ProgressiVis, explain
the requirements it implies through exemplar applications, and present opportunities and challenges ahead, in the
domains of visualization and machine-learning.

3http://www.aviz.fr/∼fekete

7

http://www.aviz.fr/~fekete

Long Papers - Oral Presentations

8

Session 1 - Theory

9

On the Design of a Master-Worker Adaptive
Algorithm Selection Framework

Christopher Jankee1, Sébastien Verel1 Bilel Derbel2, and Cyril Fonlupt1

1 Université du Littoral Côte d’Opale, LISIC
2 Université Lille 1, LIFL – CNRS – INRIA Lille

Abstract. We investigate the design of a master-worker schemes for
adaptive algorithm selection with the following two-fold goal: (i) choose
accurately from a given portfolio a set of operators to be executed in
parallel, and consequently (ii) take full advantage of the compute power
offered by the underlying distributed environment. In fact, it is still an
open issue to design online distributed strategies that are able to opti-
mally assign operators to parallel compute resources when distributively
solving a given optimization problem. In our proposed framework, we
adopt a reward-based perspective and investigate at what extent the av-
erage or maximum rewards collected at the master from the workers are
appropriate. Moreover, we investigate the design of both homogeneous
and heterogeneous scheme. Our comprehensive experimental study, con-
ducted through a simulation-based methodology and using a recently
proposed benchmark family for adaptive algorithm selection, reveals the
accuracy of the proposed framework while providing new insights on the
performance of distributed adaptive optimization algorithms.

1 Introduction

The selection of an accurate algorithm from a given portfolio, as well as the effec-
tive choice of the relevant algorithmic components of a general-purpose search
heuristic, are among the major issues that one has to face in practice when
tackling an optimization problem; in particular, in a black-box optimization sce-
nario when no problem-specific properties can be known beforehand [3]. In fact,
from a theoretical point of view, several parallel compute ressources, possibly dis-
tributed over a large scale environment, are provided, it is even more challenging
to design an efficient distributed cooperative strategy, since the algorithmic de-
sign space gets huge and we still lack knowledge on the optimal mapping of the
implied search computational flows to the available resources. The motivation of
this paper is precisely to investigate these issues by proposing a master-worker
algorithm selection framework and precisely analyzing the impact of its different
possible design components. On the one hand, algorithm selection (or the related
topic of parameter setting), although being one of the oldest research topic in
evolutionary computation [14], is attracting more and more attention [17] due to
its crucial importance and the difficult, and yet unsolved, challenges it implies

10

in practice. In this work, we are interested in adaptive algorithm selection. In-
deed, there are two main and tightly related methodologies that are commonly
adopted to select an algorithm [9]. In the offline setting, usually called tuning, an
algorithm is first selected, and only then it is executed from scratch on the target
and unseen problem instance. In the online setting, called control, an algorithm
is selected all along the optimization process (see for example [11, 3]). An online
selection scheme is typically and continuously getting feedback from the opti-
mization algorithm being executed, and deciding accordingly on the next choice.
Hence, online algorithm selection can be viewed as an adaptive optimization
algorithm which follows the multi-armed bandit framework where the arms are
the algorithms of the portfolio [5]. The adaptive algorithm selection is then per-
formed as follows. A reward is computed according to the performance observed
when previously executing an algorithm. Then, in every iteration, a reinforce-
ment machine learning is applied in order to select from the portfolio the next
algorithm to execute, typically according to some exploration-exploitation rules.

On the other hand, numerous real wold optimization problems, such as en-
gineering design which are often based on numerical simulation, are computa-
tionally expensive, e.g., one fitness function evaluation can take several min-
utes [19]. Besides, the advent of new compute facilities and the establishment
of robust and large scale massively parallel platforms, such as grids and pay-as-
you-go clouds, open tremendous research opportunities for pushing forward the
development and uptake of parallel and distributed evolutionary optimization
algorithms. In this context, a number of evolutionary optimization models have
been investigated [20], e.g., from centralized to fully decentralized, from fined-
grained (cellular model) to coarse grained (island model). In this work, we adopt
the centralized Master-Worker (M/W) architecture, where each worker process
is basically responsible of executing locally in parallel the actions scheduled for
him by the master (e.g., evaluate a candidate solution), whereas the master pro-
cess is responsible of collecting the local results from the workers (e.g., the fitness
values) and deciding on the next actions to send them (e.g., next candidate so-
lutions to evaluate). It is worth-noticing that this framework is often adopted
in practice, not only due to the simplicity of deploying it over a real test-bed,
but also due to its high accuracy when dealing with computationally expensive
optimization problems [6].

In this context, we argue that a master-worker approach to adaptive algo-
rithm selection requires specific coordination mechanisms in order to achieve
optimal performances. In a sequential setting, the observed rewards are in fact
updated according to the performance of the algorithm executed previously in
the last round by one single process. In a M/W approach, one can benefit from
the set of performances observed by several parallel processes, i.e., the workers.
However, switching to such a scenario requires to carefully define the aggregated
reward with respect to a selected algorithm given a set of observed performance
values instead of just a single one. Additionally, one can adopt either a homoge-
nous strategy in which all workers execute the same algorithm at each iteration
(e.g., the best rewarded one so-far) or instead a heterogeneous strategy where

11

the workers can execute different algorithms. Several existing machine learning
technics have previously been used and studied in the sequential setting [11], as
well as in the decentralized island model [7, 15]. However, to our best knowledge,
the design and analysis of online selection strategies have not been investigated
within a M/W framework. We argue that the M/W scheme make it more con-
venient, as a first step, to reason about the optimal distributed decisions to
make since the master has the ability of acquiring a global view of the whole
distributed system before selecting the most accurate algorithms to execute in
parallel by the workers. This allows us to focus on the critically important selec-
tion strategy at the master level. To summarize, we propose a M/W algorithm
selection framework contributing to the solving of the following questions:

– How to define a reward function on the master based on the performance of
the algorithm(s) executed by the workers?

– How the master can decide on the set of algorithms to be executed next by
the workers based on the reward function?

– What is the relative quality that can be achieved by different algorithm
selection strategies ?

Our M/W framework is evaluated using a tunable benchmark family and a
simulation-based experimental procedure in order to abstract away the techni-
cal implementation issues, and instead provide a fundamental and comprehen-
sive analysis of the expected empirical parallel performance of the underlying
adaptive algorithm selection. The rest of the paper is organized as follows. In
Section 2, we review some related works. In Section 3, the design components
of our M/W adaptive framework is described in details. In Section 4, we report
our main experimental findings. In Section 5, we conclude the paper and discuss
future research directions.

2 Related works

In the following, we provide an overview of related studies on the algorithm
selection problem in the sequential and distributed setting, as well as a brief
summary of exiting optimization benchmark problems designed at the aim of
evaluating their dynamics and behavior.

2.1 Sequential Adaptive Algorithm Selection

In the sequential setting, a number of reinforcement machine learning technics
have been proposed for the online and adaptive selection of algorithms from
a given portfolio. Back to the early works of Grefenstette [14], one standard
technique consists in predicting the performance of a set of operators using
a simple linear regression and the current average fitness of the population,
which then allows to select the best operator to be chosen according to the
prediction given by the regression. However, recent works embeds this selection

12

problem into a multi-armed bandit framework dealing more explicitly with the
tradeoff between the exploitation of the best so far identified algorithm, and the
exploration of the remaining potentially under-estimated algorithms.

A simple strategy is the so-called ε-greedy (ε-G) strategy which consists in
selecting the algorithm with the best estimated performance at rate (1 − ε),
and a random one at rate ε. In that case, the performance of an operator i is
estimated with the empirical mean µ̂i of rewards on a sliding window where
only the W previous reward observations are considered. The Upper Confidence
Bound (UCB) strategy [2] is a state-of-the-art framework in machine-learning
which consists in estimating the upper confidence bound of the expected reward
of each arm by µ̂i + C · ei; where µ̂i is the estimated (empirical) mean reward,
and ei is the standard error of the prediction. It then selects the algorithms with
the higher bound (for maximization problem). The parameter C allows to tune
the exploitation/exploration trade-off. In the context of algorithm selection [11]
where the arms could be neither independent nor stationary, the estimation of
the expected reward is refined using a sliding window of size W . The Adaptive
Pursuit (AP) strategy [22] is another technique using an exponential recency
weighted average to estimate the expected reward with a parameter α to tune
the adaptation rate of the estimation. This is used to define the probability pi of
selecting every algorithm from the portfolio. At each iteration, these probability
values are updated according to a learning rate β, which basically allows to
increase the selection probability for the best algorithm, and to decrease it for
the other ones.

One key aspect to design a successful adaptive selection strategy is the es-
timation of the quality of an algorithm based on the observed rewards. Some
authors showed that the maximum reward over a sliding window improves the
performance compared to the mean on some combinatorial problems [11, 4]; but
no fundamental analysis of this result was given. In genetic algorithms, the re-
ward can be computed not only based on the quality but also on the diversity of
the population [18]. In the context of parallel adaptive algorithm selection, the
estimation of quality of each available algorithm is also a difficult question since
not only one but many algorithms instances could be executed in each iteration.

2.2 Parallel Adaptive Algorithm Selection

The Master-Worker (M/W) architecture has been extensively studied in evolu-
tionary computation (e.g., see [8]). It is in fact simple to implement, and does not
require sophisticated parallel operations. Two communication modes are usually
considered. In the synchronous mode, the distributed entities operate in rounds,
where in each round the master communicates actions to the workers and then
waits until receiving a response from every worker before starting a new round,
and so on. In the asynchronous mode, the master does not need to wait for
all workers; but instead can initiate a new communication with a worker, typi-
cally when that worker has terminated executing the previous action and is idle.
When the evaluation time of the fitness function can vary substantially during
the course of execution, the asynchronous mode is generally preferred [24] since

13

it can substantially improve parallel efficiency. However, the synchronous mode
can allow to have a more global view of the distributed system which can be
crucially important to better coordinate the workers [23].

Adaptive selection approaches designed to operate in a distributed setting are
not new. The island model, which is considered as inherently distributed, has
been investigated in the past. To cite a few, in [21, 12], it is also demonstrated
that a randomly setting the parameters at each iteration in a heterogeneous
manner can outperforms static homogeneous parameter settings. Nonetheless,
embedding a reinforcement machine learning technique instead of random selec-
tion can improve the performance of the adaptive distributed system. In [4], a
dynamic island model is proposed to select online the relevant algorithm. Each
island is associated to one algorithm, and the migration rates of solutions be-
tween islands are controlled by the operators performance of each island. As
commented by the authors, this technique is not designed to fit directly in a
scalable distributed system and requires some further adaptations. In [7, 15], a
distributed adaptive metaheuristic selection framework is proposed which can be
viewed as a natural extension of the island model that was specifically designed
to fit the distributed nature of the target compute platforms. The adaptive se-
lection is performed locally by selecting the best rewarded metaheuristic from
the neighboring nodes (islands) or a random one with small probability like in
ε-greedy strategy. Notice however that we are not aware of any in-depth analysis
addressing the design principles underlying a M/W adaptive algorithm selection
approach. In this work, we propose and empirically analyze the behavior of such
an approach in an attempt to fill the gap between the existing sequential algo-
rithm selection methods and the possibility to deploy them in a parallel compute
environment using a simple, yet effective, parallel scheme like the M/W one.

2.3 Benchmarks: The Fitness Cloud Model

The understanding of the dynamics of a selection strategy according to the
problem at hand is a difficult issue. A number of artificial combinatorial problems
have been designed and used in the literature. We can distinguish between two
main benchmark classes. In the first one, a well-known combinatorial problem in
evolutionary algorithm is used, such as oneMax or long-path problems, with basic
operators, such as bit-flip, embedded in a (1+λ)-EA [5]. This however can only
highlight the search behavior according to few and problem-specific properties.
In the second class of benchmarks, the problem and the stochastic operators are
abstracted. The performance of each available operator is then defined according
to the state of the search [22, 11, 13, 16]. This allows to study important black-box
(problem independent) features such as the number of operators, the frequency
of change of the best operators, the quality difference between operators, etc.

In this work, we use a tunable benchmark, called the Fitness Cloud Model
(FCM), introduced recently in [16]. The FCM is a benchmark from the second
class where the state of the search is given by the fitness of the solution. The
fitness of a solution after applying a search operator is modeled by a random
variable for which the probability distribution depends on the fitness of the

14

current solution. A normal distribution with tunable parameters is typically
used. More specifically, given the fitness z = f(x) of the current solution x, the
probability distribution of the fitness f(y) of one solution obtained by a specific
operator is defined by: Pr(f(y) = z′ | f(x) = z) ∼ N (µ(z), σ2(z)) where µ(z)
and σ2(z) are respectively the mean and the variance of the normal distribution.
In [16], a simple scenario with two operators is studied. The mean and variance
of the conditional normal distribution are defined as follows: µi(z) = z+Kµi

and
σ2
i (z) = Kσi for each operator i ∈ {1, 2}. Parameters Kµi and Kσi are different

constant numbers. An adaptive algorithm is assumed to start with a search state
where the fitness value is 0, and stops when a fitness value of 1 is reached. Notice
that in the FCM, on the contrary of benchmark of the first class (oneMax, etc.),
one can control the average quality and the variance of each operator as well
the relative difference between the considered operators which are two of the
main features to analyze from the perspective of adaptive selection of operators.
Please refer to [16] for more details on the design and motivation of the FMC
benchmark.

3 M/W Framework Description

First, a portfolio of k (local search) operators is assumed to be given, and no a
priori knowledge is assumed on the behavior of the operators with respect to the
black-box problem under consideration. Naturally, k is an integer value greater or
equal than 2. The global architecture of the proposed adaptive M/W framework
is summarized in Algorithm 1 depicting the high level code executed by the
master and in Algorithm 2 depicting the high level code executed in parallel
by each worker. The overall algorithm operates in different parallel rounds. At
each round, the master sends the best solution x? and the operator identifier θi
assigned to each worker node i. Based on x? and θi, the role of each worker is
to compute a new candidate solution to be send back to master. Although one
could consider and study different alternatives, in this work, a standard (1+ 1)-
EA is simply executed by each worker. In addition, the worker computes a local
reward in order to render the quality of its assigned operator θi. Different kinds
of local rewards can be considered at this stage [10]. In our work, and since an
elitist selection is applied locally by each worker, the local reward of an operator
is the positive improvement observed when applying the (1+1)-EA. The master
waits for all local solutions computed in parallel by the workers, and updates
the global best solution x? to be considered in the next round, and so on. More
importantly, the local rewards collected by the master are used in order to select
a new set of operators to be assigned to the workers in the subsequent rounds,
which actually constitutes the adaptive and core part of our framework. Two
tightly coupled issues are to be handled by the master in order to set up an
effective adaptive mechanism: (i) how to aggregate the local rewards sent by
the workers and (ii) how to select the new set of operators accordingly. This is
described next.

15

Algorithm 1 Adaptive M/W algorithm for the master node
1: (θ1, θ2, ..., θn)←Selection_Strategy_Initialization()
2: x? ← Solution_Initialization() ; f? ← f(x?)
3: repeat
4: for each worker i do
5: Send Msg(θi, x?, f?) to worker i
6: end for
7: Wait until all messages are received from all workers
8: for each worker i do
9: (ri, xi, f i) ← Receive Msg() from worker i
10: end for
11: x? ← xi; f? ← f i s.t. f i = max{f?, f1, f2, . . . , fn}
12: (R1, R2, ..., Rk) ← Reward_Aggregation((θ1, r1), ..., (θn, rn))
13: (θ1, θ2, ..., θn)← Decision_Strategy(R1, R2, ..., Rk)
14: until stopping criterion is true

Algorithm 2 Adaptive M/W algorithm for each worker node
1: (θ, x?, f?)← Receive Msg() from master
2: x′ ← Apply operator θ on x? ; f ′ ← Evaluate fitness of x′

3: δb ← max(0, f ′ − f?)
4: if f(x?) < f(x′) then
5: x? ← x′ ; f? ← f

′

6: end if
7: Send Msg(δb, x?, f?) to master

3.1 Aggregation of local reward values

On one hand, all adaptive operator selection strategies such as ε-greedy, Adap-
tive Pursuit, Upper Confidence Bound, etc. (see Sec. 2.1) need to get one single
reward value as a feedback when one operator is executed. On the other hand, in
our framework, a set of local rewards are computed by the workers and provides
us with a feedback on the quality of an operator when executed in parallel by
several workers. Unlike sequential algorithms, the set of local rewards observed
in parallel cannot be viewed simply as a sequence of independent rewards that
would be given iteratively to a sequential strategy. Hence, one specific design
component of an adaptive M/W algorithm is the way to aggregate the local re-
ward values into one global reward value. Consequently, we distinguish two main
aggregation strategies: (i) the mean or the (ii) maximum of the local rewards. In
other words, at each round, the (global) reward computed by the master, with
respect to one operator executed by at least one worker, is either the average or
the maximum of the local values sent by the corresponding workers.

Despite their simplicity, the two previous local reward aggregation strategies
are fundamentally different. In fact, assuming that the fitness improvement after
applying a stochastic operator is given by a probability distribution, the mean of
the reward values computed by the n workers allows to estimate the expectation
of this distribution with a high accuracy, whereas the maximum gives information

16

on its extremes [10]. Additionally, we consider a sliding window of size W to
estimate the expected reward µ̂i in ε-greedy, and UCB as considered in previous
works.

3.2 Homogeneous vs. Heterogeneous Adaptive Selection

As mentioned previously, the master needs to select one operator for each worker.
We consider both (i) a Homogeneous (Ho) adaptive strategy, in which the same
operator is selected by the master and assigned to all worker, and (ii) a Hetero-
geneous (He) adaptive strategy, in which the master selects, possibly different,
operators to be assigned to the workers. The rationale behind a homogeneous
strategy is that in each round there exists one relevant operator providing an
optimal performance, and hence should be executed simultaneously in parallel
by all workers. This a rather exploitation-guided strategy which aims at avoid-
ing to loose function evaluations, and to post-pone the exploration component
to act in-between two consecutive rounds. In contrast, the rationale behind a
heterogeneous strategy is that a set containing a mixture of different operators
is expected to perform better than a set containing the same operator, in the
sense that: (i) the probability of obtaining a better solution when executing dif-
ferent operators in each round is larger, and/or (ii) a relatively small number of
evaluations spent exploring non-necessarily optimal operator(s) at each round
allows to better predict the best operator(s) to select next.

In the homogeneous setting, we consider the three standard selection strate-
gies (cf. Sect. 2.1), namely, ε-greedy, AP, and UCB. The same operator computed
by any of these strategies is assigned by the master to the workers. Notice that
the difference with a sequential selection is the way the reward is computed
by the workers and maintained by the master, which is crucially important for
those methods to operate accurately. In the heterogeneous setting, we consider
to execute either the ε-greedy strategy or the AP strategy iteratively for each
worker. Notice in fact that these two strategies are randomized, i.e., for ε-greedy,
the best operator is selected with rate 1− ε and the other ones with rate ε, and
for AP, each operator is selected proportionally to a rate pi. Hence, by running
iteratively those strategies, the selected operators is likely to be different in each
execution and the master is then able to assign different operators to the workers.
In contrast, running iteratively an UCB selection does not give an heterogenous
strategy due to its deterministic nature (same operator is given at each selection
step). Designing an heterogeneous UCB-based strategy is actually a challenging
open question which is left for future investigations.

4 Experimental analysis

We consider the Fitness Cloud Model as an abstract benchmark. We have three
competing adaptative selection mechanisms (ε-G, UCB, and AP) which com-
bined accordingly with the two considered reward aggregation strategies (mean

17

Table 1. Parameters setting of the selection strategies

Selection strategy Parameters value
ε-G He. Max. ε = 0.5 W = 400
ε-G He. Mean ε = 0.5 W = 400
ε-G Ho. Max ε = 0.05 W = 4500
ε-G Ho. Mean ε = 0.05 W = 4500

Selection strategy Parameters value
UCB Max. C = 0.005 W = 700
UCB Mean C = 0.05 W = 5000
AP α = 0.2 β = 0.2

and max), and the two homogeneity scenarios (Ho and He), provide us 10 vari-
ants. Moreover, we consider two baseline random strategies, which consist in
selecting the next operator randomly, both in a homogeneous or in a hetero-
geneous setting. In the following, we first start discussing the overall relative
performance, then provide a more focused analysis to better understand the
behavior and the dynamics of the different variants.

4.1 Overall Relative Performance

We adopt a simulation-based approach where we count the number of rounds
performed by the master until reaching the optimal fitness value. This allows us
to abstract away the communication issues and to evaluate the accuracy of the
considered algorithms in adapting the search process to operate optimally. We
consider a portfolio with k = 2 operators. Following the Fitness Cloud Model,
each operator impacts differently the fitness of solution: the first one follows the
normal distribution N (−10−4, 10−4), and the second one N (−10−3, 5 × 10−4).
These distributions are fixed and do not change in the course of the optimization
which is a simple, yet challenging, scenario in order to elicit the behavior of
adaptive algorithms in a black-box scenario. For the sake of presentation, the
choice of the benchmark parameters will be discussed later. The parameter set
of the different selection strategies is given in Table 1. This setting can be shown
to be robust and is in accordance with previous studies [16, 15]. Each variant is
executed 100 times and an overview of the performance in terms of number of
distributed rounds is given in Fig. 1. Three main observations can be made.

Firstly, using the mean reward aggregation function is clearly outperformed
by the maximum reward function. Secondly, the difference between a homoge-
neous and heterogeneous setting is mitigated and depends on the selection it-self.
Thirdly, according to a Mann-Whitney statistical test at confidence level of 5%,
and when comparing the best setting of given selection variant, the UCB strat-
egy appears to be the best one, followed by ε-greedy strategy and are better
than the AP strategy. These first results can be explained by the ability of the
UCB machine-learning inspired strategy to efficiently learn the best operator to
apply in a given round when using the maximum reward. The other strategies, al-
though being competitive, spend some rounds to explore non-relevant operators.
More importantly, all adaptive strategies are found to share a relatively good
performance when the other design components, that is the choice of the reward,
and the heterogeneity, are well tuned. To better understand such a behavior, we
provide next a more throughout analysis.

18

Fig. 1. Number of rounds to the optimal fitness using operator 1 ∼ N (−10−4, 10−4),
operator 2 ∼ N (−10−3, 5× 10−4) and n = 256 workers.

Fig. 2. Mean (top) and maximum (bottom) reward values with operator 1 ∼
N (−10−4, 10−4), operator 2 ∼ N (−10−3, σ2) and n = 256 workers as a function of
the variance σ2.

4.2 Analysis of the Reward Aggregation Functions

To understand the fundamental difference between using the maximum or the
mean as a reward function, as well as its crucial importance when designing
an adaptive strategy, we consider to study the property of the considered fitness
cloud benchmark in an extended setting. More precisely, let us fix the parameters
of the normal distribution corresponding to the first operator in the portfolio to
µ1 = −10−4 and σ2

1 = 10−4. Let us also fix the mean of the normal distribution
of the second operator to µ1 = −10−3. Since both means are negative, the
fitness value is decreased in expectation by both operators. For the fixed number
of workers, and since the parameters of the normal law does not change in
the course of optimization, operator 1 would always provide the same expected
improvement, i.e., 8.33×10−2 [15], which corresponds to the local reward. Let us
now study how the relative reward value would be for operator 2 if its variance
was set to take different values than in our initial setting. This is summarized
in Fig. 2 showing the expected rewards of both operators when using a mean
aggregation function (top) and a maximum aggregation function (bottom), for
n = 256 workers as a function of a range of variance values σ2 for operator 2.

For both reward aggregation functions, the reward value of operator 2 in-
creases with the variance σ2. Below the value of a = 4.17× 10−4, the reward of

19

Number of workers

M
a
x
im

u
m

 r
e
w

a
rd

Number of workers

(x
1

0

)

M
a
x
im

u
m

 r
e
w

a
rd

M
a
x
im

u
m

 r
e
w

a
rd

Number of workers

Fig. 3. Maximum reward value as function of the number of workers n for operator
1 ∼ N (−10−4, 10−4) and different variance values of operator 2 ∼ N (−10−3, σ2):
σ2 = 10−4 (left), σ2 = 5× 10−4 (middle), and σ2 = 7× 10−4 (right).

operator 1 is higher than the reward of operator 2 for both mean and maximum
functions. Hence, an (elitist) operator selection strategy which selects the oper-
ator according to the highest reward value would select the same operator 1, no
matter which aggregation function is used, i.e., there is no difference between
the two aggregation function in the case the difference between the fitness vari-
ances of both operators is relatively large, given that their mean fitness is same.
Similarly, when the variance σ2 of operator is much larger than the variance of
operator 1 (σ2 > b = 5.6× 10−4), the reward value for operator 2 is larger com-
pared to operator 1 no matter the reward aggregation used. Hence, a selection
strategy based on one or the other reward function would likely take the same
decision, i.e., select operator 2. However, the challenging situation is when the
variance σ2 is in the interval [a, b]; since, according to the mean reward function,
operator 1 (resp. 2) is better (resp. worst), but according to the maximum re-
ward function, operator 1 (resp. 2) is worst (resp. better). In this case, it is not
clear that two selection strategies following the mean and the maximum reward
function would select the same operator.

Additionally, the mean reward value does not depend on the number of work-
ers. In fact, increasing the number of local rewards computed by the workers
simply reduces the confidence interval around the global mean reward value. In
contrast, the maximum reward value increases logarithmically with the number
of workers. This is shown in Fig. 3 where three representative examples are con-
sidered (σ2 = 3×10−4 < a, σ2 = 5×10−4 ∈ [a, b], and σ2 = 7×10−4 > b). When
the variance is small or large, the number of workers does not change the rank
of each operator with respect to the maximum reward value. However, when the
variance σ2 is between a and b, the best operator according to the maximum
reward changes: for low number of workers, operator 1 has a highest maximum
reward, whereas operator 2 is preferred when n ≥ 30.

These empirical observations explain why the maximum reward was found
to clearly outperform the mean reward (Sec. 4.1, Fig. 1), since the variance of
the second operator was set to a the value 5×10−4 ∈ [a, b] which corresponds to
a challenging scenario for adaptive selection. In fact, the mean reward can only
measure the expected quality of an operator when executed locally and indepen-
dently by each individual worker, whereas the maximum reward measures the
expected quality of the next solution that would be obtained more globally by
the cooperative master-worker system in one round. In this sense, an accurate
distributed selection strategy has to acquire information about the quality of an
operator when executed cooperatively by all the entities of the system, and not

20

only on the quality of one operator taken independently of the distributed and
cooperative environment where it can be executed. Hence, the maximum reward
aggregation has to be preferred when the goal of the adaptive master-worker
algorithm is to increase as much as possible the fitness value in each round of
computation which is typically the case of a (1+λ)-EA. More generally, it should
be possible to extend this kind of results for others adaptive M/W algorithms
which are less explorative, i.e., the global reward should then take explicitly into
account an additional diversity measure.

4.3 Analysis of the Heterogeneity Scenarios

The impact of selecting and assigning workers different operators can also be
studied as a function of the relative variance of the portfolio operators. In the
following, we only consider the maximum reward strategy since it was proved
to perform better. For the sake of analysis, let us consider the fitness cloud
benchmark where operator 1 follows N (−10−4, 10−4), and operator 2 follows
N (−10−3, σ2). By varying σ, we compute the maximum global reward, i.e. the
expected improvement of one round of the M/W algorithm when using n = 256
workers, in a heterogeneous setting that would split the workers into those that
execute operator 1 and those that execute operator 2. By varying the proportion
of heterogeneous workers we are then able to compute the optimal number n1 of
workers which should executes operator 1 (the n− n1 executing operator 2) as
a function of operator 2 variance σ2. More precisely, for each value n1 ∈ [0, n],
the average of the maximum reward on 1000 independent rounds is computed,
and the value n1 with the highest maximum reward is selected and reported in
Fig. 4. Clearly, for a wide range of σ values, the optimal value n1 is either 256,
or n1 = 0 for large variance. This indicates that a homogenous setting (with
only operator 1 or 2) is optimal except for a small range of variance (between
3.4× 10−4 and 4.4× 10−4). Moreover when an heterogenous strategy is optimal,
the gain of maximum reward with an homogeneous strategy is very small (cf. Fig.
4 right). Given these observations we can know understand better the relative
performance observed for the different strategies in Fig. 1 for which σ = 5×10−4.

For the baseline random strategy, the heterogeneous setting is clearly better;
since because of the elitism of a (1 + λ)-EA, it is better to select the wrong
operator for half of the workers than one over two rounds. Notice that the base-
line heterogeneous random strategy is never better than any others adaptive
strategies when using the maximum reward. The homogeneous version of the
ε-greedy strategy based on the maximum reward significantly outperforms the
heterogenous version according to the Mann-Whitney test at level 5%. In con-
trast, the heterogenous AP outperforms the homogeneous one. Nevertheless, the
best strategy is UCB which is homogeneous. According to the exploration power
of the strategy, the heterogeneity could help to select the relevant operator; but,
when the selection strategy is able to detect the best operator, and when the
relative expected gain in fitness improvement is small, a homogeneous setting is
to be preferred.

21

2 3 4 5 6

0
50

10
0

15
0

20
0

25
0

σ2

op
tim

al
 n

um
be

r
n

1

(x10)-4

Fig. 4. Optimal number of workers n1 with operator 1 which maximizes the maxi-
mum reward value for an heterogeneous strategy as a function of variance parameter
σ2. The operator 1 and 2 follow respectively the normal law N (−10−4, 10−4), and
N (−10−3, σ2) for n = 256 workers. Left: optimal number n1. Right: Maximum reward
values for homogeneous strategies with operator 1 and operator 2, and for the optimal
heterogeneous strategy.

5 Conclusions

We conducted an in-depth analysis of the design components of a synchronous
M/W adaptive algorithm selection framework. Our main findings can be sum-
marized as follows. The reward associated to each algorithm, which gives the
feedback measure for the adaptive selection method, must take into account the
performance of the global system, and not only the local performance of each
worker. Except when all algorithms have very close performance, an optimal set
of algorithms is homogeneous. However, with respect to a particular adaptive
strategy, a heterogeneous set could be helpful to continuously enhance its corre-
sponding exploration level. At last, adaptive algorithm selection strategies can
be highly effective when their design components in a master-worker architecture
are well tuned.

Besides, this first work shall allow us to extend our results for expensive real-
world problems, where the evaluation of the fitness function is typically based
on computing intensive simulations, e.g., [1]. Another interesting question is the
design of reward functions for the asynchronous M/W communication mode.
Since a global snapshot of the distributed system is difficult to acquire by the
master in such a setting, the reward function is expected to be critically impor-
tant depending on the different communication to computation trade-offs faced
by the master. It is our hope that the new insights provided by our fundamental
analysis in the synchronous setting will help addressing such challenging issues.

References

1. R. Armas, H. Aguirre, S. Zapotecas-Martínez, and K. Tanaka. Traffic signal opti-
mization: Minimizing travel time and fuel consumption. In EA 2015, pages 29–43,
2016.

2. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2-3):235–256, 2002.

22

3. P. Baudiš and P. Pošík. Online black-box algorithm portfolios for continuous
optimization. In PPSN XIII, pages 40–49. Springer, 2014.

4. C. Candan, A. Goëffon, F. Lardeux, and F. Saubion. Non stationary operator
selection with island models. In GECCO, pages 1509–1516, 2013.

5. L. DaCosta, A. Fialho, M. Schoenauer, and M. Sebag. Adaptive operator selection
with dynamic multi-armed bandits. In GECCO, page 913. ACM Press, 2008.

6. D. Dasgupta and Z. Michalewicz. Evolutionary algorithms in engineering applica-
tions. Springer Science & Business Media, 2013.

7. B. Derbel and S. Verel. DAMS: distributed adaptive metaheuristic selection. In
GECCO, pages 1955–1962. ACM Press, 2011.

8. M. Dubreuil, C. Gagne, and M. Parizeau. Analysis of a master-slave architec-
ture for distributed evolutionary computations. IEEE T. on Systems, Man, and
Cybernetics: Part B, 36:229–235, 2006.

9. A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E. Smith. Parameter control in
evolutionary algorithms. In Parameter Setting in Evolutionary Algorithms, pages
19–46. Springer, 2007.

10. A. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag. Dynamic multi-armed
bandits and extreme value-based rewards for adaptive operator selection in evolu-
tionary algorithms. In LION’09, volume 5851, pages 176–190. Springer, 2009.

11. A. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag. Analyzing bandit-based
adaptive operator selection mechanisms. AMAI, 60:25–64, 2010.

12. M. García-Valdez, L. Trujillo, J. J. Merelo-Guérvos, and F. Fernández-de Vega.
Randomized parameter settings for heterogeneous workers in a pool-based evolu-
tionary algorithm. In PPSN XIII, pages 702–710. Springer, 2014.

13. A. Goëffon, F. Lardeux, and F. Saubion. Simulating non-stationary operators in
search algorithms. Appl. Soft Comput., 38:257–268, 2016.

14. J. J. Grefenstette. Optimization of control parameters for genetic algorithms.
Systems, Man and Cybernetics, IEEE Transactions on, 16(1):122–128, 1986.

15. C. Jankee, S. Verel, B. Derbel, and C. Fonlupt. Distributed Adaptive Metaheuristic
Selection: Comparisons of Selection Strategies. In EA 2015, pages 83–96, 2015.

16. C. Jankee, S. Verel, B. Derbel, and C. Fonlupt. A fitness cloud model for adaptive
metaheuristic selection methods. In PPSN 2016, pages 80–90. Springer, 2016.

17. L. Kotthoff. Algorithm selection for combinatorial search problems: A survey. AI
Magazine, pages 48–60, 2012-10-30.

18. J. Maturana, Á. Fialho, F. Saubion, M. Schoenauer, and M. Sebag. Extreme
compass and dynamic multi-armed bandits for adaptive operator selection. In
CEC 2009, pages 365–372. IEEE, 2009.

19. M. Muniglia, J.-M. Do, L. P. Jean-Charles, H. Grard, S. Verel, and S. David. A
Multi-Physics PWR Model for the Load Following. In ICAPP, Apr. 2016.

20. D. Sudholt. Parallel evolutionary algorithms. In Springer Handbook of Computa-
tional Intelligence, pages 929–959, Berlin, Heidelberg, 2015. Springer.

21. R. Tanabe and A. Fukunaga. Evaluation of a randomized parameter setting strat-
egy for island-model evolutionary algorithms. In CEC, pages 1263–1270, 2013.

22. D. Thierens. An adaptive pursuit strategy for allocating operator probabilities. In
GECCO’05, pages 1539–1546, 2005.

23. S. Wessing, G. Rudolph, and D. A. Menges. Comparing asynchronous and syn-
chronous parallelization of the sms-emoa. In PPSN XIV, pages 558–567, 2016.

24. M. Yagoubi and M. Schoenauer. Asynchronous master/slave moeas and heteroge-
neous evaluation costs. In GECCO, pages 1007–1014, 2012.

23

Comparison of Acceptance Criteria in
Randomized Local Searches

Alberto Franzin and Thomas Stützle

IRIDIA, CoDE, Université Libre de Bruxelles (ULB), Brussels, Belgium
alberto.franzin@ulb.ac.be, stuetzle@ulb.ac.be

Abstract. One key component of stochastic local search algorithms is
the acceptance criterion that determines whether a solution is accepted
as the new current solution or it is discarded. One of the most studied lo-
cal search algorithms is simulated annealing. It often uses the Metropolis
condition as acceptance criterion, which always accepts equal or better
quality solutions and worse ones with a probability that depends on the
amount of worsening and a parameter called temperature. After the in-
troduction of simulated annealing several other acceptance criteria have
been introduced to replace the Metropolis condition, some being claimed
to be simpler and better performing. In this article, we evaluate various
such acceptance criteria from an experimental perspective. We first tune
the numerical parameters of the algorithms using automatic algorithm
configuration techniques for two test problems, the quadratic assignment
problem and a permutation flowshop problem. Our experimental results
show that, while results may differ depending on the specific problem,
the Metropolis condition and the late acceptance hill climbing rule are
among the choices that obtain the best results.

1 Introduction

Stochastic local search (SLS) methods are generic procedures commonly used to
tackle hard optimization problems [9]. They are composed of a set of general rules
of how to design effective heuristics for specific optimization problems; hence,
an alternative name for these methods is meta-heuristics. Often, the sometimes
rather problem-specific heuristic algorithms derived from these rules are very
effective in finding high quality solutions in short computation time, and for
many problems such algorithms define the state of the art.

To achieve good solutions, SLS methods balance the intensification of the
search in narrow regions, often needed to find the best solutions in promising
search space areas, with the exploration of different areas of the search space.
One mechanism that many trajectory-based SLS methods use to promote diver-
sification is the acceptance of solutions that are worse than the current incum-
bent solution. In this article, we call acceptance criterion the function devoted
to determining whether a newly proposed candidate solution should replace the
current one. A first metaheuristic that proposed a probabilistic acceptance crite-
rion for acceptinf a worse candidate solution is simulated annealing (SA) [10,23].

24

II Alberto Franzin and Thomas Stützle

It uses the so called Metropolis condition from statistical mechanics, which relies
on a parameter called temperature, as acceptance criterion [14]. The name of
the parameter mimics the temperature of a physical system, which was used in
a Monte-Carlo simulation of physical systems proposed by Metropolis et al. [14].
According to the Metropolis condition, an improving or equal quality candidate
solution is always accepted, while a worsening candidate solution is accepted
with a probability that depends both on the quality difference between the cur-
rent solution and the newly proposed one and the temperature parameter. To
create a transition from search diversification to intensification of the search,
in a typical SA algorithm the temperature is initially set to some high value
(corresponding to a rather likely acceptance of worsening candidate solutions)
and then subsequently lowered to make the acceptance of worsening candidate
solutions less likely.

Over the years, various new ideas have been conceived with the motivation
to improve over this usual acceptance criterion of SA algorithms. These new ac-
ceptance criteria have been compared in individual papers often directly to basic
SA algorithms and in various such papers potential improvements have been re-
ported. These new ideas include refinements of the Metropolis condition, such as
generalized SA [2] and the bounded Metropolis condition [6]; a criterion where
the acceptance probability of worsening solutions decreases geometrically [17];
and deterministic criteria such as threshold acceptance [8,15], the great deluge
and record-to-record travel algorithms [7], and the late acceptance hill climbing
[5]. The latter four methods all accept a solution with probability one when it
meets the specific, deterministic acceptance conditions. In our experiments, we
also include a basic hill climbing acceptance criterion [1], which accepts a solu-
tion if and only if it improves over the incumbent, as a baseline the other criteria
need to outperform.

The original articles proposing these acceptance criteria often report experi-
mental results on few problem instances or on very small instance sizes. One rea-
son is that many of these acceptance criteria were introduced when experimental
conditions available were quite different from today. Hence, there is limited in-
dication in the original works on how to apply the various methods to different
problems. To just cite one example, in the original paper on threshold accep-
tance, the authors present a sequence of values for the “threshold” parameter,
stating that “We have the feeling (really only the feeling, not, for instance, the
impression) that the sequence above is somewhat better [than another sequence
mentioned]” [8]. The comparisons in these papers are also usually performed
against the Metropolis condition and a limited set of the other criteria.

In this work, we compare well-known acceptance criteria on common bench-
mark sets, derived from two classical, NP-hard problems, namely the quadratic
assignment problem (QAP) and the permutation flow-shop problem with the
total completion time objective (PFSP-TCT). To obtain unbiased results we
tune the numerical parameters of the algorithms, using the automatic algorithm
configuration tool irace [11]. We evaluate the impact of the nine different cri-
teria we study in terms of the quality of the final solutions and the robustness

25

Comparison of Acceptance Criteria in Randomized Local Searches III

of the criterion. Our experiments show that the results may change according
to different problems, instance classes, or experimental condition. Overall, the
Metropolis condition, its generalized version and, in particular, the rather recent
late acceptance hill climbing are the criteria that gave the best results.

2 Literature review

We first introduce the notation used in the remainder of this work. We consider
NP-hard combinatorial optimization problems, in which for a given problem in-
stance π a globally optimal solution s∗ ∈ S, where S is the search space of
candidate solutions, is to be found. The quality of solutions is evaluated accord-
ing to an objective function f : S 7→ R and f(s) is the objective function value for
a generic solution s. Without loss of generality, we consider minimization prob-
lems, that is, for a globally optimal solution it holds that f(s∗) ≤ f(s),∀s ∈ S.
Each algorithm we consider uses an iteration counter of the search process, which
is denoted by i, and si is the new candidate solution evaluated in that iteration.
The difference in terms of objective function value between two solutions si and
sj is denoted with ∆(i, j), or simply ∆ when no confusion may arise. With ŝ we
indicate the incumbent solution. The neighbourhood of ŝ is denoted by N (ŝ) and
comprises all candidate solutions that can be reached from s by one application
of the neighborhood operator.

Algorithm 1: Outline of a generic randomized search algorithm.
Input: problem instance Π, N , initial solution s0, control parameters
Output: best solution s∗

1 best solution s∗ = incumbent solution ŝ = s0;
2 parameter initialization, i := 0;
3 while stopping criterion is not met do
4 while parameters settings fixed do
5 i := i+ 1;
6 generate a random solution si ∈ N (ŝ);
7 ŝ := accept (ŝ, si);
8 s∗ := best (s∗, ŝ);
9 end

10 update parameters;
11 end
12 return s∗;

All SLS methods that we consider can be interpreted as instantiations of the
generic algorithm outlined in Algorithm 1. It starts from a given initial solution
as incumbent (line 1), and iteratively generates one new candidate solution in
the neighbourhood of the incumbent uniformly at random (line 6); at iteration i
the new candidate solution si can be chosen to replace the current incumbent ŝ

26

IV Alberto Franzin and Thomas Stützle

if it meets some criteria (e.g. it is an improving solution, line 7), otherwise it is
discarded. Periodically, the parameter(s) that control the search may get updated
(line 10). All the algorithms we examine here fit in this generic template. They
only differ in the acceptance criterion. However, some of these algorithms may
not use all the components of the algorithm; for example, the late acceptance
hill climbing relies only on one parameter that is held constant during the run of
the algorithm and, hence, does not need to be updated in the outer loop (lines
3 to 11). In the following, the counter k refers to the number of times the outer
loop has been invoked. Conversely, SA and others evaluate solutions using the
same parameter values in the inner loop (controlled by the temperature length,
lines 4 to 9), and update the parameters in the outer loop.

SA, proposed independently in [10] and [23], is inspired by work in statistical
physics [14]. In the usual, basic variants, SA iteratively generates and evaluates
one random solution s ∈ N (ŝ); if the new solution is better or equal to the
incumbent in terms of objective function value, it replaces the incumbent one;
otherwise it gets accepted with a probability that depends on the relative dif-
ference in terms of objective function values, ∆(s, ŝ), and on the temperature
parameter, denoted as T . The acceptance criterion of SA can be written as

p =
{

1 if ∆(s, ŝ) ≤ 0
exp (−∆(s, ŝ)/T) otherwise.

(1)

This probabilistic criterion is known as Metropolis acceptance criterion or Metropo-
lis condition, and it is the distinctive feature of SA. We refer to this criterion
simply as SA in the rest of this paper.

More recently, in [6] the authors argue that solutions that are worse with
respect to the incumbent by a quantity that exceeds a certain threshold φBM
are not worth considering at all. This bounded Metropolis criterion (BSA) accepts
a solution s with a probability

p =

1 if ∆(s, ŝ) ≤ 0
exp (−∆(s, ŝ)/T) if 0 < ∆(s, ŝ) ≤ φBM
0 if ∆(s, ŝ) > φBM ,

(2)

where φBM is a parameter.
Soon after the introduction of SA, the Metropolis acceptance criterion has

been generalized in [2], where a variant of SA called generalized simulated an-
nealing (GSA) was introduced. The GSA acceptance criterion is defined as

p =
{

1 if ∆(s, ŝ) ≤ 0
exp (−βf(ŝ)γ∆(s, ŝ)) otherwise,

(3)

where β and γ are control parameters. Even if the temperature parameter is not
explicitly considered in GSA, it is possible to recreate the original Metropolis
condition by defining β = 1/T .

27

Comparison of Acceptance Criteria in Randomized Local Searches V

In [17], the authors propose a criterion in what is the first occurrence of a
SA variant that does not consider the temperature value in the acceptance of
solutions. They propose to accept a solution with probability

pk =
{

1 if ∆(s, ŝ) ≤ 0
p0 × ρk−1 otherwise.

(4)

where p0 is the initial acceptance probability, 0 < ρ < 1 is a reducing factor, and
k is the number of times the probability has been updated. In this geometric
acceptance criterion, the temperature value is (possibly) related only to the
initial acceptance probability; during the search, the updating process of the
probability matters, rather than the actual value of a temperature.

The actual need of stochasticity in the Metropolis acceptance criterion is
questioned independently in [8] and [15]. In both works, the authors propose a
criterion that accepts any move that is either improving or worsening by at most
a given threshold φk > 0:

p =
{

1 if ∆(s, ŝ) ≤ φk
0 otherwise,

(5)

where φk is the value at step k of the threshold, which gets updated periodically.
In [8], the authors consider a sequence of thresholds, without giving any indi-
cation on how to set its initial value or how to update it. Our implementation
follows [15], maintaining the SA terminology: the initial value of φ is the initial
temperature of SA, and the updating process of the threshold is called cooling.
This threshold acceptance (TA) is a deterministic version of SA. At the time
of its introduction, it was argued that using TA is faster than evaluating the
Metropolis condition as it does not require the generation of a random num-
ber and the computation of an exponential. This advantage may be important
when the computation of the objective function value of a neighboring candidate
solution is very fast. However, for problems that benefit little from incremen-
tal update schemes or where the computation of the objective function value
of neighboring candidate solutions is expensive (as is the case in the problems
we study here), the advantage of a faster computation of the acceptance test
diminishes.

Two acceptance criteria have been derived from TA and proposed in [7] as
new algorithms. The first algorithm and criterion proposed in [7] is called record-
to-record travel (RTR), and accepts solutions that do not deviate from the best
solution found so far plus a given threshold φ:

pRTR =
{

1 if f(s) ≤ f(s∗) + φ

0 otherwise,
(6)

RTR is therefore a stricter version of TA, which compares the newly proposed
candidate solution with the current incumbent; moreover, in the RTR algorithm
φ does not get updated.

28

VI Alberto Franzin and Thomas Stützle

The second algorithm proposed in [7] is called great deluge algorithm (GDA)
and is a radical change in terms of solution evaluation, as it moves away from
the idea of comparing solutions. The acceptance criterion of GDA accepts every
move whose objective function value is lower than a certain threshold that gets
progressively lowered during the search

pk =
{

1 if f(s) ≤ φk
0 otherwise,

(7)

with φ̄k+1 = φk − λ, λ being a fixed parameter. The consequence of a lowering
bound is that GDA becomes increasingly strict for accepting solutions.

A more recent work proposes another simple deterministic acceptance crite-
rion, called late acceptance hill climbing (LAHC) [4,5]. This algorithm makes
no use of a temperature-like parameter, but maintains limited knowledge about
the history of the search. It accepts every solution s that is improving either
with respect to the current incumbent ŝ or with respect to a solution visited κ
iterations before, for a fixed κ:

p =
{

1 if f(s) ≤ min{f(ŝ), f(si−κ)}
0 otherwise.

(8)

Finally, we consider as baseline for the comparison a simple hill climbing
(HC) algorithm [1] that accepts a solution if and only if it improves over the
incumbent. Obviously, we expect the other criteria to obtain better results with
respect to HC. While in practice one would implement HC using a systematic
enumeration of the neighbourhood, we implemented it inside the framework of
Algorithm 1 for convenience.

3 Experimental Setup

The nine acceptance criteria presented in Section 2 are evaluated as candidate
acceptance criteria for a generic algorithm outlined in Algorithm 1. The common
components of the nine implementations are: (i) a random exploration of the
neighbourhood, (ii) no parameter restarting rule (e.g. temperature restart in
SA), and (iii) a termination condition based on runtime. The runtime differs for
each problem, so the actual value is given below.

For the criteria that need initial values for their parameters (such as the
temperature for the SA family of algorithms, or the threshold φ in TA), we use
a value proportional by a coefficient ε to the maximum gap between consecutive
solutions observed during an initial random walk of length 10000 in the solution
space. The parameters that need to be modified during the algorithm run time
(e.g. temperature in SA or threshold in TA) are updated using a geometric
decreasing; e.g., the temperature T in SA is updated according to the formula
Tk+1 = α×Tk, where α is a parameter. The inner loop of Algorithm 1 evaluates
a number of solutions that is given by τ · |N (s)|, where τ is a parameter and
|N (s)| is the size of the neighbourhood of a solution s.

29

Comparison of Acceptance Criteria in Randomized Local Searches VII

Table 1. Parameter values for the algorithms.

Metro BMetro GSA Geom TA GDA RTR LAHC
ε [0, 10] [0, 10] [0, 10] [0, 10] [0, 10] [0, 10] – –
α [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] [1, 100] – –
τ [1, 100] [1, 100] [1, 100] [1, 100] [1, 100] [1, 100] – –
φ, φBM – [0, 1] – – – – [0, 1] –
β – – [10−4, 10] – – – – –
γ – – [0, 10] – – – – –
ρ – – – [0, 1] – – – –
κ – – – – – – – [1, 104]

We choose to not use parameter restart schemes to better observe the impact
of the main algorithm component that is studied, the acceptance criterion. The
periodic reset or increase of parameters such as the temperature or the threshold
is often beneficial to obtain better results, as it facilitates search space explo-
ration, but it also has the side effect of smoothening the difference in terms of
impact of the other components.

The parameter values, and their presence for each algorithm, are given in Ta-
ble 1. Parameters equivalent in scope and values are grouped together. The only
algorithm that does not use the components described above is GDA. During
the experimental phase, we have observed very poor results when using the GDA
acceptance criterion with the choices above, indicating a lack of flexibility of the
method. We thus consider the GDA algorithm in its original settings, which are
anyway valid components that fit in the template of Algorithm 1. The initial
threshold value φ is computed proportional to the objective function value of
the initial solution, using a coefficient ε ∈ [0, 10]; φ is updated according to the
formula φk+1 = φk − α, where α is an integer in the interval [1, 100]; we bound
this decrease to 0. The other components are as described above.

Our setup considers as test problems the quadratic assignment problem
(QAP) [3] and the permutation flow-shop problem with the total completion
time objective (PFSP-TCT) [19,18]. The QAP models the location of a set of fa-
cilities, with the goal of minimizing the overall distance between facilities taking
into account also the flow between them. PFSP instead is a scheduling problem
where a set of jobs have to be ordered to be executed on a set of machines.

For the QAP we use a randomly generated initial candidate solution and the
exchange neighbourhood, which is defined as

N (s) = {s′ | s′(j) = s(h) ∧ s′(h) = s(j) ∧ ∀ : l /∈ {j, h} s′(l) = s(l)}, (9)

where s(j) is the solution vector at position j. The neighbourhood size is n(n−
1)/2, where n is the instance size. The running time considered for termination
is 10 seconds. We consider two different instance sets of size 100, one where
all QAP instance data are generated uniformly at random, and one randomly
generated in analogy to structured real-world like QAP instances. Each instance
set is divided into a training set of 25 instances and a test set of 25 instances.

30

VIII Alberto Franzin and Thomas Stützle

From here onwards, we refer to these two scenarios as random instances and
structured instances, respectively. The two scenarios are not mixed, that is, the
configurations obtained for the random instances are evaluated on the random
instances and not on the structured ones, and viceversa.

For the PFSP-TCT we use the NEH heuristic [16] for the initial solution gen-
eration. For an instance of size n×m, where n is the number of jobs and m the
number of machines, the neighbourhood is the insert neighbourhood that ran-
domly picks one element s(j) in position j of the permutation s = [s(1), . . . , s(n)]
and inserts it in position k 6= j, obtaining

s′ = [s(1), . . . , s(j − 1), s(j + 1), . . . , s(k), s(j), s(k + 1), . . . , s(n)] (10)

if j < k and

s′ = [s(1), . . . , s(k− 1), s(j), s(k), s(k+ 1), . . . , s(j − 1), s(j + 1), . . . , s(n)] (11)

if j > k. The neighbourhood size is n(n − 1). In this case, we use an instance-
based maximum runtime of n×m× 0.015 seconds. The training set consists of
40 randomly generated instances of size ranging from 50 jobs and 20 machines
to 250 jobs and 50 machines [13] and the test set is composed by the instances
Tai31–110 of the Taillard benchmark [21]. We will, however, discuss separately
the instances whose size is smaller than those covered by the training set (those
with n = 20), covered by the training set (Tai31–110), and larger (n = 500).

We tune the numerical parameters using irace [11] with a budget of 2000 ex-
periments per tuning on an Intel Xeon E5-2680 v3 CPU, with a speed of 2.5GHz,
16MB cache and 2.4GB of RAM available for each job. For each algorithm we
run nine tunings, evaluate the best configuration obtained from each tuning on
the test set, and average the final solution quality obtained on each instance by
the nine configurations. The real valued parameters have a precision of 4 decimal
digits.

4 Experiments on the Quadratic Assignment Problem

In Figure 1 we show the results obtained by the nine algorithms after the tun-
ing on the random instances and on the structured instances respectively. Each
boxplot reports the results obtained on the test instances in terms of the av-
erage relative percentage deviation (ARPD) from the best known solutions. In
Table 2, we report the results of the Friedman rank sum test, obtained for the
nine algorithms on the two QAP instance classes. The algorithms are ordered
according to the sum of their ranks, and the difference in terms of rank sum
with the best ranked algorithm is computed along with a statistical significance
threshold. Algorithms whose rank sum differs from the best ranked one by a
value larger than the significance threshold are statistically significantly worse
than the best one.

On the random instances, RTR obtains the best results, with a mean ARPD
slightly lower than 1%. The criteria based on the Metropolis condition (SA,

31

Comparison of Acceptance Criteria in Randomized Local Searches IX

●

●

●

●

●

●

0

1

2

3

4

5

S
A

B
S

A

G
S

A

G
eo

m TA

G
D

A

R
T

R

LA
H

C

H
C

●

●●

0

1

2

3

4

5

S
A

B
S

A

G
S

A

G
eo

m TA

G
D

A

R
T

R

LA
H

C

H
C

Fig. 1. Average Relative Percentage Deviation (ARPD) from the best known solutions
obtained on random (left plot) and structured instances (right plot).

BSA, GSA) and the LAHC algorithm obtain similar results, with mean ARPDs
around 1.2 to 1.3%. Though the results are similar, BSA is consistently slightly
better than the other ones. TA, GDA and the geometric criteria are worse, but
still within the 2% average deviation, while HC stands around 3%. On the struc-
tured instances it is instead TA, LAHC and the family of the Metropolis criteria
that obtain the best results, with average ARPDs all around 0.3%. The ARPDs
among these five criteria are not statistically significantly different. The geomet-
ric criterion also obtains reasonably good results when considering the ARPD
values, though from the rank-based analysis it is already clearly worse than the
top-ranking group of acceptance criteria. RTR and GDA obtain solutions around
1% and 2% worse than the best known ones and, thus perform clearly worse than
the other acceptance criteria. HC, as expected, is overall the worst, with ARPDs
around 3 to 4%.

The difference of the results on the two scenarios can be explained by the
different landscape of the instances [22,20]. The random instances present a rela-
tively flat landscape, where it is easy to discover local optima and move through
them, but difficult to converge to very good solutions. On the other hand, the
landscape of the structured instances is less flat, with “deeper” local optima than
in the random instances. The criteria that strengthen the intensification along
the search process are the ones that apparently benefit from this landscape.
RTR compares candidate solutions to the global best, making it therefore more
difficult to accept a worsening solution; additionally, using a same parameter
settings across all instances may make it less robust.

5 Experiments on the Permutation Flow-Shop Problem

In Figure 2 we report the results obtained on the PFSP-TCT on the 80 instances
of the Taillard benchmark with 50 to 200 jobs. The results of the Friedman rank
sum test for the nine algorithms are reported in Table 3, separated for the

32

X Alberto Franzin and Thomas Stützle

Table 2. Results of the Friedman rank sum test for the nine algorithms on the QAP
instances. Algorithms are ranked according to their results. ∆R is the minimum rank-
sum difference that indicates significant difference from the best one. Algorithms in
boldface are significantly better than the following ones.

Instance class ∆R Acceptance criteria ranking
Random 13.15 RTR (0), BSA (33), SA (70), LAHC (80), GSA (88),

GDA (115), TA (140), Geom (174), HC (200)
Structured 16.08 TA (0), LAHC (0), SA (11), BSA (16), GSA (21),

Geom (81), RTR (109), GDA (135), HC (158)

●

●

●●

●

●

●

●

●

0

1

2

3

4

5

6

7

S
A

B
S

A

G
S

A

G
eo

m TA

G
D

A

R
T

R

LA
H

C

H
C

Fig. 2. Average Relative Percentage Deviation (ARPD) from the best known solutions
obtained on the instances Ta031–110 of the Taillard benchmark.

three sets of instance subclasses considered (smaller than in the training set,
size covered by the training set, and larger).

The results in Figure 2 for the PFSP-TCT exhibit higher variance than on
the QAP, because they report results obtained on 8 subclasses of instances,
with a different number of jobs and machines. Inside each instance subclass, the
variance is much lower, indicating consistent results for each instance size.

Late acceptance hill climbing is the criterion that obtains clearly the best
results, with an average ARPD of 1.2%. It is also more robust than the others: its
worst results are below 2% of ARPD. GSA comes second best, with an average
deviation of 1.5%, followed by SA and BSA (respectively 1.7% and 1.8% on
average; a Wilcoxon test shows no statistically significant difference between
them). TA obtains results comparable to BSA. The other criteria obtain results
between 2% and 3% of ARDP, still significantly better than HC.

The different instance sizes in both the training and test sets favour the more
robust solutions. GSA appears to be more robust than the original SA, thanks
to the increased flexibility given by the additional parameters. Looking at the
different instance subclasses, however, LAHC consistently outperforms all other
acceptance criteria.

33

Comparison of Acceptance Criteria in Randomized Local Searches XI

Table 3. Results of the Friedman rank sum test for the nine algorithms on the Taillard
Benchmark. Algorithms are ranked according to their results. ∆R is the minimum
rank-sum difference that indicates significant difference from the best one. Algorithms
in boldface are significantly better than the following ones.

Instance class ∆R Acceptance criteria ranking
Ta001-030 13.57 LAHC (0), GSA (30), TA (74), SA (82), BSA (87),

Geom (142), RTR (193), GDA (206), HC (212)
Ta031-110 27.58 LAHC (0), GSA (94), SA (229), TA (267), BSA (279),

GDA (412), Geom (455), RTR (490), HC (636)
Ta111-120 2.93 LAHC (0), GSA (11), RTR (19), GDA (31), HC (39),

Geom (50), TA (63), SA (67), BSA (80)

●

●●

0

1

2

3

4

5

6

7

S
A

B
S

A

G
S

A

G
eo

m TA

G
D

A

R
T

R

LA
H

C

H
C

●

●

●

0

1

2

3

4

5

6

7

S
A

B
S

A

G
S

A

G
eo

m TA

G
D

A

R
T

R

LA
H

C

H
C

Fig. 3. Average Relative Percentage Deviation (ARPD) from the best known solutions
obtained on the Ta001-030 (left plot) and on the Tai111–120 instances of the Taillard
benchmark set (right plot, SA, BSA, and in part TA results are not shown as they
were very poor).

We focus now on the instance subclasses not covered by the training set,
either because they are too small (Ta001-030) or because they are too big
Tai111–120. We can observe in Figure 3 and in Table 3 that LAHC is consis-
tently the best performing one, followed by GSA. Overall, on the small instances
all algorithms obtain results that are according to the ARPD values at least as
good as on medium size instances of Ta031-110, with GDA and RTR being the
only ones for which this is not true.

On the large instances, LAHC and GSA remain the top-performing algo-
rithms with an average ARPD of 0.59% and 1.57%, respectively. SA and BSA
instead obtain good results on the small instances, but perform very poorly on
the larger ones, with ARPDs ranging around 9 − 10%, much worse than even
HC. This effect is due to the parameters selected by the tuning phase, which are
calibrated for instance sizes occurring in the training set and the given running
time. The convergence behaviour of SA and BSA does not scale to large instance
sizes for which the evaluation per solution is much more costly (the evaluation

34

XII Alberto Franzin and Thomas Stützle

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06

10
50

00
0

11
50

00
0

12
50

00
0

Ta100
● SA

LAHC
HC
GSA

ITERATIONS

S
O

LU
T

IO
N

 Q
U

A
LI

T
Y

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 7e+06

68
00

00
0

72
00

00
0

76
00

00
0

Ta120

● SA
LAHC
HC
GSA

ITERATIONS

S
O

LU
T

IO
N

 Q
U

A
LI

T
Y

0e+00 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

68
00

00
0

72
00

00
0

76
00

00
0

Ta120 − extended runtime
● SA

LAHC
GSA

ITERATIONS

S
O

LU
T

IO
N

 Q
U

A
LI

T
Y

Fig. 4. Convergence behaviour of the SA, GSA, LAHC and HC algorithms for the
Ta100 (top left plot) and Ta120 (top right plot) instances; in the bottom plot, the
results for SA, GSA and LAHC on Ta120 with 10× the original running time.

scales quadratically with instance size while the computation time only increases
linearly). This is illustrated in Figure 4, where we compare the development of
the solution quality over the number of iterations for SA, GSA, LAHC and HC
on two instances: Ta100, whose size is 200×10 and is covered by the training set,
and Ta120, whose size is 500×20. On Ta100, the four algorithms quickly discover
good solutions; still, the convergence of SA is slower with respect to the other
three. On Ta120, SA is clearly unable to converge within the originally allocated
computation time. In the right plot of Figure 4 we observe the convergence of
SA, GSA and LAHC on Ta120 with a runtime ten times higher (1500s instead
of 150s on that instance – HC not included in the plot): the convergence is more
similar to the one observed for Ta100, with also SA discovering high quality
solutions. In particular, GSA finds a solution very close to the best known one
(6756860 vs 6755722), while SA and LAHC both find a solution of better qual-
ity than the currently best known one (6746818 and 6748131, respectively). It
is interesting to note that SA has now found the best solution, while LAHC has
continued improving until more than half the time available.

6 Conclusions

We have observed how a careful tuning of the numerical parameters is crucial to
obtain good results, in terms of both solution quality and convergence. Across our

35

Comparison of Acceptance Criteria in Randomized Local Searches XIII

two benchmark problems, the algorithm that obtained the best results is LAHC.
It exhibits a good convergence behaviour, quickly discovering good solutions in
the beginning of the search, and continuously improving afterwards. It is also
very robust, as it is the best performing algorithm across the whole Taillard
benchmark for the PFSP-TCT, and it scales well also to instances of different
sizes, unseen in the training set. Despite its simplicity (only one parameter to
be tuned), LAHC makes a good use of the history of the search, as any solution
it accepts is never worse than at least another one it has accepted in the past.

SA obtains overall good results, but it requires a proper tuning, as we have
observed, in particular, for the large PFSP instances. It is able to obtain good
results, but it might do so slowly; it is therefore advisable to tune SA for anytime
behaviour [12] to obtain good results in a shorter time. BSA performs similarly
to the standard SA. GSA, instead, has been shown to be flexible, outperforming
SA also in terms of scalability and anytime behaviour. The geometric acceptance
criterion is overall inferior to tthose derived from the original SA.

TA has obtained results overall not very different from SA. RTR has obtained
good results on the random QAP instances, but was among the worse performers
in the other scenarios, probably because of the fixed value of its threshold. GDA
also showed a lack of flexibility, requiring a different setup and thus making its
use within other algorithms more problematic.

As future work, we plan to extend the analysis to different conditions that
might improve the performance of the various criteria. For example, a tempera-
ture restart, which is a common option in various SA algorithms, may change the
conclusions of especially those criteria that rely on the temperature parameter.
In addition, we plan to extend the set of acceptance criteria that are considered
in this work and also extend the set of test problems to increase the experimental
basis on which our conclusions rely. Finally, we intend to test the various accep-
tance criteria considering other aspects such as anytime behavior or robustness
to other scenarios that differ in instance size and termination condition.

Acknowledgments.

We acknowledge support from the COMEX project (P7/36) within the IAP Pro-
gramme of the BelSPO. Thomas Stützle acknowledges support from the Belgian
F.R.S.-FNRS, of which he is a senior research associate.

References

1. Appleby, J., Blake, D., Newman, E.: Techniques for producing school timetables
on a computer and their application to other scheduling problems. The Computer
Journal 3(4), 237–245 (1961)

2. Bohachevsky, I.O., Johnson, M.E., Stein, M.L.: Generalized simulated annealing
for function optimization. Technometrics 28(3), 209–217 (1986)

3. Burkard, R.E., Çela, E., Pardalos, P.M., Pitsoulis, L.S.: The quadratic assignment
problem. In: Handbook of Combinatorial Optimization, vol. 2, pp. 241–338. Kluwer
Academic Publishers (1998)

36

XIV Alberto Franzin and Thomas Stützle

4. Burke, E.K., Bykov, Y.: The late acceptance hill-climbing heuristic. Tech. Rep.
CSM-192, University of Stirling (2012)

5. Burke, E.K., Bykov, Y.: The late acceptance hill-climbing heuristic. European Jour-
nal of Operational Research 258(1), 70–78 (2017)

6. Chen, R.M., Hsieh, F.R.: An exchange local search heuristic based scheme for
permutation flow shop problems. Applied Mathematics & Information Sciences
8(1), 209–215 (2014)

7. Dueck, G.: New optimization heuristics: the great deluge algorithm and the record-
to-record travel. Journal of Computational Physics 104(1), 86–92 (1993)

8. Dueck, G., Scheuer, T.: Threshold accepting: A general purpose optimization al-
gorithm appearing superior to simulated annealing. Journal of Computational
Physics 90(1), 161–175 (1990)

9. Hoos, H.H., Stützle, T.: Stochastic Local Search—Foundations and Applications.
Morgan Kaufmann Publishers, San Francisco, CA (2005)

10. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 671–680 (1983)

11. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: Iterated racing for automatic algorithm configuration. Opera-
tions Research Perspectives 3, 43–58 (2016)

12. López-Ibáñez, M., Stützle, T.: Automatically improving the anytime behaviour of
optimisation algorithms. European Journal of Operational Research 235(3), 569–
582 (2014)

13. Mascia, F., López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T.: From grammars
to parameters: Automatic iterated greedy design for the permutation flow-shop
problem with weighted tardiness. In: Proc. LION 7, LNCS, vol. 7997, pp. 321–334.
Springer, Heidelberg, Germany (2013)

14. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A., Teller, E.: Equa-
tion of state calculations by fast computing machines. The Journal of Chemical
Physics 21, 1087–1092 (1953)

15. Moscato, P., Fontanari, J.F.: Stochastic versus deterministic update in simulated
annealing. Physics Letters A 146(4), 204–208 (1990)

16. Nawaz, M., Enscore, Jr, E., Ham, I.: A heuristic algorithm for the m-machine,
n-job flow-shop sequencing problem. Omega 11(1), 91–95 (1983)

17. Ogbu, F.A., Smith, D.K.: The application of the simulated annealing algorithm
to the solution of the n/m/C max flowshop problem. Computers & Operations
Research 17(3), 243–253 (1990)

18. Pan, Q.K., Ruiz, R.: Local search methods for the flowshop scheduling problem
with flowtime minimization. European Journal of Operational Research 222(1),
31–43 (2012)

19. Pan, Q.K., Ruiz, R.: A comprehensive review and evaluation of permutation flow-
shop heuristics to minimize flowtime. Computers & Operations Research 40(1),
117–128 (2013)

20. Stützle, T.: Iterated local search for the quadratic assignment problem. European
Journal of Operational Research 174(3), 1519–1539 (2006)

21. Taillard, É.D.: Benchmarks for basic scheduling problems. European Journal of
Operational Research 64(2), 278–285 (1993)

22. Taillard, É.D.: Comparison of iterative searches for the quadratic assignment prob-
lem. Location Science 3(2), 87–105 (1995)

23. Černý, V.: A thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of Optimization Theory and Applications
45(1), 41–51 (1985)

37

Session 2 - Fitness Landscapes

38

A fitness landscape view on the tuning
of an asynchronous master-worker EA

for nuclear reactor design

Mathieu Muniglia1, Sébastien Verel2,
Jean-Charles Le Pallec1, and Jean-Michel Do1

1 CEA (french Commissariat à l’Energie Atomique), France
2 Université du Littoral Côte d’Opale, LISIC, France

Abstract. In the context of the introduction of intermittent renewable
energies, we propose to optimize the main variables of the control rods
of a nuclear power plant to improve its capability to load-follow. The
design problem is a black-box combinatorial optimization problem with
expensive evaluation based on a multi-physics simulator. Therefore, we
use a parallel asynchronous master-worker Evolutionary Algorithm scaling
up to thousand computing units. One main issue is the tuning of the
algorithm parameters. A fitness landscape analysis is conducted on this
expensive real-world problem to show that it would be possible to tune
the mutation parameters according to the low-cost estimation of the
fitness landscape features.

1 Introduction

In the actual context of energetic transition, the increase of the intermittent
renewable energies contribution (as wind farms or solar energy) is a major issue.
On the one hand, the French government aims at increasing their part up to 30%
[6] by 2030, against 6% today. On the other hand, their intermittent production
may lead to an important imbalance between production and consumption.
Consequently, the other ways of production must adapt to those variations,
especially nuclear energy which is the most important in France. The power
variations occur at different time scales (hour, day, or even week) and in order
to counterbalance their effects on the electric grid, the nuclear power plants
(NPP) are able to adjust their production. NPPs which take part in the response
of the power variations operate in the so-called load-following mode. In this
operating mode, the power plant is mainly controlled using control rods (neutron
absorber) that may introduce unacceptable spatial perturbations in the core,
especially in case of huge power variations. The purpose of this work is to
optimize the manageability of the power plants to cope with a large introduction
of intermittent renewable energies. Its final goal is to tune the control parameters
(called variables) in order to be able to make the load following at a shorter time
scale and larger power amplitude scale, meeting the safety constraints.

Such a real-world optimization problem is a challenge, considering the size
of the search domain, the computation cost and the unknown properties of the

39

fitness function. Due to the design of the nuclear power plants, and in a goal
to propose only simple modifications of the current management, 11 integer
variables are used to describe the control rods such as speed, overlaps between
rods, etc. (details are given in Sect. 3). Therefore, the optimization is a large
size combinatorial problem where no full enumeration is possible. Moreover, a
multi-physic simulator is used which is able to compute several criteria such
as the evolution of the axial power offset, the rejected volume of effluent, etc.
according to the variables of the problem. So, the computation of the fitness
function is computationally expensive, and one evaluation typically takes on
average about 40 minutes. This optimization problem is considered for the first
time, and no property on the search space is a priori known. Hence, in this
work, the Nuclear Reactor Operation Optimization problem (NROO problem)
is an original combinatorial black-box problem with expensive fitness function
evaluation for which only few candidate solutions and their corresponding fitness
value can be computed.

The ability of Evolutionary Algorithm (EA) to find high quality solutions is
likely to depend strongly on its parameters settings. In this work, we propose
a parallel master-worker EA for large scale computing environment to solve
the NROO problem. Despite the expensive cost, an analysis of the mutation
parameters is then proposed. Such a study is not always possible for expensive
optimization problems. Hence, we achieve a fitness landscape analysis of the
NROO problem using low-cost features to argue that it helps to select the relevant
parameters of the mutation operator.

The main goals of the paper are then : (i) perform for the first time an offline
optimization of the control rods using an evolutionary algorithm (ii) analyze the
fitness landscape structure using a random walk (details are given in Sect. 5.3)
to tune the algorithm parameters, especially the ones of the mutation, in order
to (iii) propose an efficient mono-objective master-worker that will be used in
the next step of the work, consisting in a multi-objective optimization using a
decomposition approach.

The rest of this paper is organized as follows. The next section introduces
previous works on nuclear energy problems, and main definitions used in this
work. The NROO problem and the proposed algorithm are described respectively
in Sect. 3 and 4. The experimental analysis of the algorithm and of the fitness
landscape is conducted in Sect. 5. At last, the paper concludes on the main
results, and future works.

2 Preliminaries

2.1 Evolutionary optimization for nuclear energy problems

The use of Evolutionary Algorithms (EA) in order to optimize some variables
of a nuclear power plant as regards performance or safety is not new. Offline
optimizations can already be found, and studies such as [2] or [4] deal with the In-
Core Fuel Management Optimization (ICFMO) and loading pattern optimization

40

which is a well-known problem of Nuclear Engineering and aims for instance
at maximizing the use of the fuel (increase the cycle length for example) while
keeping the core safe (minimize the power peak). Pereira and Lapa consider
in [16] an optimization problem that consists in adjusting several reactor cell
variables, such as dimensions, enrichment and materials, in order to minimize the
average peak-factor in a reactor core, considering some safety restrictions. This
is extended in [18] to stochastic optimization algorithms conceptually similar to
Simulated Annealing. Sacco et al. even perform in [19] an optimization of the
surveillance tests policy on a part of the secondary system of a Nuclear Power
Plant, using a metaheuristic algorithm, which goal is to maximize the system
average availability for a given period of time.

To our best knowledge, the only optimizations of the plant operation are
made online, like in [15], where Na et al. develop a fuzzy model predictive control
(MPC) method to design an automatic controller for thermal power control in
pressurized water reactors. The objectives are to minimize both the difference
between the predicted reactor power and the desired one, and the variation of
the control rod positions. A genetic algorithm is then used to optimize the fuzzy
MPC. Kim et al. propose in [10] another MPC by applying a genetic algorithm,
to optimize this time the discrete control rod speeds. This paper proposes a new
approach to do so, by optimizing offline the main characteristics of the control
mechanisms, using an EA.

2.2 Parallel evolutionary algorithms

With the increasing number of computing units (cores, etc.), parallel EA become
more and more popular to solve complex optimization problems. Usually, two
main classes of types of parallel EA [1] can be distinguished : the coarse-grained
model (island model) in which several EA share solutions within the migration
process, and the fine-grained model (cellular model) where the population is
spread into a grid and evolutionary operators are locally executed. Besides, a
Master-Worker (M/W) architecture with the fitness evaluation on workers have
been extensively used and studied [5]. It is simple to implement, and does not
require sophisticated parallel techniques. Two communication modes are usually
considered. In the synchronous mode, the parallel algorithm is organized by
round. The master sends candidate solutions on each worker for evaluation,
and waits until receiving a response from all workers before the next round. In
the asynchronous mode, the master does not need to wait, and communicates
with each worker individually on-the-fly. The asynchronous mode could improve
the parallel efficiency when the evaluation time of the fitness function vary
substantially [24]. We also propose an asynchronous parallel EA in this work.

2.3 Landscape aware parameter tuning

The performance of EA strongly depends on the value of their parameters
(mutation rate, population size, etc.). Parameters setting is then one of the

41

major issues in practice for EA, and two methodologies are commonly used [7].
In the online setting, called control, the parameters are selected all along the
optimization process. In the offline setting, called tuning, the parameter values are
set before the execution of the algorithm. In offline setting, most of the methods,
such as the irace framework [13], are based on a smart trial and error technic
of parameter values on a set of problem instances. Those methods may require
a large number of tests/executions on representative problem instances which
can be difficult to afford in a black-box scenario with expensive costs on large
scale computing environment. Alternatively, following Rice’s framework [17], one
can use a fitness landscape aware methodology to first extract features from the
given problem instance, then select the relevant parameters according to those
fitness landscape features.

Fitness landscapes are a powerful metaphor to describe the structure of
the search space for a local search algorithm, and peaks, valley or plateaus
for instance are used to depict the shape of the search space in this picture.
Formally, a fitness landscape [21] is defined by a triplet (X ,N , f) where X is the
set of candidate solutions, N : X → 2X is the neighborhood relation between
solutions, and f : X → IR is the fitness function (here assumed to be minimized)
which associates to each candidate solution the scalar value to minimize. The
neighborhood relation can be defined by a distance between solutions or by a
local search operator.

Two main geometries are commonly used in fitness landscape. A multimodal
fitness landscape is a search space with a lot of local optima (solution with
no improving solution in the neighborhood). This geometry is also associated
with the ruggedness which is the local regularity of the landscape. The more
rugged the more multimodal the landscape is. The ruggedness can be measured
by the autocorrelation of fitness [23] during a random walk over the landscape.
A random walk is a sequence (x1, . . . , x`) of solutions such that for all t ∈
{2, `}, xt is a neighboring solution selected uniformly at random from N (xt−1),
or according to the local search operator. The autocorrelation function ρ̂ is
defined by the correlation of fitness between solutions of the walk : ρ̂(k) =P`−k

t=1 (f(xt)−f̄)·(f(xt+k)−f̄)P`
t=1(f(xt)−f̄)2

with f̄ the average value of f(xt). The main feature of

ruggedness is then the autocorrelation length [9] which is the length τ such that
there is no more significative fitness correlation at level ε between solutions of
the walk : τ = min{k : |ρ̂(k)| < ε}. Usually, a smooth fitness landscape with
long autocorrelation length is supposed to be easier to solve.

A neutral fitness landscape is another main geometry where the search space
is dominated by large flat plateaus with many equivalent solutions. The dynamics
of EA on such landscape is characterized by punctuated equilibrium dynamics
where long neutral moves on plateaus are interrupted by rapid improving moves
toward better solutions. One of the main features of this landscape is the neutral
rate which is the proportion of neighboring solutions with the same fitness value
[22] : EX []{y : f(y) = f(x) and y ∈ N (x)}/]N (x)]. To avoid the computation
of large neighborhood, the neutral rate can be estimated with a random walk
[11] by : nr =]{(xt, xt+1) : f(xt) = f(xt+1), t ∈ {1, `− 1}}/(`− 1).

42

According to the local search operator, which could be the mutation operator
for EA, the features of fitness landscape can characterize the shape of the
landscape. First fundamental works have demonstrated the relevance of fitness
landscape analysis for the parameters tuning [3]. However, to our best knowledge,
no work has used such methodology for a real-world problem with expensive
fitness function.

3 Problem definition

The optimization process is based on the current load-following transient [12]
and this analysis focuses on a single Pressurized Water Reactor (PWR) type
(1300 MW) of the French nuclear fleet. When an electrical power variation occurs
(demand of the grid) a chain of feedback is setting up in the whole reactor, leading
to a new steady state. It is usual to take advantage of this self-regulation in the
case of small variations, but the regulated variables such as the temperature or
the pressure in the primary or secondary circuits may reach unacceptable values
in case of load-following, possibly leading to damages of the whole system. The
control rods are then used in order to cope with this variation, and maintain the
primary coolant temperature close to the target. However, those control rods
have to be handled carefully as they could cause axial or radial heterogeneity in
the core, inducing high power peaks or Xenon oscillations.

3.1 Description of the system

The reactor core is a grid of square assemblies (21cm length) in a cylindrical vessel.
There are 193 assemblies, split into two kinds : 120 assemblies made of Uranium
oxide (UOX) and 73 ones made of Uranium plus Gadolinium oxides (UGd).
Each control rod is made of pins of a neutron absorber that are inserted together
from the top of the core in some assemblies. The positions of the assemblies
where they are inserted and the materials of which they are made correspond
to the French “G” mode [12]. The rods are organized in two families: (i) the
power shimming rods (PS) and (ii) the regulation rods (TR). The first ones are
used to shim the power effects during the power transient, and are split in four
groups (4 rods G1, 8 rods G2, 8 rods N1 and 8 rods N2). All the rods of a same
group move together, and the groups are inserted successively in this order : G1,
G2, N1, N2, as it is shown in Fig.1. An overlap is also defined between all the
groups, so that they follow an insertion program as illustrated from frames (a) to
(d). The position of those rods is linked to the electrical power by a calibration
function. The second family enable a control of the average coolant temperature
of the core (the targeted temperature, called reference temperature, is a linear
function of the thermal power) and is made of 9 rods gathered in a single group.
This group moves independently and automatically, following a speed program
depending on the difference between the reference temperature (Tref) and the
mean temperature (Tm) as shown in Fig.2. One can see a dead band of ±0.8� in
which the rods do not move, avoiding continuous displacement and corresponding
to the self-regulation of the core. Finally, as they are very efficient and for safety

43

G1 N2N1G2

G1 N2N1G2G1 N2N1G2

50 steps

40 steps

T = 50

T = 225 T = 360

175 steps
0

260
255

Steps

0

260
255

Steps

G1 N2N1G2

185 steps

overlap

T = 185

(a)

(c) (d)

(b)

Fig. 1: Insertion sequence of the Power
Shimming rods (PS). The totalizer value
(T) is given on each frame, and the last
moving group is in purple.

ΔT (°C)
(= Tref – Tm)

Speed
(steps/min)

8

- 8
0,8

- 0,8
1,7

- 1,7
2,8

- 2,8

- 72

72

Withdrawal

Insertion

Fig. 2: Speed program of the Temper-
ature Regulation rods (TR). The dead
band corresponds to the null speed and
the maximal and minimal speeds (±72
steps/min) are for an absolute temper-
ature difference larger than 2.8�.

reasons, they are shut into a maneuvering band of about 50 centimeters in the
upper part of the core. For more details, please refer to [8].

The variables to be tuned for the optimization are then the 4 nominal speeds
and the 3 overlaps for the PS rods, the maximal and minimal speeds, the dead
band width and the maneuvering band height for the TR rods. 11 variables are
then considered, and they are coded as integer values corresponding to a discrete
number of steps or of temperature (the dead band is discretized by steps of 0.1�).
Table 1 summarizes the variables, their initial values (current management) and
ranges. The values take into account some technological and logical constraints.
For example, the overlaps cannot be greater than the total height of the rods,
the velocity ranges are bounded by the mechanisms, etc. A number of other
variables could have been studied, like swaps between groups, or splitting groups,
but the study is confined to the variables listed for two reasons: simplify the
problem for a first optimization, and be able to propose a solution without major
technological breakthroughs and similar to the current one. Nevertheless, the
search domain is huge (at least 3× 1020 possible configurations).

0

20

40

60

80

100

-30 -20 -10 0 10 20 30

ΔI = Pr*AO (%PN)

Impossible working

Forbidden working

Relative Power
Pr (%Pn)

path

reference line

Fig. 3: Control diagram
and criteria calculation
principle.

Table 1: Integer variables of the design: lower bound
(l.), upper bound (u.), and value of the current reference
(r.). The dead band (db) variable is expressed in tenth of
degree, and all the other variables are expressed in steps.

PSR Overlaps PSR Velocities TRR V.

o1 o2 o3 v1 v2 v3 v4 V v mb db

l. 0 0 0 10 10 10 10 3 3 7 8

u. 255 255 255 110 110 110 110 13 13 117 16

r. 185 175 160 60 60 60 60 72 8 27 8

44

3.2 Criterion of interest

This seek of simplification is even more understandable when it is known that
the black-box evaluation function is very costly. Each unitarian calculation
corresponds to a given management configuration running on a complete typical
load-following transient, corresponding to about 11 hours. The value of interest
is then determined thanks to a model of the whole reactor described in [14], and
developed within the APOLLO3® [20] calculation code. The optimization aims
at minimizing this value of interest, which represents a global operating criterion,
based on the control diagram. This control diagram is used by the operator to
manage the power plant and represents the evolution of the relative thermal power
(Pr) as a function of the power axial imbalance given by: ∆I = Pr ×AO where
AO is the axial offset defined as AO = PT−PB

PT +PB
and standing for the unbalance

between the lower and upper half parts of the core as regards the power. PT

(resp. PB) is the power in the upper (resp. lower) part of the core.
An example of such a diagram is to be found on Fig.3, which draws the path

of the state of the core during a power variation (blue line) and the bounds for
this path. On the right side, the forbidden region (red line) is based on many
studies and ensures the safety of the core in case of accidental situations. The
impossible working region just comes from the definition (AO ∈ [−1, 1]). Finally,
the green line starting at the same point as the path corresponds to a constant
axial offset, and is called reference line in the following.

The criterion derived from the control diagram to be minimized is defined by:

1

4

∑

i

|P 2
r,i+1 − P 2

r,i| ·
(
D(∆Ii+1) +D(∆Ii)

)
(1)

where D(∆Ii) = |∆Ii − ∆Irefi |. The pair (Pr,i, ∆Ii) represents the state of

the core at the time step i, and ∆Irefi the power axial imbalance given by the
reference line at the power Pr,i. The criterion corresponds to the sum of all the
areas as illustrated on Fig. 3, weighted by the relative power to take into account
the fact that an important axial offset at high power is worse than at low power.
Minimizing this criterion enables to reduce the area of the path and avoids being
close to the forbidden region while staying close to the reference line.

4 Asynchronous parallel EA

The design of the EA is guided both by the expensive cost of fitness evaluation
of the problem computed by a numerical simulation, and by the computing
environment available to solve this problem.

4.1 Algorithm definition

On the one hand, the fitness evaluation duration is about 40 minutes on average
with a large variance. On the other hand, a large number of computing units
(w = 3072) are available to run the optimization algorithm, but they are only
free for few hours (around 15 hours per experiment). Hence, we propose a
master-worker (M/W) framework for the EA. On average one fitness evaluation is

45

completed every 0.78 second, meaning that the master node is not to be overflowed
by the request of the workers, and with respect to the fitness evaluation time, an
idle working time of few seconds will not reduce the performance. In addition,
some simulations crash before the end of the calculation, increasing even more
the discrepancies in calculation times. All considered, the model of the M/W
has been made asynchronous: the workers are updated on the fly without a
synchronization barrier, and each worker only computes the fitness value using
the multi-physic simulator.

A lot of efficient EA can be considered in an asynchronous M/W framework
with fitness evaluation on workers. The number of evaluations per worker is small,
on average 23 fitness function evaluations is possible on each worker within 15
hours of computation. As a consequence, the EA should converge quickly. We
propose then an asynchronous (1 + λ)-EA where λ is the number of computation
units minus one. The Algo. 1 show the details of the algorithm.

Algorithm 1: Asynchronous M/W (1 + λ)-EA on master

1 for i in Workers do
2 xi ← Initialization using quasi-random numbers

3 Send (non-blocking) Msg(xi) to worker i

4 end
5 f? ← maximal value
6 while pending message and time is not over do
7 Receive Msg from worker i

8 f i ← Msg[0]

9 if f i 6 f∗ then
10 x? ← xi ; f? ← f i

11 end

12 xi ← Mutate(x?)

13 Send (non-blocking) Msg(xi) to worker i

14 end
15 return x?

First, the algorithm on master node produces λ = w−1 quasi-random solutions
(integer vectors of dimension n = 11) using a Design of Experiments (DoE) based
on Sobol of quasi-random numbers. This initialization is used to improve the
spreading of the initial solutions in the search space. Every initial solution is
then sent asynchronously to a worker who receives the solution from the master,
computes the fitness value by running the multi-physic simulator, and send back
the result to the master node. In the meantime, the main loop of the Algo. 1 is
executed on the master node : wait for a message from a worker i, and when the
fitness value is received, the best so far solution is updated if necessary. Notice
that the best solution is replaced by the new solution evaluated by the worker
even when the fitness values are equals. In that way, the algorithm is able to drift
on plateaus of the search space. A new candidate solution is then computed by

46

the mutation (detailed in the next section) of the best-known solution and sent in
non-blocking mode to the same worker i. The master is then able to manage the
requests of the other worker nodes by the asynchronous communication mode.
The algorithm stops after an arbitrary time limit is reached.

4.2 Mutation operator

The mutation operator is based on the classical mutation for vectors of numbers.
The mutation rate p defines the parameter of the Bernouilli distribution to modify
each number of the vector. Therefore, the number of modified variables follows a
binomial distribution of parameters n and p, and the expectation of the number
of modified variables is np. When an integer variable is modified according to the
mutation rate, a random integer number is drawn using a uniform distribution
centered on the current value. Let xj be the current value of the variable j, and
δj the gap defined by br.(ubj − lbj)c where lbj and ubj are respectively the lower
bound and the upper bound of the variable j defined in the Tab. 1, and r ∈ [0, 1]
is a mutation parameter. The new value of variable j after mutation is selected
uniformly in the interval [xj − δj , xj + δj] ∩ [lbj , ubj] \ {xj}. The parameter r
tunes the range width for the new value of variable after the mutation, and is
expressed relatively to the total range width of the variables (r ≤ 0.5).

In addition, to avoid multiple costly evaluations of the same candidate solution,
a hash-map is used on the master node to save all evaluated solutions. The
mutation is applied on the solution until a new candidate solution which is not
in the hash-map is produced by the mutation random process.

5 Experimental analysis

First, the performance of the algorithm with a baseline parameters setting is
studied with 3072 computing units during 24 hours (approx. 73, 728 hours of
CPU time). Then, the mutation parameters are analyzed with the algorithm
launched on 3072 computing units during 5 hours (approx. 15, 360 hours of CPU
time per run). At last, a fitness landscape analysis is conducted.

5.1 Baseline parameters setting

Following the value of the mutation rate parameter of 1/n commonly used in EA,
the mutation rate has been set roughly to the inverse of the number of variables
(p0 = 0.1), so that the mutation operator modify on average one variable. The
width of the random variation range has been arbitrarily set to about r0 = 0.05
(5% of the total variation range of the variable). Those parameters have been
chosen for the first optimization process and are called in the following the
baseline settings. The use of an asynchronous algorithm to avoid idle time is
justified by the discrepancies of the computation costs from a candidate solution
to another one. The mean computation time is 2426 seconds, and the faster
computation is done in 1629 seconds whereas the longer is performed in 6169
seconds. Fig.4 shows the dynamic of the run. The normalized best fitness is drawn

47

●
● ●

●●
●

●●● ●● ●●●●●●●●●●●●●
●●● ●●●

●●

0.3

0.4

0.5

0.6

0.7
0.8
0.9
1.0

1e+01 1e+02 1e+03 1e+04 1e+05
Evaluation #

N
or

m
al

iz
ed

 F
itn

es
s

● baseline settings
best settings

Fig. 4: Dynamic of the asynchronous
M/W algorithm for the baseline and opti-
mal mutation parameters settings

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

0.450

0.475

0.500

0.525

0.550

0.575

0.1 0.2 0.3 0.4 0.5
Mutation range r

A
ve

ra
ge

 n
or

m
al

iz
ed

 fi
tn

es
s Mut. rate p

●

●

●

●

0.1
0.2
0.3
0.4

Fig. 5: Average normalized best fitness as
a function of the mutation range width r
and mutation rate p.

as a function of the number of evaluations received by the master node. A point
is plotted when the best solution so far is updated (included for equal fitness
values). The fitness values are normalized by the fitness value of the current
management (see Tab. 1). The solutions for which the number of evaluations is
lower than 3072 are from the initial quasi-random population. Even if the best
solution obtained with baseline settings enable to reduce the fitness of about
40% compared to the current management, it can be seen that the number of
strictly improving solutions is low (about 10 improving steps). The dynamic is a
punctuated equilibrium dynamic with a lot of neutral moves on plateaus, and few
improving solutions. For instance, the process is stuck on a plateau at the end of
the run : almost 50, 000 fitness evaluations are necessary to find a strictly better
solution. Subsequently, one can say that the neutrality is really important in the
NROO problem. This first experiment shows the relevance of the algorithm to
found better solutions than the current management, but it suggests that the
setting of mutation parameters could also be improved.

5.2 Impact of the mutation parameters

This section deeply analyzes the influence of the mutation parameters on the
performance of the M/W algorithm. Four values of mutation rates p and mutation
ranges r are investigated: p ∈ {0.1, 0.2, 0.3, 0.4} and r ∈ {0.05, 0.1, 0.2, 0.5}. All
the combinations are considered, given 16 possible mutation settings of the
mutation operator. To reduce the intrinsic random effect of the algorithm, each
couple of mutation parameters values (p, r) have been launched five times with
different initial populations generated by the Sobol sequence of quasi-random
numbers. However, the 5 initial populations are the same for each couple of
parameters settings. The total computation cost is more than 1, 2× 106 hours of
computation times, and we were not able to execute more than five runs.

The Fig. 5 shows the average normalized best fitness found for each parameter
setting. The standard deviation of the best fitness found is also computed to
measure the robustness of the parameters settings (not shown here to save space).
In addition, for each initial population, the rank of each parameters setting is
computed, and the average of the ranks gives another performance measure of

48

the settings. However, statistical tests will not give exploitable results because
of the very low number of runs, and are then not considered. The variation of
average fitness is larger according to the mutation range width parameter r than
according to the mutation rate parameter p. The average fitness decreases with
the parameter r whereas there is no clear trend as a function of the mutation rate
p. The best sets as regards this criterion are then the ones for which the mutation
range r is maximal. Inversely, the worse are the one for which the mutation range
is minimal. Given the huge discrepancies of the average fitness as a function of
the mutation range, the impact of the mutation rate cannot clearly be seen in
this figure, and it is then difficult to choose the best mutation rate.

The performance according to the rank instead of best fitness value share
the same result. Indeed, the Spearman correlation between the average fitness
and the mean rank appears to be really high (ρ = 0.91), meaning that the
best parameters as regards the first one is likely to be good also as regards the
second. For example, the first five parameters settings with respect to the best
average fitness are (0.5, 0.2), (0.5, 0.3), (0.5, 0.4), (0.2, 0.3), (0.2, 0.2), and they
are respectively third, first, sixth, second and fourth with respect to the average
rank. However, the correlation between the average and the standard deviation
of best fitness is low (ρ = 0.48) and thus, the five previous parameters settings
are now in first, ninth, second, fifth and thirteenth position with respect to the
standard deviation. It was decided to prefer the mutation parameters leading to
low fitness value and rank rather than to low standard deviation. Future works
will investigate ways to improve the robustness of the algorithm with respect to
the initial population and thus to reduce the standard deviation.

The selected parameters setting is then r = 0.5, and p = 0.3 which is the
first (resp. second) with respect to the rank (resp. best average fitness) because
(r, p) = (0.5, 0.2) is the first one as regards the best average fitness is only third
as regards the rank, and also because the very best fitness so far is obtained with
(0.5, 0.3). In the framework of the greedy (1 + λ)-EA with large λ value and low
numbers of iterations, very large mutation parameters with large exploration
seem to be suggested. The dynamic of the optimal parameters setting is shown on
Fig. 4. On the contrary of the common value of mutation parameters, the search
is not stuck on plateaus, and the number of improving steps is high. Besides,
those parameters setting found an optimal solution which reduces almost 65%
of the reference fitness of current management, with only the quarter of the
computation cost of the baseline settings.

5.3 Fitness landscape analysis
In this section, we investigate the fitness landscape of the NROO problem. For
each parameters setting of the mutation operator, a random walk of length
` = 1024 starting from a random candidate solution is computed. The cost of the
walk is about 5% of the computation cost of the EA, and the length is smaller
than the initial population size. Notice that by construction, all the solutions
of the walk are strictly different. From the random walks, the autocorrelation
length and the neutral rate are both estimated (see Sect. 2.3). The significant
level ε used to estimate the autocorrelation length is set to 4/

√
`.

49

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

0.1

0.2

0.3

0.1 0.2 0.3 0.4 0.5
Mutation range r

N
eu

tr
al

 d
eg

re
e

ra
te

 (
nr

)

Mut. rate p ● ● ● ●0.1 0.2 0.3 0.4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

50

100

150

0.1 0.2 0.3 0.4 0.5
Mutation range r

A
ut

oc
or

re
la

tio
n

le
ng

th

Mut. rate p
●

●

●

●

0.1
0.2
0.3
0.4

Fig. 6: Features of the fitness landscape as
a function of mutation parameters r and
p. neutral rate (top) and autocorrelation
length (bottom).

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

ρ = 0.231ρ = 0.231ρ = 0.231ρ = 0.231ρ = 0.231ρ = 0.231ρ = 0.231ρ = 0.231ρ = 0.231ρ = 0.231ρ = 0.231ρ = 0.231ρ = 0.231ρ = 0.231ρ = 0.231ρ = 0.231

r2 = 0.0533r2 = 0.0533r2 = 0.0533r2 = 0.0533r2 = 0.0533r2 = 0.0533r2 = 0.0533r2 = 0.0533r2 = 0.0533r2 = 0.0533r2 = 0.0533r2 = 0.0533r2 = 0.0533r2 = 0.0533r2 = 0.0533r2 = 0.0533

0.45

0.50

0.55

0.1 0.2 0.3
Neutral degree rate

A
ve

ra
ge

 n
or

m
. f

itn
es

s

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

ρ = 0.824ρ = 0.824ρ = 0.824ρ = 0.824ρ = 0.824ρ = 0.824ρ = 0.824ρ = 0.824ρ = 0.824ρ = 0.824ρ = 0.824ρ = 0.824ρ = 0.824ρ = 0.824ρ = 0.824ρ = 0.824

r2 = 0.679r2 = 0.679r2 = 0.679r2 = 0.679r2 = 0.679r2 = 0.679r2 = 0.679r2 = 0.679r2 = 0.679r2 = 0.679r2 = 0.679r2 = 0.679r2 = 0.679r2 = 0.679r2 = 0.679r2 = 0.679

0.45

0.50

0.55

0.60

0 50 100 150
Autocorrelation length

A
ve

ra
ge

 n
or

m
. f

itn
es

s

Fig. 7: Scatter plots and regression lin-
ear models between the average best nor-
malized fitness and the features of fitness
landscapes. Neutral rate (top) and auto-
correlation length (bottom).

The Fig. 6 shows the features of the fitness landscape according to the
mutation parameters. The mutation range width r does not impact the neutral
rate. On the contrary, the neutral rate decreases with the mutation rate p : from
25% for the baseline setting with p = 0.1 to 3% for a high mutation rate value
p = 0.4. The neutrality of NROO fitness landscape is high, and is dominated by
large plateaus for common value of the mutation rate p. The neutral geometry
explains the punctured equilibrium dynamics of the EA. As expected, a stronger
mutation implies a more rugged fitness landscape. However, the ruggedness of
the landscape is more impacted by the mutation range width r than by the
mutation rate p. The autocorrelation length decreases with the mutation range
width r from approximately 120 for r = 0.05 to 6 for the largest value r = 0.5
which picks a random new value. However, the landscape can be considered as a
smooth landscape. For instance, when the mutation range is r = 0.2, more than
50 steps are required to reach a correlation of fitness between solutions smaller
than ε = 0.125. This feature should explain the good performances of the EA.

The Fig. 7 shows the correlation between the performance of the EA in terms
of average normalized best fitness found and the feature values of the fitness
landscape. Each point corresponds to a mutation parameters setting and the
regression line of the linear model is also drawn. Surprisingly, although the neutral
rate could be high, it is not linearly correlated to the performance of the EA.
Only r2 = 5.3% of the performance variance is explained by the linear regression
model, and the Pearson correlation coefficient is below 0.23. On the contrary, the
autocorrelation length is highly correlated with EA performance. The Pearson
correlation coefficient is 0.82, and r2 = 67.9% of variance is explained by the

50

simple linear regression. The result of the real-world NROO problem with costly
fitness function is in accordance with fundamental works in EA such as on the
well-known NK-landscapes : the problem difficulty and the performances are
correlated to the ruggedness of the fitness landscapes. In contrast to the classical
result obtained on the previous fundamental works however, the more rugged
the landscape, the better the performance of the parallel EA. Our first result
shows that a fitness landscape approach could be used to tune the parameters,
but for highly selective parallel (1 + λ)-EA with a large number of computing
units, rugged landscapes should be preferred.

6 Conclusions

In this paper, a real-world black-box combinatorial optimization problem with
an expensive fitness function has been studied, and to solve it, an asynchronous
master-worker (1 + λ)-EA running on a massively parallel architecture was used.
The tough point of this exercise was the design of the algorithm, and mainly
the mutation parameters. To do so, a parametric study was launched, giving
satisfactory results, but requiring a lot of resources. In a second time, a fitness
landscape analysis on this expensive problem showed that it is possible to tune
the mutation parameters, and surprisingly, in the case of a large scale computing
environment, with a limited user computation time, the mutation parameters
associated to the most rugged landscape are relevant. It has then been possible
to improve the considered criterion of almost 65%, meaning that on a given
load-following transient, the operation of the core keep the axial power offset
almost constant. This is encouraging for the following as some margins have been
generated so that more heckled transients can now be considered.

The next step of this work is the minimization of the rejected effluent by the
nuclear power plant. While there are many steps to be taken, our methodology
opens the opportunity to tune the evolutionary algorithm from fitness landscape
features, and pushes to design an efficient bi-objective algorithm for combinatorial
black-box problems with expensive fitness functions.

References

1. E. Alba and M. Tomassini. Parallelism and evolutionary algorithms. IEEE Trans-
actions on Evolutionary Computation, 6(5):443–462, 2002.

2. G. Arnaud, J.-M. Do, J.-J. Lautard, A.-M. Baudron, and S. Douce. Selection
combinatory algorithm for loading pattern design of light water reactor with two
levels of heterogeneity. Proceedings of ICAPP, 2011.

3. F. Daolio, A. Liefooghe, S. Verel, H. Aguirre, and K. Tanaka. Problem features vs.
algorithm performance on rugged multi-objective combinatorial fitness landscapes.
Evolutionary Computation, 2016.

4. A. A. de Moura Meneses, L. M. Gambardella, and R. Schirru. A new approach for
heuristics-guided search in the in-core fuel management optimization. Progress in
Nuclear Energy, Vol. 52, 2010.

51

5. M. Dubreuil, C. Gagne, and M. Parizeau. Analysis of a master-slave architecture for
distributed evolutionary computations. IEEE T. on Systems, Man, and Cybernetics:
Part B, 36:229–235, 2006.

6. O. Dumont. Ademe energie 2030 : Production d’énergies renouvelables. Technical
report, Ademe, 2012.

7. A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E. Smith. Parameter control in
evolutionary algorithms. In Parameter Setting in Evolutionary Algorithms, pages
19–46. Springer, 2007.

8. H. Grard. Physique, fonctionnement et sûreté des REP. EDP Sciences, 2014.
9. W. Hordijk. A measure of landscapes. Evo. comp., 4(4):335–360, 1996.

10. J. H. Kim, S. H. Park, and M. G. Na. Design of a model predictive load-following
controller by discrete optimization of control rod speed for PWRs. Annals of
Nuclear Energy, Vol. 71, 2014.

11. A. Liefooghe, B. Derbel, S. Verel, H. Aguirre, and K. Tanaka. Towards landscape-
aware automatic algorithm configuration: preliminary experiments on neutral and
rugged landscapes. In EvoCOP, Amsterdam, 2017.

12. A. Lokhov. Technical and economic aspect of load following with nuclear power
plants. Nuclear Energy Agency, OECD, June 2011.

13. M. López-Ibáñez, J. Dubois-Lacoste, T. Stützle, and M. Birattari. The Rpack-
ageirace package, iterated race for automatic algorithm configuration. Technical
Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles, 2011.

14. M. Muniglia, J.-M. Do, J.-C. Le Pallec, H. Grard, S. V. Verel, and S. David. A
multi-physics PWR model for the load following. ICAPP, 2016.

15. M. G. Na, I. J. Hwang, and L. Y. Joon. Design of a fuzzy model predictive power
controller for pressurized water reactors. IEEE Transactions on Nuclear Science,
Vol. 53 (3), JUNE 2006.

16. C. M. Pereira and C. M. Lapa. Coarse-grained parallel genetic algorithm applied
to a nuclear reactor core design optimization problem. Annals of Nuclear Energy,
Vol. 30, 2003.

17. J. R. Rice. The algorithm selection problem. Advances in Computers, 15:65–118,
1976.

18. W. F. Sacco, C. R. De Oliveira, and C. M. Pereira. Two stochastic optimization
algorithms applied to nuclear reactor core design. Progress in Nuclear Energy, Vol.
48, 2006.

19. W. F. Sacco, C. M. Lapa, C. M. Pereira, and H. A. Filho. A metropolis algorithm
applied to a nuclear power plant auxiliary feedwater system surveillance tests policy
optimization. Progress in Nuclear Energy, Vol. 50, 2008.

20. D. Schneider, F. Dolci, F. Gabriel, and J.-M. Palau. Apollo3r : Cea/den determin-
istic multi-purpose code for reactor physics analysis. PHYSOR, 2016.

21. P. F. Stadler. Fitness landscapes. In Biological Evolution and Statistical Physics,
volume 585 of Lecture Notes Physics, pages 187–207, 2002.

22. L. Vanneschi, M. Tomassini, P. Collard, S. Vérel, Y. Pirola, and G. Mauri. A
comprehensive view of fitness landscapes with neutrality and fitness clouds. In
European Conference on Genetic Programming, pages 241–250, 2007.

23. E. D. Weinberger. Local properties of Kauffman’s NK model, a tuneably rugged
energy landscape. Phys. Rev. A, 44:6399–6413, 1991.

24. S. Wessing, G. Rudolph, and D. A. Menges. Comparing asynchronous and syn-
chronous parallelization of the SMS-EMOA. PPSN XIV, 2016.

52

Sampled Walk and Binary Fitness Landscapes
Exploration

Sara Tari, Matthieu Basseur, Adrien Goëffon

Laboratoire d’Etude et de Recherche en Informatique d’Angers
UFR sciences, 2 boulevard Lavoisier 49045 Angers cedex 01

{sara.tari, matthieu.basseur, adrien.goeffon}@univ-angers.fr

Abstract. In this paper we present and investigate partial neighbor-
hood local searches, which only explore a sample of the neighborhood at
each step of the search. We particularly focus on establishing links be-
tween the structure of optimization problems and the efficiency of such
local search algorithms. In our experiments we compare partial neigh-
borhood local searches to state-of-the-art tabu search and iterated local
search and perform a parameter sensitivity analysis by observing the
efficiency of partial neighborhood local searches with different size of
neighborhood sample. In order to facilitate the extraction of links be-
tween instances structure and search algorithm behavior we restrain the
scope to binary fitness landscapes, such as NK landscapes and landscapes
derived from UBQP.

1 Introduction

Fitness landscapes are nowadays used in various fields to better apprehend the
behavior of complex systems. In particular, in evolutionary computation, the
study of combinatorial and continuous search spaces through fitness landscapes
analysis helps to understand and predict the behavior of evolutionary algorithms.
The concept of fitness landscape was first introduced by Wright [16] in the field
of theoretical biology. Originally, landscapes represent an abstract space of geno-
types where each individual is surrounded by all individuals differing by a mu-
tation on a single gene. Once an adaptation value (fitness) is assigned to each
genotype, such a model illustrates the repartition of peaks, valleys, and plateaus
which are helpful to highlight the effect of mutations on genotypes. In evolu-
tionary computation, such a model can help to observe difficulties induced by
a given problem when tackled with an optimization method. Some studies us-
ing the concept of fitness landscapes focus on basic methods in order to better
isolate and study some mechanisms used among search algorithms. In particu-
lar many studies have investigated hill-climbing algorithms [13, 15, 2] which are
basic methods often incorporated within more sophisticated metaheuristics.

The aim of this work is to obtain insights to conceive local search algorithms.
We focus on establishing links between optimization problem structure and effi-
ciency of local searches; the purpose here is not to tackle and optimize specifically

53

a particular problem. More precisely, we present and focus on partial neighbor-
hood local search algorithms, simple solution-based local searches which explore
a sample of the neighborhood at each step of the search. In our experiments we
perform a parameter sensivity analysis on partial neighborhood local searches
and compare them to state-of-the-art local searches (iterated local search and
tabu search) on two binary fitness landscapes: NK landscapes and the Uncon-
strained Binary Quadratic Programming problem (UBQP). Focusing on such
landscapes facilitates the extraction of links between landscapes properties and
search algorithms behavior. Here our experimental analysis highlights some links
between ruggedness and both overall efficiency of considered methods as well as
parameter sensivity of partial neighborhood local searches.

The paper is organized as follows. Section 2 is dedicated to the concept of
fitness landscapes and related features. In section 3 we introduce the sampled
walk local search algorithm as well as a similar partial neighborhood search
algorithm called ID walk, previously introduced by Neveu et. al [11]. In section
4, experiments are presented and analyzed. In the concluding section, we provide
possible ways forward.

2 Fitness landscapes

A fitness landscape is a triplet (X ,N , f) where X denotes the search space, N
the neighborhood relation which assigns a set of neighbors to each solution, and
f the fitness value which assigns a score to each solution. The search space and
fitness function are directly derived from the instance of the considered problem
whereas the method used to tackle the instance often induces a particular neigh-
borhood function. One of the main interests of fitness landscapes in evolution-
ary computation is to study the behavior of neighborhood-based optimization
methods in function of landscapes properties (typically their size, neutrality and
ruggedness). These properties and associated indicators are discussed in [9]. Yet,
main landscape characterization features cannot be calculated exactly since it
induces an exhaustive enumeration of the search space on landscapes that are
usually derived from large-scale NP-hard problems. They are generally estimated
through indicators which sample the search spaces.

The neutrality rate of a fitness landscape corresponds to the proportion of
neighboring solutions which have the same fitness value. While some landscapes
contain no neutrality, the presence of such a feature can have a non-negligible
effect on the number and distribution of local optima. In fact, landscapes with
high neutrality are in general harder to solve and induce questions about the
acceptance of neutral moves within local searches [10, 1].

The ruggedness of a landscape is a major property that determines the diffi-
culty to optimize the underlying problem using the considered neighborhood re-
lation. It mainly refers to the number of local optima, their distribution through
the search space, and the size of their basins of attraction [12].

The autocorrelation function [14] is generally used to estimate the ruggedness
of a fitness landscape. Such a measure requires the execution of several random

54

walks through the considered landscape. It calculates the correlation between
fitness and distances of solutions encountered during the random walk. The
result is a plot of autocorrelation where correlations usually decrease from 1 to
0 with respect to increasing distances between solutions.

The definition of ruggedness is not clearly established and ruggedness can
also refer to the epistasis phenomenon, related to the degree of variable interde-
pendency between genes [4]. When the interdependence between genes is high,
knowing if the presence of a given gene positively affects the individual is dif-
ficult, if not impossible. Such landscapes have high epistasis since the effect of
a mutation depends on the presence of other mutations. The sign-epistasis phe-
nomenon between two genes A and B is depicted in fig. 1 (in lower case when
the gene is not present). Considering two solutions and a given mutation (or
neighborhood operator application), there exists a sign epistasis when the sign
of the fitness variation resulting from the application of the mutation on both
solutions differs. The 1-ruggedness of a landscape corresponds to the rate of sign
epistasis between neighboring solutions, whereas the k-ruggedness of a landscape
corresponds to the rate of sign epistasis between k-distant solutions [2].

ab Ab

aB AB

ab Ab

aB AB

Fig. 1. Epistasis occurs when the presence of a mutation a → A affects the effect of
another mutation (ab→ aB, Ab→ AB). We observe sign epistasis once a deteriorating
mutation becomes beneficial when occuring after another mutation (left-hand side).
Ride-hand side: no sign epistasis.

In the following, we mainly focus on the relation between ruggedness and
behavior of partial neighborhood local searches.

3 Partial neighborhood local searches

This work follows previous studies related to the links between neutrality and
ruggedness of combinatorial landscapes and the efficiency of hill-climbing algo-
rithms. In particular, we investigated the ability of different neutral move policies
within climbers to find good local optima.

55

First, it is obvious that accepting neutral solutions can potentially drive
toward better local optima since it often helps not to be stuck in low-quality local
optima. During the climbing process, most intensification mechanisms focus as
a priority on improving the current solution rather than on considering neutral
moves. In such cases, the selection of a neutral solution is only considered once a
strict local optimum is reached. Yet a stochastic hill-climbing which indifferently
selects the first improving or neutral neighbor encoutered clearly outperforms
climbers which select improving neighbors as a priority [1].

Since accepting both improving and neutral neighbors during the search pro-
cess helps to reach higher pikes, the effect of adding artificial neutrality in land-
scapes (by discretizing the fitness function) in order to reduce the ruggedness
was studied in [3]. With an appropriate neutrality rate, stochastic climbers can
efficiently tackle harder landscapes. Artificial neutrality-based climbers tend to
favor better solutions without exclusively focusing on the improvement or dete-
rioration of the real fitness values.

Here, we aim to simplify as far as possible the idea of favoring better neigh-
bors. The key concept is to ignore if a move improves or not the current fitness
value while maintaining a selection pressure. We then propose the sampled walk
algorithm (SW), a local search which is based on randomly sampled neighbor-
hoods (see alg. 1). At each step of the search, SW evaluates λSW random neigh-
bors of the current solution and selects the one with the highest fitness value.
Except λSW , the only choice to make concerns the stopping criterion. Yet, the
stopping criterion is not necessarily fully considered as a parameter since in
practice to be compared runs have to stop for any algorithm. Moreover such a
parameter is irrelevant in an any-time optimization context.

λSW = 1 corresponds to a random walk whereas λSW = N (with N is the
neighborhood size) corresponds to a tabu search mechanism with an empty tabu
list.

Due to the extreme simplicity of SW, its implementation is easy and does not
require heavy design choices which depend upon the considered neighborhood
function. Moreover, the SW simplicity greatly facilitates its analysis and allows
many specific advanced variants. Note that SW, which is defined in a local search
context, can also be viewed as an (1,λ) evolution strategy (with λ = λSW).

ID Walk (Intensification/Diversification Walk) [11] is based upon a similar
concept. Like SW, ID Walk can be considered as a partial neighborhood search
since it consists of evaluating (at most) λID solutions at each step of the search.
However, ID Walk selects the first encountered improving neighbor and there-
fore considers the fitness of the current solution to select the move to apply.
When no improving solution is found among the λID neighbors, the selected one
depends upon the considered variant. IDbest selects the best one among the λID
deteriorating neighbors, whereas IDany randomly selects one of them.

It is obvious that these partial neighborhood local seaches (SW, IDbest,
IDany), which use randomly generated subneigborhoods, leads to similar behav-
iors. As stated by Neveu et al. [11], ID walk was proposed with the aim to com-
bine intensification and diversification during the search process. Although SW

56

follows the same principle, it emphasizes that the diversification aspect (brought
by the partial neighborhood) is not explicitly determined by the sign of the fit-
ness variation. The next section experiments show that such approach is efficient
even if its selection strategy does not consider the fitness of the current solution.

Algorithm 1 Sampled Walk algorithm (maximization)

1: Choose x0 ∈ X (initialization)
2: x← x0
3: x∗ ← x
4: while stop criterion not reached do
5: P ← λSW random neighbors in N (x)
6: x← argmaxx′∈P (f(x′))
7: if f(x) > f(x∗) then
8: x∗ ← x
9: end if

10: end while
11: return x∗

4 Analysis on binary fitness landscapes

4.1 Experimental protocol

In order to properly assess the capacity of partial neighborhood local searches to
lead toward good quality solutions, we compared the three variants SW, IDbest

and IDany to two widely-used local searches: tabu search (TS) [6] and iterated
local search (ILS) [8]. Like SW, the classic tabu search does not use the current
fitness for the selection process, but the whole neighborhood is considered. The
tabu list prevents cycles which naturally occur by selecting iteratively the best
neighbor among the complete neighborhood. ILS separates intensification and
diversification phases. We choose here to use a first-improvement strategy dur-
ing hill-climbing (intensification) phases, as first-improvement regularly reaches
better local optima than best-improvement on landscapes difficult to climb [1].
Moreover, this leads to use for comparison two metaheuristics (ILS and TS)
sufficiently different.

ILS and TS can be implemented with some variants which affect their be-
havior. Here we designed them as classical as possible. ILS performsM random
moves when a local optimum is reached. At each step of the algorithm, TS se-
lects the best move using a tabu list of forbidden bit-flips of size L, that ensures
a minimal distance between following solutions.

ILS, TS, IDbest, IDany and SW require to set two parameters: a stopping
criterion and the aforementioned structuring parameter. In this study, the stop-
ping criterion is a maximum number of evaluations to permit a fair comparison
between methods. The maximum number of evaluations is fixed to 108 for all

57

runs regardless to the landscape size. Such a value allows a sufficient convergence
which ensures methods to almost never improve the best encountered solution
after a significant number of evaluations. For each method we perform runs using
several parameter values in order to establish appropriate settings.

For each triplet (landscape, method, parameter value) 100 runs are performed
from the same initial set of 100 randomly generated solutions in order to reduce
the stochastic bias. For each triplet, we retain the average of the 100 best en-
countered solutions (one per run). Since several values are tested, for each couple
(landscape, method) only the best average is reported, i.e. the average obtained
with the best considered parameter value. We also indicate if the method having
the best average statistically dominates the other ones with respect to a binomial
test (with a confidence level of 99%) for each considered couple.

In our experiments, we consider two types of fitness landscapes: NK land-
scapes and UBQP landscapes (ie. landscapes derivated from UBQP instances),
the neighborhood operator under consideration being the one-flip operator.

NK landscapes are a model of binary fitness landscapes introduced by Kauf-
mann [7]. They are widely used when it comes to study the link between rugged-
ness and methods since their specificity is to have a tunable ruggedness. Such
landscapes are defined by means of two parameters N and K. N specifies the
number of variables and then the search space size (2N). K determines the degree
of variable interdependency (the fitness contribution of each variable being af-
fected by K other variables) and greatly influences the ruggedness rate. Setting
K to zero leads to a completely smooth landscape with no variable interde-
pendency whereas setting K to N − 1 leads to an extremely rugged (random)
landscape. We used landscapes of various sizes N ∈ {128, 256, 512, 1024} and
ruggedness parameter K ∈ {1, 2, 4, 6, 8, 10, 12}.

The Unconstrained Binary Quadratic Programming problem (UBQP) is a
NP-hard problem [5] which can reformulate a large scope of real-life problems
in various fields. An instance of UBQP is composed of a matrix Q of size n× n
of constants qij which can be positive or negative. A solution is a binary vector
x of size n where xi ∈ {0, 1} corresponds to the i-th element of x. The UBQP
objective function f(x) =

∑n
i=1

∑n
j=1 qijxixj has to be maximized.

We used an instance generator (proposed and provided by Gintaras Palubeckis
on www.personalas.ktu.lt/∼ginpalu/ubqop its.html) to generate some instances
of different sizes and density. The density d affects the rate of values equal to
zero in the matrix Q, d = 0 leads to a matrix full of zero except on the diagonal
whereas a d = 100 leads to matrix with no zero.

4.2 Results

Results (see table 1) show in most cases that on the considered NK landscapes
the sampled walk SW leads toward best solutions in average. SW efficiency does
not seem to be affected by the ruggedness, which is mostly tuned by means of the
parameter K. On smooth and small landscapes (K ≤ 4 and N = 128) almost all
methods lead toward the same solution which seems to be the global optimum.
The explanation behind these results is that regardless the size and ruggedness

58

Land. Average fitness Best parameter value

N K SW IDbest IDany ILS TS λSW λIDb λIDa M L
128 1 .7245 .7245 .7245 .7245 .7165 8, 12 8, 12 16 → 128 5 → 20 20
128 2 .7424 .7424 .7420 .7423 .7369 12, 16, 20 16 40 10 20
128 4 .7959 .7959 .7959 .7958 .7952 16, 20 16, 20 40 → 128 5 20
128 6 .8004 .8003 .8000 .7994 .7976 16 16 56 5 15
128 8 .8021 .8015 .7980 .7949 .7923 20 20 72 5 15
128 10 .7937 .7930 .7893 .7847 .7828 24 32 120 5 10
128 12 .7819 .7817 .7785 .7724 .7729 28 36 96 5 10

256 1 .7220 .7220 .7199 .7200 .7118 16 16 96 15 20
256 2 .7444 .7444 .7426 .7424 .7249 24 24 96 5, 10, 20 20
256 4 .7934 .7933 .7921 .7916 .7823 20 20 192 5 20
256 6 .8048 .8045 .8017 .8007 .8020 24 24 184 5 20
256 8 .7964 .7960 .7915 .7892 .7894 32 32 112 5 15
256 10 .7869 .7860 .7822 .7782 .7779 36 40 184 5 15
256 12 .7756 .7756 .7718 .7663 .7657 44 52 184 5 15

512 1 .7079 .7077 .7038 .7040 .7007 16 16 256 20 50
512 2 .7509 .7509 .7451 .7453 .7316 16 24 128 5 50
512 4 .7860 .7857 .7802 .7806 .7845 24 24 128 → 512 5 50
512 6 .7989 .7984 .7944 .7940 .7965 24 32 256 5 30
512 8 .7939 .7935 .7894 .7886 .7849 40 40 256 5 30
512 10 .7829 .7825 .7790 .7781 .7760 56 48 256 5 20
512 12 .7720 .7719 .7682 .7671 .7618 64 64 256 5 15

1024 1 .7163 .7160 .7083 .7087 .7051 16 16, 24 256 15 50
1024 2 .7522 .7521 .7427 .7428 .7274 24 24 256 5, 10, 20 50
1024 4 .7878 .7872 .7800 .7797 .7654 24 24 256 5 50
1024 6 .7949 .7943 .7893 .7890 .7899 32 32 256 5 50
1024 8 .7901 .7888 .7859 .7850 .7850 40 48 256 5 40
1024 10 .7793 .7786 .7758 .7753 .7740 56 64 256 10 30
1024 12 .7694 .7689 .7664 .7656 .7653 72 80 256 5 20

Table 1. Results on NK landscapes. Left-hand side: average fitness obtained with the
best parameter value for each couple (landscape, method). For each landscape, the best
average fitness obtained appears in bold, whereas non statistically dominated methods
appear in shaded. Right-hand side: the best parameter value(s).

59

UBQP SW IDbest IDany ILS TS

2048 10 1004035.71 1004052.02 1003773.58 1004293.54 1004254.14

2048 25 1640792.90 1640823.45 1640432.32 1641183.63 1641192.63

2048 50 2397652.20 2397695.08 2397215.93 2398106.97 2398443.35

2048 100 3097976.50 3098266.91 3097122.46 3098566.65 3099318.75

4096 10 2807921.35 2807955.71 2806968.13 2807632.68 2808263.77

4096 25 4594746.56 4595136.29 4593264.07 4593665.15 4595741.73

4096 50 6526291.28 6526692.46 6524326.94 6525133.66 6527995.10

4096 100 9090355.70 9090761.04 9086936.83 9087492.74 9093039.30

Table 2. Results on UBQP landscapes. Average fitness obtained with the best param-
eter value for each couple (landscape, method). For each landscape, the best average
fitness obtained appears in bold, whereas non statistically dominated methods appears
in shaded.

of landscapes, runs are always performed with a credit of 100 million of evalu-
ations. Since smaller and smoother landscapes tend to be easier to tackle, they
require less computational effort to attain good solutions. On every considered
landscapes, results obtained by ID walk are very close to those obtained by SW,
but SW often statistically dominates on large landscapes.

Ruggedness does not seem to affect the overall comparative efficiency of the
considered methods. Yet, best parameter values (among the considered ones)
for each method evolve in function of the value of K. SW and IDbest require
very similar parameter values in order to reach good solutions. One can observe
that the most appropriate parameter values increase when K increases. IDany

parameters requirement does not evolve the same way as IDbest and SW. For ILS
and TS, the number of perturbations and the length of the tabu list also evolve
in function of K. On very smooth landscapes, ILS requires more perturbations
and TS a longer tabu list than on more rugged landscapes.

Such results, in addition to those observed on SW, seem indicate that the
search process needs more diversification on smooth landscapes than on rugged
ones. Actually smooth landscapes contain few local optima and then have large
basins of attraction. On such a configuration, a more important diversification
helps to get out of some basins and to attain different local optima.

All methods were also tested on several landscapes derived from UBQP in-
stances and results differ from those obtained on NK landscapes. In table 2, we
only report large landscapes results (N = 2048 and N = 4096) since on smaller
ones the considered methods with various parameters value almost always lead
toward the same solution (which is expected to be the global optimum). Such
a fact indicates that for a given N , N -dimensional UBQP landscapes are easier
to tackle than N -dimensional NK landscapes.

On large landscapes, the tabu search almost always leads toward the best
average. ILS is rarely dominated when N = 2048, but always outperformed by
TS when N = 4096.

60

4.3 Landscapes ruggedness and partial neighborhood LS efficiency

Experiments show that the sampled walk is particularly efficient on NK land-
scapes, regardless of the ruggedness level. Yet SW and other partial neighbor-
hood local searches (ID walk) is less efficient on UBQP landscapes, which seem
to be easier to tackle than NK landscapes. In order to determine if there is
a link between those results and the structure of landscapes, we analyzed the
ruggedness of landscapes by means of two indicators: autocorrelation and the
k-ruggedness.

The plot of autocorrelation (fig. 2) on NK landscapes shows that its evolution
is affected by K. Indeed, the more rugged a landscape is, the faster the corre-
lation fitness-distance decreases. The plot of autocorrelation (fig. 3) on UBQP
landscapes shows that its evolution is globally identical on all considered land-
scapes and evolves similarly as very smooth NK landscapes (K = 1).

The evolution of k-ruggedness (fig. 4) on NK landscapes follows the same
scheme as the evolution of autocorrelation. Yet, the k-ruggedness indicator evolves
quite differently on UBQP landscapes (fig. 5) than on smooth NK landscapes,
especially on the first steps with a faster evolution. Such observation evokes
locally-rugged landscapes.

Fig. 2. Autocorrelation evolution on NK landscapes of size 128 (similar outputs can
be observed for higher size of landscapes).

Considering NK landscapes, analogies between the evolution of autocorre-
lation and k-ruggedness seem to indicate that such landscapes have a uniform
ruggedness repartition. On the contrary, it appears that UBQP landscapes have a
less uniform ruggedness repartition, which we can describe as a local ruggedness
and a global smoothness. This could also explain why smaller UBQP instances
are easy to solve by local search as long as some diversification is applied. An hy-
pothesis which could possibly explain the lower efficiency of partial neighborhood
local searches on such landscapes is that such methods tends to explore solutions
scattered through the entire landscape, whereas tabu search naturally intensi-
fies around promising areas. In this type of landscapes, the correlation between

61

Fig. 3. Autocorrelation evolution on landscapes derived from UBQP of size 128 (similar
outputs can be observed for higher size of landscapes).

Fig. 4. K-ruggedness evolution on NK landscapes of size 128 (similar outputs can be
observed for higher size of landscapes).

Fig. 5. K-ruggedness evolution on landscapes derived from UBQP of size 128 (similar
outputs can be observed for higher size of landscapes).

62

fitness and distance of solutions decreases progressively. When the decorrelation
fitness-distance is fast, the use of a sampled walk seems more appropriate to
efficiently explore the search space.

5 Conclusion

In this paper we investigate partial neighborhood local searches and, more par-
ticularly, the sampled walk algorithm which can be viewed as a local search
transposition of an (1,λ)-ES. We show that the sampled walk is efficient to
tackle common binary landscapes. Conducted experiments on NK landscapes
highlighted the fact that the sampled walk behavioral parameter can be princi-
pally set according to the landscape ruggedness. Experiments also show that such
a method is globally competitive in comparison to metaheuristic searches like
tabu search and iterated local search. Even if the sampled walk is outperformed
by a tabu search on UBQP, we are able to establish links between respective
efficiency of methods and ruggedness repartition thanks to the k-ruggedness in-
dicator.

Future works include the consideration of permutation-based landscapes. The
use of other solution representation brings some difficulties such as the criterion
on which the tabu list is based, as well as the way to evaluate the k-ruggedness
since this indicator is related to the concept of sign epistasis. It would provide
useful information to analyze the behavior of the considered methods all along
the search process (any-time optimization). Finally, this family of local searches
like ID walk, based on a random sampling of the neighborhood, constitutes very
simple search algorithms and have not been deeply investigated in the meta-
heuristics literature. There are thus many ways to differently use the sampled
walk principle and to improve its efficiency, for instance by adapting its param-
eter during the search according to landscapes features.

References

1. Matthieu Basseur and Adrien Goëffon. Hill-climbing strategies on various land-
scapes: an empirical comparison. In Genetic and Evolutionary Computation Con-
ference (GECCO), pages 479–486. ACM, 2013.

2. Matthieu Basseur and Adrien Goëffon. Climbing combinatorial fitness landscapes.
Applied Soft Computing, 30:688–704, 2015.

3. Matthieu Basseur, Adrien Goëffon, and Hugo Traverson. Exploring non-neutral
landscapes with neutrality-based local search. In International Conference on
Learning and Intelligent Optimization, pages 165–169. Springer, 2015.

4. William Bateson, ER Waunders, and Reginald Crundall Punnett. Experimen-
tal studies in the physiology of heredity. Molecular and General Genetics MGG,
2(1):17–19, 1909.

5. Michael R Gary and David S Johnson. Computers and intractability: A guide to
the theory of NP-completeness, 1979.

6. Fred Glover and Manuel Laguna. Tabu Search. Springer, 2013.

63

7. Stuart A. Kauffman and Edward D. Weinberger. The NK model of rugged fitness
landscapes and its application to maturation of the immune response. Journal of
Theoretical Biology, 141(2):211 – 245, 1989.

8. Helena R Lourenço, Olivier C Martin, and Thomas Stützle. Iterated local search.
In Handbook of metaheuristics, pages 320–353. Springer, 2003.

9. Katherine M Malan and Andries P Engelbrecht. A survey of techniques for charac-
terising fitness landscapes and some possible ways forward. Information Sciences,
241:148–163, 2013.

10. Marie-Éléonore Marmion, Laetitia Jourdan, and Clarisse Dhaenens. Fitness land-
scape analysis and metaheuristics efficiency. Journal of Mathematical Modelling
and Algorithms, pages 1–24, 2013.

11. Bertrand Neveu, Gilles Trombettoni, and Fred Glover. ID walk: A candidate list
strategy with a simple diversification device. In International conference on prin-
ciples and practice of constraint programming, pages 423–437. Springer, 2004.

12. Gabriela Ochoa, Marco Tomassini, Sebástien Vérel, and Christian Darabos. A
study of NK landscapes’ basins and local optima networks. In Proceedings of the
10th annual conference on Genetic and evolutionary computation, pages 555–562.
ACM, 2008.

13. Gabriela Ochoa, Sébastien Verel, and Marco Tomassini. First-improvement vs.
best-improvement local optima networks of NK landscapes. Parallel Problem Solv-
ing from Nature, PPSN XI, pages 104–113, 2010.

14. Edward Weinberger. Correlated and uncorrelated fitness landscapes and how to
tell the difference. Biological cybernetics, 63(5):325–336, 1990.

15. Darrell Whitley, Adele E Howe, and Doug Hains. Greedy or not? best improving
versus first improving stochastic local search for MAXSAT. In AAAI, 2013.

16. Sewall Wright. The roles of mutation, inbreeding, crossbreeding, and selection in
evolution, volume 1. 1932.

64

Session 3 - Genetic Programming

65

Semantics-based Crossover for Program
Synthesis in Genetic Programming

Stefan Forstenlechner, David Fagan, Miguel Nicolau, and Michael O’Neill

Natural Computing Research & Applications Group, School of Business,
University College Dublin, Ireland

stefan.forstenlechner@ucdconnect.ie,
{david.fagan,miguel.nicolau,m.oneill}@ucd.ie

Abstract. Semantic information has been used to create operators that
improve performance in genetic programming. As different problem do-
mains have different semantics, extracting semantics and calculating se-
mantic similarity is of tantamount importance to use semantic operators
for each domain. To date researchers have struggled to effectively do
this beyond the boolean and regression problem domain. In this paper,
a semantic similarity-based crossover is tested in the problem domain
of program synthesis. For this purpose, a similarity measure based on
the execution trace of a program is introduced. Subtree crossover as well
as semantic similarity-based crossover are analysed on performance and
semantic aspects. The goal is to introduce the Semantic Similarity-based
Crossover in the program synthesis domain and to study the effects of
using semantic locality. The results show that semantic crossover pro-
duces more semantically different children as well as more children that
are better than their parents compared to subtree crossover.

Keywords: Genetic Programming; Program Synthesis; Crossover

1 Introduction

Semantic information has helped improve operators to achieve better perfor-
mance in Genetic Programming (GP) compared to syntactical operators [13]
[15]. The properties semantic diversity (keeping a semantically diverse popu-
lation) and semantic locality (small change in the genotype results in a small
change in the phenotype) are of major importance to this process. One such
operator that makes use of semantic information, especially of semantic locality,
is the Semantic Similarity-based Crossover (SSC) introduced by Nguyen et al.
[12], which was able to achieve performance improvements over several other
crossover operators.

Although semantic information can be a key aspect to improve performance
in GP, it is also problem dependent. Therefore, operators have to be adapted to
the problem domain. In this paper, SSC is introduced to the domain of program
synthesis to be able to benefit from semantic information in this area. For this
purpose, a semantic similarity measure for code snippets of programs is proposed.

66

The paper proceeds as follows. More information on SSC as well as semantics
itself is given in Section 2. A semantic crossover for program synthesis as well as
a semantic similarity measure are described in Section 3. The semantic crossover
is tested on a set of benchmark problems. The experimental setup is explained
in Section 4 and the results are analysed in Section 5. The conclusion and future
work of the study are discussed in Section 6.

2 Related Work

This section explains certain terms that are related to this study and Semantic
Similarity-based Crossover is described, which the proposed crossover operator
in Section 3 is based on.

2.1 Semantics

A standard genetic programming system relies upon syntactical genetic oper-
ators. The benefits of these operators are that they are problem independent,
but they can be outperformed by more specialised operators. Semantics, which
defines ”the behavior of a program, once it is executed on a set of data” [15],
can be used to gain additional information about a program to improve perfor-
mance. Performance improvements are often gained by making use of semantic
diversity and semantic locality [13] [15]. These properties are important as a
high semantic diversity helps exploring the search space and semantic locality
improves the efficiency of the search algorithm [15]. A direct approach to using
semantics instead of relying on diversity and locality that should be mentioned is
Geometric Semantic GP [10], which uses tailored genetic operators that produce
solutions which cannot be worse than the solutions they are derived from. But
this approach is limited to certain problem domains and increases the size of the
possible solutions rapidly.

As semantic information is dependent on input and output of a program,
it is also problem dependent. A measure for semantic similarity or difference
can only be applied in a certain problem domain, therefore semantic operators
cannot be applied to all problem domains without adaptation. In this paper, a
semantic crossover operator is introduced in the domain of program synthesis.
Although this study focuses on crossover, semantic information has also been
used for mutation operators [1] and selection [4] [5]. A more detailed overview
of semantics and how it has been used so far can be found in this survey [15].

2.2 Semantic Crossover

Using semantics in crossover operators has been mainly studied in the domain
of boolean problems [2] [8] and regression problems [11] [12] [13]. The main idea
is to promote semantic locality by exchanging semantically similar subtrees to
make an overall small change to the output of the whole GP tree.

67

The proposed semantic crossover in this study is mainly inspired by Nguyen
semantic similarity-based crossover [11], which was improved multiple times [12]
[13]. The crossover selects one subtree of each parent and compares their semantic
output with each other. The semantic output is produced by using random values
as input for the subtrees. Then, the semantic similarity is measured as the sum
of the absolute differences of the outputs. Initially, an upper bound was used to
decide if the subtrees were similar enough for crossover [11]. This was improved
by using an upper bound and a lower bound to avoid equivalent and too similar
subtrees [12]. In both cases, multiple tries can be used to find similar subtrees.
After that, the crossover was adapted to calculating the semantic similarity of
multiple subtrees at once and using the most similar ones for crossover, which
are not equivalent according to a lower bound [13].

3 Semantics in Program Synthesis

In contrast to other problems tackled with GP, in program synthesis, nodes
are usually typed to be able to produce syntactically correct programs, like
using grammars or abstract syntax trees as representations. It should be noted
that experiments carried out in this paper, see Section 4, are executed with a
grammar-based GP system, but the proposed approach is generally applicable.
Therefore, nodes are implicitly typed, because crossover and mutation are only
allowed to create individuals which apply to the specifications of the grammar.
Section 3.1 describes the semantic similarity measure proposed in this study and
Section 3.2 explains the details of the adapted semantic crossover for program
synthesis.

3.1 Semantic Similarity Measure with Traces

The semantic crossover proposed by Nguyen et al. [13], which the crossover
proposed in this paper is based upon, uses a semantic distance measure. As
mentioned, semantics are problem specific and the existing semantic distance
measures were designed for regression problems. To apply semantic crossovers in
the program synthesis domain a distance measure for code snippets of a program
are required, which is the main contribution of this paper.

Semantics is defined as the output or the behaviour of a program. For a re-
gression problem, the output is a vector of real values. In the case of program
synthesis, the output can be multiple vectors of different data types. A semantic
similarity can be calculated on the difference of the variables of two programs.
Similar to semantics in regression, it is not only possible to get the semantics of
the final output, but also of intermediate steps. In the case of program synthesis,
intermediate steps can be one or more executable statements. After every state-
ment the change of variables can be checked. Therefore, the semantic of every
statement can be saved and used in a genetic operator. To measure the semantics
of a subtree which only represents part of a program statement (e.g. a binary

68

comparison), the first parent node representing an actual program statement is
used instead.

The process of logging variable changes in a program is called tracing and
produces a trace. These traces are used to check the semantics of every statement
in the program and to measure semantic similarity. An example of a trace of
a short program is shown in Figure 1. A short code snippet and a possible
corresponding tree representation are shown, as well as the trace of the variable
settings. Every statement that can be executed on its own has a corresponding
variable setting before and after the execution of the code. The variable setting
of 1* is the initial input setting for three different inputs. 2* displays the variable
settings after executing the first statement and 3* after the second statement.
Variable changes are marked in red and bold.

Code: a = a - b

x = a < b

1* <code> <statement> 3*

1* <statement> 2* 2* <bool_assign> 3*

1* <int_assign> 2*

<int_var> = <int>

a <int_var> <int_op> <int_var>

a - b

<bool_var> = <bool>

x <int_var> <comp_op> <int_var>

a < b

1*
a b x
5 3 False
9 1 False
6 3 False

2*
a b x
2 3 False
8 1 False
3 3 False

3*
a b x
2 3 True
8 1 False
3 3 False

Fig. 1. Example trace of a tree which has an initial variable setting 1* for three dif-
ferent inputs. The state of the variables after executing the tree/code is shown in the
variable setting 3*. 2* is an intermediate variable setting produced by executing the
first statement. The numbers 1*-3* denote the variable settings or semantics before
and after executing that node and are the trace of this tree.

The trace of a variable produces a vector of that type, as the trace is produced
with multiple different inputs. Therefore, the trace of a boolean variable produces
a vector of boolean values. A variable of the type list of integers produces a vector
of lists of integers. The similarity measures used are listed in Table 1. These
measures are only suggestions as this is an initial study on using semantics in

69

program synthesis. The similarity measures should be self-explanatory, except
the “List of any type”. As list elements cannot only be changed, but also removed
or additional ones can be inserted, Levenshtein distance gives an approximation
of how much of the list has changed, similar to a string.

Table 1. Similarity measures per variable

Variable type Similarity measure

Boolean Hamming distance
Integer Sum of absolute differences
Float Sum of absolute differences
String Sum of Levenshtein distances
List of any type Sum of Levenshtein distances

These similarity measures only calculate the difference between two variables
of the same type. Two programs might have more variables of the same type.
The similarity of two variables that mainly contain large values might be by
far bigger than the similarity of two variables that contain only small values.
Therefore, the influence on the overall similarity of two programs of variables
containing small values will always be proportionally smaller. To counteract that
problem, all similarities are normalized to be between 0 and 1. Nevertheless, due
to the different similarity measures used and to check which data types show
a difference, only one data type is used per crossover for measuring semantic
similarity. The tree in Figure 1 shows a difference in the integer variable a and
boolean variable x. One of the data types, integer or boolean, will then be chosen
for the similarity measure. If integer is chosen, then a and b will be used and x
will be ignored, otherwise x will be used and the other two will be ignored.

3.2 Semantic Crossover for Program Synthesis

The semantic crossover for program synthesis proposed in this study is based
on the Most Semantic Similarity-based Crossover (MSSC) by Nguyen et al. [13],
which is explained in Section 2.2. The pseudocode in Algorithm 1 describes the
proposed crossover algorithm. As with subtree crossover, a crossover point from
the first parent is selected. Then, instead of selecting one random subtree from
the second parent, which is of the same type as the selected node from the first
parent, up to a maximum value of subtrees (Max Tries) are selected at random
without repetition. Max Tries is a parameter that can be set. If the second
parent does not contain a subtree of the same node type as the selected one
from parent one, no crossover is executed.

In the next step, the semantic differences between the subtree of the first
parent and all the selected subtrees from the second parent are calculated. This
is done in the following way. During the evaluation, the semantic information of
every individual is saved in form of an execution trace as explained in Section

70

Algorithm 1 Semantic similarity-based crossover for program synthesis

select crossover point from first parent
select Max Tries possible subtrees from second parent
if no subtrees of same type as crossover point available then

return do nothing
end if
get semantics of every selected subtree from second parent
calculate semantic differences for every selected subtree per type
if differences then

select random type
select most semantically similar subtree based on selected type

else
select random subtree for crossover from second parent

end if
crossover with selected subtree

Algorithm 2 Semantic similarity calculation for two subtrees

input1, output1 ← semantics of subtree from first parent
set variables to input1
output2 ← execute one subtree from second parent
calculate semantic distance between output1 and output2

3.1. The variables setting before and after the execution of each statement and
therefore the corresponding subtree is saved as well. The variable setting before
the execution of a subtree can be viewed as the input and the setting afterwards
as the output of that code snippet. For each selected subtree from the second
parent, the variables are set to input of the subtree of the first parent, followed by
executing the subtree of the second parent and comparing the variable outputs
to the output variable setting of the subtree from the first parent. A more concise
description of this process as pseudocode is given in Algorithm 2. It should be
noted that this is not a fitness evaluation, but a necessary process to find the
semantic differences. If there is no difference for any subtree, one subtree is
chosen randomly. If there is a semantic difference, a random data type is chosen,
which shows a semantic difference. For all variables of that data type, the sum
of semantic similarities is calculated with the corresponding similarity measure,
shown in Table 1. The most semantic similar subtree that is not equal, is chosen
for crossover.

The reason why only one data type is chosen, is because different data types
use different distance measures and mixing them might result in unwanted be-
haviour. Investigating combining these measures and choosing different measures
is left for future work.

71

4 Experimental Setup

A tree-based grammar guided genetic programming system is used for the ex-
periments. The used grammars produce executable Python programs and have
been automatically generated. Multiple small Python grammars exist, where
each grammar only defines rules for one specific data type. The automatic gen-
eration process combines these grammars according to the data types required
by a specific problem. The design of the grammars has been taken from [3]. Five
benchmark problems are used and are explained in more detail in the next Sec-
tion. The parameter settings are displayed in Table 2, which are the same as in
[3], except the number of generations has been reduced. Three variables of each
data type required by a problem are available in the grammars. An execution
timeout has been set to one second to avoid non-halting programs. An execution
on the problem should usually only take a few milliseconds. Lexicase selection
[6] was used as it has shown better performance on program synthesis prob-
lems than tournament selection [7]. All experiments are run with the semantic
similarity-based crossover for program synthesis proposed in the previous section
and subtree crossover. Subtree crossover was modified to operate only on nodes
with the same type, similar to Strongly Typed Genetic Programming [9], as
grammars have implicit typing due to grammar rules. The maximum number of
selected subtrees from the second parent (Max Tries) has been set to 10, which
has been established in preliminary experiments.

Table 2. Experimental parameter settings

Parameter Setting

Runs 50
Generations 100
Population size 500
Selection Lexicase
Crossover probability 0.9
Mutation probability 0.05
Elite size 1
Node limit 250
Variables per type 3
Max execution time 1 second
Max Tries 10

The experiments have been executed with HeuristicLab [16].

4.1 Benchmark Problems

The problems chosen are of various difficulties, namely Collatz Number, Com-
pare String Lengths, Grade, Number IO and Super Anagrams. These problems

72

have been introduced with others as a general program synthesis benchmark
suite by Helmuth et al. [7] and are introductory computer science programming
problems. The benchmark suite has been tackled before with PushGP [14] and
the system used in this paper. Collatz Number has neither been solved by the
system used, nor by the PushGP. Compare String Lengths, Grade and Super
Anagrams have been solved before, but the success ratio was rather small, from
3 times out of 100 runs to 28 times out of 100 runs. Number IO is a rather easy
problem, solved nearly every time and is only used as a sanity check to see if
everything works correctly.

5 Results

In this section, the results of the experiments described in Section 4 are analysed.
Subtree crossover is referred to as “Default”, while the semantic similarity-based
crossover is called “Semantic”. As mentioned, the overall goal of the experiments
is to analyse and draw conclusions from the behaviour of a semantic crossover.
Due to the additional computation that is required for the semantic crossover
for program synthesis, an increased runtime is expected, but it has not been
analysed, because computational cost was added to collect the measurements
which will be discussed in this Section. Additionally the current implementation
of semantic crossover has in no form be optimised.

5.1 Successful Runs and Fitness

Table 3 shows the number of times a run was able to find a correct solution to a
problem and Table 4 shows the average test fitness of the best training solution
found over 50 runs. When comparing subtree crossover to semantic crossover
(SC), Table 3 shows that the correct solutions found on 50 runs is quite similar,
but Table 4 shows that on all problems except Super Anagrams the semantic
approach improved the average best fitness on the test dataset.

Table 3. Number of times correct solutions were found within 50 runs.

Default Semantic Diff

Collatz Numbers 0 0 0
Compare String Lengths 5 2 -3
Grade 1 4 3
Number IO 48 48 0
Super Anagrams 9 11 2

Additionally, Figure 2 depicts the average best training fitness over 50 runs.
The plots show that on average with SC better solutions are found in earlier
generations. Due to the simplicity of Number IO and to make better use of the

73

Table 4. Average test fitness of the best training individual found over 50 runs

Default Semantic Diff

Collatz Numbers 79852.54 79404.52 0.56%
Compare String Lengths 158.10 135.78 14.12%
Grade 1434.42 1012.14 29.44%
Number IO 14.59 0.06 99.61%
Super Anagrams 26.48 28.16 -6.34%

space available, plots of Number IO have been omitted. Statistical tests with
Wilcoxon rank sum test on the best test fitness of the last generation does not
show a significant difference on any of the problems.

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 0 20 40 60 80 100

Fi
tn

e
ss

Generation

Collatz Numbers

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

Fi
tn

e
ss

Generation

Compare String Lenghts

Semantic
Default

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100

Fi
tn

e
ss

Generation

Grade

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

Fi
tn

e
ss

Generation

Super Anagrams

Fig. 2. Average best training fitness over 50 runs

5.2 Parent Comparison

The goal of SC is to promote semantic locality and exchange similar subtrees, but
not equivalent ones. Therefore, this change should be visible in the child by hav-
ing a different semantics than its parent. McPhee et al. noticed in the boolean
domain that more than 50% of subtree crossover operations were not able to
change the semantics [8] and Nguyen et al. reported that even though subtree
crossover was able to change semantics in the regression domain in 60%-80% of
the operation, semantic crossover was often 20% higher [13]. Figure 3 shows the

74

percentage of individuals that are different from their rooted parent. The rooted
parent is the parent which removes a subtree to add the subtree from the second
parent, therefore the child and the parent have the same root node. The plots
in Figure 3 confirm that SC is more suited to create children whose semantics
differ from their rooted parent. Additionally, Wilcoxon rank sum tests were con-
ducted on each problem to confirm that the difference of the average percentage
of semantically different children produced by SC is statistically significant to
subtree crossover.

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e

Generation

Collatz Numbers

 15

 20

 25

 30

 35

 40

 45

 50

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e

Generation

Compare String Lenghts

Default: Different from rooted
Semantic: Different from rooted

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e

Generation

Grade

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e

Generation

Super Anagrams

Fig. 3. Percentage of children semantically different from their rooted parent

More interesting than just if a child is different than a parent, is if a child
is better than its parents. Figure 4 shows the percentage of children that have
a better fitness than their rooted parent and a better fitness than both parents.
For Collatz Numbers, SC is able to continually produce more children which are
better than either the rooted parent or both parents compared to subtree cross-
over, although no correct solution was found for Collatz Numbers. In the case of
Grade, SC is also able to produce more children which are better than their par-
ents over all generations. SC and subtree crossover achieve similar percentages
on Compare String Lengths and Super Anagram. Although SC initially does
better than subtree crossover, it only achieves similar or slightly worse percent-
ages later on. Again Wilcoxon rank sum tests was used for the statistical test,
which shows that for Collatz Numbers, Grade and Super Anagrams the average
percentage of children that are better than their rooted parent and both parents
is significantly higher with SC than with subtree crossover. For Compare String
Lengths the statistical test did not show a statistical significant difference.

75

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e

Generation

Collatz Numbers

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e

Generation

Compare String Lenghts

Default: Better than rooted
Default: Better than both

Semantic: Better than rooted
Semantic: Better than both

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e

Generation

Grade

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e

Generation

Super Anagrams

Fig. 4. Percentage of children that are better than rooted or better than both parents

5.3 Types Selected for Similarity Measurement

As described in Section 3.2, one data type of all available data types that shows
a semantic difference is randomly chosen to measure semantic similarity. Figure
5 shows the percentages of the likelihood of selecting a certain type for the
semantic similarity measure or if random crossover or no crossover was executed.
As mentioned before, no crossover can happen, if the second parent does not
contain a subtree of the same type as the selected node from the first parent or
no subtree applies the node limits set. Random crossover happens if no semantic
difference can be found with any data type on the specified number of subtrees
selected.

As can be seen in all cases, the data type that has been most often chosen for
calculating the semantic similarity is the data type that is used as return value
and therefore has the most influence on the fitness. Although even for Grade
the output data type is selected more often, the percentage does not increase as
drastically as in the other cases, which might occur because GP is not able to
improve the population as fast as on the other problems, as shown in Figure 2.

Another observation that can be made with the plots in Figure 5 is that the
amount of random crossover is high on all problems, which happens because
no semantic difference can be found with any data type. Super Anagrams is
the problem with the highest amount of random crossover, which keeps random
crossover around 50% over all generations, which might be due to the fast conver-
gence on that problem. The high percentage of random crossover indicates two
things. First, that many crossover operations are not able to produce individuals
that are different from their parents, which correlates with the plots displayed in
Figure 3. Second, that such a detailed semantic similarity measure as has been

76

used in this study might not be required. A relatively high number of subtrees
that have been checked during the semantic crossover for program synthesis seem
not to be able to create a semantically different individual. Adapting the cross-
over to using the first subtree that is semantically different instead of using the
most semantically similar one might be sufficient and improve run time, which
will be more similar to the original semantic similarity-based crossover proposed
in [12]. This has been noted for future work, see Section 6. Obviously increasing
the number of Max Tries could also increase the number of times the semantic
crossover finding a semantic difference, but that would increase run time.

Another interesting observation that can be made when looking at Figure 2
and 5 is that around the same generation as semantic crossover is using a specific
type instead of falling back to random crossover, is around the same generation as
fitness improves more with the semantic operator compared to subtree crossover.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e

Generation

Collatz Numbers

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e

Generation

Compare String Lenghts

Random crossover
Bool

Int
String

No Crossover

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e

Generation

Grade

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80 90 100

P
e
rc

e
n
ta

g
e

Generation

Super Anagrams

Fig. 5. Percentage of crossover of a specific type with Semantic similarity-based cross-
over

6 Conclusion & Future Work

In this study, a semantic similarity-based crossover was adapted to be able to use
in the program synthesis domain. To this end, methods for semantic distance
measure were proposed, which use the execution trace of a program, and the
semantic crossover was applied to a suite of benchmark problems.

Semantic similarity crossover for program synthesis was able to produce more
children that are semantically different from their parents as well as more chil-
dren that are better than their rooted parent and both parents. Nevertheless,

77

that did not lead to better overall performance. A reason might be that that a
high percentage of times the semantic crossover was still falling back to random
crossover, if it does not find any semantic difference on any selected subtree.

As mentioned before, a simpler check for semantic similarity, like checking for
any semantic difference, might be sufficient to improve performance and might
reduce run time over the semantic similarity measure proposed in this study,
which is part of future work. Additionally, adapting the crossover to consider
multiple different crossover points in the first parent instead of a single one
might also lead to finding semantic differences more often.

7 Acknowledgments

This research is based upon works supported by the Science Foundation Ireland,
under Grant No. 13/IA/1850.

References

1. Beadle, L., Johnson, C.: Semantically driven mutation in genetic programming.
In: Evolutionary Computation, 2009. CEC ’09. IEEE Congress on. pp. 1336–1342
(May 2009)

2. Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming.
In: Wang, J. (ed.) Proceedings of the IEEE World Congress on Computational
Intelligence. pp. 111–116. IEEE Computational Intelligence Society, IEEE Press,
Hong Kong (1-6 Jun 2008), http://results.ref.ac.uk/Submissions/Output/1423275

3. Forstenlechner, S., Fagan, D., Nicolau, M., O’Neill, M.: A Grammar Design Pattern
for Arbitrary Program Synthesis Problems in Genetic Programming, pp. 262–277.
Springer International Publishing, Cham (2017), http://dx.doi.org/10.1007/978-3-
319-55696-3 17

4. Forstenlechner, S., Nicolau, M., Fagan, D., O’Neill, M.: Introducing semantic-
clustering selection in grammatical evolution. In: Johnson, C., Krawiec, K.,
Moraglio, A., O’Neill, M. (eds.) GECCO 2015 Semantic Methods in Genetic Pro-
gramming (SMGP’15) Workshop. pp. 1277–1284. ACM, Madrid, Spain (11-15 Jul
2015), http://doi.acm.org/10.1145/2739482.2768502

5. Galván-López, E., Cody-Kenny, B., Trujillo, L., Kattan, A.: Using semantics in
the selection mechanism in genetic programming: A simple method for promoting
semantic diversity. In: Evolutionary Computation (CEC), 2013 IEEE Congress on.
pp. 2972–2979 (June 2013)

6. Helmuth, T., Spector, L., Matheson, J.: Solving uncompromising problems with
lexicase selection. IEEE Transactions on Evolutionary Computation 19(5), 630–643
(Oct 2015)

7. Helmuth, T., Spector, L.: General program synthesis benchmark suite. In:
GECCO ’15: Proceedings of the 2015 on Genetic and Evolutionary Com-
putation Conference. pp. 1039–1046. ACM, Madrid, Spain (11-15 Jul 2015),
http://doi.acm.org/10.1145/2739480.2754769

8. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic Building Blocks in Genetic Pro-
gramming, pp. 134–145. Springer Berlin Heidelberg, Berlin, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-78671-9 12

78

9. Montana, D.J.: Strongly typed genetic programming. Evol. Comput. 3(2), 199–230
(Jun 1995), http://dx.doi.org/10.1162/evco.1995.3.2.199

10. Moraglio, A., Krawiec, K., Johnson, C.: Geometric semantic genetic program-
ming. In: Coello, C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone,
M. (eds.) Parallel Problem Solving from Nature - PPSN XII, Lecture Notes
in Computer Science, vol. 7491, pp. 21–31. Springer Berlin Heidelberg (2012),
http://dx.doi.org/10.1007/978-3-642-32937-1 3

11. Nguyen, Q.U., Nguyen, X.H., O’Neill, M.: Semantic aware crossover for genetic
programming: The case for real-valued function regression. In: Vanneschi, L.,
Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) Proceedings of the
12th European Conference on Genetic Programming, EuroGP 2009. LNCS, vol.
5481, pp. 292–302. Springer, Tuebingen (Apr 15-17 2009)

12. Nguyen, Q.U., Nguyen, X.H., O’Neill, M., McKay, R.I., Galvan-Lopez, E.:
Semantically-based crossover in genetic programming: application to real-valued
symbolic regression. Genetic Programming and Evolvable Machines 12(2), 91–119
(Jun 2011)

13. Nguyen, Q.U., Nguyen, X.H., O’Neill, M., McKay, R.I., Phong,
D.N.: On the roles of semantic locality of crossover in genetic
programming. Information Sciences 235, 195–213 (20 Jun 2013),
http://www.sciencedirect.com/science/article/pii/S0020025513001175

14. Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution
with the push programming language. Genetic Programming and Evolvable Ma-
chines 3(1), 7–40 (2002), http://dx.doi.org/10.1023/A:1014538503543

15. Vanneschi, L., Castelli, M., Silva, S.: A survey of semantic methods in genetic pro-
gramming. Genetic Programming and Evolvable Machines 15(2), 195–214 (2014),
http://dx.doi.org/10.1007/s10710-013-9210-0

16. Wagner, S., Kronberger, G., Beham, A., Kommenda, M., Scheibenpflug, A.,
Pitzer, E., Vonolfen, S., Kofler, M., Winkler, S., Dorfer, V., Affenzeller, M.:
Advanced Methods and Applications in Computational Intelligence, Topics in
Intelligent Engineering and Informatics, vol. 6, chap. Architecture and Design
of the HeuristicLab Optimization Environment, pp. 197–261. Springer (2014),
http://dx.doi.org/10.1007/978-3-319-01436-4 10

79

On the Use of Dynamic GP Fitness

Cases in Static and Dynamic

Optimisation Problems

Edgar Galván-López1⋆, Lucia Vázquez-Mendoza2,
Marc Schoenauer3 and Leonardo Trujillo4

1 Department of Computer Science, National University of Ireland Maynooth, Ireland
edgar.galvan@mu.ie

2 School of Social Sciences and Philosophy, Trinity College Dublin, Ireland
lucyvaz@gmail.com

3 TAU, INRIA and LRI, CNRS & U. Paris-Sud, Université Paris-Saclay, France
marc.schoenauer@inria.fr

4 Posgrado en Ciencias de la Ingenieŕıa, Instituto Tecnológico de Tijuana, México
leonardo.trujillo@tectijuana.edu.mx

Abstract. In Genetic Programming (GP), the fitness of individuals is
normally computed by using a set of fitness cases (FCs). Research on
the use of FCs in GP has primarily focused on how to reduce the size of
these sets. However, often, only a small set of FCs is available and there
is no need to reduce it. In this work, we are interested in using the whole
FCs set, but rather than adopting the commonly used GP approach of
presenting the entire set of FCs to the system from the beginning of the
search, referred as static FCs, we allow the GP system to build it by
aggregation over time, named as dynamic FCs, with the hope to make
the search more amenable. Moreover, there is no study on the use of FCs
in Dynamic Optimisation Problems (DOPs). To this end, we also use
the Kendall Tau Distance (KTD) approach, which quantifies pairwise
dissimilarities among two lists of fitness values. KTD aims to capture
the degree of a change in DOPs and we use this to promote structural
diversity. Results on eight symbolic regression functions indicate that
both approaches are highly beneficial in GP.

1 Introduction

Normally, the fitness of Genetic Programming (GP) [9] programs is obtained by
using a set of fitness cases: a fitness case is an input/output pair and the fitness
of an individual is measured on how well it matches the output(s) from input(s).

Research on the use of fitness cases has primarily focused on how to reduce
the number of these cases when running a GP system given that this is a major
element that affects speed [6, 11, 19, 14].

⋆ Research conducted during Galván’s stay at TAU, INRIA and LRI, CNRS & U.
Paris-Sud, Université Paris-Saclay, France.

80

II

There are, however, some problems where only a few fitness cases are available
for the GP system to work with. For instance, when dealing with highly binary
unbalanced data for a classification task, the positive (minority) class has only
a few cases and the use of all the available fitness cases is necessary [2, 4]. Other
times, it may be the case that the dataset is highly contaminated by outliers
and sampling is required to detect true examples of the system [12].

In this work, rather than using only a subset of fitness cases from the entire
set [6, 11, 19], we are interested in using them all in a way to make the search
more robust. To do so, we propose an approach called dynamic fitness cases,
wherein cases are built by aggregation over generations instead of using the
commonly adopted approach of using them all from the beginning of the search.

Moreover, there is no study that has focused its attention on the study of
fitness cases on dynamic optimisation problems (DOPs). These are problems
that are solved online by an optimisation algorithm as time progresses [16]. This
work uses both static problems and DOPs to test the proposed approach.

Multiple elements have been reported to be beneficial in DOPs (see [16] for a
detailed analysis on the area). One key element is diversity. This is a key element
of the biological theory of natural selection and it is used in EAs to describe, for
instance, structural variety, and it is expected that an EA with a mechanism to
promote diversity will greatly improve its performance [16].

Diverse approaches have been proposed to promote diversity in EAs. One
commonly adopted approach is the replacement of individuals in a population
by newly generated genetic material. However, a common element observed when
doing so is that frequently researchers use an arbitrary approach to decide the
number of individuals that need to be replaced [13, 17, 21]. However, this process
is purely intuitive and often expensive due to its trial-and-error nature.

To address this issue, we also use a mechanism to make a more informed
decision to determine the proportion of individuals that need to be replaced
in DOPs. To this end, we use the fitness values of individuals as indicators to
determine how big/small a change is, and consequently, use this information to
determine, for instance, the number of individuals in a population that need
to be replaced by new individuals. Any population-based EA can adopt our
proposed approach and in this work, as stated previously, we use a GP system.

Thus, the main contributions of this work are: (a) the use of dynamic fitness
cases, wherein cases are built gradually over time to make the GP search more
amenable, (b) to study for the first time the impact that fitness cases have in
DOPs, and to this end, we also use the use of pair-wise fitness disagreements,
based on the Kendall Tau distance, as a metric to promote diversity, which has
constantly been reported beneficial in DOPs [16].

2 Related Work

2.1 Fitness Cases in Genetic Programming

As discussed previously, the fitness of a GP individual is normally computed by
using a set of fitness cases and the way it is used is highly important in GP. The

81

III

size of the fitness cases vary e.g., in [15] the authors reported problems that use
a small size of fitness cases up to dozens of thousands of fitness cases.

To decide on the number of fitness cases that a GP system may need to use,
the rational allocation of trials algorithm can be a good alternative [19]: before
a new generation takes place, individuals are evaluated using only a fraction of
all the fitness cases available to the system. GP programs are further evaluated
on new fitness cases when e.g., there is a possibility of winning some selection
mechanism (e.g., tournament selection) that they are losing.

Another approach to determine the necessary number of fitness cases to solve
a given problem in GP is that based on well-known statistical and information-
theoretic considerations e.g., Central Limit Theorem and entropy of random
variables [6]. The authors tested their theoretical framework on discrete fitness-
valued cases and showed that their estimations agree with experimental results.
Specifically, they showed that when the GP system uses at least the estimated
number of fitness cases yield by their approach, the system achieves reliable
results and the opposite is true when a lower number of fitness cases is used.

When having a large number of fitness cases, it may be necessary to adopt a
mechanism to determine how many and which cases to use. Multiple works have
been proposed. For instance, a topology-based mechanism [11] promotes the use
of certain fitness cases based on how well or bad these are solved by individuals;
historical subset selection [5] uses part of the set of all fitness cases based on
how well the elitist individual is able to solve them; active data selection [22]
uses small training case sizes and during search, these subsets are recombined
and enlarged by a few fitness cases taken from the entire set.

Other sampling methods have been proposed that use a single fitness case in
some generations and the entire training set is used in others. Such is the case
for Interleaved Sampling and Random Interleaved Sampling [7]. More recently,
the Lexicase selection algorithm has been proposed [18], wherein fitness cases are
randomly shuffled at each parent selection event, and the best performing indi-
vidual on the first fitness cases is kept. The method was extended to real-valued
problems [10], with performance improving in almost all cases. An evaluation of
some of these techniques, as well as others, is reported in [14].

In this work, we take a different approach: rather than determining how
many FC the GP system should use, we use them all. The rationale for doing
so it is because often there are a few fitness cases available to the system. The
novelty of our approach is that instead of presenting all the cases to the system
as traditionally done in GP, we build by aggregation these fitness cases over time
with the hope to make the search more amenable. Moreover, as indicated before,
there are no studies on the impact of fitness cases in DOPs and this works also
considers this scenario. It is well-known that diversity plays an important role
in evolutionary search, in general, and in DOPs in particular [16]. We present
some works on this area next.

2.2 Promoting and Maintaining Diversity

Multiple works have been proposed to promote and maintain diversity in EAs.
In this section, we focus only on DOPs tackled by GP (see [16] for a more

82

IV

general discussion on the subject). Among those approaches proposed to promote
diversity in the face of DOPs using GP are: (a) adaptable genetic operators, (b)
behavioural diversity, and (c) injection of new genetic structural material. In
this work, we only focus on the latter and briefly discuss some approaches that
have been proposed to promote diversity via the injection of new individuals.

One of the easiest forms of promoting diversity is adopting the injection of
new genetic material into the GP population. The generation of GP individuals
is done by using common techniques, like the adoption of the ramped half-and-
half method [9]. This can take place when, for instance, detecting a change [13]
or when bloat (dramatic increase of tree sizes as evolution proceeds) reaches a
limit and there is a need to substitute individuals contained in the population
by new GP programs [21]. Injecting new GP individuals into the population has
also been promoted via culling [17]. That is, removing the worst individuals and
replacing them by randomly generated programs. Variable population size [20]
also promotes diversity by adding new GP individuals into the population.

A common element in all these works that promote structural diversity is
that the number of individuals to be replaced by the same number of newly
created individuals is chosen rather arbitrarily. Next, we present an approach
that aims to overcome this limitation.

3 Proposed Approaches

As discussed previously, we are interested in making the GP search more amenable
and to do so we propose a dynamic fitness cases approach, wherein cases are built
by aggregation over time. We test this approach in both static and DOPs, and
for the latter, we also use the adoption of the Kendall Tau Distance (KTD) that
quantifies pairwise dissimilarities among two lists of fitness values with the hope
to make a better informed decision in terms of the number of individuals that
need to be replaced in a population by new individuals to promote diversity.

3.1 Dynamic Fitness Cases

To make the GP search more amenable, we build the fitness cases over time.
More specifically, at the beginning of an evolutionary run or just after a change
has occurred (for the dynamic setting), we use in order a subset of fitness cases,
Cg=0 which is chosen from all the fitness cases CN of size N ,

Cg=0 ⊂ CN , |Cg=0| = k (1)

where k is a constant and k < N . After a few i generations another k fitness
cases of the CN fitness cases are added to Cg=0,

Cg=0 ∪ Cg=i, Cg=0 ∩ Cg=i = {} (2)

We continue this process until all the fitness cases have been used. Thus, the
complete sequence of fitness cases is build as follows,

Cg=0 ∪ Cg=i ∪ · · · ∪ Cg=M = CN (3)

83

V

where M is a constant and M < K, where K is either the maximum number
of generations or the number of generations that are necessary for a change to
take place (for the dynamic scenario). By defining the latter, we guarantee that
the GP system accounts for all the fitness cases before a change takes place and
it has all the necessary elements to, potentially, find the solution. The values of
the variables are defined in Table 2 and discussed in Section 5.

3.2 Kendall Tau Distance

As indicated before, there is no study that has focused its attention on the study
of fitness cases in a dynamic setting and this work also considers such scenario.

As seen in Section 2, we know that there is strong evidence indicating that the
adoption and/or encouragement of diversity in GP search on DOPs is highly ben-
eficial. Normally, when adopting this type of diversity, researchers have focused
their attention on setting arbitrarily a number of individuals to be generated
and then used them to e.g., replace the worst GP individuals in a population.
The major drawback with this approach is that often this process is based on
trial and error and can be computationally expensive.

We believe that it is possible to adopt a more informed way of determining
the number of individuals that should be replaced from a population by using
fitness values. The use of these values as indicators to perform a specific task
(e.g., prediction of problem hardness) is common in EAs. The most well-known
example of this is the fitness-distance correlation [8], where these values are used
in conjunction with a metric that informs us how distant two individuals are in
the search space to determine problem difficulty.

In this work, we use a distance, studied in the first author’s works [1, 3], that
accounts for pairwise disagreements between two lists of ranked fitness values. We
hope that these disagreements can inform us on whether an evolved population
is useful in the face of a change. Our proposed approach works in three phases:

1. Firstly, it is necessary to account for a method that can indicate when a
change is about to take place. We do this in a non-expensive manner: before
a new generation is about to take place, we use one individual (the elitist
individual), whose fitness (fg

e) is assessed again in the next generation (g+1).
2. Secondly, if fg

e and fg+1
e are different, then we regard this as a change in the

environment and we then proceed to compute the KTD (defined in Eq. 4)
between the ranking of the fitness values of all individuals at generation g
and the next generation (g+1). This distance counts the number of pairwise
disagreements between two ranked lists and it is normalised by the maximum
number of possible disagreements. This distance gives a discrete value k =
[0, 1] and this is used to generate a percentage of T new individuals with
respect to the population size.

3. Thirdly, the worst (less fit) individuals at g+1 are replaced by the newly gen-
erated individuals (using ramped half-and-half initialisation method, details
are discussed in Section 4) keeping the size of the population constant.

The KTD between two ranked lists is defined as,

84

VI

Table 1. Symbolic regression bench-
marks problems used in our work.

Function Objective function

f1 x3 + x2 + αx
f2 x4 + x3 + x2 + αx
f3 x5 + x4 + x3 + x2 + αx
f4 x6 + x5 + x4 + x3 + x2 + αx
f5 sin(x2) cos(α) - 1
f6 sin(αx) + sin(x + x2)
f7 log(αx + 1) + log(x2 + 1)
f8 sqrt(αx)

Table 2. Summary of Parameters.

Parameter Value

Population Size 800

Generations 200

Type of Crossover Any node

Crossover Rate 0.80

Type of Mutation Subtree

Mutation Rate 0.20

Selection Tournament (size = 7)

Initialisation Method Ramped half-and-half

Initialisation Depths:
Initial Depth 2
Final Depth 5

Maximum Length 1200 nodes

Maximum Final Depth 8

Independent Runs 50

Changes Every 50 generations

Dynamic Fitness Cases k = 1, i = 2, M = 39

k(τ1, τ2) =
∑

(i,j)∈P

k̄i,j(τ1, τ2) (4)

where, P is the set of pairs of elements in τ1 and τ2, k̄i,j(τ1, τ2) = 0 if i and j
are in the same order in both τ1 and τ2; and 1 if i and j are in opposite order.

It is worth mentioning that when the change to the objective function is
monotonically increasing (order preserving), the computed KTD will be 0. This
is a good property because in this case the evolved individuals are expected to
behave well in the changed objective function, so there is no need to replace
individuals. A mirror image is seen in the presence of a monotonically decreas-
ing change of the objective function, which will yield the maximal normalised
distance of 1, meaning that the order of both fitness lists is completely different.
The latter will indicate that our approach based on the KTD will replace the
entire population by newly generated genetic material.

4 Experimental Setup

To test our approach, we use eight symbolic regression functions of various diffi-
culties, shown in Table 1. The fitness function is computed as the sum of absolute
errors of the Euclidean distance to the output vector of the target uni-variate
function queried on 20 inputs in the equally drawn range [1, 1]. A solution is
regarded as correct when its fitness is less than a threshold set at 0.01. The
function set is F = {+,-,*,/}, where / is protected division.

To test separately and in conjunction our two approaches, we use a static
and a dynamic setting. We define three different type of changes for the latter:
we use α as a variable (see Table 1) that can be tuned to achieve this along with
a constant L, set at 50, that denotes when α changes to simulate a change (in
this work, the maximum number of generations is set at 200, hence only three
values for α are required for a dynamic setting, as defined next). For the static

85

VII

Table 3. Success rate (%) and avg. of best fitness using either static (SFC) or dynamic
fitness cases (DFC). No changes take place during evolution. All the results on the avg.
of best fitness are statistical significant (Wilcoxon Test at 95% level of significance).
Higher is better.

Function
Success Rate Avg. Best Fitness
SFC DFC SFC DFC

f1 92.0% 100.0% 0.9371 1.0000
f2 54.0% 88.0% 0.6656 0.9969
f3 18.0% 70.0% 0.4501 0.9915
f4 4.0% 72.0% 0.3280 0.9895
f5 0.0% 60.0% 0.4580 0.9896
f6 0.0% 64.0% 0.3438 0.9893
f7 0.0% 36.0% 0.4988 0.9739
f8 0.0% 16.0% 0.3068 0.9665

scenario, α = 1. For the dynamic setting, we define a smooth, an ‘abrupt’ and
a random change, where α = {0.9, 0.8, 0.7}, α = {0.1, 0.9, 0.1}, and finally, α is
set with a random value between 0 and 1 every L generations, respectively.

For comparative purposes, we use a static fitness case-scenario and our pro-
posed dynamic fitness case-approach, where all the cases are presented to the
system at the beginning of the search as commonly adopted in the GP commu-
nity and where the cases are built over time, respectively.

Moreover, for the DOPs defined in this work, we use an arbitrary approach,
wherein the number of individuals to be replaced in a population is generated
randomly and compared it against the results yield by our proposed Kendall Tau
distance. We generate the individuals in these two approaches using the ramped
half-and-half method, where the initial and final depths used are the same as
when generating the population (see Table 2).

The experiments were conducted using a generational approach. The param-
eters used are shown in Table 2. To obtain meaningful results, we performed an
extensive empirical experimentation (50 * 2 * 3 * 8 runs, plus 50 runs for each
fitness case scenario: static and dynamic; 2,500 independent runs in total)5.

5 Results and Discussion

5.1 Performance on a Static Setting

Let us analyse the results when using our proposed dynamic fitness cases (DFC),
wherein cases are built over time, where one fitness case is added every two
generations until all of them have been used, as defined at the bottom of Table 2,
(see Section 3 for details on how this works) and compared the results obtained
by DFC against the widely adopted mechanism of using all the fitness cases
at the beginning of the search, denominated in this work as static fitness cases
(SFC).

Table 3 shows the success rate (shown in the 2nd and 3rd column, from left
to right), defined as the number of times that the GP system was able to find

5 50 independent runs, 2 types of replacement of individuals (arbitrary, Kendall tau
distance-based), 3 types of changes, 8 problems.

86

VIII

the solution and the average of the best fitness at the end of each independent
run (shown in the last two columns).

It is clear to see that the proposed DFC achieves good results in terms of
finding the solution, as indicated in Table 3. The traditional SFC has a good
performance only on the relatively easy f1 and its performance decreases signif-
icantly with the rest of the functions used in this work, where SFC is not able
to find a single solution for functions f5, f6, f7 and f8 in any of the independent
runs. Our proposed DFC, on the other hand, achieves better results e.g., 60%,
64%, 36% and 16% for functions f5, f6, f7 and f8, respectively.

The results shown in the last two columns of Table 3, which are the average
of the best individuals’ fitness values at the end of each run, are aligned to
the performance achieved by SFC and FDC. These results are all statistically
significant, Wilcoxon Test set at 95% level of significance.

5.2 Performance on a Dynamic Setting

Let us first focus our attention on the performance achieved by the static and
the dynamic function case-based approach, when these two are now used in
conjunction with our proposed Kendall Tau Distance (KTD) approach to pro-
mote diversity in three type of changes: smooth, random and ‘abrupt’ change,
as defined in Section 4.

These results, shown in Table 4, are similar to those discussed above: the SFC
approach has a poor performance: less than 3.0%, for functions f5 - f8, defined
in Table 1, regardless of the type of change used. These results are significantly
better when using the proposed DFC in conjunction with the KTD approach.
For example, the proposed approach achieves more than 48%, 67%, 59% and
52% for the same referred functions, respectively, regardless of the change used.

The average of best fitness values just before a change takes place, defined
at every 50 generations, is shown in Table 5. These results (all statistically
significant, Wilcoxon Test set at 95% level of significance) are aligned to the
performance discussed above: the average fitness values is poor when using SFC
compared to those results achieved by DFC. For example, for f3 the average
fitness values achieved by our proposed DFC is around 0.93 (almost three times
better compared to the results yield by SFC), regardless of the change used.

Now, let us discuss the results when using the commonly adopted approach
of replacing a random number of individuals from a population to promote di-
versity, referred in this work as the arbitrary approach. These results are shown
in Tables 6 and 7 for the percentage of success rate and the average of the
best fitness values just before a change occurs, respectively. In these tables, we
can observe a similar scenario compared to what we discussed when using the
KTD for an informed way to replace a number of individuals. That is, the SFC
approach yields significantly worse results compared to DFC.

If we now compare, for instance, the performance achieved by the KTD
and the arbitrary approach focusing on either using static fitness cases or using
dynamic fitness cases, we do not see much difference. For example, the perfor-
mance for the function f5 is 49.0% (Table 4) and 47.0% (Table 6), using the
KTD approach and the arbitrary approach in the presence of a smooth change,

87

IX

Table 4. Percentage of success rate using both static and dynamic fitness cases on
eight different regression functions in the presence of three different types of changes.
Replacement type used: Kendall approach.

Function
Smooth Change Random Change Abrupt Change

Static Cases Dynamic Cases Static Cases Dynamic Cases Static Cases Dynamic Cases

f1 21.5% 25.0% 24.5% 33.5% 21.5% 29.0%
f2 10.0% 92.5% 11.0% 90.0% 10.5% 91.5%
f3 2.5% 79.0% 4.5% 89.0% 2.5% 82.0%
f4 0.5% 87.0% 1.5% 86.0% 0.5% 90.5%
f5 0.0% 49.0% 0.0% 60.5% 0.0% 57.0%
f6 0.0% 68.0% 0.5% .80.5% 0.0% 77.5%
f7 0.0% 76.0% 0.0% .80.0% 2.5% 60.0%
f8 0.0% 53.0% 0.5% 64.0% 1.0% 61.0%

Table 5. Avg. of best fitness values at every 50th generation (just before a change
takes place) using both static and dynamic fitness cases on eight symbolic regression
functions in the presence of three different types of changes. Replacement type used:
Kendall approach. All the results are statistical significant (Wilcoxon Test at 95% level
of significance). Higher is better.

Function
Smooth Change Random Change Abrupt Change

Static Cases Dynamic Cases Static Cases Dynamic Cases Static Cases Dynamic Cases

f1 0.482 0.7594 0.5444 0.8115 0.5574 0.7583
f2 0.4245 0.9572 0.4913 0.9566 0.5088 0.9648
f3 0.3372 0.9457 0.3886 0.9547 0.4420 0.9508
f4 0.3332 0.9435 0.3862 0.9512 0.4218 0.9589
f5 0.3326 0.8901 0.4153 0.9129 0.4122 0.9156
f6 0.3099 0.9218 0.3939 0.9397 0.4470 0.9401
f7 0.4639 0.9249 0.5006 0.9312 0.5092 0.9042
f8 0.3288 0.8831 0.4113 0.9010 0.4453 0.8968

Table 6. Percentage of success rate using both static and dynamic fitness cases on
eight different regression functions in the presence of three different types of changes.
Replacement type used: Arbitrary approach.

Function
Smooth Change Random Change Abrupt Change

Static Cases Dynamic Cases Static Cases Dynamic Cases Static Cases Dynamic Cases

f1 21.5% 25.0% 24.5% 35.0% 21.5% 33.5%
f2 10.0% 90.0% 11.0% 92.5% 10.5% 95.0%
f3 2.5% 84.0% 3.5% 85.0% 2.5% 85.0%
f4 0.5% 89.5% 1.5% 87.5% 0.5% 90.0%
f5 0.0% 47.0% 0.5% 61.0% 0.5% 56.0%
f6 0.0% 73.5% 0.5% 80.5% 0.5% 85.5%
f7 0.0% 75.0% 0.5% 74.5% 6.5% 71.0%
f8 0.0% 55.5% 0.0% 67.5% 1.0% 66.5%

Table 7. Avg. of best fitness values at every 50th generation (just before a change
takes place) using both static and dynamic fitness cases on eight symbolic regression
functions in the presence of three different types of changes. Replacement type used:
Arbitrary approach. All the results are statistical significant (Wilcoxon Test at 95%
level of significance). Higher is better.

Function
Smooth Change Random Change Abrupt Change

Static Cases Dynamic Cases Static Cases Dynamic Cases Static Cases Dynamic Cases

f1 0.4793 0.7714 0.567 0.8099 0.5889 0.8337
f2 0.4288 0.9561 0.5089 0.9638 0.5160 0.9701
f3 0.3337 0.9477 0.4059 0.9521 0.4705 0.9563
f4 0.3439 0.9514 0.3887 0.9538 0.4394 0.9628
f5 0.3444 0.8927 0.4228 0.9098 0.4257 0.9202
f6 0.3478 0.9342 0.4108 0.9424 0.4747 0.9514
f7 0.4675 0.9285 0.5137 0.9296 0.5397 0.9214
f8 0.3282 0.8863 0.4149 0.9121 0.4622 0.9072

88

X

respectively. The same trend is observed for the rest of the functions regardless
of the type of change used. However, the benefit of using the KTD in DOPs
instead of using an arbitrary approach (random number of individuals replaced
in a population), as normally adopted in EAs DOPs when promoting diversity
via the replacement of individuals, can be observed when analysing the number
of individuals created by either approach. We discuss this next.

f5 f6 f7 f8

Average Number of Generations to Solve the Problem (Smooth change)

[0,50) [50,100) [100,150) [150,200)
f5

0

10

20

30

40

50

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w

h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

[0,50) [50,100) [100,150) [150,200)
f6

0

10

20

30

40

50

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w

h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

[0,50) [50,100) [100,150) [150,200)
f7

0

10

20

30

40

50

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w

h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

[0,50) [50,100) [100,150) [150,200)
f8

0

10

20

30

40

50

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w

h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

Average Number of Individuals Created When Solving the Problem

[0,50) [50,100) [100,150) [150,200)
f5

0

100

200

300

400

500

600

700

800

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w
h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

[0,50) [50,100) [100,150) [150,200)
f6

0

100

200

300

400

500

600

700

800

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w
h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

[0,50) [50,100) [100,150) [150,200)
f7

0

100

200

300

400

500

600

700

800

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w
h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

[0,50) [50,100) [100,150) [150,200)
f8

0

100

200

300

400

500

600

700

800

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w
h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

Average Number of Generations to Solve the Problem (Abrupt change)

[0,50) [50,100) [100,150) [150,200)
f5

0

10

20

30

40

50

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w

h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

[0,50) [50,100) [100,150) [150,200)
f6

0

10

20

30

40

50

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w

h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

[0,50) [50,100) [100,150) [150,200)
f7

0

10

20

30

40

50

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w

h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

[0,50) [50,100) [100,150) [150,200)
f8

0

10

20

30

40

50
A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w

h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

Average Number of Individuals Created When Solving the Problem

[0,50) [50,100) [100,150) [150,200)
f5

0

100

200

300

400

500

600

700

800

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w
h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

[0,50) [50,100) [100,150) [150,200)
f6

0

100

200

300

400

500

600

700

800

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w
h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

[0,50) [50,100) [100,150) [150,200)
f7

0

100

200

300

400

500

600

700

800

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w
h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

[0,50) [50,100) [100,150) [150,200)
f8

0

100

200

300

400

500

600

700

800

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w
h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

Fig. 1. Average number of generations to solve a problem (odd rows) and average num-
ber of created individuals (even rows) along with standard deviation using either the
arbitrary approach (black-filled rectangle) or our proposed Kendall approach (white-
filled rectangle) for functions f5 - f8 when using dynamic fitness cases. Notice that for
the avg. number of individuals created, the first generations [0,50), show nothing given
that a change occurs after this.

89

XI

5.3 Analysis of the Number of Created Individuals

To see the benefit of using the proposed KTD approach in DOPs compared to
the arbitrary approach to promote diversity via the replacement of individuals
in the population by new genetic material, it is necessary to see the number of
individuals created by each of these two approaches. This is shown in the second
and fourth rows, from top to bottom, of Figure 1, for functions f5 - f8, where the
vertical line denotes the standard deviation. Due to space constraints, we only
show the results when using the DFC approach on these functions and in the
presence of a smooth and an ‘abrupt’ change that yield better results compared
to the SFC approach. However, a similar trend was observed for the rest of the
functions and type of change.

Let us discuss a particular example: when a smooth change takes place for
functions f5 - f8, shown in the second row of Figure 1. It is clear to see that the
number of individuals created by the KTD, shown by a white-filled bar is sig-
nificantly lower compared the number of GP programs created by the arbitrary
approach, shown by a black-filled bar. This is to be expected since a smooth
change took place and our proposed approach was able to capture this by cre-
ating a few individuals in the presence of this type of change. The same trend
is observed for the rest of the functions (not shown due to space constraints).

Moreover, we can see that the KTD approach is able to capture the level of
a change. For instance, see the number of created individuals in the presence of
an smooth change vs. an ‘abrupt’ change, as denoted in the second and fourth
row of Figure 1: the KTD approach creates less number of individuals in the
presence of a smooth change compared to the ‘abrupt’ change. Although the
difference of created individuals in the presence of either these two changes is
small. This is due to the type of changes proposed in this work (see Section 4)
rather than the KTD approach failing at capturing a change. To illustrate this,
we adopted a more radical change where the last sign in f1 changes every 50
generations (from ‘+’ to ‘-’ and vice versa) to simulate a DOP and compare this
result against those yield by the other three types of changes. This is shown in
Figure 2, where we can clearly see that the KTD yields values accordingly: the
number of created individuals is increased as the change is more severe.

In addition to this, we also analyse the average number of generations re-
quired to solve a problem. This is shown in the first and third row in Figure 1.
Interestingly, we can see that the majority of problems, regardless of the change
used, are solved once all the fitness cases are presented to the system: observe
how they finish before generation 40 (recall that all fitness cases are presented
to the GP system at generation M =39 as indicated in Table 2), with a few runs
finding the solution just after generation 40 as denoted by the small standard
deviation (see, for example f5, in the presence of an abrupt change, third row
first column of Figure 1).

5.4 Size of GP Programs

We have learnt that DFC behaves better than the widely-adopted SFC in GP.
We believe that the reason is due to the fact that GP system gradually solves

90

XII

Smooth Change Random Change Abrupt Change Radical Change

[0,50) [50,100) [100,150) [150,200)
f1

0

100

200

300

400

500

600

700

800

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w
h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

[0,50) [50,100) [100,150) [150,200)
f1

0

100

200

300

400

500

600

700

800

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w
h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

[0,50) [50,100) [100,150) [150,200)
f1

0

100

200

300

400

500

600

700

800

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w
h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

[0,50) [50,100) [100,150) [150,200)
f1

0

100

200

300

400

500

600

700

800

A
v
e
ra
g
e
 g
e
n
e
ra
ti
o
n
 w
h
e
n
 s
o
lv
e
d
 t
h
e
 p
ro
b
le
m

Kendall
Arbitrary

Fig. 2. Average number of created individuals along with standard deviation using
either the arbitrary approach (black-filled rectangle) or our proposed Kendall approach
(white-filled rectangle) for function f1 when using static fitness cases. Notice that for
the average of created individuals, the first generations [0,50) show nothing, given that
a change occurs after this.

the problem in accordance to the proposed DFC, wherein fitness cases are built
by aggregation over time (see Section 3). This in consequence could mean that
the GP program gradually starts growing as more cases are presented to the
system. Indeed, this is what can be observed in Fig. 3, where we report the
average length of individuals, along with the standard deviation, on f3 and f4
using the arbitrary replacement approach and an abrupt change (the same trend
is observed for the other two type of changes and replacement mechanisms not
shown due to space constraints). It is evident that the size of programs created
by the DFC approach, denoted by grey lines, is significantly lower compared to
the traditional SFC approach, indicated by black lines.

f3 f4

0 50 100 150 200
Generations

0

10

20

30

40

50

A
v
e
ra
g
e
 l
e
n
g
th
 o
f
in
d
iv
id
u
a
ls

Static

Dynamic

0 50 100 150 200
Generations

0

10

20

30

40

50

A
v
e
ra
g
e
 l
e
n
g
th
 o
f
in
d
iv
id
u
a
ls

Static

Dynamic

Fig. 3. Average (along with a standard deviation) length of programs using both static
and dynamic fitness cases, shown in black and grey lines, respectively, on f3 and f4,
using the arbitrary replacement approach. Vertical lines at every 50th generations
indicate an (abrupt) change.

6 Conclusions

Traditionally, the fitness value of a GP program is computed by using a set of
fitness cases. It is common that all the fitness cases are presented to GP from
the beginning of the search, an approach we call static fitness cases. In this

91

XIII

work, we propose a dynamic fitness cases approach, wherein the cases are built
by aggregation over time, making it an incremental search. We showed that
the proposed approach achieves better better performance, in some problems
achieving a 60% success rate compared to 0% achieved by the standard approach.

Furthermore, we tested these two approaches in the presence of dynamic
changes, where the results achieved by the DFC are consistently better compared
to the SFC. Moreover, we also showed how the DFC approach encourages a
smooth increase of GP trees compared to SFC where the size of trees are bigger.

Finally, we also studied the impact/use of fitness cases in DOPs, where the
adoption of diversity has consistently been reported as beneficial. To this end, we
proposed an approach based on the Kendall Tau Distance that aims to capture
the degree of a change in a dynamic setting and we use this consequently to
determine the proportion of individuals that need to be replaced to promote
structural diversity. We compared this against the commonly adopted arbitrary
approach where the number of individuals is set randomly. We showed that the
performance of both replacement mechanisms is similar, with the added benefit
that the proposed KTD approach creates only the necessary individuals with
regards to the amount of change.

Acknowledgments. EGL would like to thank the TAU group at INRIA Saclay
for hosting him during the outgoing phase of his Marie Curie fellowship and for
financially supporting him to present this work at the conference. LT would like
to thank CONACYT (project FC-2015-2:944) for providing partial funding.

References

1. E. Galván-López and O. Ait ElHara. Using fitness comparison disagreements as a
metric for promoting diversity in dynamic optimisation problems. In IEEE Sym-
posium Series on Computational Intelligence. Springer, 2016.

2. E. Galván-López, E. Mezura-Montes, O. Ait ElHara, and M. Schoenauer. On
the use of semantics in multi-objective genetic programming. In J. Handl et al.,
editors, Parallel Problem Solving from Nature – PPSN XIV: 14th International
Conference, Edinburgh, UK, September 17-21, 2016, Proceedings, pages 353–363.
Springer, 2016.

3. E. Galván-López, L. Vázquez-Mendoza, M. Schoenauer, and L. Trujillo. Dynamic
GP fitness cases in static and dynamic optimisation problems. In P. A. N. Bosman,
editor, Genetic and Evolutionary Computation Conference, Berlin, Germany, July
15-19, 2017, Companion Material Proceedings, pages 227–228. ACM, 2017.

4. E. Galván-López, L. Vázquez-Mendoza, and L. Trujillo. Stochastic semantic-based
multi-objective genetic programming optimisation for classification of imbalanced
data. In O. Pichardo-Lagunas and S. Miranda-Jiménez, editors, Advances in Soft
Computing, chapter 22, pages 261–272. Springer, 2016.

5. C. Gathercole and P. Ross. Dynamic training subset selection for supervised learn-
ing in genetic programming. In Y. Davidor et al., editors, Parallel Problem Solving
from Nature III, volume 866 of LNCS, pages 312–321, Jerusalem, 9-14 Oct. 1994.
Springer-Verlag.

6. M. Giacobini, M. Tomassini, and L. Vanneschi. Limiting the number of fitness
cases in genetic programming using statistics. In Parallel Problem Solving from
Nature VII, pages 371–380, London, UK, 2002. Springer-Verlag.

92

XIV

7. I. Gonçalves and S. Silva. Balancing learning and overfitting in genetic program-
ming with interleaved sampling of training data. In K. Krawiec et al., editors,
Genetic Programming, volume 7831 of Lecture Notes in Computer Science, pages
73–84. Springer Berlin Heidelberg, 2013.

8. T. Jones and S. Forrest. Fitness distance correlation as a measure of problem dif-
ficulty for genetic algorithms. In Proceedings of the Sixth International Conference
on Genetic Algorithms, pages 184–192. Morgan Kaufmann, 1995.

9. J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

10. W. La Cava, L. Spector, and K. Danai. Epsilon-lexicase selection for regression.
In Proceedings of the Genetic and Evolutionary Computation Conference 2016,
GECCO ’16, pages 741–748, New York, NY, USA, 2016. ACM.

11. C. W. G. Lasarczyk, P. W. G. Dittrich, and W. W. G. Banzhaf. Dynamic subset
selection based on a fitness case topology. Evol. Comput., 12(2):223–242, June
2004.

12. U. López, L. Trujillo, Y. Martinez, P. Legrand, E. Naredo, and S. Silva. Ransac-
gp: Dealing with outliers in symbolic regression with genetic programming. In
J. McDermott et al., editors, Genetic Programming: 20th European Conference,
EuroGP 2017, Amsterdam, The Netherlands, April 19-21, 2017, Proceedings, pages
114–130, Cham, 2017. Springer International Publishing.

13. J. Macedo, E. Costa, and L. Marques. Genetic Programming Algorithms for Dy-
namic Environments, pages 280–295. Springer, Cham, 2016.

14. Y. Martnez, E. Naredo, L. Trujillo, P. Legrand, and U. Lpez. A comparison of
fitness-case sampling methods for genetic programming. Journal of Experimental
& Theoretical Artificial Intelligence, pages 1–22, 2017.

15. J. McDermott et al. Genetic programming needs better benchmarks. In Proceedings
of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO
’12, pages 791–798, New York, NY, USA, 2012. ACM.

16. T. T. Nguyen, S. Yang, and J. Branke. Evolutionary dynamic optimization: A
survey of the state of the art. Swarm Evol. Comput., 6:1 – 24, 2012.

17. M. Riekert, K. M. Malan, and A. P. Engelbrect. Adaptive genetic programming
for dynamic classification problems. In Proceedings of the Eleventh Conference on
Congress on Evolutionary Computation, CEC’09, pages 674–681, Piscataway, NJ,
USA, 2009. IEEE Press.

18. L. Spector. Assessment of problem modality by differential performance of lex-
icase selection in genetic programming: a preliminary report. In Proceedings of
the fourteenth international conference on Genetic and evolutionary computation
conference companion, GECCO Companion ’12, pages 401–408. ACM, 2012.

19. A. Teller and D. Andre. Automatically choosing the number of fitness cases: The
rational allocation of trials. In J. R. Koza et al., editors, Genetic Programming
1997: Proceedings of the Second Annual Conference, pages 321–328, Stanford Uni-
versity, CA, USA, 13-16 July 1997. Morgan Kaufmann.

20. L. Vanneschi and G. Cuccu. A study of genetic programming variable population
size for dynamic optimization problems. In IJCCI, pages 119–126, 2009.

21. N. Wagner, Z. Michalewicz, M. Khouja, and R. R. McGregor. Time series forecast-
ing for dynamic environments: The dyfor genetic program model. IEEE Transac-
tions on Evolutionary Computation, 11(4):433–452, Aug 2007.

22. B.-T. Zhang and D.-Y. Cho. Genetic programming with active data selection. In
Simulated Evolution and Learning on Simulated Evolution and Learning, SEAL’98,
pages 146–153, London, UK, 1999. Springer-Verlag.

93

Session 4 - Cooperation-Coevolution

94

MEMSA: a robust Parisian EA for
multidimensional multiple sequence alignment

Julie D. Thompson, Renaud Vanhoutrève and Pierre Collet

[thompson,collet]@unistra.fr, vanhoutreve.renaud@gmail.com

ICube laboratory, UMR CNRS 7357, Strasbourg University, France
Fédération de Médecine Translationnelle de Strasbourg,

CS-DC UNESCO UniTwin http://cs-dc.org

Abstract. This paper describes a new approach for the multiple align-
ment of biological sequences (DNA or proteins) using a Parisian Evolu-
tion approach called MEMSA, for Multidimensional Evolutionary Mul-
tiple Sequence Alignment, coded using the EASEA platform. This ap-
proach evolves individual sub-alignments called “patches” that are used
to create a new kind of Multiple Sequence Alignment where alternative
solutions are computed simultaneously using different fitness functions.
Solutions are generated by combining coherent sets of high-scoring indi-
viduals that are used to reconstruct multi-dimensional multiple sequence
alignments. The alignments of this prototype version show a quality com-
parable to ClustalW (one of the most widely used existing methods) on
the 218 samples of the BAliBASE benchmark in reasonable time.

1 Introduction

The incredible increase in the output of Next generation Genome Sequencing
(NGS) technologies in the recent years is making sequence data analysis a ma-
jor bottleneck for the biologist. New bioinformatics solutions are needed to al-
low end-users to fully exploit the progress of these technologies in various ap-
plications, including genome annotation, analysis of genetic mutations, evolu-
tionary studies, or the characterization of gene products (e.g. proteins). Pro-
teins are large macromolecules, consisting of one or more long chains of amino
acid residues. They perform a wide variety of biological functions in organisms,
from catalysis of biochemical reactions, transport of nutrients or recognition and
transmission of signals to structural and mechanical roles within the cell. As a
consequence, one of the most important applications of bioinformatics has been
the study of the relationships between the sequence of a protein and its 3D
structure, cellular function and evolution.

In this context, protein multiple sequence alignments (MSA) play a central
role in comparative analyses of the data produced by NGS. Recently, new meth-
ods for the construction of MSA (such as MAFFT[10], MUSCLE[5], KALIGN[14],
PROBCONS[4]) have been developed that use heuristic approaches that are fast
enough to handle this “big data” and that allow comparison of sequences from
hundreds of diverse organisms. However, the current flood of data also poses

95

other challenges, in addition to the obvious scalability issues. For example, large
protein families are often complex, with multidomain architectures, long un-
structured (natively disordered) regions, splicing variants, etc. In addition, the
new sequences are mostly predicted by automatic methods and contain many
sequence errors. A recent comparative study of MSA algorithms [19] showed that
the current methods can identify most of the shared sequence features that deter-
mine the broad molecular functions of a protein family, such as the 3D structure
or catalytic sites, that have been conserved throughout evolution. However, the
locally conserved regions, that reflect functional specificities or that modulate a
protein’s function in a given cellular context, are less well aligned. The complex-
ity of the problem means that new MSA representations are now crucial. This
motivated us to develop MEMSA, a Multidimensional Evolutionary Multiple Se-
quence Alignment tool, a new MSA approach that exploits an alternative genetic
algorithm called Parisian Evolution [2], in order to produce multi-dimensional
multiple alignments depending on “patches” of interest for the biologist.

1.1 Multiple Sequence Alignment (MSA)

In the most general terms, a protein multiple sequence alignment represents a
set of sequences using a single-letter code for each amino acid. Each horizontal
row in the alignment represents a single sequence and structurally, functionally
or evolutionarily equivalent amino acids are aligned vertically. During evolution,
mutation events occur. They include point mutations (single amino acid changes)
that appear as differing characters in an alignment column and indels (INser-
tions or DELetions) or gaps, generally represented by a “–” character in one or
more of the sequences. Most MSA methods represent these events via two sets
of parameters: an “amino acid substitution matrix” (e.g. BLOSUM62 [8]) that
assigns scores to the alignment of each possible pair of amino acids and a “gap
penalty” for the introduction of gaps in a sequence. However, one of the main
challenges for MSA algorithms is that there is no such thing as a single opti-
mal alignment. Indeed, many distance matrices have been proposed, that offer
different metrics to evaluate the quality of an alignment [1].

1.2 Evolutionary Algorithms for MSA

One of the first genetic algorithms (GA) for multiple sequence alignment was
SAGA (Sequence Alignment by Genetic Algorithm) [17]. SAGA tries to find an
optimal MSA by creating a population of MSAs and allowing them to evolve
based on a natural selection process that mimics biological evolution (with
crossover and mutation operators). In this case, an individual in the popula-
tion represents one complete solution to the problem, i.e. an individual is a
multiple alignment of all sequences with gaps at given positions. Unfortunately,
the results are not very good on today’s complex problems, probably because it
tries to tackle an unsolvable problem as a whole.

Since then, other multiple sequence alignment strategies based on GAs have
been introduced that use better mutation operators to improve the efficiency

96

and the accuracy of the algorithms, e.g. [22] or [12]. Other attempts such as
MSAGMOGA [11] have used multi-objective algorithms to take into account
the multi-dimensionality of the problem. These methods show promising results
in some specific cases, but they are generally too slow for large-scale alignment
applications. An alternative approach involves the use of GAs to improve an
initial population of alignments constructed with a heuristic algorithm, such as
PHGA [16], or MOMSA [6].

In this paper, we propose a new evolutionary algorithm for MSA that does
not attempt to provide the user with a single MSA option, but rather finds
as many good “patches” as possible in the studied sequences, possibly using
different metrics, which will be subsequently used to propose alternative align-
ments compatible with a chosen patch. The result could evoke paintings by Piet
Mondrian, with patches of different colours that could correspond to patches
computed with different metrics, cf. Fig. 1.

Fig. 1: A painting by Piet Mondrian (1872 - 1944)

1.3 Parisian Evolution Approach

The problem with all existing MSA approaches (evolutionary or not) is that
they try to evolve individuals that represent a complete MSA, which is a con-
ceptually impossible task, because is is ackowledged that there are several valid
ways to align sequences. Therefore, using a global approach implies making a
choice on the fitness function. Similarly to the Michigan Approach of Learning
Classifier Systems [7] [9] [21], the Parisian approach [2] has been designed to:
(i) decompose a large problem into smaller sub-problems that would be several
orders of magnitude simpler to solve than the global one and (ii) reassemble the
sub-problems into a global solution.

In the Parisian approach, an individual represents only a part of the solution
and in the final stage of the algorithm, the global solution is reconstructed from

97

the individual parts. This has two advantages: (i) it reduces the computational
requirements of the MSA algorithm, since an alignment is divided into smaller
sub-problems, meaning that smaller individuals can be constructed and evalu-
ated quickly. (ii) It also makes it possible to address the fact that there is no
unique global fitness function for MSA. Indeed, different fitness functions exist,
designed specifically for different protein regions.

Therefore, an evolutionary algorithm based on the Parisian Approach can
evolve many good partial MSAs using different fitness functions that can be re-
assembled differently, depending on what the biologist wants to study. MEMSA
evolves individuals that represent good “patches”, rather than complete solu-
tions, that can be reassembled differently for different global evaluations.

Fig. 2: Individual representation in MEMSA

2 Genetic Algorithm with Parisian Approach for MSA

In this section we explain the evolutionary operators implemented in MEMSA.

2.1 Individuals / Patches

In MEMSA, individuals represent local alignments called “patches”, containing
a small number of “segments” of identical length (at least 2 amino acids) from
different sequences, as depicted in Fig. 2.

2.2 Initialisation

As is usual in artificial evolution, initialisation is done using random values
(within constraints) so as to avoid biases. Each individual in the initial popula-
tion consists of short segments of 2 amino acids taken from 2–5 sequences.

98

2.3 Crossover

When running the algorithm, we observed that good individuals having more
than 2 segments are very rare. Therefore, the crossover operator is used to favour
the creation of larger individuals containing 3 or more segments. To this effect,
the crossover associates segments coming from two parents that use the same
metrics to generate a child that has more than two segments.

If both parents have an identical sequence in common then the child takes
the segment of one of the parents for this sequence.

As seen in section 2.5 below, evaluation is very fast, as it is made up of very
simple additions and multiplications. This means that evaluation is not the most
time-consuming part of the algorithm. Therefore, it is a great advantage that
this crossover is very simple, because it makes it also very quick, resulting in the
possibility of testing more possibilities than if an “intelligent” crossover were
used.

2.4 Mutator

Mutating an individual (a patch) may:

– add a segment to the individual (if < max number of segments),
– remove a segment from the individual (if the number of segments is > 3)
– shift the whole patch 0 to 10 amino acids to the right or to the left,
– shift one segment 0 to 10 amino-acid to right or to the left

An alignment is a succession of conserved and unconserved groups of columns.
Shifting a good patch in any direction has a good chance of generating another
good patch.

2.5 Evaluation

The evaluator must evaluate the quality of each individual (the quality of each
patch). Because it is the evaluation function that drives the algorithm, it is the
most important function of the algorithm. First of all, a fitness F is computed as
the norMD [20] (mean distance score representing the similarity of the sequence
segments) of the patch defined as follows:

S =
1

NA
∗ 2

(NS− 1) ∗NS ∗
NA∑

a=0

NS∑

i=0

NS∑

j=i+1

dM (AAa,i, AAa,j) (1)

where NS is the number of segments in the individual, NA the number of amino
acids in each segment, AAx,y is the x-th amino acid in y-th segment, and d
is the distance between two amino acids in Euclidean space using a particular
aminoacid substitution matrix M that can be different for different individuals.

In addition to the similarity of the segments, other information about the
fitness of a patch is calculated. In order to determine the size of the patch, we

99

define two variables: NS is the number of segments in the individual (height)
and NA is the number of amino acids in each segment (length). Then, because
we are interested in patches that have a height > 5, we favour such individuals
by computing:

H = min

(
1,

NS + 5

10

)
(2)

and because we are interested in patches that have 10 or more amino acids, we
favour such individuals by computing:

L = min

(
1,

NA + 10

20

)
(3)

The number of conserved columns is also an important factor. We calculate:

I =
caa + 1

NA + 1
(4)

where caa is the number of conserved amino-acid columns. 1 has been added to
the numerator so that I > 0 and to the denominator in the case where caa = NA.

Another factor to also take into account is cm, the maximum number of
consecutive columns that are not conserved, which is normalised through:

C =
NA− cm + 1

NA + 1
(5)

where cm is the maximum number of consecutive columns that are not conserved
(i.e. columns that contain more than one type of amino acid).

Finally, the fitness calculation is the following :

F = S ∗ C ∗ I ∗ (1 + H + L ∗H + L) + (2 ∗H + L ∗H + 2 ∗ L) (6)

The first part of the equation favours well formed individuals where the second
part favours larger individuals.

2.6 Diversity Preservation

MEMSA uses an operator to preserve diversity in the population. Loss of diver-
sity appears because MSAs are mostly constructed by an alternation of conserved
and non-conserved blocks. Without a diversity preservation operator, individu-
als end up being concentrated on well-conserved blocks (high fitness value) and
other interesting blocks are less explored. Therefore, in MEMSA, all unique in-
dividuals obtain an arbitrarily fixed bonus (larger than the best possible fitness)
so as to preserve them during the reduction step that selects the individuals to
create the next generation of parents.

2.7 Selection of Individuals for the new generation

After many tests, a 4-tournament is used to select the best individuals to create
the new generation.

100

2.8 Patchwork to Create an MSA

After each generation, a MSA is created out of several individuals. This is done
thanks to the following algorithm:

– During the evolution, an archive is created that contains the best individuals
of each generation, sorted depending on their fitness.

– Then, the individuals of the last generation are sorted and added after the
archive population.

– For each of the individuals of (archive+last generation), if the individual is
“compatible” with the current patchwork, add the individual to the patch-
work.

Testing whether an individual is compatible with a patchwork under con-
struction is a complicated task because the individual must not only be compat-
ible with all the other individuals of the patchwork, but also with all combina-
tions of individuals created from the patchwork, taking into account the different
fitness functions.

Several refined algorithms have been tested to perform this task, but the
brute force one is currently the most efficient. It involves adding the individual
to the patchwork and attempting to align all the patches to create a complete
alignment, within a limited number of iterations. If a stable alignment is not
found in the predetermined number of iterations, the individual is discarded.

2.9 Run parameters and behaviour of the algorithm

The EASEA [3] [15] platform has been used for the implementation. Its param-
eters are the following:

Number of generations : 200

Population size : 800000

Offspring size : 800000

Mutation probability : 1 // Probability to call the mutation function

Crossover probability : .3 // Cloning parent 1 if no crossover

Evaluator goal : maximise

Parents selection operator : Tournament 2

Next generation selection operator : Tournament 4

Elitism : Weak

Elite : 1

Evaluation is very fast, making it possible to use a very large population.
This is a huge advantage as it means that no complex diversity preservation
scheme needs to be used. A huge population means that the algorithm can be
both very exploratory and at the same time, tuned to converge fast on good indi-
viduals (0.3 crossover probability). This is comparable to fast converging Genetic
Programming algorithms that evolve huge populations for a reduced number of
generations. During the very first generations, we observe that individuals in
the population have relatively few segments (mostly two) and their segment size

101

is mostly close to three. After a few generations, the size of the segments of
the individuals increases considerably (the best individuals can have more than
15-20 amino acids). Then after tens of generations, more complex individuals
appear, which have more than two segments. Individuals that have more than
two segments are very interesting because they make it possible to create links
between sequences more easily.

Fig. 3: Normalised SP scores for MSA constructed by MEMSA, using the 218 BAl-
iBASE alignments in reference sets R1-1 to R5.

3 Experiments and Validation

In order to objectively evaluate the quality of the multiple sequence alignments
constructed by MEMSA, we use a large scale benchmark specifically designed
for MSA algorithms, called BAliBASE [18]. BAliBASE contains 218 reference
multiple alignments based on 3D structural superpositions that are manually
refined to ensure the correct alignment of conserved residues. The alignments
are organised into reference sets that are designed to represent real multiple
alignment problems. Reference 1 contains alignments of equidistant sequences
and is divided into 2 subsets: R1-1 (10-30% amino acid identity) and R1-2 (30-
50% amino acid identity). R2 contains families aligned with one or more highly

102

divergent “orphan” sequences. R3 contains divergent subfamilies, R4 contains
sequences with large N/C-terminal extensions and R5 contains sequences with
large internal insertions.

We aligned each of the test cases in BAliBASE with MEMSA and compared
the resulting MSAs with the hand-made reference alignments in BAliBASE.
We calculated the SP score, defined as the number of amino acid pairs aligned
correctly by MEMSA, using the baliscore program provided with the BAliBASE
benchmark. Fig. 3 shows the average SP score for 10 repeated applications of
MEMSA, as well as the minimum and maximum SP scores for each test case.
The results are quite stable over the 10 runs.

Fig. 4: Normalised SP scores for the best MSA constructed by MEMSA and ClustalW,
using the 218 BAliBASE alignments in reference sets R1-1 to R5.

We also compared the accuracy of the MEMSA alignments with one of the
most widely-used heuristic MSA methods: ClustalW [13]. We used ClustalW
because it remains a reference among MSA methods due to its versatility, and
in this work which focuses on exploiting different aligning methods, versatility is
what is valued. Fig. 4 shows the best SP scores obtained by MEMSA compared
to ClustalW for each of the reference sets in BAliBASE. We observe lower qual-
ity alignments in R1-1, probably due to the small number of sequences in this
reference set. However, R1-1 is no longer relevant in the context of NGS “big

103

data”. In all the other reference sets, MEMSA achieves comparable accuracy to
ClustalW with higher homogeneity (less dispersion).

4 Discussion and Conclusion

To our knowledge, this is the first time a genetic algorithm is capable of aligning
all the test cases of the large-scale BAliBASE benchmark within a reasonable
time. Nevertheless, MEMSA still requires significant computational resources,
compared to heuristic methods like MAFFT, MUSCLE, K-ALIGN or ProbCons
but it must be noted that the Parisian approach proposed in this paper aims not
at providing the user with a single MSA knowing that no single optimal MSA
exists.

However, the objective of MEMSA is different from what usual MSA algo-
rithms are doing: it is working as a complex system, that can be defined as a
large number of autonomous entities in interaction. We propose a paradigm shift
by acknowledging the multi-dimensionality of the problem and offering patch-
oriented MSAs centered on interesting patches.

In MEMSA, the entities are patches, that are in interaction through com-
mon fitness measurements. Complete MSAs can be built by assembling match-
ing patches taken from the population of individuals. The spatial visualisation
interface (called Mondrian) allowing the user to explore the different MSAs ac-
cording to different fitness functions (that will depend on the specific interests
of the user) is currently under development.

5 Acknowledgements

We would like to thank the members of the BISTRO Bioinformatics Platform in
Strasbourg for their support. This work was supported by the Agence Nationale
de la Recherche (BIPBIP: ANR-10-BINF-03-02), the Région Alsace and Institute
funds from the CNRS, the Université de Strasbourg and the Faculté de Médecine
de Strasbourg.

Bibliography

[1] Blackburne, B.P., Whelan, S.: Measuring the distance between multiple sequence
alignments. Bioinformatics 28 (4), 495–502 (Feb 2012)

[2] Collet, P., Lutton, E., Raynal, F., Schoenauer, M.: Polar ifs+parisian genetic pro-
gramming=efficient ifs inverse problem solving. Genetic Programming and Evolv-
able Machines 1(4), 339–361, http://dx.doi.org/10.1023/A:1010065123132

[3] Collet, P., Lutton, E., Schoenauer, M., Louchet, J.: Parallel Problem Solving from
Nature PPSN VI: 6th International Conference Paris, France, September 18–20,
2000 Proceedings, chap. Take It EASEA, pp. 891–901. Springer Berlin Heidelberg,
Berlin, Heidelberg (2000)

[4] Do, C.B., Mahabhashyam, M.S., Brudno, M., Batzoglou, S.: Probcons: Probabilis-
tic consistency-based multiple sequence alignment. Genome Research (Feb 2005)

[5] Edgar, R.C.: Muscle: multiple sequence alignment with high accuracy and high
throughput. Nucleic Acids Research (2004)

104

[6] H. Zhu, Z.H., Jia, Y.: A novel approach to multiple sequence alignment using
multiobjective evolutionary algorithm based on decomposition. IEEE J Biomed
Health Inform 20, 717–727 (2016)

[7] Hayes-Roth, F.: Review of ”adaptation in natural and artificial systems by john
h. holland”, the u. of michigan press, 1975. SIGART Bull. (53), 15–15 (Aug 1975),
http://doi.acm.org/10.1145/1216504.1216510

[8] Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks.
Proceedings of the National Academy of Sciences 89(22), 10915–10919 (1992),
http://www.pnas.org/content/89/22/10915.abstract

[9] Holland, J.H.: Computation & intelligence. chap. Escaping Brittleness: The Possi-
bilities of General-purpose Learning Algorithms Applied to Parallel Rule-based
Systems, pp. 275–304. American Association for Artificial Intelligence, Menlo
Park, CA, USA (1995), http://dl.acm.org/citation.cfm?id=216000.216016

[10] Katoh, K., Standley, D.M.: Multiple Sequence Alignment Methods, chap. MAFFT:
Iterative Refinement and Additional Methods, pp. 131–146. Humana Press, To-
towa, NJ (2014)

[11] Kaya, M., Sarhan, A., Alhajj, R.: Multiple sequence alignment with affine gap by
using multi-objective genetic algorithm. Comput Methods Programs Biomed 114,
38–49 (Apr 2014)

[12] L. Cai, D.J., Liaknovitch, E.: Evolutionary computation techniques for multiple
sequence alignment. Proceedings of the IEEE Congress on Evolutionary Compu-
tation 2000 (2000)

[13] Larkin, M., Blackshields, G., Brown, N., Chenna, R., McGettigan, P., McWilliam,
H., Valentin, F., Wallace, I., Wilm, A., Lopez, R., Thompson, J., Gibson, T.,
Higgins, D.: Clustal w and clustal x version 2.0. Bioinformatics 23, 2947–2948
(2007)

[14] Lassmann, T., Sonnhammer, E.L.: Kalign - an accurate and fast multiple sequence
alignment algorithm. BMC Bioinformatics (2005)

[15] Maitre, O., Krüger, F., Querry, S., Lachiche, N., Collet, P.: Easea: specification
and execution of evolutionary algorithms on gpgpu. Soft Computing 16(2), 261–
279 (2011)

[16] Nguyen, H.D., Yoshihara, I., Yamamori, K., Yasunaga, M.: Aligning multiple pro-
tein sequences by parallel hybrid genetic algorithm. Genome Informatics (2002)

[17] Notredame, C., Higgins, D.G.: Saga: Sequence alignment by genetic algorithm.
Nucleic Acids Research (Apr 1996)

[18] Thompson, J.D., Koehl, P., Ripp, R., Poch, O.: Balibase 3.0: latest developments
of the multiple sequence alignment benchmark. Proteins: Structure, Function and
BioInformatics (Oct 2005)

[19] Thompson, J.D., Linard, B., Lecompte, O., Poch, O.: A comprehensive benchmark
study of multiple sequence alignment methods: Current challenges and future
perspectives. PLoS One (2011)

[20] Thompson, J.D., Plewniak, F., Ripp, R., Thierry, J.C., Poch, O.:
Towards a reliable objective function for multiple sequence align-
ments1. Journal of Molecular Biology 314(4), 937 – 951 (2001),
http://www.sciencedirect.com/science/article/pii/S0022283601951873

[21] Wilson, S.W., Goldberg, D.E.: A critical review of classifier systems. In: Pro-
ceedings of the 3rd International Conference on Genetic Algorithms. pp. 244–
255. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1989),
http://dl.acm.org/citation.cfm?id=645512.657260

[22] Zhang, C., Wong, A.: A genetic algorithm for multiple molecular sequence align-
ment. Comput Appl Biosci. 13, 565–581 (1997)

105

Basic, Dual, Adaptive, and Directed Mutation
Operators in the Fly Algorithm

Zainab Ali Abbood and Franck P. Vidal

School of Computer Science, Bangor University, Dean Street, Bangor, LL57 1UT,
United Kingdom, f.vidal@bangor.ac.uk

Abstract. Our work is based on a Cooperative Co-evolution Algorithm
– the Fly algorithm – in which individuals correspond to 3-D points.
The Fly algorithm uses two levels of fitness function: i) a local fitness
computed to evaluate a given individual (usually during the selection
process) and ii) a global fitness to assess the performance of the pop-
ulation as a whole. This global fitness is the metrics that is minimised
(or maximised depending on the problem) by the optimiser. Here the
solution of the optimisation problem corresponds to a set of individuals
instead of a single individual (the best individual) as in classical evolu-
tionary algorithms (EAs). The Fly algorithm heavily relies on mutation
operators and a new blood operator to insure diversity in the population.
To lead to accurate results, a large mutation variance is often initially
used to avoid local minima (or maxima). It is then progressively reduced
to refine the results. Another approach is the use of adaptive operators.
However, very little research on adaptive operators in Fly algorithm has
been conducted. We address this deficiency and propose 4 different fully
adaptive mutation operators in the Fly algorithm: Basic Mutation, Adap-
tive Mutation Variance, Dual Mutation, and Directed Mutation. Due to
the complex nature of the search space, (kN -dimensions, with k the
number of genes per individuals and N the number of individuals in the
population), we favour operators with a low maintenance cost in terms
of computations. Their impact on the algorithm efficiency is analysed
and validated on positron emission tomography (PET) reconstruction.

Keywords: evolutionary algorithms, Parisian approach, reconstruction
algorithms, positron emission tomography, mutation operator

1 Introduction

This paper focuses on the application of a particular Cooperative Co-evolution
Algorithm (CCEA), the Fly algorithm [12], to reconstruct 3-D tomographic data
in nuclear medicine. The general public is more familiar with computed to-
mography (CT) when considering 3-D medical imaging. It offers a high spatial
resolution and signal-to-noise ratio (SNR), which is suitable for anatomic exam-
inations. Tomography in nuclear medicine is called emission tomography (ET).
It has a much lower resolution and SNR (see Fig. 1). There are two types of
3-D imaging modalities in nuclear medicine: Single-photon emission computed

106

2 Zainab Ali Abbood, and Franck P. Vidal

(a) CT (b) PET (c) PET-CT (d) 3-D view

Fig. 1: PET-CT of a cancer patient (data available on The Cancer Imaging
Archive (TCIA) [6] at https://public.cancerimagingarchive.net/).

tomography (SPECT) and positron emission tomography (PET). They both
use radioactive substances for the labelling of a physiological process (e.g. bone
fracture, growth of cancer cells, or areas of low blood pressure). The radioactive
concentration in the body is proportional to the physiological process of interest.
The radioactive emission is detected by the imaging system. Tomography recon-
struction “translates” it into a stack of 2-D cross-sections, which corresponds
to an estimation of the 3-D radioactive concentration. Evolutionary computing
has been successfully used in tomography reconstruction in both SPECT and
PET [4,19]. This method heavily relies on the selection process, mutation opera-
tors and a diversity mechanism. We focus here on PET as it is now the main 3-D
imaging modality in nuclear imaging. The focus of this article is on the choice
and combination of mutation operators.

The problem definition and the motivations for this research are given in
Section 2. The general principles of the evolutionary reconstruction for PET re-
construction are given in Section 3. It is followed by the definition of the mutation
operators, which are used in our implementation. The results of these operators
are analysed in Section 5. The article ends with a conclusion in Section 6.

2 Problem definition and motivations

Tomography reconstruction is an inverse problem: Projection data (Y) acquired
by a medical scanner (Y is the known data) has to be inverted by a computer
program to generate an estimate (f̂) of an unknown image (f). The nature of f
and Y is problem-dependant (see Fig. 2 for an example in ET) and it is often
modelled as:

Y = P [f] (1)

with P a projection operator that is also problem-dependant. The reconstruction
corresponds to solving:

f̂ = P−1 [Y] (2)

107

Mutation Operators in the Fly Algorithm 3

(a) Ground-truth (f). (b) Measured projec-
tions (Y = P [f]).

Fig. 2: Test case using the Jaszczak phantom with hot rods.

The problem is also ill-posed due to missing data and photonic noise (Poisson
noise) in Y . Noise is actually a major concern in ET. The reconstruction can be
considered as an optimisation problem:

f̂ = argmin
f∈R2

∥∥∥Y − P
[
f̂
]∥∥∥

1
(3)

Maximum-Likelihood Expectation-Maximization (MLEM) and its derivative Or-
dered Subset Expectation-Maximization (OSEM) are the main algorithms used
in nuclear medicine [18,11].

An alternative approach would be the use of artificial evolution. Most peo-
ple are familiar with black-box optimisation using simple genetic algorithms
(binary encoding of individuals) and real-valued genetic algorithms. Using this
traditional approach is not suitable for tomography reconstruction. Consider an
optimisation problem that consists in finding the best possible 3-D position of
N points. The search space has 3N -dimensions. When a black-box evolutionary
algorithm (EA) is considered, including CMA-ES, there will be k individuals in
the population, with 3N genes per individual. When N is large, this approach
is likely to fail due to its computing time. A more recent class of algorithms is
the Parisian approach. Using this framework, it is possible to only require N
individuals with 3 genes per individual. Each individual is a partial solution.
The individuals collaborate to build the overall solution.

In [4,19], the Fly algorithm is deployed to minimise the error between the
simulated image Ŷ and an input image Y (global evaluation) by optimising
the individual position of radioactive emission points (local evaluation of the
points). As the goal includes both a local and a global evaluation, the opti-
misatin problem is perfectly suited for the Parisian approach [7], which includes
the Fly algorithm. It heavily relies on the selection process, mutation operators
and a diversity mechanism. Ideally, the amount of random change needs first
to be set to a large value to better explore the search space. However, a con-
stant large mutation variance will lead to blurred reconstructed volumes. As a
consequence, the mutation variance has to be gradually reduced. The usefulness
of adaptive mutations in EAs is a well established [2,5,9,14]. Such techniques

108

4 Zainab Ali Abbood, and Franck P. Vidal

have been proven effective in various cases, depending on the fitness function
and the genetic engine used. However, complex schemes for the adaptivity of
the mutation operator have a computational cost that may not be negligible.
More simplistic schemes can actually perform better due to lower computational
needs [8]. Our main motivation is to investigate the use of such operators in the
Fly algorithm. The aim is to determine which sets of operators are the best in
terms of accuracy of the results, and amongst them which one is the best in
terms of computational cost. Destroying a bad fly and creating new and better
ones has to be a fast process because it is performed at a much higher rate in
the Parisian approach than in classical EAs. This is because the solution to the
optimisation problem in our case is the whole population [1] rather than the best
individual as in classical EAs. Using the best set of mutation operators to create
new flies is therefore important.

3 Overview of the Fly Algorithm for PET Reconstruction

The Fly algorithm was initially developed as a fast EA in stereovision for robotic
applications such as obstacle detection [12]. The Fly algorithm is based on the
Parisian approach. In conventional artificial evolution (AE), the solution is repre-
sented by the best individual. In the Parisian approach, the solution corresponds
to the whole population (or a subgroup of the population).

The individuals, called Flies, are 3-D points. In its original implementation,
a fly is projected onto the image planes corresponding to the pair of stereo
images. Its fitness is proportional to the difference of pixel values between the
neighbourhoods of the projected point on both images. The flies are evolved
using the typical steps of EAs. The flies eventually gather on the surfaces of
obstacles (e.g. walls). The final population can be used by autonomous robots
to avoid collision when moving.

Following its success in robotics, the Fly algorithm has been adapted to
ET in nuclear medicine, first in SPECT [4], then PET [19]. The population
of individuals is randomly generated within the search space contained in the
scanner. Each individual corresponds to a 3-D point that simulates radioactive
emissions. The emitted photons are projected. Each fly keeps track of its own
simulated photons. The estimated projections (Ŷ) is the amalgamation of the
projected photons of all the flies of the population. After optimisation, Ŷ matches
the projection data Y measured by the scanner, and the population f̂ is an
estimate of the unknown f .

The global fitness is used to evaluate the performance of the population as a
whole toward an optimal global solution. It is a specific feature of the Parisian
approach. In our case, it is an error metrics corresponding to the L1-norm (also
known as sum of absolute errors (SAE)) between Y and Ŷ :

SAE(Y, Ŷ) =
∥∥∥Y − Ŷ

∥∥∥
1
=
∑

i

∑

j

∣∣∣Y (i, j)− Ŷ (i, j)
∣∣∣

SAE is measured using all the individuals and it minimised by the algorithm.
Note that Y and Ŷ have to be normalised between 0 and 1 before computing

109

Mutation Operators in the Fly Algorithm 5

the L1-norm as the lowest and highest pixel values in Y and Ŷ may be signif-
icantly different. To evaluate the performance of a single individual (i), we use
the marginal fitness (Fm(i)). It is based on the leave-one-out cross-validation
principle:

Fm(i) = SAE(Y, Ŷ \ {i})− SAE(Y, Ŷ)

with Ŷ \ {i} the estimated projections without the photons simulated by fly i.
If Fm is positive, the error is smaller when the fly is included: The fly has a
positive impact on the population’s performance. It is a good fly, i.e. a good
candidate for reproduction. If Fm is negative, the error is larger when the fly is
included: The fly has a negative impact on the population’s performance. It is
a bad fly, i.e. a good candidate for death. Fm is therefore a measure maximised
by the algorithm.

Repeated applications of the genetic operators are used to optimise the posi-
tion of all the flies to get to the state where the difference between the projections
(Ŷ) simulated by the population and the actual data (Y) is as small as possible.
Our implementation heavily relies on different mutation operators and on new
blood (also called immigration).

We use a steady state evolutionary strategy where, at each iteration, a bad
fly is selected for death and replaced using a genetic operator (mutation or new
blood). We demonstrated in [19] the usefulness of the Threshold Selection over
tournament selection. To select a bad fly, a random fly is repeatedly picked up
until one is found with a marginal fitness below or equal to a given threshold
(e.g. 0); to select a good fly, a random fly is repeatedly picked up until one is
found with a marginal fitness above the threshold.

When the number of flies with negative fitness decreases too much, the thresh-
old selection fails to select flies to kill in an acceptable time. It indicates that
the population has converged. A mitosis operator can be activated to increase
the population size, i.e. the population size is doubled: Each fly is split into two
new flies (one of the two is then mutated). The benefit of this strategy in terms
of computing time has been demonstrated in [19].

If there are enough flies in the population, the solution is extracted to create
volume data using voxels. Two voxelisation methods can be exploited [1]. In
the simpler one, flies are binned into voxels. The flies are considered as Dirac
functions and the voxel intensity corresponds to the number of flies within it.
However it may generate noisy images. In the most advanced method, implicit
modelling is used to produce smoother images. The principle is to treat the
fitness of a fly as a level of confidence in the fly’s position. Each fly corresponds
to a 3-D Gaussian kernel whose variance depends on the fly’s fitness. A fly is
spread over several voxels. The contribution to final volume dataset is the same
for each fly.

4 Varying Mutation Operators in the Fly Algorithm

Our implementation relies on mutation to create better flies. The aim of the
mutation operators is to create new flies in the neighbourhood of good flies.

110

6 Zainab Ali Abbood, and Franck P. Vidal

Note that new blood is also used to preserve a minimum level of diversity in the
population. The following steps are necessary to use a mutation operator:

1. A bad fly is selected using the Threshold Selection.
2. Its projections are removed from Ŷ .
3. A good fly is selected using the Threshold Selection.
4. The bad fly is replaced by the good fly.
5. The position of the newly created fly is altered by random changes.
6. The projections of the mutated fly are computed.
7. These projections are added to Ŷ .

The only step which is different, depending on the mutation operator used, is
5. Only the Dual mutation was used in our initial implementation [19]. We
added three other adaptive mutation operators that are automatically tuned
without any human intervention. An individual has 9 genes: x, y, and z for
the fly’s position; PbasicMut, the probability of the basic mutation operator,
PadaptiveMut, the probability of the adaptive mutation operator, PdualMut, the
probability of the dual mutation operator, PdirectedMut, the probability of the
directed mutation operator, PnewBlood, the probability of the immigration/new
blood operator; and σ, the mutation rate associated with the fly (it is used by
the basic and directed mutation operators). Alg. 1 shows how random changes
are applied for all our mutation operators, which are described below.

4.1 Basic Mutation

The mutation variance can be subject to an adaptive pressure itself and be
self-adapted [2]. In our implementation the probability of all the operators is
encoded in the genome of each individual. The mutation variance is too. The
probabilities and the variance are then subject to random mutations as well.
The major advantage of this scheme is to provide a fully automatic method to
adapt the mutation variance, whilst keeping the administration cost null.

4.2 Adaptive Mutation Variance

The mutation variance can be directly adapted to local measurements, such
as fitness [15] and local regularity [13]. For example, when the evolutionary
algorithm is used to minimise an error function, the variance can be bigger
when fitness is high and smaller when fitness is low [20]. The idea is to favour
large exploration around the weakest individuals, whilst performing fine tuning
in the vicinity of good individuals. In our case, we want to maximise the marginal
fitness of flies: The higher the marginal fitness (Fm), the lower the variance, and
vice versa. We define the mutation variance here as a piecewise-defined function
of Fm:

σ (Fm) =

σmax, Fm < fitmin
σmin, Fm > fitmax

σmin + (σmax − σmin)×
cos

(
π×

(
Fm−fitmin

fitmax−fitmin

))
+1.0

2.0 , otherwise

111

Mutation Operators in the Fly Algorithm 7

Algorithm 1 Procedure mutate

Input: µ+ # The good fly on which λ will be based
Input: σ # The mutation rate to use for small random alterations
Input: use_dir_mut # A boolean flag
Output: λ # The fly create by mutation of µ+

λ.parentFm = µ+.Fm # Record the parent’s fitness
λ.created_by_mutation← TRUE

Mutate each gene
for each gene i do
∆← σ×rand(0, 1)× range[i]

2
#Amount of random variation

Get the direction of change of gene i
if NOT use_dir_mut OR NOT µ+.created_by_mutation then
Not using directed mutation
λ.dir [i]← sign(rand(−1, 1)) #Random direction

else if µ+.Fm > µ+.parentFm then
Parent better than grand-parent
λ.dir [i]← µ+.dir [i] #Go in the same direction as parent

else # Grand-parent better than parent
λ.dir [i]← −µ+.dir [i] #Go in the opposite direction as parent

end if

Apply the random change in the corresponding direction
λ.gene [i]← µ+.gene [i] + λ.dir [i]×∆
check(λ.gene [i]) # Apply constraints on value of gene if necessary

end for

with Fm the fitness of the individual who will undergo a mutation. Using the
cosine function, σ(Fm) smoothly varies between the smaller (fitmin) and the
larger (fitmax) fitness thresholds respectively. If Fm is smaller than fitmin, σ is
equal to σmax; if the individual’s fitness is greater than fitmax, σ is equal to σmin
(with σmin and σmax two constant values set by the user). The major advantage
of this scheme is similar to the previous one: It provides a fully automatic method
to adapt the mutation rate, whilst keeping its administration cost negligible.

4.3 Dual Mutation

Another approach, called Rechenberg’s rule, is to modulate the mutation vari-
ance based on the success/failure rate of the current mutation variance [16,3].
It relies on the notion of “evolution window”: Increase the mutation variance to
speed-up the search-space exploration, or decrease it to refine the results. For
this purpose, the algorithm must keep track of the success rate, which has an
obvious computational cost. This category includes the well-known 1/5th rule
proposed by Schewefel [17,3]. A single σ value is used. It is updated at regular

112

8 Zainab Ali Abbood, and Franck P. Vidal

intervals. It records the number of successful and unsuccessful mutations over
a given number of mutations (M). If the rate of successful mutation is greater
than 1/5, then increase σ; if it is lower, decrease σ.

The Dual mutation operator in the Fly algorithm is based on the concur-
rent testing of two alternative variance values (σlow and σhigh, with σhigh =
kσlow) [19]. The update rule is multiplicative as for the 1/5th rule. If mutations
with σhigh provide the best results during the previous M iterations, then both
mutation variances are multiplied by a predefined factor (pf , with pf > 1). If
mutations with σlow provide the best results during the previous M iterations,
then both mutation variances are divided by pf . For every Dual mutation, we
check the global fitness before and after the mutation. Note that these num-
bers are always pre-computed during the selection of individuals. Therefore, we
cannot affect their computation to the administration cost of this mutation op-
erator. Using two accumulators, we can assess which variance amongst σlow and
σhigh is the best. This scheme also requires a very limited number of user inputs.
The administration cost of the algorithm is sightly higher than the previous two
schemes but still relatively light. Also, the dual mutation does not need to make
any assumption on the ideal success rate of the mutation as in the 1/5th rule.

4.4 Directed Mutation

We introduce here a new operator, the Directed Mutation, which is related to
the evolution path in CMA-ES [10]. Its objective is to lead new individuals to-
ward areas of the search space that have been previously defined as “interesting”
by older flies. This principle follows well the fundamentals of CCEAs as new
individuals have to cooperate with older ones to benefit from their knowledge to
locate areas of interest.

To illustrate how our implementation works (see Alg. 1 with use_dir_mut =
TRUE), let us consider the case as follows: A fly (Fly2) has been created by
mutation of another fly (Fly1). We are now going to create a new fly (Fly3) by
mutation of Fly2. The position of the new fly will be biased toward the position
of the best fly among Fly1 and Fly2. If Fly1 is better than Fly2, we will look for
a new Fly3 from the location of Fly2 in the direction toward Fly1 (see Fig. 3a);
if Fly2 is better than Fly1, we will look for Fly3 from the location of Fly2 in
the direction away from Fly1 (see Fig. 3b). For any fly created by any kind of

Fly1

Fly2

Fly3

(a) Fly1 better than Fly2.

Fly1

Fly3

Fly2

(b) Fly2 better than Fly1.

Fig. 3: Directed Mutation Principle.

113

Mutation Operators in the Fly Algorithm 9

mutation, we record its parent’s fitness and in which direction the new fly has
been moved with respect to its parent. This is the main administration cost.

5 Results

We consider the Jaszczak phantom with hot rods as a test case (see Fig. 2).
We assess the algorithm with all the possible combinations of mutation oper-
ators. There are 24 possible configurations (see Tab. 1). Due to the stochastic

Table 1: The combinations of mutation operators.
Type Operators Type Operators
0000 no mutation 1000 basic
0001 directed 1001 basic + directed
0010 adaptive 1010 basic + adaptive
0011 adaptive + directed 1011 basic + adaptive + directed
0100 dual 1100 basic + dual
0101 dual + directed 1101 basic + dual + directed
0110 dual + adaptive 1110 basic + dual + adaptive
0111 dual + adaptive + directed 1111 basic + dual + adaptive + directed

nature of artificial evolution, 15 reconstructions per configuration are performed
to gather statistically meaningful results. For each reconstruction, we record i)
the normalised cross-correlation (NCC) between the ground-truth (f) and the
reconstructed volume (f̂), and ii) the reconstruction time:

NCC(f, f̂) =
1

w × h
i<w∑

i=0

j<h∑

j=0

(
f(i, j)− f

) (
f̂(i, j)− f̂

)

σfσf̂

with w and h the number of pixel along the horizontal and vertical axis respec-
tively, f and f̂ the average pixel value in f and f̂ respectively, and σf and σf̂
the standard deviation in f and f̂ respectively. The NCC provides a measure of
similarity between two images. It is 100% if they are perfectly correlated. It is
0% is they are totally uncorrelated. It is -100% if there is a negative correlation
(also called anticorrelation or inverse correlation) between them.

Figure 4 shows the median results in term of performance for duration and
NCC for each mutation operator combination. The dual mutation combined with
the directed mutation (see Configuration 0101 in Table 1) looks effective. The
dual mutation only (0100) as in [19] is not as good. The combinations whose
NCC is less than 1% smaller than the best combination are highlighted in green
and blue-violet in the figure. We can see that all of the combinations using the
directed mutation are performing relatively well. Only combinations that are
shown in both green and blue-violet should be considered (i.e. Configuration

114

10 Zainab Ali Abbood, and Franck P. Vidal

Type/mm
#rank

Dirac
#rank

Gaussian
#rank

Type/mm
#rank

Dirac
#rank

Gaussian
#rank

0000/14.53
#1

(68.77%)
#16

(84.38%)
#16

1000/15.40
#3

(85.29%)
#9

(92.14%)
#12

0001/15.67
#5

(86.25%)
#2

(92.56%)
#10

1001/15.67
#5

(86.06%)
#3

(92.17%)
#11

0010/14.53
#1

(74.28%)
#15

(88.67%)
#15

1010/16.00
#8

(85.59%)
#7

(92.81%)
#3

0011/18.93
#16

(84.56%)
#12

(92.65%)
#7

1011/17.80
#14

(86.01%)
#4

(92.99%)
#1

0100/15.67
#5

(77.42%)
#13

(90.05%)
#13

1100/16.73
#11

(85.76%)
#6

(92.60%)
#8

0101/16.40
#10

(86.28%)
#1

(92.96%)
#2

1101/16.73
#11

(85.77%)
#5

(92.73%)
#5

0110/15.40
#3

(74.41%)
#14

(88.71%)
#14

1110/16.13
#9

(84.68%)
#11

(92.57%)
#9

0111/16.87
#13

(84.79%)
#10

(92.68%)
#6

1111/17.87
#15

(85.42%)
#8

(92.80%)
#4

Fig. 4: Performance comparison of the different combinations of mutation op-
erators. The combinations whose NCC is less than 1% smaller than the best
combination are highlighted in green and blue-violet.

115

Mutation Operators in the Fly Algorithm 11

Table 2: Performance comparison in terms of NCC (Gaussian voxelisation only)
and duration of all the combinations of mutation operators. W is the Wilcoxon
signed-rank test between each entry with Combination 0101, and S is the total
rank sum. Possible good candidates against 0101 are highlighted in green.

NCC WNCC/S Duration Wduration/S
type (in %) (in minute)
0000 84.38 ±1.07 1.00 14.53 ±1.88 0.64
0001 92.556 ±0.65 0.47 15.67 ±2.02 0.20
0010 88.67 ±0.64 1.00 14.53 ±1.19 0.54
0011 92.65 ±0.55 0.37 18.93 ±6.18 -0.28
0100 90.05 ±0.89 0.98 15.67 ±1.35 0.29
0101 92.96 ±0.67 N/A 16.4 ±2.29 N/A
0110 88.71 ±0.36 1.00 15.4 ±1.64 0.42
0111 92.68 ±0.7 0.40 16.87 ±3.14 -0.08
1000 92.14±0.54 0.78 15.4 ±1.76 0.33
1001 92.17 ±0.61 0.80 15.67 ±2.66 0.26
1010 92.81 ±0.32 0.27 16 ±2.42 0.22
1011 92.99 ±0.58 -0.03 17.8 ±2.91 -0.43
1100 92.6 ±0.5 0.43 16.73 ±3.03 -0.11
1101 92.73 ±0.53 0.35 16.73 ±1.79 -0.09
1110 92.5 ±0.71 0.40 16.13 ±2.64 0.08
1111 92.8 ±0.6 0.35 17.87 ±3.38 -0.33

0001, 0101, 1000, 1001, 1010, 1011, 1100, 1101 and 1111). Ideally, the ones with
a short run-time should be favoured.

Quantitative results for each configuration are presented using boxplots in
Figure 5. The dark turquoise and mangenta configurations of Figure 5a shows
the NCC between the ground-truth and the reconstructions using all flies as a
finite point (or Dirac) and all flies using Gaussian kernel, respectively [1]. The
experiments with the dual and directed mutation operator (0101) (green circle)
seem to provide best results (86.28 ±0.71) and (92.96 ±0.67) in terms of NCC in
both configurations. It is much better than with the Dual mutation only (0100)
(red circle) when we use all flies as finite points (77.42% ±2.41) as in [19] and all
flies as Gaussian kernels (90.05 ±0.89). However it is still hard to assess which
configuration is the best in term of reconstruction speed (see Figure 5b).

Our hypothesis is that 0101 is the best combination of operators. To validate
it, we apply a non-parametric statistical hypothesis test (Wilcoxon signed-rank
test, noted W). The size of the samples is 15. The aim is to identify all other
combinations that are statistically relatively similar in terms of NCC as 0101
(see Tab. 2). We only consider the voxelisation using Gaussian kernels as we
already know it provides the most accurate reconstructions [1]. We also apply
the Wilcoxon signed-rank test on duration (see Tab. 2). The idea is to identify
which possible good combination provides accurate results the quickest. W is
divided by the total rank sum S to account for the effect size.W/S is within the

116

12 Zainab Ali Abbood, and Franck P. Vidal

 60

 65

 70

 75

 80

 85

 90

 95

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

NCC between ground truth and reconstruction

(a) NCC for all flies as a finite point (in dark turquoise) and all flies as Gaussian
kernel (in magenta) [1].

 10

 15

 20

 25

 30

 35

 40

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Duration in minutes

(b) Time required.

Fig. 5: Performance of mutation operators. The performance of our initial im-
plementation with dual mutation only as in [19] is highlighted in red. The per-
formance of the combination of the dual and directed mutation operators is
highlighted in green.

117

Mutation Operators in the Fly Algorithm 13

range between -1 and +1. For the NCC, any combination whose corresponding
value is close to -1 performs much better than 0101; close to 0 performs similarly
well; and close to +1 performs much worse. In practice, any configuration with
WNCC/S < 0.5 should be considered as a possible good candidate. It includes
0001, 0011, 0111, 1010, 1011, 1100, 1101, 1110 and 1111. Almost all of them use
a combination of at least two mutation operators. For this selection of combina-
tions, the directed mutation is used 6 times, the adaptive mutation 6 times, the
dual mutation 5 times, and the basic mutation 6 times. It shows the benefit of
our new operators and the usefullness of combining several types of mutation.

When the duration is considered, any combination whose corresponding value
is close to +1 performs much better than 0101; close to 0 performs similarly well;
and close to -1 performs much worse. It is because the NCC should be as high as
possible whereas the duration should be as small as possible. Any configuration
with Wduration/S > −0.5 could be considered as a possible candidate. It is
therefore impossible to objectively distinguish the possible good candidates in
terms of shortest time required.

6 Conclusion

We have presented a fully adaptive implementation of a CCEA based on the
Fly algorithm. The purpose of this algorithm is to optimise the location of 3-D
points. The final set of points corresponds to the solution of the optimisation
problem. The Fly algorithm heavily relies on the mutation operator to find the
best positions. In our initial implementation, we proposed the Dual Mutation
operator to self-tune the mutation variance. In this paper we complete our im-
plementation with three other adaptive mutation operators and assessed their
behaviours in tomographic reconstruction in PET. The probability of the genetic
operators are now part of the individuals’ genome. It includes a basic mutation
operator whose mutation variance is also encoded in the genome. There is also
a mutation operator whose variance is a function of the fitness of the individual
to mutate. Finally we introduced a new operator, the Directed Mutation, that
looks at the history of the individual that is going to be mutated to guide its
mutations in a direction that is likely to be worth exploring based on the experi-
ence of the individual’s ancestors. We demonstrate using the Jaszczak phantom
with hot rods that this approach and this new operator lead to better results in
terms of accuracy (improvement of NCC by ∼10%) without sacrificing the re-
construction speed. The problem considered here is, however, relatively specific
to claim general results. Further research is needed to evaluate the effectiveness
of our operators i) against state-of-the-art operators, ii) in alternative EAs, and
iii) with other reconstruction data.

Acknoledgements

This work has been funded by FP7-PEOPLE-2012-CIG project Fly4PET (http:
//fly4pet.fpvidal.net). We thank HPC Wales for the use of its services.

118

14 Zainab Ali Abbood, and Franck P. Vidal

References

1. Ali Abbood, Z., Lavauzelle, J., Lutton, E., Rocchisani, J.M., Louchet, J., Vidal,
F.P.: Voxelisation in the 3-D Fly algorithm for PET. Swarm Evol Comput (2017),
in press

2. Bäck, T.: Self-adaptation in genetic algorithms. In: Proc 1st European Conf Artif
Life. pp. 263–271. MIT Press (1992)

3. Beyer, H.G., Schwefel, H.P.: Evolution strategies - a comprehensive introduction.
Nat Comput 1(1), 3–52 (2002)

4. Bousquet, A., Louchet, J., Rocchisani, J.M.: Fully three-dimensional tomographic
evolutionary reconstruction in nuclear medicine. Lect Notes Comput Sc 4926, 231–
242 (2007)

5. Chellapilla, K.: Combining mutation operators in evolutionary programming. IEEE
T Evolut Comput 2(3), 91–96 (1998)

6. Clark, K., et al.: The cancer imaging archive (TCIA): Maintaining and operating a
public information repository. Journal of Digital Imaging 26(6), 1045–1057 (2013)

7. Collet, P., Louchet, J.: Applications in the Processing of Signals and Images, chap.
Chapter 2. Artificial Evolution and the Parisian Approach, pp. 15–44. Wiley (2010)

8. Collet, P., Lutton, E., Louchet, J.: Issues on the optimisation of evolutionary al-
gorithm code. In: IEEE C Evol Computat (2002)

9. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary
algorithms. IEEE T Evolut Comput 3(2), 124–141 (1999)

10. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evol Comput 11(1), 1–18 (2003)

11. Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered sub-
sets of projection data. IEEE Trans Med Imaging 13(4), 601–609 (1994)

12. Louchet, J.: Stereo analysis using individual evolution strategy. In: Proc Int C Patt
Recog. vol. 1, pp. 908–911 (2000)

13. Lutton, E., Lévy Véhel, J.: Pointwise regularity of fitness landscapes and the per-
formance of a simple ES. In: IEEE C Evol Computat. pp. 16–21 (2006)

14. Ochoa, G.: Setting the mutation rate: Scope and limitations of the 1/L heuristic.
In: Proc GECCO’02. pp. 495–502 (2002)

15. Orlowska-Kowalska, T., Lis, J.: Application of evolutionary algorithms with adap-
tive mutation to the identification of induction motor parameters at standstill.
COMPEL 28(6), 1647–1661 (2009)

16. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag (1973)

17. Schwefel, H.P.: Numerical optimization of computer models. Wiley (1981)
18. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomogra-

phy. IEEE Trans Med Imaging 1(2), 113–122 (1982)
19. Vidal, F.P., Lutton, E., Louchet, J., Rocchisani, J.: Threshold selection, mitosis and

dual mutation in cooperative coevolution: application to medical 3D tomography.
Lect Notes Comput Sc 6238, 414–423 (2010)

20. Vidal, F.P., Villard, P., Lutton, E.: Tuning of patient specific deformable models
using an adaptive evolutionary optimization strategy. IEEE T Bio-Med Eng 59(10),
2942–2949 (2012)

119

Session 5 - Metaheuristics

120

A New High-Level Relay Hybrid Metaheuristic
for Black-Box Optimization Problems

Julien Lepagnot1, Lhassane Idoumghar1, Mathieu Brévilliers1, and Maha
Idrissi-Aouad2

1 Université de Haute-Alsace, LMIA (E.A. 3993)
12 rue des Frères Lumière, 68093 Mulhouse, France

{julien.lepagnot,lhassane.idoumghar,mathieu.brevilliers}@uha.fr
2 Institut supérieur du Génie Appliqué

41 avenue 2 Mars, 20250 Casablanca, Maroc

Abstract. In this paper, a high-level relay hybridization of three meta-
heuristics with different properties is proposed. Our objective is to in-
vestigate the use of this kind of hybridization to tackle black-box op-
timization problems. Indeed, without any knowledge about the nature
of the problem to optimize, combining the strengths of different algo-
rithms, belonging to different classes of metaheuristics, may increase the
probability of success of the optimization process. The proposed hybrid
algorithm combines the multiple local search algorithm for dynamic op-
timization, the success-history based adaptive differential evolution, and
the standard particle swarm optimization 2011 algorithm. An experi-
mental analysis using two well-known benchmarks is presented, i.e. the
Black-Box Optimization Benchmarking (BBOB) 2015 and the Black Box
optimization Competition (BBComp). The proposed algorithm obtains
promising results on both benchmarks. The ones obtained at BBComp
show the relevance of the proposed hybridization.

Keywords: High-level Relay, Hybrid Metaheuristic, Black-Box Opti-
mization, Local Search, Differential Evolution, Particle Swarm Optimiza-
tion

1 Introduction

In High-level Relay Hybrid (HRH) metaheuristics, self-contained metaheuristics
are executed in sequence [8]. For instance, a local search can be applied after
an evolutionary algorithm (EA) in order to fine-tune the solution found by the
EA. The HRH hybridization may also use a greedy heuristic to generate a good
initial population for the EA. In this paper, we investigate the use of a HRH
metaheuristic for black-box optimization problems. The idea is to combine the
strengths of different kind of metaheuristics, in order to successfully tackle a
wider range of problems. The first metaheuristic executed in the proposed HRH
should especially focus on exploration, while the last one should focus on ex-
ploitation.

121

The Multiple Local Search algorithm for Dynamic Optimization (MLSDO) [6]
is a dynamic optimization algorithm that shows interesting properties for a HRH.
Indeed, it has been designed to widely explore the search space, in order to
quickly detect and keep track of the local optima in a problem that changes
over time. For a static optimization problem, it can be used to perform a first
exploration of the search space in order to quickly locate a promizing area, and
eventually different local optima of a multimodal objective function. These local
optima can then be used to create a good initial population of an EA. For this last
one, we have chosen the Success-History based Adaptive Differential Evolution
(SHADE) algorithm, which is one of the state-of-the-art differential evolution
(DE) algorithms [9]. As a last component of the proposed HRH, we investigate
using an algorithm based on particle swarm optimization (PSO). Compared
to EAs, that make use of a population of individuals, PSO uses a swarm of
particles that adjust their flying trajectories in the search space according to
their own flying experiences and the ones of all neighboring particles [5]. PSO
often suffers from premature convergence [1], but it can be used as a powerful
exploitation procedure. In the proposed HRH, we have chosen Standard PSO
2011 (SPSO2011) [2].

In order to validate the proposed hybrid metaheuristic, we have selected two
well-known benchmarks: the Black-Box Optimization Benchmarking (BBOB)
2015 [3], and the Black Box optimization Competition (BBComp) [7].

The rest of this paper is organized as follows: Section 2 presents an overview
of MLSDO, SHADE and SPSO2011. Then, the proposed HRH algorithm, called
MSS, is described in detail in Section 3. Experimental protocol and parameter
setting are presented in Section 4. Experimental results are discussed in Sec-
tion 5. Finally, a conclusion is given in Section 6.

2 Presentation of the hybridized components

2.1 Overview of MLSDO algorithm

In dynamic optimization, it is important for a metaheuristic to continuously
and widely explore the search space, in order to quickly locate a promising
area, and to quickly detect and react to a change in the objective function. To
do so, MLSDO uses several local searches, each one performed in parallel with
the others, to explore the search space, and to track the found optima over the
changes in the objective function. These local searches consist of moving step-by-
step in the search space, from a current solution to its best neighbor one, until a
stopping criterion is satisfied, reaching thus a local optimum. Each local search
is performed by an agent, and all the agents are coordinated by a dedicated
module (the coordinator). Two types of agents exist in MLSDO: the exploring
agents (to explore the search space in order to discover the local optima), and
the tracking agents (to track the found local optima over the changes in the
objective function). The local searches performed by the exploring agents have a
greater initial step size than the one of the tracking agents, because the exploring
agents have to widely explore the search space. The strategies used to coordinate

122

these local search agents enable the fast convergence to well diversified optima,
in order to quickly react to a change and find the global optimum. Especially,
each agent performs its local search in an exclusive area of the search space: an
exclusion radius is attributed to each agent. This way, if several agents converge
to a same local optimum, then only one of them can continue to converge to
this local optimum: all the other conflicting agents are reinitialized elsewhere in
the search space. Another important strategy is the use of two levels of precision
in the stopping criterion of the local searches of the agents. In this way, we
prevent the fine-tuning of low quality solutions, which could lead to a waste
of fitness function evaluations; only the best solution found by MLSDO is fine-
tuned. Furthermore, the local optima found during the optimization process are
archived, to accelerate the detection of the global optimum after a change in the
objective function. More details about this algorithm are in [6].

In static optimization, there is no need for the tracking agents of MLSDO.
However, the exploring agents and their coordination can be useful to perform
an initial wide exploration of the search space. MLSDO makes indeed use of fast
converging local searches initialized in order to cover at best the search space.
The local optima found by these local searches can then be used to create the
initial population of a population-based metaheuristic.

2.2 Overview of SHADE algorithm

SHADE maintains two historical archives of H entries for the CR and F control
parameters of DE, denoted by MCR and MF , respectively. It also maintains an
archive of CA inferior individuals, denoted by A. Its overall implementation is
shown in Figure 1, where the population, denoted by P , is made of N individuals.
For each generation, in order to generate the control parameters CRi and Fi of
each individual xi, it is necessary to randomly select an index ri. It is the index
of an entry of MCR denoted by MCR,ri , and of an entry of MF denoted by
MF,ri . The functions randn and randc generate random values from normal
and Cauchy distributions, respectively. They take two parameters: the mean
followed by the variance of the distribution. The control parameters CRi and
Fi used by successful individuals are stored in two archives, denoted by SCR

and SF , respectively. In line 11, a mutant vector ui is generated by applying the
current-to-pbest/1/bin mutation strategy: ui = xi+Fi(xpbest−xi)+Fi(xr1−xr2).
Individual xpbest is randomly selected from the best N ×p (p ∈ [0,1]) members of
the current generation. The individuals xr1 and xr2 are randomly selected from
P and P ∪ A such that they differ from each other as well as xi. More details
about this algorithm are in [9].

2.3 Overview of SPSO2011 algorithm

In SPSO2011, each particle has a position and a velocity in the search space.

For the ith particle, they are denoted by Xi and Vi, respectively. The best-

known position of the ith particle (known as personal best) is denoted by Pi,

123

SHADE

1 A← ∅
2 Randomly initialize P = {x1, x2, . . . , xN}
3 Set all values in MCR and MF to 0.5

4 while the stopping criteria are not met do
5 SCR ← ∅
6 SF ← ∅
7 for i = 1 to N do
8 Randomly initialize ri ∈ {1,2, . . . ,H}
9 CRi ← randn(MCR,ri ,0.1)

10 Fi ← randc(MF,ri ,0.1)
11 Generate trial vector ui

12 end

13 for i = 1 to N do
14 if f(ui) is better than f(xi) then
15 A← A ∪ {xi}
16 SCR ← SCR ∪ {CRi}
17 SF ← SF ∪ {Fi}
18 xi ← ui

19 end

20 end

21 If necessary, delete randomly selected individuals from A so that ∣A∣ ≤ CA

22 if SCR ≠ ∅ and SF ≠ ∅ then
23 Update MCR and MF based on SCR and SF

24 end

25 end

Fig. 1. SHADE algorithm

whereas the best-known position of its neighboring particles (known as local best)

is denoted by Gi. The position of the ith particle is updated according to (1),
where i = 1,2, . . . ,N and N is the size of the swarm.

Xi ←Xi + Vi (1)

SPSO2011 exploits the idea of rotational invariance. It starts by defining a
center of gravity (Gri) around three points: the current position (Xi), a point
a little “beyond” the best previous position (pi), and a point a little “beyond”
the best previous position in the neighborhood (li), as follows:

pi =Xi + c1(Pi −Xi) (2)

li =Xi + c2(Gi −Xi) (3)

Gri =
1

3
(Xi + pi + li) (4)

124

where c1 and c2 are two parameters of the algorithm. Then, a random point is
generated in the hypersphere H(Gri, ∥Gri −Xi∥), and the velocity is updated as
follows:

Vi ← ωVi + rH(Gri, ∥Gri −Xi∥) −Xi (5)

where ω is a parameter of the algorithm and r is a random number in [0,1]. The
position of the particle is updated according to (1). A parameter K is used to
generate the particles neighborhood. More details are in [2].

3 The proposed hybrid algorithm

The proposed algorithm, called MSS, makes use of a HRH of the MLSDO,
SHADE and SPSO2011 algorithms. At first, MLSDO is used to explore the
search space using fast local searches starting from distant initial solutions. Since
the objective function is not dynamic for the problems at hand, only one explor-
ing agent and no tracking agent is used. A stagnation criterion is used to stop
MLSDO if it is not able to improve the fitness value of the best solution found for
a given number, denoted by stopMLSDO, of successive objective function evalu-
ations. Furthermore, a maximum number of evaluations is defined for MLSDO,
denoted by maxMLSDO. Hence, if the stagnation criterion is satisfied or if the
number of evaluations performed by MLSDO reaches maxMLSDO, then MLSDO
stops its execution and SHADE (the next algorithm in the proposed HRH) starts
its execution. The population of SHADE is initialized with the best local optima
found by the local searches performed by MLSDO. The number of local optima
used to create the initial population of SHADE is denoted by topMLSDO. The
other individuals of the population are randomly initialized uniformly in the
search space. As for MLSDO, a stagnation criterion is also defined for SHADE.
The maximum number of successive non improving evaluations that SHADE
can perform is denoted by stopSHADE . If this stagnation criterion is satisfied,
then SPSO2011 is executed (the last algorithm in the proposed HRH) for the
remaining evaluations that can be performed by MSS. In the proposed hybrid
algorithm, SPSO2011 is especially used for exploitation. Its initial population is
the same as the one of the last generation of SHADE.

4 Experimental protocol and parameter setting

4.1 The BBOB 2015 benchmark

The BBOB 2015 benchmark is made of 24 noise-free real-parameter single-
objective test functions categorized into five groups (see Table 1) [3]. These
functions have been proposed to reflect, at least to a certain extend and with a
few exceptions, a difficult portion of the problem distribution that will be seen in
practice. The search interval for each dimension of all functions is [−5,5]. Each
function is randomly shifted to produce 15 instances with different positions

125

Separable functions Multi-modal functions with adequate
global structure

f1 : Sphere f15 : Rastrigin
f2 : Ellipsoidal f16 : Weierstrass
f3 : Rastrigin f17 : Schaffers F7
f4 : Büche-Rastrigin f18 : Schaffers F7, moderately ill-conditioned
f5 : Linear Slope f19 : Composite Griewank-Rosenbrock F8F2

Functions with low or moderate condi-
tioning

Multi-modal functions with weak global
structure

f6 : Attractive Sector f20 : Schwefel
f7 : Step Ellipsoidal f21 : Gallagher’s Gaussian 101-me Peaks
f8 : Rosenbrock, original f22 : Gallagher’s Gaussian 21-hi Peaks
f9 : Rosenbrock, rotated f23 : Katsuura

f24 : Lunacek bi-Rastrigin

Functions with high conditioning and
unimodal

f10 : Ellipsoidal f13 : Sharp Ridge
f11 : Discus f14 : Different Powers
f12 : Bent Cigar

Table 1. BBOB 2015 test functions

and values of the global optimum. A performance measure, called the expected
running time (ERT), is typically used to quantify and compare performance of
numerical optimization algorithms on this benchmark. It depends on a given
target function value, ft = fopt + ∆f , and is computed over all relevant trials
as the number of function evaluations executed during each trial while the best
function value did not reach ft, summed over all trials and divided by the num-
ber of trials that actually reached ft [4]. Statistical significance is tested with
the rank-sum test for a given target ∆ft using, for each trial, either the number
of needed function evaluations to reach ∆ft (inverted and multiplied by −1), or,
if the target was not reached, the best ∆f -value achieved, measured only up
to the smallest number of overall function evaluations for any unsuccessful trial
under consideration.

In our empirical analysis, two experimental protocols are used to evaluate
the performance of MSS on the BBOB 2015 benchmark. In the first one, called
PROTOCOL1, we fixed the maximum number of evaluations allowed to solve a
function at the same value as in BBComp, i.e. 100D2, where D is the number
of dimensions. We chose to solve 5 times each instance of each test function
(5 independent trials), which makes a total of 75 runs of an algorithm per test
function. The goal of this first protocol is to be closer to the one of BBComp. In
the second protocol, called PROTOCOL2, we run the algorithms with a budget
of 105D evaluations on each instance of each test function. We follow the typical
methodology of BBOB 2015, i.e. each instance of each test function is solved
only one time, and ERT is used to present the results.

126

4.2 The Black Box Optimization Competition

BBComp is the first competition in continuous black-box optimization where test
problems are truly black boxes for participants. It is also the first web/online
optimization competition in the direct search domain. The nature of the test
functions used for the competition is unknown to the participants. Furthermore,
each participant can use only one algorithm to solve each test function only once.
His algorithm have to solve test functions in 2, 4, 5, 8, 10, 16, 20, 32, 40 and
64 dimensions. For each of these numbers of dimensions, 100 test functions have
to be solved, which makes a total of 1000 problems. The search bound for each
dimension of all functions is [0,1]. The maximum number of evaluations allowed
to solve a function is 100D2, where D is the number of dimensions.

After the competition, all participants are ranked for each problem based on
their performance. Let k be the rank of a participant for a problem. Then, a
score can be computed for this problem according to k. The sum of these scores,
for all problems, gives the overall rank of a participant. This overall rank is used
to sort the participants and to determine the winner. A simple way to compute
the score of a participant for a problem is to set it to k. It leads to an overall
ranking system called “sum of ranks”. Another way to compute the score of a
participant for a problem is to set it to max{0, log((n+ 1)/2)− log(k)}, where n
is the number of participants. In effect, these scores amplify differences of good
(low) ranks and hide differences of bad (high) ranks k. It puts an emphasis on
the top ranks, and it leads to the official overall ranking system of BBComp.
More details about this competition can be found in [7].

4.3 Parameter setting

In MSS, since MLSDO is especially used for exploration, it does not need to
precisely converge to a local optimum. Hence, the parameters that control the
precision of the convergence in MLSDO are set consequently, i.e. the parameters
denoted by δph and δpl, called the highest and the lowest precision parameters
of the stagnation criterion of the local searches, respectively, can be left to high
values. All the parameters of MSS, empirically fitted, are presented in Table 2,
where D is the number of dimensions of the problem and B is the budget al-
lowed for its optimization, i.e. the maximum number of allowed evaluations.
These parameters are used for all functions of BBOB 2015 and BBComp. They
are also fitted for the unmodified SHADE and SPSO2011 algorithms, i.e. not
as components of MSS. For the unmodified MLSDO algorithm, changing the
parameters in Table 2 can significantly improve its performance for 10 functions
of BBOB 2015 (using δph = 1.0E−11 and δpl = 1.0E−7). However, it also signifi-
cantly worsen its performance for 11 functions. Hence, the parameters in Table 2
can be considered as fitted for MSS and for the unmodified MLSDO, SHADE
and SPSO2011 algorithms.

127

5 Experimental results and discussion

5.1 Results for the BBOB 2015 benchmark

The results obtained by MSS, MLSDO, SHADE and SPSO2011 on the BBOB
2015 benchmark, following PROTOCOL1, are presented in Table 3, where the
columns “D” and “Pb” give the number of dimensions and the test function used,
respectively. For each test function, the best value of the objective function found
by an algorithm, averaged over 75 runs, is presented. The standard deviation,
denoted by SD, is also given. The Kruskal-Wallis statistical test has been used,
at 95% confidence level, to determine if a significant difference exists between the
results obtained by the algorithms for each test case. If this test indicates that
there is a significant difference between the performance of the algorithms, then
the Tukey-Kramer post hoc test is used to determine which algorithms perform
differently from MSS. If an algorithm performs significantly better than MSS,
then the letter B is written in the “C” column. If it performs significantly worse,
then the letter W is written. The best results obtained for each test case, along
with the results that are not significantly different from the best ones according
to the Tukey-Kramer post hoc test, are written in bold.

As we can see, in 32 and 64 dimensions, MSS performs significantly better
than MLSDO for 18 functions, similarly for 3 functions, and worse for 3 functions.
Compared to SPSO2011, MSS performs significantly better for 20 functions in
32 dimensions and for 21 functions in 64 dimensions. It performs similarly for
3 functions in 32 dimensions and for 2 functions in 64 dimensions. Finally, it
performs worse than SPSO2011 for only 1 function both in 32 and 64 dimensions.
Hence, compared to MLSDO and to SPSO2011, the performance of MSS is
significantly better for most test functions.

Compared to SHADE, MSS performs better for 6 functions in 32 dimensions
and for 7 functions in 64 dimensions. It performs similarly for 14 functions in
32 dimensions and for 13 functions in 64 dimensions. Finally, it performs worse
than SHADE for 4 functions both in 32 and 64 dimensions. Among the functions
for which SHADE performs better than MSS, only two are the same in 32 and in
64 dimensions, i.e. f11 (Discus function) which is unimodal but with a very high
conditioning, and f15 (Rastrigin function). This last one is actually a modified
version of the original well-know Rastrigin function, in order to make it a non-
separable less regular counterpart of f3. The functions for which MSS performs
significantly better than SHADE are the same in 32 and in 64 dimensions. Most
of these functions belong to the category of “multi-modal functions with weak
global structure”.

Table 4 presents the contribution of each component of MSS in the con-
vergence of the algorithm. In columns “Av.” and “SD”, the average number of
evaluations and its standard deviation, given for each test case, are expressed
in percentage of the total number of evaluations allowed for this test case. The
average fitness improvement (column “AFI”), given for SHADE (respectively
SPSO2011), is the percentage by which the fitness value of the best solution

128

Parameter Value

MLSDO

Exclusion radius of the agents 0.07
Initial step size of tracking agents 0.005

δph 0.001
δpl 0.1

SHADE
N ⌊0.85D + 9⌋
CA 2N
H N
p 0.1

Parameter Value

SPSO2011
ω 0.721

c1, c2 1.193
K 3

Hybridization

maxMLSDO 0.3B
stopMLSDO 0.112B
topMLSDO 0.5N
stopSHADE 0.337B

Table 2. MSS parameters

MSS MLSDO SHADE SPSO2011
D Pb Average SD Average SD C Average SD C Average SD C

32

f1 0.00E+00 0.00E+00 1.11E−03 2.20E−04 W 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f2 0.00E+00 0.00E+00 3.63E−04 3.75E−04 W 0.00E+00 0.00E+00 1.52E+03 5.95E+02 W
f3 2.65E−02 1.61E−01 3.14E+01 4.45E+00 W 3.18E−01 9.13E−01 8.57E+01 2.17E+01 W
f4 4.17E−01 8.49E−01 3.61E+01 5.64E+00 W 2.47E+00 2.98E+00 W 1.32E+02 3.34E+01 W
f5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.11E+01 8.10E+00 W
f6 4.57E−05 1.91E−04 1.94E+00 2.21E+00 W 2.44E−05 1.37E−04 B 1.78E−07 1.47E−06 B
f7 9.69E+00 4.71E+00 4.11E+01 1.21E+01 W 1.03E+01 4.78E+00 2.41E+01 1.01E+01 W
f8 6.38E−01 1.47E+00 1.72E+01 7.42E+00 W 7.44E−01 1.56E+00 3.48E+01 2.49E+01 W
f9 8.91E+00 1.83E+00 2.25E+01 4.06E+00 W 7.27E+00 1.94E+00 2.64E+01 1.18E+01 W
f10 2.78E+02 1.64E+02 2.06E+03 8.95E+02 W 1.71E+02 1.03E+02 1.46E+03 7.15E+02 W
f11 1.26E+01 4.03E+01 3.10E+02 4.80E+01 W 6.60E+00 3.18E+01 B 4.16E+01 1.24E+01 W
f12 1.22E+00 2.36E+00 2.65E−01 5.64E−01 1.16E+00 3.71E+00 4.49E+00 8.21E+00 W
f13 4.72E−01 2.04E+00 5.87E−01 6.65E−01 W 4.01E+00 6.12E+00 W 5.55E+00 8.01E+00 W
f14 3.55E−05 1.14E−05 1.41E−02 2.91E−03 W 3.01E−05 7.99E−06 2.47E−04 2.15E−05 W
f15 6.79E+01 2.22E+01 2.10E+02 3.42E+01 W 4.03E+01 1.06E+01 B 7.28E+01 2.43E+01
f16 9.78E+00 2.28E+00 7.62E+00 1.51E+00 B 1.13E+01 1.76E+00 W 1.61E+01 3.02E+00 W
f17 1.69E−01 1.13E−01 1.03E+01 2.82E+00 W 1.66E−01 1.46E−01 8.22E−01 3.63E−01 W
f18 8.56E−01 5.01E−01 4.02E+01 9.96E+00 W 8.20E−01 4.77E−01 3.01E+00 1.18E+00 W
f19 3.19E+00 9.57E−01 5.13E+00 1.00E+00 W 2.76E+00 4.65E−01 B 4.23E+00 4.33E−01 W
f20 6.84E−01 1.12E−01 8.85E−01 9.82E−02 W 8.10E−01 1.28E−01 W 2.06E+00 2.05E−01 W
f21 2.69E+00 3.33E+00 5.98E−01 7.26E−01 B 4.65E+00 5.10E+00 4.37E+00 6.40E+00
f22 3.57E+00 4.15E+00 1.09E+00 1.16E+00 8.78E+00 8.19E+00 W 7.41E+00 6.62E+00 W
f23 8.04E−01 2.79E−01 5.46E−01 1.78E−01 B 1.03E+00 2.22E−01 W 2.22E+00 3.49E−01 W
f24 8.75E+01 1.73E+01 6.15E+02 2.77E+02 W 8.34E+01 1.15E+01 1.65E+02 1.74E+01 W

64

f1 0.00E+00 0.00E+00 2.12E−03 3.05E−04 W 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f2 0.00E+00 0.00E+00 2.52E−04 2.23E−04 W 0.00E+00 0.00E+00 2.66E+03 6.21E+02 W
f3 0.00E+00 0.00E+00 6.54E+01 7.20E+00 W 5.70E−01 2.35E+00 2.23E+02 4.30E+01 W
f4 1.59E−01 4.02E−01 7.85E+01 7.85E+00 W 5.80E+00 8.39E+00 W 3.50E+02 5.67E+01 W
f5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 7.15E+01 1.79E+01 W
f6 1.90E−04 9.21E−04 4.71E+00 3.61E+00 W 6.05E−05 3.75E−04 4.19E−06 1.61E−05 B
f7 2.99E+01 9.00E+00 1.41E+02 2.56E+01 W 3.19E+01 8.42E+00 8.36E+01 2.33E+01 W
f8 4.25E−01 1.24E+00 4.92E+01 6.60E+00 W 4.78E−01 1.30E+00 8.80E+01 3.46E+01 W
f9 3.51E+01 6.52E+00 5.34E+01 3.11E+00 W 3.46E+01 8.77E+00 6.32E+01 2.06E+01 W
f10 4.54E+02 1.87E+02 2.25E+03 1.10E+03 W 2.95E+02 1.43E+02 B 2.80E+03 9.58E+02 W
f11 5.21E−02 4.66E−02 6.32E+02 7.80E+01 W 5.74E−03 6.37E−03 B 2.63E+01 6.08E+00 W
f12 1.61E+00 2.73E+00 3.62E−01 3.43E−01 2.38E+00 3.69E+00 3.83E+00 6.78E+00
f13 2.82E−01 3.86E−01 6.09E−01 6.08E−01 W 2.49E+00 3.56E+00 W 4.23E+00 6.60E+00 W
f14 3.09E−05 5.86E−06 2.04E−02 3.38E−03 W 2.61E−05 4.46E−06 B 3.09E−04 1.51E−05 W
f15 1.19E+02 2.95E+01 6.25E+02 7.83E+01 W 8.93E+01 1.84E+01 B 2.07E+02 5.03E+01 W
f16 1.51E+01 2.70E+00 1.24E+01 2.09E+00 B 1.83E+01 1.73E+00 W 2.29E+01 2.26E+00 W
f17 2.70E−01 1.26E−01 1.33E+01 2.87E+00 W 2.24E−01 1.06E−01 1.90E+00 4.60E−01 W
f18 1.39E+00 5.46E−01 5.07E+01 1.15E+01 W 1.34E+00 4.96E−01 6.17E+00 1.50E+00 W
f19 3.96E+00 5.19E−01 7.53E+00 1.14E+00 W 3.83E+00 3.38E−01 4.93E+00 3.96E−01 W
f20 6.55E−01 6.97E−02 9.33E−01 7.08E−02 W 9.46E−01 2.22E−01 W 2.13E+00 1.12E−01 W
f21 1.63E+00 1.10E+00 2.91E−01 5.43E−01 B 6.06E+00 5.54E+00 W 5.57E+00 5.34E+00 W
f22 1.98E+00 2.22E+00 1.38E+00 1.51E+00 1.20E+01 1.03E+01 W 1.20E+01 1.06E+01 W
f23 9.75E−01 2.64E−01 7.46E−01 1.82E−01 B 1.48E+00 2.27E−01 W 2.69E+00 3.94E−01 W
f24 1.74E+02 2.12E+01 1.97E+03 2.70E+02 W 1.67E+02 1.89E+01 3.43E+02 4.21E+01 W

Table 3. Results of the compared algorithms on the BBOB 2015 benchmark

129

MLSDO SHADE SPSO2011
Pb Av. SD AFI Av. SD AFI Av. SD
1 12.53 0.06 100.00 58.85 6.45 0.00 28.62 6.46
2 13.67 0.09 100.00 63.49 7.51 0.00 22.84 7.52
3 20.15 5.78 99.93 79.85 5.78 0.00 0.00 0.00
4 18.69 5.91 99.11 81.31 5.91 0.00 0.00 0.00
5 11.56 0.02 0.00 33.82 0.00 0.00 54.62 0.02
6 23.24 4.91 100.00 76.76 4.91 0.00 0.00 0.00
7 18.80 6.28 83.78 52.80 14.07 0.18 28.40 15.03
8 24.32 5.50 97.79 75.68 5.50 0.00 0.00 0.00
9 21.49 5.93 65.23 78.51 5.93 0.00 0.00 0.00
10 30.00 0.00 95.11 70.00 0.00 0.00 0.00 0.00
11 23.99 6.56 96.55 76.01 6.56 0.00 0.00 0.00
12 17.65 4.40 58.06 82.35 4.40 0.00 0.00 0.00
13 18.93 4.85 78.06 81.04 4.84 0.00 0.03 0.22
14 14.27 2.22 99.79 85.73 2.22 0.00 0.00 0.00
15 19.83 6.01 74.67 80.17 6.01 0.00 0.00 0.00
16 20.26 5.45 14.75 52.80 22.56 0.02 26.94 22.29
17 23.05 6.51 98.86 76.84 6.42 0.00 0.12 0.96
18 24.36 6.36 98.99 75.47 6.21 0.00 0.18 1.13
19 20.79 5.94 55.38 73.15 17.19 0.23 6.06 14.92
20 18.11 5.56 35.01 81.89 5.56 0.00 0.00 0.00
21 19.59 6.13 0.07 61.08 7.54 0.00 19.33 10.00
22 18.05 5.05 0.05 60.91 7.35 0.00 21.04 9.00
23 17.03 4.87 1.83 35.87 10.15 0.36 47.10 10.81
24 19.75 5.97 89.75 80.25 5.97 0.00 0.00 0.00

32-D

MLSDO SHADE SPSO2011
Pb Av. SD AFI Av. SD AFI Av. SD
1 11.92 0.01 100.00 56.02 11.48 0.00 32.06 11.48
2 12.51 0.04 100.00 62.48 13.28 0.00 25.00 13.28
3 18.73 5.89 100.00 81.27 5.89 0.00 0.00 0.00
4 18.26 6.17 99.83 81.74 6.17 0.00 0.00 0.00
5 11.40 0.01 0.00 33.77 0.00 0.00 54.82 0.01
6 20.47 3.62 100.00 79.53 3.62 0.00 0.00 0.00
7 19.77 6.08 83.39 61.60 19.03 0.08 18.63 18.97
8 23.75 6.25 99.33 76.25 6.25 0.00 0.00 0.00
9 19.19 5.38 38.56 80.81 5.38 0.00 0.00 0.00
10 30.00 0.00 93.55 70.00 0.00 0.00 0.00 0.00
11 21.60 6.56 99.99 78.40 6.56 0.00 0.00 0.00
12 16.42 4.40 22.91 83.58 4.40 0.00 0.00 0.00
13 16.04 3.99 81.54 81.10 4.40 0.00 2.86 3.81
14 13.07 1.55 99.86 86.93 1.55 0.00 0.00 0.00
15 21.10 6.22 84.49 78.90 6.22 0.00 0.00 0.00
16 19.88 6.00 2.81 47.25 20.56 0.004 32.86 20.11
17 21.92 5.92 98.44 74.24 7.65 0.00 3.83 7.23
18 23.70 5.89 98.02 71.44 6.60 0.00 4.86 6.77
19 18.72 5.28 57.17 81.28 5.28 0.00 0.00 0.00
20 18.48 5.65 37.52 81.52 5.65 0.00 0.00 0.00
21 20.40 6.38 0.12 59.90 10.15 0.00 19.70 11.46
22 17.96 5.11 0.07 57.79 11.80 0.00 24.25 13.60
23 15.35 3.99 1.36 39.10 14.07 0.05 45.55 13.83
24 15.89 3.79 91.74 84.11 3.79 0.00 0.00 0.00

64-D

Table 4. Contribution of MLSDO, SHADE and SPSO2011 in the convergence of MSS

found by MLSDO (respectively SHADE) is improved by SHADE (respectively
SPSO2011).

In this table, we can see that the test functions for which MLSDO contributes
the most in improving the solution found by MSS (the functions for which the
AFI of SHADE and SPSO2011 are close to 0) are f5, f21, f22 and f23 in 32
dimensions, and f5, f16, f21, f22 and f23 in 64 dimensions. For the other func-
tions, SHADE provides an important contribution in the convergence of MSS.
Besides, we can see that all AFI values of SPSO2011 are close to 0, which means
that SHADE is able to precisely converge to a local or global optimum. Yet,
SPSO2011 contributes to the exploitation process of MSS for the functions f7,
f16, f19 and f23 in 32 dimensions, and f7, f16 and f23 in 64 dimensions.

To further study the effect of the hybridization of SHADE with MLSDO
and SPSO2011, a comparison of the performance of MSS and SHADE following
PROTOCOL2 is presented in Table 5. Considering the lowest target ∆f -value
for which at least one of the two compared algorithms has an ERT different
from ∞, MSS obtains a significantly better ERT than SHADE for 5 functions.
On the other hand, SHADE gets also a significantly better ERT than MSS for
5 functions. Hence, the results are mitigated in terms of ERT. However, as we
can see in the column “#succ”, MSS has a better success rate in reaching the
final target than SHADE for 4 functions, i.e. f3, f4, f8 and f21.

5.2 Results at the Black Box Optimization Competition

BBComp occurs every year since 2015. The BBComp editions where we partici-
pated are called “BBComp2015CEC” and “BBComp2016-1OBJ” tracks. In the
following subsections, we present the results obtained at BBComp using MSS.

130

∆fopt 10 0.1 1e-3 1e-5 1e-7 #succ

f1 83 83 83 83 83 30/30
1: MSS 7.8⋆3 14⋆3 750 806 854 15/15
2: SHA 22 54 85⋆3 116⋆3 150⋆3 15/15

f2 796 799 800 802 804 15/15
1: MSS 2.5⋆3 3.1⋆3 3.8⋆3 96 102 15/15
2: SHA 11 15 18 23⋆3 27⋆3 15/15

f3 15526 15612 15646 15651 15656 15/15
1: MSS 7.1 8.2 9.0 10 11 15/15
2: SHA 2.1⋆3 12 13 13 14 11/15

f4 15536 15659 15703 15733 2.8e5 9/15
1: MSS 7.2 11 12 13 0.75 14/15
2: SHA 2.7⋆3106 106 106 6.0 3/15

f5 98 120 121 121 121 15/15
1: MSS 3.6⋆3 3.0⋆3 3.0⋆3 3.0⋆3 3.0⋆315/15
2: SHA 33 59 91 123 155 15/15

f6 3507 7168 11538 15007 19222 15/15
1: MSS 7.3 14 12 12 11 15/15
2: SHA 4.0 7.1⋆3 8.0⋆3 9.0⋆3 10 15/15

f7 10698 41037 66294 66294 68145 15/15
1: MSS 83 ∞ ∞ ∞ ∞ 0/15
2: SHA524 ∞ ∞ ∞ ∞ 0/15

f8 7080 11012 11430 11701 11969 15/15
1: MSS 22 19 19 19 20 14/15
2: SHA 8.6⋆3 21 21 21 22 11/15

f9 6122 13300 13651 13909 14142 15/15
1: MSS 38 34 ∞ ∞ ∞ 0/15
2: SHA 32⋆3 29 145 ∞ ∞ 0/15

f10 25890 36796 56007 65128 70824 15/15
1: MSS ∞ ∞ ∞ ∞ ∞ 0/15
2: SHA ∞ ∞ ∞ ∞ ∞ 0/15

f11 2368 11681 29749 38949 48211 15/15
1: MSS 61 22 23 ∞ ∞ 0/15
2: SHA 24⋆3 16⋆3 10⋆ 51⋆ ∞ 0/15

f12 4169 9174 13146 22758 25192 15/15
1: MSS 2.2 45 225 ∞ ∞ 0/15
2: SHA 10 30 144 ∞ ∞ 0/15

∆fopt 10 0.1 1e-3 1e-5 1e-7 #succ

f13 2029 8734 71936 98467 1.2e5 15/15
1: MSS 2.1⋆ 26⋆ ∞ ∞ ∞ 0/15
2: SHA 34 299 ∞ ∞ ∞ 0/15

f14 304 777 2207 4825 5771115/15
1: MSS 1.9⋆3 2.4⋆331 161 ∞ 0/15
2: SHA 4.9 6.7 8.7⋆3 125 ∞ 0/15

f15 1.9e5 1.0e6 1.1e6 1.1e6 1.1e6 15/15
1: MSS ∞ ∞ ∞ ∞ ∞ 0/15
2: SHA ∞ ∞ ∞ ∞ ∞ 0/15

f16 5244 3.2e5 1.4e6 2.0e6 2.0e6 15/15
1: MSS 120⋆ ∞ ∞ ∞ ∞ 0/15
2: SHA1090 ∞ ∞ ∞ ∞ 0/15

f17 399 14158 51958 1.3e5 2.7e5 14/15
1: MSS 168 190 ∞ ∞ ∞ 0/15
2: SHA 1.4⋆3 43 ∞ ∞ ∞ 0/15

f18 1442 47068 1.9e5 6.7e5 9.5e5 6/15
1: MSS 65 ∞ ∞ ∞ ∞ 0/15
2: SHA 2.7⋆3 ∞ ∞ ∞ ∞ 0/15

f19 1 1.4e6 2.6e7 4.5e7 4.5e7 8/15
1: MSS7350 ∞ ∞ ∞ ∞ 0/15
2: SHA 842⋆2 ∞ ∞ ∞ ∞ 0/15

f20 222 1.6e8 ∞ ∞ ∞ 0
1: MSS 3.3⋆3 ∞ ∞ ∞ ∞ 0/15
2: SHA 8.0 ∞ ∞ ∞ ∞ 0/15

f21 1044 1.0e5 1.0e5 1.0e5 1.0e5 26/30
1: MSS 6.3 3.9⋆2 3.9⋆2 4.2⋆24.5⋆2 8/15
2: SHA 98 ∞ ∞ ∞ ∞ 0/15

f22 3090 6.5e5 6.5e5 6.5e5 6.5e5 8/30
1: MSS 1.6 ∞ ∞ ∞ ∞ 0/15
2: SHA 48 ∞ ∞ ∞ ∞ 0/15

f23 7.1 75453 1.3e6 3.2e6 3.4e6 15/15
1: MSS 1.3 ∞ ∞ ∞ ∞ 0/15
2: SHA 1.7 ∞ ∞ ∞ ∞ 0/15

f24 5.8e6 3.0e8 3.0e8 3.0e8 3.0e8 1/15
1: MSS ∞ ∞ ∞ ∞ ∞ 0/15
2: SHA ∞ ∞ ∞ ∞ ∞ 0/15

Table 5. Expected running time (ERT in number of function evaluations) divided by
the respective best ERT measured during BBOB-2009 in 40 dimensions. The different
target ∆f -values are shown in the top row. #succ is the number of trials that reached
the (final) target fopt+10−8. Bold entries are statistically significantly better compared
to the other algorithm, with p = 0.05 or p = 10−k where k ∈ {2,3,4, . . .} is the number
following the ⋆ symbol, with Bonferroni correction of 48

Results at the BBComp2015CEC track This edition of the competition
occured in 2015, and the results obtained by the participants were presented
at the IEEE Congress on Evolutionary Computation (CEC’2015). There were

25 participants to this competition, and MSS is among the winners at the 3rd

place using the official ranking system. Using the “sum of ranks” ranking system,

MSS is ranked at the 2nd place. MSS obtained bad results on low dimensional
problems, i.e. in 2, 4, 5 and 8 dimensions. For these number of dimensions,

MSS is ranked at the 16th, 13th, 9th and 5th place, respectively. However, using
a higher number of dimensions, MSS shows a good performance compared to
the other algorithms. For these higher dimensions, i.e. in 10, 16, 20, 32, 40
and 64 dimensions, the convergence curves and/or the ranking of all competing

131

algorithms are presented in figures 2 and 3 [7]. As we can see, MSS is the 1st

ranked algorithm in 10 dimensions, the 2nd ranked algorithm in 32, 40 and 64

dimensions, and the 3nd ranked algorithm in 20 dimensions.

Results at the BBComp2016-1OBJ track This edition of the competition
occured in 2016, and the results obtained by the participants were presented at
the Genetic and Evolutionary Computation Conference (GECCO’2016). There

were 14 participants to this competition, and MSS is ranked at the 6th place
using the official ranking system. Using the “sum of ranks” ranking system,

MSS is ranked at the 4th place. The results obtained at this edition of BBComp
confirmed that MSS can be easily outperformed on low dimensional problems.

Indeed, MSS is ranked at the 8th place and below for problems with a number

Fig. 2. Ranking of algorithms competing on the BBComp2015CEC track in 10, 16 and
20 dimensions. Due to space limitations, their convergence curves are displayed only
in 20 dimensions (taken from [7])

132

Fig. 3. Convergence curves and ranking of algorithms competing on the BB-
Comp2015CEC track in 32, 40 and 64 dimensions (taken from [7])

133

of dimensions lower or equal to 5, but it is ranked at the 5th place and above
for problems with a number of dimensions higher or equal to 8.

6 Conclusion

In this paper, a high-level relay hybrid metaheuristic, called MSS, is proposed. It
combines three algorithms, i.e. MLSDO, SHADE and SPSO2011, that belong to
different classes of metaheuristics. This combination of different metaheuristics
leads to promising results on the BBOB 2015 benchmark, and at the BBComp

competition. At the 2015 edition of BBComp, MSS has notably got the 3rd prize
of the competition, among 25 competing algorithms. The experimental analysis
suggests that MSS still needs to be improved for low dimensional problems.

As a perspective, we can investigate the replacement of the local searches of
MLSDO by more adapted and efficient ones. SHADE and SPSO2011 can also
be replaced by improved variants. Finally, the integration of machine learning
techniques in the proposed hybrid metaheuristic can also be studied.

References

1. Banks, A., Vincent, J., Anyakoha, C.: A review of particle swarm optimization.
Part II: hybridisation, combinatorial, multicriteria and constrained optimization,
and indicative applications. Natural Computing 7(1), 109–124 (2008)

2. Clerc, M.: Standard Particle Swarm Optimisation (2012), https://hal.archives-
ouvertes.fr/hal-00764996, 15 pages

3. Finck, S., Hansen, N., Ros, R., Auger, A.: Real-Parameter Black-Box Opti-
mization Benchmarking 2010: Presentation of the Noiseless Functions (2015),
http://coco.lri.fr/downloads/download15.03/bbobdocfunctions.pdf, 126 pages

4. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-Parameter Black-Box Op-
timization Benchmarking: Experimental Setup. Tech. rep., INRIA (2014),
http://coco.lri.fr/downloads/download15.02/bbobdocexperiment.pdf, 20 pages

5. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks IV. pp. 1942–1948. Perth, Aus-
tralia (November 1995)

6. Lepagnot, J., Nakib, A., Oulhadj, H., Siarry, P.: A multiple local search algorithm
for continuous dynamic optimization. Journal of Heuristics 19(1), 35–76 (2013)

7. Loshchilov, I., Glasmachers, T.: Black-Box Optimization Competition (2017),
https://bbcomp.ini.rub.de

8. Talbi, E.G.: A taxonomy of hybrid metaheuristics. Journal of Heuristics 8(5), 541–
564 (2002)

9. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differen-
tial evolution. In: IEEE Congress on Evolutionary Computation. pp. 71–78. Cancun,
Mexico (June 2013)

134

Improved Hybrid Iterative Tabu Search for QAP
using Distance Cooperation

Omar Abdelkafi1, Lhassane Idoumghar2, and Julien Lepagnot2

1 Université Lille 1, LIFL/UMR CNRS 8022 - INRIA Lille Nord Europe, 59655 -
Villeneuve d’Ascq cedex, France
{omar.abdelkafi}@uha.fr

2 Université de Haute-Alsace, LMIA, EA 3993, F-68093 Mulhouse, France
{lhassane.idoumghar, julien.lepagnot}@uha.fr

Abstract. The quadratic assignment problem can be considered as one
of the hardest and most studied combinatorial problems. In this paper,
we propose and analyze three distributed algorithms based on hybrid
iterative tabu search. These algorithms follow the design of the parallel
algorithmic level. A new mechanism to exchange information between
processes is introduced. Through 34 well-known instances from QAPLIB
benchmark, our algorithms produce competitive results. This experimen-
tation shows that our best propositions can exceed or equal several lead-
ing algorithms from the literature in almost all the hardest benchmark
instances.

Keywords: metaheuristics, Iterative tabu search, Quadratic assignment
problem, cooperative and distributed algorithms.

1 Introduction

The Quadratic Assignment Problem (QAP) is an NP-hard problem. It is an im-
portant challenge for different areas. This problem is well known for its multiple
applications in various fields such as: chemistry, transport, industry and many
others. Works on some significant applications of QAP can be found in [6, 18–
20]. The QAP was first introduced by Koopmans and Beckmann [10] to model
a facility location problem. The objective is to find a minimum cost assignment
of facilities to locations considering the flow of materials between facilities and
the distance between locations. The problem can be formulated as follows:

min
p∈P

z(p) =
n∑

i=1

n∑

j=1

fijdp(i)p(j) (1)

where f and d are the flow and distance matrices respectively, p ∈ P repre-
sents a solution where pi is the location assigned to facility i and P is the set of
all n vector permutations. The objective is to minimize z(p), which is the total
cost assignment for the permutation p.

In this work, we propose and analyze three distributed Hybrid Iterative Tabu
Search (HITS) algorithms using cooperation strategies or running independently
in parallel machines. Our main objective is to compare the efficiency of informa-
tion exchange and the efficiency of some well-known diversification methods.

135

2 Background

One of the first efficient approaches to solve the QAP is the Robust Tabu search
(Ro-Ts) proposed by Taillard in 1991 [16]. Many other works are based on Ro-Ts
to solve the QAP like [1, 8, 9]. P. Merz et al [12] propose a memetic algorithm to
solve QAP (MA-QAP). This approach is a genetic algorithm using the Uniform
Crossover (UX) combined with a 2-opt local search. In 2004, an Improved Hybrid
Genetic Algorithm (IHGA) was implemented in [13]. Then, A. Misevicius et al
[14] propose an Iterative Tabu Search (ITS) which is a set of successive Tabu
Search (TS) using a random perturbation after each TS to give the algorithm a
new starting solution. A complete survey until 2007 can be found in [11].

Later, Z. Drezner [4] experiments different hybrid genetic algorithms to solve
the QAP. The best variant of this work is the MRT60 which is a genetic algo-
rithm hybridized with a modified Ro-Ts [16]. Then, T. James et al [9] propose five
TS variants extended from Ro-Ts and separated in two categories: the continu-
ous diversification TS process and the discontinuous diversification TS process.
Later, the work of U. Benlic et al [1] proposes an Iterative Local Search with a
breakout strategy based on the history of the search (BLS). The local search uses
also the delta matrix. According to the evolution of the search, the BLS chooses
one from different degrees of perturbation to escape the local optima. Recently,
U. Benlic et al [2] presented a memetic algorithm (BMA) for the well-known
QAP. They combine the previous BLS [1] with the standard UX. This approach
performs particularly well on unstructured instances from the QAP.

The parallel and distributed design for metaheuristics approaches has the
capacity to improve the solution quality and to reduce the execution time. The
computational cost of the QAP and its difficult search space make this problem
suitable for parallelization.

E. G. Talbi [17] classifies the parallel and distributed design of metaheuristics
in 3 levels:

– Algorithmic level: This level allows the run of many algorithms in paral-
lel. The algorithms can run independently with different starting solutions
and/or different parameters and choose the best results of the run. In this
case, the result will be the same as if we execute all these algorithms se-
quentially, which means that we reduce the execution time. The algorithms
can also cooperate with each other which means that the behavior of the
metaheuristics will change and, in this case, the parallelization can improve
the quality of the solutions.

– Iteration level: This level allows a parallelization in each iteration. This is a
parallel evaluation and/or generation of neighborhood. Different parts of the
neighborhood are processed in parallel. The behavior of the metaheuristic
is not altered. The main objective is to speed up the algorithm by reducing
the search time.

– Solution level: This level allows a parallelization of a single solution such
as the evaluation of the objective functions or constraints for a generated
solution. The behavior of the metaheuristic is not altered. The objective is
mainly the speed up of the search.

136

3 Distributed and Cooperative Algorithms

In this work, the design used for all the versions is the algorithmic level. The
aim of these versions is exclusively the improvement of results thanks to the
distributed environment. The acceleration factor is untreated in this paper. We
propose three versions: Distributed Hybrid Iterative Tabu Search called D-HITS,
DIStance COoperation Hybrid Iterative Tabu Search using the Glover Diversi-
fication called DISCO-HITS-GD and DIStance COoperation Hybrid Iterative
Tabu Search using the Uniform Crossover called DISCO-HITS-UX.

3.1 Distributed Hybrid Iterative Tabu Search

The Distributed Hybrid Iterative Tabu Search (D-HITS) approach is the first
variant of our work. Different HITS are executed in a set of parallel machines
from different starting solutions. In this version, there is no exchange of infor-
mation between the distributed processes. Each HITS runs independently from
the others with a different starting solution and different parameters such as the
threshold values (L1, L2 in Algorithm 1).

The TS represents the intensification mechanism of our work. It produces
the best possible solution after a set of movements in the search space. After
each TS, an adaptive diversification is applied to the global best solution. The
aim is to discover a new promising region for the exploration of the next TS.
The use of the global best solution structure allows the algorithm to reach a
promising region of the search space. all these mechanisms constitute the HITS
of this variant.

In each machine the search history is used to apply a preventive measure
to escape from stagnancy. A counter w is initialized with 0 and after each TS
without improvement, the counter w is incremented. If there is an improvement,
w is reset to 0. The solution is perturbed after a set of TS executions without
improvement. This way, if the algorithm is trapped inside a region of the space,
then, additionally of the usual diversification, a part of the solution is perturbed
to unlock the search. If w continues to grow, a complete re-localization is needed
to explore other regions of the search space. Algorithm 1 is the pseudo-code of
the D-HITS. Algorithm 2 [16] contains the TS method used in this work.

As shown in Algorithm 1 line 20, in every global iteration of the HITS (itera-
tion between two consecutive TS), there is a diversification applied to the global
best solution. For a set of successive global iterations, the global best solution
can stay the same. Hence, if the diversification used is constant, then it will
provide the same new starting solution over and over again. For this reason, the
diversification needs to change from a global iteration to another. It has to be
efficient and to use the structure of the global best solution. All these conditions
are satisfied for the diversification proposed by [7]. The diversification procedure
takes a solution (in our case, it takes the global best solution at every global
iteration) and executes a set of permutations following a step value. The step
value changes from a global iteration to another. This way, even if the global
best solution stays the same for many global iterations of the HITS, the new

137

starting solution generated by this diversification will be different. Algorithm 3
presents the Glover Diversification (GD) pseudo-code.

Algorithm 1 D-HITS for each process
1: Input: perturb: % perturbation; n: size of solution; cost: cost of the current solution; Fcost:

best cost found; Scurrent: current solution; Sbest: best solution found; L1,L2 : thresholds for
preventive measures;

2: Initialization of the solution for the current process;
3: w = 0; /* is the counter to define the search history state */
4: Stagnancy = false;
5: repeat
6: TS algorithm /* see Algorithm 2 */
7: if cost < Fcost then
8: /* improvement */
9: Stagnancy = false; w = 0; Fcost = cost;
10: Update the Sbest with Scurrent;
11: else
12: w++;
13: end if
14: /* Condition of stagnancy */
15: if w == L2 then
16: Stagnancy = true;
17: end if
18: if Stagnancy == false then
19: /* no stagnancy */
20: Update Scurrent with the Diversification of Sbest; /* see Algorithm 3 */
21: else
22: /* Stagnancy */
23: Re-localization of Scurrent;
24: Stagnancy = false;
25: w = 0;
26: end if
27: if w == L1 then
28: Perturbation of Scurrent with the perturb parameter;
29: end if
30: until (Stop condition)

The preventive perturbation mechanism is based on the history of the search.
It is a smart way to explore the search space. The main idea is to find other
promising regions of the space for each process if the search stagnates. After
some global iterations without improvement, w reaches the first threshold L1
(Algorithm 1 line 27 to 29). The first measure to unlock the search process is
to apply the diversification and to perturb randomly a portion of the solution
provided by the diversification. This measure assumes that there is no possible
improvement with the current diversification. Hence, a perturbation is applied
in a small part of the solution to reuse the structure of the current best solution.
If this measure leads to an improvement of the global best solution, then the
D-HITS continues its execution until the global stopping criteria are satisfied,
otherwise, the counter w continues to grow independently for each process.

When w reaches the second threshold L2 (Algorithm 1 line 14 to 17), it is
assumed that a complete re-localization is required. In this case, the algorithm
ignores the diversification part and just perturbs all the current best solutions
(Algorithm 1 line 22 to 26). The goal of this second measure is to explore the
possibility that a better solution can exist in another region of the search space.

138

Algorithm 2 The TS framework
1: Input: cost: cost of the current solution; Scurrent: current solution; Sbest: best solution found;

Tcost: best cost found inside the TS; Tsolution: best solution found inside the TS; TSiteration:
number of iteration executed by the TS;

2: for i = 0 to TSiteration do
3: if movement is tabu but meets all aspiration criteria or is not tabu and is a new Tcost then
4: Store the best permutation indexes that meet all conditions;
5: end if
6: Update tabu list;
7: Update Scurrent;
8: if the cost is better than the Tcost then
9: Update the Tsolution with Scurrent;
10: end if
11: Update the delta matrix of the move costs;
12: end for

Algorithm 3 Glover Diversification strategy
1: Input: Scurrent: current solution; Sbest: the best solution found; step : the step of the permu-

tation; n: the size of the problem
2: position = 0;
3: for i = step to 1 /* decrement i by 1 */ do
4: for j = (i-1) to n /* increment j by step */ do
5: Scurrent[position] = Sbest[j];
6: position++;
7: end for
8: end for
9: if step == n - 1 then
10: reinitialization of step
11: else
12: step++;
13: end if

3.2 Distance Cooperation Hybrid Iterative Tabu Search

In this section, we propose two versions: The DIStance COoperation Hybrid
Iterative Tabu Search with the Glover diversification (DISCO-HITS-GD) and
with the UX diversification (DISCO-HITS-UX). Different HITS are executed
in a distributed environment from different starting solutions. For these two
variants, there is an exchange of information between a set of processes in parallel
following a ring topology.

The classical exchange of information consists in sending the best solution
of the current process to the neighbor process. It allows the neighbor process
to improve the search if the best solution received is better than its own best
solution.

In our work, we introduce a new mechanism to exchange information for the
QAP. The process sends its current solution and receives the current solution
of the neighbor process. The idea is to compute the similarity between these
two solutions at each position to define the distance (Algorithm 4 line 11-15).
According to this distance, each machine takes a decision and follows a specific
series of instructions to continue the search (diversification, perturbation or re-
localization). Each process executes one HITS and the evolution of each process
depends on the search history of its neighbor. The aim is to explore intelligently
different regions of the space.

139

Distance between two solutions

Movement of Re-localization
Current solution
Neighbor solution
New solution

Fig. 1. Movement of re-localization using the distance cooperation

Algorithm 4 Distance Cooperation Between Hybrid Iterative Tabu Search
1: Input: perturb: % perturbation; n: size of solution; cost: cost of the current solution; Fcost:

best cost found; Scurrent: current solution; Sbest: best solution found; SEX : solution exchanged;
2: Initialization of the solution for the current process;
3: repeat
4: TS algorithm /* see Algorithm 2 */
5: if cost < Fcost then
6: Fcost = cost;
7: Update the Sbest with Scurrent;
8: end if
9: level = 0; counter = 0;
10: Exchange Scurrent between processes (ring topology);
11: for i = 0 to n /* Compute distances */ do
12: if Scurrent[i] == SEX [i] then
13: counter ++;
14: end if
15: end for
16: if counter < n

4 then

17: level = 0; /* Big distance between the two processes */
18: else
19: if counter < 3×n

4 then

20: level = 1; /* Processes are relatively close */
21: else
22: level = 2; /* Processes are very close */
23: end if
24: end if
25: if level == 0 then
26: Update Scurrent with the diversification of Sbest (Algorithm 5 or Algorithm 3);
27: else
28: if level == 1 then
29: Perturbation of Scurrent with the perturb parameter;
30: else
31: Re-localization of Scurrent;
32: end if
33: end if
34: until (Stop condition)

140

Figure 1 shows the re-localization movement using our concept of distance
between neighbor solutions. If the two solutions (current and neighbor solutions)
are very close in the search space, the variable level will take the value 2 (Algo-
rithm 4 line 22). This value indicates to the algorithm that the current solution
needs to execute a re-localization to discover a new region in the search space
(Algorithm 4 line 31).

The algorithm 4 is duplicated for all the processes. It runs a succession of TS
(algorithm 2) [16]. After each TS, the algorithm 4 saves the new best solution
if there is improvement. The next step of our proposition is to send the current
solution and to receive the same information from the neighbor process. This is
the information exchange step. The algorithm computes the difference between
the two solutions to determine the distance between them. According to the dis-
tance, the algorithm takes one decision, to execute a diversification (algorithm 3
for DISCO-HITS-GD or algorithm 5 for DISCO-HITS-UX), to perturb the so-
lution (line 29 algorithm 4) or to make a re-localization of this solution (line 31
algorithm 4).

For the DISCO-HITS-GD, our approach applies the diversification proposed
by [7] called the Glover Diversification (GD) in this work. The diversification
procedure takes a solution (in our case, it takes the global best solution) and
executes a set of permutations following a step value. The step value changes
from a global iteration (algorithm 4 from line 3 to line 34) to another. This
way, even if the global best solution stays the same for many global iterations
of the HITS, the new starting solution generated by this diversification will be
different. Algorithm 3 presents the diversification pseudo-code.

For the DISCO-HITS-UX, the diversification applied is the uniform crossover
(UX) presented by algorithm 5. The diversification procedure takes a solution
(in our case, it takes the global best solution) and executes the UX following the
sequence given by the select vector. The select vector is perturbed before each
application of the UX. This way, even if the global best solution stays the same
for many global iterations of the HITS, the new starting solution generated by
this diversification will be different.

The UX algorithm 5 is constituted with three separated loops. The first and
the second loops can fuse with each other but the behavior of the UX will be
altered. In this proposition, we design Algorithm 5 to be easily implemented in
parallel at the solution level.

The following example is an application of the UX (Algorithm 5):
Initialization:

– select = (0,1,1,0,1,0).
– index = (0,0,0,0,0,0).
– Scurrent = (1,2,0,3,5,4).
– Sbest = (3,5,1,0,4,2).

First loop:

– Scurrent = (1,-1,-1,3,-1,4).
– index = (0,1,0,1,1,0).

141

Algorithm 5 Uniform Crossover UX:
1: Input: Scurrent: current solution; SEx: the best solution found exchanged between process; n:

the size of the problem; select: sequence to define the crossover with a mixing ratio of 0.5;
index: filter to give a feasible solution initialized to 0;

2: Perturbation of select;
3: for i = 0 to n /* First loop*/ do
4: if select[i] == 0 then
5: Scurrent[i] = Scurrent[i];
6: index[Scurrent[i]] = 1;
7: else
8: Scurrent[i] = -1;
9: end if
10: end for
11: for i = 0 to n /* Second loop*/ do
12: if select[i] == 1 and index[SEx[i]] == 0 then
13: Scurrent[i] = SEx[i];
14: index[Scurrent[i]] = 1;
15: end if
16: end for
17: for i = 0 to n /* Third loop*/ do
18: if Scurrent[i] == -1 then
19: for k = 0 to n do
20: if index[k] == 0 then
21: Scurrent[i] = k ;
22: index[k] = 1;
23: break;
24: end if
25: end for
26: end if
27: end for

Second loop:

– Scurrent = (1,5,-1,3,-1,4).
– index = (0,1,0,1,1,1).

Third loop:

– Scurrent = (1,5,0,3,2,4).
– index = (1,1,1,1,1,1).

4 Experimental Results

4.1 Platform and Tests

In our experimentation, the algorithm is written in C/C++ and runs on a cluster
of 10 machines Intel Core processor i5-3330 CPU (3.00GHz) with 4 GB of RAM.
The proposed algorithms are experimented on benchmark instances from the
QAPLIB (http : //www.seas.upenn.edu/qaplib/inst.html) [3]. The size of the
instances varies between 20 and 150. All the results are expressed as a percentage
deviation from the best known solutions (BKS) (eq 2). All the BKS can be found
in the online benchmark library QAPLIB. Each instance is executed 10 times
and the average results of these executions are given.

deviation =
(solution−BKS)× 100

BKS
(2)

142

The QAPLIB archive comprises 134 instances that can be classified into four
types:

– Real life instances (Type 1);
– Unstructured randomly generated instances based on a uniform distribution

(Type 2);
– Randomly generated instances similar to real life instances (Type 3);
– Instances in which distances are based on the Manhattan distance on a grid

(Type 4);

Only the type 2, 3 and 4 are considered in this work since type 1 is very easy
to solve.

4.2 Parameters

Our approaches contained a set of parameters. These parameters are fixed after
a set of experimentation to get the best compromise between intensification
and diversification. Table 1 shows the parameters used for D-HITS, DISCO-
HITS-GD and DISCO-HITS-UX. The TSiteration parameter is the number of
iterations executed by each TS inside the ITS (Algorithm 2 from line 3 to 13).
The global iteration parameter is between two successive TS (stop condition)
and n is the size of the problem. The rank value is the number of the current
machine going from 0 to 9 in our work.

Table 1. parameters

Parameters Value
TSiteration 1000× n

global iteration 200
L1 20+rank
L2 40+rank

aspiration criteria n× n× 5
percentage of perturbation 25%

4.3 Experimentation

The first experimentation (Table 2) is focused on the three variants of our work.
The same number of objective function evaluations and the same machines are
used (equivalent computing power). The time is expressed in minutes. The num-
ber within brackets is the number of times each algorithm gets the BKS among
the 10 trials. The results are presented for type 2, 3 and 4 respectively.

Table 2 contains the results for the three variants proposed in this work. Our
first comparison is between D-HITS and DISCO-HITS-GD. These two variants
use exactly the same elements (TS, GD, re-localization and perturbation). The
difference is our mechanism to exchange information applied for the DISCO-
HITS-GD. This mechanism gives the DISCO-HITS-GD the capacity to explore

143

Table 2. Distributed and cooperative hybrid iterative tabu search variants

Instances(34) BKS
D-HITS DISCO-HITS-GD DISCO-HITS-UX

deviation times deviation times deviation times

tai20a 703482 0.000(10) 0.41 0.000(10) 0.40 0.000(10) 0.4

tai25a 1167256 0.000(10) 0.81 0.000(10) 0.78 0.000(10) 0.79

tai30a 1818146 0.000(10) 1.40 0.000(10) 1.36 0.000(10) 1.37

tai35a 2422002 0.000(10) 2.18 0.000(10) 2.16 0.000(10) 2.15

tai40a 3139370 0.007(9) 3.25 0.030(6) 3.18 0.007(9) 3.22

tai50a 4938796 0.058(7) 6.34 0.062(8) 6.19 0.048(8) 6.29

tai60a 7205962 0.369(0) 11.10 0.303(0) 10.71 0.272(0) 10.77

tai80a 13515450 0.654(0) 26.58 0.573(0) 25.54 0.561(0) 25.62

tai100a 21052466 0.582(0) 54.30 0.552(0) 52.07 0.359(0) 52.36

tai20b 122455319 0.000(10) 0.31 0.000(10) 0.18 0.000(10) 0.18

tai25b 344355646 0.000(10) 0.75 0.000(10) 0.7 0.000(10) 0.69

tai30b 637117113 0.000(10) 1.36 0.000(10) 1.34 0.000(10) 1.36

tai35b 283315445 0.000(10) 2.14 0.000(10) 2.13 0.000(10) 2.11

tai40b 637250948 0.000(10) 3.18 0.000(10) 3.17 0.000(10) 3.16

tai50b 458821517 0.000(10) 6.19 0.000(10) 6.12 0.000(10) 6.09

tai60b 608215054 0.000(10) 10.64 0.000(10) 10.67 0.000(10) 10.6

tai80b 818415043 0.000(10) 25.36 0.000(10) 25.60 0.000(10) 25.35

tai100b 1185996137 0.000(6) 52.83 0.000(9) 51.26 0.000(10) 53.08

tai150b 498896643 0.076(0) 192.48 0.015(0) 214.26 0.027(3) 214.86

sko42 15812 0.000(10) 3.68 0.000(10) 3.67 0.000(10) 3.25

sko49 23386 0.000(10) 5.80 0.000(10) 5.76 0.000(10) 2.67

sko56 34458 0.000(10) 8.66 0.000(10) 8.63 0.000(10) 8.59

sko64 48498 0.000(10) 12.99 0.000(10) 12.94 0.000(10) 7

sko72 66256 0.000(10) 18.66 0.000(10) 18.53 0.000(10) 18.53

sko81 90998 0.001(9) 26.56 0.000(10) 26.48 0.000(10) 26.62

sko90 115534 0.000(10) 37.05 0.000(10) 37.17 0.000(10) 37.24

sko100a 152002 0.001(9) 51.37 0.000(10) 53.65 0.000(10) 52.41

sko100b 153890 0.000(10) 52.04 0.000(10) 51.50 0.000(10) 52.63

sko100c 147862 0.000(7) 52.76 0.000(10) 51.52 0.000(10) 52.04

sko100d 149576 0.001(6) 52.48 0.000(10) 54.09 0.000(8) 51.28

sko100e 149150 0.000(10) 53.27 0.001(9) 51.42 0.001(9) 51.30

sko100f 149036 0.001(9) 52.36 0.001(8) 51.48 0.001(9) 51.64

wil100 273038 0.002(0) 53.57 0.000(9) 51.60 0.000(8) 51.62

tho150 8133398 0.027(0) 217.34 0.010(0) 218.95 0.004(0) 199.36

Average 0.052(262) 32.36 0.046(279) 32.80 0.038(284) 31.96

efficiently the search space. It uses the evolution of each process to explore the
largest possible search space. Through the 34 benchmark instances presented in
this work, the DISCO-HITS-GD gets better results than D-HITS on 9 instances
against 3 for D-HITS (tai40a, tai50a and sko100e). The variant with exchange
has the capacity to get better results on large size instances like tai150b and
tho150. It confirms that our cooperation method between processes is efficient
to explore large search spaces. The average results for type 2 are equivalent for
the two variants but DISCO-HITS-GD gets better results on type 3 and 4. With
a global average of 0.046% the DISCO-HITS-GD is better than D-HITS with a
global average of 0.052%.

The second comparison is between DISCO-HITS-GD and DISCO-HITS-UX.
The difference between these two variants is only the diversification operator
(Glover Diversification against Uniform Crossover). DISCO-HITS-UX gets the
best average of 0.038% for the 34 instances thanks to its good results on type 2
and 4. The second average is for DISCO-HITS-GD with 0.046% but this vari-
ant gets better results on type 3. DISCO-HITS-UX reaches the BKS 284 times
against 279 times for DISCO-HITS-GD which means that the DISCO-HITS-UX
variant is more robust. Moreover, it gets better results on 6 instances against
only one instances for DISCO-HITS-GD. This comparison reveals that the UX
is a more efficient diversification on QAP than the GD.

144

4.4 Literature Comparison

Table 3 presents several comparisons with leading algorithms from the literature.
The two best variants of our work (DISCO-HITS-GD and DISCO-HITS-UX) are
compared with four algorithms from the literature.

– Population-based memetic algorithm (BMA) [2] (2015);
– The breakout local search (BLS) [1] (2013);
– Cooperative parallel tabu search (CPTS) [8] (2009);
– Population-based iterated local search (PILS) [15] (2006);

The algorithms of the literature use time as stopping criterion. For fair com-
parison the same stopping criterion of BLS, BMA and ITS (1 hour for n <= 100
and 4 hours for n > 100) is used. We can notice that our average of time is lower
than BLS, BMA and ITS.

This comparison is focused on the quality of solutions. We use 34 well-known
benchmark instances from the QAPLIB which are difficult to solve. The other
instances of QAPLIB are easy to solve for our algorithms and the algorithms of
the literature except for tai256c. Only the percentage deviation are considered
in the comparison. The time is given for information purposes only.

Table 3 presents the experiments of type 2 in the first part. The best average
is obtained by the BMA [2] algorithm with 0.1294%. It is followed by DISCO-
HITS-UX with a very close average results of 0.1386% . However, our DISCO-
HITS-UX outperforms BMA on three instances (tai40a, tai50a and tai100a)
against two (tai60a and tai80a). It outperforms the average of the other three
algorithms BLS [1], CPTS [8] and PILS [15]. DISCO-HITS-GD is ranked at the
fourth place after BMA, DISCO-HITS-UX and BLS.

Table 3 presents the experiments of type 3 in the second part. The best aver-
age is obtained by our DISCO-HITS-GD algorithm with 0.0015%. It is followed
by DISCO-HITS-UX with an average results of 0.0027% . The most important
instance in this type is the tai150b. Our two propositions solve this instance
efficiently thanks to the intelligent exploration of the search space.

Table 3 presents the experiments of type 4 in the last part. The best average
is obtained by our DISCO-HITS-UX algorithm with 0.0004%. It is followed by
DISCO-HITS-GD with an average results of 0.0008%. The most important in-
stance in this type is tho150. Our two propositions are the two best algorithms
to solve this instance compared to the other works. Our propositions show high
efficiency to solve large size instances of 150.

145

T
a
b
le

3
.

C
o
m

p
a
ri

so
n

o
f

D
IS

C
O

-H
IT

S
-G

D
a
n
d

D
IS

C
O

-H
IT

S
-U

X
w

it
h

B
M

A
,

B
L

S
,

C
P

T
S

a
n

d
P

IL
S

(T
y
p

e
2
,

3
a
n

d
4
)

I
n
s
t
a
n
c
e
s
(
9
)

B
K

S
D

I
S
C

O
-
H

I
T

S
-
G

D
D

I
S
C

O
-
H

I
T

S
-
U

X
B

M
A

B
L
S

C
P

T
S

P
I
L
S

d
e
v
ia

t
io

n
t
im

e
s

d
e
v
ia

t
io

n
t
im

e
s

d
e
v
ia

t
io

n
t
im

e
s

d
e
v
ia

t
io

n
t
im

e
s

d
e
v
ia

t
io

n
t
im

e
s

d
e
v
ia

t
io

n
t
im

e
s

t
a
i2

0
a

7
0
3
4
8
2

0
.0

0
0
(
1
0
)

0
.4

0
0
.0

0
0
(
1
0
)

0
.4

0
.0

0
0
(
1
0
)

-
0
.0

0
0
(
1
0
)

0
0
.0

0
0
(
1
0
)

0
.1

0
.0

0
0
(
1
0
)

0

t
a
i2

5
a

1
1
6
7
2
5
6

0
.0

0
0
(
1
0
)

0
.7

8
0
.0

0
0
(
1
0
)

0
.7

9
0
.0

0
0
(
1
0
)

-
0
.0

0
0
(
1
0
)

0
0
.0

0
0
(
1
0
)

0
.3

0
.0

0
0
(
1
0
)

0
.2

t
a
i3

0
a

1
8
1
8
1
4
6

0
.0

0
0
(
1
0
)

1
.3

6
0
.0

0
0
(
1
0
)

1
.3

7
0
.0

0
0
(
1
0
)

-
0
.0

0
0
(
1
0
)

0
0
.0

0
0
(
1
0
)

1
.6

0
.0

0
0
(
1
0
)

0
.6

t
a
i3

5
a

2
4
2
2
0
0
2

0
.0

0
0
(
1
0
)

2
.1

6
0
.0

0
0
(
1
0
)

2
.1

5
0
.0

0
0
(
1
0
)

-
0
.0

0
0
(
1
0
)

0
.2

0
.0

0
0
(
1
0
)

2
.3

0
.0

0
0
(
1
0
)

2
.3

t
a
i4

0
a

3
1
3
9
3
7
0

0
.0

3
0
(
6
)

3
.1

8
0
.0

0
7
(
9
)

3
.2

2
0
.0

5
9
(
2
)

8
.1

0
.0

2
2
(
7
)

3
8
.9

0
.1

4
8
(
1
)

3
.5

0
.2

8
0
(
0
)

1
2
.0

t
a
i5

0
a

4
9
3
8
7
9
6

0
.0

6
2
(
8
)

6
.1

9
0
.0

4
8
(
8
)

6
.2

9
0
.1

3
1
(
2
)

4
2
.0

0
.1

5
7
(
2
)

4
5
.1

0
.4

4
0
(
0
)

1
0
.3

0
.6

6
3
(
0
)

1
1
.2

t
a
i6

0
a

7
2
0
5
9
6
2

0
.3

0
3
(
0
)

1
0
.7

1
0
.2

7
2
(
0
)

1
0
.7

7
0
.1

4
4
(
2
)

6
7
.5

0
.2

5
1
(
1
)

4
7
.9

0
.4

7
6
(
0
)

2
6
.4

0
.8

2
0
(
0
)

7
.4

t
a
i8

0
a

1
3
5
1
5
4
5
0

0
.5

7
3
(
0
)

2
5
.5

4
0
.5

6
1
(
0
)

2
5
.6

2
0
.4

2
6
(
0
)

6
5
.8

0
.5

1
7
(
0
)

4
7
.3

0
.6

9
1
(
0
)

9
4
.8

0
.9

2
7
(
0
)

1
2
.7

t
a
i1

0
0
a

2
1
0
5
2
4
6
6

0
.5

5
2
(
0
)

5
2
.0

7
0
.3

5
9
(
0
)

5
2
.3

6
0
.4

0
5
(
0
)

4
4
.1

0
.4

3
0
(
0
)

3
9
.0

0
.5

8
9
(
0
)

2
6
1
.2

1
.0

2
7
(
0
)

9
.8

A
v
e
r
a
g
e

t
y
p
e

2
0
.1

8
6
3
(
5
4
)

1
1
.3

8
0
.1

3
8
6
(
5
7
)

1
1
.4

4
0
.1

2
9
4
(
4
6
)

-
0
.1

5
3
0
(
5
0
)

2
4
.2

7
0
.2

6
0
4
(
4
1
)

4
4
.5

0
0
.4

1
3
0
(
4
0
)

6
.2

4

I
n
s
t
a
n
c
e
s
(
1
0
)

B
K

S
D

I
S
C

O
-
H

I
T

S
-
G

D
D

I
S
C

O
-
H

I
T

S
-
U

X
B

M
A

B
L
S

C
P

T
S

P
I
L
S

d
e
v
ia

t
io

n
t
im

e
s

d
e
v
ia

t
io

n
t
im

e
s

d
e
v
ia

t
io

n
t
im

e
s

d
e
v
ia

t
io

n
t
im

e
s

d
e
v
ia

t
io

n
t
im

e
s

d
e
v
ia

t
io

n
t
im

e
s

t
a
i2

0
b

1
2
2
4
5
5
3
1
9

0
.0

0
0
(
1
0
)

0
.1

8
0
.0

0
0
(
1
0
)

0
.1

8
0
.0

0
0
(
1
0
)

-
0
.0

0
0
(
1
0
)

0
0
.0

0
0
(
1
0
)

0
.1

0
.0

0
0
(
1
0
)

0

t
a
i2

5
b

3
4
4
3
5
5
6
4
6

0
.0

0
0
(
1
0
)

0
.7

0
.0

0
0
(
1
0
)

0
.6

9
0
.0

0
0
(
1
0
)

-
0
.0

0
0
(
1
0
)

0
0
.0

0
0
(
1
0
)

0
.4

0
.0

0
0
(
1
0
)

0

t
a
i3

0
b

6
3
7
1
1
7
1
1
3

0
.0

0
0
(
1
0
)

1
.3

4
0
.0

0
0
(
1
0
)

1
.3

6
0
.0

0
0
(
1
0
)

-
0
.0

0
0
(
1
0
)

0
0
.0

0
0
(
1
0
)

1
.2

0
.0

0
0
(
1
0
)

0

t
a
i3

5
b

2
8
3
3
1
5
4
4
5

0
.0

0
0
(
1
0
)

2
.1

3
0
.0

0
0
(
1
0
)

2
.1

1
0
.0

0
0
(
1
0
)

-
0
.0

0
0
(
1
0
)

0
0
.0

0
0
(
1
0
)

2
.4

0
.0

0
0
(
1
0
)

0

t
a
i4

0
b

6
3
7
2
5
0
9
4
8

0
.0

0
0
(
1
0
)

3
.1

7
0
.0

0
0
(
1
0
)

3
.1

6
0
.0

0
0
(
1
0
)

-
0
.0

0
0
(
1
0
)

0
0
.0

0
0
(
1
0
)

4
.5

0
.0

0
0
(
1
0
)

0

t
a
i5

0
b

4
5
8
8
2
1
5
1
7

0
.0

0
0
(
1
0
)

6
.1

2
0
.0

0
0
(
1
0
)

6
.0

9
0
.0

0
0
(
1
0
)

1
.2

0
.0

0
0
(
1
0
)

2
.8

0
.0

0
0
(
1
0
)

1
3
.8

0
.0

0
0
(
1
0
)

0
.1

t
a
i6

0
b

6
0
8
2
1
5
0
5
4

0
.0

0
0
(
1
0
)

1
0
.6

7
0
.0

0
0
(
1
0
)

1
0
.6

0
.0

0
0
(
1
0
)

5
.2

0
.0

0
0
(
1
0
)

5
.6

0
.0

0
0
(
1
0
)

3
0
.4

0
.0

0
0
(
1
0
)

0
.2

t
a
i8

0
b

8
1
8
4
1
5
0
4
3

0
.0

0
0
(
1
0
)

2
5
.6

0
.0

0
0
(
1
0
)

2
5
.3

5
0
.0

0
0
(
1
0
)

3
1
.3

0
.0

0
0
(
1
0
)

1
1
.4

0
.0

0
0
(
1
0
)

1
1
0
.9

0
.0

0
0
(
1
0
)

1
.3

t
a
i1

0
0
b

1
1
8
5
9
9
6
1
3
7

0
.0

0
0
(
9
)

5
1
.2

6
0
.0

0
0
(
1
0
)

5
3
.0

8
0
.0

0
0
(
1
0
)

1
3
.6

0
.0

0
0
(
1
0
)

1
6
.0

0
.0

0
1
(
8
)

2
4
1
.0

0
.0

0
0
(
1
0
)

2
.3

t
a
i1

5
0
b

4
9
8
8
9
6
6
4
3

0
.0

1
5
(
0
)

2
1
4
.2

6
0
.0

2
7
(
3
)

2
1
4
.8

6
0
.0

6
0
(
1
)

7
8
.1

0
.0

7
5
(
1
)

2
4
3
.6

0
.0

7
6
(
0
)

7
3
7
7
.8

0
.0

9
5
(
0
)

3
6
.7

A
v
e
r
a
g
e

t
y
p
e

3
0
.0

0
1
5
(
8
9
)

3
1
.5

4
0
.0

0
2
7
(
9
3
)

3
1
.7

5
0
.0

0
6
(
9
1
)

-
0
.0

0
7
5
(
8
8
)

2
7
.9

4
0
.0

0
7
7
(
8
8
)

7
7
8
.2

5
0
.0

0
9
5
(
9
0
)

4
.0

6

I
n
s
t
a
n
c
e
s
(
1
5
)

B
K

S
D

I
S
C

O
-
H

I
T

S
-
G

D
D

I
S
C

O
-
H

I
T

S
-
U

X
B

M
A

B
L
S

C
P

T
S

P
I
L
S

d
e
v
ia

t
io

n
t
im

e
s

d
e
v
ia

t
io

n
t
im

e
s

d
e
v
ia

t
io

n
t
im

e
s

d
e
v
ia

t
io

n
t
im

e
s

d
e
v
ia

t
io

n
t
im

e
s

d
e
v
ia

t
io

n
t
im

e
s

s
k
o
4
2

1
5
8
1
2

0
.0

0
0
(
1
0
)

3
.6

7
0
.0

0
0
(
1
0
)

3
.2

5
0
.0

0
0
(
1
0
)

-
0
.0

0
0
(
1
0
)

1
.7

0
.0

0
0
(
1
0
)

5
.3

0
.0

0
0
(
1
0
)

2
.8

s
k
o
4
9

2
3
3
8
6

0
.0

0
0
(
1
0
)

5
.7

6
0
.0

0
0
(
1
0
)

2
.6

7
0
.0

0
0
(
1
0
)

-
0
.0

0
0
(
1
0
)

0
.5

0
.0

0
0
(
1
0
)

1
1
.4

0
.0

0
0
(
1
0
)

0
.8

s
k
o
5
6

3
4
4
5
8

0
.0

0
0
(
1
0
)

8
.6

3
0
.0

0
0
(
1
0
)

8
.5

9
0
.0

0
0
(
1
0
)

-
0
.0

0
0
(
1
0
)

1
.1

0
.0

0
0
(
1
0
)

2
1

0
.0

0
0
(
1
0
)

0
.5

s
k
o
6
4

4
8
4
9
8

0
.0

0
0
(
1
0
)

1
2
.9

4
0
.0

0
0
(
1
0
)

7
0
.0

0
0
(
1
0
)

-
0
.0

0
0
(
1
0
)

1
.3

0
.0

0
0
(
1
0
)

4
2
.9

0
.0

0
0
(
1
0
)

0
.2

s
k
o
7
2

6
6
2
5
6

0
.0

0
0
(
1
0
)

1
8
.5

3
0
.0

0
0
(
1
0
)

1
8
.5

3
0
.0

0
0
(
1
0
)

3
.5

0
.0

0
0
(
1
0
)

4
.1

0
.0

0
0
(
1
0
)

6
9
.6

0
.0

0
1
(
8
)

6
.7

s
k
o
8
1

9
0
9
9
8

0
.0

0
0
(
1
0
)

2
6
.4

8
0
.0

0
0
(
1
0
)

2
6
.6

2
0
.0

0
0
(
1
0
)

4
.3

0
.0

0
0
(
1
0
)

1
3
.9

0
.0

0
0
(
1
0
)

1
2
1
.4

0
.0

0
7
(
5
)

9
.6

s
k
o
9
0

1
1
5
5
3
4

0
.0

0
0
(
1
0
)

3
7
.1

7
0
.0

0
0
(
1
0
)

3
7
.2

4
0
.0

0
0
(
1
0
)

1
5
.3

0
.0

0
0
(
1
0
)

1
6
.6

0
.0

0
0
(
1
0
)

1
9
3
.7

0
.0

0
6
(
4
)

1
0
.6

s
k
o
1
0
0
a

1
5
2
0
0
2

0
.0

0
0
(
1
0
)

5
3
.6

5
0
.0

0
0
(
1
0
)

5
2
.4

1
0
.0

0
0
(
1
0
)

2
2
.3

0
.0

0
1
(
9
)

2
0
.8

0
.0

0
0
(
1
0
)

3
0
4
.8

0
.0

1
2
(
3
)

7
.9

s
k
o
1
0
0
b

1
5
3
8
9
0

0
.0

0
0
(
1
0
)

5
1
.5

0
.0

0
0
(
1
0
)

5
2
.6

3
0
.0

0
0
(
1
0
)

6
.5

0
.0

0
0
(
1
0
)

1
0
.8

0
.0

0
0
(
1
0
)

3
0
9
.6

0
.0

0
7
(
5
)

7
.3

s
k
o
1
0
0
c

1
4
7
8
6
2

0
.0

0
0
(
1
0
)

5
1
.5

2
0
.0

0
0
(
1
0
)

5
2
.0

4
0
.0

0
0
(
1
0
)

1
2
.0

0
.0

0
0
(
1
0
)

1
5
.5

0
.0

0
0
(
1
0
)

3
1
6
.1

0
.0

0
2
(
6
)

1
1
.5

s
k
o
1
0
0
d

1
4
9
5
7
6

0
.0

0
0
(
1
0
)

5
4
.0

9
0
.0

0
0
(
8
)

5
1
.2

8
0
.0

0
6
(
9
)

2
0
.9

0
.0

0
1
(
5
)

3
8
.9

0
.0

0
0
(
1
0
)

3
0
9
.8

.6
0
.0

2
1
(
0
)

1
1
.8

s
k
o
1
0
0
e

1
4
9
1
5
0

0
.0

0
1
(
9
)

5
1
.4

2
0
.0

0
1
(
9
)

5
1
.3

0
0
.0

0
0
(
1
0
)

1
1
.9

0
.0

0
0
(
1
0
)

4
2
.5

0
.0

0
0
(
1
0
)

3
0
9
.1

0
.0

0
1
(
7
)

6
.8

s
k
o
1
0
0
f

1
4
9
0
3
6

0
.0

0
1
(
8
)

5
1
.4

8
0
.0

0
1
(
9
)

5
1
.6

4
0
.0

0
0
(
1
0
)

2
3
.0

0
.0

0
0
(
1
0
)

1
7
.3

0
.0

0
3
(
4
)

3
1
0
.3

0
.0

3
7
(
0
)

1
1
.7

w
il
1
0
0

2
7
3
0
3
8

0
.0

0
0
(
9
)

5
1
.6

0
0
.0

0
0
(
8
)

5
1
.6

2
0
.0

0
0
(
1
0
)

1
4
.5

0
.0

0
0
(
1
0
)

1
8
.9

0
.0

0
0
(
1
0
)

3
1
6
.6

0
.0

0
4
(
1
)

6
.3

t
h
o
1
5
0

8
1
3
3
3
9
8

0
.0

1
0
(
0
)

2
1
8
.9

5
0
.0

0
4
(
0
)

1
9
9
.3

6
0
.0

0
8
(
3
)

4
1
6
.4

0
.0

2
3
(
1
)

2
6
8
.8

0
.0

1
3
(
0
)

1
9
9
1
.7

0
.0

6
8
(
0
)

3
6
.2

A
v
e
r
a
g
e

t
y
p
e

4
0
.0

0
0
8
(
1
3
6
)

4
6
.4

9
0
.0

0
0
4
(
1
3
4
)

4
4
.4

1
0
.0

0
0
9
(
1
4
2
)

-
0
.0

0
1
6
(
1
3
5
)

3
1
.5

1
0
.0

0
1
1
(
1
3
4
)

3
0
8
.8

9
0
.0

1
1
1
(
7
9
)

8
.7

1

146

5 Conclusion and Perspectives

In this work, we have presented and validated three variants of a distributed
HITS to solve the QAP. Each variant proposes different HITS based on an
iterative tabu search and implemented in parallel. The first variant is the D-HITS
which executes parallel HITS from different starting solutions and with different
parameters. The second variant is the DISCO-HITS-GD algorithm which is a
parallel distributed HITS using the distance between processes to select the
diversification technique to apply. The last variant is the DISCO-HITS-UX which
uses the same concept than the DISCO-HITS-GD variant but using the UX
instead of the Glover diversification. All these variants enable a balance between
intensification and diversification.

The three approaches demonstrate high-quality results on the set of well-
known benchmark instances from QAPLIB. We evaluated our approaches on 34
benchmark instances from the QAPLIB. Indeed, our approaches are very com-
petitive and outperform in many instances the current best approaches solving
QAP. The comparison between the variants shows the potential of the exchange
of information in the distributed design and the power of this exchange to solve
big size instances.

In summary, three main contributions are proposed in this work. The first
one is the creation of three new distributed variants to solve the QAP. Each
variant is hybridized with a set of different adaptive diversification mechanisms
to improve the results in a distributed environment. The second contribution
is the creation of a new mechanism which allows the algorithm to compute
distance between solutions in order to explore the largest search space possible
through the exchange of information. The final contribution is the experimental
comparison of two well known diversification techniques (GD and UX).

As a future work, there are several possible ways to extend this work. One
possibility is to experiment other parameters to get better results. There is also
some instances which are rarely used in literature and they are difficult to solve
for metaheuristics, like the instances proposed by [5]. Another possibility is to
explore the two other parallel designs (the iteration level and the solution level).
For the iteration level we can reduce the execution time with a parallel evaluation
and generation of neighborhoods inside the delta matrix. For the solution level
we can reduce the execution time with a parallel UX or GD to generate the new
starting solution. The best platform to perform these two levels is probably the
GPU platform thanks to its single instruction multiple data architecture. We can
also use other topologies to exchange information instead of the ring topology.
Finally, this approach can be experimented for other combinatorial problems to
analyze the behavior of the proposed approach with other kinds of problems.

References

1. Benlic, U., Hao, J.K.: Breakout local search for the quadratic assignement problem.
Applied Mathematics and Computation 219(9), 4800–4815 (2013)

147

2. Benlic, U., Hao, J.K.: Memetic search for the quadratic assignment problem. Ex-
pert Systems with Applications 42, 584–595 (2015)

3. Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB - A quadratic assignment prob-
lem library. journal of global optimization 10(4), 391–403 (1997)

4. Drezner, Z.: Extensive experiments with hybrid genetic algorithms for the solution
of the quadratic assignment problem. Computers and Operations Research 35(3),
717–736 (2008)

5. Drezner, Z., Hahn, P.M., Taillard, E.: Recent advances for the quadratic assignment
problem with special emphasis on instances that are difficult for meta-heuristic
methods. Annals of Operations research 139(1), 65–94 (2005)

6. Duman, E., Or, I.: The quadratic assignement problem in the context of the printed
circuit board assembly process. Computers and Operations research 34(1), 163–179
(2007)

7. Glover, F.: A template for scatter search and path relinking. Lecture Notes in
Computer Science 1363, 1–51 (1998)

8. James, T., Rego, C., Glover, F.: A cooperative parallel tabu search algorithm
for the quadratic assignment problem. European Journal of Operational Research
195(3), 810–826 (2009)

9. James, T., Rego, C., Glover, F.: Multistart tabu search and diversification strate-
gies for the quadratic assignment problem. IEEE Transactions on systems Man
And Cybernetics part a systems and humans 39(3), 579–596 (2009)

10. Koopmans, T., Beckmann, M.: Assignment problems and the location of economic
activities. Econometrica 25(1), 53–76 (1957)

11. Loiola, E.M., de Abreu, N.M.M., Netto, P.O.B., Hahn, P., Querido, T.: A survey
for the quadratic assignment problem. European Journal of Operational Research
176(2), 657–690 (2007)

12. Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the
quadratic assignment problem. IEEE Transactions on Evolutionary Computation
4(4), 337–352 (2000)

13. Misevicius, A.: An improved hybrid genetic algorithm: New results for the
quadratic assignment problem. Knowledge Based Systems 17(2-4), 65–73 (2004)

14. Misevicius, A., Kilda, B.: Iterated tabu search: An improvement to standard tabu
search. Information Technology and Control 35(3), 187–197 (2006)

15. Stützle, T.: Iterated local search for the quadratic assignment problem. European
Journal of Operational Research 174(3), 1519–1539 (2006)

16. Taillard, E.: Robust taboo search for the quadratic assignement problem. Parallel
computing 17(4-5), 443–455 (1991)

17. Talbi, E.G.: Metaheuristics: from Design to Implementation. John wiley and sons
Inc, University of Lille - CNRS - INRIA (2009)

18. Ulutas, B.H., Konak, S.K.: An artificial immune system based algorithm to solve
unequal area facility layout problem. Expert Systems with Applications 39(5),
5384–5395 (2012)

19. Wu, Q., Hao, J.K.: Solving the winner determination problem via a weighted max-
imum clique heuristic. Expert Systems with Applications 42(1), 355–365 (2015)

20. Zhang, Q., Sun, J., Tsang, E.: An evolutionary algorithm with guided mutation for
the maximum clique problem. IEEE Transactions on Evolutionary Computation
9(2), 192–200 (2005)

148

H-ACO: A Heterogeneous Ant Colony Optimisation approach with

Application to the Travelling Salesman Problem

A.T.I Fayeez1, E.Keedwell1, M.Collett2

1College of Engineering, Mathematics and Physical Sciences, Harrison Building, University of

Exeter
2Animal Behaviour Laboratory, College of Life and Environmental Sciences, Washington Singer

Building, University of Exeter
{ab835, E.C.Keedwell, M.Collett}@exeter.ac.uk

Abstract. Ant Colony Optimization (ACO) is a field of study that mimics the
behaviour of ants to solve computationally hard problems. The majority of
research in ACO focuses on homogeneous artificial ants although animal
behaviour research suggests that heterogeneity of behaviour improves the overall
efficiency of ant colonies. Therefore, this paper introduces and analyses the
effects of heterogeneity of behavioural traits in ACO to solve hard optimisation

problems. The developed approach implements different behaviour by
introducing unique biases towards the pheromone trail and local heuristic (the
next hop distance) for each ant. The well-known Ant System (AS) and Max-Min
Ant System (MMAS) are used as the base algorithms to implement heterogeneity
and experiments show that this method improves the performance when tested
using several Travelling Salesman Problem (TSP) instances particularly for larger
instances. The diversity preservation introduced by this algorithm helps balance
exploration-exploitation, increases robustness with respect to parameter settings

and reduces the number of algorithm parameters that need to be set.

Keywords. Heterogeneity, Heterogeneous, ACO, TSP

1 Introduction

Natural systems provide inspiration for tackling complex tasks by being able to

self-organize without the need of a central controller. These behaviours are due to

evolution, development and learning thus providing a platform for nature-inspired

algorithms to achieve good solutions to complex problems. Another example of such

inspiration is the swarm behaviour in which natural organisms behave when they are in

groups. As an example, ant collectives are capable of achieving complex tasks such as

nest construction and food foraging that would not be possible for individual ants. A

colony of ants is capable of finding the shortest path from nest to food in a sophisticated

way. Inspiration can be taken from these behaviours and used to tackle optimization
problems in the real world where their behaviours have been implemented in ant colony

optimization (ACO) research [1]. The main contribution of ants in this research is the

foraging behaviour where ants lay pheromone on the ground to mark their path from

the nest to food source. This is to guide the ant back to the nest and also guide its colony

members towards a food source during the recruitment process. ACO implements

similar concepts when optimising combinatorial optimization problems such as the

Travelling Salesmen Problem (TSP) [2]. TSP is one of the most widely studied by

researchers working on combinatorial optimization problems, is an NP-hard problem

and is an interpretation of a salesman requiring to visit n cities via the shortest complete

tour.

 A significant issue with ACO, as in most other metaheuristic approaches is to

find a proper balance between exploitation and exploration. Exploitation is a process of

concentration of the algorithm in the areas of the search space where good quality

solutions have been previously been found while exploration of the search space

denotes action by the search agent in moving towards unexplored areas. Several studies
reviewed in [1] show that a proper balance between exploitation and exploration is

required in order for a metaheuristic algorithm to achieve good to optimal results. In

this paper, we investigate the influence of each ant having different behavioural

characteristics or ‘traits’ in contrast to standard ACO where all ants have the same

behavioural traits. In the proposed heterogeneous approach, each ant has individual

pheromone (α) and heuristics coefficients (β) where both α and β are parameters that

control the relative importance of the pheromone trail and local heuristics used in

149

transition probability [3]. It is known that too much emphasis on pheromone trail or

local heuristics may hinder the performance of the algorithm through over exploration

or exploitation. Hence the proposed method can overcome the exploration-exploitation

problem thus improving the performance of ACO. The heterogeneous approach

implemented in this study stems from the actual behaviour of social insects which are

heterogeneous in nature, displaying different traits and in some circumstances
behavioural roles within a colony [4] [5]. The paper is structured as follows. In Section

2, ACO is discussed briefly while Section 3 discuss the previous work on heterogeneous

approach in ACO. Section 4 describes the methodology of this study and Section 5

explains the experimental setup. Section 6 present the results of the study and the paper

is concluded in Section 7 with discussion and conclusion.

2 Ant Colony Optimization

 ACO is an optimisation algorithm that takes inspiration from the foraging

behaviours of real ants. Some of the most popular conventional ACO are Ant System

(AS) [3] and Max Min Ant System (MMAS) [6] that use metaheuristics approach

inspired by ant colonies behaviour to find good solutions for an optimization problem.

AS was the first ACO algorithm to be developed and acts as proof of ACO concept

while MMAS is one of the best performing ACO algorithms in the literature. Both

algorithms work through the deposition of pheromone by virtual ants who traverse the

set of cities creating a tour, where the level of pheromone deposited on that tour is a

function of tour optimality and the pheromone on all paths is evaporated uniformly.
Subsequent ants probabilistically choose paths with a preference for those paths with

greater pheromone with the goal of converging towards a near-optimal solution. The

algorithms differ in that ant system allows all ants to contribute to the deposition of the

pheromone, whereas the max-min ant system allows only the best performing ant within

a population to contribute and has a lower-bound on pheromone levels. Both AS and

MMAS have been applied to numerous TSP instances, a combinatorial optimization

problem that has attracted extensive research [7]. This paper implements the

heterogeneous approach on these two ACO variants. Due to limited space, AS and

MMAS will not be discussed in detail here and can be referred to [3] and [6]

respectively.

3 Heterogeneous ACO

Heterogeneity in swarm intelligence was firstly described in Particle Swarm

Optimization (PSO) by Engelbrecht in [8] who proposed that introduction of

heterogeneity in a search algorithm can improve the performance. This concept can also
be adopted in ACO where artificial ants with different traits of behaviour can help to

improve the performance of the ACO algorithm. This mimics the actual behaviour of

real ants in a colony in terms of diversity and division of labour [9]. Heterogeneity in

ACO can be grouped into individual and colony level. Artificial ants with different

‘behaviours’ among them is said to be heterogeneous at the individual level while

colonies of ants that differ in behaviour between the colonies is said to be the latter.

Heterogeneous individual ants in ACO were first introduced by [10] where the authors

used modified ACO with heterogeneity for path planning in mobile robots in order to

find obstacle-free path in a certain environment. The author deployed ants with different

sight, speed and function behaviours and found that the performance of Heterogeneous

ACO (HACO) is better in terms of path planning when compared to conventional ACO.
Chira et al. discussed the different sensitivity of the artificial ants to the pheromone trail

level in [11]. Ants with higher pheromone sensitivity strongly follow the pheromone

trail while ants with lower pheromone sensitivity are more inclined towards random

search. In the meantime, Hara et al. [12] proposed the use of classic and exploratory

ants where each ant constructs a partial solution which is then combined to produce one

single solution. Yoshikawa et al [13] introduces a cranky ant approach to tackle the

exploration-exploitation problem which appears to prevent the algorithm from being

stuck in local optima. The cranky ants will explore paths with low pheromone level

which is the opposite of the behaviour of standard artificial ant. Meanwhile, Zhang et

al. [14] proposed colony level heterogeneity where ant colonies have different

pheromone updating rules in order to balance exploration and exploitation in the search

150

process. The authors proposed two colonies where each exhibits behaviour of Elitist

Ant System (EAS) and Ant Colony System (ACS) characteristics respectively. They

discussed that the algorithm overcomes stagnation and the early suboptimal path

convergence problem. Melo et al [15] proposed a multi-caste ant colony in Ant Colony

System (ACS) where ants with different preference towards q0, parameter that controls

the degree of exploration or exploitation in ACS. Many more approaches implement
heterogeneity at the colony level, but as this paper study and implementation at

individual level, thus colony level heterogeneity will not be discussed in detail here.

Each of these algorithms approach the principle of heterogeneity from a different

standpoint, either using different ant roles or through the implementation of problem

specific heterogeneity. The approach taken in this paper is one of biological plausibility

for ants with similar roles, but differing behavioural traits, which would normally be

expressed through genetic differences, but here are drawn from a distribution.

4 Methodology

The main motivation of this research work is to study the ant colonies as

heterogeneous, multi-behaviours agents that can further improve the performance of the

algorithm. The hypothesis is that with heterogeneity, a mixture of ants that are more

inclined towards exploration of the search space with other ants that exploit the best

path found creates a balance in the search process. This is due to the behaviours of the

ants of which are randomly initialized either to be more inclined towards exploration or

exploitation. The algorithm proposed a simple heterogeneous method in this study by
pre-assigning a random behavioural trait for each of the ants in the population size

during initialization that will not change during the iterations, as would be the case with

genetic variation in real ants. Each behaviour has a pair of continuous traits that can be

related to pheromone trail intensity and visibility or the local heuristic information. The

heterogeneous approach in both AS and MMAS platform and comparison were carried

out and compared with the original versions of each algorithm.

 Algorithm 1: Heterogeneous ACO for TSP

1. Begin;
2. Input: Distance Matrix of TSP;
3. Initialize: Max Iteration, m, n, Q, τ, ρ;
4. Initialize ants:

For i = 1: m

 a=0; b=2;

 Alpha (i) = rand (1) * (b-a) + a;

 c=3; d=5;

 Beta (i) = rand (1) * (d-c) + c;

 End

5. Start Iteration:
 For it=1: Max Iteration

 For k=1: m

 Position each ant on starting node;

 While TourSize < n+1

 Tour Construction;

 End

 End

 End

6. Update solution;
7. Update Pheromone;
8. Pheromone Evaporation;
9. Check if termination criteria = true;
10. End

Algorithm 1 depicts the pseudocode of our proposed algorithm and the major

difference between this and the base algorithm is that ants will have α and β values that

are initialized randomly between a set of pre-determined values rather than identical

parameters throughout the run. The range for α and β values were based on experiments

151

by Dorigo et al in [3] and additional extensive experiments have been conducted to

determine the best range for α and β (discussed briefly in section 6.1).

4.1 Travelling Salesman Problem [2]

Travelling Salesman Problem (TSP) is a widely studied combinatorial

optimization problem in computer science. The main objective of solving a TSP is to

achieve the shortest tour visiting n cities and returning to the starting city when there

are no more cities left to be visited. TSP is visualized in a graphical format where nodes

act as the cities and edges as the link or path between the cities. The edges will have

weighting determining the cost of following that edge. TSP has been a popular case

study in ACO and other various optimization algorithms.

5 Experimental Setup

The experiments were conducted on an Intel Core i7 CPU-based computer

running Windows 7 equipped with 4GB RAM. The base algorithms used are the Ant

System (AS) and Max Min Ant System (MMAS) approach developed using the Matlab

version R2015a. Each algorithm is tested using several TSP instances taken from

TSPLIB [2]. Firstly, the developed AS and MMAS was compared with that of [3] and

[6] to show a level of confidence that the developed algorithm is similar to the original
version. All the parameters were set according to the authors’ recommendations where

for AS the parameters were set as follows: α=1, β=5, ρ=0.5 and m = n where m is the

number of ants and n is the number of cities related to the TSP. Meanwhile the

parameters for MMAS were set as follows: α = 1, β = 2, m = n, ρ = 0.98 and 𝑃𝑏𝑒𝑠𝑡 is
0.05. The function evaluations for all the experiments were set as k.n.10000 where k=1

for symmetrical TSPs used, n=number of cities of the TSP instance and 10 000 is the

maximum number of iterations. Table 1 shows the comparison between the developed

algorithms against its original versions where the results for the developed algorithms

are the average of 15 trials. As can be seen, the best cost of the developed algorithm and

that of the original developers’ are very similar demonstrating that the base algorithm

formulations are working appropriately.

Table 1: Developed AS, MMAS vs Original AS, MMAS. Results show the average of

the best cost. (Note: Average of 15 trials)

TSP Optimum Optimum Developed
AS

Developed MMAS
[6] (Integer

Length)
 (Real

Length) A.S MMAS

Oliver
30 420[2] 423.741 [3] 423.7406

423.74
[3] N.A N.A

Eil51 426 [3] 428.87 [2] 437.56
437.3

[6] 427.5
427.1

kroA
100 21285 [3]

21285.44
[2] 22451.9819

22471.4
[6] 21299.6 21291.6

D198 15780 [3]
15808.65

[2] 16692.24
16702.1

[6] 15960.2 15956.8

6 Heterogeneous ACO Results

6.1 Exploring the ranges of Alpha and Beta

 An extensive experiment based on AS was conducted to find the best range of α
and β for our heterogeneous approach where lower and upper bounds of α and β were

based on the recommendation of [3]. Both α and β values are varied to create a

heterogeneous approach as both α & β plays an important role in exploration and

exploitation of the search space. Hence, varying both parameters will introduce more

variance in the agents. In addition, Stützle et al [16] suggests that both α and β are good

candidates for parameter adaptation in ACO. As can be seen, the recommended range

for α is between 0.25 and 1.5 while β has a range of 1 to 5. Therefore, extensive

experiments were conducted where the ants were set to have a uniform distribution of

α between 0 and 1 and 0 to 2 while a uniformly distributed β was varied between 0 and

152

5, narrowed down to 4 to 5. The other parameters were set according to [3]: 10 000

iterations, m = n, ρ = 0.5, Q = 100, initial pheromone trail = m/Lnn where Lnn is the tour

length of the tsp instance using nearest neighbour heuristic. 3 tsp instances were used

to test the algorithm namely oliver30.tsp (integer length optimum = 420, real length

optimum = 423.7406), eil51.tsp (integer length optimum = 426, real length optimum =

428. 8716) and eil101.tsp (integer length optimum = 629). Table 2 and Table 3
summarizes the outcome of our extensive experiment. The results are best tour length

found in 15 trials.

Table 2: Results from experimentation where α is uniformly distributed between 0 to 1

and the β distribution varies. Algorithm tested on oliver30.tsp, eil51.tsp and eil101.tsp.
Results represent average best cost out of 15 trials while values in bold represents the

best average.

α β oliver30 eil51 eil101

0 -1 0 -5 427.0934 445.301 699.1238

0 -1 1 -5 425.3379 441.6734 685.7444

0 -1 2 -5 426.0892 439.5271 678.2238

0 -1 3 -5 423.7406 436.2947 661.9443

0- 1 4 - 5 423.7406 436.3278 659.4744

Table 3: Results from experimentation whereα is uniformly distributed between 0 and

2 and the β distribution varies. Algorithm tested on oliver30.tsp, eil51.tsp and eil101.tsp

for 10 000 iterations with values representing average best cost out of 15 trials while

values in bold represents the best average.

α β oliver30 eil51 eil101

0- 2 0 -5 427.2749 437.1203 688.2972

0 -2 1 -5 424.6639 442.3749 672.3319

0 -2 2 -5 423.9117 438.0173 665.7093

0 -2 3 -5 423.7406 436.0904 645.5318

0- 2 4- 5 423.7406 436.6167 651.2821

Both Table 2 and Table 3 above show that the best range is α: 0 to 2 and β: 3 to 5. The

experiment did not include α values greater than 2 because it is proven can lead to

stagnation behaviour [3]. Therefore, the following experiments related to heterogeneous

AS hereafter will use this parameter range.

6.2 Comparison with Base Algorithms

 Next, the Heterogeneous Ant System (HAS) was compared against AS

developed by [3] based on several symmetrical tsp instances. The AS (and later MMAS

[6]) systems have been subjected to extensive experiments to determine the optimal

alpha and beta settings for these problems. The resulting comparisons are therefore

made between the heterogeneous system and well-tuned examples of the base ACO

algorithms. HAS has the same parameter settings as AS (mentioned in the previous

section) expect that α is a uniform distribution between 0 and 2 while β is varied from

3 and 5. The function evaluations for all experiments remain the same as previous

section. Table 4 summarizes the comparison of AS and HAS on eil51.tsp for 25 trials.

It can be seen that HAS improves on the best cost found by AS where the average is

436 compared to that of AS which is 437.56. Both AS and HAS was not able to find
the optimum but it is shown that HAS performs better than AS in terms of 1% deviation

and 2% deviation of the optimum. A value is said to be 1% deviation of optimum when

it is within the range of 1% to the optimum. In eil51.tsp case, 1% deviation is 1/100 x

426 (optimum value from TSPLIB [2]) =4.26+426 =430.26.

426 < X< 430.26 = 1% deviation of optimum

430.26 < X < 434.52 = 2% deviation of optimum

153

Table 4: Best, average and worst cost comparison between AS & HAS for eil51.tsp, 10

000 iterations over 25 trials.

Figure 2: Comparison of average best cost for 25 independent trials of eil51.tsp with 10

000 iterations for each trial.

 Figure 3 (a) Figure 3 (b)

Figure 3: Frequency of Alpha & Beta values that managed to find the best cost in every
iteration for HAS (eil51.tsp) (Note: 25 trials x 10 000 iterations each trial = 250 000

iterations)

Figure 2 shows that the Heterogeneous Ant System (HAS) has a better performance in

terms of average best cost compared to AS over the duration of the optimisation. Figure
3 show the frequency of alpha and beta values of ants that found the best cost in every

iteration. It can be seen the alpha values that mostly contribute are between 1.9 and 2,

with a strong skew towards these values whereas the beta distribution is much more

uniform with a small skew towards beta values of 4.6 and 4.75. This shows that

heterogeneous approach introduces diversity in the algorithm and suggests the

mechanism behind the improved performance over the algorithm with a single

‘behavioural trait’.

Table 5: Best, average and worst cost comparison between AS & HAS for kroA100.tsp

(optimum: 21282). Results in bold are the best in the table.

Method Best Average Worst # Optimum
Found

1% dev
of opt

2% dev of
opt

AS 433 437.56 441 0 0 1

HAS 428 436.00 442 0 1 5

Method Best Average Worst # Optimum
Found

5% dev
of opt

6% dev of
opt

AS 22384 22469.4 22666 0 0 5

HAS 22215 22347.6 22487 0 22 25

154

Table 5 shows the comparison between AS and HAS for 100-city tsp, kroA100.tsp.

HAS managed to improve on the fitness solution compared to AS where average best

cost for HAS is 22347.6 and that of AS is 22469.4. Although both AS and HAS did not

manage to find the optimum for 100-city TSP problem, HAS managed to find a best

cost that is within 5% of the optimum 22 times compared to none by AS. In addition,

HAS found a best cost of 22215 compared to 22384 of AS out of 25 trials.

Figure 4: Average best cost comparison for AS & HAS (kroA100.tsp) for 10 000

iterations over 25 trials.

 Figure 5 (a) Figure 5 (b)

Figure 5: Frequency of Alpha & Beta values that managed to find the best fitness
solution in every iteration for HAS (kroA100.tsp) (Note: 25 trials x 10 000 iterations

each trial = 250 000 iterations)

Figure 4 shows the improved performance of HAS over AS in terms of average best

cost while Figure 5 (a) and 5 (b) show the frequency of alpha and beta values of ants
that managed to find best cost in all the 10 000 iterations for 25 trials. The distributions

are similar to those of the previous experiments with alpha values peaking at 1.85 while

beta has a peak at 4.45.

Table 6: Best, average and worst cost comparison between AS & HAS for d198.tsp

(Optimum: 15780). Results in bold are the best in the table.

Table 6 summarizes the outcome of 25 trials of d198.tsp using both AS and HAS. AS
found a best cost of 16356 throughout the 25 trials while HAS found a best cost of

16186. In additionHAS has a lower average compared to AS. Although the optimum is

not found by any of the algorithms, HAS managed to find fitness solutions that are 3%

Method Best Average Worst # Optimum
Found

3% dev of
opt

4% dev of
opt

AS 16356 16572.48 16724 0 0 3

HAS 16186 16359.04 16700 0 6 19

155

within the optimum range 6 times and 19 times within 4% of the optimum compared to

0 and 3 times respectively by AS.

Figure 6: Average of best cost comparison between AS & HAS (d198.tsp) over 25 trials,

10 000 iterations in each trial.

 Figure 7 (a) Figure 7 (b)

Figure 7: Frequency of Alpha & Beta values that found the best fitness solution in every
iteration for HAS (d198.tsp) (Note: 25 trials x 10 000 iterations each trial = 250 000

iterations)

Figure 6 shows the major improvement in terms of average best cost performance of

HAS over AS while it can be seen clearly in Figure 7 that even though both α=1 and
β=5 as per suggested in [3] are covered in the pre-determined range for heterogeneous

approach, both α and β values that managed to find best cost in every iteration increases

rapidly from 0.5 to 2 and a steady increase from 3 to 5 respectively with α values having

a peak at 1.9 while β values have a peak of 4.9.

 The encouraging results of the heterogeneous approach on Ant System leads to

the approach to be implemented on to Max Min Ant System (MMAS) known as

Heterogeneous MMAS (HMMAS). All the parameters were set according to

[6](discussed in experimental setup) except that of α which was set to 0 to 2 while β is

varied between 1 and 3. The same sets of TSP instances were used to compare HMMAS

against MMAS. Table 7 summarizes the comparison for eil51.tsp which has an

optimum of 426. Although overall average of HMMAS is slightly higher compared to

that of MMAS, HMMAS performed much better in relation to the number of times

optimum found where both MMAS and HMMAS managed to find the optimum 4 times

and 10 times respectively out of 25 trials. Figure 11 shows the comparison of the

average best cost of both MMAS and HMMAS for the 51-city TSP problem.

156

Table 7: Best, average and worst cost comparison between MMAS & HMMAS for

eil51.tsp (optimum: 426). Results in bold represents the best value in the table.

Figure 8: Comparison of average best cost for MMAS & HMMAS (eil51.tsp) over 25

trials, each trial = 10 000 iterations.

 Figure 9 (a) Figure 9 (b)

Figure 9: Frequency of Alpha & Beta values that managed to find the best fitness

solution in every iteration for HMMAS (eil51.tsp) (Note: 25 trials x 10 000 iterations

each trial = 250 000 iterations)

Figure 8 shows that both MMAS and HMMAS have a similar average best cost. Figure

9 illustrates that both the alpha and beta values of ants that managed to find the best cost

in every iteration for HMMAS with alpha has a peak value of 1.55 while beta has a peak

of 2.05. The overall distributions are somewhat similar to those from HAS. The

diversity in the algorithm helps too as it shows that various alpha and beta values

contribute towards finding the best cost.

Table 8: Best, average and worst cost comparison between MMAS & HMMAS for

kroA100.tsp (optimum: 21828). Results in bold represent the best value in the table.

Table 8 shows the outcome of experiment on kroA100.tsp where both MMAS and

HMMAS managed to find the optimum of 21282 while MMAS has an average of

Method Best Average Worst # Optimum
Found

1% dev
of opt

2% dev
of opt

MMAS 426 427.4 430 4 25 25

HMMAS 426 427.6 431 10 23 25

Method Best Average Worst # Optimum
Found

1% dev
of opt

2% dev
of opt

MMAS 21282 21299.6 21390 4 25 25

HMMAS 21282 21316.6 21379 11 21 22

157

21294.4 and HMMAS has an average of 21316.6. This can be due to several trials

producing fitness solutions out of the 1% and 2% range of optimum thus causing the

HMMAS to have a higher average. Although MMAS have a lower average best and

lower worst cost, HMMAS still outperforms MMAS by finding the optimum 11 times

compared to 4 times for MMAS. Figure 10 shows the comparison of the average best

cost between MMAS and HMMAS.

Figure 10: Comparison of MMAS & HMMAS of average best cost (kroA100.tsp) over

25 trials, each trial = 10 000 iterations.

 Figure 11 (a) Figure 11 (b)

Figure 11: Frequency of Alpha & Beta values that managed to find the best fitness

solution in every iteration for HMMAS (kroA100.tsp) (Note: 25 trials x 10 000

iterations each trial = 250 000 iterations)

Figure 10 shows that the average best cost of MMAS is slightly better compared to

HMMAS for 100-city problem. Both Figure 8 and Figure 10 suggest that MMAS

performs considerably well for eil51.tsp and kroA100.tsp due to the small problem size.

Figure 11 illustrates the alpha and beta values related to the best cost in every iteration

over 25 trials. Alpha values peak around 1.3 and beta has a peak of 2.65 respectively.

Table 9: Best, average and worst cost comparison between MMAS & HMMAS for

d198.tsp (optimum: 15780). Results in bold represents the best value in the table.

Table 9 summarizes the comparison made between MMAS and HMMAS for 198-city

TSP. HMMAS has a best cost of 15795 compared to 15846 of MMAS and HMMAS

also has a lower average and lower worst cost compared to MMAS. Meanwhile,

Method Best Average Worst # Optimum
Found

1% dev
of opt

2% dev
of opt

MMAS 15846 15961.12 16137 0 10 22

HMMAS 15795 15871.68 16006 0 21 25

158

HMMAS also managed to find fitness solutions 21 times within the 1% range of

optimum compared to that of MMAS of 10 times.

Figure 12: Comparison of MMAS & HMMAS of average best cost (d198.tsp) over 25

trials, each trial = 10 000 iterations.

 Figure 13 (a) Figure 13 (b)

Figure 13: Alpha & Beta values that managed to find the best fitness solution in every

iteration for HMMAS (eil51.tsp) (Note: 25 trials x 10 000 iterations each trial = 250

000 iterations)

Figure 12 shows the comparison of the average best cost between MMAS and HMMAS

over 25 trials for eil51. HMMAS have a better average best cost compared to MMAS

in a medium-sized tsp. Figure 13 shows the alpha and beta values with a peak of 1.7

and 2.2 respectively.

Figure 14: Boxplot of best cost for 25 independent trials of 4 different algorithms

namely AS, HAS, MMAS and HMMAS for eil51.tsp. Each trial were conducted for 10

000 iterations.

159

Figure 14 shows that both HAS and HMMAS have a better performance compared to

its base algorithm in terms of best cost found in each of the 25 independent trials for

eil51.tsp. HAS has a lower median and lower inter-quartile (IQR) values compared to

AS. Furthermore, HMMAS has a worst cost larger than MMAS, but more of the best

costs are at the optimum of 426 for eil51.tsp.

Figure 15: Boxplot of best cost for 25 independent trials of 4 different algorithms for

AS, HAS, MMAS and HMMAS for kroA100.tsp.

Figure 15 shows the boxplot for the best cost found by all 4 algorithms in test in each

of the 25 trials. It can be seen that HAS has a better performance compared to AS in

terms of best cost with a lower median as well. On the other hand, HMMAS has a

slightly higher median compared to MMAS. It can also be observed from Figure 14 that

both HAS and HMMAS have a larger IQR and this can be attributed to the variance in

terms of best cost found caused by the heterogeneous approach introduced.

Figure 16: Boxplot of best cost for 25 independent trials of 4 different algorithms

namely AS, HAS, MMAS and HMMAS for d198.tsp.

Figure 16 shows the improvement of HAS and HMMAS over its base algorithms. Both

heterogeneous algorithms have a lower median compared to AS and MMAS. In both

cases, the improvements are statistically significant thus the algorithms clearly

benefitting from the heterogeneous approach.

160

Table 10: p-values and z-values of Wilcoxon rank sum test for best cost of HAS and

HMMAS against its respective base algorithm.

TSP HAS vs AS HMMAS vs MMAS

eil51 0.0143 0.8796

kroA100 2.03E-0.6 0.3078

d198 2.87E-08 1.27E-04

A two-tailed Wilcoxon rank sum test with confidence level of 95% was conducted for

HAS against AS and HMMAS against MMAS with p < 0.05 as the threshold level

where the difference is significant. The table above shows that the best cost found by

HAS for the 25 trials are significantly better when compared to AS for all the three

instances. The test shows that the best cost of HMMAS is not significant over its base

algorithm for eil51 and kroA100. First of all, these two tsp instances fall under the

category of small instance problem where even the base algorithm performs moderately.

Secondly, the effect of individual variance or heterogeneity is limited in HMMAS due

to algorithm’s limitation of only a single agent to modify the pheromone limiting the

overall heterogeneity advantage. Furthermore the performance of the base algorithm

MMAS is clearly superior to that of AS meaning that it is also more difficult to for

heterogeneity to show an improvement. However, despite this, HMMAS is statistically

significant when compared to MMAS in terms of best cost found for d198.tsp.

7 Discussion, Conclusion & Future Work

 In summary, a heterogeneous ACO has been introduced which implements

artificial ants that have different ‘behavioural traits’ compared to the traditional

homogeneous approach. This computational work in ACO is in relation to the biological

aspect of real ants where ants are known to have diversity in their population. The results

clearly show that the heterogeneous approach in ACO produce improved performance

over the standard, parameter tuned algorithms on which they are based. The

performance difference was particularly marked when implemented on Ant System.

This is likely to be due to the greater contribution of each ant to the pheromone trail,

highlighting the effect of diversity. The smaller gains made with HMMAS can be
explained by the increased performance of the base algorithm, locating solutions closer

to the optimum and also that only the best ant contributes to the pheromone update

reducing the effect of population diversity on algorithm progression.

 The implemented approach, by varying the alpha and beta values shows that
even though prior work [3] suggests a range of optimal α and β values to choose from,

determining a certain value is not easy as the parameters are problem-dependant. The

results here show that the heterogeneous approach is able to overcome this problem by

being robust to parameter settings by effectively exploring the parameter space in

conjunction with optimising the problem. Having a variety of ‘behavioural traits’ rather

than a single behaviour shows the advantage in the performance of the algorithm.

Recording the best performing alpha and beta values provides some support for the

parameter values suggested by both Dorigo [3] and Stützle [6], but also highlighted

instances where these parameter settings were not optimal. The discovery of distinct

distributions of parameter settings for alpha and beta is interesting and demonstrates the

algorithms’ sensitivity to these parameters. These distributions remained stable despite
being tested on multiple problem sizes. The work here has explored the hypothesis that

heterogeneity is able to improve the performance of an algorithm and the results have

gone some way to showing that heterogeneity applied to ACO can improve performance

on the TSP and robustness to parameter settings. The next focus is on implementing

Gaussian distribution towards heterogeneity and greater biological plausibility.

161

Acknowledgement

We would like to thank the Faculty of Electronics and Computer Engineering

(FKEKK), Technical University of Malaysia Malacca (UTeM) and the Ministry of

Higher Education (MoHE) Malaysia for the financial support under the SLAB/SlAI

program.

References

[1] Christian Blum, “ACO Applied to Group Shop Scheduling: A Case Study on
Intensification and Diversification,” in ANTS ’02 Proceedings of the Third
International Workshop on Ant Algorithms, 2002, pp. 14–27.

[2] G. (Gerhard) Reinelt and Gerhard, The traveling salesman : computational solutions
for TSP applications. Springer-Verlag, 1994.

[3] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization by a colony of
cooperating agents,” IEEE Trans. Syst. Man, Cybern. Part B Cybern., vol. 26, no. 1,
pp. 29–41, 1996.

[4] A. P. Modlmeier and S. Foitzik, “Productivity increases with variation in aggression
among group members in Temnothorax ants,” Behav. Ecol., vol. 22, no. 5, pp. 1026–
1032, Sep. 2011.

[5] M. Collett and T. S. Collett,"Spatial aspects of foraging in Ants and Bees," Cold
Spring Harbor Monograph Series 49, pp 467 - 502, 2007.

[6] T. Stutzle and H. Hoos, “MAX MIN Ant System and Local Search for the Traveling
Salesman Problem,” Ieee Int. Conf. Evol. Comput., pp. 309–314, 1997.

[7] G. Gutin and A. P. Punnen, Eds., The Traveling Salesman Problem and Its Variations,

vol. 12. Boston, MA: Springer US, 2007.

[8] A. Engelbrecht, “Heterogeneous particle swarm optimization,” Swarm Intell., pp. 191–
202, 2010.

[9] O. Blight, G. Albet Díaz-Mariblanca, X. Cerdá, and R. Boulay, “A proactive–reactive
syndrome affects group success in an ant species,” Behav. Ecol., vol. 27, no. 1, pp.
118–125, Jan. 2016.

[10] J. W. Lee and J. J. Lee, “Novel ant colony optimization algorithm with path crossover
and heterogeneous ants for path planning,” in Proceedings of the IEEE International

Conference on Industrial Technology, 2010.

[11] C. Chira, D. Dumitrescu, and C. M. Pintea, “Heterogeneous sensitive ant model for
combinatorial optimization,” Genet. Evol. Comput., p. 163, 2008.

[12] A. Hara, S. Matsushima, T. Ichimura, and T. Takahama, “Ant colony optimization
using exploratory ants for constructing partial solutions,” in 2010 IEEE World
Congress on Computational Intelligence, WCCI 2010 - 2010 IEEE Congress on
Evolutionary Computation, CEC 2010, 2010.

[13] M. Yoshikawa, “Adaptive Ant Colony Optimization with Cranky Ants,” Springer

Netherlands, 2009, pp. 41–52.

[14] P. Zhang and J. Lin, “An adaptive heterogeneous multiple ant colonies system,” in
Proceedings - 2010 International Conference of Information Science and Management
Engineering, ISME 2010, 2010.

[15] L. Melo, F. Pereira, and E. Costa, “Extended experiments with ant colony optimization
with heterogeneous ants for large dynamic traveling salesperson problems,” Proc. -
14th Int. Conf. Comput. Sci. Its Appl. ICCSA 2014, pp. 171–175, 2014.

[16] T. Stutzle et al., “Parameter Adaptation in Ant Colony Optimization IRIDIA –
Technical Report Series Parameter Adaptation in Ant Colony Optimization,” 2010.

162

Session 6 - Applications

163

Evolutionary learning of fire fighting strategies

Martin Kretschmer and Elmar Langetepe

University of Bonn, Department of Computer Science, D-53113 Bonn, Germany

Abstract. The dynamic problem of enclosing an expanding fire can be
modelled by a simple discrete variant in a grid graph. While the fire
expands to all neighbouring cells in any time step, the fire fighter is al-
lowed to block c cells in the average outside the fire in the same time
interval. It was shown that the success of the fire fighter is guaranteed
for c > 1.5 but no strategy can enclose the fire for c ≤ 1.5. For achieving
such a critical threshold the correctness (sometimes even optimality) of
strategies and lower bounds have been shown by integer programming
or by direct but often very sophisticated arguments. We investigate the
problem whether it is possible to find or to approach such a threshold
and/or optimal strategies by means of evolutionary algorithms, i.e., we
just try to learn successful strategies for different constants c and have a
look at the outcome. We investigate the variant of protecting a highway
with still unknown threshold and found interesting strategic paradigms.
Keywords: Dynamic environments, fire fighting, evolutionary strate-
gies, threshold approximation

1 Introduction

In the field of motion planning, online algorithms or Computational Geometry
(and of course in many other areas) there are many examples of (somewhat
annoying) gaps between upper and lower bounds of interesting and important
constants. For example in the field of online algorithms for the famous k-server
problem in almost all metric spaces the best known lower bound on the com-
petitive ratio is k whereas the best known upper bound is 2k − 1, which gives a
blind interval of [k, 2k − 1] for this value. The conjecture is that k is the tight
bound; see for example [2]. Similarly the VC-dimension of L2-visibility in simple
polygons currently lies in the interval [6, 14]; see for example [8]. The threshold
has to be somewhere in between.

A challenging approach might be to close or reduce such gaps (or only get
some more insight w.r.t. a tendency) by means of rather simple but efficient
evolutionary or genetic approaches. In this paper for a suitable scenario in the
context of motion planning in grid environments we would like to find out how
far this general idea might work. We make use of an Evolutionary Computation
approach and manipulate a population of solutions by natural selection and
mutation such that a fitness gradually increases; see also [7,9,12,13]. Rather than
analysing evolutionary algorithms theoretically as for example given in [1,3], we
would like to analyse the power of such simple algorithms for getting insight in
well-defined theoretical questions.

164

In this paper we concentrate on the context of discrete fire fighting in differ-
ent theoretically motivated variants. An overview of theoretical results in this
context is given by Finbow & MacGillivary [5]. Assume that in a grid-cell en-
vironment a cell that is on fire expands the fire from one cell to its four neigh-
bouring cells in one time step. On the other hand the fire fighter can block some
of the cells outside the fire in any time step. The number of cells that can be
blocked is given by an asymptotic budget c ≥ 1 such that at any time step t we
could have made use of bc× tc blocked cells in total.

We examine two questions. It is well-known that for c > 1.5 an expanding
fire in the above model can be enclosed; see [11]. The result is obtained by a
sophisticated recursive strategy idea. Optimality (minimum number of burned
cells) can be obtained for example for c = 2 by making use of ILP formulations;
see [14]. This does not work well for smaller c because of the running times. On
the other hand for c ≤ 1.5 no strategy can stop the fire, shown by a tricky proof
in [4]. Therefore c = 1.5 is the fixed threshold for this case.

For this well-understood scenario we make use of simple evolutionary rules
and show that for c = 2 we obtain the optimal strategy extremly fast. For c ≥ 1.7
we still obtain enclosement results that seem to be close to the optimal. For c
less than 1.6 our approach fails. The results are presented in Section 2.

The above first results might be seen as a test scenario for a new question
considered in Section 3. For a protection budget c the task is rather than enclos-
ing the fire, we would like to prevent a highway from being reached by the fire
soon. Theoretical results and a fixed threshold for this setting are still unknown.
We try to get an impression how reasonable strategies look like for different val-
ues of bugdet c < 1.5. It is more likely to make use of a single barrier close to
the fire or is it recommendable to build (multiple) barriers away from the fire
close to the highway? The focus here is that we get some ideas or insights by the
use of evolutionary methods. In contrary to the former enclosement problem we
first make experiments and an ongoing task is to find formal proofs. The results
and the corresponding conjectures are presented in Section 3.

The main conclusion of our work is that simple, goal oriented evolutionary
strategies could help to give insight into the solutions of dynamic motion plan-
ning problems. Especially, if such problems come along with a threshold question.
The hope is that such approaches can also be used for similar problems.

2 Fire enclosement in a discrete grid setting

Given an infinite grid graph with vertex set Z2. Each vertex represents a cell
in a grid graph. In the following vertices and cells are handle as synonyms. The
set of edges is given by {((u, v) , (x, y)) | |u− x|+ |v − y| = 1}, i.e. each cell is
neighbour to the cell directly above, below, left, and right. A fire starts at (0, 0)
and spreads over time. After each time step, all cells with a burning neighbour
start burning as well.

2

165

In the first setting the goal is to enclose the fire, such that only a finite
(minimal) number of cells is lost. To achieve this, a certain number of non burning
cells can be protected at each time step, which will then never catch fire.

The number of cells that can be blocked is given by an asymptotic budget
c ≥ 1 such that at any time step t we could have made use of bc × tc blocked
cells. A simple example for c = 2.7 is shown in Figure 1. In the first step the fire
fighter blocks b1 × 2.7c = 2 two cells outside the fire. After the fire spreads in
the next step the fire fighter blocks b2× 2.7− 2c = b3.4c = 3 non-burning cells.
Then the fire spreads again and in step 3 again b3 × 2.7 − 5c = b3.1c = 3 cells
can be blocked by the fire fighter outside the fire. The fire spreads for the last
time and by blocking b4 × 2.7 − 8c = b2.8c = 2 cells in the fourth step the fire
is enclosed.

Start t = 1

12

11

Spread

12

(N,F)11 (N,F)

(N,F)

t = 2

12

(N,F)11 (N,F)

(N,F)

21

22

23

Spread

12

(N,F)11 (N,F)

(N,F)

21

22

23

(N,F)

t = 3

12

(N,F)11 (N,F)

(N,F)

21

22

23

(N,F)

32

31

33

Spread

12

(N,F)11 (N,F)

(N,F)

21

22

23

(N,F)

32

31

33

t = 4

12

(N,F) (SE,F)11 (N,F)

(N,F)

21

22

23

(N,F)

32

31

33 41

42

Fig. 1. An example for threshold c = 2.7. The fire starts at a single cell. At any time
step, the fighter blocks the remaining cells of its overall budget bt × 2.7c outside the
fire. Then the fire spreads. The protected (black) cells are labelled by time parameters.
After 4 time steps the fire is enclosed.

It has been shown that a fire can always be enclosed protecting c = 2 cells
at each time step and it is impossible to do so with only one [6,14]. Finally, it
was proved that a fire can always be enclosed when the average number c of
protected cells exceeds 1.5 [11]. This bound is tight as shown by [4].

In the case of c = 2 even an optimal solution (i.e. minimal number of burning
cells) has been found by using Integer Linear Programming [14]. Compared to
that, in the following we want to investigate how good a simple evolutionary
inspired algorithm can solve this task and how close we can get to the thresholds.
The first experiments also can be seen as a test scenario for the question of
protecting a highway considered in Section 3.

2.1 A goal oriented evolution model

To use an evolutionary method, we require a formal description of a general
strategy, which can be modified (mutation) and recombined (inheritance) to

3

166

obtain a new strategy. Additionally, we have to define a fitness function for the
comparison of strategies. Intuitively (and also driven by the known theoretical
results) it seems to be a good idea for a strategy to

– start close to the fire
– build a (more or less) connected chain of protected cells, trying to surround

the fire

Remark We further confirm these intuitions by having tried other variants as
well. Our evolutionary experiments showed, that strategies which start protect-
ing vertices further away from the origin perform worse than strategies that start
close to the origin, some results for this are presented in Table 1. Analogously,
the experiments showed that multiple disconnected barriers (that finally might
be connected) do not work well. We omit to show the corresponding experiments
due to space constraints. We refer to Section 3 where we have similar results for
the problem of protecting a highway. I.e., general disconnected genomes tend to
run in a connected barrier construction. The following definition is designed to
follow the above simple principles.

Definition 1. A strategy consists of

– a starting point (i, j)
– a sequence of directions {North,NorthEast, East, . . .} and each direction is

combined with the information whether to extend the front (F) or the back
(B) of the chain

For short the strategy is given by the starting point and a list of pairs (X,Y)
with X ∈ {N,NE,E, . . .} and Y ∈ {F,B}.
An example of a strategy (without a fire spread) is given in Figure 2. For the fixed
starting cell (0,−1) the sequence ((N,F) , (NE,F) , (SE,B) , (SE,F) , (E,B))
is applied as follows. By (N,F) we extend (0,−1) forward by the cell (0, 0) in the
north which now is the new front cell of the barrier. Then by (NE,F) relative
to the new front cell we block the cell in direction north-east, which is cell (1, 1).
After that we apply (SE,B) for the current back end of the barrier which still is
(0,−1). The new back end cell is (1,−2) which lies south-east from (0,−1) and
so on.

Notice, that such a strategy does not contain the information of the time at
which the next vertex is protected. Instead, the next tuple of the sequence is
applied, whenever we are allowed to protect an additional vertex.

The number of vertices that are protected per step is based on a bank ac-
count idea. We start with an initial budget and each time a vertex is protected,
the budget decreases by 1. The budget has to remain positive but is always fully
exhausted. After the fire has spread by one step, the budget increases by the
fixed amount c. E.g. c = 2 means we can protect exactly two vertices in any
step. For c = 1.5, the number of protected vertices alternates between 1 and 2.

Handling illegal genomes The above genome design does not pay any atten-
tion to the restriction that we cannot protect already burning cells. To deal with

4

167

0 1 2 3-1

0

-1

-2

-3

1

2

(0,−1)

(N,F)

(NE,F)

(SE,B)

(SE,F)

(E,B)

Fig. 2. Example of a strategy starting at (0,−1) with sequence
((N,F) , (NE,F) , (SE,B) , (SE,F) , (E,B)). Each protected vertex is labelled
by the tuple that caused its protection.

that we decide to use the following behaviour: Whenever the sequence tries to
protect a cell that is already burning, we start a search for the next non-burning
cell in clockwise or counter clockwise order, depending whether we want to ex-
tend the front or the back of the barrier, starting at the direction that is given
by the sequence. For example in Figure 2, if (0, 0) is burning in the beginning,
the application of (N,F) from (0,−1) results in blocking the cell (−1, 1), which
gives the new front.

Fitness Evaluation In order to determine the fitness of a strategy two values
seem to be important. The time needed to enclose the fire and the total number of
burning vertices. Since randomly initialized sequences will most likely not enclose
the fire, we use the total number of burning vertices after a fixed simulation
time t. This also gives rise to gradual improvements. For example in Figure 1 for
a simulation time t = 3 the given strategy has fitness 5, since 5 cells are burning
at time t = 3. Note that we run arbitrary strategies with different simulation
times (or steps).

2.2 Evolutionary Algorithm

The following algorithm keeps improving a randomly initialized set of strategies
until it is manually stopped. Besides the budget c, it has several parameters
which determine its behaviour.

– Input:
• c budget income per time step
• n population size
• t number of simulation steps
• p mutation probability
• r ratio of parents kept after external selection

– Initialization: A population P of n randomly generated strategies (except the
start point which is fixed to (0, 1)), each strategy needs to have a sequence
of length at least t · c

5

168

– Repeat

• simulate any strategy of P for t time steps and determine its fitness
• order P by fitness in increasing order and keep only the best br · nc

strategies as parents
• restock P again to size n by selecting two parent strategies and combining

their sequences via single-point crossover
• for each tuple in each sequence of P , change it with probability p to a

new random direction and extension side (mutation)

Note that for speeding up the results of our simulation as presented in the
next section for c < 2 we decided to start the algorithm with an initial bud-
get of 2. This allows us to protect two cell in the first step. Our experiments
showed that this allows our algorithm to find successful strategies much faster
and therefore also for smaller values of c. Asymptotically, there is no difference
for the threshold. This small artefact might also be interpreted as a goal oriented
approach.

2.3 Experimental results

Fig. 3. Example of a strategy found when protecting exactly c = 2 vertices per step.
Enclosed after 8 steps with 18 burning vertices.

Figure 3 shows an optimal strategy that was found by evolution for the case
c = 2. It takes 8 steps to enclose the fire and in the end 18 vertices are on fire.
This is optimal for both time and number of burning vertices as shown in [6].
Surprisingly, it tooks only 84 generations in total until this strategy was found.

An example of a strategy that was found for c = 1.7 after 1002 generations
is depicted in Figure 4. A video of the successful strategy is shown in

http://tizian.informatik.uni-bonn.de/Video/1.7Enclosing.mp4 .
For even smaller values of c, our algorithm starts failing to find enclosing

strategies. An example for c = 1.6 is given in Figure 5. It seems that the strategy
might be able to enclose the fire after a longer time, but even increasing the
simulation time t did not lead to success.

Figure 6 shows for which values of c we were able to find enclosing strategies.
For constructing the figure we choose a simulation time of t = 80. As mentioned
above increasing the simulation time did not help. One can see that for values

6

169

Fig. 4. Strategy found for c = 1.7. Enclosed after 46 steps with 371 burning vertices.
The colored shading indicates how the fire spreads over time.

Fig. 5. Extract of a failing strategy for c = 1.6. Note that the fire expands on both
sides of the barrier.

Fig. 6. An overview of the results. For convenience (results for different c were similar
for any number of simulation steps) we used simulation time t = 80. For a given budget
the green curve shows the time required for enclosing the fire and the blue curve shows
the number of burning cells. We obtain positive (enclosement) results up to budget
c slightly larger than 1.68. After that the green curve is just fixed to the restricted
simulation time which indicates that the fire was not enclosed.

Start Enclosing Time Burning Vertices

(0, 1) 8 18

(0, 4) 23 156

(1, 3) 15 68

(2, 2) 24 161

Table 1. Fitness of best strategies found for c = 2 and different starting points.

7

170

smaller than c ≈ 1.68 the building of the barrier continued until the simulation
ended. This means that the fire was not enclosed.

So far, any strategy presented had a fixed start point neighbouring the origin
of the fire. As an example we compare the strategy for c = 2 mentioned above to
strategies whose start point is fixed to a vertex four steps away from the origin.
Up to symmetry there are three different coordinates for this. (0, 4), (1, 3) and
(2, 2). Table 1 shows the times required to enclose the fire using these different
starting points, compared to the optimal strategy shown above. Starting further
away from the fire takes longer to enclose the fire. We have similar results for
other values of c.

2.4 Fire enclosement conclusion

At least for values of c a bit away from the overall tight threshold, the simple
evolutionary goal oriented algorithm was able to find successful (and in the case
of c ≥ 2 even optimal) strategies surprisingly fast. Successful strategies close
to the threshold c = 1.5 are not easy to find, even by the use of very general
genomes and many simulation steps. This seems to be clear for the following
reason. The corresponding successful connected barrier solution presented in [11]
for any c = 1.5+ ε makes use of four rounds. For any round the strategy behaves
analogously but the next round starts with a 90 degree rotation. It is unlikely
that a random approach will find the appropriate time for starting the next
round and rotation.

3 Protection of a highway

Here we consider a different and new question. Conversely to the previous section
we did not have any idea for a reasonable strategy and/or a threshold. The
question is how long can we protect a highway (modeled by a line of cells) from
the fire, if some budget c < 1.5 is given. We would like to avoid that the fire
touches a line very early? What is a reasonable strategy? Should we start close
to the fire or close to the highway? Should we design a single connected barrier
or more barriers which are partly disconnected?

In Figure 7 we give an example for a strategy for c = 1.2. This means
that in the first 4 time steps the fire fighter makes use of a single blocking
cell. In step t = 5 the fire fighter can block two cells for the first time since
b5× 1.2− 4c = 2 holds. Similar to the previous section we can also assume that
in the start situation some constant cells are already blocked, this is indicated by
the blocked cell of label 0 in Figure 7. Figure 7 has to be interpreted as follows.
If ct−1 cells were used from the budget of the fire fighter after step t− 1, at the
next time step t, the fighter first blocks bt× c− ct−1c cells outside the fire and
then the fire spreads. After 7 time steps and the corresponding spread the fire
reaches the highway. Note that the strategy stops in this moment.

8

171

Start

0

0

1

2

3

4

t = 1

0

1

s

0

1

2

3

4

t = 2

1 2

0

0

1

2

3

4

t = 3

1 2

3

0

0

1

2

3

4

t = 4

1 2

3

4 0

0

1

2

3

4

t = 5

1 2

3

4 052 51

0

1

2

3

4

t = 6

1 2

3

4 6052 51

0

1

2

3

4

t = 7

1 2

3

4 60 752 51

0

1

2

3

4

Fig. 7. A fire fighter strategy for protecting a highway with budget c = 1.2. The fire
starts at a single cell, one cell is initially protected. At any time step, the fighter first
blocks the remaining cells of its overall bt× cc budget outside the fire and then the fire
spreads. After 7 time steps the fire reaches the highway.

3.1 Evolution models

Since the given problem was not theoretically analysed before, we first had to
test several ideas experimentally in order to achieve a more goal oriented model.
In contrary to the enclosement scenario discussed before we do not know whether
a connected strategy will lead to optimal or efficient solutions. So we first tried
to allow general strategies that could protect arbitrary cells. We made use of
a very simple coordinate based genome model, such that a strategy is simply
defined by a set of cell coordinates defining which cells should be protected.

For such a set of cells, the cells are protected in their L1−distance order
from the origin of the fire, i.e., cells closer to the fire origin will be protected
first. In the evolution process this behaviour forces that useless protections far
away from the origin will be cancelled out more quickly. In principle the above
principles allow us to define arbitrary strategies.

Altogether, we either make use of

– a connected genome (as in the previous section) or
– a coordinate genome described by a set of cell coordinates (as just mentioned)

3.2 Evolutionary Algorithm

We noticed that usually we do not get any improvements by the recombina-
tion of strategies. Therefore we changed the framework used in Section 2.2 and

9

172

restrict the algorithm to mutation only. This also means that we do not need
to have a large population, instead we only initialize a single randomly gener-
ated strategy that will keep mutating. If a mutation leads to an improvement,
the strategy keeps that mutation, otherwise it is undone. Altogether, this is a
so-called (1+1)EA; see [12].

This process of improving a single strategy can easily be parallelized such
that a larger set of single strategies keeps improving over time. This is very
beneficial, because the final result often depends on the initialization and not
every run leads to the best result. Another difference to the previous section is
the fitness evaluation, which obviously has to be adjusted with respect to the
problem definition.

Fintness evaluation For the enclosement problem considered in Section 2.1
we tried to minimize the total number of burning cells. In this case we have
used exactly this number for determining the fitness. Now we want to maximize
the time the fire requires to reach the highway. It turns out that increasing
this time value directly by a random mutation or recombination is very unlikely.
Therefore we require a fitness evaluation that also allows for smaller and gradual
improvements. To attain this we take into account how many vertices are burning
and also their corresponding distance to the highway. A formal definition is given
below.

For letting the algorithm run, actually we only need to be able to compare
strategies pairwise. Fortunately, this can also be realized by our fitness function.

Definition 2. Let S be a protection strategy for a given highway. By r(S) we
denote the first moment in time when the fire reaches the highway, if S is applied.
By d(S)i we denote the number of burning cells with distance i to the highway
after r(S) simulation steps.

Strategy S1 has a larger fitness than S2 if r(S1) > r(S2) holds or for r(S1) =
r(S2) if d(S1)i < d(S2)i holds for the smallest index i where d(S1)i 6= d(S2)i.

For example in Figure 7 the given strategy S has value r(S) = 7. We also have
d(S)0 = 1, d(S)1 = 9 and d(S, 9)2 = 12 and so on. So another strategy S′ would
have larger fitness, if r(S′) > 7 holds or for r(S′) = 7 = r(S), if we have for
example d(S′)0 = 1, d(S′)1 = 9 and d(S′)2 = 11 < 12 = d(S)2.

The main idea is that by trying to keep the fire farther away from the highway,
finally also the overall time where the fire reaches the highway can be increased.

3.3 Experimental results

Similar to the enclosement problem our implementation allows us to set or ma-
nipulate many different parameters and options for a goal oriented evolutionary
process, such as the budget c, the strategy design (general genome or connected
barriers), the population size (number of strategies optimized in parallel), the
mutation rate, the fire source (distance to the highway), starting positions (for
connected barriers), optional initial budget and so on.

10

173

Videos Finally and interestingly we mainly found two different strategic be-
haviours depending on the corresponding genomes, they will be explained pre-
cisely below. For convenience for c = 1.2 we prepared two animations that show
the finally attained best strategies for

1. General genomes Symmetric and alternating strategy:
http://tizian.informatik.uni-bonn.de/Video/1.2SymAlt.mp4

2. Connected barriers Asymmetric and diagonal strategy:
http://tizian.informatik.uni-bonn.de/Video/1.2AsymDiag.mp4

where in the second case of connected barriers sometimes also symmetric and
alternating strategies were attained under circumstances explained below. The
above strategies have been found after 156925 (1.) and 34226 (2.) generations.

1. General genomes First, we found out that the use of general genomes
always (for different settings) mutate toward connected barriers; Figure 8 shows
some of the finally attained strategies. All strategies show a similar behaviour.
They start somewhere between the origin of the fire and the highway, usually
a bit closer to the fire. Then any strategy continues to protect cells alternating
between left and right, trying to keep the fire as long and as far away from the
highway as possible. In the following we refer to such strategies as symmetric
and alternating.

Note that any of the given strategies can be reconstructed such that the
symmetric and alternating process is performed directly at the highway. The
time where the fire reaches the boundary will not change in this case. Our fitness
function simply prefers to shift the fire away from the highway.

A) B)

C) D)

Fig. 8. Resulting strategies using the general coordinate genome for different values of
the budget: A) c = 1.4, B) c = 1.3, C) c = 1.2 D) c = 1.1. The fire starts 20 steps away
from the highway. The highway was reached after 61, 54, 48 and 43 steps, respectively.

2. Connected barriers After that we again considered connected barriers with
different starting positions below the origin. Depending on the distance between
the start and the fire, we observed two different strategic behaviours which can
be categorized as follows.

If the starting position is somehow chosen too close to the fire origin or
too close to the highway we obtain strategies that behave in a symmetric and

11

174

alternating way as before. On the other hand if we somehow start at the right
distance, the attained strategies suddenly performed different and a lot better.
An example of such a strategy for c = 1.2 is given in Figure 9, the behaviour of
the strategy can be subdivided into three different phases which will be explained
below. In contrast to the symmetric and alternating strategy which only kept the
fire for 48 steps away from the highway with the same budget, the alternative
strategy increases this time to 92!

I) II)

III)

Fig. 9. Three phases of a connected strategy protecting the highway for c = 1.2.
I) Reach the level of the starting position of the fire diagonally from the center. II) Ex-
tend this diagonal, but simultaneously also try to shift the fire away from the highway
on the other side until the fire reaches the highway there. III) Use the full budget to
keep the fire away at this side, the fire runs to the highway at the other side. The
strategy starts 5 steps above the origin. The fire reaches the highway after 92 steps.

In general these strategies can be subdivided into three phases. Figure 9
shows the end of each phase.

I) Protect a diagonal downwards until a cell at the same level as the origin
is reached. Starting n cells above the origin, this requires the protection of
n + 1 cells and this needs to be done before the n−th time step, because
otherwise the fire would reach that cell first. This in turn requires c to be
large enough. Or the other way round, given 1.0 < c < 1.5, n needs to be
large enough such that n+1 cells can be protected after n steps⇔ cn ≥ n+1
⇔ n ≥ 1

c−1 .
II) Continue the diagonal downwards by one cell in every second step. Use the

rest of the budget to keep the fire at the other end of the barrier as far away
from the highway as possible. This procedure ends when the fire gets close
to the highway.

III) In order to protect the highway, from now on we are forced to protect at
least one cell per step at the end close to the highway. Since protecting one

12

175

cell at every step at one end and one cell at every second step at the other
end would require a budget of c ≥ 1.5, the diagonal part of the barrier will
be overrun by the fire making it impossible to continue this end at all. So the
strategy will simply continue to hold the fire back at the upper part of the
barrier until the fire reaches the highway on the other side. Again, because
the fitness evaluation prefers fewer burning vertices close to the highway, the
slope of the part built in this phase occurs.

We will refer to this behaviour as an asymmetric and diagonal strategy. Notice
that for c = 1.5 this leads immediately to a strategy that protects the highway
infinitely. Furthermore this strategy can only be applied if the fire starts far
enough away from the highway. The closer the budget c gets to 1.0, the more
distance is required. If this distance is not available, there seems to be no better
strategy than the symmetric and alternating one.

3.4 Highway protection conclusion

Using the evolutionary algorithm, we gained helpful insights into the highway
protection problem. Both the symmetric and alternating and the asymmetric
and diagonal strategy are promising candidates for optimal solutions. The choice
between the two alternatives seem to depend on the possibility of building the
diagonal of phase I). We found out that with one additional initial budget, the
connected genome always run into the asymmetric and diagonal variant. By
protecting two cells in the beginning, we can immediately finish the first phase
by starting directly above and to the left of the fire. Without an initial budget
the strategy has to fight for reaching the starting level of the fire source from
the left. This can only happen if in comparison to the budget, the source lies
sufficiently far away from the highway.

Considering phase III), there seems to be some room for a further recursive
improvement. When the fire has overcome the diagonal part of the barrier in
phase II) it will take the direct way to the highway. For a while we shift the
fire away from the other side by using the full budget. The barrier is build
with a given slope; see Figure 9 III). But this part could have been build also
with budget 1 along the highway. Therefore the remaining budget can be used to
protect the highway at the left hand side. Therefore we can consider the situation
with a budget c′ = c− 1. We found out that in this case the best strategy builds
a symmetric and alternating barrier directly at the highway.

For values c ≈ 1.5 we never observed a strategy that was able to protect the
highway infinitely long. We think that 1.5 is the threshold.

Conjecture For c < 1.5 there is no strategy that protects an arbitrary highway
from the fire. The best protection strategy either builds a single connected barrier
symmetrically and alternating close to the highway or first the asymmetric and
diagonal connected barrier strategy is applied. This depends on the relationship
between the distance of the fire source to the highway and the given budget.

13

176

4 Future work on theoretical threshold questions

Besides proving and analysing the above conjecture theoretically, we finally
would like to mention that there are other interesting upper and lower bounds
which we analogously would like to attack by a goal oriented evolutionary ap-
proache. For example, similar to the subjects presented here there are other
scenarios in discrete and continuous fire fighting settings that come along with a
threshold. An interesting overview for such gaps is given in the CG Column by
Klein and Langetepe[10]. Alternatively, one might also think of the protection
for different objects, also formalized by a set of cells. Additionally, among many
others, the two blind intervals (VC-dimension, k-server conjecture) mentioned
in the very beginning are also worth considering.

Acknowledgements The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions.

References

1. H.-G. Beyer, H.-P. Schwefel, and I. Wegener. How to analyse evolutionary algo-
rithms. Theoretical Computer Science, 287(1):101 – 130, 2002.

2. M. Chrobak and L. L. Larmore. An optimal on-line algorithm for k-servers on
trees. SIAM J. Comput., 20(1):144–148, Feb. 1991.

3. S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary
algorithm. Theoretical Computer Science, 276(1):51 – 81, 2002.

4. O. N. Feldheim and R. Hod. 3/2 firefighters are not enough. Discrete Applied
Mathematics, 161(1-2):301 – 306, 2013.

5. S. Finbow and G. MacGillivray. The firefighter problem: a survey of results, direc-
tions and questions. Australasian Journal of Combinatorics, 43(57-77):6, 2009.

6. P. Fogarty. Catching the fire on grids. PhD thesis, The University of Vermont,
2003.

7. D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. IEEE Press, Piscataway, NJ, USA, 1995.

8. A. Gilbers and R. Klein. A new upper bound for the vc-dimension of visibility
regions. Comput. Geom., 47(1):61–74, 2014.

9. J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Anal-
ysis with Applications to Biology, Control and Artificial Intelligence. University of
Michigan Press, Ann Arbor, MI, 1975.

10. R. Klein and E. Langetepe. Computational Geometry Column 63. SIGACT News,
47(2):34–39, June 2016.

11. K. Ng and P. Raff. Fractional firefighting in the two dimensional grid. Technical
report, DIMACS Technical Report 2005-23, 2005.

12. I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach Prinzip-
ien der biologischen Evolution. Number 15 in Problemata. Frommann-Holzboog,
Stuttgart-Bad Cannstatt, 1973.

13. H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons,
Inc., New York, NY, USA, 1981.

14. P. Wang and S. A. Moeller. Fire control on graphs. Journal of Combinatorial
Mathematics and Combinatorial Computing, 41:19–34, 2002.

14

177

Evolutionary Optimization of Tone Mapped
Image Quality Index

Xihe Gao, Jeremy Porter, Stephen Brooks, and Dirk V. Arnold

Faculty of Computer Science, Dalhousie University
Halifax, Nova Scotia, Canada B3H 4R2

{xgao,jporter,sbrooks,dirk}@cs.dal.ca

Abstract. The development of reliable image quality measures for the
assessment of tone mapped images constitutes a significant advancement
in high dynamic range imaging. The ability to objectively assess the
quality of tone mapped images allows treating tone mapping as an opti-
mization problem that can be solved by automated algorithms, without
the need for human input. The most prominent quality measure for tone
mapped images is the Tone Mapped Image Quality Index. An optimiza-
tion approach has been proposed in connection with the introduction
of that measure that operates in a high-dimensional search space and is
computationally expensive. In this paper, we propose an evolutionary al-
gorithm to solve the tone mapping problem using a generic tone mapping
operator and the Tone Mapped Image Quality Index as the objective to
be maximized in a much lower dimensional solution space. We show that
the evolutionary approach results in significantly reduced computational
effort.

Keywords: High dynamic range imaging, tone mapping, optimization,
evolution strategy, image quality assessment

1 Introduction

High dynamic range (HDR) images provide the capacity to represent a greater
range of luminance values than standard image formats do. Sources of HDR
images include digital cameras as well as photorealistic rendering algorithms.
With advances in hardware, they are rapidly becoming more commonplace in
digital imaging. To display HDR images on contemporary display devices, the
dynamic range needs to be adapted to the much smaller range of the device.
This computational task is called tone mapping.

Numerous tone mapping operators (TMOs) have been proposed (see Ban-
terle et al. [2] for an overview), and many of those depend on parameters that
significantly impact the appearance of the tone mapped images. Choosing an
appropriate TMO and setting its parameters for a particular HDR image often
requires careful tuning. Chisholm et al. [3] have proposed an interactive approach
to tone mapping, where the quality of tone mapped images is optimized iter-
atively, using an evolutionary algorithm (EA) that relies on human input for

178

selection. More recently, significant progress has been made in the development
of objective quality measures for tone mapped images, potentially opening up
the possibility of generating optimized tone mapped images without the need for
user input. Algorithms for the automatic optimization of tone mapped images
have been proposed by Gao et al. [5, 6], who employ saliency based image quality
measures in connection with simple EAs for optimization. Their work shows that
visually acceptable tone mapped images can often be obtained by automatically
tuning the parameters of various TMOs and blending their results.

A milestone in the development of objective quality assessment measures for
tone mapped images is the introduction of the Tone Mapped Image Quality
Index (TMQI) by Yeganeh and Wang [14]. TMQI combines measures of struc-
tural fidelity and statistical naturalness in a single numerical score. Structural
fidelity is derived from structural similarity (SSIM) [13] and measures spatial
dependencies of pixels between test and reference images. Statistical naturalness
measures overall brightness and contrast for “natural” appearance. Ma et al. [9]
have proposed TMQI-II as an improved variant of that quality measure that
is sufficiently robust to allow for the automatic optimization of tone mapped
images. They also present an optimization method that searches for images
with optimal TMQI-II scores. Their algorithm interleaves the optimization of
structural fidelity using gradient ascent with that of statistical naturalness. Ex-
perimental results demonstrate that their method can significantly improve the
TMQI-II score and appearance of tone mapped images, albeit usually at a high
computational cost.

The purpose of this paper is to compare the approach to the optimization of
TMQI-II used by Ma et al. [9] with an evolutionary approach similar to those
used by Chisholm et al. [3] and Gao et al. [5]. In contrast to the approach by Ma
et al. [9], we do not operate in the high-dimensional search space resulting from
considering all pixel intensities as variables, but instead we employ the generic
TMO by Mantiuk and Seidel [10]. The parameters of that operator define a low-
dimensional space in which the EA can find good solutions with relatively little
computational effort. Our algorithm differs from that of Gao et al. [5, 6] in the use
of the generic TMO as opposed to a blend of results from multiple operators, but
also in that we use TMQI-II as the quality measure in order to be able to compare
different optimization approaches using a common platform. The effectiveness
of the proposed approach is validated using an HDR image benchmark set. The
remainder of the paper is organized as follows. In Section 2 we briefly discuss
related work. Section 3 describes our algorithm. An experimental comparison
of our algorithm with that by Ma et al. [9] is presented in Section 4. Section 5
concludes with a brief summary and proposed future work.

2 Related Work

With the increasingly widespread use of HDR images, tone mapping has at-
tracted much attention from researchers. During the past two decades, many
TMOs have been developed. Most of the current operators are derived from the

179

human visual system and try to preserve perceptual factors, such as brightness,
contrast, and visibility during tone mapping. Operators can coarsely be classified
into global and local operators. The compression curve of global operators is the
same over the entire image, while local operators are adaptive to each pixel. Lo-
cal adaptation can better preserve image details, but it is also computationally
more expensive and not guaranteed to give better results. A thorough review of
existing TMOs can be found in a book by Banterle et al. [2].

The appearance of tone mapped images depends on the choice of TMOs and
the setting of their parameters. Notable progress has been made towards the
objective quality assessment of tone mapped images. Yeganeh and Wang [14]
have proposed TMQI, which combines measures of structural fidelity and sta-
tistical naturalness in a single numerical score. Ma et al. [9] have proposed an
improved variant of that measure. Nafchi et al. [12] have presented a feature
similarity index based on local phase information of images. Gu et al. [7] have
proposed a no-reference quality measure that estimates the amount of local de-
tail in images. Gao et al. [5] have introduced an image quality measure that
measures visual saliency distortion caused in the process of tone mapping. Gao
et al. [6] have expanded on that work by developing a perceptual quality measure
to capture the reproduction of perceptual features including brightness, visual
saliency, and details during tone mapping. Of the proposed measures, TMQI
and its immediate successor, TMQI-II, are the most prominent. A systematic
comparison of existing image quality measures for tone mapped images remains
to be performed.

Progress in the objective quality assessment of tone mapped images has
opened up a new approach to tone mapping: using any of the proposed qual-
ity measures as the objective, tone mapping can be solved as an optimization
problem. Notably, Ma et al. [9] have proposed an optimization algorithm to it-
eratively improve TMQI-II scores of tone mapped images. Structural fidelity is
improved using a gradient ascent method and statistical naturalness is enhanced
with a point-wise intensity transformation. The algorithm operates in a high-
dimensional solution space. In contrast, Chisholm et al. [3] and Gao et al. [5,
6] employ EAs to optimize the parameters of TMOs, allowing optimization to
proceed in much lower dimensional spaces. As they have used different quality
measures, no immediate comparison of the two approaches to the optimization
of tone mapped images has been performed.

3 Algorithm

The solution space available for our algorithm to search is that defined by the
generic tone mapping operator. The optimization algorithm we adopt is an evo-
lution strategy. Both are described in this section.

3.1 Tone Mapping

The generic tone mapping operator by Mantiuk and Seidel [10] aims to provide
the ability to emulate a wide range of tone mapping operators using computa-

180

0

0

1

b

dh

dl

log luminance

in
te

n
si

ty c

1

Fig. 1. Tone curve used in the generic TMO and its parameters (adapted from [10]).
Parameter b allows for brightness adjustment, dl and dh determine the lower and higher
midtone ranges, and c governs contrast.

tionally inexpensive image processing operations. We choose it for its low com-
putational cost as well as due to its capacity to generate a wide range of tone
mapped images using a relatively small set of parameters that can be used for
optimization. The operator maps intensity values as

CLDR = fMT(fTC(LHDR)) ·
(
CHDR

LHDR

)s

, (1)

where CHDR and CLDR are the colour channels of the HDR image and the tone
mapped image, respectively, LHDR is the luminance of the HDR image, fTC

denotes the tone curve, fMT represents the modulation transfer function, and
s is a parameter used for saturation adjustment. The tone curve is defined as
a sigmoidal function, with parameters b, dl, dh, and c provided for tuning the
curve shape as illustrated in Fig. 1. The modulation transfer function allows
specifying several parameters that determine a 1D function of spatial frequency
and allows the tuning of blurring and sharpening operations applied to an image.
The function involves band-pass filtering implemented with difference of Gaus-
sian operators, with parameters m1, m2, and m3 for the adjustment of different
frequency components; see [10] for details.

Since TMQI-II scores are computed on the basis of luminance values, without
taking colour information into account, we choose not to modify the value of
the saturation adjustment parameter s. Thus, a total of seven parameters are
available for tuning.

3.2 Evolutionary Optimization

For the optimization of TMQI-II scores in the seven-dimensional parameter space
thus defined, we use the (1 + λ)-ES1 employed by Chisholm et al. [3] for the

1 See Hansen et al. [8] for an overview of evolution strategy related terminology.

181

Table 1. Parameters of the generic TMO.

Parameter Range Description
b [−2.0, 2.0] brightness factor
dl [0.0, 2.5] lower midtone range factor
dh [0.0, 2.5] higher midtone range factor
c [0.2, 1.5] contrast factor
m1 [−2.0, 2.0] high frequency factor
m2 [−2.0, 2.0] medium frequency factor
m3 [−2.0, 2.0] low frequency factor

interactive evolutionary optimization of tone mapped images. The use of the
evolutionary approach to optimization is motivated by the lack of availability of
analytical gradients and the potential for ruggedness resulting from the choice
of quality criterion.

There are no restrictions regarding the setting of parameters of the generic
TMO. However, we find that allowing parameters to grow without bounds may
result in very marginal changes to TMQI-II scores and thus in ill-conditioning
that negatively impacts the ability of the simple evolution strategy to optimize
image quality. We thus impose boundary constraints that prevent the parame-
ters from moving past their useful ranges. In order to be able to define image-
independent ranges, we calibrate the logarithmic luminance values of the pixels
in an HDR image by subtracting the mean logarithmic luminance. Ranges and
short descriptions of the parameters are listed in Table 1.

Candidate solutions are seven-dimensional real vectors comprised of the pa-
rameters of the generic TMO. In each iteration of the algorithm, λ > 1 offspring
are generated from the parental candidate solution x ∈ R7 as

yi = x + σzi i = 1, . . . , λ (2)

where σ ∈ R denotes the step size parameter and the zi ∈ R7 are independent,
standard normally distributed mutation vectors. Out-of-range values of variables
are clamped to the boundaries. In light of potential issues with decreasing step
size as a result of constraint handling such as discussed by Arnold [1], we have
also experimented with an exterior penalty approach, but not observed a sig-
nificant difference in performance. In each iteration, the candidate solution that
leads to the highest TMQI-II value among the union of the parent and the set
of all offspring is selected and adopted as the parent for the next iteration. The
offspring number λ is set to 10 throughout, and the step size parameter is initial-
ized to 0.5 at the start of a run. That parameter is decreased by multiplication
with 0.8 in each iteration where the parental candidate solution is superior to all
of its offspring; it is unchanged in those iterations where an offspring candidate
solution is successful. We terminate a run when the change in the best TMQI-II
value has been less than 10−4 for six consecutive iterations and return the best
candidate solution found as the result.

182

TMO by Durand and Dorsey Generic TMO (SSIM: 0.9419)

TMO by Mantiuk et al. Generic TMO (SSIM: 0.9918)

Fig. 2. Comparison between images tone mapped using the TMOs by Durand and
Dorsey (top left) and Mantiuk et al. (bottom left) using default parameter settings,
and corresponding images generated using the generic TMO (right) with parameters
chosen to maximize SSIM scores.

4 Experimental Results

To evaluate the performance of the evolutionary approach, we conduct a com-
parison with the algorithm by Ma et al. [9] for the optimization of TMQI-II
scores. We carry out the comparison on a set of sixteen HDR images. This set is
identical with that used by Ma et al. in the evaluation of their approach, with
the exception of one missing image to which we do not have access.

For each HDR image, we employ three starting points in the search for op-
timal tone mapped images. Ma et al. use starting points generated by various
TMOs with default parameter settings, including the the logarithmic operator,
the operator by Durand and Dorsey [4], and that by Mantiuk et al. [11]. In order
to ensure comparable starting points for both algorithms, we determine param-
eter settings for the generic TMO such that the resulting tone mapped images
closely match those generated by the various TMOs. Figure 2 shows a typical
example of the generic TMO’s ability to emulate other TMOs and find matches
that are visually nearly indistinguishable.

We use the implementation by Ma et al. [9] for TMQI-II as well as of their
optimization algorithm. That implementation is in Matlab and, according to
the authors, not optimized for speed. However, as the same implementation of
TMQI-II is used for image quality assessment in both of the optimization algo-

183

10 1 10 2 10 3

running time of the algorithm of Ma et al. (s)

10 1

10 2

ru
n

n
in

g
 t

im
e

 o
f

th
e

 E
A

 (
s
)

Logarithmic

Durand and Dorsey

Mantiuk et al.

Fig. 3. Running times of the EA plotted against running times required by the algo-
rithm of Ma et al. [9] to reach equivalent TMQI-II scores. Data are shown for starting
points matching those generated by the logarithmic operator, the operator by Durand
and Dorsey, and that of Mantiuk et al. The black line indicates the identity.

rithms, the comparison is meaningful for establishing relative performance. The
EA as well as the generic TMO are implemented in Matlab and not optimized for
speed either. Running times reported are for a PC with Intel Quad-Core 2.66GHz
CPU with 4GB of RAM. As the optimization approach by Ma et al. does not
exploit parallelism, we have chosen not to make use of more than one CPU core
in the implementation of the EA. Making use of parallel computational resources
by evaluating offspring simultaneously on multiple cores is straightforward. On
our hardware, the computation of a single TMQI-II score for images of the size
considered here (approximately 360× 500 pixels) takes about 0.3 seconds.

For each of the sixteen HDR images and three starting points, we have con-
ducted eleven independent runs of the EA for the optimization of TMQI-II, for
a total of 528 runs. All of the TMQI-II scores are calculated from tone mapped
images stored in PNG format (i.e., with lossless compression, but with only eight
bits per colour channel). Table 2 shows TMQI-II scores of the starting points as
well as median and standard deviation of the scores obtained after evolutionary
optimization. Also shown are median and standard deviation of the computa-
tional times. We have then run the algorithm of Ma et al. [9] and recorded the
time it requires to reach the TMQI-II scores obtained by the EA. Median and
standard deviation of those times are shown in the last column of the table.
Running time data from all 528 runs are represented graphically in Figure 3.

184

Table 2. Comparison between evolutionary TMQI-II optimization and optimization
using the algorithm of Ma et al. [9]. The table lists TMQI-II scores of starting points,
scores after evolutionary optimization, the computational time (in seconds) required
to generate those results, and the computational time (in seconds) for the algorithm of
Ma et al. to reach equivalent TMQI-II scores. That computation time is omitted (—)
when an equivalent score could not be reached within 7200 seconds. Shown are median
values of eleven independent runs, with standard deviations given in parentheses.

HDR Image Starting Point
Initial Optimized Running Running

TMQI-II TMQI-II Time Time
Score Score (EA) (Ma et al.)

Foggy Night Logarithm 0.3807 0.9780 (0.0047) 58.5 (23.6) 756.0 (39.0)
340× 512 Durand/Dorsey 0.3844 0.9766 (0.0020) 71.0 (40.4) 1263.7 (304.9)

Mantiuk et al. 0.9091 0.9779 (0.0011) 74.6 (26.3) 357.6 (39.2)
Clock Building Logarithm 0.4409 0.9757 (0.0029) 80.6 (22.6) 1035.7 (288.3)

384× 512 Durand/Dorsey 0.4415 0.9752 (0.0040) 68.4 (24.2) 5748.9 (2126.1)
Mantiuk et al. 0.9692 0.9769 (0.0031) 38.0 (16.2) 83.9 (22.8)

Dani Cathedral Logarithm 0.3999 0.9704 (0.0099) 76.3 (27.8) 2835.3 (1079.6)
384× 512 Durand/Dorsey 0.4186 0.9703 (0.0011) 62.9 (17.3) — (—)

Mantiuk et al. 0.4616 0.9700 (0.0100) 79.0 (24.4) 293.0 (46.9)
Kitchen Logarithm 0.3651 0.9714 (0.0002) 52.1 (12.0) 1756.7 (51.6)

342× 512 Durand/Dorsey 0.3804 0.9715 (0.0160) 73.3 (22.8) 6760.6 (2120.2)
Mantiuk et al. 0.8896 0.9712 (0.0033) 56.9 (20.9) 147.4 (19.1)

Memorial Church Logarithm 0.4442 0.9795 (0.0041) 63.0 (20.5) 1716.9 (65.7)
340× 512 Durand/Dorsey 0.4520 0.9804 (0.0046) 63.7 (24.6) — (—)

Mantiuk et al. 0.9086 0.9798 (0.0015) 43.5 (16.3) 116.0 (11.3)
Women Logarithm 0.4151 0.9806 (0.0074) 64.0 (26.1) 1015.0 (336.7)

342× 512 Durand/Dorsey 0.4135 0.9809 (0.0077) 96.2 (27.1) 5283.8 (1771.6)
Mantiuk et al. 0.5189 0.9808 (0.0120) 67.4 (41.6) 299.6 (61.0)

Desk 1 Logarithm 0.3881 0.9801 (0.0002) 83.9 (8.4) 857.7 (7.9)
512× 384 Durand/Dorsey 0.4256 0.9800 (0.0028) 75.1 (18.0) 2079.3 (431.1)

Mantiuk et al. 0.7600 0.9800 (0.0067) 56.2 (25.0) 192.9 (31.4)
Desk 2 Logarithm 0.3765 0.9654 (0.0045) 54.0 (17.8) 800.8 (29.9)

512× 384 Durand/Dorsey 0.4031 0.9655 (0.0083) 76.4 (47.9) 1088.4 (236.4)
Mantiuk et al. 0.8178 0.9652 (0.0069) 51.5 (27.0) 102.6 (14.1)

Display1000 Logarithm 0.4004 0.9649 (0.0038) 59.6 (31.0) 2810.3 (1033.1)
512× 384 Durand/Dorsey 0.4220 0.9648 (0.0070) 99.3 (36.1) 6983.4 (—)

Mantiuk et al. 0.7236 0.9649 (0.0059) 63.2 (25.3) 985.1 (351.5)
Belgium House Logarithm 0.4096 0.9778 (0.0005) 73.0 (14.3) 707.7 (19.4)

512× 384 Durand/Dorsey 0.4186 0.9777 (0.0030) 91.8 (20.2) 5986.0 (1400.7)
Mantiuk et al. 0.8552 0.9774 (0.0052) 47.8 (18.8) 141.3 (25.9)

Woods Logarithm 0.0708 0.9844 (0.0056) 75.3 (24.3) — (—)
512× 340 Durand/Dorsey 0.3541 0.9845 (0.0069) 77.3 (30.3) — (—)

Mantiuk et al. 0.4957 0.9843 (0.0024) 54.7 (14.7) 1078.2 (356.3)
Lawn Logarithm 0.4434 0.9864 (0.0069) 68.1 (17.8) 1318.3 (317.5)

512× 381 Durand/Dorsey 0.4585 0.9861 (0.0043) 89.2 (35.9) 4276.2 (1558.4)
Mantiuk et al. 0.9689 0.9861 (0.0019) 39.3 (19.1) 278.4 (69.2)

Bristol Bridge Logarithm 0.3968 0.9843 (0.0128) 52.0 (27.0) 746.5 (191.7)
512× 384 Durand/Dorsey 0.3891 0.9845 (0.0001) 83.8 (23.0) — (—)

Mantiuk et al. 0.9520 0.9841 (0.0071) 54.3 (25.7) 887.5 (364.3)
Office Logarithm 0.4477 0.9729 (0.0012) 54.3 (18.7) 368.2 (4.2)

512× 340 Durand/Dorsey 0.4245 0.9738 (0.0020) 71.2 (24.5) — (—)
Mantiuk et al. 0.9503 0.9742 (0.0048) 44.1 (16.7) 158.2 (36.1)

Vine Sunset Logarithm 0.4246 0.9636 (0.0051) 50.6 (21.3) 613.3 (123.6)
512× 345 Durand/Dorsey 0.4440 0.9639 (0.0007) 89.7 (27.8) — (—)

Mantiuk et al. 0.4617 0.9641 (0.0003) 73.9 (12.6) 1498.9 (56.8)
Wreathbu Logarithm 0.4910 0.9652 (0.0010) 58.8 (18.0) 1204.1 (354.4)
512× 384 Durand/Dorsey 0.4365 0.9655 (0.0010) 88.6 (34.0) 3814.1 (716.4)

Mantiuk et al. 0.7982 0.9660 (0.0010) 49.0 (21.0) 406.1 (82.1)

185

It can be seen from the table that compared with the starting points, the EA
can significantly improve TMQI-II scores. Final scores are within a narrow range,
both across test images and across starting points. Standard deviations are such
that the empirical coefficient of variation of TMQI-II scores rarely exceeds 0.01.
Running times for the EA range from well under a minute to no more than
three minutes in the longest of the 528 runs. In comparison, the algorithm of Ma
et al. [9] requires significantly more time to generate tone mapped images with
equivalent TMQI-II scores, and in a number of instances remains unsuccessful
even after two hours (where runs are terminated)

It is worth noting that Ma et al. [9] report TMQI-II scores in excess of most
of the values attained by the EA and reported in Table 2. The EA operates
in a low-dimensional search space that may implicitly limit the quality of the
tone mapped images that can be achieved by parameter optimization. However,
TMQI-II scores in excess of the values achieved by the EA are of little use as
they require that intensity values be represented with more than eight bits per
pixel and colour channel. As the tone mapped images will almost always be
stored using image file formats with limited intensity resolution, any further
improvements in TMQI-II scores are likely to disappear due to quantization
noise.

Clearly, the running times of both the EA and the algorithm by Ma et al.
are impacted by the size of the images being processed. However, the approach
relying on the generic TMO and the EA for optimization admits a simple tech-
nique for reducing running time: rather than performing the optimization on
potentially sizable images, shrink the images before applying the EA to obtain
parameter settings for the generic TMO. Then use the parameter settings ob-
tained on the small images to tone-map the full-sized images. Two examples of
results from this approach can be found in Figure 4. The images on the left have
been obtained through optimization using the full-sized images of size 1024×768.
The optimization took 344 seconds for the “Bristol Bridge” image and 200 sec-
onds for the “Belgium House” image. The images on the right are the result of
computing parameter settings on images of size 256 × 192 and applying those
settings to the full-sized images. The TMQI-II scores somewhat decrease in both
cases, but the results are visually nearly indistinguishable, and optimization in
the latter case is accomplished in 11 and 9 seconds, respectively. A straight-
forward technique for reducing running time while not having to contend with
reduced TMQI-II scores is to interleave increasing the size of the images being
processed with the running of the EA.

Finally, in addition to the reduced running time, we have found our method
to often be preferable to the algorithm by Ma et al. [9] in that it generates
images with more consistent appearance across starting points. Figure 5 shows
examples where the appearance of the images generated using the algorithm by
Ma et al. differs from starting point to starting point and suffers from artifacts,
such as over- and under-saturation, while the results generated using the EA
look comparatively uniform. Further examples can be found in the complete set
of experimental data which is available at www.cs.dal.ca/~xgao/EAdata.rar.

186

TMQI-II: 0.9794 TMQI-II: 0.9759

TMQI-II: 0.9716 TMQI-II: 0.9660

Fig. 4. Comparison between images with parameters of the generic TMO obtained
through evolutionary optimization on smaller versions of the images. The images on
the left have been obtained from optimization on the full-sized images of size 1024×768.
The images on the right are the result of shrinking the images to size 256×192, solving
the optimization problem using the EA, and then using the TMO parameter settings
obtained on the full-sized images.

Figure 6 shows an example for a deliberately poorly chosen starting point for
the search. The starting point is encoded with eight bits per colour channel and
pixel, and the dark regions in it are solidly black. The algorithm by Ma et al. is
not able to restore the image content in those regions and thus converges to a
suboptimal solution while the EA generates a satisfactory solution.

5 Conclusion

To conclude, we have used an EA to solve the tone mapping problem based
on maximization of TMQI-II scores. Compared to TMQI-II optimization by
interleaving gradient based maximization of structural fidelity with optimization
of statistical naturalness, we observe significantly reduced running times. The
reduced amount of computational effort is due to performing the optimization in
a much lower dimensional parameter space. By distributing the computation of
the TMQI-II values of the offspring across multiple cores or obtaining parameter
settings for the generic tone mapping operator by (initially) optimizing using

187

S
ta

rt
in

g
P

o
in

t
E

A
M

a
et

a
l.

TMQI-II: 0.3765

TMQI-II: 0.9654

TMQI-II: 0.9654

TMQI-II: 0.4031

TMQI-II: 0.9656

TMQI-II: 0.9656

TMQI-II: 0.8178

TMQI-II: 0.9658

TMQI-II: 0.9658

Fig. 5. Comparison of results for HDR image “Desk 2”. First row: starting points for
the search; second row: images optimized with the EA; third row: images optimized
with the algorithm of Ma et al. [9].

reduced-size images, obtaining optimized tone mapped images with the simple
EA requires but a few seconds.

In future work, we will consider the suitability of other image quality as-
sessment techniques for tone mapped images as well as other image process-
ing tasks that are commonly performed using gradient based techniques in
high-dimensional spaces, but that may conceivably be solved using much lower-
dimensional parametric models. Also, we would like to further analyze the in-
fluence of strategy selections, and more standard strategies such as CSA-ES will
be explored.

References

1. D. V. Arnold. Resampling versus repair in evolution strategies applied to a con-
strained linear problem. Evolutionary Computation, 21(3):389–411, 2013.

188

Starting Point

TMQI-II: 0.4429

EA

TMQI-II: 0.9847
Time: 49.63 seconds

Ma et al.

TMQI-II: 0.93119
Time: 43203.33 seconds

Fig. 6. Comparison of results for HDR image “Woods” and a poorly chosen starting
point. First image: starting point for the search; second image: image optimized with
the EA; third image: image optimized with the algorithm of Ma et al. [9].

2. F. Banterle, A. Artusi, K. Debattista, and A. Chalmers. Advanced High Dynamic
Range Imaging: Theory and Practice. AK Peters (CRC Press), 2011.

3. S. B. Chisholm, D. V. Arnold, and S. Brooks. Tone mapping by interactive evolu-
tion. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation, 515–522, 2009.

4. F. Durand, and J. Dorsey. Fast bilateral filtering for the display of high-dynamic-
range images. ACM Transaction on Graphics, 21(3):257-266, 2002.

5. X. Gao, S. Brooks, and D. V. Arnold. Automated parameter tuning for tone map-
ping using visual saliency. Computer & Graphics, 52:171–180, 2015.

6. X. Gao, S. Brooks, and D. V. Arnold. Automatic blended tone mapping through
evolutionary optimization. In Proceedings of the IEEE World Congress on Compu-
tational Intelligence, 3855–3862, 2016.

7. K. Gu, G. Zhai, M. Liu, X. Yang, and W. Zhang. Details preservation inspired blind
quality metric of tone mapping methods. In Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS), 518–521, 2014.

8. N. Hansen, D. V. Arnold, and A. Auger. Evolution Strategies. In J. Kacprzyk
and W. Pedrycz (eds.), Handbook of Computational Intelligence, 871–898, Springer,
2015.

9. K. Ma, H. Yeganeh, K. Zeng, and Z. Wang. High dynamic range image compression
by optimizing tone mapped image quality index. IEEE Transactions on Image
Processing, 24(10):3086–3097, 2015.

10. R. Mantiuk, and H.-P. Seidel. Modeling a generic tone-mapping operator. Com-
puter Graphics Forum, 27(2):699–708, 2008.

11. R. Mantiuk, S. Daly, and L. Kerofsky. Display adaptive tone mapping. ACM
Transactions on Graphics, 27(3):68:1–68:10, 2008.

12. H. Z. Nafchi, A. Shahkolael, R. F. Moghaddam and C. Mohamed. FSITM: A
Feature Similarity Index For Tone-Mapped Images. IEEE Signal Processing Letters,
22(8):1026–1029, 2015.

13. Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assess-
ment: from error visibility to structural similarity. IEEE Transactions on Image
Processing, 13(4):600–612, 2004.

14. H. Yeganeh and Z. Wang. Objective quality assessment of tone-mapped images.
IEEE Transactions on Image Processing, 22(2):657–667, 2013.

189

LIDeOGraM : An interactive evolutionary
modelling tool.

Thomas Chabin, Marc Barnabé, Nadia Boukhelifa, Fernanda Fonseca, Alberto
Tonda, Hélène Velly, Benjamin Lemaitre, Nathalie Perrot, Evelyne Lutton

UMR 782 GMPA, Agroparistech, INRA, Université Paris-Saclay
1 Av. Lucien Brétignères, 78850 Thiverval-Grignon, FRANCE

Abstract. Building complex models from available data is a challenge
in many domains, and in particular in food science. Numerical data are
often not enough structured, or simply not enough to elucidate complex
structures: human choices have thus a major impact at various levels
(data and model structuration, choice of representative scales, parame-
ter ranges, uncertainty assessment and management, expert knowledge).
LIDeOGraM is an interactive modelling framework adapted to cases
where numerical data and expert knowledge have to be combined for
building an efficient model. Exploiting both stand-alone evolutionary
search and visual interaction with the user, the proposed methodology
aims at obtaining an accurate global model for the system, balancing
expert knowledge with information automatically extracted from avail-
able data. The presented framework is tested on a real-world case study
from food science: the production and stabilisation of lactic acid bac-
teria, which has several important practical applications, ranging from
assessing the efficacy of new industrial methods, to proposing alternative
sustainable systems of food production.

Keywords: Complex systems, Lactic acid bacteria, Interactive modelling, Sym-
bolic regression, Living food system

1 Introduction

Agri-food processes can be regarded as complex systems, as they are charac-
terised by uncertain and intricate interaction effects between physical, chemical,
and biological components [10,11].

In this context, modelling techniques drawn from complexity science prove
especially advantageous for dealing with the co-existing multiscale inter-depen-
dencies, uncertainty, partial knowledge and sparse experimental data. Models are
a mean to gather available knowledge about a process. Additionally model explo-
ration allow a better understanding via simulated experiments. Expert knowl-
edge yields additional, precious information [14,1]. Indeed, building a model in
these conditions is a complex optimisation task: learning from data sets, dealing

190

with sparsity of data, possible overfitting issues, and complexity of the mod-
els. At the same time expert knowledge can drastically modify the shape of the
search space, the relative impact of some data, or even the optimisation aims.

In this paper, we propose an interactive modelling approach based on a two-
level evolutionary optimisation scheme, local and global. Local corresponds to lo-
cal possible dependencies between variables, while global corresponds to a model
that represents the system as a whole. Users can interact with the constructed
models via a graphical user interface, run various optimisation steps, revisit op-
timisation results, restart the process, add constraints, and take decisions.

The system and dataset considered in this study concern the full process of
bacteria production and stabilisation, with 49 variables measured at 4 differ-
ent steps (fermentation, concentration, freeze-drying and storage), at 4 different
fermentation conditions (22◦C and 30◦C, evaluated at the beginning of the sta-
tionary growth phase and 6 hours later). The considered variables range from
transcriptomic data to fatty acid membrane composition, from acidification ac-
tivity to viability [15].

The paper is organised as follows: Section 2 provides background on complex
systems approaches in food science, on symbolic regression and on the modelled
process. LIDeoGraM is detailled in section 3. Section 4 describes experimental
results from a preliminary user evaluation, comments, conclusions and future
developments are given in sections 5 and 6.

2 Background

2.1 Food complex systems

A complex system1 is a collection of multiple processes, entities, or nested sub-
systems, where global properties emerge as the result of an imbrication of phe-
nomena occurring at different scales. For these systems, there is a need for ap-
propriate descriptions for the underlying mechanisms with high expressiveness
and little uncertainty. Building complex system models is essential, but highly
difficult; it is usually necessary to have a robust framework, with strong iter-
ative interaction combining computational intensive methods, formal reasoning
and experts from different fields. As shown in the rest of the paper, optimisation
plays an important part in this context[8].

The specifics of the food domain (uncertainty and variability, heterogeneity
of data, coexistence of qualitative and quantitative information, conjunction of
different perspectives) raise the focus on another crucial issue, that can be called
the human factor. Human expertise and decision making are of major importance
for a better understanding of food systems, and should thus be integrated into
computing approaches[7].

1 Complex Systems Society, see http://cssociety.org or http://www.mathinfo.

inra.fr/en/community/complexsystems/presentation for an introduction to the
topic.

191

2.2 Symbolic regression

Symbolic regression, based on a genetic programming approach, is a technique
able to extract free-form equations that expose correlations in a given experi-
mental dataset. The original idea is presented in [6], and the technique has been
applied to a vast array of real-world problems [2,12,5]. Candidate solutions are
encoded as trees, with terminal nodes encoding constants and variables of the
problem, whereas intermediate nodes correspond to mathematical functions such
as {+,−, ∗, /, ...}. In most implementations, the fitness function is proportional
to the absolute or squared error between experimental data, with parsimony
corrections to reward simpler solutions. Eureqa Formulize2 is one of the most
notable symbolic regression tools. Eureqa deals with the issue of overfitting by
returning a Pareto front of candidate solutions, each one presenting a compro-
mise between fitting and complexity [13], leaving the final choice to the user.

2.3 Production and stabilisation process of lactic acid bacteria

Concentrates of Lactic Acid Bacteria (LAB) are widely used in food applica-
tions, ranging from yoghurt and cheese to fermented meat, from vegetables to
fruit beverages. In industry, these bacterial starters are produced in large quanti-
ties by fermentation and must therefore undergo a preservation procedure, called
stabilisation. Both production and stabilisation processes aim at protecting the
quality of bacterial starters, characterised by their cell viability and their acid-
ification activity. The full process involves numerous control parameters across
its different steps (Fermentation, Concentration, Freeze-Drying and Storage) [3].
Moreover, the process is a multi-scale system. Indeed, the quality of the starters
can be explained by the cellular composition in fatty acid which is in turn ex-
plained by the genomic expression in each cell. This latter only depends on the
parameters of fermentation and concentration.

3 Proposed approach

Experts in the process of production and stabilisation of lactic acid bacteria
have numerous questions about how a given bacteria strain draws its resistance
to the process. Different mathematical tools, including mathematical formulas
are generally used to help them to answer these questions with more or less
success. Finding reliable formulas linking the different variables of such a system
is indeed challenging [9]. In biological data, a high level of variability is often
encountered for repetitions of a given experimental condition. Moreover, exper-
iments are usually time-consuming and expensive – only a few experiments are
thus performed – which makes the task of characterising the existing variability
difficult.

LIDeOGraM (Life-based Interactive Development Of Graphical Models)
tries answering these challenges with an original approach of semi-automatic
modelling.

2 http://www.nutonian.com/

192

The goal of LIDeOGraM is to help experts build a global model of their
complex process by characterising each non-input variable by a mathematical
formula that depends on the other variables in the system. Finding the right
equation in a context with high variability in the dataset is an ambitious task.
Indeed, it is easy to come up with over-fitted equations that perfectly model a
dataset including its noise. However, over-fitted equations do not generalise well.

In order to rule out over-fitted equations, a solution is to involve experts in
the course of the modelling process. The expectation is that they will be able,
thanks to their knowledge of the process, to identify over-fitted or under-fitted
equations.

Symbolic regression using a Pareto-like approach such as the one imple-
mented in Eureqa, constitutes a compelling approach to take advantage of the
expert’s insight. Indeed, by providing a set of formulas according to different
compromises between fitness and complexity, the approach allows the experts to
filter out incoherent equations or even designate the most suitable one.

Therefore, as a first optimisation step, LIDeOGraM uses Eureqa runs on each
variable, in order to get a set of candidate equations. For automatic learning
purposes, the dataset is separated into training and test sets. Moreover, some
constraints in the search are defined beforehand by the user, using the interface
presented in Figure 2. This tool allows attributing each variable to a given class,
and defining authorized links between them. This means that only the variables
from a parent class can be used in the equations for determining the variables
of the child class. This also means that dependencies will be searched only with
variables of other classes and that no intra-class dependencies will be considered.
This structure of classes can be used to distinguish between scales and steps in
the studied process. Variables measured at a macro-scale, like the viability of
the population of bacteria could, for example, be only explained with variables
from a micro-scale, such as the composition in fatty acids. Similarly variables
measured in a given step could only be explained by variables from previous
steps.

A qualitative view of these results is presented to the user in the form of a
graphical network (See Figure 1). The goal of this display is to help the user
focus on the critical variables, i.e. where expert feedback is most needed. In
this prospect, variables are represented as nodes in the graph. The colour of the
nodes depends on its attributed class. A link between two variables shows that
the parent node is used at least once in the set of equations attributed to the
child node. The colour of a link represents the mean value of a given criteria on
the equations involving the parent node in the child node. The criteria can be
chosen by the user as the fitness of the equation or its complexity.

Additionally, since the displayed graphical network can have a lot of links,
making the network hard to read, a slider allows the filtering of links based on
their level of importance. The importance of a link is defined by the number
of equations in the child node that use the parent node, divided by the total
number of equations in the child node.

193

Fig. 1. Screenshot of LIDeOGraM. The left side shows a graphical model representing
the mean fitness of the local models obtained by symbolic regression. The top-right
part is the list of equations proposed by Eureqa for the selected node, and the bottom-
right part shows a plot of the measured versus predicted data associated to the selected
equation.

By clicking on a node, the equations found by Eureqa are displayed to the user
on the top-right side (See Figure 1). Similarly, a click on an equation provides a
plot of the experimental measures versus what is predicted by the corresponding
equation. The user can then interact with the system by deleting an equation,
deleting a link between a parent node and a child node (i.e. all equations using
the parent node in the child node are deleted), or deleting a variable (i.e. all
equations using the deleted variable are deleted). After this, few or no equations
may remain for some nodes, the user can choose to restart a symbolic regression
on any node.

The user can iterate the process for as long as desired: add or suppress
constraints, restart symbolic regression on any node. Once the user is satisfied
with local models, a global model can be built.

For the global model, one equation only is kept for each node. However,
choosing the most reliable ones is a challenging task. Contrarily to the local
models, where the experimental measures are used to predict a variable, in a
global model the value predicted by an equation depends on the value predicted
for the variables used in that equation. For this reason, each choice of equation
for a given variable will influence the quality of the prediction of other equations
that use the variable. To tackle this challenge, evolutionary optimisation is used
to build a global model.

The evolutionary algorithm has the following features. Its fitness function,
to be minimised for the global model, is the mean of the fitness calculated on
each non-input nodes. The fitness function of a single node computes a value
based on the Pearson correlation coefficient of the measured versus predicted

194

data. Such a fitness function does not take into account the complexity of the
equations. The reason behind this choice is that over-fitted equations will be
naturally discarded during the learning of the global model, as they will likely
create noise for their children variables.

After the evolutionary optimisation process, remaining incoherence in the
choice of equations for the global model can still be edited by the user. For this
purpose, a qualitative view of the global model is displayed as a new visualisation
(See Figure 4). Contrarily to the graphical network displayed for the local models,
here only the variables used in the chosen equation of a child node are considered
as parents of the node. A link from a parent node to a child node in this graph
represents the fact that the chosen equation for the child node contain the parent
variable, its colour depends on the fitness of the child node in the global model.
Green represents a good fitting, and red a bad one. The goal of this view is to
help the user focus on the nodes with bad predictions. A user change on the
selected equation of a node impacts the predicted value of its children nodes.
The graphical model is therefore automatically updated, and the update shows
the consequence of the change in term of fitness on the other nodes of the graph.

After this step, the user has the possibility to go back to local view and
make changes before restarting a new global optimisation. A global model is
thus iteratively built via user interaction, local and global optimisation.

4 Experimental results

4.1 The dataset

The case study is based on the work of H. Velly et al. [15][16] about the re-
sistance of Lactococcus lactis subsp. lactis TOMSC161 to freeze-drying. This
bacteria is used in the production of Tomme de Savoie, a french cheese, for
its interesting texturing and acidification properties, but exhibits a high sensi-
tivity to freeze-drying. The resistance of the bacteria is studied for 4 different
conditions of fermentation: 22◦C and 30◦C, evaluated at the beginning of the
stationary growth phase and 6 hours later.

The dataset featured 12 data points, with 3 biological repetitions of each
experimental condition. The dataset features 2 input variables, the temperature
of fermentation and the time at which the fermentation is stopped and 49 vari-
ables measured at 4 different steps (fermentation, concentration, freeze-drying
and storage) for 3 biological scales (Genomic, Cellular and Population).

4.2 Search with Eureqa

The 51 variables described above are first separated into 9 classes of variables:
Inputs, Genomic for overexpressed and underexpressed genes, Cellular,
Anisotropy, Population at the end of the Concentration step, Population
at the end of the Congelation, Population at the end of the Drying step and
the Population after 3 months of Storage. Each class of variables can only be

195

Fig. 2. Screenshot of the interface allowing the users to choose the authorised links
between the defined classes. A link between two classes means that all variables asso-
ciated to the parent class can be used in the equations for all variables associated to
the child class. The displayed graph represents the selected contraints chosed for this
experiment.

explained by user specified classes. The possible links between classes are shown
in Figure 2.

The dataset is also separated into a training dataset (66%) made of two out
of the three repetitions for each experimental condition, and into a test dataset
(33%) with the remaining repetition.

The authorised mathematical operators for the Symbolic regression using
Eureqa are: Constants, Input variables, Addition, Subtraction, Multiplication,
Division, Exponential, and the Natural logarithm. For each non-input variables,
3 minutes of computation were allowed on an Intel(R) Core(TM) i7-4790 CPU.
A total of 232 equations were obtained for the variables.

4.3 Optimisation of the Global Model

A (µ +λ)-evolutionary algorithm was taken from the Python DEAP package[4]
to optimise the global model. The genome of a candidate global model is a string
of integers, of size equal to the number of variables in the process. Each gene
is associated to a variable, and can assume a value between 1 and the number
of equations available to describe that variable, thus representing an index for a
candidate equation in that node.

The parameters of the evolutionary optimization algorithm used for the
global model are reported in Table 1.

The mutation function takes complexity information into account. It has been
experimentally shown to be more efficient than a mutation which randomly picks
an equation in the list of candidate equations.

196

Table 1. Parameters of the evolutionary algorithm used during the optimization pro-
cess for the global model.

µ 100

λ 80

Number of generations 100

Probability of crossover 0.8

Probability of mutation 0.2

Selection Tournament of size 2

Crossover function Uniform

Mutation function With a probability 0.05 for each gene, change the se-
lected equation to the previous or the next one by order
of complexity.

The graphical model associated to one of the optimisation runs is shown in
Figure 4.

The creation of a global model does not involve only an automatic optimi-
sation, but also requires experts knowledge, obtained via interaction with the
software. An informal evaluation of the software was performed by a researcher
with 20years of expertise in the bacteria freeze-drying process. For this purpose
the expert gave us feedback on the proposed local models, presented in Figure 1,
during a 20 minutes exploration. The expert chose to remove 5 equations. Some
equations were removed for using both variables from the Cellular scale with the
Anisotropy variable. The reason is that the Anisotropy is an emergent property
of the fatty acid composition at the Cellular scale and it is not straightforward
to make sense of such an equation. Similarly, an equation using the viability at
both the centrifugation step and the drying step was removed. The reason is
that the viability at the centrifugation step is used to predict the viability at the
drying step, therefore, it is hard to understand the necessity of using both steps
since the obtained data values are dependent. The expert also chose to remove
2 nodes, after observing that those nodes were used repeatedly in the equations
of many nodes. Indeed, due to their insignificant measured quantities, they were
not expected to be important variables, rather, they were deemed useful for
refining some models. Therefore, they were considered as creators of overfitted
equations. The deletion of those two variables removed 14 more equations. With
such major deletions, some variables were left with only a few equations, there-
fore, the expert chose to restart a symbolic regression on 3 nodes, obtaining
12 new equations in total. To reveal the contribution of the expert, the global
model optimisation was performed 10 times using expertise, and 10 times with-
out. The fitness evolution of these runs are shown in Figure 3. To obtain an
accurate comparison of the models, the fitness computed for optimisation with-
out the expertise did not take into account the two removed nodes. The global
models obtained using expertise have a median fitness of 0.787 with a standard
deviation of 0.010 whereas the global models obtained without expertise have
a median fitness of 0.801 with a standard deviation of 0.013. The expert was

197

Fig. 3. Comparison of the evolution of the minimum fitness across generations for 10
runs, with and without the expert’s contribution.

asked to provide feedback for the last step of the modelling process in which one
of the global model obtained was submitted to his expertise. The results were
explored during 10 minutes, and the equations for three node were changed.
Two of the modified equations were indeed overfitted, and the last one was an
underfitted. For example, one of the equations selected by LIDeOGraM, at the
cellular scale, the variable C18:0 was defined as being equal to the duration of
fermentation, which seemed a rather drastic choice. The expert chose to select a
more reasonable equation presenting a linear dependency involving the duration
of fermentation. The obtained graphical model is presented in Figure 4. The
fitness of the final global model was slightly degraded, changing from a fitness
of 0.789 to a fitness of 0.801, but the produced model is able to better reflect
the underlying reality of the process.

5 Discussion

We proposed a time-saving modelling tool for the experts, allowing them to
design a better global model of their process by a semi-interactive approach.
Figure 3 shows that the resulting models are “better”, not only according to
the expert requirements, but also with respect to the numerical data (faster and
better convergence). Above all, this method offers tools for domain experts to de-
sign and test different hypothesis, using different datasets and class constraints.
The complexity of the modelled process and the scarcity of the dataset is taken
into account by allowing the expert to interact with the results all along the
optimisation process. The expert who tested the software mentioned it is easy
to question her hypothesis, to keep an open-mind and to find new mechanisms.

Nevertheless, the approach has some drawbacks. Since the predictions of
each node are propagated, only the inputs are indeed used in a global model to
determine every other variables. Knowing this, a natural question should be why

198

Fig. 4. Graphical model representing a global model. The Global fitness of the model
is indicated at the bottom-left. The fitness value of each node is indicated under them.

all variables are not directly linked to the inputs, and why intermediary variables
exist. A reason behind this is that the goal is not only to get the best prediction
out of every variable, but also to help the expert understand mathematically
the existing dependencies between variables and the multi-scale / multi-step
organisation of the process.

Besides this, we should mention that the current results remain not fully
satisfying for the genomic scale. The hypothesis made by the expert was that the
genomic scale is only explained by the conditions of fermentation (temperature
and time at which the fermentation is stopped). This hypothesis needs additional
verifications, as the relation with genomic scale might not be so straightforward.
Other variables, not measured during the experiments, may be involved. A more
refined work on the expressed genes and their classification is necessary. A future
study will explore in more details different hypothesis about the possible links
between classes of variables.

Another point is that some expert-defined variables used in the literature are
the sum of some measured variables. For example, the Saturated Fatty Acids
variable, is defined as the sum of 6 variables at the cellular scale. New tools
could be designed to incorporate this kind of knowledge and allow the user
to create ”hierarchic” variables. Such variable would allow taking into account
different levels of details in the modeling process and would allow to easily test
various hypotheses for the computation of variables at the genomic scale.

199

Finally, creating a global model from local hypothesis means the creation
of a global hypothesis. With some local hypothesis being thought of as equally
plausible for a node, a lot of equally plausible global hypotheses could be con-
structed. Moreover, since the proposed local models of different nodes are not
equivalent, a notion of confidence could be associated to each node of a global
hypothesis, and each node would be associated with a set of equally probable
local models.

6 Conclusions

In this paper, we proposed a new approach to semi-automatic modelling allow-
ing users to design complex models for multi-scale and multi-steps processes.
Using expert’s knowledge integrated during the optimisation process, the pro-
posed approach is able to tackle challenges such as scarcity in a dataset, high
dimensionality and high variability. According to experts guidelines, a set of lo-
cal models are proposed for each variable, using symbolic regression. The local
models form a Pareto front of candidate solutions to compromise between model
fitness and complexity. These local models are then used to automatically con-
struct a global model where each variable is defined by a given equation from
the local models. In a global model, the multi-scales multi-steps process is taken
into account by classifying the variables into different classes and by forwarding
the predicted value of a variable to equations that use this variable to predict
other ones. An expert is able to contribute to the automatic design of a global
model in many ways, by acting on the proposed local models and by correcting
the global model. The approach was applied to the production and stabilisation
process of lactic acid bacteria. The contribution of the expert was shown to be
useful to provide a more accurate global model. Future improvements will in-
volve new tools to create and manage hierarchic variables and associate a level of
confidence for each variable. These improvements will allow producing a full and
efficient study of the production and stabilisation process of lactic acid bacteria.

Aknowledgements

We would like to express our thanks to Jean-Daniel Fekete from Inria Saclay, who
provided great advice and insight on the graphical user interface of LIDeOGraM.

References

1. Allais, I., Perrot, N., Curt, C., Trystram, G.: Modelling the operator know-how to
control sensory quality in traditional processes. Journal of food engineering 83(2),
156–166 (2007)

2. Babovic, V., Keijzer, M.: An evolutionary approach to knowledge induction: Ge-
netic programming in hydraulic engineering. In: Proceedings of the World Water
& Environmental Resources Congress

200

3. Champagne, C., Gardner, N., Brochu, E., Beaulieu, Y.: freeze-drying of lactic acid
bacteria. a review. Canadian Institute of Food Science and Technology journal:
Journal de l’Institut canadien de science et technologie alimentaire (1991)

4. Fortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP:
Evolutionary algorithms made easy. Journal of Machine Learning Research 13,
2171–2175 (jul 2012)

5. Gaucel, S., Keijzer, M., Lutton, E., Tonda, A.: Learning dynamical systems using
standard symbolic regression. In: European Conference on Genetic Programming.
pp. 25–36. Springer (2014)

6. Koza, J.R.: Genetic programming: on the programming of computers by means of
natural selection, vol. 1. MIT press (1992)

7. Lutton, E., Perrot, N.: Complex systems in food science: Human factor issues. 6th
International Symposium on Delivery of Functionality in Complex Food Systems
Physically-Inspired Approaches from the Nanoscale to the Microscale. (2015)

8. Lutton, E., Perrot, N., Tonda, A.: Evolutionary Algorithms for Food Science and
Technology. John Wiley & Sons (2016)

9. Passot, S., Fonseca, F., Cenard, S., Douania, I., Trelea, I.C.: Quality degradation
of lactic acid bacteria during the freeze drying process: Experimental study and
mathematical modelling (2011)

10. Perrot, N., De Vries, H., Lutton, E., Van Mil, H.G., Donner, M., Tonda, A., Mar-
tin, S., Alvarez, I., Bourgine, P., Van Der Linden, E., et al.: Some remarks on
computational approaches towards sustainable complex agri-food systems. Trends
in Food Science & Technology 48, 88–101 (2016)

11. Perrot, N., Trelea, I.C., Baudrit, C., Trystram, G., Bourgine, P.: Modelling and
analysis of complex food systems: state of the art and new trends. Trends in Food
Science & Technology 22(6), 304–314 (2011)

12. Pickardt, C.W., Hildebrandt, T., Branke, J., Heger, J., Scholz-Reiter, B.: Evolu-
tionary generation of dispatching rule sets for complex dynamic scheduling prob-
lems. International Journal of Production Economics 145(1), 67–77 (2013)

13. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data.
Science 324(5923), 81–85 (2009)

14. Sicard, M., Baudrit, C., Leclerc-Perlat, M., Wuillemin, P.H., Perrot, N.: Expert
knowledge integration to model complex food processes. application on the camem-
bert cheese ripening process. Expert Systems with Applications 38(9), 11804–11812
(2011)

15. Velly, H., Bouix, M., Passot, S., Penicaud, C., Beinsteiner, H., Ghorbal, S., Lieben,
P., Fonseca, F.: Cyclopropanation of unsaturated fatty acids and membrane rigid-
ification improve the freeze-drying resistance of lactococcus lactis subsp. lactis
tomsc161. Applied microbiology and biotechnology 99(2), 907–918 (2015)

16. Velly, H., Fonseca, F., Passot, S., Delacroix-Buchet, A., Bouix, M.: Cell growth and
resistance of lactococcus lactis subsp. lactis tomsc161 following freezing, drying and
freeze-dried storage are differentially affected by fermentation conditions. Journal
of applied microbiology 117(3), 729–740 (2014)

201

Automatic configuration of GCC using irace

Leslie Pérez Cáceres, Federico Pagnozzi, Alberto Franzin, and Thomas Stützle

IRIDIA, CoDE
leslie.perez.caceres@ulb.ac.be, federico.pagnozzi@ulb.ac.be,

alberto.franzin@ulb.ac.be, stuetzle@ulb.ac.be
Université Libre de Bruxelles,

Brussels, Belgium

Abstract. Automatic algorithm configuration techniques have proved
to be successful in finding performance-optimizing parameter settings
of many search-based decision and optimization algorithms. A recurrent,
important step in software development is the compilation of source code
written in some programming language into machine-executable code.
The generation of performance-optimized machine code itself is a dif-
ficult task that can be parametrized in many different possible ways.
While modern compilers usually offer different levels of optimization as
possible defaults, they have a larger number of other flags and numerical
parameters that impact properties of the generated machine-code. While
the generation of performance-optimized machine code has received large
attention and is dealt with in the research area of auto-tuning, the usage
of standard automatic algorithm configuration software has not been ex-
plored, even though, as we show in this article, the performance of the
compiled code has significant stochasticity, just as standard optimization
algorithms. As a practical case study, we consider the configuration of the
well-known GNU compiler collection (GCC) for minimizing the run-time
of machine code for various heuristic search methods. Our experimental
results show that, depending on the specific code to be optimized, im-
provements of up to 40% of execution time when compared to the -O2
and -O3 optimization flags is possible.

Keywords: irace, automatic configuration, parameter tuning, gcc

1 Introduction

The performance of computational procedures such as optimisation algorithms
is commonly a major concern for both developers and users. Algorithm perfor-
mance depends on several elements related to the characteristics of the algorithm
itself, the particular problem being solved and the environment in which the exe-
cution will be performed. Normally, algorithms expose parameters that allow the
user to adjust their behaviour to the problem solved and the execution circum-
stances. Generally, parameter settings or configurations have a strong impact on
the performance of algorithms and, consequently, finding high-performing config-
urations is essential to reach peak algorithm performance. The process of finding
good configurations can be challenging, requiring significant expertise, consum-
ing large amounts of time and be computationally expensive given the large

202

II

number of parameters that some algorithms have. To alleviate this situation,
a number of automatic algorithm configuration tools, also called configurators,
have been proposed in the literature. Examples include ParamILS [15], SMAC
[14], GGA [2] and irace [17]. These tools have shown to be able to obtain very
good parameter settings when configuring different types of algorithms, in some
cases strongly improving the performance obtained by expert-defined default
parameter settings [12,24]. Configurators aim at efficiently using the available
computational resources to search the parameter space for high-performance pa-
rameter settings. The use of such tools can enable developers to test and make
available more design features, and provides a simple and general approach to
obtain the best performance of an algorithm.

Very often the configuration of optimisation algorithms is limited to their
parameter settings, overlooking the code compilation as an element that can af-
fect algorithm performance. On the contrary, in contexts where producing high-
performance and portable code is very important, this issue is widely acknowl-
edged. Several projects define application-specific “autotuners” that adjust the
program produced to the system on which it will be installed. Examples of such
work include ATLAS [25], Spiral [21], FFTW3 [6] and Patus [5]. On the other
side, compilers such as GCC [8], provide several optimisation options that aim at
improving the quality of the generated executable. Default levels of optimisation
that activate different sets of options are defined in GCC using the -Ox settings.
These optimisation levels are defined in a general fashion and further improve-
ments are possible depending on the operations performed by the compiled code
and the architecture in which the algorithm is executed. In this sense, GCC is
like any other computational procedure whose performance can be optimised by
setting its parameters. Selecting the optimisation options of GCC, or any other
compiler, to obtain the best executable performance is itself an algorithm config-
uration problem, which has been tackled by methods such as OpenTuner [1] and
COLE [13], or in more specific approaches [4], [7] and [20]. Consequently, when
configuring optimisation algorithms, it is possible to optimise the compilation of
the code as part of the algorithm configuration process.

The irace package [17] is an automatic algorithm configurator that provides
an implementation of iterated F-race [3] and other approaches to automatic con-
figuration. Irace is freely available as an R package, it provides several options
to adjust the configuration process (e.g. parallel execution) and it does not re-
quire knowledge of R or about the inner workings of irace itself. Irace has been
widely applied in the literature and is a state-of-the-art algorithm configura-
tor. In this work, we exploit irace to configure the optimisation options of GCC
for minimising the execution time on six different benchmarks that execute dif-
ferent optimisation algorithms. This work shows that (i) the running time of
optimisation algorithms can be further improved by configuring the compilation
options, (ii) the best options depend on the benchmark and the machine used,
and (iii) irace is a suitable configurator to configure the compilation process.
Beyond these contributions, irace can be used to improve the execution time of
any other compiled code and we will make our procedure, which is tested here
on the most recent stable version of GCC, version 7.1, available for other users.

The remainder of this article is organised as follows. First, section 2 describes
the algorithm configuration problem, gives details of the configuration process

203

III

performed by irace and discusses related work. The details of the compilation
configuration benchmarks used are provided in Section 3 and Section 4 gives
an analysis of the base performance of the compilation of GCC for the different
benchmarks. In Section 5, we provide the experimental results obtained by irace
when configuring the compilation options of GCC and we analyse them. Finally,
we discuss future work and conclude in Section 6.

2 Automatic algorithm configuration

The configuration of algorithms, is the task of finding a set of algorithm pa-
rameter values, also called algorithm configuration, that exhibit good empirical
performance for a particular class of problem instances. Algorithm configura-
tion can be defined as an optimization problem over a parameter search space,
which has the goal of identifying parameter settings that maximize algorithm
performance. In general, an algorithm configuration scenario defines: a parame-
ter search space consisting of the algorithm parameters defined as variables and
their domains, a set of training and test instance sets, and a total configuration
budget. Broadly, parameters can be classified in two types: (i) parameters that
indicate the selection of algorithmic components (e.g. the crossover operator for
an evolutionary algorithm, or the branching strategy for an exact algorithm),
and (ii) parameters that control the behavior of algorithmic components (e.g.
the length of a tabu list, or the size of a perturbation) and whose domain com-
monly correspond to numbers of a discrete or continuous domain. The type of
parameters are commonly best represented by categorical or ordinal variables,
while the former as numerical ones. Additionally, parameters can have condi-
tional relations that is, their use depends on the value of other parameters (e.g.
the use of the tabu list length parameter is conditional to the selection of tabu
search as local search). The homogeneity of a scenario indicates the degree of
consistency of the relative performance of configurations in the parameter space
across the instance set. Highly homogeneous scenarios, have configurations that
are consistently good (or bad) for all problem instances, while in heterogeneous
scenarios certain configurations perform best in a subset of the instances and
poorly in other instances. An algorithm can be configured for optimizing dif-
ferent performance measures e.g. solution quality, running time, SAT count,
etc. The evaluation of the performance of a configuration is commonly defined
as the aggregation of the selected performance measure over the instance set
(commonly the mean or median). Given that optimization algorithms are often
stochastic, the real performance of configurations can be only estimated and
several repetitions are required in order to have a precise estimation.

The irace package [17] is an algorithm configurator that implements config-
uration procedures based on iterated racing, e.g. iterated F-race [3]. Irace is a
general-purpose configurator and it only requires the definition of a configura-
tion scenario as described above. The supported parameter types are categorical,
integer, real and ordered (a categorical parameter that defines a precedence of
values in its domain). Irace iteratively applies a racing procedure in which sev-
eral configurations are incrementally evaluated on bigger subsets of the training
instance set. Statistical tests (the Friedman test by default) are performed to

204

IV

identify configurations that obtain poor performance. These poor configurations
are eliminated from the race and the execution continues with the surviving
configurations until the termination criterion of the iteration is met. After each
iteration, new configurations are sampled from a probabilistic model that is up-
dated to be centered around the best configurations obtained in the previous
iteration (elites). This way, irace iteratively converges to high-performing areas
of the parameter search space, while increasing the precision of the performance
estimation by increasing the number of instances in which the elite configurations
are evaluated. For more details about irace we refer to [17].

As already mentioned, the configuration of algorithms is a main concern
when developing and applying algorithms. The use of automatic configuration
tools not only facilitates the algorithm configuration process but also allows de-
velopers and researchers to focus on proposing and improving techniques for a
wide scope of scenarios, while delegating the tedious configuration task to spe-
cialized tools. Several approaches can be found in the literature to automatically
generate code and optimize compilation options. These approaches optimize pro-
grams to obtain the best performance in particular architectures, multicore or
cluster environments, GPU, etc. Most of these methods are program-specific
techniques that apply expert knowledge to implement procedures designed for
particular scenarios. Examples of such techniques are ATLAS [25] for linear alge-
bra software, Spiral [21] for digital signal processing algorithms, FFTW3 [6] for
discrete Fourier transform computation and Patus [5] for stencil computations.
As most computational procedures, compilers have parameters that can be opti-
mised thus, a number of approaches have been developed to configure compiler
options. An example of such initiatives is ACOVEA [16], an open-source project
that currently is not in development. ACOVEA implemented a genetic algorithm
based approach to configure the GCC compiler options to obtain lower execution
times. Similarly, Milepost GCC [7] is an open-source project that aims at using
machine learning techniques to learn high-performing GCC settings, with the aim
of reusing this knowledge to improve the performance of programs in particular
architectures. The Tool for automatic compiler tuning (TACT) [20] is a genetic-
based compiler configurator. TACT supports the configuration for single and
multiple objectives by obtaining a pareto-optimal set of configurations.

A general autotuning framework, called OpenTuner, is proposed in [1] and
applied to configure the options of GCC. OpenTuner provides a framework where
domain-specific configuration procedures can be instantiated, while also offering
several general-purpose features to configure computational programs. Open-
Tuner was used to instantiate a specialized autotuner to configure the optimiza-
tion options of GCC, the approach obtained considerable speed ups of execution
performance in several scenarios. A drawback of OpenTuner, from the perspec-
tive of the automatic configuration of optimization algorithms, is that it does not
provide an explicit method to handle the stochastic behavior of algorithms or
the evaluation of problem instances. The evaluation of the configurations is fully
delegated to the user and therefore, the use of problem instances and repetitions
in the evaluation must be handled by the user. COLE [13], is a compiler opti-
mizer that implements an evolutionary algorithm based on SPEA2 [27]. COLE
is able to optimize the compilation for mutiple objectives (e.g. running time and
memory use) by searching pareto-optimal sets of compilation options. In [13],

205

V

COLE was used to configure the optimization flags of GCC (version 4.1.2), com-
piling the SPEC CPU2000 benchmarks [11]. The results showed that the default
optimization levels of GCC could be strongly improved. In this work, we evaluate
the use of irace to configure the optimization parameters of GCC for optimizing
the performance obtained by 6 optimization algorithms. We do not apply any
GCC-dependent processing mechanism to the evaluation of configurations; in this
regard, we apply irace like for any other configuration scenario. We argue that,
since the evaluation of the compilation with GCC is a stochastic procedure, irace
is an adequate method to perform the configuration of the GCC optimization op-
tions. The experiments show that irace can significantly improve the performance
obtained by the tested optimization algorithms without requiring any specific
knowledge about the compilation process or the targeted algorithms.

3 Configuration scenarios

The experiments presented in this paper configure the optimization options of
GCC [8] to compile a set of optimization algorithms benchmarks. We use GCC ver-
sion 7.1, the optimization options considered in the configuration were obtained
from the documentation of GCC1. The total number of GCC parameters selected
are 367 categorical and integer parameters. Enabling the optimization options
in GCC requires to select an optimization level, thus, the set of GCC parameters
includes a parameter to select the optimization level (-O1, -O2 or -O3). We define
two types of GCC configuration scenarios by making two sets of parameters:

– GCCflags: 171 categorical parameters consisting of only options that enable/
disable main optimization options.

– GCCflags+num: 366 parameters, 173 categorical and 193 integer.

The domains in the GCC parameter definition do not provide the upper bound
of some numerical parameter domains. In these cases we set as upper bound the
default value of the parameter multiplied by a constant (4 in this work). Con-
figurations that generate invalid executables or failed in the compilation were
penalized returning a large numerical value to irace. Other types of specific error
handling were not implemented. The compilation performed by GCC is optimized
using the GCCflags and GCCflags+num parameter sets in 6 optimization algorithms
benchmarks, resulting in 12 different configuration scenarios. The optimization
algorithms were executed with fixed parameter settings and fixed evaluation
budgets (e.g. fixed number of iterations or solutions generated) and each bench-
mark defines a set of training and test instances. The goal of the configuration
process is to find GCC parameter settings that minimize the execution time of
the benchmark algorithms (using the defined fixed settings). The optimization
algorithm benchmarks are the following:

ACOTSP: framework of ant colony optimization algorithms [23] for solving
the traveling salesman problem (TSP). ACOTSP is implemented in C. The

1 The GCC optimization options are available at https://gcc.gnu.org/onlinedocs/
gcc-7.1.0/gcc/Optimize-Options.html and the parameter definition can be ob-
tained in the params.def file in the source code of GCC.

206

VI

compilation is configured on a training set of 20 TSP instances and evaluated
on 100 TSP instances of sizes 1000 and 1500. We configure two versions of
ACOTSP, one that applies 3-opt local search to each tour built (ACOTSP
ls3) and a version without local search (ACOTSP ls0).

ILS: iterated local search implementation for solving TSP. ILS is implemented
in C. The compilation is configured on a training set of 10 TSP instances
and evaluated on 50 TSP instances of size 1500.

LKH: state-of-the-art Lin-Kernighan heuristic implementation by K. Helsgaun
[9], [10]. LKH is implemented in C. The compilation of this algorithm is
configured on a training set of 10 TSP instances and evaluated on 50 TSP
instances of size 1000.

TS: tabu search implementation for solving the quadratic assignment problem
(QAP). TS is implemented in C. The compilation is configured on a training
set and test set of 50 QAP instances.

EMILI: Iterated greedy algorithm instantiated with the EMILI framework for
solving the permutation flowshop problem (PFSP). EMILI is implemented in
C++. The compilation was configured on a training set of 30 PFSP instances
with 20 machines and 50 to 100 jobs and evaluated on 120 PFSP instances
with 5 to 20 machines and 20 to 500 jobs.

The execution of irace was given a configuration budget of 10 000 evaluations,
the statistical test used was the t-test and the performance of the candidate
configurations corresponds to the execution time of the optimization algorithm
benchmarks. We have chosen not to provide an initial GCC configuration to irace,
which is commonly done when good parameter settings are known (for GCC, the
-03 or -O2 options are possible initial settings). We omit the initial configurations
to evaluate the ability of irace to find high-performing configurations without
additional information of the parameter space. The main tests were run under
Cluster Rocks 6.2, which is based on CentOS 6.2. The machines used were:

– m1 : 2 AMD Opteron (2.4 GHz), 2 cores, 1 MB cache and 4 GB RAM.
– m2 : 2 Intel Xeon (2.33 GHz), 4 cores, 6 MB cache and 8 GB RAM.
– m4 : 2 AMD Opteron (2.1 GHz), 16 cores, 16 MB cache and 64 GB RAM.
– m5 : 2 Intel Xeon (2.5 GHz), 12 cores, 16 MB cache and 128 GB RAM.

The m2 machine was used by default to perform the experiments unless specified
otherwise. More details about the configuration scenarios are available in the
supplementary material provided with this paper [19].

4 GCC configuration scenarios analysis

Our premise is that the optimization options of GCC can improve greatly the
performance of the described benchmarks. In order to prove this, we perform
experiments to compare the performance of the benchmarks when compiled by
GCC with and without optimization options enabled. Table 1 gives the speed
up obtained by using the options -O3, -O2 and -O1 for GCC, respectively. We
can observe that the speed up obtained by the optimization options is strongly
influenced by the benchmark. Nevertheless, all benchmarks improve their perfor-
mance by using the optimization options. EMILI is the benchmark that shows

207

VII

Table 1. Speed up of 10 executions of the benchmarks, by setting GCC to use -O3, -O2
and -O1, compared to GCC with no optimization options.

speed up ACOTSP ls0 ACOTSP ls3 ILS LKH TS EMILI
-O3 1.52 1.66 1.72 1.57 3.19 10.31
-O2 1.47 1.67 1.68 1.59 2.98 10.54
-O1 1.35 1.54 1.66 1.57 2.88 7.20

the biggest improvement in performance by reducing 10 times its running time
compared to the one obtained by the executable generated without optimiza-
tion. This could be related to the fact that the code of EMILI is written in C++,
which allows more optimization. All the benchmarks obtain their best perfor-
mance using -O3 or -O2, showing that that those optimization levels, which are
commonly advised for compilation, already lead to significant improvements.

The homogeneity of configuration scenarios regarding the problem instances
is an important element for the algorithm configuration procedure. Very homo-
geneous scenarios allow to estimate the performance of a configuration based on
less problem instances, more budget can be then used to explore the parameter
search space. In terms of compilation, the homogeneity quantifies how consis-
tent is the relative performance of executables obtained by different settings of
optimization options across the different instances. In order to investigate the
homogeneity of the benchmarks, we sampled uniformly 1 000 random config-
urations of GCC and we evaluate their performance over the training set. We
removed the data of the configurations that produced failed compilations or ex-
ecutions. With this data, we calculate the Kendall concordance coefficient (W)
[22] considering problem instances as blocks and configurations as groups. W is
a normalization of the Friedman statistic and can be interpreted as a measure of
how consistent is the ranking of the performance of the configurations over the
instances. Table 2 gives the W coefficients for the different scenarios, the higher
the number obtained the more homogeneous is the scenario. In addition, we also
report the number of not failing configurations and the number of these con-
figurations that obtain significantly better performance compared with -O3. If
few configurations were used to calculate W , this indicates that the benchmark
has many GCC settings that produce invalid executables or failed compilations.
The number of configurations that are statistically better than -O3, gives an
indication of how difficult is to optimize the performance for each benchmark. If
many configurations showed better performance than -O3, good settings will be
easy to find in the parameter space. On the contrary, if only few configurations
are better than -O3, finding good configurations will be more challenging. The
values of W indicate that in general, the GCCflags scenario is more homogeneous
than the GCCflags+num. TS-GCCflags shows to be a perfectly homogeneous scenario,
indicating that the compilation could be optimized evaluating configurations in
only one or very few instances and the results could be generalized to the rest of
them. On the contrary, LKH has the lowest homogeneity evidencing that differ-
ent instances benefit of different compilation options. This is surprising giving
that the LKH scenario uses only one instance size, and therefore such variability
between instances was not expected. The GCCflags+num scenarios are less homo-

208

VIII

Table 2. Kendall concordance coefficient W of uniformly sampled configurations of
the 12 different GCC configuration benchmarks. Numbers in parenthesis indicate the
number of configurations used (from the 1 000 uniformly generated) to compute W
and the number of those configurations that have a significantly better performance
compared with the mean performance of 10 executions with -O3 (comparison performed
by paired t-test with significance level 0.05).

W ACOTSP ls0 ACOTSP ls3 ILS
GCCflags 0.92 (747|387) 0.97 (747|564) 0.97 (426|418)
GCCflags+num 0.75 (466| 91) 0.58 (466| 32) 0.64 (318|224)

LKH TS EMILI
GCCflags 0.89 (472| 0) 1.00 (534| 8) 1.00 (332| 0)
GCCflags+num 0.79 (352| 0) 0.81 (350| 0) 1.00 (304| 1)

geneous (with the exception of EMILI) indicating that some parameter values
might be better for certain instances. This could be related to the instance size or
type. These results confirm the differences between the configuration scenarios
and therefore the potential benefits configuring their compilation.

Another important aspect of configuration scenarios is the stochastic behav-
ior of algorithms. Algorithms that are strongly affected by stochasticity make the
estimation of the performance of configurations more difficult. We explore the
stochasticity effects on the evaluation of the performance of the GCC compilation
using the -O3 option by calculating a confidence interval based on 20 executions
of the benchmarks. Figure 1 gives the confidence intervals of 20 evaluations over
the instance test set. The confidence intervals clearly show the different effect
of the stochasticity in the measured performance of these two benchmarks. ILS
presents high variability of the intra-instance execution times, showing that the
stochasticity has a great effect on this scenario. On the contrary, the LKH bench-
mark has a very low intra-instance variability but shows a high inter-instance
variability. This is, again, surprising and indicates that the execution time of
some components of this algorithm are affected by other instances features.

We presume that the best settings of the optimization options depend on
the characteristics of the operations performed by the code to be compiled, but
also of the machine in which the algorithm will be executed. To observe this, we
report in Figure 2 the confidence intervals of the speed ups obtained by compiling
the benchmarks with -O3 on different machines, compared with GCC without
optimization. These results indicate that the improvements in the performance
depend on both the machine and the benchmark. For example, while ACOTSP
ls3 obtains the biggest improvement in performance on m2, ILS obtains the
biggest improvement onm5. This indicates that some of the optimization options
activated by using -O3 are very favorable for ILS when executed on m5, while
these same settings seem to be less favorable for ACOTSP ls3 on the same
machine. Moreover, different machines exhibit different variability of the results,
which can indicate that some machines could be more affected by the stochastic
behavior of the algorithms. We can derive from these results the strong impact
the system can have on the performance of a compilation process, even if it

209

IX

Fig. 1. Confidence intervals of the running time obtained by 20 executions of the
benchmarks compiled with GCC using -O3 over the instances test set.

0 20 40 60 80 100

60
80

11
0

ACOTSP ls3

●
●●●●●●

●●●●

●
●●●●●●●●●●●●●●●●

●
●●●●●

●●●
●
●●●

●●●●●●

●

●●

●●●
●●

●
●
●
●
●●

●
●

●●●●●
●●

●●●●
●
●●●●

●
●
●
●●●●

●●●●
●●●

●
●

●

●

●●●

0 20 40 60 80 100

12
16

20

ACOTSP ls0

●●
●●

●●●●●●●●●
●●●●●

●
●●●●●

●
●●●●

●●●●●●●●
●●●●●●

●
●
●●●●

●

●●●
●●

●

●●
●
●●

●
●
●
●

●●●
●●●●●●●

●
●●

●
●
●
●●

●
●●

●●

●
●
●●●●●●●●●

●

0 10 20 30 40 50

27
29

31

ILS
●

●●

●

●
●●●

●●
●

●

●●
●

●

●●

●●
●●●●●

●●

●

●

●

●

●●

●
●●

●●
●

●
●

●

●
●●●●

●
●

●

0 10 20 30 40 50

5
10

20

LKH

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●●

●

●
●

●

●
●

●

●

●

●●
●

●●

●

●

●

●

●

●

●●

●●●

0 10 20 30 40 50

20
.2

20
.8

TS

●

●

●
●

●●

●

●●
●●●

●
●●

●
●●

●●●
●

●●●

●
●●●

●
●●●●●

●●●●
●●●●●

●
●●

●●
●

0 20 40 60 80 100 120
0

40
0

80
0

EMILI

●●
●●●●●●●●●●

●●●●●●●●●●

●
●●●●●●

●●●

m
ea

n
ru

nn
in

g
tim

e

has been adjusted to the particular scenario. Good configurations are then not
always portable between systems.

5 Experimental results

We configure the benchmarks described in Section 3 using only the optimization
flags of GCC (GCCflags) and the flags with the numerical parameters (GCCflags+num).
Figure 3 gives the mean speed up of 10 GCC settings obtained by 10 executions
of irace compared to the execution times obtained by GCC using -O3.

In general, irace is able to obtain speed ups over -O3 for all the benchmarks.
While for some scenarios the improvements are greater than for others, the
executions of irace are on average better than -O3. When configuring only the
flags (GCCflags), all the benchmarks clearly improve their performance with the
exception of ACOTSP ls3, for which two executions of irace obtain slightly worse
performance than -O3 (0.98 and 0.99). Regardless of this, the mean speed up
obtained by irace in this benchmark is of 1.03. The benchmarks for which the
largest speed up is obtained on the GCCflags scenario are ILS and EMILI.

The configuration of the optimization flags together with the numerical pa-
rameters (GCCflags+num) obtains mixed results across the different benchmarks.
The speed up obtained by irace on the ACOTSP ls3, ILS and LKH scenarios
is increased, while the speed up is reduced (compared to GCCflags) for ACOTSP
ls0, TS and EMILI. For EMILI, the speed up obtained for GCCflags+num is only
slightly smaller compared with the one obtained for GCCflags. For TS, the mean
speed up is reduced compared to the results obtained for GCCflags. Nevertheless,
all the configurations obtained by irace have better mean performance than -O3.
The results obtained for GCCflags+num on ACOTSP ls0, are worse than the results
obtained when configuring GCCflags; despite this, the mean speed up obtained over
-O3 is 1.03 and of the 10 executions the worst speed up is only 0.99.

210

X

1.
25

1.
35

1.
45

1.
55

ACOTSP ls0

●

●

●

●

m1 m2 m4 m5

1.
4

1.
5

1.
6

1.
7 ACOTSP ls3

●

●

●
●

m1 m2 m4 m5

1.
7

1.
8

1.
9

2.
0

2.
1

ILS

●

●

●

●

m1 m2 m4 m5

1.
50

1.
60

1.
70

LKH
●

●

●
●

m1 m2 m4 m5

3.
0

3.
5

4.
0

4.
5

TS
●

●

●

●

m1 m2 m4 m5

11
.0

12
.0

13
.0

EMILI

●

●

●

●

m1 m2 m4 m5

m
ea

n
sp

ee
d

up
 fr

om
 G

C
C

 w
ith

 n
o

op
tim

is
at

io
n

Fig. 2. Confidence intervals of the mean speed up of the running time of 20 executables
compiled with GCC using -O3 from GCC with no optimization on 4 different machines.

1.00
1.02
1.04
1.06
1.08
1.10

ACOTSP ls0

sp
ee

d
up

 fr
om

 −
O

3

GCCflags GCCflags+num

1.00

1.05

1.10

1.15
ACOTSP ls3

sp
ee

d
up

 fr
om

 −
O

3

GCCflags GCCflags+num

●

1.1

1.2

1.3

1.4

ILS

sp
ee

d
up

 fr
om

 −
O

3

GCCflags GCCflags+num

1.06
1.08
1.10
1.12
1.14

LKH

sp
ee

d
up

 fr
om

 −
O

3

GCCflags GCCflags+num

●

●

●

1.01
1.02
1.03
1.04
1.05
1.06

TS

sp
ee

d
up

 fr
om

 −
O

3

GCCflags GCCflags+num

●

1.05

1.10

1.15

1.20

EMILI

sp
ee

d
up

 fr
om

 −
O

3

GCCflags GCCflags+num

Fig. 3. Mean execution time speed up of 10 GCC configurations found by 10 irace exe-
cutions from the mean running time of 10 compilations performed by GCC using -O3.

The reduced performances when configuring GCCflags+num for ACOTSP ls0,
EMILI and TS can be explained by the size and difficulty of the configuration
space. The GCCflags+num scenarios have considerably more parameters (366) and,
as we maintained the same configuration budget as in the GCCflags scenarios, the
search may be too limited. Additionally, the GCCflags+num scenarios seem to be
(see Table 2) less homogeneous, and they also produce more failed executions
than the GCCflags scenarios. This might actually help the configuration process,
in some cases, by easily reducing the search space of interest. The possible ap-

211

XI

proaches to tackle the configuration of such scenarios with irace are: (i) increasing
the configuration budget (if feasible), (ii) providing -O3 or -O2 as initial con-
figurations and/or (iii) increasing the number of instances required to start the
elimination of configurations. The last one would allow better estimation of the
performance of the configurations, which may account for the higher variability
of the intra- or inter-instance execution times as seen in Figure 2 for some of the
benchmarks.

The performance data obtained from the executions of irace can be useful in
order to analyze the characteristics of the configuration scenarios. Such analysis
can provide guidelines to set up the compilation with GCC on scenarios with sim-
ilar characteristics. We trained random forest models with the performance data
obtained by the 10 executions of irace on each benchmark. The procedure and
the settings used to train the random forest model are described in [18]. For the
random forest implementation we use the ranger R package [26]. When building
the training data set, the configurations that produced failed compilations or
executions were removed and thus only valid execution data points are included
in the data set. As is common for these performance models, the instances are
included as a variable in the training data. Additionally, instance features could
be added to the data set to provide more information on the impact of the
instances on performance.

Table 3 gives the five most important parameters for each of the bench-
marks. Note that since the instances are included in the data set as a variable,
for some of the benchmarks the instances are the variable that explains most
of the variability. This is the effect of the variability of the execution times
required for different instances, which can be observed in Figure 1. The in-
stances variable is therefore more important in benchmarks that have greater
inter-instance variability, such as LKH, and less important when the running
time for all the instances is similar, as for TS. Even if there are parameters
that are important for more than one algorithm, it is not possible to find a
parameter that consistently has the same impact on the execution time of all
the algorithms. For example, EMILI has a completely different set of impor-
tant parameters compared to the rest of the algorithms. This difference can be
explained by the fact that EMILI is the only program among the benchmarks
written in C++ with an Object Oriented philosophy, while the others are written
in C. For the benchmarks with algorithms written in C (ACOTSP, ILS, TS and
LKH), the most important options are the ones that attempt to optimize mem-
ory allocation and the use of the registers (falign-labels, fstrict-aliasing,
fcaller-saves, falign-function, fomit-frame-pointer), the linking process
(flto-partition) and the optimization of the internal representation of the
source code used by the compiler (the ftree flags). On the contrary, for EMILI,
the optimization seems to be more focused on inlining (finline), branching
optimization(fif-conversion, fcode-hoisting) and trying to avoid unneces-
sary function calls (fipa-pure-const), which is consistent with an object ori-
ented code where it is common to have a large number of very small functions.
Most of the parameters retain a similar importance when we extend the tuning
to the numerical parameters. In fact, the list of parameters does not change for
ACOTSP ls3 and for the others, with the exception of ILS, for which the changes
are minimal. In the case of ILS, the numerical parameter max-unswitch-insns

212

XII

Table 3. Variable importance % obtained by random forest models trained using data
from 10 executions of irace.

GCCflags
ACOTSP ls0 ILS TS

instance 89.9 falign-labels 39.1 falign-labels 45.1
falign-labels 2.5 instance 15.3 fguess-branch-probability 6.2
fstrict-aliasing 1.1 fcaller-saves 4.4 fstrict-aliasing 5.4
ftree-ch 0.8 ftree-pre 3.2 ftree-loop-im 5.2
flto-partition 0.5 falign-functions 2.0 ftree-ter 5.0

ACOTSP ls3 LKH EMILI
instance 87.3 instance 95.4 finline 50.3
falign-labels 5.5 falign-labels 2.0 instance 40.0
fcaller-saves 0.6 flto-partition 0.2 fif-conversion 3.3
fstrict-aliasing 0.5 finline-limit 0.2 fcode-hoisting 2.4
falign-functions 0.4 fomit-frame-pointer 0.1 fipa-pure-const 1.3

GCCflags+num
ACOTSP ls0 ILS TS

instance 90.5 max-unswitch-insns 29.4 falign-labels 38.9
falign-labels 1.9 falign-labels 13.6 ftree-ter 7.0
ftree-ch 1.3 instance 10.1 ftree-loop-optimize 3.8
fstrict-aliasing 0.9 ftree-dominator-opts 5.3 ftree-loop-im 2.3
ftree-ter 0.5 ftree-loop-optimize 2.9 fomit-frame-pointer 2.2

ACOTSP ls3 LKH EMILI
instance 87.4 instance 93.8 finline 44.1
falign-labels 3.5 falign-labels 2.0 instance 40.2
fcaller-saves 1.0 flto-partition 0.5 fif-conversion 3.0
fstrict-aliasing 0.9 parloops-schedule 0.3 sccvn-max-scc-size 2.4
ftree-ch 0.5 finline-limit 0.3 fipa-pure-const 1.2

is the most important one according to our analysis. This parameter controls the
threshold used by the compiler to decide if to unswitch a loop, that is moving a
loop invariant condition outside of the loop.

Further optimization on the execution time could be then achieved using this
information by restricting the configuration process to the set of variables that
show to have great impact in the execution times.

6 Conclusion and future work

Reducing the execution time of optimization algorithms, even in cases in which
the main objective is not fast execution, is of great interest for developers and
users. We have shown that significant reductions of computation times can be
obtained by optimizing compilation options. The optimization of compilation
options may either be considered as an extra step to improve execution times
after an algorithm configuration process, but also as part of the full configuration
process to address interactions between algorithm components and compilation
options. In preliminary experiments with GCC, we showed that, for the opti-
mization algorithms used, the execution times are stochastic and depend on the
computational platform and the characteristics of the code itself. Here, we con-
figured the GCC compiler options, without including any particular knowledge of
the compilation process itself, using a general-purpose algorithm configuration
software, irace. The experimental results with irace are encouraging and show
that irace can find settings that significantly improve over the default optimiza-
tion flags available in GCC, the commonly recommended -O2 and -O3 settings.

213

XIII

In future work we will extend these experiments to new benchmarks with
algorithms that present different characteristics and also to standard compiler
benchmark sets used for autotuning methods. For optimization algorithms, it is
also of interest to study the effect of instance types and size and their relationship
with the GCC options. The information obtained in these experiments could be
then further analyzed to extract features from the benchmarks that cause certain
optimization flags to have greater effect over performance. Another direction for
future work is to specialize the settings of irace to configure compilation options
such as a set of initial promising configurations or additional pruning techniques
to improve the search. Additionally, we will investigate the use of other automatic
configuration tools such as SMAC and compare our approach to other methods
specifically designed for the optimization of compiler flags such as OpenTuner
and COLE. Finally, we plan to make available the configuration files used in
this work to configure the options of GCC, so that other researchers can attempt
to configure their own algorithms to obtain better performance.

Acknowledgments.

We acknowledge support from the COMEX project (P7/36) within the IAP Pro-
gramme of the BelSPO. Thomas Stützle acknowledges support from the Belgian
F.R.S.-FNRS, of which he is a senior research associate. The authors would like
to thank Manuel López-Ibáñez for his many helpful remarks and assistance.

References

1. Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley, J., Bosboom, J., O’Reilly,
U.M., Amarasinghe, S.: Opentuner: An extensible framework for program autotun-
ing. In: Proceedings of the 23rd International Conference on Parallel Architectures
and Compilation. pp. 303–315. ACM New York, NY, USA (2014)

2. Ansótegui, C., Sellmann, M., Tierney, K.: A gender-based genetic algorithm for
the automatic configuration of algorithms. In: Gent, I.P. (ed.) CP 2009, LNCS,
vol. 5732, pp. 142–157. Springer (2009)

3. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race:
An overview. In: Bartz-Beielstein, T., et al. (eds.) Experimental Methods for the
Analysis of Optimization Algorithms, pp. 311–336. Springer (2010)

4. Blackmore, C., Ray, O., Eder, K.: Automatically tuning the GCC compiler to
optimize the performance of applications running on the ARM cortex-M3. Tech.
rep., CoRR, https://arxiv.org/abs/1703.08228 (2017)

5. Christen, M., Schenk, O., Burkhart, H.: Patus: A code generation and autotun-
ing framework for parallel iterative stencil computations on modern microarchi-
tectures. In: Proceedings of the 2011 IEEE International Parallel & Distributed
Processing Symposium. pp. 676–687. IPDPS ’11, IEEE Computer Society (2011)

6. Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceed-
ings of the IEEE 93(2), 216–231 (2005), special issue on “Program Generation,
Optimization, and Platform Adaptation”

7. Fursin, G., Kashnikov, Y., Memon, A.W., Chamski, Z., Temam, O., Namolaru,
M., Yom-Tov, E., Mendelson, B., Zaks, A., Courtois, E., Bodin, F., Barnard, P.,
Ashton, E., Bonilla, E., Thomson, J., Williams, C.K.I., O’Boyle, M.: Milepost gcc:
Machine learning enabled self-tuning compiler. International Journal of Parallel
Programming 39(3), 296–327 (2011)

214

XIV

8. GNU Project, Free Software Foundation: GCC, the GNU compiler collection.
https://www.gcc.gnu.org (1987)

9. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman
heuristic. European Journal of Operational Research 126, 106–130 (2000)

10. Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP heuristic. Math-
ematical Programming Computation 1(2–3), 119–163 (2009)

11. Henning, J.L.: Spec cpu2000: measuring cpu performance in the new millennium.
Computer 33(7), 28–35 (2000)

12. Hoos, H.H.: Automated algorithm configuration and parameter tuning. In: Hamadi,
Y., et al. (eds.) Autonomous Search, pp. 37–71. Springer (2012)

13. Hoste, K., Eeckhout, L.: Cole: Compiler optimization level exploration. In: Pro-
ceedings of the 6th Annual IEEE/ACM International Symposium on Code Gener-
ation and Optimization. pp. 165–174. CGO ’08, ACM Press, New York, NY (2008)

14. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello Coello, C.A. (ed.) LION 5, LNCS,
vol. 6683, pp. 507–523. Springer (2011)

15. Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: an automatic
algorithm configuration framework. Journal of Artificial Intelligence Research 36,
267–306 (2009)

16. Ladd, S.R.: ACOVEA (Analysis of compiler options via evolutionary algorithm).
https://github.com/Acovea/libacovea (2000)

17. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: Iterated racing for automatic algorithm configuration. Opera-
tions Research Perspectives 3, 43–58 (2016)

18. Pérez Cáceres, L., Bischl, B., Stützle, T.: Evaluating random forest models for
irace. In: GECCO’17 Companion. ACM Press (2017)

19. Pérez Cáceres, L., Pagnozzi, F., Franzin, A., Stützle, T.: Automatic configura-
tion of gcc using irace: Supplementary material. http://iridia.ulb.ac.be/supp/
IridiaSupp2017-009/ (2017)

20. Plotnikov, D., Melnik, D., Vardanyan, M., Buchatskiy, R., Zhuykov, R., Lee,
J.H.: Automatic tuning of compiler optimizations and analysis of their impact.
In: Alexandrov, V., et al. (eds.) 2013 International Conference on Computational
Science. Procedia Computer Science, vol. 18, pp. 1312–1321. Elsevier (2013)

21. Püschel, M., Franchetti, F., Voronenko, Y.: Spiral. In: Padua, D. (ed.) Encyclopedia
of Parallel Computing, pp. 1920–1933. Springer, US (2011)

22. Siegel, S., Castellan, Jr, N.J.: Non Parametric Statistics for the Behavioral Sciences.
McGraw Hill, 2 edn. (1988)

23. Stützle, T.: ACOTSP: A software package of various ant colony optimization
algorithms applied to the symmetric traveling salesman problem (2002), http:
//www.aco-metaheuristic.org/aco-code/

24. Stützle, T., López-Ibáñez, M.: Automatic (offline) configuration of algorithms. In:
Laredo, J.L.J., et al. (eds.) GECCO (Companion), pp. 681–702. ACM Press (2015)

25. Whaley, C.R.: Atlas (automatically tuned linear algebra software). In: Padua, D.
(ed.) Encyclopedia of Parallel Computing, pp. 95–101. Springer, US (2011)

26. Wright, M.N., Ziegler, A.: ranger: A fast implementation of random forests for
high dimensional data in C++ and R. Arxiv preprint arXiv:1508.04409 [stat.ML]
(2015)

27. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evo-
lutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., et al.
(eds.) EUROGEN. pp. 95–100. CIMNE, Barcelona, Spain (2002)

215

Session 7 - Learning

216

Reinforcement Learning as a Model of Aposematism

Jan Teichmann1, Eduardo Alonso2 and Mark Broom1
1Department of Mathematics, City University London, London EC1V 0HB, UK

2Department of Computer Science, City University London, London EC1V 0HB, UK
E.Alonso@city.ac.uk

Abstract. Natural environments are intrinsically complex. This complexity
derives on the one hand from the high entanglement of organisms interacting in
competitive relationships with each other: the prey is part of the predator's
environment and vice versa. On the other hand, natural environments are also
defined by their dynamics of constant change. Thus, evolution in natural
environments is defined by the dynamic competitive relationships of organisms
and, typically, results in multiple species, which successively adapt in response
to their adaptations. In particular, predator-prey co-evolution has been
identified as an influential factor in the evolution of aposematism. In this paper
we address the problem of formalizing predator aversive learning in the
presence of aposematism by applying a reinforcement learning algorithm on a
biologically plausible predator lifetime model.

Keywords: Predator-prey, Aposematism, Reinforcement Learning.

1 Introduction

The majority of species are at risk of predation in their natural habitat and are targeted
by predators as part of the food web. Through the process of evolution by natural
selection a predator is confronted with manifold mechanisms that have developed to
avoid predation. So-called secondary defenses commonly involve the possession of
toxins or deterrent substances which are not directly observable by predators.
However, many defended species use conspicuous signals as warning flags in
combination with their secondary defenses –what we call aposematism. There is a
wide body of theory addressing the emergence and evolution of aposematism (Broom
et al., 2006; Broom et al, 2008; Lee et al., 2010; Lee et al., 2011; Leimar et al., 1986;
Marples et al., 2005; Ruxton et al., 2004; Ruxton et al., 2009; Yachi and Higashi,
1998). Within this context, the role of the predator as the selective agent and the
mechanisms of the predator's aversive learning process are at the heart of current
research (Barnett et al., 2007; Hagen et al., 2009; Sherrat, 2003). Nevertheless, there
is no accepted formal model of aversive learning in foraging literature.

A normative modern framework for aversive learning can be found within the field
of reinforcement learning, which provides a mapping of environmental states to an
individual's action in order to maximize a reward signal in an unsupervised manner
(Barto et al., 1990; Watkins, 1989; Sutton and Barto, 1998). Solving the underlying

217

	

reinforcement learning problem is crucial since natural environments are too complex
to learn from examples of desired behaviour –such examples will not be
representative for all states of an individual's environment. But it is in these unknown
situations when learning is most beneficial and an individual has to rely on its own
generalized experience from interactions with its environment. This is where a
classical trade-off arises between exploration and exploitation: to maximize a reward
an individual should perform the actions that it knows to be rewarding from previous
experience. However, to find such actions in the first place an individual had to
explore actions with unknown outcome. Therefore, the mapping of states to actions
has to be obtained through trial-and-error, or goal directed learning where actions
have subsequent effects on future rewards. The last decade has seen a proliferation of
research on the neural and psychological mechanisms of reinforcement learning. We
know from studies of neural correlates in behaving animals that reinforcement signals
in the brain represent reward prediction error rather than a direct reward-
reinforcement relation (Daw and Doya, 2006; Dayan and Balleine, 2002; Dayan and
Daw, 2008; Dayan and Niv, 2008; Doya, 2007; Maia, 2009; Montague et al., 1996;
Montague et al., 2004; Rangel et al., 2008; Schultz, 2002, 2007, 2008; Schultz et al.,
1997). Temporal difference learning is a reinforcement learning methodology that
reflects these insights by representing states and actions in terms of predictions about
future rewards where the learning objective is to iteratively update the target values of
future rewards towards their true values based on experience from interactions with
the environment. However, apart from in Teichmann et al. (2014a) reinforcement
learning has not been proposed to formalize aposematism within the foraging
problem.

In this paper, we introduce a predator lifetime model where an individual's payoff
is both dependent on the environment and additional aspects of an individual's
behaviour, metabolism, and lifetime traits, which are usually abstracted away in
reinforcement learning formalisms. This approach will allow us to investigate the cost
of learning and the interactions of behaviour and metabolism on the learning
outcome. In our approach the learning problem is to find an optimal foraging strategy
under the aspects of maximizing the predator's payoff in an episodal task such as a
day of foraging. Importantly, the predator's behaviour has delayed effects on its
rewards so that a trajectory is not only dependent on its initial conditions but also on
all the predator's actions and the subsequent state transitions. Therefore, we have to
choose an episodal learning algorithm, which considers the entirety of actions and
state transitions of a trajectory within its learning updates. We have used back-
propagation through time (BPTT) as an efficient method to calculate the derivative of
the predator's payoff function in the policy space for episodal tasks. The rest of the
paper is structured as follows: in the next section we describe how reinforcement
learning operates. The predator life model is introduced in detail in Section 3. Section
4 describes the reinforcement learning algorithm used to calculate optimal
trajectories, and the derivatives used are formulated in Section 5. The results of the
simulations are presented in Section 6. We shall conclude with a discussion of the
results and further work.

218

	

2 Reinforcement Learning

A typical reinforcement learning scenario is an animal inhabiting a state space
 S ⊂ !n , such that at k iteration it “lives” in state sk ∈S . The state space represents
any features the modeller considers relevant, typically a collection of stimuli, but can
also include internal constructs. At each iteration, the animal chooses an action uk
(from an action space uk ∈U), which takes it to the next state according to a model
function

sk+1 = f sk ,uk()
(1)

and gives it an immediate scalar rk , represented by the reward function

rk+1 = r sk ,uk() (2)

The animal keeps acting, forming a trajectory of states s0,s1,...() indefinitely or

until a given terminal state is reached. In this problem the animal must learn to choose
actions that maximize the expectation of the total long-term reward, the return,
received from any given start state s0 . Formally, the problem is to find an policy
π s,z() , where z is the parameter of a function approximator (typically, a neural
network), which calculates actions

uk = π sk ,z()
(3)

such that the following value function is maximized

V s0,z() = γ krkk∑

 (4)

subject to Equations (1), (2) and (3), where γ ∈ 0,1[] is a constant discount factor
that specifies the relative importance of long-term costs over short-term ones.

3 The Predator Lifetime Model

This section introduces the lifetime model of an individual predator and the definition
of the individual’s payoff based on its environment and additional aspects of its
behaviour, metabolism, and lifetime traits. In this model an individual predator is
characterized by its state sk at iteration k . The state is given by

sk = T ,A,X,Y{ } (5)

219

	

with T being the time of an iteration k within an episode, A the age of the

predator, and X and Y the axes of the spatial location of the predator within its
environment at iteration k . The predator finds itself in an environment defined by the
availability of different food sources. The dispersion of each prey population i within
the environment is described by a well-understood Gaussian distribution function

gi X,Y() = pi exp −
X − xi,0()2
2σ i,x

2 +
Y − yi,0()2
2σ i,y

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

(6)

with xi,0 , yi,0() being the center of the prey population with density pi and

σ i,x ,σ i,y() the spread of the prey. The model assumes that the prey is aposematic with

both models (venomous animals) and potential mimics (non-venomous animals which
mimic the defenses of venomous animals). The predator feeds on prey it encounters,
as it cannot distinguish between models and mimics based on their appearance.
However, the predator has the option to move around freely in its environment to
avoid encounters with possibly aversive prey based on its experience. The predator’s
locomotion is defined by its action vector uk , given by

uk = ex ,ey{ } (7)

with ex ,ey

representing the energy invested into locomotion at iteration k . The value
function V describes the total payoff of a predator at the end of an episode and is the
result of the predator’s interaction with the environment. Thereby, the predator’s
actions have subsequent effects on its environment through locomotion and the
predator’s spatial location within the environment according to the reinforcement
learning model. The subsequently received payoff for the predator being in a specific
state sk and taking action uk at iteration k is given by the payoff function as follows

rk+1 = !V = λ Ak()R sk()− t0 !T
statedependent

" #$$$ %$$$
− E uk()
actiondependent&'$ ($

(8)

where t0

!T is the metabolic cost of the predator, − E uk() the absolute energy

expenditure of a predator’s actions, and R s() the state specific payoff defined as

R sk() = gi sk()d ti() r − ti2()
i
∑ (9)

 where

220

	

d t() = 1
1+ d0t

(10)

is the probability of ingesting a prey individual of toxicity t after taste sampling.

The model has the option to include age related effects such as an age dependent
agility of the predator given, for example, by

λ A() = 1
1+ A

(11)

The environment of this model is Markovian defined by the state transition

function

f s, u()k→k+1
=

!T = 1+ gi sk() d ti() th + ttti2() + ts()
i
∑

!A = 1/ λ0() !T
!X = tanh c0ex()
!Y = tanh c0ey()

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

(12)

The transition of time

!T() between iterations occurs in unit time steps reflecting
abasal metabolic expenditure and the additional costs of foraging such as the
sampling of prey items ts , the handling of prey th , and the recovery from ingested

toxins ttt
2 . The predator ages

!A() linearly with time. The predator’s locomotion

results in a change of its spatial location
!X, !Y() depending on the predator’s energy

investment ex ,ey with the maximal spatial displacement per iteration being a unit step
of one. The functions of the model are governed by single parameters, which allow
the trade off between the different aspects of the predator’s behaviour, lifetime traits,
and environment x0, y0,t0,d0,λ0,c0() . These parameters define the lifetime model.
The only term missing is the subjective payoff. The assumption is that this subjective
payoff can be reverse engineered from the observed foraging behaviour of the
predator using a reinforcement learning algorithm. The aim is to find the subjective
value of the payoff for prey type i such as to reproduce the observed foraging
behaviour of the predator. Additionally to the lifetime model, we define a final
instantaneous cost Ψ of the terminal state sl with l being the final iteration of an
episode based on the spatial distance of the predator from its den at X = 0,Y = 0() :

Ψ s()l =
−rl X 2 +Y 2 if X 2 +Y 2 > ε
0 otherwise

⎧
⎨
⎪

⎩⎪

(13)

221

	

with −rl being a punishment for not returning to the den at the end of an episode.

Within a biological context such a final cost can be thought of as a step-like around
the predator’s den. If a predator has to feed offspring staying behind in the den the
cost of almost returning will not decrease smoothly within the proximity of the den.

4 Reinforcement Learning using BPTT

As discussed previously, the control problem in reinforcement learning is about
finding an optimal behaviour policy (aka an actor). Reformulating reinforcement
learning using an actor becomes the problem of finding the parametrization

!z of the
actor π

!s, !z() that maximizes the total value –or minimizes the overall prediction
error for a complete trajectory based on V

!s,π !s, !z()() . This can be achieved using hill
climbing on the total value of a complete trajectory itself with respect to

!z , i.e.

 Δ
!z =α ∂V / ∂!z() , which is also called a policy gradient with back-propagation

through time (BPTT) being an efficient implementation of the optimization problem
for episodal tasks (Werbos, 1974). BPTT uses the actor π

!s, !z() , traditionally
implemented as an artificial neural network with weights

!z as a universal function
approximator and which is equivalent to the behaviour policy. As such, BPTT is an
off-line learning algorithm that issues a weight update Δ

!z at the end of an episode.
The delayed effects of actions in the reinforcement learning problem means that the
outcome of a trajectory is not only dependent on its initial conditions but also on all
the actions of an individual and the subsequent state-transitions. Therefore, an
episodal learning algorithm has to consider the entirety of actions and state-transitions
of a trajectory within its updates. Thereby, the trajectory of a complete episode is
unrolled backwards using the Markovian properties of the environment with the
component ∂V / ∂

!z()k being computed from the prevailing quantity ∂V / ∂
!z()k+1 , i.e.

the policy gradient of the value function is computed backwards in time starting at the
end of an episode (Eq. 14). This property gives the methodology its name. It is well-
known that back-propagation is an efficient way of calculating the derivative of the
network function in artificial neural networks. Back-propagation through time is the
extension of that methodology to efficiently calculate the derivative of the network
function in episodal tasks where the neural network has been applied multiple times
to create a trajectory of states and payoffs – similarly to recurrent neural network
problems – including the concepts of discounting and bootstrapping. Therefore, the
derivative of the overall network function is the sum of the discounted incremental
gradients at each iteration of the trajectory with their calculation expanding as
follows: at the beginning of the BPTT algorithm the partial gradients of the value
function are initialized: ∂V / ∂

!z()l ←
!
0

and ∂V / ∂

!s()l ← ∂Ψ / ∂!s()l , with Ψ (Eq. 13)
being the final instantaneous cost of the terminal state sl , and l being the final
iteration in an episode of finite length.

Following the initialization the algorithm processes the trajectory of an episode
backwards in time starting from the second last iteration to the first iteration in the
episode. At each step the algorithm adds the partial policy gradient of the current

222

	

iteration to the overall policy gradient of the value function for an episode ∂V / ∂
!z()k

as follows:

∂V
∂!z

⎛
⎝⎜

⎞
⎠⎟ k

← ∂V
∂!z

⎛
⎝⎜

⎞
⎠⎟ k+1

+ γ k ∂π !s, !z()
∂!z

⎛
⎝⎜

⎞
⎠⎟ k

actor
" #$ %$

∂r
∂!u

⎛
⎝⎜

⎞
⎠⎟ k

+ γ ∂ f
∂!u

⎛
⎝⎜

⎞
⎠⎟ k

∂V
∂!s

⎛
⎝⎜

⎞
⎠⎟ k+1

⎛
⎝⎜

⎞
⎠⎟

behavioral gradient
" #$$$$$ %$$$$$

(14)

with the following state dependent value contribution deriving from the Markovian

properties of the environment

∂V
∂!s

⎛
⎝⎜

⎞
⎠⎟ k

= ∂r
∂!s

⎛
⎝⎜

⎞
⎠⎟ k

+ γ ∂ f
∂!s

⎛
⎝⎜

⎞
⎠⎟ k

∂V
∂!s

⎛
⎝⎜

⎞
⎠⎟ k+1

⎛
⎝⎜

⎞
⎠⎟

environmental gradient
" #$$$$$ %$$$$$

+
∂π !s, !z()

∂!z
⎛
⎝⎜

⎞
⎠⎟ k

actor
" #$ %$

∂r
∂!u

⎛
⎝⎜

⎞
⎠⎟ k

+ γ ∂ f
∂!u

⎛
⎝⎜

⎞
⎠⎟ k

∂V
∂!s

⎛
⎝⎜

⎞
⎠⎟ k+1

⎛
⎝⎜

⎞
⎠⎟

behavioral gradient
" #$$$$$ %$$$$$

(15)

The final weight update gives the implementation of hill climbing on the value

function V with respect to the policy gradient of π
!s, !z() using

!z ← !z +α ∂V
∂!z

(16)

with α representing a learning rate. Summarizing, the BPTT algorithm can be

understood as propagating the policy gradient of the value function with respect to a
future state ∂V / ∂

!s()k+1 backwards in time through the actor, the state-transition
function, and the payoff function to obtain the policy gradient of the value function

 ∂V / ∂
!s()k of the previous state. As BPTT utilizes the Markovian properties of the

environment using the state-transition function for the propagation of the state-
dependent gradient backwards through time it is a model-based methodology. BPTT
as a simple hill-climbing algorithm on the value function has robust convergence
proofs (Werbos, 1990).

5 Derivatives Used by the BPTT Algorithm

As BPTT is model-based it requires a number of derivatives of the underlying
lifetime model. The lifetime model is implemented as a Markovian decision process
and the propagation of incremental gradients backwards through time in the algorithm
requires the state ∂ f

!sk ,
!uk() / ∂!s and action ∂ f

!sk ,
!uk() / ∂!u dependent derivatives of

the state-transition function f , where

∂ f !sk ,
!uk()

∂!u
= ∂ "T

∂!u
, ∂
"A

∂!u
, ∂
"X

∂!u
, ∂
"Y

∂!u
⎧
⎨
⎩

⎫
⎬
⎭

(17)

223

	

and

∂ f !sk ,
!uk()

∂!s
= ∂ "T

∂!s
, ∂
"A

∂!s
, ∂
"X

∂!s
, ∂
"Y

∂!s
⎧
⎨
⎩

⎫
⎬
⎭

(18)

Furthermore, BPTT requires the state and action dependent derivatives,

respectively, ∂rk+1
!sk ,
!uk() / ∂!s and ∂rk+1

!sk ,
!uk() / ∂!u of the payoff function rk+1 . In

regards to the lifetime model, the derivatives of the state transition function f are

∂ !T
∂"s

= pi
∂gi X,Y()

∂"si
∑ ts + d ti() th,i + ttti2()() =
∂ !T
∂T

= 0

∂ !T
∂A

= 0

∂ !T
∂X

= pi −gi X,Y() X − xi,0() /σ i,x
2() ts + d ti() th,i + ttti2()()

i
∑

∂ !T
∂Y

= pi −gi X,Y() X − yi,0() /σ i,y
2()

encounter with prey
$%%%%% &%%%%%

ts + d ti() th,i + ttti2()()
prey handling

$%%% &%%%i
∑

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

(19)

where the state dependent time transition ∂ !T / ∂

"s is defined by the predator’s
spatial location within the environment and its interactions with the present prey.
Otherwise time progresses constantly and independently of age and time. The state
dependent derivative of the predator’s ageing follows directly from the time
transition. Other relevant derivatives of the state transition function f are the action
dependent changes in the predator’s spatial location within the environment. The
predator can invest energy ex ,ey into locomotion with respect to X and Y
respectively. By definition of the lifetime model the remaining derivatives of the state
transition function f are independent of the state or the predator’s actions, i.e.

∂ !T
∂"u

= ∂ !A
∂"u

= ∂ !X
∂"s

= ∂ !Y
∂"s

=
"
0

(20)

with the spatial location of the predator being solely affected by the predator’s

action. Additionally, time and age progress independently from the predator’s
investment into locomotion within each iteration. Next, consider the state and action
dependent derivatives related to the value function V , which are given by the sum of
discounted payoffs along the trajectory of an episode. The derivatives of the
incremental changes to the value of an episode along a trajectory are

224

	

∂ !V
∂"s

=

∂ !V
∂T

= 0

∂ !V
∂A

= !λR sk()
∂ !V
∂X

= λ A() ∂R sk()
∂X

− t0
∂ !T
∂X

⎛
⎝⎜

⎞
⎠⎟

∂ !V
∂Y

= λ A() ∂R sk()
∂Y

− t0
∂ !T
∂Y

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨

⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪

(21)

where ∂R

!s() / ∂!s is the derivative of the state dependent payoff from interacting
with prey given by

∂R !s()
∂!s

= pi
∂gi X,Y()

∂!si
∑ d ti() ri − ti2() =

∂R !s()
∂T

= 0

∂R !s()
∂A

= 0

∂R !s()
∂X

= pi −gi X,Y() X − xi,0() /σ i,x
2()d ti() ri − ti2()

i
∑

∂R !s()
∂Y

= pi −gi X,Y() X − yi,0() /σ i,y
2()

encounter with prey
" #$$$$$ %$$$$$

d ti() ri − ti2()
prey payoff

" #$$ %$$i
∑

⎧

⎨

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

(22)

and

!λ A() = − 1
A +1()2

(23)

The absolute amount of energy invested into locomotion each iteration

affects the value of an episode as follows:

∂ !V
∂"u

=

∂ !V
∂ex

= −sgn ex()

∂ !V
∂ey

= −sgn ey()

⎧

⎨
⎪
⎪

⎩
⎪
⎪

(24)

225

	

6 Results

The results in Fig. 1 and Fig. 2 depict the trajectories which are close to an optimal
trajectory and which were found running the learning algorithm continuously saving
trajectories that increased the overall payoff V for an episode. The environment is
composed of an aposematic prey population and a population of Batesian mimics.
The predator cannot distinguish between them visually and has to utilize experience
from ingesting prey individuals to find a rewarding feeding ground. The trajectory of
a predator which is not utilizing taste-sampling (Fig. 1a) shows avoidance of the
aversive prey population taking a non-direct route to the population of mimics. The
pre-condition of exploration for successful aversion formation and the non-direct
route result in a very low value for the locomotion parts of the trajectory. In order to
make the predator exploit the population of mimics the length of an episode had to be
high with l = 80 in the simulation. The taste-sampling predator takes a more direct
route towards the population of mimics and experiences a much higher value for the
locomotion parts of the trajectory (Fig. 1b).

Fig. 2 shows the locomotion profile for the non-taste sampling predator. The
predator’s locomotion in general is optimized towards efficiency maximizing the
displacement per energy expenditure maxex d

!X / dex and

maxey d !Y / dey , which is at

ex = ey = 0.5 in the simulation with a diagonal locomotion of length 0.7 being
therefore most efficient. There is a trade-off in this simulation as the population of
mimics is not located on the diagonal and due to the presence of an aposematic prey
population. Additionally, the predator is over-staying in the feeding grounds with the
second half of the trajectory showing a more rapid locomotion than the first half.

(a) The state dependent reward payoff R(sk)
for a predator not utilizing taste sampling: d0 =
0 and ts = 0.

(b) The state dependent reward payoff R(sk)
for a predator utilizing taste sampling: d0 = 1
and ts = 0.1.

226

	

(c) The partial derivative of the reward with
respect to the spatial position of the predator
not utilizing taste sampling: d0 = 0 and ts = 0.

(d) The partial derivative of the reward with
respect to the spatial position of the predator
utilizing taste sampling: d0 = 1 and ts = 0.1.

Fig. 1. The state dependent reward of an exemplary environment with aposematic prey and
Batesian mimics. All with th = 0.1, tt = 0.2, p1 = p2 = 0.5, x1,0 = y1,0 = 5, σ 1,x = 5, σ 1,y = 2.55, t1

= 5, r1 = 1, x2,0 = 10, y2,0 = 8, σ 2,x = 2, σ 2,y = 2, t2 = 0, r2 = 15, l = 80.

(a) The predator’s locomotion optimizes the
energy expenditure with

 maxe d
!X / de = 0.5 and

!X 0.5()2 + !Y 0.5()2 = 0.7 .

(b) This plot shows the difference of the
second half compared to the first half of an
episode. The predator prefers to feed longer
and return to its den using a greater step size
than the optimal of 0.7.

Fig. 2. The locomotion profile of a predator not utilizing taste sampling with an episode of
length l = 80.

�5 0 5 10 15

@X

�5

0

5

10

15

@Y

�5 0 5 10 15

@X

�5

0

5

10

15

@Y

227

	

These results show some interesting properties: (a) In a biological context the
trajectories of the predator are unstable; (b) the element of the model which is
generally optimized is the efficiency of locomotion (the behavioural expenditure); (c)
a non-taste sampling predator avoids the aposematic prey population in order to
minimize its metabolic costs from toxin ingestion; and (d) The predator shows a
tendency to over-stay in the feeding grounds and returns to the den with above
optimal energy expenditure for locomotion.

7 Discussion

In this paper we have presented a predator lifetime model including life history traits
that have been traditionally abstracted away in the literature such as metabolic costs,
locomotion, prey handling, and toxin recovery. The model was defined in such a way
that it can be interpreted in a psychological context of subjective behaviour driven by
reward motivated objectives and an evolutionary context of a behavioural repertoire
which is driven by fitness and co-evolution between predator and prey.

We applied a reinforcement learning algorithm trained using back-propagation
through time (BPTT), to simulate behaviour of single individuals driven by rewards.
BPTT address learning in episodal tasks based on experience including discounted
future rewards. We used an artificial neural network as a universal function
approximator in order to implement the policy. The learning task for the simulator is
defined in a way to address the discussion of when behaviour is optimal (Teichmann
et al., 2014b). On the one hand, the environment in the simulation contains rewards
and punishment and optimal behaviour should maximize positive reinforcement. On
the other hand, the environment contains a fitness related element in the form of an
instantaneous final cost in case the predator does not return to its den at the end of an
episode. From a biological context this cost function is a steep step-like function: if
the predator has to feed offspring in its den then being close to the den will not
gradually reduce the cost of not returning. The trajectories from the simulator show
instability due to the interference of maximizing positive reinforcement along the
trajectory (excluding the fitness cost) and maximizing the value of a complete
trajectory (including the fitness cost). The simulator oscillates between two states: (i)
a state of maximizing rewards along the trajectory excluding the final cost where the
predator stays in the feeding ground and does not return to its den and (ii) a state of
maximizing the value of the complete trajectory including the final cost where the
predator successfully returns to its den. However, the simulation shows that the
predator generally optimizes the efficiency of its behavioural expenditure. That the
rewards interfere with the optimal behaviour as the predator overstays in the feeding
grounds and uses above optimal energy for its locomotion on its return to the den
corresponds in fact with biological findings (Nonacs, 2001). Summarizing, as far as
we know the paper presents the first attempt to formalize foraging behaviour as a
learning problem. In order to do this we have extended the traditional reinforcement
learning framework with relevant ethological features, making it biologically
plausible (à la Berridge 1996, 2003; Berridge et al., 2009). Hence our model is a

228

	

contribution to foraging theory as well as to reinforcement learning research. Of
course, our results are preliminary, and future work will include investigating the
effects of alternative terminal cost functions and refining the lifetime model. For
instance, the model could be further developed by integrating a Darwinian fitness
function. Finally, we will also consider whether we can eliminate, at least partially,
fluctuations around optimal trajectories by using variations of the learning algorithm
as such.

References

Barnett, C.A, Bateson, M., Rowe, C.: State-dependent decision making: educated predators
strategically trade off the costs and benefits of consuming aposematic prey. Behavioral
Ecology 18, 645–651 (2007).

Barto, A.G., Sutton, R.S., Watkins, C.J.C.H.: Learning and sequential decision making. In:
Gabriel, M., Moore, J.W. (eds.) Learning and Computational Neuroscience: Foundations
of Adaptive Networks, pp. 539-602, MIT Press, Cambridge, Mass (1990).

Berridge, K.C.: Food reward: brain substrates of wanting and liking. Neuroscience &
Biobehavioral Reviews 20(1), 1–25 (1996).

Berridge, K.C.: Pleasures of the brain. Brain and Cognition 52(1), 106–128 (2003).
Berridge, K.C., Robinson, T.E., Aldridge, J.W.: Dissecting components of reward: ‘liking’,

‘wanting’, and learning. Current Opinion in Pharmacology 9(1), 65–73 (2009).
Broom, M., Ruxton, G.D., Speed, M.P.: Evolutionarily stable investment in anti-predatory

defences and aposematic signaling. In: Deutsch, A., Bravo de la Parra, R., de Boer, R.J.,
Diekmann, O., Jagers, P., Kisdi, E., Kretzschmar, M., Lansky, P., Metz, H. (eds.)
Mathematical Modeling of Biological Systems, Volume II: Epidemiology, Evolution and
Ecology, Immunology, Neural Systems and the Brain, and Innovative Mathematical
Methods, pp. 37–48, Springer, Berlin (2008).

Broom, M., Speed, M.P., Ruxton, G.D.: Evolutionarily stable defence and signalling of that
defence. Journal of Theoretical Biology 242, 32–34 (2006).

Daw, N.D., Doya, K.: The computational neurobiology of learning and reward. Current
Opinion in Neurobiology 16, 199–204 (2006).

Dayan, P., Balleine, B.W.: Reward, motivation, and reinforcement learning. Neuron 36(2),
285–298 (2002).

Dayan, P., Daw, N.D.: Decision theory, reinforcement learning, and the brain. Cognitive,
Affective & Behavioral Neuroscience 8, 429–453 (2008).

Dayan, P., Niv, Y.: Reinforcement learning: the good, the bad and the ugly. Current Opinion
in Neurobiology 18, 185–196 (2008).

Doya, K.: Reinforcement learning: Computational theory and biological mechanisms.
Human Frontiers Science Program 1, 30–40 (2007).

Guilford, T.: "Go-slow" signalling and the problem of automimicry. Journal of theoretical
biology 170, 311–316 (1994).

Hagen, E.H., Sullivan, R.J., Schmidt, R., Morris, G., Kempter, R., Hammerstein, P.:
Ecology and neurobiology of toxin avoidance and the paradox of drug reward.
Neuroscience 160, 69 –84 (2009).

Lee, T.J., Marples, N.M., Speed, M.P.: Can dietary conservatism explain the primary
evolution of aposematism?. Animal Behaviour 79, 63 –74 (2010).

Lee, T.J., Speed, M.P., Stephens, P.A.: Honest signaling and the uses of prey coloration.
The American Naturalist 178(1), E1–E9 (2011).

229

	

Leimar, O., Enquist, M., Sillen-Tullberg, B.: Evolutionary stability of aposematic coloration
and prey unprofitability: A theoretical analysis. The American Naturalist 128(4), 469–490
(1986).

Maia, T.V.: Reinforcement learning, conditioning, and the brain: Successes and challenges.
Cognitive, Affective, & Behavioral Neuroscience 9, 343–364 (2009).

Marples, N.M., Kelly, D.J., Thomas, R.J.: Perspective: The evolution of warning coloration
is not paradoxical. Evolution 59, 933–940 (2005).

Montague, P.R., Dayan, P., Sejnowski, T.J.: A framework for mesencephalic dopamine
systems based on predictive Hebbian learning. The Journal of neuroscience 16, 1936–1947
(1996).

Montague, P.R., Hyman, S.E., Cohen, J.D.: Computational roles for dopamine in
behavioural control. Nature 431, 760–767 (2004).

Nonacs, P.: State dependent behavior and the marginal value theorem. Behavioral Ecology
12(1), 71–83 (2001).

Rangel, A., Camerer, C., Montague, P.R.: A framework for studying the neurobiology of
value-based decision making. Nature Reviews Neuroscience 9, 545–556 (2008).

Ruxton, G.D., Sherratt, T.N., M.P. Speed, M.P.: Avoiding attack: The evolutionary ecology
of crypsis, warning signals and mimicry. Oxford University Press, Oxford (2004).

Ruxton, G.D., Speed, M.P., Broom, M.: Identifying the ecological conditions that select for
intermediate levels of aposematic signaling. Evolutionary Ecology 23, 491–501 (2009).

Schultz, W.: Getting formal with dopamine and reward. Neuron 36, 241–263 (2002).
Schultz, W.: Multiple dopamine functions at different time courses. Annual Review of

Neuroscience 30, 259–288 (2007).
Schultz, W.: Neuroeconomics: the promise and the profit. Philosophical Transactions of the

Royal Society B: Biological Sciences 363, 3767–3769 (2008).
Schultz, W., Dayan, P., Montague P.R.: A neural substrate of prediction and reward.

Science 275, 1593–1599 (1997).
Sherratt, T.N.: State-dependent risk-taking by predators in systems with defended prey.

Oikos 103, 93–100 (2003).
Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. Cambridge University

Press, Boston (1998).
Teichmann, J., Broom, M., Alonso, E.: The application of temporal difference learning in

optimal diet models. Journal of Theoretical Biology 340, 11–16 (2014a).
Teichmann, J., Broom, M., Alonso, E.: The evolutionary dynamic of aposematism: a

numerical analysis of co-evolution in finite populations. Mathematical Modelling of
Natural Phenomena 9, 148-164 (2014b).

Watkins, C.J.C.H.: Learning from delayed rewards. Ph.D. Thesis. King’s College,
Cambridge University, London (1989).

Werbos, P.J.: Beyond regression: New tools for prediction and analysis in the behavioral
sciences. Ph.D. Thesis. Harvard University, Cambridge, Mass (1974).

Werbos, P.J.: Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE 78(10) 1550–1560 (1990).

Yachi, S., Higashi, M.: The evolution of warning signals. Nature 394, 882–884 (1998).

230

Offline Learning for Selection Hyper-heuristics

with Elman Networks

W. B. Yates and E. C. Keedwell

Computer Science, College of Engineering, Mathematics and Physical Sciences,
University of Exeter, Exeter, EX4 4QF, UK.

wy254@exeter.ac.uk E.C.Keedwell@exeter.ac.uk

Abstract. Offline selection hyper-heuristics are machine learning meth-
ods that are trained on heuristic selections to create an algorithm that is
tuned for a particular problem domain. In this work, a simple selection
hyper-heuristic is executed on a number of computationally hard bench-
mark optimisation problems, and the resulting sequences of low level
heuristic selections and objective function values are used to construct
an offline learning database. An Elman network is trained on sequences
of heuristic selections chosen from the offline database and the network’s
ability to learn and generalise from these sequences is evaluated. The net-
works are trained using a leave-one-out cross validation methodology and
the sequences of heuristic selections they produce are tested on bench-
mark problems drawn from the HyFlex set. The results demonstrate that
the Elman network is capable of intra-domain learning and generalisa-
tion with 99% confidence and produces better results than the training
sequences in many cases. When the network was trained using an inter-
domain training set, the Elman network did not exhibit generalisation
indicating that inter-domain generalisation is a harder problem and that
strategies learned on one domain cannot necessarily be transferred to
another.

Keywords: Hyper-heuristics, Elman networks, Offline learning.

1 Introduction

Hyper-heuristics are heuristic methods that are employed to solve computa-
tionally hard problems for which no known effective algorithmic solution exists.
Typically such problems are presented as optimisation problems where the goal
is to minimise an objective function defined on a space of solutions. Such methods
have proved effective on a number of real world problems (see [1]).

A selection hyper-heuristic selects heuristics from a given set of low level
heuristics and applies them sequentially to optimise a particular problem. Many
hyper-heuristics employ learning algorithms in order to improve optimisation
performance, and this learning may be classified as either online or offline. Online
learning is based on the low level heuristic selections and resulting objective
function values computed during the execution of a hyper-heuristic. In contrast,

231

2

offline learning is performed on a database of low level heuristic selections and
objective function values computed by a hyper-heuristic on a fixed number of
benchmark problems. This paper is concerned with offline learning for selection
hyper-heuristics.

A variety of machine learning algorithms have been proposed for offline learn-
ing (see for example [2], [3], and [4]). In [2] classifier systems are applied to the
1D bin packing problem. Here the system learns a set of rules which associate
characteristics of the current problem state with specific heuristics. Heuristics
are selected and applied sequentially, thus gradually altering the characteristics
of the problem. The system when trained on several problems, generalises by
also performing well on unseen problems. In [3] case based reasoning (CBR) is
applied successfully to exam timetabling problems. The assumption underlying
CBR is that “similar problems will have similar solutions”. Previous problems
and their “good” solutions (called source cases) are collected and stored. A sim-
ilarity based retrieval process compares the source cases with the problem at
hand, and selects heuristics that were employed successfully in similar situa-
tions. Here the authors employ a two-stage learning process, one for the case
representation (or feature selection) and another for source case selection. In [4],
messy genetic algorithms are used to evolve combinations of condition-action
rules which represent problem states and associated heuristics. Each chromo-
somes represents a hyper-heuristic and contains the set of rules that determine
which heuristic should be applied to which problem state. When tested, these
hyper-heuristics generalised well and solved many of the test problems efficiently.

In each case, learning is used to improve optimisation performance by im-
proving the selection of individual heuristics at particular points in the search
process across a number of training problems. In contrast, recent research (see [5]
and [6]) has argued that heuristic selections should be understood as part of a
sequence of selections. The concept of heuristic sequences is intuitive, certain
heuristic orderings make sense (e.g. an explorative mutation followed by an ex-
ploitative local search) whereas others (e.g. the reverse of the previous example)
do not.

The objective of this study is to test the thesis that subsequences of heuristics
can be found in the offline learning database that are effective across a number
of problems and (it is hoped) problem domains. A selection hyper-heuristic is
executed on the well known HyFlex set of benchmark problems (see [7]) and
the resulting sequences of low level heuristic selections and objective function
values are used to construct an offline learning database. An Elman network
(see [8]) is used to extract effective subsequences of heuristics automatically by
learning from suitable sets of sequences chosen from the offline database. Elman
networks are recurrent neural networks which naturally learn from, process and
produce sequences of data. After training, the Elman network is used to com-
pute new sequences of heuristics which are then evaluated on unseen HyFlex
example problems. The aim is to determine if the network has generalised from
the training sequences. In this context, generalisation means that the network is

232

3

able to produce a sequence of heuristic selections which, when evaluated on the
unseen examples, outperform the training sequences.

The benchmark problems are drawn from 4 distinct problem domains. Offline
learning can be classified as either intra-domain or inter-domain. In intra-domain
learning, the training sequences and the test optimisation problem are drawn
from the same problem domain. In inter-domain learning, the training sequences
and test problem can be drawn from different domains.

The results presented here demonstrate that an Elman network is capable of
intra-domain learning and generalisation with 99% confidence when trained on
suitable sequences of heuristic selections. When trained using an inter-domain
training set, the Elman network did not exhibit generalisation indicating that
inter-domain generalisation is harder, and the methodology used to choose the
training sets is unsuitable in this case.

This paper is structured as follows. Section 2 details the methodology and
describes the construction of the offline learning database, the structure of the
Elman networks and their training sets, and the hyper-heuristic used to evaluate
the sequences produced by the trained Elman networks. Section 3 contains the
results of two experiments designed to test the suitability of Elman networks for
offline intra-domain and inter-domain learning. Finally, Section 4 presents the
conclusions of this study.

2 Methodology

Section 2.1 contains a description of the HyFlex benchmark problems and the
DBGen hyper-heuristic used to generate the offline learning database. In Section
2.2 the mathematical concept of a logarithmic return is introduced and used
to quantify hyper-heuristic performance, and to select training sequences from
the database. Section 2.3 details the architecture of the Elman network used in
this study, while Section 2.4 describes the construction of the intra-domain and
inter-domain training sets. Finally, in Section 2.5, the BLIND hyper-heuristic
that is used to evaluate the sequences produced by the trained Elman networks
is presented.

2.1 HyFlex and the Offline Learning Database

The Hyper-heuristics Flexible framework (or HyFlex1, see [7]) is a set of bench-
mark problems that has been used in a number of studies. See for example [9],
[10], [11], [12], [5], and [13]. HyFlex contains an implementation of four compu-
tationally hard problem domains:

1. 1D bin packing (BP),
2. permutation flow shop (PFS),
3. boolean satisfiability (SAT), and

1 HyFlex, Cross-domain Heuristic Search Challenge (CHeSC 2011) is used in this
study (see http://www.asap.cs.nott.ac.uk/chesc2011/).

233

4

4. personnel scheduling (PS).

Each problem domain contains 10 distinct problems of varying complexity. HyFlex
hides all problem specific information such as the solution representations, the
solution constructions, and the low level heuristic implementations. Each HyFlex
problem has four general heuristic classes:

1. parameterised mutation (M) which perturbs a solution randomly,
2. crossover (C) which constructs a new solution from two or more existing

solutions,

3. parameterised ruin and recreate (R) which destroys a given solution partially
and then rebuilds the deleted parts, and

4. parameterised hill climbing or local search (L) that incorporates an iterative
improvement process and returns a non-worsening solution.

The actual number and implementation of the low level heuristics in each class
differs between problem domains. As a result, it is not possible to directly com-
pare sequences of low level heuristics from different domains. Instead, sequences
of heuristic classes are compared.

Algorithm 1 The DBGen hyper-heuristic in pseudocode.

1. ITERATIONS ← 150;
2. new-sol ← initialiseSolution();
3. new-obj ← f(new-sol);
4. cross-sol ← initialiseSolution();
5. cross-obj ← f(new-sol);
6. while (ITERATIONS−− > 0) do
7. cur-sol ← new-sol;
8. cur-obj ← new-obj;
9. Heuristic h ← selectHeuristic();
10. new-sol ← apply(h, new-sol, cross-sol);
11. new-obj ← f(new-sol);
12. double r ← ran();
13. if (new-obj < cross-obj or r < 0.5) then
14. cross-sol ← new-sol;
15. cross-obj ← new-obj;
16. end if
17. if (new-obj ≥ cur-obj and r ≥ 0.5) then
18. new-sol ← cur-sol;
19. new-obj ← cur-obj;
20. end if
21. end while

The random, unbiased, single selection hyper-heuristic DBGen used to gener-
ate the offline learning database is shown in listing 1. The function select() (line
9) selects a single low level heuristic class at random from the set {C, L, R, M}. The
function apply() (line 10) takes the heuristic class and chooses, again at random,
an actual low level heuristic and its parameters from the available heuristics of
that class. The actual heuristic is then applied to the current solution cur-sol,
and if the class is C, to the current crossover solution cross-sol. An objective
function evaluation (line 11) and an acceptance check (lines 12–20) are then

234

5

performed. The function ran() (line 12) returns a uniformly distributed pseu-
dorandom number in the interval (0, 1). If a new solution’s objective value is
less than the current solution’s objective value cur-obj or ran() < 0.5 then it is
accepted. Otherwise the new solution is rejected. The random term allows new
solutions to be accepted regardless of their objective function approximately
50% of the time. Accepting states that may lead to a large increase in objective
function value forces the DBGen hyper-heuristic to explore the space of low level
heuristic selections instead of optimising the problem efficiently.

The DBGen hyper-heuristic is executed 40 times, for 150 selections, on the
10 problems in each of the 4 HyFlex domains. The resulting 1600 sequences of
low level heuristic selections and associated objective function values are used
to construct an offline learning database. The number of 40 trials was chosen
because for a sufficiently large number (say n > 30) the central limit theorem
ensures that the arithmetic mean of any observed values will be approximately
normally distributed, regardless of the underlying distribution. This allows ro-
bust statistics to be calculated for each problem. The number of 150 selections
was chosen after experimental observations indicated that no major improve-
ments in objective function occurred beyond this point.

2.2 Final Log Returns and the BEST Sequences

In this study, logarithmic returns are used to measure the performance of a
hyper-heuristic. The final log return αf of a hyper-heuristic run or sequence s is
the log return between the initial solution of a run x0, which has an objective
function value o0, and the best final solution xmin found during the run, which
has an objective function value of omin. In symbols

αf (s) = log10

(
omin

o0

)
.

Logarithmic returns allows us to easily compare the objective function values
produced by a hyper-heuristic executing on a number of distinct problems or
problem domains.

The mean final log return of a set of N sequences is

αf ({s1, . . . , sN}) = 1

N

N∑

i=1

αf (si).

The function αf is the mean of log values. The anti-log of the mean of the logs
is equivalent to the geometric mean. In symbols

log−1
(

1

N

N∑

i=1

log(xi)

)
= N

√
x1 · x2 · · ·xN

assuming the values xi all have the same sign. The geometric mean is always
less than or equal to the arithmetic mean, and is employed to average values

235

6

which have very different ranges. The geometric mean normalises the ranges, so
that no range dominates the average. Although the use of log returns normalises
the ranges of different objective functions, the log return values can still differ
significantly, as some problems are harder to optimise than others. For this
reason, in this study, the arithmetic mean of the final log returns αf is used
in preference to the arithmetic mean of the decimal returns.

The final unit log return βf is the final log return αf divided by the sequence’s
length up to (and including) the minimum objective function value. That is

βf (s) =
αf (s)

min
.

The length of a sequence is important because for many real world optimisation
applications the execution times of the low level heuristics and objective function
evaluations can be non-trivial.

The HyFlex benchmark problems set consists of 4 problem domains, each
one containing 10 problems. The set of the 40 “best” sequences in the offline
database, denoted BEST, consists of the sequences with the lowest final unit
log return βf for each problem. These sequences are the shortest sequences that
produce the largest decrease in the objective function value for each problem. As
the offline database was generated by executing the DBGen hyper-heuristic 40
times on each of the 40 HyFlex problems, the “best” sequence for each problem
is selected from a pool of 40 sequences.

2.3 Elman Networks

Elman networks are examples of simple recursive neural networks. They are
typically applied to problems which express themselves naturally as temporal
sequences such as natural language processing applications (see [8] and [14]).
Such networks learn from, process, and produce sequences of data.

The training sequences are sequences of low level heuristics selections chosen
from the offline learning database. Each such sequence is encoded using a field
representation so that it can be processed by the Elman network. Specifically,
each low level heuristic selection {M, C, R, L} is encoded as a vector in {0, 1}4
where

M = (1, 0, 0, 0)

C = (0, 1, 0, 0)

R = (0, 0, 1, 0)

L = (0, 0, 0, 1),

and X = (0, 0, 0, 0) denotes a missing or unknown selection. These vectors are
then concatenated to form an input pattern. For example, given the sequence
MCRLR, an input pattern of 4 low level heuristic selections, corresponding to the
current selection L and the three past selections MCR is

(

M︷ ︸︸ ︷
1, 0, 0, 0,

C︷ ︸︸ ︷
0, 1, 0, 0,

R︷ ︸︸ ︷
0, 0, 1, 0,

L︷ ︸︸ ︷
0, 0, 0, 1)

236

7

while the output pattern corresponding to the next selection in the sequence is

(

R︷ ︸︸ ︷
0, 0, 1, 0).

The number of selections to be used as an input is termed the memory length
of a selection strategy (see [15]). Using the current heuristic selection and those
prior to it as inputs provides context for the next selection.

Initial experiments with memory length show that Elman network learning
improves significantly as the number of past selections increases. Figure 1 shows
the results of training an Elman network with a memory length of 1, 2, 3, 4 and
5, on the INTRA training sequences for each domain (see Section 2.4). It should
be noted that increasing the number of past selections also increases the number
of weights which also improves learning.

In this study, a memory length of 4 is used because, with this number, the
Elman network learns 80% (or more) of each training set. Thus, the 3-layer
Elman network used in this experiment has 16 input units, 16 hidden units (and
therefore 16 context units), 4 output units, and 596 weights. The hidden and
output units employ the sigmoid activation function. The number of 16 hidden
units was chosen arbitrarily.

Fig. 1: The percentage of LLH training errors for an Elman network with 4, 8,
12, 16 and 20 inputs, 16 hidden units, and 4 output units, for each domain.

0

10

20

30

40

50

4 8 12 16 20

L
L
H

T
ra
in
in
g
E
rr
o
rs

(P
er
ce
n
t)

Network Inputs

BP
PFS
SAT
PS

After training, given some initial input, an Elman network produces a se-
quence of outputs. The output sequence may converge to a single point, a limit
cycle of repeating values, or produce a chaotic non-repeating sequence.

237

8

2.4 Training Sets

This study is concerned with offline intra-domain and inter-domain learning of
heuristic classes. In intra-domain learning, the training sequences and the test
optimisation problem are drawn from the same problem domain. This simplifies
the learning task considerably as the low level heuristics in each class are iden-
tical for each problem and so the heuristic classes will have similar statistical
characteristics across the problems of the domain. This is not generally the case
for inter-domain learning where the training sequences and test problem can be
drawn from different domains. These different domains will have different low
level heuristic implementations and so the heuristic classes can have different
statistical characteristics in each domain (see figure 2). However, the general
underlying principles of each heuristic class should remain similar, for example
a mutation operation should make small random changes, while a local search
operation will greedily search the surrounding space.

Fig. 2: The scaled mean log returns α of the heuristic classes C, L, M, and R

for each domain. In each domain the α values have been scaled by the largest
absolute α value into the interval [−1, 1].

−0.5

0

0.5

1

BP PFS SAT PS

S
ca
le
d
m
ea
n
lo
g
re
tu
rn

C

L

M

R

The training sets for intra-domain and inter-domain learning are constructed
from the BEST heuristic class sequences. As these sequences are the most efficient
optimisations of each problem available they contain the most “useful informa-
tion” regarding that problem and therefore they are prime candidates for inputs
to a machine learning algorithm. In this study, leave-one-out cross-validation
(see [16]) is employed to determine whether the Elman network sequences are
able to outperform the BEST training sequences.

238

9

For intra-domain learning, the BEST subsequences are divided by domain
into 4 sets of 10 sequences. For each problem in a domain, the sequence for
that problem is left out of the training set and the remaining 9 sequences are
used to train a network. The sequence produced by the trained network is then
evaluated on the problem that was left-out. Thus the sequence generated by the
network is always evaluated on a problem that the network has not been trained
on. Applying this methodology gives rise to 40 training sets of 9 sequences, one
for each problem, constructed from the 10 sequences selected for each domain.

For inter-domain learning, the BEST subsequences are again divided by do-
main into 4 sets of 10 sequences. For each domain, 3 sequences are selected from
each of the 3 remaining domains. These sequences correspond to the problems
with the lowest βf in those domains. Applying this methodology gives rise to
4 training sets of 9 sequences, one for each domain, constructed from the 9
sequences selected from the other domains.

In each case, for each problem, the Elman network is trained with 9 sequences
drawn from the set BEST. It should be noted that for network training, only
the accepted selections of each sequence up to (and including) the minimum
objective function value are used. Rejected selections, and those selections that
occur after the minimum objective function value are not used.

2.5 The BLIND Hyper-heuristic

The BLIND hyper-heuristic is used to evaluate sets of heuristic sequences on
the HyFlex problems. It is intended to serve as a simple test bed and a “level
playing field”, in order to evaluate and compare the performance of sequences.
The sequence based hyper-heuristic BLIND used in these experiments blindly
applies a given sequence, one low level heuristic class after another to a HyFlex
problem, accepting every selection. The actual low level heuristics and their
parameters are chosen at random.

3 Results

Section 3.1 presents the results of training the Elman networks with the intra-
domain and inter-domain training sequences. In Section 3.2 the sequences that
are generated by the trained networks are evaluated on the HyFlex problems
using the BLIND hyper-heuristic.

3.1 Network Training

An Elman network is trained with the intra-domain and inter-domain training
sets using stochastic Backpropagation with early stopping over a maximum of
1000 epochs (see [16]) using the parameters shown in table 1. The learning rate,
momentum term, and the number of training epochs have not been optimised.

The results of network training are summarised in table 2 and figure 3. Ta-
ble 2 shows the results of training the Elman network with the 40 intra-domain

239

10

Table 1: The Elman network structure and training parameters.

Input Hidden Out Learn Momentum Epochs

16 16 4 0.1 0.25 1000

training sets. The results are averaged over the 10 training sets in each domain.
The columns show the average number of low level heuristics in each set, the
average percentage of low level heuristics incorrect after training, the average
network root mean square error, and the average number of epochs. Low level
heuristic correctness is determined by applying a winner-take-all strategy to the
network’s output units and comparing the network’s choice of heuristic with the
target heuristic. Figure 3a shows the percentage of low level heuristic errors dur-

Table 2: The averaged training results of the Elman network on the intra-domain
training sets.

Dom. Num. Wrong (%) Error Epochs

BP 369.0 12.6407 4.2958 907.7
PFS 94.5 1.0260 1.0491 328.9
SAT 288.2 18.3158 4.1991 918.9
PS 121.5 3.0474 0.9290 947.3

ing intra-domain training for 4 representative problems (number 7, 19, 34, and
14) chosen from the BP, PFS, SAT and PS domains. These results demonstrate
that the difficulty of learning intra-domain sequences of heuristic selections varies
by domain. For example, the SAT domain sequences are much harder to learn
than the training sequences of the other domains.

Table 3: The averaged training results of the Elman network on the inter-domain
training sets.

Dom. Num. Wrong (%) Error Epochs

BP 151 1.7391 1.0443 999
PFS 224 1.0638 1.3208 994
SAT 175 0.7194 0.8031 616
PS 221 1.0810 0.9290 739

240

11

Fig. 3: The Elman network training results for the intra-domain and inter-domain
sets. In figure (a) the training sequences are drawn from the BP, PFS, SAT and
PS domains. In figure (b) the training sequences are drawn from the {PFS SAT
PS}, {BP SAT PS}, {BP PFS PS}, and {BP PFS SAT} domains.

0

10

20

30

40

50

60

0 200 400 600 800 1000

L
L
H

E
rr
o
rs

(P
er
ce
n
t)

Iteration

BP
PFS
SAT
PS

(a) Intra-domain training results.

0

10

20

30

40

50

60

70

0 200 400 600 800 1000
L
L
H

E
rr
o
rs

(P
er
ce
n
t)

Iteration

PFS SAT PS

BP SAT PS

BP PFS PS

BP PFS SAT

(b) Inter-domain training results.

Similarly, table 3 and figure 3b show the results of training the Elman network
with the 4 inter-domain training sets. These results demonstrate that intra-
domain learning is harder than inter-domain learning.

After training, the Elman network is then given the initial “blank” input
XXXX. As Elman networks are deterministic, the intra-domain trained networks
produces a set of 40 sequences, one for each problem, while the inter-domain
trained networks produce a set of 4 sequences, one for each domain.

3.2 Evaluating the Elman Network Sequences

The BLIND hyper-heuristic is parameterised with three sets of sequences denoted
BEST, INTRA, and INTER and then executed 40 times on each of the HyFlex
problems. The INTRA sequence set is generated by the intra-domain trained
Elman networks, while the INTER sequence set is generated by the inter-domain
trained Elman networks. It should be noted that the pseudorandom number
seeds and therefore the initial solutions used for the INTRA, INTER, and BEST

evaluation runs presented here are identical and distinct to the pseudorandom
number seeds used by DBGen to generate the offline database from which the
BEST sequences are selected.

When parameterised with the BEST sequences the BLIND hyper-heuristic
applies all the accepted selections including those after the minimum objective
function value. This is done because some sequences in BEST find a minimum
quickly, in some cases after only 9 selections. Using all accepted selections gives

241

12

the BLIND hyper-heuristic a larger number of iterations/selections to better op-
timise a problem. The length of the BEST sequences also dictate the number
of selections used by the INTRA and INTER parameterisations. The results of
evaluating the INTRA and INTER sequence sets on the HyFlex problems are
compared to the BEST sequences (see table 4). The intention of the comparison
is to determine whether the network has learned anything over and above the
information contained in the BEST sequences. The INTRA sequences outper-
form the BEST sequences overall and on each domain, while BEST outperforms
INTER overall, and on each domain except the PFS domain. The best general-
isation is observed between INTRA and BEST on the SAT domain (which was
the hardest to learn). The overall averages are calculated over 1600 sequences,
and the domain averages are calculated over 400 sequences.

Table 4: A domain by domain and overall comparison of the mean final log return
αf of BEST, INTRA and INTER.

Dom. BEST INTRA INTER

BP -0.2172 -0.2202 -0.0375
PFS -0.0043 -0.0049 -0.0051
SAT -0.4345 -0.6919 -0.2313
PS -1.7912 -1.8042 -1.5560

All -0.6118 -0.6803 -0.4575

A paired t-test is used to establish whether the difference observed in the
mean final log returns of BEST and INTRA is statistically significant. Formally,
the null hypothesis

αf (BEST) ≥ αf (INTRA)

is rejected if t lies outside the interval [−2.3287,∞) and the alternative hypoth-
esis

αf (BEST) < αf (INTRA)

is accepted with 99% confidence. The results of the t-test are shown in table 5.
The difference in mean is statistically significant overall, and for the PFS and
SAT domains with 99% confidence. For the BP and PS domains the difference
in mean is not statistically significant.

4 Conclusions

The sequence set BEST consists of the sequences with the lowest final unit log
return βf for each HyFlex problem. An intra-domain training set INTRA and
an inter-domain training set INTER are constructed from the BEST sequences
and used to train an Elman network. In order to estimate the Elman network’s

242

13

Table 5: The domain, the sample mean difference, the standard deviation, the
t score, and the interval within which the population mean difference falls with
99% confidence.

Dom. Diff. SD t Conf. Int.

BP -0.0030 0.0821 -0.7214 [-0.0136, 0.0077]
PFS -0.0006 0.0024 -5.2796 [-0.0009, -0.0003]
SAT -0.2573 0.1085 -47.4485 [-0.2714, -0.2433]
PS -0.0130 0.1225 -2.1289 [-0.0289, 0.0028]

All -0.0685 0.1424 -19.2384 [-0.0777, -0.0593]

capacity for generalisation the network is evaluated using a leave-one-out cross-
validation methodology. The first result presented in this study demonstrates
that the Elman network is capable of intra-domain generalisation with 99% con-
fidence. This result is notable because the Elman network is able to significantly
outperform the sequences on which it was trained. The process of generalisa-
tion across the training problems within a domain has generated a network that
is able to perform better on unseen test problems in that domain. This shows
that useful information can be learned about the problems in a domain from
the sequences of heuristic selections used to optimise them. The second result
shows that the Elman network is not capable of inter-domain generalisation us-
ing the training set INTER in spite of the fact that the training sets are easier to
learn. This suggests that inter-domain generalisation is harder than intra-domain
generalisation, and that low training errors need not translate into good gener-
alisations. This was generally to be expected, the sequences of heuristics learned
on one domain are not expected to be applicable to another. However, there are
exceptions, for example the performance on PFS domain from the INTER trained
network performed well and indicates perhaps that a more general strategy for
solving the PFS domain would be successful.

Overall, the Elman network proved to be able to generalise the training
sequences for intra-domain learning which opens up the possibility of the use of
bespoke learned algorithms for particular problems. Inter-domain generalisation
was more difficult, as expected, and more work would need to be conducted to
determine whether a different methodology would allow domains with similar
sequences to be identified.

References

[1] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J. Woodward, A
Classification of Hyper-heuristic Approaches. Springer US, 2010.

[2] P. Ross, S. Schulenburg, J. G. Maŕın-Bläzquez, and E. Hart, “Hyper-heuristics:
Learning to combine simple heuristics in bin-packing problems,” in Proceedings of
the 4th Annual Conference on Genetic and Evolutionary Computation, GECCO

243

14

2002, (San Francisco, CA, USA), pp. 942–948, Morgan Kaufmann Publishers Inc.,
2002.

[3] E. K. Burke, S. Petrovic, and R. Qu, “Case-based heuristic selection for
timetabling problems,” Journal of Scheduling, vol. 9, no. 2, pp. 115–132, 2006.

[4] H. Terashima-Maŕın, J. C. Ortiz-Bayliss, P. Ross, and M. Valenzuela-Rendón,
“Hyper-heuristics for the dynamic variable ordering in constraint satisfaction
problems,” in Proceedings of the 10th Annual Conference on Genetic and Evolu-
tionary Computation, GECCO 2008, (New York, NY, USA), pp. 571–578, ACM,
2008.

[5] A. Kheiri and E. Keedwell, “A sequence-based selection hyper-heuristic utilising a
hidden Markov model,” in Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, GECCO 2015, pp. 417–424, ACM, 2015.

[6] W. B. Yates and E. C. Keedwell, “Clustering of hyper-heuristic selections using the
Smith-Waterman algorithm for offline learning,” in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), (Berlin), pp. 119–120, ACM,
2017.

[7] G. Ochoa, M. Hyde, T. Curtois, J. A. Vazquez-Rodriguez, J. Walker, M. Gendreau,
G. Kendall, B. McCollum, A. J. Parkes, S. Petrovic, and E. K. Burke, “HyFlex: A
benchmark framework for cross-domain heuristic search,” in Evolutionary Com-
putation in Combinatorial Optimization (J. K. Hao and M. Middendorf, eds.),
pp. 136–147, Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.

[8] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, pp. 179–
211, 1990.

[9] J. D. Walker, G. Ochoa, M. Gendreau, and E. K. Burke, “Vehicle routing and
adaptive iterated local search within the HyFlex hyper-heuristic framework,” in
Learning and Intelligent Optimization - 6th International Conference, LION 6,
Paris, France, January 16-20, 2012, Revised Selected Papers, pp. 265–276, 2012.

[10] J. H. Drake, E. Özcan, and E. K. Burke, “An improved choice function heuristic
selection for cross domain heuristic search,” in Parallel Problem Solving From Na-
ture (PPSN XII), Lecture Notes in Computer Science (C. A. C. Coello, V. Cutello,
K. Deb, S. Forrest, G. Nicosia, and M. Pavone, eds.), vol. 7492, pp. 307–316, 2012.

[11] M. Mısır, K. Verbeeck, P. D. Causmaecker, and G. V. Berghe, “A new hyper-
heuristic as a general problem solver: an implementation in HyFlex,” Journal of
Scheduling, vol. 16, no. 3, pp. 291–311, 2013.

[12] J. H. Drake, E. Özcan, and E. K. Burke, “A comparison of crossover control
mechanisms within single-point selection hyper-heuristics using HyFlex,” in IEEE
Congress on Evolutionary Computation (CEC), (Sendai, Japan), pp. 3397–3403,
May 2015.

[13] P. Dempster and J. H. Drake, “Two frameworks for cross-domain heuristic
and parameter selection using harmony search,” in Harmony Search Algorithm:
Proceedings of the 2nd International Conference on Harmony Search Algorithm
(ICHSA2015) (H. J. Kim and W. Z. Geem, eds.), (Berlin, Heidelberg), pp. 83–94,
Springer Berlin Heidelberg, 2016.

[14] J. L. Elman, “Distributed representations, simple recurrent networks, and gram-
matical structure,” Machine Learning, vol. 7, pp. 195–224, 1991.

[15] R. Bai, E. K. Burke, M. Gendreau, G. Kendall, and B. McCollum, “Memory
length in hyper-heuristics: An empirical study,” in Proceedings of the 2007 IEEE
Symposium on Computational Intelligence in Scheduling, pp. 173–178, 2007.

[16] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

244

Posters

245

Reinforcement learning is an effective strategy to
create phenotypic variation and a potential

mechanism for the initial evolution of learning.

Jan Teichmann1, Eduardo Alonso2, and Mark Broom1

1 Department of Mathematics, City University of London, Northampton Square,
London EC1V 0HB jan.teichmann@city.ac.uk Mark.Broom@city.ac.uk

2 Department of Computer Science, City University of London, Northampton
Square, London EC1V 0HB E.Alonso@city.ac.uk

Abstract Evolution leads to animals being well-adapted to their en-
vironment, in terms of physical abilities and behaviours. Many animal
behaviours, however, are not simply genetically determined, but are a
result of learning. Learning is generally assumed to be an adaptation to
environmental change, but the relationship between environmental fac-
tors, learning, and evolution is complex and not fully understood. Here,
the role of reinforcement learning is of increasing interest. We present a
general model inspired by evolutionary games which analyses and com-
pares fitness distributions of individuals in a changing environment which
either learn or evolve through mutation. We show that reinforcement
learning offers a potential mechanism for the initial evolution of learning
irrespective of any technical parameters and confirm previous findings of
other established models of learning.

1 Introduction

Through evolution, animals are generally very well-adapted to their environ-
ment. Phenotypic plasticity allows for suitable adaptations even in the face of
changing environments [12]. Thus both physical abilities and behaviours of ani-
mals are generally appropriate to their environment. Nevertheless many animal
behaviours are not solely genetically determined, though some are, but the re-
sponse of the animal’s learning capabilities. Hence a key question arises: under
which conditions is the ability to learn beneficial? From a biological perspective,
learning is a mechanism for rapid adaptation (modification) of behaviour during
the individual’s lifetime and a distinct adaptation to changing environments in
particular [7]. The main line of argument is that learning incurs some cost, so
that a constant environment should select for a genetically fixed pattern of be-
haviour over learned behaviour. But the relationship of learning and evolution
is complex and an important aspect of learning is environmental predictability
(commonly referred to as regularity) [15]. Clearly, there is nothing to learn in
an environment which is absolutely unpredictable. So far both factors, environ-
mental change and regularity, have been discussed in the literature as selective

246

factors in the evolution of learning. A contradiction at first sight, but a solution
to the paradox would be that learning is in fact an adaptation to intermediate
levels of environmental change [8].

Associative learning is a fundamental cognitive process observed across species
(including mollusks, insects, birds and mammals) [11] that affects a wide variety
of behaviours ranging from colour recognition [2, 9, 13, 20] and spatial repre-
sentation [1], to causality judgements [14] and goal-directed behaviour [21]. Of
course, animals use other types of learning (e.g. social learning or perceptual
learning) and ontogenetic mechanisms (e.g. habituation and phenotypic plastic-
ity) to adapt their behaviour to the environment. Nonetheless, the pervasiveness
and relevance of associative learning makes it the ideal candidate to investigate
when learning is most effective. We are interested in the initial evolution of learn-
ing [3,17] and in particular how reinforcement learning [4,5] could evolve within
a population of generally well adapted animals. To answer this question we focus
on a simple model of learning where individuals learn to associate events that
occur together, for instance two stimuli, a stimulus and a response, or a response
and its outcome [10].

2 Model Definition

Our work develops that of [18, 19], which investigated the effects of aversive
learning in a changing environment on a predator’s diet choice and energy in-
take. Here we describe fitness distributions of learning individuals in changing
environments more generally and compare them with a simplistic mutation pro-
cess to understand the relationship between evolution and learning.

In our model the learning individual uses Q-learning [22], chosen for the sim-
plicity of its implementation of real-time error-correction learning and as it is
increasingly supported by both behavioural and neural data. In Q-learning an
individual uses experience following its interactions with the environment to in-
fer optimal decisions. The learning individual utilises an action-value function
to build a representation of the environment which describes the expected fu-
ture payoff following a specific action in a specific state of the environment. It
then minimises the error of the function’s future payoff prediction building on
a growing amount of evidence from past trial-and-error interactions with the
environment. These payoff predictions are discounted by a factor γ, represent-
ing future uncertainty. The prediction error is modulated by a learning rate α.
Finally, the individual translates the action-value function predictions into a
decision following a stochastic policy, e.g. Gibb’s soft-max policy.

An individual of the mutating population has a genetically determined deci-
sion policy chosen randomly from a uniform distribution at the beginning of each
generation. The important differences between the two populations are: (i) the
mutation process is random and not adaptive, operating on fixed phenotypes
and (ii) learning is adaptive but incurs an exploration cost, where suboptimal
decisions are made to learn about the environment. Selection is not included as
we are only interested in both populations’ fitness distributions.

247

decision
policy

uncertain
option

certain
option

0

R

g(R)

−a a

1
2a

0

(a)

|Ri −Ri+1|

h(|Ri −Ri+1|)

0

1
a

2aε = 2
3a

(b)

Figure 1. The environment with the choice of a certain and an uncertain option. (a)
The two options of the environment with the certain option being equal to zero and
the uncertain option following a uniform fitness payoff distribution g(R) with limits −a
and a as given by Equation (1). (b) The distribution of absolute fitness change follows
a triangular distribution h(|Ri − Ri+1|) with ε = (2/3)a being the average absolute
fitness change given the uniform distribution of fitness payoff g(R) with β = 1.

We define the environment to be stationary and ergodic, consisting of two
options, a certain and an uncertain one, as shown in Figure 1. The model param-
eters are described as follows: (i) R: the fitness payoff following an interaction
with the environment, (ii) F : the fitness of an individual at the end of a gen-
eration, (iii) F̂ : the scale-free fitness of an individual, (iv) l: the length of a
generation in interactions with the environment, (v) β: the number of environ-
mental changes per generation time, (vi) ε: the extent of environmental change
per generation time, (vii) α: the learning rate of the learning individual and
(viii) γ: the discount rate of future payoffs. The certain option gives a constant
fitness payoff R = 0 and the uncertain option returns a uniformly distributed
fitness payoff g(R) with zero mean. The value of 0 for the fitness of the constant
option and the mean of the variable option is chosen for simplicity (it is possible
to add an arbitrary constant to both and not qualitatively change our results).

The learning individual cannot draw from any secondary source of informa-
tion such as a correlation between environmental states which motivates the
choice of the uniform distribution g(R). The term regularity refers to the pre-
dictability of an environment within models of learning. A perfectly regular en-
vironment is one that is constant throughout the lifetime of an individual, with
irregularity increasing as the number of changes per lifetime increases. We define
irregularity as the expected number of environmental changes in a lifetime, given
by β/l. This is perhaps a simplistic definition, and we do not make direct use
of it, except that the environment becomes increasingly irregular with greater
(smaller) values of β (l). We define the limits [−a, a] of the Uniform distribution
g(R) as follows:

a =
3

2β
ε, (1)

where ε is the absolute average fitness change per generation derived from the
triangular distribution h(|Ri−Ri+1|) of the absolute difference of the uniform fit-

248

ness payoff g(R) as shown in Figure 1. We assume that an increased frequency of
environmental change β results in smoother and less pronounced single changes
as reflected in Equation (1). The fitness F of an individual is the sum of the
fitness payoffs from its interactions with the environment F =

∑l
t=1Rt.

3 Results

We present the distributions of n = 5000 generations interacting with their
environment using a scale free variant of the fitness F̂ = βF/lε, which will
allow a more intuitive comparison of the two populations. We will present the
results for each population respectively in the form of box-plots and associated
Kolmogorov-Smirnov significance tests.

Figures 2a and 2b show the main characteristic of the mutation process: as
the process is random and not adaptive it is independent of the number of inter-
actions per generation l and of the extent of environmental change per generation
ε. The fitness distributions are also symmetric with mean zero. Additionally, α
and γ do not apply to the mutation process. Figure 2c shows the effects of the
frequency of environmental changes β. The fitness distribution is unaffected for
β ≤ 1, i.e. when mutations occur more frequently than changes in the environ-
ment. If β > 1 the fitness distribution of the population of mutating individuals
becomes increasingly narrow. This is a direct result of the mutation process be-
ing non-adaptive and therefore it is less likely that individuals are well suited
(or poorly suited) for a number of consecutive environmental states.

1 2 3
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

F̂

(a)

1 2
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

F̂

(b)

1 2 3 4 5 6
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

F̂

(c)

Figure 2. Scale-free fitness distributions of the mutating population, all with n = 5000
generations. (a) The fitness distribution is independent of ε and l. (1) ε = 0.1, β = 1,
and l = 1000. (2) ε = 100, β = 1, and l = 1000. (3) ε = 10, β = 1, and l = 10.
Distributions are not significantly different using a Kolmogorov-Smirnov test, all with
p > 0.1. (b) Fitness distributions scale equally with β independently of ε and l. (1)
ε = 10, β = 10, l = 1000. (2) ε = 1, β = 10, l = 10. Distributions are not significantly
different using a Kolmogorov-Smirnov test, all with p > 0.1. (c) Fitness distributions
become narrower with increasing β. Distributions are not significantly different for
β ≤ 1 using a Kolmogorov-Smirnov test, all with p > 0.1. (1) β = 0.1, (2) β = 0.5, (3)
β = 1, (4) β = 2, (5) β = 10, (6) β = 100. In all cases ε = 1, l = 1000.

249

1 2 3
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

F̂

(a)

1 2 3 4 5 6 7 8
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

F̂

(b)

Figure 3. Scale-free fitness distributions of a learning individual. All cases are with
n = 5000 generations. (a) Learning requires a certain amount of environmental change
to occur to be beneficial: (1) ε = 0.1, l = 10 vs. (2) ε = 10, l = 10. Learning benefits
from longer generation times: (2) vs. (3) ε = 10, l = 1000. In all cases β = 1, α =
0.5, γ = 0.9. (b) Learning incurs exploration cost and learning benefits diminish in
unreliable environments. (1) β = 0.1, (2) β = 0.5, (3) β = 1, (4) β = 2, (5) β = 3, (6)
β = 5, (7) β = 10, (8) β = 100. In all cases ε = 1, l = 1000, α = 0.5, γ = 0.9.

The population of learning individuals uses Q-learning to adapt to the current
environmental state. This requires exploration which is the sole cost of learning
in our model. Additional costs of learning are difficult to quantify and we assume
that during the initial evolution of learning these were relatively small [7]. Figure
3a shows that learning requires certain environmental conditions; in particular
learning benefits from a changing environment (Figure 3a1 vs. 3a2). The cost
and benefits of exploration in the learning population can be seen (Figure 3a1)
versus the mutating population (Figure 2a) where the learning behaviour cuts
off both tails of the fitness distribution and does not produce the outliers as
in the mutation process. Additionally, learning benefits from longer generation
times to exploit experience (Figure 3a3).

In Figure 3b we see that learning is directly affected by β compared to the
population of mutating individuals which is unaffected for β ≤ 1 (Figure 2c). The
effect of β on the fitness distribution of the learning individuals is not linear, and
there are multiple underlying factors. In environments with very rare changes an
increasing majority of the population benefits from learning (Fig 3b1). At first,
an increasing frequency of environmental change increases the fraction of individ-
uals benefiting less from learning with the fitness distribution developing a more
pronounced tail of learning individuals having negative relative fitness (Figure
3b1-5). Nevertheless, environmental change benefits learning at the same time
with the median of the population increasing (Figure 3b4). Secondly, a further
increase of β results in the cost of consecutive exploration and consequent er-
rors outweighing this initial benefit and the distribution increasingly aligns with
the fitness distribution of the mutating population. Finally, learning does not
provide any benefits in highly irregular environments interfering with any pos-
sibility of exploitation. Therefore the only difference in the fitness distributions
is the shorter tails for the learning individuals, which is the result of continuous
exploration (Figure 3b8 vs. Figure 2c6).

250

1 2 3 4 5 6 7 8 9 10 11
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

F̂

(a)

1 2 3 4 5 6 7 8 9 10 11
−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

F̂

(b)

Figure 4. Scale-free fitness distributions of the learning individuals showing the effects
of the extent of environmental change (ε). Learning benefits from a certain extent of
environmental change but too severe changes incur a high cost of mistakes during the
required exploration. Additionally, there is a combined effect of regularity and change.
(1) ε = 0.1, (2) ε = 0.5, (3) ε = 1, (4) ε = 2, (5) ε = 5, (6) ε = 10, (7) ε = 20, (8) ε = 50,
(9) ε = 100, (10) ε = 500, and (11) ε = 1000. All cases are with n = 5000 generations,
l = 1000, α = 0.5, and γ = 0.9. (a) β = 1. (b) β = 10.

Figure 4 shows the combined effect of ε and β. We have already discussed the
individual effects of β relating to Figure 3b. For ε we can see that in environments
with small values of absolute environmental change throughout a generation the
fitness distribution of the learning individuals aligns with the fitness distribution
of the population of mutating individuals. A learning individual prioritises con-
tinuous exploration if the environmental change is small which is a consequence
of learning being an adaptation to changing environments. The shorter tails in
the fitness distribution of the learning population compared to the mutating
population are the result of this continuous exploration as discussed previously
(Figure 4a1 vs. Figure 2a and Figure 4b1 vs. Figure 2b). An increase of ε has
beneficial effects for learning individuals as learning requires a certain extent of
environmental change to exploit. A further increase of ε makes mistakes during
exploration more expensive which can potentially neutralise the benefits of ex-
ploiting beneficial states of the environment. The important difference between
a severe extent of environmental change (ε) and an irregular environment (β)
is that mistakes in the case of ε are extremely aversive and stop any further
costly exploration. This is why the fitness distribution of learning individuals
in violently changing environments loses the negative tail compared to rapidly
changing environments (Figure 4a11 vs. Figure 3b8). Combining frequency and
extent of environmental change shows that there is a specific combination of
these factors which hugely benefits the learning individuals (Figure 4b7).

Our results also show that the fitness distribution of the learning population is
independent of the learning rate α and the discount factor γ, within a meaningful
range (clearly α cannot be too low; α = 0 corresponds to no learning at all).
This result should not be misinterpreted: there are specific values of α and γ
best suited for achieving optimality in a specific state of the environment. But
within a changing environment the distribution of fitness is independent of the
specific choice of α and γ.

251

4 Discussion

In this paper we look at the fitness distribution of individuals using reinforce-
ment learning, i.e. Q-learning, in a changing environment. Our model confirms
previous findings: (i) learning requires environmental change and longer gener-
ation times to be beneficial, (ii) learning is optimal for specific combinations of
regularity and size of environmental change, and (iii) regularity is the key envi-
ronmental factor which impacts whether learning is advantageous. In addition,
we show that (iv) the fitness distribution of learning individuals in changing
environments is independent of the learning rate α and the discount factor γ.

We do not present an evolutionary theory of learning in itself, but show that
a simple reinforcement strategy (increasingly backed by experimental studies of
neural correlates) is beneficial for a vast range of environmental parameters. In
particular, the fact that the success of reinforcement learning is independent
of technical parameters of learning α and γ, is a new and reassuring insight.
These are technical parameters which allow the tuning of over-fitting and the
extent of exploration for a specific learning task and have great importance in the
field of computing. But in a biological context of changing environments these
technical learning parameters become negligible. This significantly reduces the
complexity of the initial evolution of reinforcement learning in comparison to the
combinatorial explosion of the parameter space in models of connectionism [6].

Our model does not include interactions between individuals. Nevertheless,
it reproduces many widely accepted theories of learning in the context of change
and regularity [17]. In addition, it has been widely acknowledged that the benefit
of learning is the ability to adapt to a changing environment faster than the
time scale on which evolution operates [7]. This is an important evolutionary
dynamical argument, but is distinct from those of our paper; here the benefits
of learning lie in exploitation ability rather than adaptation speed itself.

Considering the effects of selection the mutating population in our model has
a constant relative arithmetic mean fitness of zero. The environmental changes
only affect the fitness variability of the mutating population in a symmetric
fashion. As the arithmetic payoff of both options in our model are equal, selection
would increase long-term fitness of the mutating population by discarding the
uncertain option from the action space of the mutation process in order to reduce
fitness variability [16, 18]. This provides an alternative interpretation of why
learning is a distinct adaptation to changing environments alongside the cost
argument: a simplistic mutation process cannot exploit environmental change
without the introduction of increased fitness variability at the same time.

Taking selection into account, our results show that reinforcement learning
is a promising starting point for the initial evolution of learning. The key en-
vironmental factor here is regularity. If selection cannot discard the uncertain
option from the action space of the mutational process, learning is always bene-
ficial as it has lower fitness variability even in extremely irregular environments
when compared to the mutating population. If selection can in fact discard the
uncertain option in the case of the mutating population then learning becomes
disadvantageous in highly irregular environments.

252

Acknowledgements

This research was supported by a research studentship to Jan Teichmann pro-
vided by City, University of London.

References

1. Albasser, M.M., Dumont, J.R., Amin, E., Holmes, J.D., Horne, M.R., Pearce, J.M.,
Aggleton, J.P.: Association rules for rat spatial learning: The importance of the
hippocampus for binding item identity with item location. Hippocampus 23, 1162–
1178 (2013)

2. Carew, T.J., Hawkins, R.D., Kandel, E.R.: Differential classical conditioning of a
defensive withdrawal reflex in aplysia californica.. Science 219, 397–400 (1983)

3. Chalmers, D.J.: The evolution of learning: An experiment in genetic connectionism.
In: Proceedings of the 1990 connectionist models summer school. pp. 81–90 (1990)

4. Dayan, P., Daw, N.D.: Decision theory, reinforcement learning, and the brain.
Cognitive, Affective, & Behavioral Neuroscience 8, 429–453 (2008)

5. Doya, K.: Reinforcement learning: Computational theory and biological mecha-
nisms. Human Frontiers Science Program Journal 1, 30–40 (2007)

6. Hinton, G.E., Nowlan, S.J.: How learning can guide evolution. Complex systems
1(3), 495–502 (1987)

7. Johnston, T.D.: The selective costs and benefits of learning: an evolutionary anal-
ysis. Adv. Stud. Behav 12, 65–106 (1982)

8. Johnston, T.D., Turvey, M.T.: A sketch of an ecological metatheory for theories of
learning. The psychology of learning and motivation 14, 147–205 (1981)

9. Leimar, O., Enquist, M., Tullberg, B.S.: Evolutionary stability of aposematic col-
oration and prey unprofitability: A theoretical analysis. American Naturalists 128,
469–490 (1986), http://www.jstor.org/stable/2461331

10. Mackintosh, N.J.: The psychology of animal learning. Academic Press (1974)
11. Macphail, E.M.: Brain and intelligence in vertebrates. Claredon (1982)
12. Pigliucci, M.: Phenotypic plasticity: beyond nature and nurture. JHU Press (2001)
13. Ruxton, G.D., Sherratt, T.N., Speed, M.P.: Avoiding Attack: The Evolutionary

Ecology of Crypsis, Warning Signals and Mimicry. Oxford University Press (2004)
14. Shanks, D.R.: The psychology of associative learning. Cambridge University Press

(1995)
15. Staddon, J.E., Simmelhag, V.L.: The" supersitition" experiment: A reexamination

of its implications for the principles of adaptive behavior. Psychological Review
78, 3–43 (1971)

16. Starrfelt, J., Kokko, H.: Bet-hedging—a triple trade-off between means, variances
and correlations. Biological Reviews 87(3), 742–755 (2012)

17. Stephens, D.W.: Change, regularity, and value in the evolution of animal learning.
Behavioral Ecology 2, 77–89 (1991)

18. Teichmann, J.: Models of aposematism and the role of aversive learning. Ph.D.
thesis, City, University of London (2014)

19. Teichmann, J., Broom, M., Alonso, E.: The application of temporal difference
learning in optimal diet models. Journal of theoretical biology 340, 11–16 (2014)

20. Teichmann, J., Broom, M., Alonso, E.: The evolutionary dynamic of aposema-
tism: a numerical analysis of co-evolution in finite populations. Math. Model. Nat.
Phenom. 9, 148–164 (2014)

21. Valentin, V.V., Dickinson, A., O’Doherty, J.P.: Determining the neural substrates
of goal-directed learning in the human brain. The Journal of Neuroscience 27,
4019–4026 (2007)

22. Watkins, C., Dayan, P.: Q-learning. Machine learning 8, 279–292 (1992)

253

Learning new Term Weighting Schemes with
Genetic Programming

Ahmad Mazyad, Fabien Teytaud, and Cyril Fonlupt

LISIC, ULCO, Université du Littoral Côte d’Opale

Abstract. Text Classification (or Text Categorization) is a popular ma-
chine learning task which consists in assigning categories to documents.
Feature weight methods are classic tools that are used in text catego-
rization in order to assign a score to each term of a document based on a
mathematical formula. In this paper, we are interested in automatically
generating these formulas based on genetic programming. We experiment
the generated formulas on three well-known benchmarks and state of the
art classifiers.

1 Introduction

Text classification is an important task, with numerous applications, such as web
search, document classification, information retrieval [5, 16, 15]. Over time, nu-
merous text classification methods have appeared [6], such as k-nearest neighbor
[22], Naïve Bayes [13], decision trees [1], neural networks [14], boosting methods
[18] and Support Vector Machines [2].

For text classification a crucial point is to represent text documents in a
suitable format recognizable by a classifier. In the Vector Space Model (VSM)
representation, a document is represented by a vector of terms and each term is
associated with a weight. This weight represents how informative/discriminative
the correspondent term is. The method which assigns a weight to a term is called
Term Weighting Scheme (TWS).
Numerous TWS exist and the most used are presented in Section 2. They are
generated according to human a priori and mathematical rules. TWS are usually
simple mathematical expressions. Unfortunately, depending on the application,
it is not easy to know a priori which TWS will be effective.

As expression discovery may naturally be addressed by genetic programming,
we are interested in this paper to study whether it is possible to generate TWS
automatically using this programming approach. We are interested to know if a
stochastic evolutionary process with no information about the complexity, the
shape and the size of the expression can find at least competitive discriminative
TWS.

The paper is organized as follows : Section 2 presents TWS and the main
state-of-the-art methods. In section 3 we present Genetic Programming. Section
3.2 presents how we apply genetic programming to TWS. Section 4 presents the
experiments and the results, and then we conclude in section 5.

254

2 Term weighting scheme

First, we present Term Frequency-Inverse Document Frequency (tf.idf) which
is the most popular TWS method, proposed by Jones in [19]. This method is
unsupervised (does not take into account the class of a document) and can be
formally defined as :

wt,d = tft,d × log
N

Nt
, (1)

where, wt,d is the weight of term t in document d, tft,d is the raw count of
t in d, and log(N/Nt) is the inverse document frequency (idf) where N is the
total number of documents in the document set and Nt = |{d′ ∈ D|t ∈ d′}|
is the number of documents that contains the term t. Beside the raw count
(ft,d) representation of tf , there exit numerous other variants such as binary
weight, log(ft,d) + 1, ft,d/

∑
t′∈d ft′,d. idf has also a number of variants such as

log(N/Nt) + 1, log((N − Nt)/Nt), for instance.
The intuition behind this formula is to have a large weight for terms which

are frequent in only a few number of documents (having a term present in all
documents is not informative).

In [17], Salton et al. pointed out three main considerations for a text retrieval
system that are believed to improve both recall and precision:

– Term Frequency (TF) factor: The TF factor is used to capture the relative
importance of terms in a document. This is the first term in the previous
formula.

– Collection Frequency (CF) factor : Also called term discrimination. The
importance of words in a document (TF factor) does not provide enough
discrimination ability. A common word like ’The’ is frequent in almost all
documents, and then it could not separate a group of documents from the
remainder of the collection. Hence a discrimination factor is needed to favor
those terms that are concentrated in a few documents of the collection. This
corresponds to the second part of the previous formula. Main known CF
factors are presented in Table 1.

– Normalization factor: In text retrieval, all documents are considered equally
important, however TF factor will favor large documents over shorter ones,
as large documents contains more unique terms and/or greater occurrence
values. The normalization factor can eliminate this length effect.

Text classification is a supervised learning task, consequently a document
class is known in advance. To compute weights some methods used this infor-
mation. Such methods are called Supervised Term Weighting (STW). In that
context and based on the considerations discussed above, researchers proposed
various supervised term weighting to use in feature selection methods namely,
χ2 [7, 4], information gain [7, 4], gain ratio [4], odds ratio [7], relevance frequency
[11], and recently inverse category frequency [21].

255

Table 1. Four traditional CF factors. Given a term t and a category cat, N stands
for the total number of documents, a is the number of documents that contain t and
belong to cat, c is the number of documents that contain t and do not belong to cat,
b is the number of documents that do not contain t and belong to cat and d is the
number of documents that do not contain t and do not belong to cat.

CF Defined by

idf log(N
Nt

)

χ2 N∗(a∗d−b∗c)∗(a∗d−b∗c)
(a+c)∗(b+d)∗(a+b)∗(c+d)

or log(2 + a∗d
b∗c)

rf log(2 + a
max(1,c)

)

3 Genetic programming

In this section, we first introduce the Genetic Programming model, and then we
present how we adapt the GP model to the TWS.

3.1 Presentation

Evolutionary computing is based on the Darwin’s theory of “survival of the
fittest”. The main scheme of evolutionary algorithms is to evolve a population of
individuals that are randomly generated. Each individual represents a candidate
solution that undergoes a set of genetic operators that allow to mix and alter
partial solutions. One of the key features of evolutionary algorithms is that they
are stochastic approaches.

Genetic Programming (GP) belongs to the family of evolutionary algorithms.
It was first proposed by Cramer in [3] and then popularized by Koza [10]. Unlike
genetic algorithms where the aim is to find out a solution, the goal of GP is to
find out a computer program that is able to solve a problem.

In GP, a set of random expressions that usually represent computer programs
is generated. As in all evolutionary computation algorithms, this set of programs
will evolve and change dynamically during the course of evolution. What makes
GP suitable for a number of different applications is that these computer pro-
grams can represent many different structures, such as mathematical expressions
for symbolic regression, decision trees, programs that control a robot to fulfill a
certain task or programs that are able to predict defibrillation success in patients
ans so on.

The quality of a candidate solution (i.e. a program) is usually assessed by
confronting it with a set of fitness cases. This step is usually the most time-
consuming step as the programs may get huge and several thousands of candidate
programs are usually evaluated at each generation. These computer programs

256

will undergo one or several evolutionary operators that will alter in a hope-
fully beneficial way. The most classical evolutionary operators are usually the
crossover operator that allows the exchange of genetic material (in our case sub-
trees) and the mutation operator that allows a small alteration to the program.

In the most conventional GP approach, programs are usually depicted by
trees. In GP terminology, the set of nodes are split into two sets, inner nodes
of the tree are drawn from a set of functions while the terminal nodes (leaves)
are drawn from a so-called terminal set. Depending on the problem, the set of
functions can be mathematical functions, Boolean functions, control flow func-
tions (if,...), or any functions that may be suitable to solve the given problem.
The terminal set is usually the set of inputs of the problem, e.g., parameters and
constants for symbolic regression problems, sensors for robot planning...

If the stopping criteria is reached, then the best individual is returned, oth-
erwise, the loop continues and the best individuals are selected (according to
their fitness). There exist numerous ways for selecting the population, the mu-
tation and the crossover operators. This is beyond the scope of this paper and
the reader can refer to [10, 9] for more information.

3.2 Term Weighting Scheme using genetic programming

A CF factor is a combination of statistical information. It is intended to measure
the discriminative power of a term, that is, it tells how much a term is related
to a certain category. These statistical information are combined by means of
mathematical operators and functions.

We are interested in automatically evolving a CF factor (an individual) using
GP (the learned CF factor combined to the TF factor form a term weighting
method)

In our context of automatically evolving term weighting methods, an indi-
vidual is a combination of the function set that is built with simple arithmetical
operators (+,-,*,/,log,...) and the terminal set (constant values and inputs to our
problem). A presentation of the implementation and the parameters used in this
study will be presented in Section 4.1.

Tables 2 and 3 show the statistical information used as terminal set, and the
operators for generating formulas (the function set) which represent CF factors.
As it can be seen, the function set is made of very simple arithmetical functions
while the terminal set includes to the best of our knowledge all the statistical
information used to build a TWS.

4 Experiments and results

In order to validate our approach, we compare the four most well-known tradi-
tional weighting methods with GP evolved formulas on the ten most frequent
categories of the popular dataset Reuters-21578 using linear Support Vector Ma-
chine (SVM) [8].

In all our experiments, we perform a cross-validation process.

257

Table 2. Statistical information (Terminals) used to evolve a TWS.

Label Description
N Total number of documents
C Number of categories
Ct Number of categories that contain the term t
Ncat Number of documents in the positive category cat
Ncat Number of documents that do not belong to cat
Nt Number of documents that contain t
Nt Number of documents that do not contain t
a Number of documents that contain t and belong to the positive category cat
b Number of documents that do not contain t and belong to cat
c Number of documents that contain t and do not belong to cat
d Number of documents that do not contain t and do not belong to cat

Table 3. Arithmetic operators and functions used to evolve a TWS.

Operator Description
+ Arithmetic addition operator
− Arithmetic subtraction Operator
∗ Arithmetic multiplication operator
/ Arithmetic division operator
log 1p(x) Natural (base e) logarithm of 1 plus (ln(1 + x))
log 2p(x) Natural (base e) logarithm of 2 plus (ln(2 + x))

258

4.1 Experimental setup
Reuters-21578 is a multi-labeled dataset and one of the most frequently used
test collections for text classification research.

We use the traditional “ModApte” split which contains 90 categories. The
dataset is transformed into multiple single-label binary classification tasks using
the binary relevance transformation strategy.

The point is that the ten binary tasks corresponding to the ten most frequent
categories are used. No preprocessing steps or feature selection are performed
on the resulting dataset.

For our experiments, the Liblinear classification library [8] is used with a
L2-regularized L2-loss Support Vector classification (dual) solver. The other pa-
rameters are set to their default values.

Concerning the GP, we use a population of 100 individuals (candidate solu-
tions, i.e. formulas), and 100 generations (corresponding to the stopping crite-
rion).

The crossover probability is set to 0.85 and the mutation probability is de-
fined as one over the number of terminals and operators.

A validation phase is needed as one cannot learn directly over the test set.
Thus, the population of formulas are evaluated by means of stratified 3-fold cross
validation over the training dataset.

To assess the performance of STW, we report in the result tables the preci-
sion p, the recall r and the standard F1 measure.

The precision is the true positive tp over the true positive plus the false
positive fp. The recall is defined as the true positive over the true positive plus
the false negative fn.

The F1 measure is defined as

F1(tp, fn, fp) =
2 ∗ tp

2 ∗ tp+ fn+ fp
.

In order to obtain one general score for the multiple tasks, the F1 measure is
usually averaged using micro-/macro-averaging methods. Macro-averaging gives
equal weight to each category, thus, it gives an insight on the efficiency/effectiveness
of a classifier on small categories. In contrast, micro-averaging gives weight de-
pending on the category size (the larger the category, the larger the weight),
thus results are dominated by large categories.

The micro-F1 (µ − F1) is defined as

µ − F1 = F1(
C∑

l=1

tpl,
C∑

l=1

fpl,
C∑

l=1

fnl) .

259

The macro-F1 (m − F1) is defined as

m − F1 =
1

C

C∑

l=1

F1(tpl, fpl, fnl) .

It is important to understand that the macro measure m gives equal weight
to each category. The micro measure µ gives equal weight to each per-document
classification decision. The main problem of the F1 measure is that it ignores
true negatives and its magnitude is mostly determined by the number of true
positives, then large classes dominate small classes in terms of micro measure
[12, 20].

4.2 Results

Table 4 shows the results of the four traditional TWS on the ten categories. The
CF column is the best of the four traditional TWS used in this paper (the best
between idf, rf, or, χ2). We report the precision, the recall and the F1-score for
the ten categories experimented.

In comparison, in Table 6 we report the same measures but for formulas
generated with GP. For each category, the corresponding formulas generated by
GP are presented in Table 5.

First, we can notice that for each category the generated formulas are dif-
ferent. The generated formulas (f1 to f10) perform better on seven out of ten
tasks, and the traditional TWS performed better on three tasks (interest, wheat
and corn).

In Table 7 we compare µ − F1 and m − F1 for the best validated TWS
between idf, rf, or, χ2 for each category against the generated formulas f1 to
f10 based on GP. In terms of micro score (i.e. µ) the performance is slightly
better for the generated formula, and for the macro score (i.e. m) we are able to
improve the performance by 1%. Even if the results seem close, it is impressive
that we are able to have such performances with automatically generated TWS.

In Table 8 we compare the performances of each TWS with f11 in terms of
micro-/macro-averaged F1 scores over all categories. f11 is a formula which has
been generated by GP by considering all ten categories. The goal is to experi-
ment whether GP is able to generate a formula which is good on all ten datasets.
In term of micro-averaged score, the generated f11 formula is better than all the
other formulas. For the macro-averaged score, results are similar.

Finally, in Table 9 it is interesting to see that five from ten generated formulas
(f4, f5, f6, f8 and f10), which have been generated on one specific category,
generalize well on the nine other categories, and are slightly better than the four
traditional TWS, (see Table 8).

260

Table 4. Best traditional scheme for each category in top 10 Reuters-21578 categories
evaluated by 3-fold cross validation over the training set.

CF Precision Recall F1
earn idf 98.98% 97.79% 98.38%
acq idf 98.71% 95.55% 97.10%
money-fx idf 80.23% 77.09% 78.63%
grain rf 96.43% 90.60% 93.43%
crude rf 89.19% 87.30% 88.24%
trade rf 82.08% 74.36% 78.03%
interest idf 88.00% 67.18% 76.19%
ship or 95.24% 67.42% 78.95%
wheat chi 84.15% 97.18% 90.20%
corn chi 91.53% 96.43% 93.91%

Table 5. Formulas generated by GP. f11 is a formula generated on all the ten categories.

Denoted by Defined by
earn f1 b ∗ (Nt −Nc)

acq f2 Ct − (b/(log 1p((Nt ∗ d ∗ a ∗ log 2p(log 2p(Nt))) + b)/d))

money-fx f3 (N + c)− (log 1p(Nt) ∗ d)
grain f4 Nt/(c− Ct)

crude f5 d ∗ (Nt +N + C + Ct − (d ∗ d))
trade f6 N ∗ (Nt −Nt + d)

interest f7 d− (((Nc + C) + ((c ∗ ((Nc ∗Nc) + a))/Nt))/Nt)

ship f8 d ∗Nt ∗ (Nt +Nc + Ct + b)/c

wheat f9 log 2p(Nc + ((Nc ∗Nt)/(log 2p((b+ C)/Ct) ∗ b))
corn f10 (c ∗ (Nc +Nc) +Nt ∗ a ∗ a)/c
All f11 log 1p(d/c) + (Nt/(log 1p(log 2p(Nc)) ∗ c))

261

Table 6. Formulas generated by GP and evaluated by 3-fold cross validation for each
category of the ten biggest categories in Reuters-21578.

CF Precision Recall F1
earn f1 98.70% 98.16% 98.43%
acq f2 98.85% 95.83% 97.32%
money-fx f3 81.82% 80.45% 81.13%
grain f4 94.04% 95.30% 94.67%
crude f5 90.22% 87.83% 89.01%
trade f6 83.49% 77.78% 80.53%
interest f7 87.63% 64.89% 74.56%
ship f8 92.00% 77.53% 84.15%
wheat f9 86.84% 92.96% 89.80%
corn f10 86.15% 100.00% 92.56%

Table 7. µ − F1 and m − F1 for the best validated TWS between idf, rf, or, χ2 for
each category against the generated formulas f1 to f10 based on GP. Results are really
close, especially for the µ score. It is interesting to see that GP is able to compete with
a priori usual known TWS.

Best rules GP
µ-F1 93.19% 93.53%
m-F1 87.31% 88.42%

Table 8. µ − F1 and m − F1 for all TWS over all categories against the generated
formula f11 validated over all categories.

µ− F1 m− F1

idf 92.52% 84.90%
rf 92.56% 85.68%
or 92.54% 85.93%
χ2 91.59% 87.18%
f11 93.13% 86.55%

262

Table 9. µ − F1 and m − F1 over all categories for the generated formula f1 to f10.
We can note that the generated formula reach good performance even on the other
categories, which is important in term of finding a global rule.

µ− F1 m− F1

f1 91.51% 80.77%
f2 91.06% 79.40%
f3 91.77% 83.32%
f4 92.13% 86.30%
f5 92.82% 85.59%
f6 92.68% 85.24%
f7 92.44% 84.65%
f8 92.39% 86.96%
f9 89.47% 75.78%
f10 91.10% 86.82%

5 Conclusion

The aim of this paper is to test the ability of GP in automatically generating
efficient TWS.

Experiments are conducted and the generated TWS are compared with four
traditional TWS. In the experiments, the generated formulas are able to compete
with the traditional schemes and are even slightly better in some cases.

We also find that the generated formulas have a good generalization ability.

Our future work will focus on generating a TWS that can generalize even
better over different datasets. That can be done by learning directly over the
test data of different datasets using the GP.

References

1. Apte, C., Damerau, F., Weiss, S., et al.: Text mining with decision rules and
decision trees. Citeseer (1998)

2. Cortes, C., Vapnik, V.: Support-vector networks. Machine learning 20(3), 273–297
(1995)

3. Cramer, N.L.: A representation for the adaptive generation of simple sequential
programs. In: Proceedings of the First International Conference on Genetic Algo-
rithms. pp. 183–187 (1985)

4. Debole, F., Sebastiani, F.: Supervised term weighting for automated text catego-
rization. In: Text mining and its applications, pp. 81–97. Springer (2004)

5. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: In-
dexing by latent semantic analysis. Journal of the American society for information
science 41(6), 391 (1990)

6. Deng, Z.H., Tang, S.W., Yang, D.Q., Li, M.Z.L.Y., Xie, K.Q.: A comparative study
on feature weight in text categorization. In: Asia-Pacific Web Conference. pp. 588–
597. Springer (2004)

263

7. Deng, Z.H., Tang, S.W., Yang, D.Q., Li, M.Z.L.Y., Xie, K.Q.: A comparative
study on feature weight in text categorization. In: Advanced Web Technologies
and Applications, pp. 588–597. Springer (2004)

8. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library for
large linear classification. Journal of machine learning research 9(Aug), 1871–1874
(2008)

9. Karakus, M.: Function identification for the intrinsic strength and elastic properties
of granitic rocks via genetic programming (gp). Computers & geosciences 37(9),
1318–1323 (2011)

10. Koza, J.R.: Genetic programming: on the programming of computers by means of
natural selection, vol. 1. MIT press (1992)

11. Lan, M., Tan, C.L., Su, J., Lu, Y.: Supervised and traditional term weighting meth-
ods for automatic text categorization. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 31(4), 721–735 (2009)

12. Manning, C.D., Raghavan, P., Schütze, H., et al.: Introduction to information
retrieval, vol. 1. Cambridge university press Cambridge (2008)

13. McCallum, A., Nigam, K., et al.: A comparison of event models for naive bayes
text classification. In: AAAI-98 workshop on learning for text categorization. vol.
752, pp. 41–48. Citeseer (1998)

14. Ng, H.T., Goh, W.B., Low, K.L.: Feature selection, perceptron learning, and a
usability case study for text categorization. In: ACM SIGIR Forum. vol. 31, pp.
67–73. ACM (1997)

15. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text classification from la-
beled and unlabeled documents using em. Machine learning 39(2-3), 103–134 (2000)

16. Pang, B., Lee, L., et al.: Opinion mining and sentiment analysis. Foundations and
Trends® in Information Retrieval 2(1–2), 1–135 (2008)

17. Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval.
Information processing & management 24(5), 513–523 (1988)

18. Schapire, R.E., Singer, Y.: Boostexter: A boosting-based system for text catego-
rization. Machine learning 39, 135–168 (2000)

19. Sparck Jones, K.: A statistical interpretation of term specificity and its application
in retrieval. Journal of documentation 28(1), 11–21 (1972)

20. Van Asch, V.: Macro-and micro-averaged evaluation measures [[basic draft]] (2013)
21. Wang, D., Zhang, H.: Inverse category frequency based supervised term weighting

scheme for text categorization. preprint arXiv:1012.2609v4 (2013)
22. Yang, Y.: Expert network: Effective and efficient learning from human decisions in

text categorization and retrieval. In: Proceedings of the 17th annual international
ACM SIGIR conference on Research and development in information retrieval. pp.
13–22. Springer-Verlag New York, Inc. (1994)

264

The Ant Reconciliation Algorithm (ARA):
Ant-hill learning for label matching

Pierre Parrend123, Camille Maller2, and Etienne Dietrich2

1 ICube Laboratory, Université de Strasbourg, France
2 ECAM Strasbourg-Europe, Schiltigheim, France

pierre.parrend@ecam-strasbourg.eu
3 Complex System Digital Campus (UNESCO Unitwin)

http://unitwin-cs.org/

Keywords: Machine learning, Bio-inspired approaches, Ant-hill algorithms, Ant-
Miner, Label matching, Reconciliation

Abstract

Reconciliation of billing and payments is a critical process in the processing
of medical reimbursement data for which no satisfactory solution exists so far.
Such reconciliation aims at alleviating the manual work for operator, and is
characterized by a high expectation with regard to the algorithm effectiveness:
automated reconciliation can only be proposed if it is almost certain, so as to
avoid costly and un-ergonomic undo process. A promising solution for perform-
ing automated reconciliation is the use of Ant-Colony Optimisation (ACO)-based
learning, which has a strong ability of finding sequences of evaluation criteria,
here in the context of label matching, while taking into account search history
weighted by success scores and history. The ant reconciliation algorithm (ARA)
extends and implements the Ant-Miner algorithm by defining specific computa-
tion parameters as well as a rule model for text matching. We define the ARA
model, explicit its implementation, and provide evidences of the relevance of the
proposal drawn from evaluation on real world medical billing and payment data.

1 Introduction

Ant-hill algorithms are typically used as automated heuristics for exploring opti-
misation landscapes, addressing in particular the risk of combinatorial explosion
through emerging auto-organisation of the ‘colonies’ of artificial ants, commu-
nicating through the exchange of messages transmitted by the environment, a
phenomenon called stigmergy.

We claim that such properties can be leverage to dramatically enhance learn-
ing time of any machine learning system where a meaningful feedback from the
human operator can be obtained. To evaluate this hypothesis, we define the ARA
Ant Reconciliation Algorithm (ARA), which is an Ant-hill learning scheme for
label matching. ARA explores label matching rules for optimising coverage of the

265

dataset under study, and integrates a built-in mechanism for tuning or disprove
rules through targeted expert feedback. ARA is an extension of the Ant-Miner
Algorithm which specifies specific pheromones types and a dedicated rule system
for label matching.

ARA is implemented and evaluated in the context of a software for manag-
ing medical expenses and reimbursement at the level of mutual health insurances
and health professionals. The efficiency and performance of ARA is computed
against a production dataset which is kindly made available through the indus-
trial partner sponsoring this research.

This paper is organised as follows: section 2 presents the state of the art.
Section 3 presents our ant-hill model for label matching. Section 4 gives the
experimental setup of the proposed approach and related observations. Section
5 analyses and evaluate the output of the experiment. Section 6 concludes the
study.

2 State of the art

This section provides an overview of topics relevant for our proposal. First, the
exploitation of the ant-hill approach to human traces rather than to artificial
ants is reviewed. Then the adaptation of this approach for pattern matching,
at the example of the Ant-Mining algorithm, is discussed and compared to the
original Ant-System algorithm.

2.1 Ant-hill approaches from human traces

This powerful scheme has been the subject of significant research efforts since its
inception in 1996 [DMC96,DB05]. One particular approach is the exploitation
of actual traces let by agents in their digital environment: in a context where
social networks claims to have 500.106 users, for LinkedIn or even 1, 86.109 active
users each month, for Facebook, such behaviour can reasonably be expected to
emerge. With the notable exception of supercolonies which have been discovered
and studies since the early 2000’s [VWTT10], ant colonies do not entail more
that a couple of million users – far less than their human counterparts. The
ant-hill approach has therefore been applied to human traces [GVCK07], and
proves to bring significant benefits in the construction of learning path in online
learning environments. Its deployment has been evaluated both for secondary
school home support [VLC06] and university MOOCs [CSSB+15].

2.2 Ant-System and Ant-Miner

The learning system for reconciliation rules is based on a variation of the Ant-
System algorithm [DMC96] which was adapted to sorting rules, Ant-Miner [LAM02].
In Ant-Miner, ants are traveling through a graph, which nodes represent at-
tributes to be added to a given rule. Ant movements thus tend towards the rule
which can at best explain the data to be analysed. Ant-miner has two main
differences wrt.Ant-System:

266

• Heuristic information (the desirability) is a characteristic of each node and
does not depend on previous positions of the ant. Heuristic information de-
scribes the capacity of an attribute to discriminate efficient and inefficient
rules for sorting. It is a real value comprised between 0 and 1, with 1 pre-
senting the best possible attributes. Heuristic information is defined by:

ηk = 1 + x.log2x+ (1 − x).log2(1 − x) (1)

where x is the probability for a relevant sorting when the attribute is verified.
This probability is evaluated on the training dataset

• Quality of the rule created by each ant through its path in the graph is
evaluated by calcutating the fitness score of this rule with:

fitness = TP

(TP + FN + 1) ∗ TN

(TN + FP + 1) (2)

The quantity of pheromones deposited on each attribute building the rule is
proportional to the fitness value. After a significant number of ants have traveled
through the graph, the rule with the best fitness is kept.

Several extensions of Ant-Miner have been proposed by the community: for
coping with continuous attributes [OFJ08], for unordered rule sets [SF06].

This process generates a rule which describes a subset of the population of
data entries. The entries which are correctly described by this rule are removed
from the dataset, pheromones are reinitialised and the heuristic information for
each attribute is calculated again according to remaining entries: a new rule is
generated through a new iteration of ant traveling through the graph, and the
process is repeating until a stop criteria is matched. This stop criteria can be
any of the following:

• a new generated rule has a fitness of δ, with δ << 1
• the remaining dataset entails a negligible fraction of the entries of the original

dataset.

In any case, ants traveling through an attribute graph stop adding new at-
tributes as far as the fitness of generated rules decreases as a consequence of the
addition of these attributes.

3 An ant-hill model for label matching

ARA, the Ant Reconciliation Algorithm, aims at providing a solution for en-
abling user-guided learning through an ant-hill approach where the pheromones
are set according to both rule coverage and expert feedback. It is applied to la-
bel matching for reconciliation, in the context of medical expense reimbursement
for professional users such as mutual health insurances and medical profession-
als. Reconciliation of label is the process of performing label matching through
numerous and heterogeneous data fields. In our evaluation dataset, which repre-
sents production data of health professional expenses and thus provides a repre-
sentative set of medical expense data, reconciliation is to be performed between

267

the reimbursement requests, which can be considered as standardised, and the
bank transfer information, which are highly heterogeneous: expenses can be re-
imbursed in isolation or in bulk, reimbursement request references are included
or not, the paying body may be or not be the same organisation to which the
request has been emitted. To make the problem still more challenging, bank
transfer information data structure includes various fields which are completed
manually by the insurance and banking organisations with no coherence between
the different actors, including redundant fields for payment emitter and several
free text fields. The presentation of the model will focus on the ARA algorithm,
which is the contribution of this paper, and not on domain specific data formats
to ensure reusability of the scheme for other domains.

3.1 Defining ARA pheromones for label matching

In order to refine the heuristic information, we introduce two complementary
types of pheromones for tracking both the matching efficiency and the expert
feedback. The coexistence of several pheromone types is a usual approach in
ant-hill optimisation algorithms, as well as for ant-hill based mining [SAF11].

Success pheromones The pheromones for matching efficiency are simply named
‘success pheromones’. We define here the fitness as the probability of a path N
to be chosen. Pheromones are computed for each iteration i, and writen as ϕ.

fitnessN = ϕN∑k
l=1 ϕl

(3)

ϕ0 = 0 (4)
ϕN,i+1 = 1 if ϕN,i = 0 and match found for path N (5)

ϕN,i+1 = ϕN,i ∗ 1, 1 if ϕN,i! = 0 and match found (6)
ϕN,i+1 = ϕN,i ∗ 0, 9 if ϕN,i! = 0 and match NOT found (7)

A stable reconciliation occurs when a new rules appears to be more efficient
than a previous one for performing label matching, without later regression to
previous rules. Figure 1 shows the values of success pheromones for a stable
reconciliation.

History pheromones The pheromones for expert feedback are named ‘history
pheromones’, and track both validation of performed reconciliation and sudden
de-reconciliation. Such de-reconciliation typically means that a matching rule is
no longer valid. In our medical expense reimbursement example, for instance, the
name of and insurance organisation has changed, or a given service is covered
by a different insurance than previously. For ‘History pheromones’, the fitness
function as computed as follows:

fitnessN = 100% ifϕh,N,i > P (8)

268

Figure 1. Values of success pheromones
for a stable reconciliation

Figure 2. Values of history pheromones
for a stable reconciliation

ϕhi+1 = ϕhi + 1 if match found for path N (9)
ϕhi+1 = 0 if match NOT found for path N (10)

Figure 2 shows the values of history pheromones for a stable reconciliation:
an explicit de-reconciliation by the expert, followed by the identification of new
reconciliation rules, leads to a sudden modification of the rules to be applied by
the reconciliation engine.

3.2 The ARA rule system

Label matching rules learnt by ARA are bulding a set of tests, bound together
with a logical AND. When the test is valid, the relevant ‘class’ to which the
considered data entry pertains is provided as output. Each test is called an at-
tribute, and matches fields from the two domains to be reconciliated. In our case,
it matches field from the medical bill with a field from bank transfer extraction.
For instance:

• An attribute can be: ‘the amount of the bill is egal to the amount of the
transfer’

• a rule can be: IF ‘the amount of the bill is egal to the amount of the transfer’
AND ‘the bill data and the transfer data are separated by less than 30 days’
THEN ‘perform reconciliation’

• another rule can be: ‘the bill data and the transfer data are separated by
more than 30 days’ THEN ‘DO NOT perform reconciliation’

Attributes can be bound together in any possible combination for creating
new rules. Each attribute is created twice: one performs the test, the other is
its logical opposite. This enables to take decision when a given amount is NOT
egal to another, for instance, and thus to remove non-relevant rules when a rule
is invalidated by a manual reconciliation by the expert.

An attribute is built by three components:

The left accessor, responsible for extracting the data from the left dataset;
in our case, the left accessor is the ‘bill accessor’, and extracts information
related to the medical expense bill

269

The right accessor, responsible for extracting the data from the right dataset;
in our case, the right accessor is the ‘transfer accessor’, and extracts infor-
mation related to the bank transfer.

The evaluator, responsible for performing a test between these values provided
by the accessors.

This model is therefore easily extensible.

3.3 Leveraging expert feedback

The ARA algorithm is designed for quickly integrating expert feedback after
the initial learning phase. The objective is to provide a built-in mechanism for
tuning or disprove extracted rules. The interaction occurs in two ways:

• The expert reviews performed reconciliations. A very low acceptance readi-
ness of the user for false positive urges us to tune the rule selection so that
only label matching which are quasi certain are enforced.

• The expert performs manual reconciliation. Users are used to perform fully
manual matching, and shall not be exposed with approximation or uncer-
tainty. For this reason, likely reconciliations are shown to the user, but with-
out providing her with quantitative information about the computed fitness
value. These reconciliations are simply provided by decreasing fitness value.
Pheromone information is kept intern to the matching engine.

This approach enables to fully exploit the feedback of the user, without ex-
posing the internals of the algorithm, which would rather disturb them than help
them make better manual choices. In our case, users are typically administrative
agents of the insurance organisations or of medical centers, and shall be given
all tools to focus on the service they are committed to, not to understanding the
reconciliation logic.

4 The experiment

This section introduces the ARA implementation, specifies the required building
bricks, and explain how the current version of the tool can easily be extended
for still better performances in the evaluation application, or for application to
label matching in different domains. The evaluation process is then presented,
and results are provided to benchmark the relevance of our proposal, which
proves to provide very promising efficiency and performance.

4.1 Implementation

The development of the ARA tool and its evaluation entail following mandatory
building bricks:

• A system of dynamic rules which support the definition of complex rules
from simple tests

270

• A mechanism for the evaluation of the performance of a rule on a real and
representative training dataset from a production environment, including
fitness value, true negative and false negative rates

• An ant-hill algorithm for ordering a given dataset
• A graphical interface to visualise the output and evaluation of the algorithm
• The extraction of a basic dataset to benchmark the early versions of rule

learning. A given number of valid reconciliations and of invalid potential
reconciliations are taken at random from the reference dataset.

Figure 3 presents the algorithm workflow for ant-hill learning, with initiali-
sation of the dataset, initialisation of the rule graph including nodes and edges,
iterative construction of a new rule by the ants, and extraction of the final rule
set.

Figure 3. Algorithm workflow for ant-hill learning

The ARA tool is therefore a complete library for label matching applied to
reconciliation of medical expense reimbursement bills and bank transfers. More-
over, it is designed to be easily extendible to ensure its seamless implementation
in any production environment.

4.2 Implementing new attributes

A new attribute can easily be generated by creating a dedicated subclass im-
plementing accessor methods, and by instantiating these classes in the attribute
allocator. This process occurs in three phases:

271

1. Identify the Accessor or Evaluator class matching the datatype of the consid-
ered attribute. Such classes are for instance DecimalAccessor, DateTimeE-
valuator, etc.. If the attribute needs to operate on a new datatype, a new
Accessor or Evaluator subclass can simply be created. Methods to be imple-
mented are: expectedType() or returnedType().

2. Define a subclass of Accessor[Type] or Evaluator[Type]. Methods to be im-
plemented are: value() or test().

3. Instanciate the newly created class in the constructor of the AttributeAllo-
cator class. The AttributeAllocator the creates all possible combination of
compatible accessors and evaluators.

Figure 4 presents the software architecture of the solution, including named
methods (here in French).

Figure 4. Software architecture of the solution

ARA is not only a full-fledge label matching environment, it is also very
easily extensible and adaptable to other environments.

4.3 Experiment results

The ARA algorithm is evaluated wrt.its efficiency and performance as a stand-
alone, autonomous algorithm. The efficiency of the expert feedback still requires
integration work from the industrial partner, and is therefore not yet available.
ARA is evaluated on a dataset containing 2000 entries, 1000 of them being
valid reconciliations and 1000 being invalid ones. The automated generation of
matching rules provides following results:

272

• 3 rules are generated,
• 1927 entries are correctly classified,
• 26 are incorrectly classified, i.e. 1,3%.

If we consider that the characteristics of the data being analysed are stable
over time, this is a very satisfactory result. Figure 5 shows the evaluation results,
as depicted on the console. The first learnt rules can be read from it. The first
rule compares the payment dates (DateSolde) on the bill excerpt and on the
bank transfer statement. If a match occurs, the rule indicates that the bill and
the transfer can be considered as matching. This rule classifies correctly 971
entries, for only 2 false positives. It has therefore a fitness score of 0,967, which
is nearing 1. Following rule entails 3 attributes, i.e. it performs three tests. It
states that is the dates do not match, and no mention of the amount in the
‘wording’ and the ‘amount’ field of the back transfer, then no reconciliation can
be made between bill and transfer. Such a rule enables to eliminate matching
that are known they can’t be conclusive, so as to reduce the potential solutions
which are shown to the final user.

Figure 5. Evaluation results, shown on the console

One can notice that the number of false positives tend to increase when more
rules are learnt: the second rule generates 8 false positives, and this number still
raises with later rules. Figure 6 presents the evaluation results, as shown on the
graphical interface developed for the evaluation of ARA. Three graphs are made
available: the first one shows the number of true and false positives and negatives
for each rule; the second one, on the bottom left corner, shows the evolution of
the global fitness value as a ROC curve when more rules are learnt; the third
graph, on the upper right corner, shows the fitness function for each individual
rule.

The ARA algorithm has been tested for evaluating its performance on dataset
from some dozens to 20000 elements. It presents a linear execution time for this
range of dataset size. Figure 7 shows analysis duration, according to the dataset
size.

273

Figure 6. Performance, precision and
ROC curve for the algorithm to be eval-
uated

Figure 7. Analysis duration, according
to the dataset size

5 Discussion

The evaluation results show that ARA is able, at least for the target dataset, to
perform very efficient and performant label matching proposals with a reduced
set of rules. With 1,3% of failing reconciliations, its proves to be very promising,
at least for a dataset which characteristics are stable over time. If we moreover
consider that the highly probable evolution of the data characteristics can be
handled in a very reactive manner through the ARA expert-in-the-loop scheme,
ARA can be considered as a theoretically very promising approach. More ex-
perimentations in production environment is of course required to ensure that
the user interaction flow is actually ergonomic and enables to leverage these
theoretical possibilities.

An extension of the ARA model can be envisioned, to still increase proposed
results of this ant-hill algorithm:

• The fitness score of the rules used for performing matching proposals can
be exploited to detail the trust level one ca have in this matching. These
approach would enable to propose the most probable combinations to the
user, while letting her manual valide the matching itself. This feature is
specified, but still needs to be implemented

• Fine-grained tuning of the parameters of the ant-hill algorithm can still be
performed to ensure that the best possible results are provided. The effect
of this possible tuning is still to be evaluated so as to provide guidance for
configuration or further development of ARA. Two parameters are serious
candidates for tuning:

• The rate of unclassified dataset entries which is considered acceptable.
A lower rate leads the algorithm to identify more complex rules to clas-
sifying last cases, but typically leads to increase the false positive rate

• The number of ants traveling for the generation of a rule. Once the ants
converge toward a given solution, it is of no use to carry on the compu-

274

tation. However, if the number of ants is too restricted, the algorithmic
has no time to converge toward an optimal solution.

• the computation of the fitness value could be tuned so that false positives
are more disadvantageous. These two expressions of the fitness value could
be evaluated, as well as the impact of the parameter a > 1. Actually, when
a increases, false positives tend to let the fitness value decrease more signif-
icantly. TP are true positives, FP are false positives, TN are true negatives,
FN are false negatives.

fitness = TP

(TP + FN + 1) ∗ TN

(TN + a ∗ FP + 1) (11)

fitness = TP

(TP + FN/a) ∗ TN

(TN + aFP + 1) (12)

Based on these qualitative and quantitative evaluation of the ARA proposal
for ant-hill drive label matching, we can therefore conclude that, in agreement
with our working hypothesis, stigmergetic properties can be leverage to dra-
matically enhance learning time of any machine learning system. Moreover, the
availability of a meaningful feedback from the human operator is identified a key
enabler for a rapid adaptation to a changing environment. Detailed evaluation
of the effect of such a feedback is out of the scope of this paper.

6 Conclusions and perspectives
In this paper, we introduce the ARA Ant Reconciliation Algorithm for optimising
label matching through an innovative Ant-hill learning approach. ARA applies
the ant-hill optimisation scheme to human trace to leverage the focused feedback
of an expert for guided machine learning. It dramatically improves learning time,
and support efficient correction of learnt rules when they appear to be suboptimal
or erroneous. The current implementation of ARA is dedicated to label matching
applications, and is evaluated to consolidate information on reimbursement of
medical expenses. ARA is based on the Ant-Mining algorithm. It entails specific
pheromones for quickly learning from expert feedback, as well as a dedicated
rule system for maximising rule coverage. In our first experiment, the efficiency
and performance of the algorithm show promising results.

Further evaluation is still required to evaluate the ergonomy of the developed
solution for the expert. The interaction is meant to be fully transparent for the
user, by proposing actual as well as potential label matching occurrences and
hiding the underlying quantitative evaluation. Although the ARA algorithms
provides very satisfactory results on production dataset, and thus shows a great
potential for an efficient integration in the expense reconciliation software, an
evaluation of the integrated solution is not yet available.

ARA opens very rich perspective both in the label matching domain, as well
as in the domain of machine-learning guide by human experts. It provides a
very frugal scheme capable of greatly improving numerous applications while
implying very limited impact to the user with regard to interaction overhead or
system performance.

275

References

[CSSB+15] P. Collet, R. Seereekissoon, A. Scius-Bertrand, R. Stein, and P. Parrend.
Evaluation pair-à-pair participative (p3e) de la plate-forme poem. In E-
Formation, Jun 2015.

[DB05] Marco Dorigo and Christian Blum. Ant colony optimization theory: A
survey. Theoretical computer science, 344(2):243–278, 2005.

[DMC96] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. Ant system: opti-
mization by a colony of cooperating agents. Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on, 26(1):29–41, 1996.

[GVCK07] Sergio Gutiérrez, Grégory Valigiani, Pierre Collet, and Carlos Delgado
Kloos. Adaptation of the aco heuristic for sequencing learning activities.
In Proceedings of the EC-TEL, pages 17–20, 2007.

[LAM02] Bo Liu, Hussein A Abbass, and Bob McKay. Density-based heuristic for
rule discovery with ant-miner. In The 6th Australia-Japan joint workshop
on intelligent and evolutionary system, volume 184, 2002.

[OFJ08] Fernando EB Otero, Alex A Freitas, and Colin G Johnson. cant-miner: an
ant colony classification algorithm to cope with continuous attributes. In
International Conference on Ant Colony Optimization and Swarm Intelli-
gence, pages 48–59. Springer, 2008.

[SAF11] Khalid M Salama, Ashraf M Abdelbar, and Alex A Freitas. Multiple
pheromone types and other extensions to the ant-miner classification rule
discovery algorithm. Swarm Intelligence, 5(3-4):149–182, 2011.

[SF06] James Smaldon and Alex A Freitas. A new version of the ant-miner al-
gorithm discovering unordered rule sets. In Proceedings of the 8th annual
conference on Genetic and evolutionary computation, pages 43–50. ACM,
2006.

[VLC06] Grégory Valigiani, Evelyne Lutton, and Pierre Collet. Adapting the elo
rating system to competing subpopulations in a ‘man-hill’. In Proceedings
of the 2006 conference on Leading the Web in Concurrent Engineering: Next
Generation Concurrent Engineering, pages 766–773. IOS Press, 2006.

[VWTT10] Ellen Van Wilgenburg, Candice W Torres, and Neil D Tsutsui. The global
expansion of a single ant supercolony. Evolutionary Applications, 3(2):136–
143, 2010.

276

An Improved Particle Swarm Optimization
Algorithm for MRI Image Segmentation

Thuy Xuan Pham, Patrick Siarry, and Hamouche Oulhadj

Laboratory Images, Signals, and Intelligent Systems (LiSSi),
University Paris-Est Créteil, 94400 Vitry sur Seine, France

thuy.pham@univ-paris-est.fr,{siarry,oulhadj}@u-pec.fr

Abstract. In this paper, an improvement method for segmentation of
Magnetic Resonance Imaging (MRI) images using particle swarm op-
timization (PSO) is proposed. We introduce a new objective function,
based on kernelization of fuzzy entropy clustering algorithm with local
spatial information and bias correction. By utilizing the state-of-the-art
development of PSO in optimization, accurate and robust segmentation
results are achieved. The proposed algorithm has been evaluated on sev-
eral benchmark images. Experimental results show that the proposed
method performs better than competing algorithms.

Key words: Image segmentation, particle swarm optimization, entropy
fuzzy clustering, objective function, Magnetic Resonance Imaging

1 Introduction

Medical image segmentation is one of the most important problems in medical
imaging analysis [1]. Input images may be corrupted by noise and intensity non-
uniformity (INU) artifact due to various factors, such as spatial variations in
illumination or radio frequency coil used in image acquisition [2]. This makes
segmentation a challenging task. Therefore, various methods for segmentation
of medical images have been proposed [3]. They can be divided into four groups:
region-based techniques, pixel-based classification techniques, threshold-based
techniques, and model-based techniques. In this work, the pixel-based classifica-
tion techniques will be focused on.

Among the pixel-based classification methods, fuzzy clustering is widely used
because of their simplicity and applicability. However, the major drawbacks of
this approach are: (i) they are very sensitive to noise and INU artifact, since
no local spatial information in the image is considered; (ii) the results depend
not only on the choice of the initial clustering centroids but also on the high
vulnerability of the algorithms to be trapped into local minima.

In this work, a new method for segmentation of MRI images is proposed.
This method uses low-discrepancy sequence initialized particle swarm optimiza-
tion with high-order non-linear time varying inertia weight (LHNPSO) algorithm
introduced by Yang et al [5] with a new fitness function. The LHNPSO algo-
rithm, a global optimization algorithm, has two main advantages, namely, (i)
the method can converge faster and give an accurate global solution [6] (ii) it is

277

2 Thuy Xuan Pham, Patrick Siarry, Hamouche Oulhadj

easy to implement. The new fitness function takes advantage of the kernelized
fuzzy clustering approach; in addition, it also takes into account local spatial
information and bias field correction. Thus, the proposed method may tackle si-
multaneously the two main problems mentioned above. Experiments using both
simulated MRI brain images and real MRI brain images are reported and the
results are compared with those from recent segmentation methods.

The rest of the paper is organized as follows. Section 2 presents background in-
formation. Section 3 introduces the proposed method: LHNPSO algorithm with
a new fitness function. The performance of the proposed method is evaluated
and its comparison with a set of algorithms from the literature is reported in
Section 4. Finally, Section 5 concludes this paper.

2 Methods

2.1 Kernelized fuzzy entropy clustering with spatial information and
bias correction

In this section, a new objective function based on fuzzy entropy clustering
algorithm is designed. Let X = (x1, x2, . . . , xN) be an image with N pixels,
where xj represents the feature of jth pixel, a partition of the image can be ob-
tained by minimizing an objective function with respect to the partition matrix
U = (uij)C×N and the set of C cluster prototypes C = (ci)C with 1 < C < N
as follows:

JKFECSB (X,C,B,U) =
C∑

i=1

N∑

j=1

uij (1−K(xj , cibj))

+ n
C∑

i=1

N∑

j=1

uij log (uij) + η
C∑

i=1

N∑

j=1

uij (1−K(xj , cibj)) (1)

It should satisfy the following conditions:

U ∈

uij ∈ [0, 1]

∣∣∣∣∣∣

C∑

i=1

uij = 1, ∀j and 0 <
N∑

j=1

uij , ∀i

 (2)

where K (·, ·) is the Gaussian kernel function defined by K(xj , ci) = exp{−||xj−
ci||2/σ2}; The median of the neighbours within a window of size 3 × 3 around
the pixel xj is used to represent xj , which can be computed in advance. The
bias field estimation B = (bj)N based on Li’s work [7] is computed as follows:

B =

C∑

i=1

G ·X
N∑

j=1

ciuij

−1
G ·GT

N∑

j=1

c2iuij

T

·G (3)

where G = (g1, g2, . . . , gm)
T

is a set of 2D orthogonal Legendre polynomials.

278

An Improved PSO Algorithm for MRI Image Segmentation 3

Regarding the objective function, JKFECSB (1), the first term on the right-
hand side controls the shape and size of the clusters. In addition, if we consider
clusters as fuzzy sets, the second term expresses the average degree of non-
membership of members in a fuzzy set [4]. The third term is the local spatial
constraint term, in which the parameter η controls the effect of the penalty. In
essence, this term, equivalently, aims at guaranteeing noise and INU artifact in-
sensitiveness, and image detail preservation. Thus, minimizing JKFECSB means
simultaneously minimizing the dispersion within clusters, maximizing the degree
of membership of members, and suppressing noise and INU artifact.

By using the Lagrange multiplier method, the necessary conditions for the
minimization of the objective function in Eq. (1) with the constraints in Eq. (2)
can be found. Specifically, taking the first derivatives of JKFECSB with respect
to uij and ci, and zeroing them respectively, two necessary but not sufficient
conditions for JKFECSB to be local optimal solution will be obtained as follows:

u−1ij =

C∑

r=1

exp
{

1
n [(1−K(xj , cibj)) + η (1−K(xj , cibj))]

}

exp
{

1
n [(1−K(xj , crbj)) + η (1−K(xj , crbj))]

} (4)

ci =
N∑

j=1

uij [xjK(xj , cibj) + ηxjK(xj , crbj)]/
N∑

j=1

bjuij [K(xj , cibj) + ηK(xj , crbj)]

(5)

2.2 The low-discrepancy sequence initialized PSO

LHNPSO is a population based stochastic optimization technique and is re-
garded as a global search strategy, designed by Yang et al [5]. In LHNPSO, each
member of the population called a particle represents a potential solution to the
optimization problem; and the population or swarm P is evolved through succes-
sive iterations. In addition, in this algorithm, the initial population of particles
is generated by using the Halton sequence to cover the search space efficiently.
Each particle, denoted by i, has a position vector Xi = (xir)P , a velocity vec-
tor Vi = (vir)P , its own best position Pbest found so far, and interacts with
neighbouring particles through the best position Gbest discovered in the neigh-
bourhood so far. At iteration k, each particle is moved according to equations
(6) and (7):

Vi (k + 1) = wVi (k) + c1r1 [Pbest (k)−Xi (k)] + c2r2 [Gbest (k)−Xi (k)] (6)

Xi (k + 1) = Xi (k) + Vi (k + 1) (7)

where c1 and c2 are acceleration coefficients, equal to 2, that scale the influence
of the ’cognitive’ and ’social’ components; r1 and r2 are two random values,
uniformly distributed in [0, 1]; w is inertia weight, which is updated as follows:

w (k + 1) = wmax − (wmax − wmin) · (k/kmax)
1
π2 (8)

279

4 Thuy Xuan Pham, Patrick Siarry, Hamouche Oulhadj

where (wmin, wmax) is the range of inertia weight, with wmin = 0.4 and wmax

= 0.9, k and kmax are the iteration number starting from iteration one and the
maximum number of allowable iterations, respectively.

This law of variation of w increases the exploration of the search space in the
first iterations of the algorithm, and the exploitation of the best solutions found
so far towards the end of the algorithm.

3 The proposed algorithm

The kernelized fuzzy entropy clustering with spatial information and bias correc-
tion (KFECSB) model is a complex non-linear model. Using local search method
(gradient method) for solving this model, solution of minimisation process can be
trapped into local minima. By contrast, the algorithm has the advantage of fast
converging. On the other hand, LHNPSO is a global optimization method, which
can provide global optimum solution, but with a long convergence time. Thus,
LHNPSO algorithm is used with minor improvements to optimize JKFECSB,
reaching global optimum solution by escaping local optima trap. The gradient
method of KFECSB is used concurrently to guide the LHNPSO research pro-
cess in order to converge faster and anticipate more accurate solutions. As such,
a new MRI image segmentation algorithm based on KFECSB and LHNPSO,
called PSO-KFECSB, is proposed.

To make sure that all particles are moving within the search space and avoid-
ing divergent behaviour, their position and velocity are limited as follows:

vir (k + 1) =

+ rand () · vmax, if vir (k + 1) > vmax

− rand () · vmax, if vir (k + 1) < −vmax

+ vir (k + 1) , otherwise

(9)

xir (k + 1) =

1
2 · rand () · (xmax − xmin) , if xir (k + 1) < xmin

or xir (k + 1) > xmax

xir (k + 1) , otherwise

(10)

where vmax is the largest allowable step size in any dimension; and, [xmin, xmax]
are the bounds of the search space in each dimension. In image clustering, com-
monly, vmax is set to 1 and (xmin, xmax) are the minimum and maximum of the
feature (intensity or gray value) of the image.

The PSO-KFECSB algorithm is shown as Algorithm 1: In this work, the num-
ber of non-significant improvements of the partition matrix and the maximum
number of iterations are used as the stopping criteria of the algorithm. Thus, if
the condition (max{‖UGbest,new −UGbest,old‖} < ε) is completed kstop times or
the condition (k > kmax) is reached, the algorithm is immediately stopped.

4 Experimental results

This section presents the results of the experimental evaluation of the proposed
algorithm. The algorithm is compared with five well-known image clustering
algorithms in the literature: FEC [4], KFCMS2 [8], FLICM [9], MICO [7], and

280

An Improved PSO Algorithm for MRI Image Segmentation 5

Algorithm 1: PSO-KFECSB

Initialization: Set k = 1; Initialize all parameters for the LHNPSO algorithm:
{c1, c2, kmax, P, . . .} and the objective function according to Eqs. (1):
{C, n, η, . . .};

Results : The cluster centres C and the partition matrix U
1 repeat
2 for each particle do
3 Calculate kernel distance K; Calculate the partition matrix U using Eq. (4);
4 Calculate the objective function using Eq. (1);

5 Update the Pbest, Gbest, and B by using Eq. (3), Gbest, and U;
6 Update the inertia weight w using Eq. (8);
7 Update the positions Xi and the velocities Vi using Eqs. (6) and (7);
8 Map Xi and Vi into search space using Eqs. (9) and (10);

9 until the stopping criteria are met ;

csFCM [10]. Two image datasets: simulated MRI brain images from BrainWeb
[11] and real MRI brain images [12], with different levels of corrupting noise and
INU artifact, are used to evaluate the performance of the proposed algorithm.
The values of the parameters of the proposed method are based on conclusions
in the relative literature and the trial and error technique. Parameter settings
are given in Table 1.

Table 1: Setting of specific parameters in the PSO-KFECSB algorithm

Parameters Values

Population size 40
c1 = c2 2.0
Degree of fuzzy entropy, n 20
Spatial constraint parameter, η 2.6
Controlling Gaussian kernel parameter, λ 1/2π
Number of non-significant improvement, kstop 5
Terminate criterion parameter, ε 0.0001
Maximum number of iterations, kmax 100

In order to compare the results of different segmentation algorithms, super-
vised evaluation methods were used. In supervised evaluation methods, Jaccard
index [13] (JAC) and Hausdorff distance [14] (HD) were used because current
research [15] reports that they are suitable metrics for evaluation of different
segmentation methods when there exist outliers with or without small segments,
complex boundaries, low densities in the image.

4.1 Experiments on simulated MRI images

The proposed PSO-KFECSB and 5 other algorithms have been tested on normal
brain images which have characteristics of Mobility T1, slice thickness 1mm,
with different levels of noise (0%, 1%, 3%, 5%, 7%, 9%), and different levels
of non-uniformity (0%, 20%, 40%). These images were segmented with 4 cluster
centroids: background, cerebral spinal fluid (CSF), gray matter (GM), and white
matter (WM).

281

6 Thuy Xuan Pham, Patrick Siarry, Hamouche Oulhadj

Table 2: Segmentation evaluation in average of the simulated MRI image

Regions Metrics FEC KFCMS2 FLICM MICO scFCM proposed

CSF
JAC 0.9427 0.9598 0.9541 0.9549 0.9464 0.9634*

HD 73 136 145 74 73 125

GM
JAC 0.7845 0.8482 0.8466 0.7504 0.8055 0.8738
HD 72 61 61 85 72 61

WM
JAC 0.8460 0.9010 0.9039 0.7975 0.8680 0.9243
HD 106 85 241 208 89 81

*The bold numerical values indicate the best performance.

Fig. 1: Simulated brain MRI images: (a) original T1-weighted axial image with 9%
noise and 40% intensity of non-uniformity; (b) original image after skull stripping; (c)
ground truth images; (d) FEC results; (e) KFCMS2 results; (f) FLICM results; (g)
MICO results; (h) scFCM results; (i) PSO-KFECSB results.

Figure 1 shows an example of segmentation of a simulated brain image (slice
80) with 9% noise and 40% intensity of non-uniformity. Visually, performance
comparison of the six competitive algorithms is inexplicit. The quantitative per-
formance evaluation (average in 10 program runs) is given in Table 2. In this
table, it can be seen that the proposed PSO-KFECSB algorithm outperforms all
competing algorithms, except for CSF with Hausdorff distance.

4.2 Experiments on real MRI images

The performance of the PSO-KFECSB algorithm has been also tested on the
Internet Brain Segmentation Repository (IBSR) database [12]. Figure 2 shows
an example of segmentation of a real brain MRI image, the 25th plane slice
of the 4th volume. The number of tissue classes in the segmentation was set

282

An Improved PSO Algorithm for MRI Image Segmentation 7

to three, which corresponds to cerebrospinal fluid (CSF), gray matter (GM),
and white matter (WM). Background pixels are ignored in the computation. A
careful investigation of the results presented in Fig. 2 suggests that the proposed
algorithm provides superior results as compared to the other five competing
algorithms. Table 3 shows the quantitative evaluation (average in 10 program
runs) of the performance. The results presented here validate the efficiency of
the proposed PSO-KFECSB algorithm and also demonstrate its superiority over
the FEC, KFCMS2, FLICM, MICO, and csFCM algorithms.

Fig. 2: Real brain MRI images: (a) original image; (b) manual segmented image; (c)
ground truth images; (d) FEC results; (e) KFCMS2 results; (f) FLICM results; (g)
MICO results; (h) scFCM results; (i) PSO-KFECSB results.

Table 3: Segmentation evaluation in average of the real MRI image

Regions Metrics FEC KFCMS2 FLICM MICO scFCM proposed

CSF
JAC 0.9696 0.9696 0.9659 0.9432 0.9696 0.9738*

HD 1405 1700 1753 1640 1405 1700

GM
JAC 0.6863 0.6835 0.6756 0.7590 0.6835 0.7872
HD 296 290 297 296 296 290

WM
JAC 0.6804 0.6777 0.6733 0.7800 0.6799 0.7953
HD 293 360 377 85 361 73

*The bold numerical values indicate the best performance.

5 Conclusion

In this paper, an improved particle swarm optimization with a new fitness func-
tion, kernelized fuzzy entropy clustering with spatial information and bias cor-
rection, for segmentation of MRI images is proposed. Two drawbacks of fuzzy
clustering algorithms, which are the trapping of the solution into local minima

283

8 Thuy Xuan Pham, Patrick Siarry, Hamouche Oulhadj

and sensitivity to noise and INU artifact, have been partially overcome. The
experimental results show that the proposed method is more effective in com-
parison with five competitive methods of the literature. However, there is still
much ground work to cover. In particular, the determination of the parameters:
n (degree of fuzzy entropy) and η (controlling parameter of spatial information)
is an open question. In addition, only one criterion (JKFECSB) is used to guide
the search process of the solution, which may lead to the situation where the so-
lution is a global optimum of the criterion, but may not be the optimum for the
segmentation. To improve the performance, we plan to apply a multiobjective
optimization approach, in order to exploit the strengths of other criteria.

References

1. Duncan, J.S., Ayache, N., Medical image analysis: progress over two decades and
challenges ahead, IEEE Trans. Pattern Anal. Mach. Intell, 22, 85-106, 2000.

2. Simmons, A., Tofts, P.S., Barker, G.J., Arridge, S.R., Sources of intensity nonunifor-
mity in spin echo images at 1.5 T, Magnetic Resonance in Medicine, 32(1), 121-128,
1994.

3. Gordillo, N, Montseny, E., Sobrevilla, P., State of the art survey on MRI brain
tumor segmentation. Magnetic Resonance Imaging, 31(8), 1426–38, 2013.

4. Tran, D., Wagner, M., Fuzzy entropy clustering, IEEE International Conference
Fuzzy Systems, 1, 152-157, 2000.

5. Yang, C., Gao, W., Liu, N., Song, C., Low-discrepancy sequence initialized par-
ticle swarm optimization algorithm with high-order nonlinear time-varying inertia
weight, Appl. Soft. Comput., 29, 386-394, 2015.

6. Harrison, K.R., Engelbrecht, A.P., Ombuki-Berman, B.M., Inertia weight control
strategies for particle swarm optimization, Swarm Intelligence, 10(4), 267-305, Dec
2016.

7. Li, C., Gore, J.C., Davatzikos, C., Multiplicative intrinsic component optimization
(MICO) for MRI bias field estimation and tissue segmentation, Magnetic Resonance
Imaging, 32, 913-923, 2014.

8. Chen, S.C, Zhang, D.Q, Robust image segmentation using FCM with spatial con-
straints based on new kernel-induced distance measure, IEEE Trans. Syst. Man.
Cybern, Part B: Cybern, 34(4), 1907-1916, 2004.

9. Krinidis, S., Chatzis, V., A robust fuzzy local information c-means clustering algo-
rithm, IEEE Trans. Image Process, 19, 1328-1337, 2010.

10. Adhikari, S.K., Sing, J.K., Basu, D.K., Nasipuri, M., Conditional spatial fuzzy c-
means clustering algorithm for segmentation of MRI images, Appl. Soft Comput.,
34, 758-769, 2015.

11. BrainWeb: Simulated Brain database, http://brainweb.bic.mni.mcgill.ca/brainweb/,
2017.

12. The Internet Brain Segmentation Repository, http://www.nitrc.org/projects/ibsr,
2017.

13. Jaccard, P., The distribution of the flora in the alpine zone, New Phytologist, 11(2),
37-50, 1912.

14. Beauchemin, M., Thomson, K.P.B, Edwards, G., On the Hausdorff distance used
for the evaluation of segmentation results, CJRS, 24(1), 3-8, 1998.

15. Taha, A.A., Hanbury, A., Metrics for evaluating 3D medical image segmentation:
analysis, selection, and tool, BMC Medical Imaging, 15-29, 2015.

284

Crowd-Sourced Optimisation of Procedural
Animation Systems

Gareth I. Henshall, William J. Teahan, and Llyr ap Cenydd

Bangor Univeristy, Wales, UK,
g.i.henshall@bangor.ac.uk

Abstract. Complex procedural animation systems are capable of syn-
thesising vivid and organic character motion automatically. However due
to potentially hundreds of interlinked parameters, the search space can
be very large. Furthermore automatic optimisation of such systems is
notoriously difficult as the results can be very subjective.
We start by describing issues with evolving and tuning procedural ani-
mation systems and survey related work. We then describe a web-based
simulation which allows users to interactively rate a population of virtual
creatures to a prescribed criteria. Each individual rating is stored and
used to seed subsequent generations using a genetic algorithm, thereby
facilitating crowd-sourced guiding of the system towards a desired mo-
tion or behaviour.
The results demonstrate that our system can successfully tune animation
systems to a required specification. The next steps of our research include
the optimisation of complex procedurally animated dolphins in both 2D
and VR.

Keywords: procedural animation, parameter optimization, genetic al-
gorithms

1 Introduction

Advances in computer graphics continue to permit the development of increas-
ingly realistic real-time virtual characters. However, while rendering techniques
allow for life-like visuals, the animation of the vast majority of complex charac-
ters are still heavily reliant on pre-created data like key-frame or motion cap-
ture sequences. While these techniques are very effective in specifically designed
scenes, sequences or environments, the interaction between the character and its
environment is primarily an illusion. In recent years, we have seen the increasing
use of ancillary techniques like Inverse Kinematics (IK) for limb placement, and
hair and cloth simulation, in order to provide a layer of dynamic simulation to
augment the underlying data-driven sequences. None-the-less, there remains a
disconnect between the character and virtual world.

The advent of presence inducing VR gives us for the first time the opportunity
to exist in the same virtual world as virtual creatures with tangible volume. This
opens challenges in many areas of animation, as now even the slightest hitch or

285

erroneous motion can be enough to break immersion. The intimate nature of
such experiences also requires greater attention to behavioural realism, player
interaction and an emphasis on micro animation such as eye contact.

In procedural animation, motion is calculated live at run-time using algo-
rithms. This synthesis of motion through simulation potentially allows for much
more interesting, complex and realistic behaviour to form. Procedural animation
facilitates limitless permutations of motion in real time, allowing for a reactive
system with a much wider range of actions and characteristics than would be
possible by blending together predetermined sequences. Animating in this way
is also just as viable for non-human characters, especially as some of the most
widely used techniques such as motion capture do not apply as easily to non-
humanoid forms.

Most non-trivial procedural animation systems will consist of interdepen-
dent components controlled by a large set of parameters. A walking system for
example could have parameters for controlling the timing, speed, rotation and
sequencing of all joints in an articulated figure. One of the main challenges when
developing a procedural animation system is how to tweak potentially hundreds
of interconnected parameters to produce desired results. Furthermore such com-
plex systems can have emergent phenomenon, where the simple behaviours of
small components combine to produce much more complex behaviour. A great
example of this is Craig Reynolds Boids system [1], where three basic rules (co-
here, separate, align) combine to synthesize complex flocking behaviour such as
the murmuration of starlings.

As procedural animation systems become increasingly complex, it becomes
harder for a single person or a development team to optimise the parameter
space to a desired level, due to the vast number of permutations. Furthermore,
the appearance and anthropomorphisation of a virtual creature is difficult to
automate as the outcome can be very subjective, especially when the system is
still in an embryonic state and being tuned to evoke emergent behaviour.

Ultimately, if the total number of parameters in a data set is n and the value
range for this is r then the gross number of variations is rn. For example, as-
suming a parameter has an integer value range of 1–15, then even if there are
only five parameters, there would be 155 or 759,375 possible variations. With
ten parameters this would increase to 5.77e+11 possible variations. A trial and
error approach for searching a parameter space would not be efficient for a more
complex creature animation system, as they contain hundreds of parameters
with larger ranges. Another issue is that the vast majority of parameters are
implemented using a continuous scale rather than a discrete integer scale. This
means that the possible number of variations increases exponentially as accuracy
improves. A more effective method of annealing and exploring wide animation
parameter spaces could potentially allow for faster and more malleable develop-
ment of complex animation systems.

Our approach aims to make parameter optimisation abstract, where the user
makes their judgement based purely on the perceived animation, and never actu-
ally sees the numbers being adjusted or how they relate to one another. Further-

286

more, our system is automatically updated based on crowd-sourced data, and
takes advantage of both human and computer based optimisation strategies.

Our long-term goal is to develop a system that allow for individuals or a
group of users to search through the vast parameter space of complex procedural
animation systems (and therefore the gamut of virtual creature behaviour) using
powerful and user friendly techniques that are not reliant on knowledge of the
underling structure of the system.

1.1 Related Work

A persistent challenge in real-time computer animation research is the creation
of self-driven characters which have the ability to navigate around virtual envi-
ronments. How natural a character’s movement appears versus how much control
can be exerted also continues to be a core issue, and there is always a balance to
be found between animation accuracy and ease of control. As realistic as a mo-
tion synthesising system can potentially be, there will remain a desire to have
as much control over the global movement and behaviour of the character as
possible.

Data-driven constraint based approaches for blending a large library of mo-
tion captured sequences is still one of the most common approaches within both
commercial software and research [2, 3]. A motion database is used to house a
set of particular actions or movements for a character which are then blended
together to create the illusion of natural movement [4, 5].

Motion primitives in procedural animation such as the paths of end-effectors
or joint rotation can be described by using a parameterised formula. This is fre-
quently used alongside inverse kinematic solvers [6–8]. Another approach is to
us the direct application of torque and force on the figure to generate the anima-
tions in a physics based approach. The arthropod animation system described
in [9] and the human movement system in [10] aim to combine physically and
kinematic based techniques.

Examples of neural networks used to control animation include learning and
optimisation strategies [11, 12], inverted pendulum models [13] and the commer-
cial Euphoria Engine [14]. Active learning methods such as Bayesian optimisa-
tion [15] and the use of motion capture data to enhance procedural animation
[16] are other examples of optimisation techniques.

Karl Sims [17] created a system in which an autonomous three-dimensional
virtual creature can be generated and optimised without the need for heavy
user interaction or specifications. This study was altered to accommodate a two-
dimensional space a year later producing similar results [18]. Genetic algorithms
(GA) are still being improved in terms of efficiency and effectiveness [19]. Similar
methods have been used to solve problems outside of parameter optimisation
[20] but the GA itself has the same structure and themes (selection, crossover,
mutation). A GA’s efficiency can be improved by combining a new crossover
operator with a diversity operator as shown in [21].

A human-in-the-loop method for choosing appropriate optimised parameters
is suggested to be the most effective method [22, 23]. A fundamental issue with

287

this method is that it requires the user to have a proficient knowledge of the
underlying system that they are optimising. This is further confounded by the
fact that complex animation systems often have parameters which coherently
interact with each other, and modifying even a single parameter could produce
unpredictable results.

2 Crowd Sourced Prototype

As part of a pilot study to test the validity and robustness of our technique, we
developed a prototype system in the Unity game engine that uses crowd-sourcing
to adjust the parameters of simple snake-like creatures.

There are two main aims of this prototype. Firstly, we aim to validate that
it is possible to use crowd-sourcing to optimise a simple procedural animation
system’s parameters towards a set goal, from basic specifications such as “green
snake with a long tail” and more abstract descriptions such as “a nervous, er-
ratic snake”. This includes ensuring that the system is robust, able to handle
potentially hundreds of concurrent users, and capable of being directed towards
a specified optimal parameter space.

Secondly, as procedural animation systems increase in complexity, tracking
the result of optimisation will become increasingly difficult, as a motion might
also be extremely complex and the result of many interdependent parameters
and emergent behaviours. For example, while it is easy to validate that a snake
creature is becoming faster or greener with each generation, perceiving the ag-
gregate motion of a complex system will not be. Testing on a simple system
allows us to ensure that there are no bugs or bias in the system that would
be very difficult to detect when moulding more complex procedural animation
systems.

2.1 Creature Model and Initialisation

The creature model for our prototype consists of a trail renderer attached to a
rigid body sphere. The sphere resembles a snake’s head, while the trail renderer
resembles a tail (see Figure 1). The snakes move around a 2D plane environment
by applying force and torque on the rigid body. MoveSpeed and TurnSpeed
parameters are used to control the speed and turning rate respectively. Each
snake steers towards an invisible target which changes position at a time set
by a TargetMove parameter. TrailTime describes the length of the tail, while a
parameter called TrailColour encodes the RGB colour.

At the start of the experiment, a script creates the first generation file con-
sisting of 100 snakes with random parameters.

The colour parameters are in the range 0.0-1.0, while all other parameters
are given suitable ranges. The full specification of the parameters can be seen in
Table 1. Each parameter used to create the snake can be varied by 0.01 incre-
ments which means that across the seven parameters there are 2.4E16 possible
snakes that can be generated. The 100 snakes in the first generation represent

288

Fig. 1: Single Snake

4.166E-15% of all permutations. The study uses 100 snakes in its original param-
eter file as it obtains approximately 100 ratings per generation, using anymore
than 100 snakes per generation would result in too many snakes receiving no
rating.

Table 1: Parameter list for prototype’s snake creatures.
Parameter Range Description

Top Speed 5.0 - 20.0 The speed in which the snake moves
around the environment.

Turn Speed 4.0 - 6.0 How sharply the snake can turn to-
wards the target.

Trail Time 1.0 - 5.0 The time the trail renderer lasts for.
Target Move 1.0 - 5.0 How often the target changes position.
RGB 0.0 - 1.0 The RGB components of the trail ren-

derer.

2.2 Rating System

We wish to use crowd sourcing as our method for optimising the parameter space,
as we aim to gain the opinion of what constitutes a snake with a long purple
tail from as wide a demographic as possible, ranging from computer illiterate to
seasoned gamer. Getting as wide a range of opinions as possible means that the
resulting snake will be tuned to the specification of the wider public as opposed
to being specifically annealed by experts. For example a gamer could have very
different or refined views on what they perceive to be a realistic procedurally
animated creature when compared to a non-gamer. Their opinion might therefore
be biased to a preferred game, behaviour or animation style whereas a non gamer
will not necessarily have the same set of preconceived ideas. Using as wide a
demographic as possible also allows us to test the robustness of our system more
thoroughly.

The prototype system was built as a Unity OpenGL web app embedded into
an HTML page. Upon loading the page, the user sees a screen similar to Figure 2.

289

Fig. 2: Participant’s view of the prototype snake study

The screenshot shows three snakes, one with a blue head and two with red heads.
Once instantiated, the snakes will move around the plane indefinitely. The user
is asked to rate the blue headed snake on how long and purple it is using a 0 – 5
rating system. The webpage explains to the user that if the blue snake is inactive
or appears broken, it would get a rating of 0, with progressively longer and more
purple snakes given higher ratings. The user is then advised to keep on rating
snakes for as long as they like, though we recommended that they rate at least 5
snakes so that they can see the general trends of the generation and start to form
a more informed idea of the range of phenotypes as shown in Table.1. There is
no quota for an individual session so the application will keep instantiating new
snakes to rate indefinitely. Once the user feels they have contributed enough to
the study they can simple close the page and their participation is terminated.

A server was set up to store and update the generated parameter files and
associated ratings. Using a server allows for multiple users to run the program
and rate snakes at the same time. When a snake is rated, the time-stamped
parameters and associated rating are recorded. Snakes are selected randomly
from the parameter file until there are sufficient ratings for a new generation. As
the selection process is random, multiple users can rate the same snakes during
a generation. As this study does not need any details from a participant there is
no signing up or logging in process. Instead, they are automatically connected
to the server and can start rating the creatures automatically. This also allows
for users to leave and join the study with minimal overhead.

In order to get as many participants as possible, our experiment was adver-
tised primarily through social media including Facebook, LinkedIn, Reddit and
Twitter. We also recommended users to encourage others to participate in the
studies.

290

2.3 Subsequent Generations

When a generation of snakes has been sufficiently rated, a script automatically
generates the next generation. When creating a new generation, the current
parameter and results are time-stamped and archived on a virtual machine.
Through the genetic algorithm the ratings are then transferred into a 2D array
and re-ordered back to the way the parameters are read by Unity. The parameters
need to be re-ordered as the Unity build reads them in in a certain order where as
the server saves them into alphabetical order. Our algorithm differs from others
as we have included a heavy weighting on the crowd sourcing element. With our
algorithm we also perform the selection prior to the mutation where as many
GAs create a pool of new children perform a mutation chance and then proceed
to use a selection method to choose which are included in the next generation

We decided that 100 ratings would be enough for each generation as it gives
a reasonable chance that most snake variants have been rated at least once per
generation. Once the snakes have been placed in order of rating, the top 25% are
automatically selected for the new generation as the strongest candidates. All
of the snakes’ ratings are then given a fitness value as described in Algorithm
1. Using a roulette wheel selection method. two snakes are randomly chosen
to be one of two parents which are used to generate two children for the next
generation.

Using a single-point cross-over method, a random place within the parameters
of the parents is selected as the crossover point. The children of these two snakes
are then formed by combining the first portion of parent A and the second part of
parent B. The opposite operation is performed to create the second child. These
two children are then added to the new generation. The process is repeated
until the next generations parameter file is full. Each individual parameter of a
creature is given a 1% chance of mutating. If it is selected to mutate then the
parameter value will increase or decrease within the upper and lower bounds of
that parameter is created. After the new generation file is complete, it replaces
the previous parameter file on the server. This process is automatic, seamless,
and the end user will not notice any difference when rating. Users can start off
rating one generation and finish rating a different generation.

3 Results

As previously mentioned, we asked participants to rate the snakes based on the
description“purple snake with long tail”. To judge how successful the system
was, we only need to look at the trends in four of the parameters: TrialTime,
and the RGB components of TrailTime. The other three parameters (TopSpeed,
TurnSpeed & TargetMove), whilst still changeable, do not directly impact on
the generated specification. Looking at the aforementioned four parameters, the
model score is represented by the outer bounds of the parameters model :

TrailT ime = 5, Red = 1, Green = 0, Blue = 1

291

Algorithm 1: Pseudo-code for the human-in-the-loop search algorithm
to solve crowd sourced parameter optimisation

Input: Saved Ratings File
Output: Generation x Parameter File

1 generation← x
2 download generation x parameter file and saved ratings to virtual machine
3 while ratings open do
4 re-order ratings file
5 add each re-ordered row into newLines

6 while parameters open do
7 add parameters to params

8 for each ratingsRow do
9 remove rowId

10 if required ratings then
11 while true do
12 average score for matching parameter row

13 sort finalList into score order
14 copy top 25% into newGeneration
15 while true do
16 determine parameter rows fitness

17 while true do
18 execute roulette wheel selection for parent1
19 execute roulette wheel selection for parent2
20 execute single-point crossover with parent1 and parent2
21 execute mutation chance for child1 and child2
22 add child1 and child2 to newGeneration

23 while true do
24 create new parameter file

25 update server parameter file

26 else
27 remove downloaded files

292

1 2 3 4 5 6 7 8 9 10

Generation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ed

 V
al

ue

(a) Red Trends

1 2 3 4 5 6 7 8 9 10

Generation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

G
re

en
 V

al
ue

(b) Green Trends

1 2 3 4 5 6 7 8 9 10

Generation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
lu

e
V

al
ue

(c) Blue Trends

1 2 3 4 5 6 7 8 9 10

Generation

1

1.5

2

2.5

3

3.5

4

4.5

5

T
ai

l L
en

gt
h

(d) TrailTime Trends

Fig. 3: RGB & TrailTime trends across generations

To quantify these results, we can observe the trends of these parameters over
subsequent generations. As shown in Figure 3, the snake tail colour changes over
the generations as expected with the Red & Blue elements increasing and the
Green decreasing. The TrailTime also increases through the generations with an
anomaly happening in generation four and a plateau occurring from generation
six onwards. The anomaly in the TrailTime could be down to the participants
placing more emphasis on the colour of the snake and therefore allowing for some
shorter tailed snakes to gain higher ratings. Interestingly, throughout the gen-
erations the TopSpeed took a steady decrease (from 12.10 to 9.38) whereas the
TurnSpeed and TargetMove parameters both stayed fairly stable to the original
averages (4.97 to 5.19 and 2.04 to 1.74 respectively). So even though TopSpeed
was not vital to the ratings description, it did slowly decrease over subsequent
generations.

Another method of observing how successful the system was is to calculate
the Manhattan and Square distances of each generation (Table. 2). The Manhat-
tan distance shows the distance between two points on a grid based horizontal
and vertical path, while the Square distance shows the distance between the two
points in a diagonal or in a “as the crow flies” manner.

293

Square
Distance
Manhattan
Distance

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
0.00

1.25

2.50

3.75

5.00

Generation Number

D
is

ta
nc

e

Fig. 4: Square and Manhattan distances for each Generation

As shown in Figure 4, as the study progressed both the Manhattan and
Square distances gradually go closer to 0. This indicated that the snakes for each
generation were trending towards to model answer for this study and therefore
proving the system is capable of tuning parameters for a procedurally animated
creature.

Table 2: Square & Manhattan distance equations

dist(x, y) =
n∑

i=1

(xi − yi)
2 dist(x, y) =

n∑

i=1

|xi − yi|

Square distance Manhattan distance

4 Conclusion

The process of tuning a procedurally animated systems is still very subjective and
difficult to automate and there is no “perfect” behavioural profile. Our aim is to
develop techniques that allow users to interactively rate a creature’s behaviour,
appearance, etc. and therefore guide the development of a complex procedural
animation system. By altering what aspect the user is rating, the system can
produce vastly different results. The system could also allow for the simultaneous
development of multiple complex systems. As you can see in Figure 5, (where
Generation 1 is represented by the red headed snake, Generation 5 the orange
headed snake and Generation 10 by the green snake), this prototype experiment
has proven that the genetic algorithm combined with the ratings system study
has been successful and we can now apply it to more complex systems.

294

Fig. 5: The appearance of the average snakes for Generations 1 (red head), 5
(orange head) & 10 (green head).

4.1 Towards Crowd-Sourced Parameter Optimisation of 2D and
VR Dolphins

The next step is to implement the same system within a much more complex pro-
cedurally animated system which we have been developing in tandem. This sys-
tem consists of 37 adjustable parameters and is capable of producing life-like and
diverse dolphin motion and behaviour. A screenshot of this system can be seen
in Figure 6). The complexity and connectedness of the parameter space of this
system vastly increases the variations of behaviour for each creature compared
to our prototype. This larger parameter space will allow for us to thoroughly
test if it is possible to crowd-source different types of animation behaviours by
asking the user to create a creature based on adjectives such as ‘playful’, ‘angry’,
‘calm’ or ‘friendly’. As these creature swim through a 3D virtual environment,
they will be much harder to represent in image form, therefore using the same
method as described above should allow us to ascertain the robustness of our
system.

A further goal is to test whether a user’s perception of the procedural creature
is altered depending on whether it is viewed on a monitor (2D) or within Virtual
Reality (VR). Using our crowd-sourcing method, we can see how the dolphins’
parameter space alters through the generations giving developers a better idea
as how to optimise a creature’s parameters in the future. This experiment could
potentially reveal if certain motion characteristics or even single parameters are
more or less important across 2D and VR, and how best to develop and tune
procedural animation systems for different mediums.

295

Fig. 6: Virtual dolphins generated by a procedural animation system we aim to
optimise in future work.

References

1. Reynolds, Craig W. Flocks, Herds and Schools: A Distributed Behavioral Model.
ACM SIGGRAPH ’87 21.4: 25-34 (1987)

2. Fang, Anthony C and Pollard, Nancy S. Efficient Synthesis of Physically Valid
Human Motion. ACM Transactions on Graphics (TOG) 22.3: 417–426 (2003)

3. Kovar, Lucas and Gleicher, Michael and Pighin, Frederic. Motion Graphs. ACM
transactions on Graphics (TOG) 21.3: 472–482 (2002)

4. Lee, Yongjoon and Wampler, Kevin and Bernstein, Gilbert and Popovic, Jovan
and Popovic, Zoran. Motion Fields for Interactive Character Locomotion. ACM
Transactions on Graphs (TOG) 29.6: 138 (2010)

5. Lee, Jae Moon. Fast K-Nearest Neighbor Searching in Static Objects. Wireless Per-
sonal Communications: 93, 147–160 (2017)

6. Burrell, Thomas, et al. Feedback ControlBased Inverse Kinematics Solvers for a
Nuclear Decommissioning Robot. IFAC-PapersOnLine 49.21: 177-184 (2016)

7. Meredith, Michael and Maddock, Steve. Real-Time Inverse Kinematics: The Return
of the Jacobian. Technical Report No. CS-04-06, Department of Computer Science,
University of Sheffield (2004)

8. van Basten, Ben JH and Stüvel, Sybren A and Egges, Arjan. A Hybrid Interpolation
Scheme for Footprint-Driven Walking Synthesis. Proceedings of Graphics Interface
2011 9–16 (2011)

9. Cenydd, Llyr ap and Teahan, Bill. An Embodied Approach to Arthropod Anima-
tion. Computer Animation and Virtual Worlds 24.1: 65–83 (2013)

10. Bowman, Christopher, Hamido Fujita, and Gavin Perin. Towards a Knowledge
Based Environment for the Cognitive Understanding and Creation of Immersive
Visualization of Expressive Human Movement Data. International Conference on
Industrial, Engineering and Other Applications of Applied Intelligent Systems.
Springer International Publishing (2016)

11. Yin, KangKang and Loken, Kevin and van de Panne, Michiel. Simbicon: Simple
Biped Locomotion Control. ACM Transactions on Graphics (TOG) 26.3: 105 (2007)

296

12. Wang, Jack M and Fleet, David J and Hertzmann, Aaron. Optimizing Walking
Controllers. ACM Transactions on Graphics (TOG) 28.5: 168 (2009)

13. Coros, Stelian and Beaudoin, Philippe and van de Panne, Michiel. Generalized
Biped Walking Control. ACM Transactions on Graphics (TOG) 29.4: 130 (2010)

14. Natural Motion. Dynamic Motion Synthesis, (2011).
http://www.naturalmotion.com/middleware/euphoria/ (02/03/2017)

15. Brochu, Eric and Brochu, Tyson and de Freitas, Nando. A Bayesian Interactive Op-
timization Approach to Procedural Animation Design. Proceedings of the 2010 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation 103–112 (2010)

16. Liang, Chang-Hung and Li, Tsai-Yen. Enhancing Procedural Animations with Mo-
tion Capture Data (a156).

17. Sims, Karl. Evolving Virtual Creatures. Proceedings of the 21st annual conference
on Computer graphics and interactive techniques. ACM (1994)

18. Drew, Kenrick E., Andrew S. Forsberg, and Paton J. Lewis. Evolving Virtual
Creatures. (1995)

19. Leung, Frank Hung-Fat, et al. Tuning of the Structure and Parameters of a Neu-
ral Network Using an Improved Genetic Algorithm. IEEE Transactions on Neural
networks 14.1: 79-88 (2003)

20. Deng, Yong, Yang Liu, and Deyun Zhou. An Improved Genetic Algorithm with
Initial Population Strategy for Symmetric TSP. Mathematical Problems in Engi-
neering 2015 (2015)

21. Elsayed, Saber M., Ruhul A. Sarker, and Daryl L. Essam. A New Genetic Al-
gorithm for Solving Optimization Problems. Engineering Applications of Artificial
Intelligence 27: 57-69 (2014)

22. Yin, KangKang and Coros, Stelian and Beaudoin, Philippe and van de Panne,
Michiel. Continuation Methods for Adapting Simulated Skills. ACM Transactions
on Graphics (TOG) 27.3: 81 (2008)

23. Johansen, Rune Skovbo. Automated Semi-Procedural Animation for Character
Locomotion. Aarhus University (2009)

297

Discussion of a More Practice-Aware Runtime
Analysis for Evolutionary Algorithms

Eduardo Carvalho Pinto1 and Carola Doerr2

No Institute Given

Abstract. Theory of evolutionary computation (EC) aims at providing
mathematically founded statements about the performance of evolution-
ary algorithms (EAs). The predominant topic in this research domain
is runtime analysis, which studies the time it takes a given EA to solve
a given optimization problem. Runtime analysis has witnessed signifi-
cant advances in the last couple of years, allowing us to compute precise
runtime estimates for several EAs and several problems.
Runtime analysis is, however (and unfortunately!), often judged by prac-
titioners to be of little relevance for real applications of EAs. Several rea-
sons for this claim exist. We address two of them in this present work:
(1) EA implementations often differ from their vanilla pseudocode de-
scription, which, in turn, typically form the basis for runtime analysis. To
reduce the resulting gap between empirically observed and theoretically
derived performance estimates, we suggest to take this discrepancy into
account in the mathematical analysis and to adjust, for example, the
cost assigned to the evaluation of search points that equal one of their
immediate parents (provided that this is easy to verify as is the case in
almost all standard EAs).
(2) Most runtime analysis results make statements about the time to
reach an optimal solution only. This performance measure, however, does
not give any insight into how the function values evolve over time. We
therefore suggest to extend runtime statements to runtime profiles, cov-
ering the expected time needed to reach search points of intermediate
fitness values.

1 Introduction

Evolutionary algorithms (EAs) are bio-inspired black-box optimization heuris-
tics that are successfully applied to a broad range of industrial and academic
optimization problems. Their practical relevance has motivated theoreticians
to analyze EAs by mathematical means, aiming at providing insights into the
fundamental working principles of EAs. Unfortunately, we see today a rather
big gap between theoretical and practice-driven research in evolutionary com-
putation (EC). Unlike in classical computer science, where a fruitful interplay
between fundamental and empirical research exist, theory of EAs is regularly
considered “useless” in the more practically-oriented part of the EC research
community, cf., e.g., Footnote 4 in [10], where it is stated that “a best a practi-
tioner of EAs can do is to stay away from theoretical results”. One critical reason

298

for such claims is the fact that EAs are particularly useful when the problem
at hand is not analyzable by thorough mathematical means; while for problems
that do admit such a mathematical approach, problem-tailored algorithms are
typically much more powerful than heuristics. This gap is very difficult, if not
impossible, to close. At the same time, however, we also see that some of the
other reasons for practitioners not to follow too closely what theory of EC can
offer could be easily addressed. We suggest in this work two steps towards a
more practice-aware theory of EAs. Our hope is to trigger with this discussion a
more constructive exchange between theoretical and empirical research streams
in EC.

Scope and Disclaimer: In the following, we consider the maximization of
single-objective pseudo-Boolean functions f : {0, 1}n → R, but all our suggestion
can be applied to other search and objective spaces. For reasons of space, we
present in this extended abstract only the general ideas. Rigorous theoretical
as well as a number of empirical results are available from the authors upon
request.

2 Implementation-Aware Runtime Analysis

One seemingly negligible difference between the runtime studied in the theory of
EAs and that studied in practice- or empirically-motivated work is the fact that
in most theory works function evaluations are counted also for iterations in which
the offspring equals its parent (or one of its parents in case of recombination). In
many EAs this situation occurs frequently. For example, when using standard bit
mutation (Algorithm 2 with ` sampled from a binomial distribution Bin(n, p))
with mutation rate p = 1/n, the probability that the mutated offspring equals
its parent is (1− p)n ≈ 1/e ≈ 0.368, showing that, for example, the (1 + 1) EA
(Algorithm 1), which only uses standard bit mutation as variation operator, uses
a 1/e fraction of its function evaluations for offspring that are identical to the
parent. In practical implementations one would of course avoid such evaluations,
in particular when it is easy to check (as in this case) that the offspring equals
its parent.

Algorithm 1: The well-known (1 + 1) EA with mutation probability p ∈
(0, 1) for the maximization of a pseudo-Boolean function f : {0, 1}n → R
1 Initialization: Sample x ∈ {0, 1}n uniformly at random and compute f(x);
2 Optimization: for t = 1, 2, 3, . . . do
3 Sample ` ∼ Bin(n, p);
4 y ← mut`(x);
5 evaluate f(y);
6 if f(y) ≥ f(x) then x← y;

299

Algorithm 2: mut` chooses ` different positions and flips the entries in
these positions.

1 Input: x ∈ {0, 1}n, ` ∈ N;
2 Select ` different positions i1, . . . , i` ∈ [n] u.a.r.;
3 y ← x;
4 for j = 1, ..., ` do yij ← 1− xij ;

A similar situation, in which the offspring is likely to equal one of its parents,
occurs when two similar parents are recombined. This is quite frequent in typical
(µ + λ) GAs. Furthermore, a biased crossover favoring entries from one of the
parents as, for example, used in the (1 + (λ, λ)) GA proposed in [5], has a
relatively high probability to reproduce one of the parent solutions even if the
Hamming distance of the two parents is large. Since in these cases it is typically
quite easy to determine if the recombined offspring equals one of its parents, the
offspring would not be evaluated in typical implementations, while in existing
theoretical runtime analysis statements the algorithm is charged one function
evaluation for creating this offspring.

These discrepancies between the analyzed and the actually implemented EAs
can result in significant gaps between empirically observed and mathematically
derived performance estimates. To reduce this gap, we suggest to reflect these
observations in the runtime bounds, by analyzing EA variants in which offspring
are not evaluated if they equal one of their parents and this equality is easy to
determine. In the case of standard bit mutation, two straightforward ways to
implement this strategy exist:

1. The first one simply ignores such iterations, thus effectively resampling an
offspring until it differs from its parent. This strategy can be efficiently im-
plemented by sampling the number ` of bits to flip by the mutation operator
from a conditional distribution Bin>0(n, p), which assigns to each k a prob-
ability of P[` = k|` > 0] =

(
n
k

)
pk(1− p)n−k/(1− (1− p)n).

2. The second idea is to flip one random bit in case ` = 0 is sampled (thus
effectively shifting the (1 − p)n probability mass to flip zero bits to the
probability to flip exactly one bit).

In the case of crossover there are many ways to deal with situations in which
the mutated offspring equals its parent. When crossover is followed by mutation,
we suggest to use one of the just-mentioned two solutions to ensure flipping at
least one bit in the mutation step. When crossover is not followed by mutation
(as in the (1+(λ, λ)) GA presented in [5]), we suggest to simply omit the function
evaluation of an offspring equaling one of its two or more parents.

We note that previous attempts to establish more meaningful complexity
measures in EC exists, most notably in the work of Jansen and Zarges [12], who
propose to profile how much time is spend in each of the steps of an EA relative
to the cost of the function evaluation.

300

Illustration. Figure 1 reports the average optimization times of 100 inde-
pendent runs of the (1 + 1) EA, Randomized Local Search (RLS, which uses
` = 1 in line 3 of Algorithm 1 throughout), the (1 + 1) EA>0 (sampling ` from
Bin>0(n, 1/n) in line 3 of Algorithm 1), and the (1 + 1) EA0→1 (using ` = 1
when ` = 0 is sampled in line 3 of Algorithm 1) with mutation rate p = 1/n on
OneMax, for n ranging from 100 to 4 000. We observe that the expected perfor-
mance indeed differs substantially from that of the “vanilla (1 + 1) EA”. More
precisely, for n = 4, 000, the (1 + 1) EA>0 saves about 35.6% in running time
in comparison to the (1 + 1) EA. For the (1 + 1) EA0→1 the relative expected
savings is 47.1%. We also see that, non-surprisingly, the average performance of
the (1 + 1) EA0→1 is better than that of the (1 + 1) EA>0.

Fig. 1. Average runtimes for 100 independent runs of the respective algorithms (with
mutation probability p = 1/n for the (1 + 1) EA and its variants) on OneMax for
different problem sizes n.

3 Runtime Profiles

Our second suggestion concerns the problem that in most theoretical works on
EAs for discrete optimization problems, only the expected times to hit an optimal
solution for the first time are reported. In realistic environments, we do not know
when this is the case, making it equally important to understand how the fitness
values evolve over time. We therefore suggest the concept of runtime profiles, the
expected time needed to hit intermediate target values. When canonical fitness
levels exits, such as in the case of OneMax, LeadingOnes, royal road, and

301

several other functions, we suggest to use these. For other functions, such as
linear functions or weighted combinatorial graph problems, the analysis of the
expected optimization time often identifies useful to report target fitness levels.
In the absence of these, a linear interpolation of the minimal and maximal fitness
value could be used.

We emphasize the fact that runtime profiles have, very naturally, been re-
ported in many empirical works on heuristic optimization. We are thus not sug-
gesting a new concept here, but want this matter to the attention of researchers
working on fundamental aspects of EC. Note that, in contrast to the previous
section, our suggestion does not change any of the algorithms nor the runtime
bounds. We merely suggest to report them in a different way.

As we can observe in Figure 2, it is quite interesting to observe how
the first hitting times for the different targets evolve. Already for the simple
LeadingOnes benchmark functions we see that the (1 + 1) EA-variants pro-
posed above are superior to RLS for all target fitness values i that are smaller
than some relatively large threshold value v, while RLS reaches fitness levels
i ≥ v faster than the (1 + 1) EA-counterparts. Reporting only the expected op-
timization time therefore does not do justice to the better performance of the
(1 + 1) EA-variants in the earlier parts of the optimization process.

We are confident that the proposed runtime profiles will be very useful for
the design and the analysis of non-static parameter and operator choices in EAs,
such as adaptive mutation or crossover rates, selection pressure, etc. This topic,
also studied under the notions of hyper-heuristics, meta-heuristics, etc., has very
recently seen increased interest in the theory of EC community [3,4,6,7]. It is a
highly relevant topic in empirically-driven research in EC, cf. [1, 10, 11, 14] and
references therein.

Our runtime profiles complement the fixed-budget perspective proposed
in [13], where statements about the expected fitness values after a fixed number
of fitness evaluations are sought. Runtime profiles and fixed-budget perspectives
are orthogonal views on the performance of EAs, both aiming at providing more
insight into the optimization behavior than what the single runtime measure
can offer. Neither of these two measures is entirely new but rather summarize
performance statements frequently reported in empirical works. The aim of [13]
as well as our own work is to motivate researchers working in the theory of EC
to include in their statements these more informative performance guarantees.

In Figure 2 we plot runtime profiles of the (1+1) EA and its above-proposed
variants, as well as for Randomized Local Search. These bounds have been com-
puted by adjusting the proofs in [2]. We observe that the (1+1) EA>0 is the best
of all four algorithms for intermediate fitness levels ≤ 7 980. The (1 + 1) EA0→1

has the smallest expected runtime to reach the intermediate fitness values be-
tween 7 980 to 8 998, while RLS is the best of the four algorithms only for fitness
levels i > 8 999. RLS is faster than the (1 + 1) EA>0 for intermediate fitness
values i > 8 566. As mentioned above, such insights are very important for the
design of parameter/operator selection schemes.

302

Fig. 2. Runtime profile of the respective algorithms (with mutation rate p = 1/n for
the (1+1) EA and its variants) on LeadingOnes for problem size n = 10 000 according
to our theoretical result.

4 Discussion and Future Works

We hope to trigger with this work an extended discussion on how to make
theoretical results in the domain of evolutionary computation more relevant
and interpretable for practitioners. We have suggested two different steps into
this direction, (1) do not charge an algorithm for function evaluations when
the offspring equals one of its parents (in case this is easy to detect), and (2)
report first hitting times not only for the optimum but also for intermediate
fitness levels. Naturally, our work can only be a pointer to a more practice-
aware theory, and we are aware that there are many more steps that have to
be taken. In particular, we believe that the following observations need to be
discussed in more detail.

– Many runtime statements report only expected optimization times. However,
it is often interesting to understand the probability distribution of the opti-
mization time, in particular for problems where the variance can be large.
Runtime analysis has recently seen an increased interest in these runtime
distributions, cf., for example, [8, 15] and follow-up works.

– Similar to the previous point, problems exist where the expected optimiza-
tion time can be very large even if the probability to hit an optimal solution
within a small number of iterations is small. In [9] a so-called p-Monte Carlo
complexity measure has been introduced, measuring the expected time to
hit an optimal solution with probability at least 1 − p. Similar suggestions
can be found in [16].

303

– The runtime profiles suggested in Section 3 complements the fixed-budget
view advocated by Jansen and Zarges [13]. We feel that there is a need for
combined measures that are capable of describing the anytime behavior of
an EA. Regret-based measure as used in machine learning could be a key
here, but we haven’t been able so far to identify a fully satisfying measure.

From a theoretical point of view, our suggested changes are easily implementable.
Our work has nevertheless unveiled a quite remarkable result, the superiority of
the Greedy (2+1) GAmod over any unary unbiased black-box algorithm. We are
confident that our performance measure will yield similar results for other prob-
lems and algorithms, with the potential of changing our view on fundamental
questions like the benefits of crossover over mutation, (dis-)advantages of elitism
vs. non-elitism, etc.

Acknowledgments. We would like to thank Benjamin Doerr, Nikolaus Hansen,
and Olivier Teytaud for several independent discussions around the topics of this
work.

Our research benefited from the support of the “FMJH Program Gaspard
Monge in optimization and operation research”, and from the support to this
program from EDF.

Parts of our work have been inspired by COST Action CA15140 ‘Improving
Applicability of Nature-Inspired Optimisation by Joining Theory and Practice
(ImAppNIO)’ supported by COST (European Cooperation in Science and Tech-
nology).

References

1. A. Aleti and I. Moser. A systematic literature review of adaptive parameter control
methods for evolutionary algorithms. ACM Comput. Surv., 49:56:1–56:35, 2016.

2. S. Böttcher, B. Doerr, and F. Neumann. Optimal fixed and adaptive mutation
rates for the LeadingOnes problem. In Proc. of Parallel Problem Solving from
Nature (PPSN’10), volume 6238 of Lecture Notes in Computer Science, pages 1–
10. Springer, 2010.

3. D. Dang and P. K. Lehre. Self-adaptation of mutation rates in non-elitist popula-
tions. In Proc. of Parallel Problem Solving from Nature (PPSN’16), volume 9921
of Lecture Notes in Computer Science, pages 803–813. Springer, 2016.

4. B. Doerr and C. Doerr. Optimal parameter choices through self-adjustment: Ap-
plying the 1/5-th rule in discrete settings. In Proc. of Genetic and Evolutionary
Computation Conference (GECCO’15), pages 1335–1342. ACM, 2015.

5. B. Doerr, C. Doerr, and F. Ebel. From black-box complexity to designing new
genetic algorithms. Theoretical Computer Science, 567:87 – 104, 2015.

6. B. Doerr, C. Doerr, and T. Kötzing. Provably optimal self-adjusting step sizes for
multi-valued decision variables. In Proc. of Parallel Problem Solving from Nature
(PPSN’16), volume 9921 of Lecture Notes in Computer Science, pages 782–791.
Springer, 2016.

304

7. B. Doerr, C. Doerr, and J. Yang. k-bit mutation with self-adjusting k outper-
forms standard bit mutation. In Proc. of Parallel Problem Solving from Nature
(PPSN’16), volume 9921 of Lecture Notes in Computer Science, pages 824–834.
Springer, 2016.

8. B. Doerr and L. A. Goldberg. Adaptive drift analysis. Algorithmica, 65:224–250,
2013.

9. C. Doerr and J. Lengler. Elitist black-box models: Analyzing the impact of elitist
selection on the performance of evolutionary algorithms. In Proc. of Genetic and
Evolutionary Computation Conference (GECCO’15), pages 839–846. ACM, 2015.

10. A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary Computation, 3:124–141, 1999.

11. A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E. Smith. Parameter con-
trol in evolutionary algorithms. In Parameter Setting in Evolutionary Algorithms,
volume 54 of Studies in Computational Intelligence, pages 19–46. Springer, 2007.

12. T. Jansen and C. Zarges. Analysis of evolutionary algorithms: from computational
complexity analysis to algorithm engineering. In Proc. of Foundations of Genetic
Algorithms (FOGA’11), pages 1–14. ACM, 2011.

13. T. Jansen and C. Zarges. Performance analysis of randomised search heuristics
operating with a fixed budget. Theoretical Computer Science, 545:39–58, 2014.

14. G. Karafotias, M. Hoogendoorn, and A. Eiben. Parameter control in evolutionary
algorithms: Trends and challenges. IEEE Transactions on Evolutionary Computa-
tion, 19:167–187, 2015.

15. T. Kötzing. Concentration of first hitting times under additive drift. Algorithmica,
75:490–506, 2016.

16. D. Zhou, D. Luo, R. Lu, and Z. Han. The use of tail inequalities on the probable
computational time of randomized search heuristics. Theoretical Computer Science,
436:106–117, 2012.

305

Side Event:

Art & Science

in Evolutionary Computation

306

Art&Science

in Evolutionary Computation

a side event of the EA2017 conference with

http://www.galerielouchard.paris

For the second time4, an artistic event is associated to the Arti�cial Evolution conference. Selected artwork
obtained through an evolutionary paradigm (evolution, arti�cial life, swarm...) will be exposed in Galerie

Louchard (Paris, 19th) from October 24th to November 12th. The corresponding papers are published in the
newborn journal: Art and Science (ISTE OpenScience) (https://www.openscience.fr/Arts-et-sciences).

The vernissage is part of the EA2017 conference on

26 October 2017,19:30

Scienti�c & artistic committee

Emmanuel Cayla,
Evelyne Lutton,

Marie-Christine Maurel,
Nicolas Monmarché.

4The catalog of the �rst event is available at: http://ea2013.inria.fr//EA2013-catalogue_side-event_A3.pdf

307

http://www.galerielouchard.paris
http://ea2013.inria.fr//EA2013-catalogue_side-event_A3.pdf

Art Exposition Abstracts

308

THE HORIZON PROJECT: "Emotion in lines"

Patricia Hernández Rondán1, Francisco Fernández de Vega2, Cayetano Cruz2, Vicente Albarrán2,

Mario García3, Lilian Navarro2, Tania Gallego4, Itzel Andrea García5

1 Department of Drawing at the Faculty of Fine Arts, Seville, Spain,
2 University of Extremadura, Spain,

3 Tijuana Institute of Technology, Mexico,
4 Autonomous Community of Extremadura, Spain,

5 CETYS University, Baja California campus, Tijuana, Mexico.

Abstract: This artistic project originated as an experiment undertaken to analyse the mental imagery the brain
uses for the expression of emotions on a formal, conceptual and iconographic level. In the interest of understanding
the nature of creativity in human beings as a tool that favours innovation and the ability to rediscover ourselves,
it is considered essential to dive into its waters, in order to generate new approaches, and to pave new paths,
transcending what has been experienced in the world of visual arts until now. After two prior experiments, we
decided to approach this knowledge applying new premises. As in previous projects, we contemplated the Arti�cial
Intelligence screen, more speci�cally, pondering Evolutionary Algorithms (EAs) because these deal with a technique
that is linked more directly to biological processes than traditional computing techniques, to draw out everything
possible on the subject. In this area we have adopted as constructive cornerstones towards a new form of creation:

• Connected art
• Shared authorship
• The community of artists
• Interaction with the work

Topics: Evolutionary art

309

Sleep Paintings

Carlos M. Fernandes

LARSyS: Laboratory for Robotics and Systems in Engineering and Science University of Lisbon, Portugal

Abstract: Sleep Paintings is a swarm art project that consists of a series of coloured drawings generated by an
ant-based clustering algorithm operating with sleep data sets extracted from electroencephalogram (EEG) signals.

Topics: Swarm art

310

EMERGILIENCE

Sophie Lavaud

Visual artist and researcher at Institut ACTE (Arts, Créations, Théories et Esthétiques),
Université Paris 1/CNRS, Paris, France

Abstract: This work explores shape emergence due to self-organised phenomena.

Topics: Self organised shapes

311

ART BEINGS

Alain Lioret

Arts et Technologies de l'Image, Université Paris 8

Abstract: The series of Art Being has been initiated in 2002, based on the simple principle of a population
of arti�cial being, as the organic matter of a numeric artwork. The series consists in creating evolving ecosystems,
based on evolutionary computation.

Topics: Genetic evolutionary art

312

Fly4Arts: Evolutionary Digital Art with the Fly Algorithm

Zainab Ali Abbood and Franck P. Vidal

School of Computer Science, Bangor University, UK

Abstract: The aim of this study is to generate artistic images, such as digital mosaics, as an optimisation
problem without the introduction of any a priori knowledge or constraint other than an input image. The usual
practice to produce digital mosaic images heavily relies on Centroidal Voronoi diagrams. We demonstrate here
that it can be modelled as an optimisation problem solved using a cooperative co-evolution strategy based on the
Parisian evolution approach, the Fly algorithm. An individual is called a �y. Its aim of the algorithm is to optimise
the position of innitely small 3-D points (the �ies). The Fly algorithm has been initially used in real-time stereo
vision for robotics. It has also demonstrated promising results in image reconstruction for tomography. In this
new application, a much more complex representation has been studied. A �y is a tile. It has its own position,
size, colour, and rotation angle. Our method takes advantage of graphics processing units (GPUs) to generate
the images using the modern OpenGL Shading Language (GLSL) and Open Computing Language (OpenCL) to
compute the di�erence between the input image and simulated image. Di�erent types of tiles are implemented,
some with transparency, to generate di�erent visual e�ects, such as digital mosaic and spray paint. An online study
with 41 participants has been conducted to compare some of our results with those generated using an open-source
software for image manipulation. It demonstrates that our method leads to more visually appealing images.

Topics: Digital mosaic, Evolutionary art, Fly algorithm, Parisian evolution, cooperative co-evolution

313

Index of authors

Abbood, Zainab Ali, 313
Abdelka�, Omar, 135
Albarrán, Vicente, 309
Ali Abbood, Zainab, 106
Alonso, Eduardo, 217
Andrea García, Itzel, 309
Arnold, Dirk V., 178

Barnabé, Marc, 190
Basseur, Matthieu, 53
Boukhelifa, Nadia, 190
Brévilliers, Mathieu, 121
Brooks, Stephen, 178
Broom, Mark, 217

Chabin, Thomas, 190
Collet, Pierre, 95
Collett, Matthew, 149
Cruz, Cayetano, 309

Derbel, Bilel, 10
Do, Jean-Michel, 39

Fagan, David, 66
Fayeez, Ahamed Tuani Ibrahim, 149
Fernandes, Carlos M., 310
Fernández de Vega, Francisco, 309
Fonlupt, Cyril, 10
Fonseca, Fernanda, 190
Forstenlechner, Stefan, 66
Franzin, Alberto, 24, 202

Gallego, Tania, 309
Galvan-Lopez, Edgar, 80
Gao, Xihe, 178
García, Mario, 309
Goë�on, Adrien, 53

Hernández Rondán, Patricia, 309

Idoumghar, Lhassane, 121, 135
Idrissi-Aouad, Maha, 121

Jankee, Christopher, 10

Keedwell, Edward, 149, 231
Kretschmer, Martin, 164

Langetepe, Elmar, 164
Lavaud, Sophie, 311
Le Pallec, Jean-Charles, 39
Lemaitre, Benjamin, 190
Lepagnot, Julien, 121, 135
Lioret, Alain, 312
Lutton, Evelyne, 190

Muniglia, Mathieu, 39

Navarro, Lilian, 309
Nicolau, Miguel, 66

O'Neill, Michael, 66

Pérez Cáceres, Leslie, 202
Pagnozzi, Federico, 202
Perrot, Nathalie, 190
Porter, Jeremy, 178

Schoenauer, Marc, 80
Stützle, Thomas, 24, 202

Tari, Sara, 53
Teichmann, Jan, 217
Thompson, Julie, 95
Tonda, Alberto, 190
Trujillo, Leonardo, 80

Vanhoutreve, Renaud, 95
Vazquez-Mendoza, Lucia, 80
Velly, Hélène, 190
Verel, Sébastien, 10, 39
Vidal, Franck, 106, 313

Yates, William, 231

314

	Committees
	Table of Contents
	Invited Conferences
	Gabriela Ochoa: The Cartography of Computational Search Spaces
	Jean-Daniel Fekete: Progressive Data Analysis: a new computation paradigm for scalability in exploratory data analysis

	Papers
	Session 1 - Theory
	On the Design of a Master-Worker Adaptive Algorithm Selection Framework, Christopher Jankee, Sébastien Verel, Bilel Derbel and Cyril Fonlupt
	Comparison of Acceptance Criteria in Randomized Local Searches, Alberto Franzin, Thomas Stützle
	Session 2 - Fitness Landscapes
	A fitness landscape view on the tuning of an asynchronous master-worker EA for nuclear reactor design, Mathieu Muniglia, Sébastien Verel, Jean-Charles Le Pallec, Jean-Michel Do
	Sampled Walk and Binary Fitness Landscapes Exploration, Sara Tari, Matthieu Basseur, Adrien Goëffon
	Session 3 - Genetic Programming
	Semantics-based Crossover for Program Synthesis in Genetic Programming, Stefan Forstenlechner, David Fagan, Miguel Nicolau, Michael O'Neill
	Semantics-based Crossover for Program Synthesis in Genetic Programming, Edgar Galván-López, Lucia Vázquez-Mendoza, Marc Schoenauer, Leonardo Trujillo
	Session 4 - Cooperation-Coevolution
	MEMSA: a robust Parisian EA for multidimensional multiple sequence alignment, Julie D. Thompson, Renaud Vanhoutrève, Pierre Collet
	Basic, Dual, Adaptive, and Directed Mutation Operators in the Fly Algorithm, Zainab Ali Abbood, Franck Vidal
	Session 5 - Metaheuristics
	A New High-Level Relay Hybrid Metaheuristic for Black-Box Optimization Problems, Julien Lepagnot, Lhassane Idoumghar, Mathieu Brévilliers, Maha Idrissi-Aouad
	Improved Hybrid Iterative Tabu Search for QAP using Distance Cooperation, Omar Abdelkafi, Lhassane Idoumghar, Julien Lepagnot
	H-ACO: A Heterogeneous Ant Colony Optimisation approach with Application to the Travelling Salesman Problem, Ahamed Tuani Ibrahim Fayeez, Edward Keedwell, Matthew Collett
	Session 6 - Applications
	Evolutionary learning of fire fighting strategies, Martin Kretschmer, Elmar Langetepe
	Evolutionary Optimization of Tone Mapped Image Quality Index, Xihe Gao, Jeremy Porter, Stephen Brooks, Dirk V. Arnold
	LIDeOGraM : An interactive evolutionary modelling tool, Thomas Chabin, Marc Barnabé, Nadia Boukhelifa, Fernanda Fonseca, Alberto Tonda, Hélène Velly, Benjamin Lemaitre, Nathalie Perrot, Evelyne Lutton
	Automatic configuration of GCC using irace, Leslie Pérez Cáceres, Federico Pagnozzi, Alberto Franzin, Thomas Stützle
	Session 7 - Learning
	Reinforcement Learning as a model of aposematism, Jan Teichmann, Eduardo Alonso, Mark Broom
	Offline Learning for Selection Hyper-heuristics with Elman Networks, William Yates, Edward Keedwell

	Posters
	Reinforcement learning is an effective strategy to create phenotypic variation and a potential mechanism for the initial evolution of learning, Jan Teichmann, Eduardo Alonso, Mark Broom
	Learning new Term Weighting Schemes with Genetic Programming, Ahmad Mazyad, Fabien Teytaud, Cyril Fonlupt
	The Ant Reconciliation Algorithm (ARA): Ant-hill learning for label matching, Pierre Parrend, Camille Maller, Etienne Dietrich
	An improved particle swarm optimization algorithm for MRI image segmentation, Thuy Xuan Pham, Patrick Siarry, Hamouche Oulhadj
	Crowd-Sourced Optimisation of Procedural Animation Systems, Gareth I. Henshall, William J. Teahan, Llyr ap Cenydd
	Discussion of a More Practice-Aware Runtime Analysis for Evolutionary Algorithms, Eduardo Carvalho Pinto, Carola Doerr

	Side EVENT: Art & Science in Evolutionary Computation
	Index of authors

