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Preface

The 24th European Workshop on Computational Geomety (EuroCG’08) was held at the Lab-
oratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) on March 18-20, 2008. It
was preceded by a one-day workshop entitled “CGAL Innovations and Applications: Robust Geometric
Software for Complex Shapes” held on March 17, 2008. More information about both events can be
found at http://eurocg08.loria.fr (see also http://www.eurocg.org for previous workshops).

The present collection of abstracts contains the 63 scientific contributions as well as three invited talks
presented at the workshop. It is also available electronically from the workshop’s web site at http:
//eurocg08.loria.fr/EuroCG08Abstracts.pdf. This year’s record of 72 submissions with authors
from 22 different countries, covering a wide range of topics, shows that Computational Geometry is a
lively and still growing research field in Europe.

Following the tradition of the workshop, many contributions present ongoing research, and it is expected
that most of them will appear in a more complete version in scientific journals. Selected papers from
the workshop will be invited to a special issue of Computational Geometry: Theory and Applications.
We thank the editors-in-chief, Kurt Mehlhorn and Jörg-Rüdiger Sack, for their cooperation.

We would also like to thank all the authors for submitting papers and presenting their results at the
workshop. We are especially grateful to our keynote speakers Pierre Alliez, Jean Ponce, and Fabrice
Rouillier for accepting our invitation. Special thanks go to our sub-referees and to Bettina Speckmann
for providing us with the LATEX class used to format this collection.

Finally, we are grateful to LORIA for providing the necessary infrastructure, and to our sponsors for
their support: INRIA, Université Henri Poincaré, Université Nancy 2, Institut National Polytechnique
de Lorraine, GDR Informatique Mathématique of CNRS, Communauté Urbaine du Grand Nancy,
Conseil Général de Meurthe-et-Moselle, Conseil Régional de Lorraine, Dassault Systèmes and Institut
Français du Pétrole.

Note that the next edition of EuroCG will be held in 2009 in Brussels, Belgium.
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S. Lazard, L. Peñaranda and E. Tsigaridas

91

Generic Implementation of a Data Structure for 3D Regular Complexes
A. Bru and M. Teillaud

95

Wednesday, March 19

9:30 - 10:30, Session 5

Online Uniformity of Integer Points on a Line
T. Asano

99

Edge-Unfolding Medial Axis Polyhedra
J. O’Rourke

103

Inducing Polygons of Line Arrangements
E. Mumford, L. Scharf and M. Scherfenberg

107

Coloring Geometric Range Spaces
G. Aloupis, J. Cardinal, S. Collette, S. Langerman and S. Smorodinsky

111

vi



EuroCG’08, Nancy – March 18-20, 2008

10:50 - 11:50, Session 6

A Lower Bound for the Transformation of Compatible Perfect Matchings
A. Razen

115

Edge-Removal and Non-Crossing Configurations in Geometric Graphs
O. Aichholzer, S. Cabello, R. Fabila-Monroy, D. Flores-Peñaloza, T. Hackl, C. Huemer, F. Hur-
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J. Chun, M. Korman, M. Nöllenburg and T. Tokuyama

169

Matching a Straight Line on a Two-Dimensional Integer Domain
E. Charrier and L. Buzer

173

Exploring Simple Triangular and Hexagonal Grid Polygons Online
D. Herrmann, T. Kamphans and E. Langetepe

177

vii



24th European Workshop on Computational Geometry

16:10 - 17:30, Session 8B

Manifold Homotopy via the Flow Complex
B. Sadri

181

Surface Deformation on a Discrete Model for a CAD System
I.-G. Ciuciu, F. Danesi, Y. Gardan and E. Perrin

185

Optimal Insertion of a Segment Highway in a City Metric
M. Korman and T. Tokuyama

189

Algorithms for Graphs of Bounded Treewidth via Orthogonal Range Searching
S. Cabello and C. Knauer

193

Thursday, March 20

9:30 - 10:30, Session 9A

A Tight Bound for the Delaunay Triangulation of Points on a Polyhedron
N. Amenta, D. Attali and O. Devillers

197

Discrete Voronoi Diagrams on Surface Triangulations and a Sampling Condition for Topological
Guarantee
M. Moriguchi and K. Sugihara

201

On the Locality of Extracting a 2-Manifold in R3

D. Dumitriu, S. Funke, M. Kutz and N. Milosavljevic
205

9:30 - 10:30, Session 9B

Arrangements on Surfaces of Genus One: Tori and Dupin Cyclides
E. Berberich and M. Kerber

209

On the Topology of Planar Algebraic Curves
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Delaunay Edge Flips in Dense Surface Triangulations∗

Siu-Wing Cheng† Tamal K. Dey‡

Abstract

We study the conversion of a surface triangulation to
a subcomplex of the Delaunay triangulation with edge
flips. We show that the surface triangulations which
closely approximate a smooth surface with uniform
density can be transformed to a Delaunay triangu-
lation with a simple edge flip algorithm. The con-
dition on uniformity becomes less stringent with in-
creasing density of the triangulation. If the condition
is dropped, the output surface triangulation becomes
“almost Delaunay” instead of exactly Delaunay.

1 Introduction

The importance of computing Delaunay triangula-
tions in applications of science and engineering can-
not be overemphasized. Among the different Delau-
nay triangulation algorithms, flip based algorithms
are most popular and perhaps the most dominant ap-
proach in practice. The sheer elegance and simplicity
of this approach make it attractive to implement.

In R2, if the circumcircle of a triangle t contains a
vertex of another triangle t′ sharing an edge e with it,
flipping e means replacing e with the other diagonal
edge contained in the union of t and t′. A well-known
elegant result is that this process terminates and pro-
duces the Delaunay triangulation. In higher dimen-
sions, the edge flips can be naturally extended to bi-
stellar flips. Edelsbrunner and Shah [8] showed that
bi-stellar flips can be used with incremental point in-
sertion to construct weighted Delaunay triangulations
in three and higher dimensions.

Given the increasing demand of computing surface
triangulations that are sub-complexes of Delaunay tri-
angulations [1, 6, 7], it is natural to ask if a surface
triangulation can be converted to a Delaunay one by
edge flips and, if so, under what conditions. Once the
surface triangulation is made Delaunay, a number of
tools that exploit Delaunay properties can be used for
further processing.

We show that a dense triangulation can be flipped

∗Research supported by NSF grants CCF-0430735 and
CCF-0635008 and Research Grant Council, Hong Kong, China
(612107).

†Department of Computer Science and Engineering,
HKUST, Clear Water Bay, Hong Kong, scheng@cse.ust.hk

‡Department of Computer Science and Engineering,
The Ohio State University, Columbus, OH 43210, USA,
tamaldey@cse.ohio-state.edu

to a Delaunay triangulation if the density is uniform
in some sense. The practical implication of this result
is that reasonably dense triangulations can be con-
verted to Delaunay triangulations with a simple edge
flip algorithm. Furthermore, the results in this paper
have been used for a recent algorithm on maintaining
deforming meshes with provable guarantees [5]. What
happens if we do not have the uniformity condition?
We show that the flip algorithm still terminates but
the output surface may not be Delaunay. Nonetheless,
this surface is “almost Delaunay” in the sense that
the diametric ball of each triangle shrunk by a small
amount remains empty. These approximate Delaunay
triangulations may find applications where exact De-
launay triangulations are not required; for example,
see the work by Bandyopadhyay and Snoeyink [3].

2 Preliminaries

Surface. Let Σ ⊂ R3 be a smooth compact surface
without boundary. The medial axis is the set of cen-
ters of all maximally empty balls. The reach γ of Σ is
the infimum over Euclidean distances of all points in
Σ to its medial axis. Let nx denote the outward unit
normal of Σ at a point x ∈ Σ.

Triangulation. We say T is a triangulation of a sur-
face Σ if vertices of T lie in Σ and its underlying space
|T | is homeomorphic to Σ. For any triangle t ∈ T , nt

denotes the outward unit normal of t.
The triangulation T has a consistent orientation

if for any triangle t ∈ T and for any vertex q of t,
∠nt,nq ≤ π

2 .
If a triangle t ∈ T shares an edge pq with a triangle

pqs, we call s a neighbor vertex of t. Let ρ(t) denote
the circumradius of t. The ratio of ρ(t) to the shortest
edge length of t is called the radius-edge ratio. We call
the maximum radius-edge ratio of triangles in T the
radius-edge ratio of T .

We call T ε-dense for some ε < 1 if ρ(t) ≤ εγ for
each triangle t ∈ T and T has a consistent orientation.
Also, if the distance between any two vertices in T is
at least δεγ for some δ < 1, we call T (ε, δ)-dense.

Stab and flip. Let B(c, r) denote the ball with center
c and radius r. A circumscribing ball of a triangle t
is any ball that has the vertices of t on its boundary.
The diametric ball is the smallest such ball and we
denote it by Dt.

EuroCG’08, Nancy – March 18-20, 2008
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A vertex v of T stabs a ball B if v lies inside B. A
triangle t ∈ T is stabbed if Dt is stabbed by a vertex
of T . The triangle t is locally stabbed if the stabbing
vertex is one of the three neighbor vertices of t.

The common edge pq between two triangles pqr and
pqs in T is flippable if pqr is stabbed by s (i.e., locally
stabbed). We will show later that this definition is
symmetric. Flipping pq means replacing pqr and pqs
by the triangles prs and qrs. If the new triangulation
is T ′ we write T

pq→ T ′.

Power distance. Given a point x and a ball B(c, r),
the power distance pow(x,B(c, r)) is ‖c − x‖2 − r2.
Given two balls B1 and B2, their bisector C(B1, B2)
consists of points at equal power distances from B1

and B2. It turns out that C(B1, B2) is a plane. If
B1 and B2 intersect, C(B1, B2) contains the circle
∂B1 ∩ ∂B2.

Background results. The following previous results
on normal approximations will be useful.

Lemma 1 ([2, 4]) For any two points x and y in Σ
such that ‖x−y‖ ≤ εγ for some ε ≤ 1

3 , ∠nx,ny ≤ ε
1−ε

and ∠nx, (y − x) ≥ arccos( ε
2 ).

Combining Lemmas 1 and a result in [7], we get:

Corollary 2 Let T be an ε-dense triangulation for
some ε < 0.1. For any vertex q of a triangle t ∈ T ,
∠nt,nq ≤ 7ε.

Define the dihedral angle between two adjacent tri-
angles pqr and qrs as ∠npqr,nqrs. Corollary 2 implies
that:

Corollary 3 Let T be an ε-dense triangulation for
some ε < 0.1. For any two adjacent triangles pqr and
qrs in T , ∠npqr,nqrs ≤ 14ε.

3 Flip algorithm

The flip algorithm that we consider is very simple: as
long as there is a flippable edge, flip it.

MeshFlip(T )

1. If there is a flippable edge e ∈ T then
flip e else output T ;

2. T := T ′ where T
e→ T ′; go to step 1.

There are two issues. First, under what condition
does MeshFlip terminate? Second, what triangulation
does MeshFlip produce? In this section, we show that
MeshFlip terminates if T is an ε-dense triangulation.
We address the second issue later.

The following lemma establishes the symmetry in
local stabbing.

Lemma 4 Let pqr and pqs be two adjacent triangles
such that s stabs pqr. If ∠npqr,npqs < π

2 , r stabs pqs.

Proof. It can be shown that the bisector Cpq sep-
arates r and s if pqr and pqs make an angle larger
than π

2 or equivalently ∠npqr,npqs < π
2 . Let C+

pq be
the half-space supported by Cpq and containing s. De-
fine C−

pq similarly as the half-space not containing s.
Clearly, Dpqs∩C+

pq ⊂ Dpqr∩C+
pq as s is on the bound-

ary of Dpqs. So Dpqr ∩ C−
pq ⊂ Dpqs ∩ C−

pq. But C−
pq

contains r which is on the boundary of Dpqr. So r is
inside Dpqs. �

Next, we show that an edge flip produces two tri-
angles with a smaller maximum circumradius.

Lemma 5 Let T be a triangulation with dihedral an-
gles less than π

2 . Let pqr, pqs ∈ T be triangles such
that s stabs pqr. Then ρ(qrs) ≤ max{ρ(pqr), ρ(pqs)}
and ρ(prs) ≤ max{ρ(pqr), ρ(pqs)}.

Proof. We prove the lemma for ρ(qrs). The analysis
for ρ(prs) is similar. Consider the bisectors Cqr =
C(Dpqr, Dqrs) and Cqs = C(Dpqs, Dqrs). Let C+

qr be
the half-space supported by Cqr containing s. Let C+

qs

be the half-space supported by Cqs containing p.
By assumption the dihedral angle between pqr and

pqs is at most π
2 . Then, Lemma 4 applies to claim

that r stabs pqs.
Clearly, the center of Dqrs lies in the union C+

qr ∪
C+

qs. First, assume that C+
qr contains the center of

Dqrs. Clearly, Dqrs ∩ C+
qr ⊂ Dpqr ∩ C+

qr as s is con-
tained in Dpqr by the assumption that s stabs pqr.
This implies that Dpqr ∩ C+

qr contains the center of
Dqrs. So Dqrs is smaller than Dpqr establishing the
claim. If C+

qs contains the center of Dqrs, the above
argument can be repeated by replacing C+

qr with C+
qs,

Dpqr with Dpqs, and s with r. �

Since the maximum circumradius decreases mono-
tonically by the edge flips, the triangles can still be
oriented consistently with Σ and a homeomorphism
using closest point map [7] can be established between
Σ and the new triangulation. Hence, the new trian-
gulation satisfies the conditions for being ε-dense.

Corollary 6 If T
e→ T ′ for a flippable edge e and T

is ε-dense for some ε < 1, then T ′ is also ε-dense.

Lemma 7 If T is ε-dense for some ε < 0.1, then
MeshFlip(T ) terminates.

Proof. Let R1, R2, .., Rn be the decreasing sequence
of the radii of the diametric balls of the triangles at
any instant of the flip process. First of all, an edge flip
preserves the number of triangles in the triangulation.
An edge flip may change the entries in this sequence
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of radii, but not its length. We claim that after a flip
the new radii sequence R′

1, R
′
2, ..., R

′
n decreases lexico-

graphically, that is, there is a j such that Ri = R′
i for

all 1 ≤ i ≤ j and Rj+1 > R′
j+1. Let j + 1 be the first

index where Rj+1 6= R′
j+1. Since each flip maintains

ε-density (Corollary 6), the dihedral angles between
adjacent triangles remain at most 14ε by Corollary 3.
This angle is less than π

2 for ε < 0.1. One can ap-
ply Lemma 5 to each intermediate triangulation. By
this lemma, the maximum of the two radii before a
flip decreases after the flip. It means that the trian-
gle corresponding to the radius Rj+1 has been flipped
and its place has been taken by a triangle whose cir-
cumradius is smaller than Rj+1. So the new radii
sequence is smaller lexicographically. It follows that
the same triangulation cannot appear twice during
the flip sequence. As there are finitely many possible
triangulations, MeshFlip must terminate. �

4 Uniform dense triangulation

We prove that MeshFlip can turn an (ε, δ)-dense trian-
gulation to a Gabriel triangulation where no diametric
ball of any triangle is stabbed.

Lemma 8 Assume that a vertex v stabs a triangle
pqr in an ε-dense triangulation for some ε < 0.1. Let
v̄ be the point in pqr closest to v. The angle between
vv̄ and the support line of npqr is at least π

2 − 26ε.

Proof. Let T be an ε-dense triangulation of a surface
Σ with reach γ. Since v stabs Dpqr, we have ‖p −
v‖ ≤ 2εγ which implies that ‖v − v̄‖ ≤ 2εγ. Walk
from v towards v̄ and let abc be the first triangle in
T that we hit. Let y be the point in abc that we
hit. (The triangle abc could possibly be pqr.) We
have ‖v − y‖ ≤ ‖v − v̄‖ ≤ 2εγ. By the ε-density
assumption, we have ‖a − y‖ ≤ 2εγ. It follows that
‖a− v‖ ≤ ‖a− y‖+ ‖v − y‖ ≤ 4εγ. Then, ∠nv,na <
8ε by Lemma 1, and ∠nabc,na ≤ 7ε by Corollary 2.
Therefore, ∠nv,nabc < 8ε + 7ε = 15ε.

Let ` be an oriented line through v and v̄ such that
` enters the polyhedron bounded by T at y ∈ abc and
then exits at v. Assume to the contrary that ` makes
an angle less than π

2 − 26ε with npqr. Since ‖p− v‖ ≤
2εγ, Lemma 1 and Corollary 2 imply that ∠nv,npqr ≤
4ε+7ε = 11ε. Thus, ` makes an angle less than π

2−15ε
with nv. Since ∠nv,nabc < 15ε, ` must make an angle
less than π

2 with nabc. Because ` enters at y and then
exits at v, ∠nv,nabc is greater than π − (π

2 − 15ε) −
π
2 = 15ε, contradicting the previous deduction that
∠nv,nabc < 15ε. �

Lemma 9 Assume that a vertex v stabs a triangle
pqr in an ε-dense triangulation for some ε < 0.1.
There exists an edge, say pq, such that r and v are
separated by the plane Hpq that contains pq and is
perpendicular to pqr.

Proof. By Lemma 8, vv̄ makes a positive angle with
the line of npqr. It follows that v does not project
orthogonally onto a point inside pqr. Hence, there
exists an edge pq such that Hpq separates r and v. �

sq

p
r v

!

vpq> z

q

npqr

p

v v
pqC

r

q

p

pqH

pqH

Figure 1: (left) : triangle pqr is stabbed by v. Both v
and s lie on the same side of Hpq and Cpq. The case
of v being in the thin wedge between Hpq and Cpq

is eliminated if pqr has bounded radius-edge ratio.
(middle) : the worst case for angle ∠vpq. (right): the
planes of Hpq and vpq make large angle ensuring v
and s are on the same side of Cpq.

Lemma 10 Assume that a vertex v stabs a tri-
angle pqr in an ε-dense triangulation with radius-
edge ratio a < 1

2 sin 24ε . If ε < π
72 , pqr is locally

stabbed or v stabs a triangle t such that pow(v,Dt) <
pow(v,Dpqr).

Proof. By Lemma 9, there is a plane Hpq through
the edge pq and perpendicular to pqr such that Hpq

separates r and v. Let pqs be the other triangle inci-
dent to pq. If s lies inside Dpqr, pqr is locally stabbed
and we are done. So assume that s does not lie inside
Dpqr. By Corollary 3, ∠npqr,npqs ≤ 14ε, which is less
than π

2 for ε < π
72 . Therefore, Hpq separates r and

s too. It means that v and s lie on the same side of
Hpq; see Figure 1.

Let Cpq denote the bisector C(Dpqr, Dpqs). Let C+
pq

be the half-space bound by Cpq containing s. It fol-
lows that Dpqr ∩ C+

pq ⊂ Dpqs ∩ C+
pq as s lies outside

Dpqr. Suppose that C+
pq contains v. Then, v lies inside

Dpqs as v lies inside Dpqr. This immediately implies
that v stabs pqs and pow(v,Dpqs) < pow(v,Dpqr).
Therefore, the lemma holds if we can show that C+

pq

contains v. This is exactly where we need bounded
aspect ratios for triangles.

Let s̄ and v̄ be the orthogonal projections of s and v
respectively onto the line of pq. Consider the following
facts.

(i) The acute angle between ss̄ and npqr is equal
to π

2 − ∠npqr,npqs, which is at least π
2 − 14ε by

Corollary 3.

(ii) The angle between Hpq and Cpq cannot be larger
than ∠npqr,npqs which is at most 14ε.
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(iii) We prove that ∠npqr, vv̄ > ∠npqr,npqs ≥
∠Hpq, Cpq.

These facts imply that v and s on the same side of
Cpq as Hpq. Therefore, it suffices to prove (iii).

First, observe that if v̄ is the closest point of v in
pq, we have by Lemma 8

∠npqr, vv̄ ≥ π

2
− 26ε ≥ 14ε ≥ ∠npqr,npqs.

So, assume the contrary. In that case, the closest
point of v in pq is either p or q. Assume it to be p.
Since v̄ lies outside pq, the angle ∠vpq is obtuse. We
claim that this angle cannot be arbitrarily close to
π. In fact, this angle cannot be more than the max-
imum obtuse angle pq makes with the tangent plane
of Dpqr at p. Simple calculation (Figure 1(middle))
shows that this angle is π

2 + arccos ‖p− q‖/2ρ(pqr)
giving

∠vpq ≤ π

2
+ arccos

1
2a

.

Since Dpqr contains v, ‖v − p‖ ≤ 2εγ. By Lemma 1,
∠np, vp ≥ arccos ε. Applying Corollary 2, we get

∠npqr, vp ≥ ∠np, vp− ∠npqr,np ≥ arccos ε− 7ε.

Let zp ‖ vv̄ (Figure 1(right)). Then, ∠vv̄, vp =
∠vpz = ∠vpq − π

2 ≤ arccos 1
2a . One has ∠npqr, vv̄ ≥

∠npqr, vp− ∠vv̄, vp = ∠npqr, vp− ∠vpz ≥ arccos ε−
7ε − arccos 1

2a ≥ π
2 − 10ε − arccos 1

2a for ε < π
72 .

We are now left to show that π
2 − 10ε − arccos 1

2a >
∠npqr,npqs which requires π

2 − 24ε > arccos 1
2a or

a < 1
2 sin 24ε . This is precisely the condition required

by the lemma. �

We are ready to prove the main results of this sec-
tion.

Theorem 11 For any ε < π
72 and δ = 2 sin 24ε, an

(ε, δ)-dense triangulation has a stabbed triangle if and
only if it has a locally stabbed triangle.

Proof. The ‘if’ part is obvious. Consider the ‘only
if’ part. Let pqr be stabbed by v. As δ = 2 sin 24ε,
the radius-edge ratio is at most 1/(2 sin 24ε). By
Lemma 10, pqr is locally stabbed or v stabs a triangle
t where pow(v,Dt) < pow(v,Dpqr). In the latter case,
repeat the argument with t. We must reach a locally
stabbed triangle since the power distance of v from
the diametric balls cannot decrease indefinitely. �

Theorem 12 For any ε < π
72 and δ = 2 sin 24ε, an

(ε, δ)-dense triangulation can be flipped to a Gabriel
triangulation.

Proof. The maximum circumradius decreases after
each flip and the nearest neighbor distance cannot be
decreased by flips. So MeshFlip maintains the (ε, δ)-
dense conditions after each flip. By Theorem 11, all
triangles are Gabriel upon termination. �

5 Dense triangulations

We also study the effect of MeshFlip on an ε-dense
triangulation T without the uniformity condition.

Take a triangle t ∈ T . Let c be its circumcenter. A
β-ball of t is a circumscribing ball centered at c+βnt.
The triangle t is β-stabbed if a vertex stabs the β-ball
and (−β)-ball of t. We call t locally β-stabbed if the
stabbing vertex is one of the three neighbor vertices
of t.

If we decrease the radius of Dt by β, we get a
smaller concentric ball which we denote by Dβ

t . We
call T β-Gabriel if for each triangle t ∈ T , Dβ

t is not
stabbed by any vertex of T .

Theorem 13 For any ε < 0.1, an ε-dense triangula-
tion of a surface with reach γ contains a β-stabbed tri-
angle only if it contains a locally (β− 88ε2γ)-stabbed
triangle.

By choosing β = 88ε2γ, Theorem 13 implies that no
triangle is 88ε2γ-stabbed at the termination of Mesh-
Flip. So the output triangulation is 88ε2γ-Gabriel.

Theorem 14 For any ε < 0.1, an ε-dense triangu-
lation of a surface with reach γ can be flipped to a
88ε2γ-Gabriel triangulation.

The omitted details can be found in the full version
available at the authors’ webpages.
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Decomposing Non-Convex Fat Polyhedra

Mark de Berg∗ Chris Gray∗

Abstract

We show that any locally-fat polyhedron with n ver-
tices and convex fat faces can be decomposed into
O(n) tetrahedra. We also show that the additional
restriction that the faces are fat is necessary: there
are fat polyhedra without fat faces that require Ω(n2)
pieces in any convex decomposition. Finally, we show
that if we want the tetrahedra in the decomposition
to be fat themselves, then the number of tetrahedra
cannot be bounded as a function of n.

1 Introduction

Polyhedra and their planar equivalent, polygons, play
an important role in many geometric problems. From
an algorithmic point of view, however, general poly-
hedra are unwieldy to handle directly: several algo-
rithms can only handle convex polyhedra, preferably
of constant complexity. Hence, there has been exten-
sive research into decomposing polyhedra into tetra-
hedra or other constant-complexity convex pieces.
The two main issues in developing decomposition al-
gorithms are (i) to keep the number of pieces in the
decomposition small, and (ii) to compute the decom-
position quickly.

In the planar setting the number of pieces is, in
fact, not an issue if the pieces should be triangles:
any polygon admits a triangulation, and any triangu-
lation of a polygon with n vertices has n−2 triangles.
Hence, research focused on developing fast triangula-
tion algorithms, culminating in Chazelle’s linear-time
triangulation algorithm [7]. An extensive survey of
algorithms for decomposing polygons and their appli-
cations is given by Keil [10].

For 3-dimensional polyhedra, however, the situa-
tion is much less rosy. First of all, not every non-
convex polyhedron admits a tetrahedralization: there
are polyhedra that cannot be decomposed into tetra-
hedra without using Steiner points. Moreover, decid-
ing whether a polyhedron admits a tetrahedralization
without Steiner points is NP-complete [12]. Thus we
have to settle for decompositions using Steiner points.
Chazelle [6] has shown that any polyhedron with n
vertices can be decomposed into O(n2) tetrahedra,

∗Department of Computing Science, TU Eindhoven.
P.O. Box 513, 5600 MB Eindhoven, the Netherlands. Email:
{mdberg,cgray}@win.tue.nl. This research was supported by
the Netherlands’ Organisation for Scientific Research (NWO)
under project no. 639.023.301.

and that this is tight in the worst case: there are
polyhedra with n vertices for which any decomposi-
tion uses Ω(n2) tetrahedra. (In fact, the result is even
stronger: any convex decomposition—a convex de-
composition is a decomposition into convex pieces—
uses Ω(n2) pieces, even if one allows pieces of non-
constant complexity.) Since the complexity of algo-
rithms that need a decomposition depends on the
number of tetrahedra in the decomposition, this is
rather disappointing. Chazelle’s polyhedron is quite
special, however, and one may hope that polyhedra
arising in practical applications are easier to handle.
This is the topic of our paper: are there types of
polyhedra that can be decomposed into fewer than
a quadratic number of pieces? Erickson [9] has an-
swered this question affirmatively for so-called local
polyhedra by showing that any such 3-dimensional
polyhedron can be decomposed into O(n log n) tetra-
hedra. We consider fat polyhedra.

Types of fatness. Before we can state our results,
we first need to give the definition of fatness that we
use. In the study of realistic input models [5], many
definitions for fatness have been proposed. When the
input is convex many of these definitions are basically
equivalent. When the input is non-convex, however,
this is not the case: polyhedra that are fat under one
definition may not be fat under a different definition.
Therefore we study two different definitions.

The first is a generalization of the (α, β)-covered ob-
jects introduced by Efrat [8] to 3-dimensional objects.
A simply-connected object P in R3 is (α, β)-covered
if the following condition is satisfied: for each point
p ∈ ∂P there is a simplex T with one vertex at p that
is fully inside P such that T is α-fat and has diameter
β · diam(P ). Here a tetrahedron is called α-fat if all
its solid angles are at least α, and diam(P ) denotes
the diameter of P .

The second definition that we use was introduced
by De Berg [2]. For an object o and a ball B whose
center lies inside o, we define B u o to be the con-
nected component of B ∩ o that contains the center
of B. An object o is locally-γ-fat if for every ball B
that has its center inside o and which does not com-
pletely contain o, we have vol(B u o) ≥ γ · vol(B),
where vol(·) denotes the volume of an object. Note
that if we replace u with ∩—that is, we do not restrict
the intersection to the component containing the cen-
ter of B—then we get the definition of fat polyhedra
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proposed by Van der Stappen [13]. Also note that
for convex objects the two definitions are equivalent.
Hence, for convex objects we can omit the adjective
“locally” from the terminology.

As observed by De Berg [2] the class of locally-γ-fat
objects is strictly more general than the class of (α, β)-
covered objects: any object that is (α, β)-covered for
some constants α, β is also locally-γ-fat for some con-
stant γ (depending on α, β), but the reverse is not
true.

Our results. First of all we study the decomposition
of (α, β)-covered polyhedra and locally-γ-fat polyhe-
dra into tetrahedra. By modifying Chazelle’s polyhe-
dron so that it becomes (α, β)-covered, we obtain the
following negative result.

• There are (α, β)-covered (and, hence, locally fat)
polyhedra with n vertices such that any decom-
position into convex pieces uses Ω(n2) pieces.

Next we restrict the class of fat polyhedra further
by requiring that their faces should be convex and
fat,when considered as planar polygons in the plane
containing them. For this class of polyhedra we ob-
tain a positive result.

• Any locally-fat polyhedron (and, hence, any
(α, β)-covered polyhedron) with n vertices whose
faces are convex and fat can be decomposed into
O(n) tetrahedra in O(n log n) time.

Several applications that need a decomposition or cov-
ering of a polyhedron into tetrahedra would profit if
the tetrahedra were fat. For instance, it would make
results on ray shooting in fat convex polyhedra [1, 4]
directly applicable. In the plane any fat polygon can
be covered by O(n) fat triangles, as shown by Van
Kreveld [11] (for a slightly different definition of fat-
ness). We show that a similar result is, unfortunately,
not possible in 3-dimensional space.

• There are (α, β)-covered (and, hence, locally-fat)
polyhedra with n vertices and convex fat faces
such that the number of tetrahedra in any cov-
ering that only uses fat tetrahedra cannot be
bounded as a function of n.

2 Decomposition into tetrahedra

In this section we discuss decomposing fat non-convex
objects into tetrahedra that need not be fat them-
selves.

The upper bound. Let P be a locally-γ-fat poly-
hedron in R3 whose faces, when viewed as polygons
in the plane containing the face, are convex and β-
fat. We will prove that P can be decomposed into
O(n/γβ3) tetrahedra in O(n log n) time.

In our proof, we will need the concept of density.
The density of a set S of objects in R3 is defined as
the smallest number λ such that the following holds:
any ball B ⊂ R3 is intersected by at most λ objects
o ∈ S such that diam(o) ≥ diam(B).

We also need the following technical lemma. Its
proof is standard and omitted from this abstract.

Lemma 1 Let P be a convex β-fat polygon embed-
ded in R3 where diam(P ) ≥ 1. Let C and C ′ be
axis-aligned cubes centered at the same point. Let
the side length of C be 1 and the side length of C ′ be
2
√

3/3. If P intersects C, then P ′ := P ∩ C ′ is β′-fat
for some β′ = Ω(β).

The following lemma shows that the faces of a
locally-γ-fat polyhedron have low density if they are
fat themselves.

Lemma 2 Let FP be the set of faces of a locally-γ-
fat polyhedron P . If the faces of P are themselves
β-fat and convex, then FP has density O(1/γβ3).

Proof. Let S be a sphere with unit radius. We
wish to show that the number of faces f ∈ FP with
diam(f) ≥ 1 that intersect S is O(1/γβ3).

Partition S into eight equal-sized cubes by bisecting
S along each dimension. Consider one of the cubes:
call it C. Also construct an axis-aligned cube C ′ that
has side length 2

√
3/3 which has its center at the cen-

ter of C. For all faces f intersecting C that have
diam(f) ≥ 1, we define f ′ := f ∩ C ′. By Lemma 1,
we know that f ′ is β′-fat for some β′ = Ω(β).

Since f ′ is a fat convex polygon with a diameter of
at least 2

√
3/3−1, it must contain a circle c of radius

ρ = β′(2
√

3/3− 1)/8 [13]. For any such circle c, there
is a face f of C ′ such that the projection of c onto f is
an ellipse which has a minor axis with length at least
ρ/
√

2.

box

2
√

3
3

ρ
2

Figure 1: A box.

We make a grid on each face of C ′ where every grid
cell has side length ρ/2. We call the rectangular prism
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between two grid cells on opposite faces of C ′ a box—
see Figure 1. Each face f ′ has an intersection with
a box that is the entire cross-section of the box. We
assign each face to such a box.

We now consider the number of faces that can be
assigned to any one box b. There are two types of face
in b. For example, if b has its long edges parallel to
the x axis, there are the faces that have the interior of
P in the positive x direction and the faces that have
the interior in the negative x direction. We consider
one type of face at a time. For each face fi, we place
sphere si with radius ρ/2 so that its center is on fi

and in the center of b (meaning exactly between the
long faces of b). Since P is locally-γ-fat, vol(P ∩si) ≥
4γπρ3/6. Since we only consider one type of face,
(P u si)∩ (P u sj) = ∅ for any sj 6= si. Therefore the
number of faces of one type that can cross one box is
(2
√

3/(γπρ)). The number of faces that can cross one
box is thus 2(2

√
3/(γπρ)). The number of boxes is

(1/ρ2). Hence, the number of faces that can intersect
S is at most 16(2

√
3/(γπρ))(1/ρ2). Since ρ = O(β),

this is O(1/γβ3). �

Since the set FP of faces of the polyhedron P has den-
sity O(1/γβ3), there is a BSP for FP of size O(n/γβ3),
which can be computed in O(n log n) time [3]. The
cells of a BSP are convex and contain at most one
facet, so we can easily decompose all cells further into
O(n/γ4) tetrahedra in total.

Theorem 3 Any locally-γ-fat polyhedron with β-fat
convex faces can be partitioned into O(n/γβ3) tetra-
hedra in O(n log n) time.

The lower bound. Next we show that the restriction
that the faces of the polyhedron are fat is necessary,
because there are fat polyhedra without fat faces that
need a quadratic number of tetrahedra to be covered.

The polyhedron known as Chazelle’s polyhe-
dron [6]—see Figure 3—is an important polyhedron
used to construct lower-bound examples. We de-
scribe a slight modification of that polyhedron which
makes it (α, β)-covered and which retain the proper-
ties needed for the lower bound.

The essential property of Chazelle’s polyhedron is
that it contains a region sandwiched between a set L
of lines defined as follows:

L := {y = i, z = ix− ε : i ≤ n and i ∈ N}

∪ {x = i, z = iy and i ∈ N} ,

where ε is a small positive real number. The region
Σ := {(x, y, z) : 0 ≤ x, y ≤ n and xy − ε ≤ z ≤ xy}
between these lines has volume Θ(εn2). Chazelle
showed that for any convex object o that does not in-
tersect any of the lines in L we have vol(o∩Σ) = O(ε).
These two facts are enough to show that Ω(n2) con-
vex objects are required to cover any polyhedron that

Figure 2: The lines used in the lower-bound construc-
tion.

contains Σ but whose interior does not intersect the
lines in L.

With the aim of making the lines in L into edges
of a fat polyhedron, we first turn the lines into line
segments of length n starting either at x = 0 or y = 0.
We then make each line segment into an equilateral
triangular prism where the long edges have length n
and the short edges have length ε′. For the lines on
z = xy, the prism goes above the line and for the lines
on z = xy − ε, the prism goes below the line. In this
way, we ensure Σ will be contained in our polyhedron.

We then subtract the prisms that we created from a
cube of appropriate size. This means that the prisms
are completely contained in the cube and that the
boundary of the cube contains the x = 0 and y = 0
planes. We call this cube C and the resulting poly-
hedron P . The polyhedron P is locally-γ-fat but not

Figure 3: Chazelle’s polyhedron before and after mod-
ification. The modified version remains topologically
equivalent to a sphere.

(α, β)-covered. This is because the angle between a
prism at x = n and the boundary of C is very small (it
depends on 1/n). Therefore, a fat tetrahedron cannot
fit between such a prism and the boundary of C.

We now move on to a modification of P that is
(α, β)-covered. We begin with the set L of prisms.
We add the set of line segments

B := {y = i, z = −ε,−n ≤ x ≤ 0 : 1 ≤ i ≤ n, i ∈ N}

∪ {x = i, z = 0,−n ≤ y ≤ 0, i ∈ N}

and transform these segments into prisms as above.
The prisms in B are called “bridges”. We again sub-
tract the prisms in L∪B from an appropriately-sized
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cube. In this case, that means that the cube’s bound-
ary contains the planes x = −n and y = −n as well as
everything in L∪B. We call the new cube C ′ and the
new polyhedron P ′. The bridges in B give us room to
place a good tetrahedron anywhere on the boundary
of P ′. The formal proof of this fact is omitted.

Theorem 4 There are constants α, β > 0 such that
for any large enough n there is an (α, β)-covered poly-
hedron with n vertices for which any decomposition
into convex pieces uses Ω(n2) pieces.

3 Decomposition into fat tetrahedra

When we attempt to partition non-convex polyhedra
into fat tetrahedra the news is uniformly bad. That is,
no matter which of the realistic input models we use
(of those we are studying), the number of fat tetra-
hedra necessary to partition the polyhedron can be
made arbitrarily high. For polyhedra without fatness
restrictions, there are many examples which require
an arbitrary number of fat tetrahedra for partition-
ing. Perhaps the simplest is a rectangular box of size
1× (β/k)× (β/k). This box requires Ω(k) β-fat tetra-
hedra to partition (or cover) it.

β/k

1

α

(a) (b)

Figure 4: (a) An (α, β)-covered polyhedron with fat
faces whose interior cannot be covered by a bounded
number of fat tetrahedra. (b) The part of the poly-
hedron seen by a point in the center.

There are also (α, β)-covered polyhedra with fat
faces that need an arbitrary number of fat tetrahe-
dra to be partitioned or covered. One example is Fig-
ure 4, where the “tube” requires Ω(k) β-fat tetrahedra
in any convex decomposition. The essential feature of
the construction in Figure 4 is that every point along
the long axis of the tube can see very little relative to
the amount that points on the boundary can see.

Theorem 5 There are (α, β)-covered polyhedra with
n vertices and convex fat faces such that the number
of tetrahedra in any covering that only uses fat tetra-
hedra cannot be bounded as a function of n.

4 Concluding remarks

We have shown that any locally-fat polyhedron with n
vertices fat convex faces can be decomposed into O(n)

tetrahedra, and that the restriction that the faces be
fat is necessary. We also showed that one cannot ob-
tain a decomposition using a bounded (in terms of n)
number of of fat tetrahedra. In some applications—
ray shooting, for instance—one does not need a de-
composition of the interior of a polyhedron. Instead,
a covering of only the boundary of the polyhedron
suffices. It would be interesting to see if better results
are possible in this case.

Acknowledgments

The second author thanks Herman Haverkort, Elena

Mumford, and Bettina Speckmann for conversations re-

garding this topic.

References

[1] B. Aronov, M. de Berg, and C. Gray. Ray shooting
and intersection searching amidst fat convex polyhe-
dra in 3-space. Proc. 22nd ACM Symp. Computat.
Geom., pages 88–94, 2006.

[2] M. de Berg. Improved bounds on the union complex-
ity of fat objects. In Proc. 25th Conference on Foun-
dations of Software Technology and Theoretical Com-
puter Science, LNCS 3821, pages 116–127, 2005.

[3] M. de Berg. Linear size binary space partitions for
uncluttered scenes. Algorithmica 28:353–366, 2000.

[4] M. de Berg and C. Gray. Vertical ray shooting and
computing depth orders for fat objects. In Proc. 17th
Annual Symposium on Discrete Algorithms, pages
494–503, 2006.

[5] M. de Berg, A.F. van der Stappen, J. Vleugels, and
M. J. Katz. Realistic input models for geometric al-
gorithms. Algorithmica, 34(1):81–97, 2002.

[6] B. Chazelle. Convex partitions of polyhedra: a lower
bound and worst-case optimal algorithm. SIAM J.
Comput. 13:488–507 (1984).

[7] B. Chazelle. Triangulating a simple polygon in linear
time. Discr. Comput. Geom. 6:485–524 (1991).

[8] A. Efrat. The complexity of the union of (α, β)-
covered objects. SIAM J. Comput. 34:775–787
(2005).

[9] J. Erickson. Local polyhedra and geometric graphs
Comput. Geom. Theory Appl. 31:101–125 (2005).

[10] J.M. Keil. Polygon Decomposition. In: J.-R. Sack and
J. Urrutia (eds.). Handbook of Computational Geom-
etry, pages 491–518, 2000.

[11] M. van Kreveld. On fat partitioning, fat covering, and
the union size of polygons. Comput. Geom. Theory
Appl. 9:197–210 (1998).

[12] J. Rupert and R. Seidel. On the difficulty of triangu-
lating three-dimensional nonconvex polyhedra. Discr.
Comput. Geom. 7:227–253 (1992).

[13] A.F. van der Stappen. Motion planning amidst fat
obstacles. Ph.D. thesis, Utrecht University, Utrecht,
the Netherlands, 1994.

24th European Workshop on Computational Geometry

8



Schnyder Woods for Higher Genus Triangulated Surfaces

Luca Castelli Aleardi∗ Eric Fusy† Thomas Lewiner‡

Abstract

We study a well known characterization of planar
graphs, also called Schnyder wood or Schnyder la-
belling, which yields a decomposition into vertex
spanning trees. The goal is to extend previous al-
gorithms and characterizations designed for planar
graphs (corresponding to combinatorial surfaces with
the topology of the sphere, i.e., of genus 0) to the
more general case of graphs embedded on surfaces
of arbitrary genus. First, we define a new traver-
sal order of the vertices of a triangulated surface of
genus g together with an orientation and coloring of
the edges that extends the one proposed by Schnyder
for the planar case. As a by-product we show how to
characterize our edge coloration in terms of genus g
maps. All the algorithms presented here have linear
time complexity.

1 Introduction

Schnyder woods are a nice and deep combinatorial
structure to finely capture the notion of planarity of
a graph. They are named after W. Schnyder, who
introduced these structures under the name of re-
alizers and derived as main applications a new pla-
narity criterion in terms of poset dimensions [16], as
well as a very elegant and simple straight-line draw-
ing algorithm [17]. There are several equivalent for-
mulations of Schnyder woods, either in term of an-
gle labelling (Schnyder labellings) or edge colouring
and orientation or in terms of orientations with pre-
scribed degrees. The most classical formulation is for
the family of maximal plane graphs, i.e., plane tri-
angulations, yielding the following striking property:
the internal edges of a triangulation can be parti-
tioned into three spanning trees rooted respectively
at each of the three vertices incident to the outer
face. From the combinatorial point of view the set
of Schnyder woods of a fixed triangulation has an
interesting lattice structure [5, 2, 11, 8, 9], and the
nice characterization in term of spanning trees mo-
tivated a large number of applications in several do-
mains as graph drawing [17, 14], graph coding and
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†Laboratoire d’Informatique, Ecole Polytechnique, France,
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sampling [7, 3, 15, 12, 6, 1]. Previous work focused
mainly on the application and extension of the combi-
natorial properties of Schnyder woods to 3-connected
plane graphs [10, 14]. We deal with combinatorial sur-
faces possibly having handles, i.e., oriented surfaces of
arbitrary genus g ≥ 0. We show how to extend the
local properties of Schnyder labelling in a coherent
manner to triangulated surfaces.

Spanning tree decompositions in higher genus

In the area of tree decompositions of graphs there ex-
ist some works dealing with the higher genus case. We
mention one attempt to generalize Schnyder woods to
the case of toroidal graphs [4], based on a special pla-
narizing procedure. In the triangular case it is possi-
ble to obtain a partition of the edges into three edge-
disjoint spanning trees plus at most 3 edges. Unfor-
tunately, the local properties of Schnyder woods are
possibly not satisfied for a large number of vertices,
and it is not clear how to generalize to genus g ≥ 2.

Contributions

Our first result consists in defining new traversal or-
ders of the vertices of a triangulation of genus g, as
extension of the canonical orderings defined for planar
graphs. We are also able to provide a generalization
of the Schnyder labelling to the case of higher genus
surfaces. The major novelty is in the way we show
that the linear time algorithm designed for the pla-
nar case can be extended in a nontrivial way in order
to design a traversal of a genus g surface. This in-
duces a special edge colouring and orientation that is
a natural generalization of the corresponding planar
structure. In particular, the spanning property char-
acterizing Schnyder woods is again verified almost ev-
erywhere in the genus g case.

Finally, we characterize our graph decomposition in
terms of maps of genus g (a natural generalization of
plane trees).

1.1 Schnyder woods: definitions

Schnyder woods for plane triangulations

The definition of Schnyder woods is given in terms of
local conditions, and leads to a partition of the edges
into 3 spanning trees.
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Figure 1: (above) A planar triangulation endowed
with a Schnyder wood. (below) A triangulated torus
with a g-Schnyder wood, together with the gener-
alized local condition. Both these maps are rooted
(green edge).

Definition 1 ([17]) Let T be a plane triangulation
with outer face (v0, v1, vn−1), and let E be the set of
inner edges of T . A Schnyder wood of T is an orien-
tation and labelling, with label in {0, 1, 2} of the edges
in E such that the two following conditions are ver-
ified: (1) (root face condition) the edges incident
to the vertices v0, v1, vn−1 are all ingoing and are
respectively of colour 0, 1, and 2. (2) (local condi-
tion) For each vertex v not incident to the root face,
the edges incident to v in ccw order are: one outgoing
edge coloured 0, zero or more incoming edges coloured
2, one outgoing edge coloured 1, zero or more incom-
ing edges coloured 0, one outgoing edge coloured 2,
and zero or more incoming edges coloured 1, which
we write concisely as

(Seq(In 1),Out 0,Seq(In 2),Out 1,Seq(In 0),Out 2).

Generalized Schnyder woods

One main contribution is to propose a new generalized
version of Schnyder woods to genus g triangulations.

Definition 2 Let S be a triangulation of genus g,
with n vertices; let E be the set of edges of S except
those three incident to the root face (v0, v1, vn−1). A
genus-g Schnyder wood is a partition of E into a set of
normal edges and a set Es = {e1, . . . , e2g} of 2g spe-
cial edges considered as fat, i.e., made of two parallel
edges. In addition, each edge, a normal edge or one
of the two edges of a special edge, is simply oriented
and has a label in {0, 1, 2}, such that:
• root face condition: All edges incident to v0, v1,
and vn−1 are ingoing of color 0, 1, and 2.
• local condition for vertices not incident to
special edges: for every vertex v ∈ S \{v0, v1, vn−1}

not incident to any special edge, its edges incident in
ccw order are of the form:

(Seq(In 1),Out 0,Seq(In 2),Out 1,Seq(In 0),Out 2).

• local condition for vertices incident to special
edges: A vertex v incident to k ≥ 1 special edges
has exactly one outgoing edge in colour 2. Consider
the k + 1 sectors around v delimited by the k special
edges and the outgoing edge in colour 2. Then in
each sector, the edges occur as follows in cw order:
Seq(In 1),Out 0,Seq(In 2),Out 1,Seq(In 0).

The planar and the genus g definition do coincide in
the planar case (see Figure 1 for an example). More-
over, the local condition is again true almost every-
where (except the few vertices lying in Es): almost all
the vertices have out-degree 3, thus the g-Schnyder
woods are good characterization of the local planarity
of a bounded genus surface.

2 Computing Schnyder woods in higher genus

2.1 Handle operators: notations and definitions

As in the planar case, our strategy consists in
conquering the whole graph incrementally, face by
face, using a vertex-based operator (conquer) and two
new operators (split and merge) designed to repre-
sent the handle attachments. Given a triangulated
surface S having genus g and n vertices, we denote
by Sout (Sin) the subgraph of S induced by the faces
already conquered (not yet conquered, respectively).
Sout is a face-connected map of genus g having b ≥ 1
boundaries, each boundary being a simple cycle Ci,
i ∈ 1 . . . b. We define ∂Sin := ∪b

i=1Ci as the overall
border between Sin and Sout.

Definition 3 A chordal edge is an edge of Sout\∂Sin

whose two extremities are on ∂Sin. A boundary ver-
tex w ∈ Ci is free if w is not incident to a chordal
edge e.

The operator conquer, does not modify the topol-
ogy of Sin: the conquest of a free vertex w consists in
transferring from Sout to Sin all faces incident to w
that were not yet in Sin. Given S and a collection of
b cycles {Ci} delimiting a face-connected map Sout,
a chordal edge e for Sout is said to be nonseparating
if Sout is not disconnected when cutting along e. A
chordal edge with extremities in the same cycle Ci is
a splitting chordal edge. Let C ′ and C ′′ be the two cy-
cles formed by Ci+e. Then e is said to be contractible
if either C ′ or C ′′ is contractible.

Definition 4 (split and merge edges) A split
edge for the area Sout is a nonseparating splitting
chordal edge. A merge edge for the area Sout

is a nonseparating chordal edge e having its two
extremities on two distinct cycles Ci and Cj , i 6= j.
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Figure 2: (above) The first pictures show the result of
a colorient operation, both in the planar and higher
genus case. (below) An execution of our traversal al-
gorithm for a triangulated surface of genus 1. When
there remain no free vertices to conquer, it is possible
to find split and merge edges. After performing split
and merge operations, new free vertices can be found
in order to continue the traversal.

The split and merge operators defined below are
(the inverse of) handle operators of type 1: they are
designed to identify boundary vertices lying on dis-
tinct cycles. Intuitively, the split operator splits a
boundary curve into two distinct components, thereby
increasing the number of boundaries of ∂Sin by
1; while a merge operator merges two boundaries,
thereby decreasing the the number of boundaries of
∂Sin by 1.

Given a split edge e = (u, w) having its extremi-
ties on a cycle C, the operator split(e) produces the
splitting of C = {v0, v1, . . . , vk} (with u = vi1 and
w = vi2 , for some indices i1 < i2 ≤ k) into two new
cycles C ′, C ′′. A merge operation can be performed
in a similar way, on a given merge edge e = (v′i1 , v

′′
i2

)
with extremities on different boundaries C ′ and C ′′,

and produces a new cycle C containing two copies of
v′i1 and v′′i2 and all the vertices in C ′ and C ′′.

The edges concerned by the merge/split operations
are exactly the special edges involved in the definition
of the genus g Schnyder wood.

2.2 A new traversal algorithm for genus g surfaces

Once defined the conquer operation, we can associate
to it a simple rule for colouring and orienting the edges
incident to a vertex conquered. The colorient(v) is
defined as follows: orient outward of v the two edges
connecting v to its two neighbours on ∂Sin; assign
color 0 (1) to the edge connected to the left (right,
respectively) neighbour, looking toward Sout. Ori-
ent toward v and color 2 all edges incident to v in
Sout\∂Sin. As in the planar case, we can now formu-
late the algorithm for computing a Schnyder wood as
a sequence of n − 2 conquer and colorient opera-
tions (as suggested by Brehm [5]). Here the important
difference is that the conquer operations are inter-
leaved with 2g merge/split operations so as to make
the genus of the conquered area increase from 0 to g.
At the beginning Sin is a topological disk delimited
by the simple cycle C0 := {(v0, v1, vn−1)}.

ComputeSchnyderAnyGenus(S)
(S a triangulated surface of genus g)
while {C} 6= {v0, v1}
If there is a free vertex v on some Ci ∈ C
conquer(v)+colorient(v);

otherwise, if there exists a split edge e
split(e); add a new cycle C ′ to C;

otherwise, find a merge edge e
merge(e); remove a cycle from C;

end while

The correctness and termination of the traversal
algorithm above is based on the fundamental property
that either there exists a free vertex, or we can find
split or merge edges.

Lemma 1 For any triangulated surface S of genus g,
ComputeSchnyderAnyGenus(S) terminates, and
can be implemented to run in linear time.

One major advantage of computing a Schnyder
wood in an incremental way is that we are able to
put in evidence some invariants, which remain sat-
isfied at each step of the algorithm. This allows to
provide a characterization in terms of genus g maps,
which is an extension of the fundamental property of
planar Schnyder woods [17], stating that T0, T1, and
T2 are plane trees.

Theorem 2 Then the coloring and orientation of
edges computed by ComputeSchnyderAnyGenus
is a genus g Schnyder wood. The Schnyder wood thus
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Figure 3: A triangulated torus endowed with a Schny-
der wood, together with the maps T0 (a map with 3
faces), T1 (a map with 2 faces) and T2 (which is a map
with 1 face, when adding the two special edges).

obtained has the additional property that the graph
T2 formed by the edges of color 2 is a tree, and the em-
bedded graph formed by T2 and the 2g special edges is
a one-face map; moreover the embedded graphs T0, T1

formed by the edges of color 0 and of color 1 are genus
g maps with at most 1 + 2g faces.

3 Conclusion and perspectives

We have presented a general approach for extending
to higher genus a fundamental combinatorial struc-
ture, Schnyder woods, which is by now a standard
tool to handle planar graphs both structurally and
algorithmically. We have been successful in showing
that the definition and several fundamental combina-
torial properties can be extended from the planar to
the genus g case in a natural way. Our work leaves
several interesting questions open. Let us recall that,
in the planar case, the set of Schnyder woods of a
fixed triangulation is a distributive lattice; in addi-
tion the Schnyder wood at the bottom of the lattice
is a key ingredient in a bijective optimal encoder for
plane triangulations [15]. We would like to investi-
gate the extension of these properties in the higher
genus case. More generally, we think that the local
properties of genus g Schnyder woods (Definition 2)
suggest the possibility of further nice applications in
graph encoding and sampling (see [7, 13, 12, 15] for
the planar case).
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Seed Polytopes for Incremental Approximation ∗

Oswin Aichholzer† Franz Aurenhammer‡ Thomas Hackl† Bernhard Kornberger†
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Abstract

Approximating a given three-dimensional object in
order to simplify its handling is a classical topic in
computational geometry and related fields. A typical
approach is based on incremental approximation al-
gorithms, which start with a small and topologically
correct polytope representation (the seed polytope) of
a given sample point cloud or input mesh. In addition,
a correspondence between the faces of the polytope
and the respective regions of the object boundary is
needed to guarantee correctness.

We construct such a polytope by first computing
a simplified though still homotopy equivalent medial
axis transform of the input object. Then, we inflate
this medial axis to a polytope of small size. Since
our approximation maintains topology, the simplified
medial axis transform is also useful for skin surfaces
and envelope surfaces.

1 Introduction

Object simplification and surface reconstruction are
fundamental tasks in several areas of computer sci-
ence, like geometric modeling, computer graphics, and
computational geometry. We refrain from a general
discussion here and refer the reader e.g. to [3, 8, 9, 11]
and references therein.

In this note we deal with the problem of computing
a simple but topologically correct polytope for a given
input object, which is typically presented as a point
cloud or surface mesh. As this polytope will serve as
a starting point for incremental approximation algo-
rithms, we additionally provide a correspondence be-
tween the faces of the polytope and the regions of the
object surface. Possible incremental algorithms we
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have in mind use e.g. elliptical and hyperbolic patches
or are based on interpolating subdivision surfaces.

In a previous related approach, point clouds in con-
vex position are approximated by spherical patches,
using an incremental algorithm [7]. Starting with
a very simple structure (a tetrahedron), the convex
polytope is incrementally refined until the associated
surface built from spherical patches approximates the
convex point cloud within a given tolerance bound.
The approximating surface consists of a ‘bulgy’ poly-
tope, where the triangular faces of the polytope are
replaced by spherical patches.

The same approach works for other classes of ap-
proximating surfaces based on polytopes, such as in-
terpolating subdivision surfaces. For a correct ap-
proximation, the underlying polytope needs to have
the same topology as the input object. Furthermore,
one has to be able to find which part of the object is
approximated by a given part of the polytope, as this
is the area where we have to test for epsilon-closeness.

1.1 A new approach

Our construction of a small (in general, nonconvex)
initial polytope for a given, sufficiently dense sample
point cloud is based on a certified simplification of the
medial axis transform (MAT). The goal is to represent
the object with as few elements as possible. To this
end, we use a modification of our previous work [1, 2]
where the input object is approximated by a set of
balls. This set is then pruned based on an approxi-
mation of the minimal set covering problem, thereby
carefully choosing the parameters of the original al-
gorithm in order to preserve topology, see Section 2.
With slight modifications, this approach can also be
used for simplification of skin surfaces [9] and envelope
surfaces [11]. The exact medial axis of the pruned set
of balls is then computed [5].

In a second step we ‘inflate’ the simplified medial
axis (which, as being defined by a union of balls, is
a piecewise-linear object) by replacing it with a com-
binatorial 2-manifold and moving its vertices back to
the input surface, see Section 3.

From experimental results for the medial axis sim-
plification we expect that our approach leads to
incremental approximations with significantly fewer
patches compared to results achievable when starting
directly with the original input set.
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2 Medial axis extraction

Let O be a smooth and boundary-connected object in
3D. We allow O to have tunnels, but ‘holes’ (empty
regions within the object, e.g. bubbles in a Swiss
cheese, without connection to the exterior) are ex-
cluded. The medial axis of O is the set of centers
of all maximal inscribed balls. The local feature size
f(x) of a point x on the boundary ∂O of O is the min-
imum distance from x to any point on the medial axis
of O. A finite point set S ⊂ ∂O is an r-sample [3]
of ∂O if every point x ∈ ∂O has at least one point
of S within distance r · f(x). We are interested in a
simplified version of the medial axis of O which, nev-
ertheless, retains two important properties: inclusion
in the object, and homotopy equivalence. For an ex-
ample see Figure 1 which shows the discrete MAT of
a cow model and its simplified version.

2.1 Ball generation

In a first step we follow well known paths [4] in that
we compute the Voronoi diagram of a given sample S
of ∂O and extract all inner polar balls. Each point
s ∈ S defines an inner polar ball bc,ρ whose center c is
a vertex of the Voronoi cell for s farthest away from s
and inside O, and whose radius is ρ = δ(c, s) (the
distance between c and s). Let B be the set of all
inner polar balls. As has been shown in [4], the medial
axis of the union, U(B), of the balls in B is homotopy
equivalent to O as long as S satisfies the sampling
condition, that is, S constitutes an r-sample of ∂O
for sufficiently small r.

In certain applications we are given not only an
unorganized point set S but a triangular mesh repre-
senting ∂O and having S as its vertices. This form of
input will allow the ball generation algorithm in [1]
to work well even if S does not satisfy any sampling
condition. Guarantees on the topology are then, of
course, lost.

2.2 Pruning

The sampling density of S may cause the set, B, of
balls to be quite large, so the medial axis of U(B)
is likely to contain many detailed and unwanted fea-
tures. Therefore we do not directly compute the me-
dial axis of U(B) but perform a pruning of B first.
Several pruning criteria based on proximity and angles
have been proposed, e.g., in [10, 12]. In the work [1]
a method is described that is capable of discarding
balls belonging to unstable parts of the medial axis
without any geometric criteria. This method can be
adapted to keep control over the topology of the me-
dial axis [2]. Loosely speaking, we enlarge all the balls
in B and treat them together with S as an instance
of the well-known set covering problem, as is briefly
described below.

Figure 1: a,b) MAT and its 20108 medial ball centers
c,d) Pruned MAT with 116 ball centers

2.2.1 Ball enlargement

By construction, each ball b ∈ B contains 4 points
of S on its boundary and has no points of S in
its interior. From B we now generate a set, B′, of
co-centric but enlarged balls, each typically covering
tens or even hundreds of points of S. Thereby, a re-
quirement important for later purposes is that U(B′)
and U(B) are topologically equivalent. We use the
power diagram PD(B) of B (see Figure 2) to control
the proper enlargement of the ball radii. For each
ball b ∈ B, its power cell C(b) contains exactly those
parts of b’s boundary which contribute to ∂U(B), see
e.g. [6]. So, if we choose maximal radii such that
(1) PD(B′) = PD(B) holds, and (2) each b′ ∈ B′ in-
tersects the same facets, edges, and vertices of C(b)
as does its original b, then the topology of the union
of balls does not change. Such radii exist and can be
found in time linear in the size of PD(B), by exploit-
ing the well-known polytope lifting of PD(B) in 4D.

2.2.2 Set covering

Now we want to keep an (ideally) minimal subset of
the set B′ of enlarged balls, such that all points of S
are still covered by at least one ball in this subset.
This is an instance of the NP-hard set covering prob-
lem. In [1] we use a combination of exact and heuris-
tic methods in order to get an almost minimal sub-
set Bo ⊂ B′.

Concerning the topology of the union U(Bo), the
set covering step only removes balls from the set B′

and thus it will never close tunnels that are present
in U(B′). (Holes do not exist in U(B′) by construc-
tion.) However, this step might create holes and tun-
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Figure 2: Power diagram and its external graph

nels in U(Bo), and may even make it break apart. We
therefore apply a postprocessing where such events are
detected and repaired. Again, we make use of a power
diagram, PD(Bo), in this case. Note that disconnect-
edness of U(Bo) can be checked from the dual graph
of PD(Bo) right away.

Define the external power graph, G(Bo), of Bo as the
set of all edges and vertices of PD(Bo) that are com-
pletely avoided by U(Bo). (All objects are considered
to be topologically closed.) Consult Figure 2, where
G(Bo) is drawn with bold lines. Each hole in U(Bo)
can be detected by recognizing that G(Bo) contains a
respective connected component that is bounded.

To deal with tunnels, two strategies can be applied.
One is to avoid tunnels altogether, by a modifica-
tion of the pruning strategy for the set B′ of enlarged
balls: Exploiting that the input point cloud S is an
r-sample, we (conceptually) shrink each ball b ∈ B′

by r · f , where f = maxx∈S∩b f(x), and execute the
set covering as if such balls were present. This may
lead to a (moderate) increase of the size of the pruned
set Bo. On the other hand, if a mesh on S is present,
then we can check for tunnels with its aid, because for
each tunnel of U(Bo) there exists at least one edge
in G(Bo) that intersects some triangle of the mesh.
Starting from each such triangle, we trace G(Bo) in-
side the mesh until we run out of edges or intersect the
mesh again, in which case a tunnel has been detected.
Note that most mesh triangles can be excluded from
consideration; e.g. all those being covered by a single
ball.

3 Construction of the polytope

The main use of a simplified polytope is to supply
a good starting configuration for incremental sur-
face approximation algorithms. To this end, we
base the construction of this polytope on the pruned,
piecewise-linear medial axis, M(Bo), obtained in the

Figure 3: Constructing a pyramid from a vertex

Figure 4: Constructing a tube from a segment

Figure 5: Constructing a polytope from a facet

previous section. The basic idea is to blow up M(Bo)
to a polytope, PM , which uses only vertices of the
original point cloud S. A main advantage of our con-
struction is that the power cells of Bo give a decom-
position of the space into cells, which define for each
facet of PM the neighborhood in which points from S
have to be checked for epsilon-closeness to the approx-
imating surface. This is especially important for point
clouds not in convex position, since points can be very
close to a surface patch then, but lie on the ‘opposite’
side of the medial axis, so they have to be handled by
a different part of the polytope.

Note that a main condition for the constructed
polytope is that M(Bo) lies inside it. Therefore no
polytope facet intersects the medial axis and no bound
on the distance of the original vertices to the facets of
the new polytope exists.

To start with, we wrap M(Bo) with a combinatorial
2-manifold mesh. This wrapping will result in a mesh
that is topologically equivalent to the boundary of the
original input object. As M(Bo) is a piece-wise linear
structure, it consist of vertices, segments, and facets
with boundary-segments. For each of these features,
we construct a polytope feature:

• For a vertex we construct a pyramid (Figure 3).

• For a segment we construct a tube (Figure 4).

• We double a facet and connect it using the fea-
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tures of the boundary segments (Figure 5).

We obtain a combinatorial 2-manifold mesh with
its vertices still coinciding with the vertices of M(Bo).
The next step is to select a point of S for every ver-
tex of the inflated medial axis PM to be constructed.
We build a cone of size γ which depends on the local
feature size of the r-sampling S. Each vertex of PM

is an apex of a cone pointing in the direction of the
normal in this vertex. This cone gives the direction
in which we move the vertex of the wrapped medial
axis towards the object boundary. The cones are cho-
sen in such a way that they do not intersect M(Bo).
Moreover, the way we define the cone size (namely,
depending on the local feature size) assures that each
cone includes at least one point of S. If more than
one point of S is included, we choose an arbitrary
one. This results in a polytope containing M(Bo)
and with vertices chosen from the set S. The facets
of this polytope are similar to the supertriangles as
defined in [7], which can be used as starting facets for
any incremental approximation algorithm.

Figure 6 summarizes our polytope construction for
a (two-dimensional) point sample.

4 Future work

For convex objects, the spherical patch algorithm de-
scribed in [7] can be used together with our setting.
For the more general case of non-convex inputs we
plan to extend [7] to use a combination of e.g. ellip-
tical and hyperbolic patches, based on the presented
framework. Adapting the growing strategy, the first
part of our algorithm can also be useful for the skin
surface algorithm as well as envelope surfaces.
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On the Reliability of Practical Point-in-Polygon Strategies∗

Stefan Schirra†

Abstract

We experimentally study the reliability of geometric
software for point location in simple polygons. The
code we tested works very well for random query
points, but it often fails for degenerate and also nearly
degenerate queries. We also suggest a reliable alter-
native approach.

1 Introduction

Assume you would like to test points for inclusion
in a simple closed polygon. Most likely, you will
end up using one of the so-called practical point-
in-polygon strategies instead of implementing one of
the more sophisticated theoretically optimal point lo-
cation data structures developed in computational
geometry. Code for such practical point-in-polygon
strategies is available on the www. This software is
based on floating-point arithmetic, is very efficient,
and works well for query points chosen uniformly at
random inside the bounding box of the polygon. Or
you might decide to use components from cgal [2],
leda [9] or some other software library providing code
for point-in-polygon testing or more general point lo-
cation queries.

As we will see in Section 3, most of the existent code
produces wrong results for query points near or on the
polygon edges, see also Fig. 1 where queries answered
correctly are marked by a grey box , false positives
by a red disk •, and false negatives by a green disk •.
If you know that the coordinates of query points and
polygon vertices are inaccurate anyway, you might be
willing to accept this. Unfortunately, sometimes there
are errors not only for such problem-specific degener-
ate queries, but also for algorithm-specific degenera-
cies, cf. Fig. 4 in more or less rare cases. Are you still
willing to accept this? What if your data is not sub-
ject to uncertainty at all? This is the case that we are
most interested in. In this paper, we consider simple
closed polygons and the corresponding binary point-
inclusion predicate. This is the most important case
and it can also be used for point location in polygons
with holes. Furthermore, point-in-polygon testing is
a subtask in landmarks algorithms for point location
in arrangements of straight lines [7].

∗Partially supported by DFG grant SCHI 858/1-1
†Otto von Guericke University, Department of Computer

Science, Magdeburg, Germany, stschirr at ovgu.de

Figure 1: Results for query points near or on the edges
of a random polygon with 30 edges.

After a very brief look at related work in the next
section, we will report on experimental studies regard-
ing the reliability of practical point-in-polygon test-
ing software. The studies include code from [6], code
available on the www, and code provided by com-
putational geometry software libraries. Finally, we
briefly discuss how to achieve full reliability without
paying too much for this benefit in Section 5 .

2 Related work

Testing a query point for inclusion in a polygon is
a fundamental problem in computational geometry
with many applications, e.g. in computer graphics
and geographic information systems, and thus has
been the subject of many research papers in com-
puter science and related application disciplines. For
an overview we refer to Snoeyink’s survey paper [12].

Maybe the most common algorithm for point-in-
polygon testing without preprocessing is the crossing
number algorithm. Interestingly, already the first de-
scription of the algorithm by Shimrat [11] contained
a flaw fixed later by Hacker [5]. It is well known that
handling degenerate cases in a crossing number algo-
rithm is not obvious. Forrest [3] nicely illustrates the
problems involved.
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3 Non-reliability of existent code

Experimental studies on point-in-polygon testing usu-
ally focus on efficiency. In contrast, we are most inter-
ested in correctness and reliability. We concentrate on
practical point-in-polygon algorithms with no or little
preprocessing without sophisticated data structures.
Our selection of existent code includes the fastest al-
gorithms from the beautiful graphic gems collection
of Haines [6], namely crossings, a “macmartinized”
crossing number algorithm, see also [1], the triangle-
fan algorithms halfplane (with sorting), barycentric,
and spackman, and finally grid, the name says it all.
Barycentric and spackman compute barycentric co-
ordinates in addition to point location. Grid uses a
20×20 grid. Furthermore, we consider Franklin’s pn-
poly code [4], which is another crossing number based
algorithm, and point location code for polygons from
cgal and leda, where we use the latter two both
with an exact and an inexact geometry kernel.

We first challenge the code with problem-dependent
(near) degeneracies. We use cgal’s point genera-
tor for generating points “on” a line segment. Since
we use double precision coordinates, usually not all
points are exactly on the line segment, but only very
close to it. Fig. 2 shows results for a real-world poly-
gon. Besides the library codes with exact kernels
all selected software produces false results. However,
even with an inexact kernel based on double precision
floating-point numbers, the cgal code produces only
very few false positives. Interestingly, Shimrat [11]
already clearly states that his crossing number algo-
rithm does not apply to query points on the boundary
of the polygon. Haines [6] writes “when dealing with
floating-point operations on these polygons we do not
care if a test point exactly on an edge is classified as
being inside or outside, since these cases are extremely
rare. However, our experiments show that we get
false results not only for points exactly on the bound-
ary. Second, for polygons with axis-parallel edges like
the H-shaped polygon in Fig. 4, points exactly on the
edges are not unlikely.

Next we turn to algorithm-dependent degeneracies.
We create points on the vertical and horizontal lines
through the polygon vertices. These are potential
degenerate cases for the crossing number algorithms.
Fig. 3 shows the result for crossings and pnpoly. Be-
cause of a conceptual perturbation, namely consider-
ing vertices on the ray as being infinitesimally above
the ray, both work very well for the query points.
Unfortunately, both do not produce consistent results
for the vertices, in contrast to the cgal code with an
inexact kernel.

Fig. 4 shows the result for a H-shaped polygon for
query points which cause algorithm-dependent degen-
eracies for the triangle-fan algorithms. Query points
are generated “on” the non-polygon edges bounding

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2: Results for query points on segments on
a real-world polygon (simplified boundary of the vil-
lage Saarwellingen in Germany): (a) crossings (b)
Franklin’s pnpoly (c) halfplane (d) barycentric (e)
spackman (f) grid (g) cgal with inexact kernel (h)
cgal and leda with exact kernel.

the triangles considered by these algorithms. As we
have suspected, the triangle-fan algorithms err for
points near these edges. We have both false positive
as well as false negative results, see (c), (d), and (e).
Crossings (a) has false negatives on the axis-parallel
edges, whereas the second crossing number algorithm
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(a) (b)

Figure 3: Results for query points on verticals and
horizontals through the vertices of the polygon from
Fig. 2: (a) crossings (b) Franklin’s pnpoly.

has false negatives at some vertices only. Haines [6]
admits that his code “does not fully address this prob-
lem”. Again, the problems occur not only for points
exactly on the triangle edges. Surprisingly, even the
grid method has false negatives on axis-parallel edges
as well.

4 Reliable implementation

The straightforward approach to implement geomet-
ric algorithms like those above reliably is to use ex-
act rational arithmetic instead of inherently imprecise
floating-point arithmetic. Unfortunately, this slows
down the code significantly. As suggested by the ex-
act geometric computation paradigm [14] a better ap-
proach is to combine exact rational arithmetic with
floating-point filters, e.g. interval arithmetic, in order
to save most of the efficiency of floating-point arith-
metic for non-degenerate cases. This approach is im-
plemented in the exact geometry kernels of cgal [2]
and leda [9]. The use of adaptive predicates à la
Shewchuck [10] is highly recommended.

Interestingly, exact rational arithmetic does not suf-
fice to let crossings always produce correct results,
because some degeneracies are still not handled cor-
rectly. Due to the conceptual perturbation of vertices,
for some query points coincident with vertices incor-
rect results are still produced.

5 A reliable and efficient alternative

In terms of efficiency, algorithms with low arithmetic
demand are better suited for exact geometric compu-
tation, because low demand leads to both more ef-
fective filters and less expensive rational arithmetic.
With an ieee 754 compliant floating-point arithmetic,
a comparison of floating-point numbers is always ex-
act. Thus, in terms of the cost of exact geometric
computation, it pays off to replace calculations by
comparisons whenever possible.

(a) (b)

(c) (d)

(e) (f)

Figure 4: Results for query points on segments con-
necting the first vertex to the remaining ones for a
H-shaped polygon: (a) crossings (b) Franklin’s pn-
poly (c) halfplane (d) barycentric (e) spackman (f)
grid.

Let us illustrate this for the crossing number al-
gorithm where we have to test whether a horizontal
leftward ray r starting at q = (qx, qy) intersects a seg-
ment s. This is often implemented by computing the
intersection point p of the supporting line of r and
the supporting line of s and then testing whether p
lies on both r and s. MacMartin et al. [8] observe
that s cannot intersect r if the y-coordinates of both
endpoints of s are smaller or larger than qy. Thus, we
can save some calculations by additional comparisons
in fortunate cases. Note that we can use comparison
of x-coordinates to save further calculations as well,
assuming that we did the comparison of y-coordinates
already. Then, if the x-coordinates of both endpoints
of s are smaller than qx, there is no intersection, and
if both are larger, there is one. If these comparisons
do not suffice to decide the test, we use an exact ori-
entation test to check whether q is to the left of s.
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Next we briefly describe an alternative reliable im-
plementation of the crossing number algorithm. We
suggest to add some preprocessing to compensate for
more expensive arithmetic. We use an interval skip
list (or interval tree) to store the y-ranges of all non-
horizontal polygon edges. In order to handle degen-
eracies correctly, we store half-open intervals: Only
the y-coordinate of the first endpoint is included, the
y-coordinate of the second endpoint is not. Here we
assume that polygon edges are consistently oriented
along the polygon boundary. We use another interval
skip list to store the y-ranges of all vertices and all
horizontal edges. Since these intervals are point in-
tervals, we could use a multiset dictionary data struc-
ture as well. The cgal library provides a flexible and
adaptable implementation of interval skip lists which
we use in our implementation. Note that all opera-
tions on the interval skip lists are exact, because we
only need comparisons of floats (besides arithmetic on
small integers).

To answer a query for q = (qx, qy), we use the sec-
ond interval skip list (or alternatively the dictionary
data structure) to check exactly whether q lies on a
horizontal ray or coincides with a polygon vertex: For
all intervals containing qy we check whether the corre-
sponding vertex or horizontal edge contains q. If not,
we use the first skip list to get candidate edges for
intersection with the leftward horizontal ray starting
at q and use the comparison-based strategy described
above for testing for intersection. Thanks to the half-
openness of the intervals, we count intersections at
vertices only once.

In pathological cases we still have to consider a lin-
ear number of edges and vertices. In practice, how-
ever, we only get a few, leading to good performance
for random and real-world polygons. Thanks to the
preprocessing that creates the interval skip lists, we
get an efficient query algorithm, where the savings
due to the preprocessing compensate for the addi-
tional cost caused by applying the exact geometric
computation paradigm.

6 Future work

Of course, our selection of algorithms is somewhat
random. It remains to include further algorithms into
this case study, especially the approach by Walker and
Snoeyink, which is based on CSG-representations of
polygons [13]. Furthermore, another case study will
compare the efficiency of the exact counterparts of the
floating-point-based practical point-in-polygon strate-
gies we considered here and compare it to alternative
approaches. Grid-based methods seem to be good
candidates for achieving reliability without paying too
much in terms of efficiency as well.
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Minimizing the Symmetric Difference Distance
in Conic Spline Approximation

Sunayana Ghosh∗ Gert Vegter†

Abstract

We show that the complexity (number of elements) of
an optimal parabolic or conic spline approximating a
smooth curve with non vanishing curvature to within
symmetric difference distance ε is c1ε

−1/4 + O(1), if
the spline consists of parabolic arcs, and c2ε

−1/5 +
O(1), if it is composed of general conic arcs of vary-
ing type. The constants c1 and c2 are expressed in
the affine curvature of the curve. We define an eq-
uisymmetric bitangent conic arc to be the (unique)
conic that is tangent to a curve at its endpoints, such
that the areas of the two moons formed by this conic
and the given curve are equal, and show that its com-
plexity is asymptotically equal to the complexity of
an optimal conic spline. We show that the symmetric
difference distance between a curve and an equisym-
metric conic arc tangent at its endpoints is increasing
with affine arc length, provided the affine curvature
along the arc is monotone. This property yields a
simple bisection algorithm for computing an optimal
parabolic or equisymmetric conic spline.

1 Introduction

Complexity of conic approximants. In Ghosh, Pe-
titjean and Vegter [2] we determined the complex-
ity, i.e., the number of elements, of parabolic and
conic splines approximating a smooth planar curve to
within a given Hausdorff distance. In this paper we
extend this work by focusing on the symmetric dif-
ference distance. The symmetric difference distance
of two curves that are not closed, but have common
endpoints, is the total area of the regions enclosed by
the two curves. See Figure 1. We show that the com-
plexity of an optimal parabolic spline approximating
a smooth curve to within symmetric difference dis-
tance ε, is of the form c1ε

−1/4 + O(1). Ludwig [3]
considers optimal parabolic spline approximation of
strictly convex curves having monotone affine curva-
ture with respect to the symmetric difference met-
ric. Our method for computing the asymptotic error
bound of an optimal parabolic spline is different from
those of [3], and allows us to determine the optimal

∗Institute of Mathematics and Computing Science, Univer-
sity of Groningen, S.Ghosh@cs.rug.nl

†Institute of Mathematics and Computing Science, Univer-
sity of Groningen, G.Vegter@cs.rug.nl

Figure 1: The symmetric difference of the two curves is
the total area of the (shaded regions) two moons.

asymptotic error bound in case of general conic splines
as well. Obviously, our result for parabolic splines
matches those of Ludwig [3]. We also show that the
complexity of approximation of a smooth curve with
an optimal conic spline or equisymmetric conic spline
to within symmetric difference distance ε, is of the
form c2ε

−1/5 + O(1). Here both c1 and c2 are ex-
pressed in terms of the affine curvature. Furthermore,
for deriving the asymptotic error bounds, we use the
relation between affine curvatures of the given curve
and its bitangent offset curve as proved in [2, Lemma
4.1].

Algorithmic issues. For curves with monotone affine
curvature, called affine spirals, we conjecture that
there is a unique bitangent conic which minimizes the
symmetric difference distance to a smooth affine spi-
ral. However, there is another conic spline achieving
the same asymptotic bound on the symmetric differ-
ence metric. More precisely, we introduce the equi-
symmetric bitangent conic of an affine spiral, which is
uniquely determined by the fact that the two moons it
forms with the affine spiral have equal area. An equi-
symmetric conic spline is a tangent continuous conic
spline all elements of which are equisymmetric bitan-
gent conics of the affine spiral. The equisymmetric
conic spline has the property that all moons formed
by this spline and the affine spiral have equal area,
and we denote by Ces the spline that minimizes the
symmetric difference distance to the spiral among all
equisymmetric conic splines. Moreover, the complex-
ity of this equisymmetric conic spline as a function of
the symmetric difference distance to the affine spiral

EuroCG’08, Nancy – March 18-20, 2008

21



is asymptotically equal to the complexity of the op-
timal conic spline with respect to this error metric.
Therefore, we call the computation of the optimal eq-
uisymmetric conic spline a near-optimal approxima-
tion scheme. We implement this scheme for affine
spirals. The symmetric difference distance between
an affine spiral arc and its equisymmetric bitangent
conic arc is a monotone function of the arc length of
the spiral section. This useful property gives rise to
an efficient bisection based algorithm computing the
equisymmetric conic spline. The theoretical and ex-
perimental results for complexity for several curves
match exactly.

Related work. McClure and Vitale [4] consider the
problem of approximating a convex C2-curve C in
the plane by an inscribed n-gon with respect to
the symmetric difference metric δS . They prove
that, with regard to the symmetric difference dis-
tance, the optimal n-gon Pn, satisfies δS(C,Pn) =
1
12 (

∫ l

0
κ1/3(s)ds)3 1

n2 +O( 1
n4 ), where κ is the Euclidean

curvature of the curve C and s is the arc length pa-
rameter. Ludwig [3] shows that the symmetric differ-
ence distance of an optimal parabolic spline with n
knots and a convex C4-curve C in the plane satisfies
δS(C,Qn) = 1

240 (
∫ l

0
|k(u)|1/5du)5 1

n4 +O( 1
n5 ), where u

is the affine arc length parameter and k is the affine
curvature of the curve C. Ghosh, Petitjean and Veg-
ter [2] present the first sharp asymptotic bounds for an
optimal parabolic and conic spline approximation for
a sufficiently smooth curve with non-vanishing curva-
ture, with respect to the Hausdorff distance. Further-
more, bitangent conic arcs of affine spirals have some
useful global properties which gives rise to a simple
bisection algorithm for computation of optimal conic
splines.

Overview. Section 2 reviews some notions from
affine differential geometry that we use in this pa-
per. Section 3 introduces affine spirals, a class of
curves which have a unique equisymmetric bitangent
conic. The complexity analysis of optimal parabolic
and conic splines and equisymmetric conic splines is
discussed in Section 4. Section 5 presents the output
of the algorithm for a specific example.

2 Mathematical preliminaries

Circular arcs and straight line segments are the only
regular smooth curves in the plane with constant Eu-
clidean curvature. Conic arcs are the only smooth
curves in the plane with constant affine curvature.
The latter property is crucial for our approach, so
we briefly review some concepts and properties from
affine differential geometry of planar curves. See also
Blaschke [1].

Affine curvature. Recall that a regular curve α :
J → R2 defined on a closed real interval J , i.e., a curve
with non-vanishing tangent vector T (s) := α′(s), is
parametrized according to Euclidean arc length if
its tangent vector T has unit length. For a curve
parametrized by arc length, the derivative of the tan-
gent vector N(s), and the Euclidean curvature is a
differential invariant of regular curves under the group
of rigid motions of the plane, i.e., a regular curve is
uniquely determined by its Euclidean curvature, upto
a rigid motion.

The larger group of equi-affine transformations of
the plane, i.e., linear transformations with determi-
nant one (in other words, area preserving linear trans-
formations), also gives rise to a differential invariant,
called the affine curvature of the curve. To intro-
duce this invariant, let I ⊂ R be an interval, and let
γ : I → R2 be a smooth, regular plane curve. The
curve γ is parametrized according to affine arc length
if

[γ′(r), γ′′(r)] = 1. (1)

Here [v, w] denotes the determinant of the pair of
vectors {v, w}. It follows from (1) that γ has non-
zero Euclidean curvature. Conversely, every curve
α : J ⊂ R → R2 with non-zero Euclidean curvature
satisfies [α′(s), α′′(s)] 6= 0, for u ∈ J , so it can be
reparametrized according to affine arc length.

Note that the property of being parametrized ac-
cording to affine arc length is an invariant of the
curve under equi-affine transformations. If γ is
parametrized according to affine arc length, then dif-
ferentiation of (1) yields [γ′(r), γ′′′(r)] = 0, so there
is a scalar function k such that

γ′′′(r) + k(r)γ′(r) = 0. (2)

The quantity k(r) is called the affine curvature of the
curve γ at γ(r). A regular curve is uniquely deter-
mined by its affine curvature, up to an equi-affine
transformation of the plane.

The affine curvature can be expressed in terms of
the derivatives of γ up to and including order four.
We refer to [2] for details.

At a point of non-vanishing Euclidean curvature
there is a unique conic, called the osculating conic,
having fourth order contact with the curve at that
point(or, in other words, having five coinciding points
of intersection with the curve). The affine curvature
of this conic is equal to the affine curvature of the
curve at the point of contact. Moreover, the contact
is of order five if the affine curvature has vanishing
derivative at the point of contact. (The curve has to
be C5.) In that case the point of contact is a sextactic
point. See [1] for further details.

Conics have constant affine curvature. Solving the
differential equation (2) shows that a curve of constant
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affine curvature is a conic arc. More precisely, a curve
is a hyperbolic, parabolic or elliptic arc iff its affine
curvature is negative, zero, or positive, respectively.

3 Near optimal approximation of affine spirals

We conjecture that there is a unique optimal bitan-
gent conic minimizing the symmetric difference dis-
tance. Since we do not have a proof of this property
yet, we introduce the equisymmetric bitangent conic,
yielding splines that are near-optimal approximants
with respect to the symmetric difference distance, and
having the same asymptotic complexity as optimal
conic splines.

Area function. The symmetric difference distance
between a convex curve α and a chord α(σ)α(τ) is
given by Aα(σ, τ) = 1

2 |
∫ τ

σ
[α(u) − α(σ), α′(u)]du|. A

bitangent conic of a regular curve γ : [0, %] → R2,
which is tangent to γ at γ(0) and γ(%) and intersects
it at γ(σ) has a parametrization β : [0, %] → R2 of the
form

β(r) = γ(r) + r2(r − %)2(P (r, %)t(r) + Q(r, %)n(r)),
(3)

where t(r) := γ′(r) is the affine tangent and n(r) :=
γ′′(r) is the affine normal to γ at γ(r). The symmetric
difference distance between γ and the bitangent conic
β is equal to

δS(γ, β) = |Aγ(0, σ)−Aβ(0, σ)|+ |Aγ(σ, %)−Aβ(σ, %)|

There is a one-parameter family of bitangent conics,
and the goal is to determine an equisymmetric bitan-
gent conic, i.e., a conic in this family for which the
area of the two moons (see Figure 1) formed by γ and
β are equal. The symmetric difference distance in
this case is defined to be the equisymmetric distance
between γ and β.

Monotonicity of equisymmetric distance. If one
endpoint of the affine spiral moves along the curve γ,
the symmetric difference distance between the affine
spiral and its equisymmetric bitangent conic arc is
monotone in the arc length of the affine spiral. More
precisely, let γ : [u0, u1] → R2 be an affine spiral arc.
For u0 ≤ u ≤ u1, let γu be the sub-arc between γ(u0)
and γ(u), and let βu be the (unique) equisymmetric
bitangent conic arc of γu. Then the equisymmetric
distance between γu and βu is a monotonically in-
creasing function of u.

This property gives rise to a bisection based method
for the computation of an equisymmetric conic spline
approximating a spiral arc to within a given symmet-
ric difference distance. Section 5 presents the output
of this algorithm for Cayley’s sextic.

4 Complexity of conic splines

In this section our goal is to determine the symmet-
ric difference distance of a conic arc of best approx-
imation to an arc of γ of affine arc length % > 0,
that is tangent to γ at its endpoints. If the conic
is a parabola, these conditions uniquely determine a
parabolic arc. If we approximate by a general conic,
there is one degree of freedom left, which we use to
minimize the symmetric difference distance between
the arc of γ and the approximating conic arc β.

The main result of this section gives an asymptotic
bound on this symmetric difference distance .

Theorem 1 (Optimal symmetric difference)
Let γ : [0, %] → R2 be a sufficiently smooth, regular
curve with non-vanishing Euclidean curvature.
1. Let β be the parabolic arc tangent to γ at the

endpoints, the symmetric difference between the two
arcs has the following asymptotic expansion

δS(γ, β) = 1
240 |k0|%5 + O(%6), (4)

where k0 is the affine curvature of γ at γ(0).

2. Let β be a bitangent conic arc, minimizing the
symmetric difference, then the symmetric difference
between the two arcs has the following asymptotic
expansion

δS(γ, β) = 1
7680 |k

′
0|%6 + O(%7), (5)

where k′0 is the derivative of the affine curvature of γ
at γ(0).

3. Let β be the equisymmetric bitangent conic arc of
γ, then the asymptotic expansion of the symmetric
difference between the two curves is given by (5)

Here we just outline the main idea of the proof. Let
γ : [0, %] → R2, be a curve parametrized by affine arc
length. In particular % is the affine arc length. Using
the parametrization of β as given by (3) we have

δS(γ, β) = 1
30 |Q(0, 0)|%5 + O(%6). (6)

In [2], we show that the affine curvature of a curve of
the form (3) is given by

kβ = k0 + 8Q(0, 0) + O(%). (7)

Since β is a parabolic arc, its affine curvature is zero,
i.e., kβ = 0. Combining (3), (6), and (7) yields the
asymptotic expression for the symmetric difference
distance given by (4). The proof of the second and
third part follows the same line of reasoning.

Corollary 2 (Complexity of conic spline) Let
γ : [0, %] → R2 be a smooth curve with non-vanishing
Euclidean curvature, parametrized by affine arc
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length, and let k(r) be its affine curvature at γ(r).
1. The minimal number of arcs in a tangent con-

tinuous parabolic spline approximating γ to within
symmetric difference distance ε is

N(ε) = (240)−1/4
(∫ %

0

|k(r)|1/5dr
)
ε−1/4(1 + O(ε1/4)).

2. The minimal number of arcs in a tangent continu-

ous conic spline approximating γ, to within symmetric
difference distance ε is

N(ε) = (7680)−1/5
(∫ %

0

|k′(r)|1/6dr
)
ε−1/5(1+O(ε1/5)).

The expression for complexity of an equisymmetric
conic spline is of the same form as the expression for
complexity of an optimal conic spline as given in 2.
The expressions match in the most significant terms.
For all practical cases this difference turned out to be
negligible.
Remark. The basic idea behind proving the preced-
ing corollary is to define the functions called parabolic
content and conic content. These functions are use-
ful in distributing the knots over the curve γ, in such
a way, that the symmetric difference distance of all
the segments are equal. The aim for this kind of ap-
proximation is to distribute the knots uniformly over
the curve with respect to the parabolic or conic con-
tent. In fact the methods used by McClure and Vitale
in [4] and Ludwig in [3] use this notion of content to
show that there exists an optimal spline minimizing
the symmetric difference distance for a curve with a
given number of knots.
Note that N(ε) is expressed in terms of equi-affine in-
variants, affine curvature and affine arc length, since
the symmetric difference metric is invariant under
equi-affine transformations.

5 Implementation

We implemented an algorithm in C++ using the sym-
bolic computing library GiNaC1, for the computation
of an optimal parabolic or an equisymmetric conic
spline, based on the monotonicity property. For com-
puting the optimal parabolic spline, the curve is di-
vided into affine spirals at the sextactic points. Then
for a local stopping condition εl, the algorithm iter-
atively computes the optimal parabolic arcs starting
at one endpoint. Given symmetric difference distance
ε we compute εl, by first computing the complexity n
from our theoretical result, where εl = ε

n . Infact our
algorithm gives an exact match between the theoret-
ical complexity and the experimental complexity, for
sufficiently small values of ε.

1http://www.ginac.de
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Figure 2: Row 1 shows the conic spline and row 2 shows
parabolic spline approximation for Cayley’s sextic for ε =
10−1, 10−2 and 10−3

Cayley’s sextic. We present the results of our al-
gorithm applied to Cayley’s sextic, parametrized by
α(t) = (4 cos( t

3 )3 cos(t), 4 cos( t
3 )3 sin(t), with − 3

4π ≤
t ≤ 3

4π. This curve has a sextactic point at t = 0,
therefore for all values of ε we divide the parameter
interval into two parts [− 3

4π, 0] and [0, 3
4π].

Table 1 gives the number of arcs computed by the
algorithm, and the theoretical bounds on the number
of arcs for varying values of ε, both for the parabolic
and for the conic spline.

ε Parabolic Conic
Exp.| Th. Exp.| Th.

10−1 6 4
10−2 12 4
10−3 20 6
10−4 34 10
10−5 60 16
10−6 108 24

Table 1: Theoretical and experimental complexity match
exactly for parabolic and conic spline approximation of
Cayley’s sextic for various values of symmetric difference
distance ε
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Mixed Volume Techniques for Embeddings of Laman Graphs

Reinhard Steffens∗ Thorsten Theobald∗

Abstract

We use Bernstein’s Theorem [1] to obtain combinato-
rial bounds for the number of embeddings of Laman
graph frameworks modulo rigid motions. For this, we
study the mixed volume of suitable systems of poly-
nomial equations obtained from the edge length con-
straints. The bounds can easily be computed and for
some classes of graphs, the bounds are tight.

1 Introduction

Let G = (V,E) be a graph with |E| = 2|V | − 3 edges.
If each subset of k vertices spans at most 2k−3 edges,
we say that G has the Laman property and call it
a Laman graph (see [7]). For generic edge lengths,
Laman graphs are minimally rigid (see [3]), i.e. they
become flexible if any edge is removed.

A Henneberg sequence for a graph G is a sequence
(Gi)3≤i≤n of Laman graphs such that G3 is a triangle,
Gn = G and each Gi is obtained by Gi−1 via one of the
following two types of steps: A Henneberg I step adds
one new vertex vi+1 and two new edges, connecting
vi+1 to two arbitrary vertices of Gi. A Henneberg II
step adds one new vertex vi+1 and three new edges,
connecting vi+1 to three vertices of Gi such that at
least two of these vertices are connected via an edge
e of Gi and this certain edge e is removed (see Figure
1). Any Laman graph G can be constructed via a

Figure 1: A Henneberg I and a Henneberg II step.
New edges are dashed and the deleted edge is pointed.

Henneberg sequence and any graph constructed via a
Henneberg sequence has the Laman property (see [9]).
We call G a Henneberg I graph if it is constructable
using only Henneberg I steps. Otherwise we call it
Henneberg II.

In the following we look at frameworks which are
tuples (G, L) where G = (V,E) is a graph and

∗FB 12 – Institut für Mathematik, Postfach 111932, D–
60054 Frankfurt am Main, Germany

L = {li,j : [vi, vj ] ∈ E} is a set of |E| positive num-
bers interpreted as edge lengths. Given a framework
we want to know how many embeddings, i.e. maps
α : V → R2, exist such that the Euclidean distance
between two points in the image is exactly li,j for all
[vi, vj ] ∈ E. Since every rotation or translation of
an embedding gives another one, we ask how many
embeddings exist modulo rigid motions.

Due to the minimal rigidity property, questions
about embeddings of Laman graphs arise naturally
in rigidity and linkage problems (see [2] and the ref-
erences therein). Graphs with fewer edges will have
zero or infinitely many embeddings modulo rigid mo-
tions, and graphs with more edges do not have any
embeddings for a generic choice of edge lengths.

Determining the maximal number of embeddings
(modulo rigid motions) for a given Laman graph is
an open problem. The best upper bounds are due to
Borcea and Streinu [2] who show that the number of
embeddings is bounded by

(
2|V |−4
|V |−2

)
. Their bounds are

based on degree results of determinantal varieties, but
do not seem to fully exploit the specific combinatorial
structure of Laman graphs.

Here, we present an alternative, combinatorial ap-
proach to bound the number of embeddings of a
Laman graph based on Bernstein’s theorem for sparse
polynomial systems. Since the systems of polyno-
mial equations describing the Laman embeddings are
sparse, the mixed volume of the Newton polytopes
provides a simple combinatorial upper bound on the
number of solutions. It is particularly interesting that
for some classes of graphs, the mixed volume bound is
tight (and in these cases improves the general bound
in [2]).

To use algebraic tools for this problem we formu-
late the embedding problem as a system of polynomial
equations. Each prescribed edge length translates into
a polynomial equation. I.e. if [vi, vj ] ∈ E with length
li,j , we require (xi − xj)2 + (yi − yj)2 = l2i,j where
α(vi) = (xi, yi) and α(vj) = (xj , yj). Thus we ob-
tain a system of |E| quadratic equations whose solu-
tions represent the embeddings of our framework. To
get rid of translations and rotations we fix one point
α(v1) = (x1, y1) = (c1, c2) and the direction of the
edge [α(v1), α(v2)] by setting y2 = c3. (Here we as-
sume without loss of generality that there is an edge
between v1 and v2.) For practical reasons we choose
ci 6= 0 and as well c1 6= l1,2. Hence we want to study
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the solutions to the following system.

x1 − c1 = 0
y1 − c2 = 0
x2 − (l1,2 − c1) = 0
y2 − c3 = 0
(xi − xj)2 + (yi − yj)2 − l2i,j = 0

∀[vi, vj ] ∈ E − {[v1, v2]}


(1)

We will give bounds on the number of solutions in
C∗ := C \ {0} to this system where we assume that
the edge lengths li,j are generically chosen such that
no solutions with zero components occur. To do this
we will study the mixed volume of the Newton poly-
topes (i.e. the convex hulls of the monomial exponent
vectors, see for example [8]) of the system (1).

2 Bernstein’s Theorem and technical tools

Let P1, . . . , Pn be n polytopes in Rn. For non-negative
parameters λ1, . . . , λn, the volume voln(λ1P1 + . . . +
λnPn) is a homogeneous polynomial of degree n in
λ1, . . . , λn with non-negative coefficients (see [10]).
The coefficient of the monomial λ1 · · ·λn is called
the mixed volume of P1, . . . , Pn and is denoted by
MVn(P1, . . . , Pn). We have two explicit formulas for
this quantity (see [8] and [5]):

MVn(P1, . . . , Pn)

= (−1)n
∑

(α1,...,αn)∈{0,1}n

(−1)
P

i αi voln

(∑
i

αiPi

)
(2)

=
∑

Q mixed cell of a
mixed subdivision

of P :=
P

Pj

voln (Q) (3)

For further background on mixed subdivisions, see
also [5] and [4].

The core theorem that gives a connection between
solutions to systems of polynomial equations and dis-
crete geometry is the following.

Theorem 1 (Bernstein [1]) Given polynomials
f1, . . . , fn over C with finitely many common zeroes
in (C∗)n, let Pi denote the Newton polytope of fi

in Rn. Then the number of common zeroes of the
fi in (C∗)n is bounded above by the mixed volume
MVn(P1, . . . , Pn). Moreover for generic choices of
the coefficients in the fi, the number of common
solutions is exactly MVn(P1, . . . , Pn).

Bernstein also gives an explicit condition when a
choice of coefficients is generic. We can show that
the system (1) is never generic in that sense. Then
the mixed volume of it will always be a strict upper
bound on the number of common solutions.

In the special case of Henneberg I graphs our system
(1) will be in a shape that allows to separate the mixed
volume calculation into smaller pieces. Our main tool
to do this is the following Lemma.

Lemma 2 Let P1, . . . , Pk be polytopes in Rm+k and
Q1, . . . , Qm be polytopes in Rm ⊂ Rm+k . Then

MVm+k(Q1, . . . , Qm, P1, . . . , Pk) =
MVm(Q1, . . . , Qm) ∗MVk(π(P1), . . . , π(Pk))

where π : Rm+k → Rk denotes the projection on the
last k coordinates.

Proof. Using the explicit formula (2) we have:

MVm+k(Q1, . . . , Qm, P1, . . . , Pk)

= (−1)m+k
∑

β∈{0,1}k

∑
α∈{0,1}m

(−1)
P

i αi(−1)
P

j βj

volm+k

 m∑
i=1

αiQi +
k∑

j=1

βjPj

 .

Since any polytopes P ⊂ Rm+k and Q ⊂ Rm satisfy
volm+k(Q + P ) = volm(Q) volk(π(P )) + volm+k(P ),
this equals

(−1)m+k
∑

β∈{0,1}k

∑
α∈{0,1}m

(−1)
P

i αi
P

j βj

∗

[
volm

(
m∑

i=1

αiQi

)
volk

π(
k∑

j=1

βjPj)


+ volm+k

 k∑
j=1

βjPj

 .

Using that π(P1 + P2) = π(P1) + π(P2) for any poly-
topes P1, P2 ⊂ Rm+k, we obtain

(−1)m+k
∑

α∈{0,1}m

(−1)
P

i αi

 ∑
β∈{0,1}k

(−1)
P

j βj

∗ volm+k

 k∑
j=1

βjPj


+ (−1)m

∑
α∈{0,1}m

(−1)
P

i αi volm

(
m∑

i=1

αiQi

)

∗

(−1)k
∑

β∈{0,1}k

(−1)
P

j βj volk

π(
k∑

j=1

βjPj)

 .

Now the first two lines equal 0 because we just add
and substract 2m−1 times the term in square brackets,
the third line is MVm(Q1, . . . , Qm) and finally the last
line equals MVk(π(P1), . . . , π(Pk)) according to our
alternating formula for the mixed volume (2). �
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Another technical tool which will be needed in a sub-
sequent proof is the following Lemma. This goes back
to an idea of Emiris and Verschelde [4] to use lin-
ear programming and the formula (3) to compute the
mixed volume. The proof (which we do not give here)
is based on the duality theorem for linear program-
ming.

Lemma 3 Given polytopes P1, . . . , Pn ⊂ Rn and lift-
ing vectors µ1, . . . , µn ∈ Rn

≥0. Denote the vertices of

Pi by v
(i)
1 , . . . , v

(i)
mi and choose one edge ei = [v(i)

ki
, v

(i)
li

]
from each Pi. Then

∑n
i=1 ei is a mixed cell of the

mixed subdivision induced by the liftings µi if and
only if

i) The edge matrix E := Va − Vb is non-

singular (where Va := (v(1)
k1

, . . . , v
(n)
kn

) and Vb :=

(v(1)
l1

, . . . , v
(n)
ln

)) and

ii) For all polytopes Pi and all vertices v
(i)
s of Pi

which are not in ei we have:(
diag

(
µT E

)T
E−1 − µT

i

)
·
(
v
(i)
li

− v(i)
s

)
≥ 0 (4)

where µ := (µ1, . . . , µn) and where diag(V ) de-
notes the vector of the diagonal entries of V .

Note that (4) is linear in the µj . Hence given a choice
of edges we can explicitly calculate

∑n
i=1 mi normal

vectors defining a cone in Rn2
. The interior of this

cone consists of all liftings (µt
1, . . . , µ

t
n) which induce

a mixed subdivision that contains our chosen cell as
a mixed cell.

3 Henneberg I graphs

For this simple class of Laman graphs the mixed vol-
ume bound is tight as we will demonstrate below. Our
proof exploits the inductive structure of Henneberg I
graphs which is why it cannot be used for Henneberg
II graphs.

Theorem 4 A Henneberg I step at most doubles the
number of embeddings of the framework and there is
always a choice of edge lengths such that the number
of embeddings is doubled.

Proof. In a Henneberg I step we add one ver-
tex v|V |+1 and two edges [vr, v|V |+1], [vs, v|V |+1] with
lengths lr,|V |+1 and ls,|V |+1. So our system of equa-
tions (1) gets two new equations, namely

(xr − x|V |+1)2+(yr − y|V |+1)2−l2r,|V |+1 =0 (5)

(xs − x|V |+1)2+(ys − y|V |+1)2−l2s,|V |+1 =0. (6)

In our new system of equations these two are the only
polynomials involving x|V |+1 and y|V |+1, so we can

use Lemma 2 to calculate the mixed volume sepa-
rately. Unfortunately, the mixed volume of the projec-
tion of the Newton polytopes of these equations equals
4 which would imply that the number of embeddings
is at most quadrupled. But the following simple trick
(which we will refer to as the truncation trick) solves
this problem immediately. The set of solutions of a
system of polynomial equations is not changed when
we substract one equation from another. So instead
of adding equation (6) we add the equation (6)-(5)
which equals

x2
s − x2

r + 2x|V |+1(xr − xs) + y2
s − y2

r+

2y|V |+1(yr − ys)− l2s,|V |+1 + l2r,|V |+1 = 0 .
(7)

Now the projections of the two new Newton polytopes
corresponding to (5) and (7) to their last two coordi-
nates have mixed volume 2 which proves the first part
of our theorem. To get two new embeddings for each
previous one we choose our new edge lengths to be
almost equal to each other and much larger then all
previous edges lengths (larger then the sum of all pre-
vious is certainly enough). This leads to the desired
new embeddings. �

Each Henneberg sequence starts with a triangle which
has obviously at most 2 embeddings up to rigid mo-
tions (we count reflections separately). Hence using
our Theorem inductively we get the following corol-
lary.

Corollary 5 The number of embeddings of Hen-
neberg I graphs is less than or equal 2|V |−2 and this
bound is sharp.

4 Laman graphs on 6 vertices

For Laman graphs on 6 vertices, the general bound
in [2] on the number of embeddings is 70. From
the Henneberg constructions and simple combinato-
rial considerations, it follows that the only Henneberg
II Laman graphs on 6 vertices are the Desargues graph
and K3,3 (see figure 2). For the Desargues graph, an

Figure 2: Left: Desargues graph. Right: K3,3.

explicit analysis is given in [2] which shows that the
correct number is only 24, and that there is a choice
of edge lengths giving 24 different embeddings. For

EuroCG’08, Nancy – March 18-20, 2008

27



the K3,3, Manfred Husty found a construction with
32 embeddings [6].

When we set up the system (1) and use the trunca-
tion trick like in the proof of Theorem 4 several times,
our mixed volume approach yields a bound of 32 for
both graph classes on 6 vertices. So in the case of 6
vertices our bound is tight. By glueing several copies
of K3,3 together and using Lemma 2 to calculate the
mixed volume we get an infinite class of graphs where
our bound is tight as well.

5 General case

For the classes discussed above (Henneberg I, graphs
on six vertices) as well as some other special cases,
our bound on the number of embeddings improves
the known general bounds. We were not able to gen-
eralize the truncation trick to arbitrary Henneberg
II graphs. For the general case, our mixed volume
approach for the untruncated system (1) provides a
simple, but very weak bound. However, it may be of
independent interest, that for this class of problems,
it is possible to determine the mixed volume exactly.

Theorem 6 The mixed volume of our initial system
(1) is exactly 4|V |−2.

Proof. The mixed volume of (1) is at most the prod-
uct of the degrees of the polynomial equations because
it is less than or equal to the Bézout bound (see [8]).
To show that the mixed volume is at least this num-
ber we will use Lemma 3 to give a lifting that induces
a mixed cell of volume 4|V |−2.

The first 4 equations of (1) give rise to a single edge
as a Newton polytope which is part of any mixed
cell. Now we claim that we can order the Newton
polytopes Pi in such a way that, for i ≥ 5, Pi con-
tains the edge [0, 2ξi] where ξi denotes the ith unit
vector. To see this, note first that every equation
in (1) has a non vanishing constant term and there-
fore its Newton polytope contains the point 0. To
see that Pi contains 2ξi it is enough to show there
is a labeling of the edges of our graph with a direc-
tion such that each vertex has exactly two incoming
edges. Figure 3 sketches how to choose the edge di-

Figure 3: A Henneberg I and a Henneberg II step
with directed edges.

rections in the Henneberg steps to satisfy this. Now

using Lemma 3 we describe a lifting that induces a
subdivision that has

∑
i[0, 2ξi] as a mixed cell. In the

notation of Lemma 3 our chosen edges give rise to

the edge matrix E =
(

E4 0
0 2E2|V |−4

)
. Substituting

this into the second condition (4) we get that for each
Newton polytope Pi all vertices v

(i)
s of Pi which are

not 0 or 2ξi have to satisfy(
(µ(1)

1 , . . . , µ
(2|V |)
2|V | )− µ(i)

)
· v(i)

s ≤ 0 ,

where we denote by µ(j) ∈ Q2|V | the lifting vector for
Pj . Since all the entries of each v

(i)
s are non-negative

this can easily be done by choosing the vectors µ(j)

such that their jth entry is relatively small and all
other entries are relatively large. �

Corollary 7 The number of embeddings of a Laman
graph framework with generic edge lengths is strictly
less then 4|V |−2.
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Geometric Analysis of Algebraic Surfaces Based on Planar Arrangements

Eric Berberich∗ Michael Kerber∗ Michael Sagraloff∗

Abstract

We present a method to compute the exact topol-
ogy of a real algebraic surface S, implicitly given by a
polynomial f ∈ Q[x, y, z] of arbitrary degree N . Addi-
tionally, our analysis provides geometric information
as it supports the computation of arbitrary precise
samples of S including critical points. We use a pro-
jection approach, similar to Collins’ cylindrical alge-
braic decomposition (cad). In comparison we reduce
the number of output cells to O(N5) by construct-
ing a special planar arrangement instead of a full cad
in the projection plane. Furthermore, our approach
applies numerical and combinatorial methods to min-
imize costly symbolic computations. The algorithm
handles all sorts of degeneracies without transform-
ing the surface into a generic position. We provide a
complete C++-implementation of the algorithm that
shows good performance for many well-known exam-
ples from algebraic geometry.

1 Introduction

Problem and results: The topological analysis of
algebraic curves and surfaces has received a lot of at-
tention in algebraic geometry, computer graphics and
CAGD. Beside the theoretical interest of the problem,
accurate topological and geometric information of al-
gebraic objects is crucial for a good visualization and
for a meaningful approximation by simpler objects,
such as splines or polygons.

We present an algorithm that provides topological
information about an arbitrary algebraic surface S,
given by an implicit equation in Q[x, y, z] of degree
N . We compute a cell decomposition, where each
cell is a smooth subvariety of S of dimension 0, 1, or
2, and determine how these cells are connected. Our
cell decomposition has the boundary property, i.e., the
boundary of a cell is given by a union of other cells
(compare the similar notion of a CW-complex from al-
gebraic topology). The result is similar to a cylindri-
cal algebraic decomposition of R3, but our decompo-
sition represents the topology using only O(N5) cells
whereas the worst case complexity of a cad is Ω(N7).

Our algorithm consists of three steps: First, we
project the z-critical points of S to compute an ar-
rangement AS , see Section 2. Second, we lift the

∗Max-Planck-Institut für Informatik, 66123 Saarbrücken,
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components of AS to R3, obtaining the cell decom-
position ΩS . It suffices to lift over one sample point
of each component. Details are in Section 3. Third,
we compute the adjacencies between the cells of ΩS ,
as explained in Section 4.

We describe new methods for all three steps with
the goal to replace costly symbolic computations by
certified approximation methods as much as possible.
Our toolbox for approximate methods contains, for
instance, a numerical method for univariate root iso-
lation (Bitstream Descartes [8]), an extension for the
non-square-free case (m-k-Bitstream Descartes [7]),
and interval arithmetic. Still, we guarantee to reflect
the mathematical correct topology of the surface in
all cases, as expected from the exact geometric com-
putation (EGC) paradigm.

Our approach does not make any assumptions
about the input surface and does never transform the
coordinate system to prevent degeneracies. This al-
lows to accurately sample the surface in arbitrary res-
olution by lifting points of a fine granulation of the
xy-plane. On the other hand, we have to deal with
degenerate situations, in particular with vertical lines
that are part of the surface. Such lines are decom-
posed into vertical segments, and vertices in-between,
to satisfy the boundary property.

We also provide an exact and complete implementa-
tion of the presented algorithm in C++. To our knowl-
edge, this is the first EGC-implementation for the
topological analysis of algebraic surfaces, including
singular ones. It relies on an EGC-algorithm to pro-
duce arrangements of arbitrary algebraic plane curves,
which has been presented recently in [6]. Our exper-
iments show good performance for reference surfaces
from algebraic geometry. Essentially needed in the
projection step of our approach is the analysis of pla-
nar curves of degree up to N(N − 1) which limits its
practical applicability for high-degree surfaces.

Related work: The problem of topology compu-
tation for algebraic plane curves has been extensively
studied (see [7], [5] and the references therein). Re-
cently, also exact methods for the case of space curves
and surfaces came under consideration. Mourrain and
Técourt [10] compute the topology of a surface by an
isotopic piecewise linear mesh, using a plane-sweep
approach. Cheng et al. [4] use a projection approach
to produce a curvilinear wireframe that represents the
surface topology. Both methods require a generic po-
sition of the surface and apply a linear change of coor-
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dinates otherwise. None of them reports on practical
performance of their techniques.

Arnon et al. [1] compute cads in Rn. In [2], they
also compute the adjacencies between cells in a three-
dimensional cad. Similar to us, they do not switch
to generic position, and partition vertical lines into
several cells to satisfy the boundary property. Our
algorithm uses a more suitable cell decomposition for
topology information, and applies approximate meth-
ods in the adjacency computation.

A more detailed version of this work appears in [3].

2 (n,k)-Arrangements

Throughout the article, the surface S is implicitly
given by the polynomial f ∈ Q[x, y, z] of degree N .
We require f to be square-free and primitive, i.e.,
S contains no component twice, and has no two-
dimensional vertical component. For simplicity, we
first assume that S contains no vertical line. The end
of Section 4 sketches how to handle vertical lines.

For a fixed (algebraic) point p = (px, py) ∈ R2 we
consider the local polynomial fp := f(px, py, z) ∈ R[z].

Definition 1 The local degree np is the degree of fp

in z and kp := deg gcd(fp, f
′
p) the local gcd degree.

We partition the (x, y)-plane into connected regions
where the local degree and the local gcd degree remain
invariant. To represent this partition, we use a planar
arrangement. Thus we define:

Definition 2 A connected set C ⊂ R2 is called (n,k)-
invariant with respect to S if the local degree n = nC

and the local gcd degree k = kC of f are invariant
for all p ∈ C. An (n,k)-arrangement AS for S is a
planar arrangement whose vertices, edges, and faces
are (n,k)-invariant with respect to S.

Theorem 1 There exists an (n,k)-arrangement AS .

Proof. We give a constructive proof. Let p be an
arbitrary point in the plane, and f =

∑N
i=0 ai(x, y)zi.

Then np depends on the coefficients aN , . . . , a0 by

np = deg fp = max
i=0,...,N

{i | ai(p) 6= 0}.

The same way, the local degree depends on the
principal Sturm-Habicht coefficients sthai(fnp) (com-
pare [9]) by

kp = deg gcd(fp, f
′
p) = min

i=0,...,N
{i | sthai(fnp)(p) 6= 0}.

The coefficients ai’s and sthai(fnp) define plane curves
αi = V (ai) and σnp,i = V (sthai(fnp)), respectively, of
degree at most N(N − 1). Then np and kp are deter-
mined by the curves p is part of. Thus, the arrange-
ment AS induced by αi and, for all n = 1, . . . , N ,
σ0(fn), . . . , σn(fn), has only (n,k)-invariant cells. �

The constructed arrangement has (n,k)-invariant
cells, but it contains far too many cells. To reduce
the number of cells, consider the silhouette ΓS of S,
defined by stha0(f) = resz(f, ∂f

∂z ).

Lemma 2 For any point, (np, kp) = (N, 0) if and
only if p is not on ΓS . As a consequence, all edges and
vertices of an (n,k)-arrangement AS away from ΓS

can be merged with their adjacent faces to an (n,k)-
invariant face.

Proof. We have that resz(f, ∂f
∂z ) = aNDisc(f) where

Disc(f) denotes the discriminant of f . Clearly, np =
N for a point p if and only if aN (p) 6= 0. From the
definition of the discriminant, kp = 0 for a point p if
and only if Disc(f)(p) 6= 0. �

Consequently, any (n,k)-arrangement AS can be
turned into the minimal (n,k)-arrangement by a post-
processing step (each feature C ∈ AS stores (nC , kC)
as data): Remove all edges and vertices away from
ΓS , and remove vertices on ΓS that have exactly two
adjacent edges, and both edges have the same local
degree and local gcd degree as the vertex (and merge
the adjacent edges). In our implementation, we in-
tegrated this post-processing step in the arrangement
computation of the curves defined in the proof of The-
orem 1, i.e., we add the curves into the arrangement
one by one, and throw away unnecessary features im-
mediately. This lowers the size of the intermediate
values in the algorithm. One can prove that the size
of the computed minimal AS is O(N4), i.e., of same
magnitude as the size of the silhouette arrangement.

3 The cell decomposition

We now fix an (n,k)-invariant cell C, and consider the
surface lifted over C. We define the local real degree
mp to be the number of distinct real roots of the local
polynomial fp.

Theorem 3 Each p ∈ C has the same local real de-
gree mC . Moreover, for each i ∈ {1, . . . ,mC}, the i-th
lift C(i) over C is connected, where

C(i) := {(px, py, zi) ∈ R3 | (px, py) ∈ C

and zi is the i-th root of fp}.

Proof idea. Over an (n,k)-invariant set, the num-
ber of complex roots is constantly n − k. The roots
of f(p, z) continuously depend on p, thus in an open
neighborhood of any point on C the imaginary roots
stay imaginary. As the number of roots is preserved
and imaginary roots only appear with their complex
conjugate, the real roots also remain real. �

Theorem 3 shows that over C, the surface simply
consists of mC covertical copies of C. We can define:

24th European Workshop on Computational Geometry

30



Definition 3 Let AS be the minimal (n,k)-
arrangement for S and mC the local real degree of a
cell C ∈ AS . The cell decomposition is defined as

ΩS :=
⋃

C∈As

 ⋃
i=1,...,mC

{C(i)}


Theorem 4 ΩS consists of O(N5) cells.

By computing the adjacencies between these cells as
presented in Section 4, we thus can compute the topol-
ogy of the surface using O(N5) many sample points
which improves the O(N6) bound from [10]. A cylin-
drical algebraic decomposition consists of Ω(N7) cells
in the worst case, due to its vertical decomposition
strategy in the plane.

The question remains how we compute the number
mC for each feature of AS . As we need also geometric
information over C for the adjacency computation, we
consider a more general problem: given p ∈ C, isolate
the real roots of the local polynomial fp. The number
of isolating intervals for a sample point immediately
reveals mC .

For the isolation, we first consider the local gcd
degree kp = kC (Definition 1): if it is zero, the local
polynomial is square-free, and we apply the Bitstream
Descartes method [8], an exact root solver with adap-
tive precision, on fp. Otherwise, we compute mp,
the number of real roots, using the Sturm-Habicht
sequence of fp [9], and apply the m-k-Bitstream
Descartes method [7], an extension of the Bitstream
Descartes for multiple roots, on fp. If this steps fails
(in this case, the m-k-Bitstream Descartes quits with
a failure), the square-free part of fp is computed,
again using the Sturm-Habicht sequence, and the real
roots of the square-free part are computed using the
Bistream Descartes method.

4 Adjacency

The last step is to compute how the cells of ΩS are
connected. We first state without proof:

Theorem 5 ΩS has the boundary property, i.e., the
boundary of each cell is the union of other cells.

Equivalently, for any two cells M1,M2 with dim M1 <
dim M2, either M1 does not intersect the boundary of
M2, or it is completely contained in the boundary.
In the latter case we call M1 and M2 adjacent. The
adjacency relation of such a pair can be checked at an
arbitrary point p ∈ M1, i.e., the two cells are adjacent
if and only if p ∈ M2.

Our strategy to compute the adjacencies is to con-
sider all pairs of adjacent features C1, C2 of AS in the
(x, y)-plane, and to find the adjacencies between the
lifts C

(i)
1 and C

(j)
2 . Assume dim C1 < dim C2. There

are two cases to consider:

C1 has dimension 1: This means that E := C1 is an
edge, and F := C2 is a face. As a filter, if E has at
most one multiple real root, we adopt the combinato-
rial adjacency algorithm for plane curves from [7].

If the filter does not apply, the treatment is the
same as in [2]. We choose sample points p for E and
q for F with qx = px ∈ Q (for vertical segments, we
choose py = qy ∈ Q), and consider the planar curve
f |x=px := f(px, y, z) ∈ Q[y, z]. The i-th lift F (i) of
F is adjacent to the j-th lift E(j) of E if and only if
there is an arc of the curve V (f |x=px

) connecting the
i-th point over qy with the j-th point over py. In our
implementation, we use the algorithm presented in [7]
to compute the adjacency information for V (f |x=px

).

C1 has dimension 0: Then, C1 is a vertex at point
p, and C2 is either an edge or a face. As above, we
can filter the case that fp has at most one multiple
real root.

For the general method, let z1, . . . , zm denote the
real roots of fp. We choose (rational) intermediate
values q0, . . . , qm such that qi−1 < zi < qi for all i =
1, . . . ,m. The planes z = qi divide the real space in
m + 2 buckets that separate the stack points zi.

Definition 4 Let C ∈ AS (edge or face) be adjacent
to p. A point p′ on C is bucket-faithful if there exists
a path from p′ to p on C such that on that path, each
lift C(i) ∈ ΩS over C remains in the same bucket.

With a bucket-faithful point p′ on C, the adjacencies
of cells over C with cells over p follows by consider-
ing the real roots of fp′ : if the i-th root of fp′ lies in
the bucket of zj , then the cells C(i) and p(j) are adja-
cent. Furthermore, points over p′ that lie in either the
bottom- or the top-most bucket belong to asymptotic
components, i.e., they are unbounded in z-direction.

To compute a bucket-faithful point for C, we first
compute a box B containing p such that no intersec-
tion with any plane z = qi takes place over B. In
other words, each continuous path on S over B re-
mains in the same bucket. We shrink B further until
all features of AS adjacent to p intersect the bound-
ary of B. To find a bucket-faithful point of an edge
adjacent to p, we start at p, and follow the edge until
it crosses B for the first time. This intersection point
is bucket faithful. For a bucket-faithful point of a face
F , consider the edge E ∈ AS that precedes F in coun-
terclockwise order around p. Let qE be the first inter-
section of E with the box boundary. Choose a point
qF on the box boundary between qE and the next in-
tersection of the box boundary with ΓS in clockwise
order. qF is bucket-faithful for F .

Vertical lines In case where S contains a vertical
line `p at a point p ∈ R2, the lift p(i), and thus the
cell decomposition ΩS as defined in Definition 3, is
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Instance degx,y,z (#V,#E,#F) |ΩS | t (in s)

steiner-roman 2,2,2 (5,12,8) 28 0.73
cayley-cubic 2,2,2 (3,10,8) 31 0.74
tangle-cube 4,4,4 (0,6,7) 28 0.61
bohemian-dome 4,4,4 (7,20,14) 61 0.75
chair 4,4,4 (4,9,7) 31 3.05
hunt 6,6,6 (3,2,3) 15 1.21
spiky 6,9,6 (1,8,8) 13 1.43
C8 8,8,8 (40,48,26) 496 30.95

random-3 3,3,3 (2,3,3) 15 0.17
random-4 4,4,4 (7,14,8) 64 4.50
random-5 5,5,5 (16,24,10) 154 236.40
interpolated-3 3,3,3 (4,6,3) 23 0.34
interpolated-4 4,4,4 (12,18,9) 82 31.41
projection-4d 4,4,4 (4,12,9) 34 10.33

no longer well-defined. At such points, `p is added
to the cell decomposition. However, in order to fulfill
the boundary property, `p is decomposed into vertical
segments, and separating points in-between, accord-
ing to the following theorem.

Theorem 6 Let S contain the vertical line `p and
F ∈ AS be a face, which is adjacent to p. Then for any
surface patch F (i) (the j-th lift of F ) there exists an

interval I(F (i)) ⊂ R, such that p×I(F (i)) = F (i)∩`p.

The separating points are given by algebraic equa-
tions. The adjacency for cells over p is computed sim-
ilarly to the case of non-vertical vertices, as described
above. Because of space limitations, details are omit-
ted here but are discussed in [3].

5 Implementation, conclusions, and outlook

We implemented the analysis in C++, taking from
Exacus the surface representation and the analy-
ses of algebraic curves [6, 7] and combined them
with Cgal’s Arrangement 2 package to construct the
(n,k)-arrangement. The possibility to attach data
to Dcel-features allows to efficiently access (n,k)-
relevant data for the lifting step. All computations
follow the lazy-evaluation scheme, i.e., they are only
triggered on demand and cached, e.g., the lifting. Fol-
lowing the generic programming paradigm, we decou-
pled combinatorial tasks from surface-specific ones.

We run experiments on well-known examples from
algebraic geometry, interpolated instances, and also
a generic projection of two quadrics in 4D; exe-
cuted on a AMD Opteron(tm) 8218 (1 GHz) multi-
processor (1 MB cache) platform (32 GB RAM) run-
ning Debian Etch, compiled with g++-4.1.2 using
flags -O2 -DNDEBUG and the exact number types of
Core. The table presents example surfaces along
with their structural data and the obtained running
times. About 90% of the time is spent to construct
AS . Some surfaces do not show any (n,k)-vertex (e.g.,
tangle-cube) or -edge (e.g., xy-functional surfaces)
at all. Due to our approximative and combinatorial
methods, not more than the remaining 10% are spent
to compute liftings and adjacencies.

Our work demonstrates that surface analysis is
practically feasible for moderate degrees without
switching to a generic position. The experiments show
promising results thanks to our minimalistic cell de-
composition and the consequent application of ap-
proximate methods. We are currently investigating
how to enhance the cell decomposition to produce ex-
act triangulations of arbitrary surfaces. An extension
to multiple surfaces enables to analyze space curves
and to realize boolean operations for surfaces.
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Abstract

I will present in this talk some recent results on the automated acquisition of 3D object and scene
models from multiple photographs (a process known as 3D photography) and the recovery of both
deformable shapes and dense velocity fields from video sequences (3D cinematography). I will also
discuss a number of challenges and issues raised by this work that may be of interest to computational
geometry researchers, for example: What is an effective formulation for the surface reconstruction
problem with visibility constraints? How can internal contour information be exploited in “visual-hull-
like” models? Are there effective representations of aspect graphs of polyhedral objects?

This is joint work with Yasutaka Furukawa.
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Improved Upper Bounds on the Number of Vertices of Weight ≤ k
in Particular Arrangements of Pseudocircles

Ronald Ortner∗

Abstract

In arrangements of pseudocircles (Jordan curves) the
weight of a vertex (intersection point) is the number
of pseudocircles that contain the vertex in its inte-
rior. We give improved upper bounds on the number
of vertices of weight ≤ k in certain arrangements of
pseudocircles in the plane.

1 Introduction

A pseudocircle is a simple closed (Jordan) curve in
the plane. An arrangement of pseudocircles is a finite
set Γ = {γ1, . . . , γn} of simple closed curves in the
plane such that (i) no three curves meet each other
at the same point, (ii) each two curves γi, γj have at
most two points in common, and (iii) these intersec-
tion points in γi ∩ γj are always points where γi, γj

cross each other. An arrangement is complete if each
two pseudocircles intersect.

Any arrangement can be interpreted as a planar
embedding of a graph whose vertices are the intersec-
tion points between the pseudocircles and whose edges
are the curves between these intersections. In the fol-
lowing we will often refer to this graph when talking
about vertices, edges, and faces of the arrangement.

Definition 1 Let Γ = {γ1, . . . , γn} be an arrange-
ment of pseudocircles. The weight of a vertex V is
the number of pseudocircles γi such that V is con-
tained in int(γi), the interior of γi. Weights of edges
and faces are defined accordingly.

We will consider the number vk = vk(Γ) of vertices
of given weight k, the number v≤k = v≤k(Γ) of ver-
tices of weight ≤ k, and the number v≥k = v≥k(Γ) of
vertices of weight ≥ k. Further, fk = fk(Γ) denotes
the number of faces of weight k.

Concerning the characterization of the weight vec-
tors (v0, v1, . . . , vn−2) of arrangements of pseudocir-
cles little is known. So far, sharp upper bounds on vk

exist only for k = 0.

Theorem 1 (Kedem et al. [2]) For all arrange-
ments Γ with n := |Γ| ≥ 3,

v0 ≤ 6n− 12.

∗Department Mathematik und Informationstechnologie,
Montanuniversität Leoben, rortner@unileoben.ac.at

Moreover, for each n ≥ 3 there is an arrangement of
n (proper) circles in the plane such that v0 = 6n−12.

Theorem 1 can be used to obtain general upper
bounds on v≤k by some clever probabilistic methods.

Theorem 2 (Sharir [5]) For all arrangements of n
pseudocircles and all k > 0,

v≤k ≤ 26kn.

On the other hand, J. Linhart and Y. Yang estab-
lished the following sharp upper bound on v≥k.

Theorem 3 (Linhart, Yang [4]) For all arrange-
ments of n ≥ 2 pseudocircles and all k with 0 ≤ k ≤
n− 2,

v≥k ≤ (n + k)(n− k − 1).

In this paper we are going to improve the up-
per bounds of Theorems 1 and 2 for some particular
classes of arrangements.

2 Preparations and first results

2.1 Improved bounds from Theorem 3

We start with a bound due to J. Linhart, which holds
if there is a face of large weight in the arrangement. It
is based upon the following result of Y. Yang (which
can be shown by turning the arrangement in question
inside out).

Proposition 4 (Yang [6]) Let Γ be an arrange-
ment of n pseudocircles in the plane with weight vec-
tor (v0, v1, . . . , vn−2) and fn > 0. Then there is an
arrangement of pseudocircles Γ′ with weight vector
(v′0, v

′
1, . . . , v

′
n−2) = (vn−2, vn−1, . . . , v0).

J. Linhart [3] pointed out that Proposition 4 to-
gether with Theorem 3 yields the following improve-
ment of the upper bound on v≤k for arrangements
with fn > 0.

Theorem 5 (Linhart [3]) For all arrangements Γ
of n pseudocircles with fn > 0,

v≤k ≤ 2(k + 1)n− (k + 1)(k + 2).
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Proof. Let Γ be an arrangement with weight vector
(v0, v1, . . . , vn−2) and fn > 0. Then by Proposition
4, there exists an arrangement Γ′ with v′k = vn−k−2

vertices of weight k for 0 ≤ k ≤ n− 2. Therefore, by
Theorem 3,

v≤k =
k∑

j=0

vj =
k∑

j=0

v′n−j−2 =
n−2∑

j=n−k−2

v′j

= v′≥n−k−2

≤ (n + n− k − 2)
(
n− (n− k − 2)− 1

)
=

= 2(k + 1)n− (k + 1)(k + 2). �

Theorem 5 may be used to obtain bounds of

v≤k ≤ 2n(n− w + k + 1)− (k + 1)(k + 2),

if there is a face of large weight w. Of course, in
general this bound is worse than that of Theorem 2
as it is quadratic in n.

2.2 Improved bounds from Theorem 1

2.2.1 Faces with many participating pseudocircles

Bounds on v0 can also be improved if there is a face
of weight 0 with many pseudocircles participating in
its boundary.

Proposition 6 Let Γ be an arrangement of n pseu-
docircles with a face F of weight 0 such that for each
γ ∈ Γ there is an edge of γ on ∂F , the boundary of
F . Then

v0 ≤ 4n− 6.

Proof. Let us assume that there exists an arrange-
ment Γ as described in the proposition such that
v0 > 4n − 6. As shown in Fig. 1 we can add a pseu-
docircle γ′ to Γ such that γ′ cuts each γ ∈ Γ on ∂F
in two vertices of weight 0. Note that we may add γ′

such that it does not contain any vertices of Γ in its
interior. Hence, in the arrangement Γ′ := Γ∪{γ′} we
have

v0(Γ′) > 4n− 6 + 2n = 6(n + 1)− 12,

which contradicts Theorem 1. �

Figure 1: Adding a pseudocircle γ′ cutting each γ ∈ Γ
in two vertices of weight 0.

This proof method can be generalized to obtain a
bound of v0 ≤ 6n−2m−6 for arrangements of n pseu-
docircles with a face of weight 0 in whose boundary
m pseudocircles participate.

As shown in Fig. 2, the bound of Proposition 6 is
sharp.

Figure 2: Arrangement of n pseudocircles with v0 =
4n − 6. Note that each pseudocircle participates in
the unbounded face of weight 0.

2.2.2 A bound depending on f0

Theorem 1 can also be used to obtain an upper bound
on v0 that depends on the number f0 of faces of weight
0.

Theorem 7 Let Γ be an arrangement of n pseudo-
circles. Then

v0 ≤ 2n + 2f0 − 4.

Theorem 7 can be proved from Theorem 1 with
the aid of the upper bound on f0 given in Proposi-
tion 8 below, which is also a direct consequence of
Theorem 1. As Theorem 7 together with Proposition
8 entails Theorem 1, this can be considered as self-
strengthening of Theorem 1.

Proposition 8 Let Γ be an arrangement of n ≥ 3
pseudocircles. Then

f0 ≤ 2n− 4.

Proof. First note that the boundary of each face
of weight 0 consists of at least three edges (and hence
vertices) of weight 0. For if there were a face with only
two edges belonging to some pseudocircles γi and γj ,
then γi ∩ γj would have more than the two allowed
intersection points. On the other hand, each vertex
of weight 0 is on the boundary of only a single face of
weight 0. Therefore by Theorem 1,

f0 ≤ v0

3
≤ 6n− 12

3
= 2n− 4. �

Proof of Theorem 7. If f0 equals the maximal
value 2n − 4 of Proposition 8, the theorem holds by
Theorem 1. We proceed by induction on f0, assum-
ing that the theorem holds for all arrangements with
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f0 + 1 faces of weight 0. Given an arbitrary arrange-
ment with f0 faces of weight 0, one can easily add a
pseudocircle γ that separates a face of weight 0 into
two faces of weight 0 without covering any vertices of
Γ (cf. also the construction in the proof of Proposition
6). The arising arrangement Γ′ := Γ∪ {γ} consists of
n + 1 pseudocircles and has f0 + 1 faces of weight 0.
Applying the induction assumption, we have

v0(Γ) = v0(Γ′)− 4 ≤ 2(n + 1) + 2(f0 + 1)− 8
= 2n + 2f0 − 4. �

3 Improved bounds for complete arrangements
with forbidden subarrangements

In this section we consider bounds for complete ar-
rangements. First, we’d like to remark that the bound
of Theorem 1 is sharp for complete arrangements, too.
That is, for each n ≥ 3 there is a complete arrange-
ment with v0 = 6n− 12 (see Fig. 3).

Figure 3: A complete arrangement of pseudocircles
with v0 = 6n− 12.

Thus, in order to obtain improved bounds on v0,
one has to put some additional restrictions on the
arrangement, e.g. by forbidding certain subarrange-
ments, which will be considered in the following.

3.1 Forbidding α-subarrangements

Evidently, arrangements of three pseudocircles are the
smallest subarrangements of interest in this respect.
Figure 4 shows the four different types one has to take
into account.

Figure 4: Complete arrangements of three pseudocir-
cles in the plane.

Subarrangements of type α play a special role here.
Not only are they the only arrangements of three pseu-
docircles which meet the bound of Theorem 1. They
are also the only complete arrangements of three pseu-
docircles without any face of weight 3, which is of
importance in the light of the following Helly type
theorem.

Theorem 9 (Helly [1]; Kerékjártó) Let Γ =
{γ1, . . . , γn} be an arrangement of pseudocircles such
that for all pairwise distinct γi, γj , γk,

int(γi) ∩ int(γj) ∩ int(γk) 6= ∅.

Then
n⋂

i=1

int(γi) 6= ∅.

Corollary 10 Let Γ be a complete arrangement of
n ≥ 2 pseudocircles that has no subarrangement of
type α. Then

v≤k ≤ 2(k + 1)n− (k + 1)(k + 2).

Proof. Since Γ has no α-subarrangement, the condi-
tion in Theorem 9 holds, and we may conclude that
there is a face of weight n in Γ. Applying Theorem 5
yields the claimed bound. �

3.2 Forbidding α4-subarrangements

It is a natural question whether there are alternative
bounds for other forbidden subarrangements as well.
The unique complete arrangement of four pseudocir-
cles that meets the bound of Theorem 1 seems to be a
good candidate. In such an α4-arrangement each sub-
arrangement of three pseudocircles is of type α. α4-
arrangements prominently appear in the arrangement
of Fig. 3, where the three outer pseudocircles together
with any other pseudocircle form an α4-arrangement.
Indeed, for α4-free arrangements in which there is also
no β-subarrangement (cf. Fig. 4) we can show the fol-
lowing improved upper bound on v0.

Theorem 11 In complete arrangements of n ≥ 2
pseudocircles that are α4-free and β-free,

v0 ≤ 4n− 6.

Theorem 11 follows immediately from the following
bound on f0 together with Theorem 7.

Theorem 12 In complete arrangements of n ≥ 2
pseudocircles that are α4-free and β-free,

f0 ≤ n− 1.

For the proof of Theorem 12 the following lemma
is useful. We skip a proof.
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Lemma 13 Let Γ be a complete, β-free arrangement.
Then for each face F of weight 0 in Γ there is a unique
α-arrangement Γα ⊆ Γ such that F is the bounded
face of weight 0 in Γα. In particular, each face of
weight 0 has only three edges.

Proof of Theorem 12. We give a proof by induction
on n := |Γ|. The case n = 2 is trivial, while for n = 3
one may consult Fig. 4. If n > 3, choose an arbitrary
pseudocircle γ in Γ. By induction assumption the
theorem holds for Γ′ := Γ\{γ}. We claim that adding
γ to Γ′ will increase f0 by at most 1. Indeed, f0

could be increased by more than 1 only in one of the
following two cases:

First, γ may separate a single face F of weight
0 in Γ′ into more than two new faces of weight 0.
By Lemma 13 such a face F has only three edges
which belong to three pseudocircles that form an α-
arrangement Γα. Thus, in order to separate F as
described above, γ has to intersect each pseudocircle
of Γα in two vertices of weight 0, so that Γα ∪ {γ}
would be a forbidden α4-arrangement.

On the other hand, there might be two distinct
faces F1, F2 in Γ′, such that γ separates each Fi into
two new faces of weight 0. By Lemma 13, there is a
unique α-arrangement Γα enclosing F1, so that F2

will be outside Γα (i.e. contained in the unbounded
face of weight 0 of Γα). Hence, γ would have to
intersect the bounded as well as the unbounded face
of weight 0 in Γα. But it is easy to see that this can
only happen if γ together with two pseudocircles in
Γα forms a forbidden β-subarrangement. �

The bounds of Theorems 11 and 12 are sharp. Take
(n−1) pseudocircles such that any subarrangement of
three pseudocircles is of type δ. In this arrangement
f0 = 1, and each pseudocircle has an edge (and hence
two vertices) on the single face of weight 0. Adding
another pseudocircle just as indicated in the proof of
Proposition 6 (cf. Fig. 1) yields an arrangement with
f0 = n− 1 and v0 = 4n− 6.

The improved upper bound on v0 of Theorem 11
can in turn be used to improve the upper bound on
v≤k for complete, α4-free arrangements.

Theorem 14 For complete, α4-free and β-free ar-
rangements of n ≥ 2 pseudocircles and k > 0,

v≤k ≤ 18kn.

Proof. The proof is basically identical to the proof
of Theorem 2 in [5], only with the application of The-
orem 1 replaced by an application of Theorem 11 and
the constants adapted accordingly. �

The bounds of Theorems 11 and 14 can easily be
generalized to (not necessarily complete) β-free ar-
rangements that do not contain certain subarrange-
ments that are generalizations of α4-arrangements.

4 Conclusion

We conjecture that Theorems 11, 12, and 14 also
hold if we drop the condition that the arrangement
is β-free, i.e., for the improved bounds to hold it
is sufficient that a complete arrangement is α4-free.
However, the topology of these arrangements quickly
becomes rather involved so that we haven’t yet suc-
ceeded in proving this. As an α4-arrangement cannot
be realized with unit circles, a proof of our conjecture
would also imply that Theorems 11 and 14 hold in
particular for complete arrangements of unit circles.
As shown in Fig. 5, in this case the improved bound
on v0 would also be sharp.

Figure 5: Complete arrangement of six unit circles
with v0 = 4n − 6. Points that look like touching
points should be two intersection points between the
respective circles. Further circles can easily be added
to meet the bound for arbitrary n.
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Helly-Type Theorems for Approximate Covering

Julien Demouth∗ Olivier Devillers† Marc Glisse‡ Xavier Goaoc∗

Abstract

Let F ∪ {U} be a collection of convex sets in Rd such
that F covers U . We show that if the elements of F
and U have comparable size, in the sense that each
contains a ball of radius r and is contained in a ball
of radius R for some fixed r and R, then for any ε > 0
there exists Hε ⊂ F , whose size |Hε| is polynomial
in 1/ε and independent of |F|, that covers U except
for a volume of at most ε. The size of the smallest
such subset depends on the geometry of the elements
of F ; specifically, we prove that it is O( 1

ε ) when F
consists of axis-parallel unit squares in the plane and
Õ(ε

1−d
2 ) when F consists of unit balls in Rd (recall

that Õ(n) means O(n logβ n) for some constant β),
and that these bounds are, in the worst-case, tight up
to the logarithmic factor .

We extend these results to surface-to-surface vis-
ibility in 3 dimensions: if a collection F of disjoint
unit balls occludes visibility between two balls then a
subset of F of size Õ(ε−

7
2 ) blocks visibility along all

but a set of lines of measure ε.
Finally, for each of the above situations we give an

algorithm that takes F and U as input and outputs
in time O (|F| ∗ |Hε|) either a point in U not covered
by F or a subset Hε covering U up to a measure ε,
with |Hε| satisfying the previous bound.

1 Introduction

A family F of sets covers a set U if the union of the
elements of F contains U . The classical SetCover
problem asks, given a covering F of a finite set U , for
the smallest subset of F that covers U . In the geomet-
ric setting, both U and the elements of F are subsets
of a geometric space, for example points, hyperplanes
or balls in Rd. The original problem is NP-hard [8]
and so are many of its geometric analogues. There-
fore, approximation algorithms have been largely in-
vestigated, and in general, one looks for a subset of
F that completely covers U and whose size is near-
optimal; approximation factors better than log |U | are
provably difficult to achieve in the finite case [7, 9]
and constant factor approximations were obtained for

∗LORIA - INRIA Grand Est, Univ. Nancy 2, Projet VE-
GAS, France. {demouth,goaoc}@loria.fr.

†INRIA Sophia-Antipolis, France.
olivier.devillers@sophia.inria.fr.
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only a few geometric versions [4] (see also [3]). In this
paper, we relax the problem in a different direction:
given a covering F of a set U , we look for a small
subset of F that covers most of U . Specifically, in
the geometric setting we define an ε-covering of U as
a collection H of sets whose union covers U except
for a volume of at most ε. Although this is a natural
question, we are not aware of previous results in this
direction.

Results. Let F be a covering of a convex set U
by convex sets in Rd. Let Hε denote a smallest ε-
covering of U contained in F . Recall that Õ(n) means
O(n logβ n) for some β. Our main results are the fol-
lowing:

• If the elements in F have similar size, i.e. each
can be sandwiched between two spheres of fixed
radii, then |Hε| is bounded polynomially in 1/ε
and independently of |F| (Theorem 3).

• |Hε| is O
(

1
ε

)
when F consists of axis-parallel unit

squares in the plane (Theorem 4) and Õ(ε
1−d
2 )

if F consists of unit balls in Rd (Theorem 5) or
smooth convex sets of bounded curvature (Corol-
lary 7). These bounds are tight in the worst-case
(up to the logarithmic factor).

• These results extend to visibility occlusion among
disjoint unit balls in R3, where the notion of vol-
ume used relates to the form factor (Theorem 8).

• For covering by squares or balls and visibility in
3D, we give algorithms that take F and U as
input and output in O (|F| ∗ |Hε|)-time either a
point in U not covered by F or an ε-cover of U
contained in F ; |Hε| denotes our bound on the
size of the smallest ε-covering for that situation
(Section 6).

Our results imply that there do not exist arbitrarily
large minimal ε-cover of a convex set by similar-sized
convex sets, which is in sharp contrast with exact cov-
ering. The order

√
ε gap between our bounds in the

case of squares and smooth convex sets with bounded
curvature in the plane shows that the asymptotic be-
havior of |Hε| when ε → 0 depends not only on the
size but also on the shape of the covering objects.

Geometric problems such as guarding or visibility
can be rephrased as covering problems where, given a
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collection F and a set U one has to decide if F covers
U . Such tests can be expensive, e.g. no algorithm
with complexity o(n4) is known for reporting visible
pairs among n triangles in R3 [10, Problem 7.7.1(f)],
so approximation algorithms are often used in prac-
tice. Our algorithms are interesting in that they are
simple, have complexity linear in |F| and allow to
control the error a priori.

Helly-type theorems. Helly’s theorem asserts that n
convex sets in Rd have non-empty intersection if any
d + 1 of them have non-empty intersection. Results
of similar flavor – that some property on a set F can
be checked by examining its subsets of bounded size –
are known as Helly-type theorems and are the object
of active research [5, 6, 14]. A collection F covers U

U

if and only if the intersection of the complement of its
elements and U is empty; thus, if F consists of com-
plement of convex sets in Rd and covers a convex set
U , then d + 1 elements in F suffice to cover U . Cases
where such statements are known are, however, rather
exceptional as for most classes of objects there exists
arbitrarily large minimal covering families (the figure
above illustrates the principle of such a construction
for unit disks). Our Theorems 3, 4, 5 and 8 show that
the situation is different when approximate covering
is considered.

Due to the lack of space this article does not contain
all the proofs. They are available in the full version
[11].

2 The general case

We start with a simple observation on approximation
of a convex set by a grid.

Lemma 1 Let O ⊂ Rd be a convex set of diameter
at most R and Γ a regular grid of step `. The cells
of Γ contained in O cover O except for a volume of
O (`).

Note that the constant hidden in the O() notation
depends on R, which is fixed for a given collection of
sets.

A collection F of sets has scale (r, R) if each element
in F contains a ball of radius r and is contained in

one of radius R. We define κ = r/(16R
√

d) and prove
the following technical lemma:

Lemma 2 If U is a cube of side length ` in Rd and
O is a convex set of scale (r, R), such that ` ≤ 2r,
containing the center of U , then O ∩ U contains at
least one cell of any regular grid of step at most κ`.

We can now state the main result of this section:

Theorem 3 For any d, r and R, there exists a poly-
nomial function H(ε) = Hd,r,R(ε) such that the fol-
lowing holds. Any covering F of a convex set U ⊂ Rd

of diameter at most R by a collection of convex sets
of scale (r, R) contains an ε-covering of U of size at
most H(ε).

Proof. Let R0 be an ε
2 -covering of U by O(ε−d) cells

of a regular grid; Lemma 1 guarantees its existence.
We then proceed recursively. At step i, we have a
subset Ci of F and a set Ri of congruent cubes, each
of side length `i = κi`0, that together form an ε/2-
cover of U . For each cube Y ∈ Ri, we select an object
in F that covers its center and add it to Ci+1; we then
subdivide Y using a grid of step κ`i and collect the
cubes not covered by Ci+1 into Ri+1. We initialize
the recursion with R0 and C0 = ∅. Lemma 2 implies
that in the subdivision of any cube, at least one of the
smaller cubes is covered, and thus

|Ri+1| ≤ |Ri|(κ−d − 1) and |Ci+1| ≤ |Ci|+ |Ri|.

After some computations we get that |Ci| =
O

(
ε−O(d2κ−d log 1

κ )
)
, which concludes the proof. �

This result is optimal in the sense that it becomes
false if one of the scale or convexity conditions is
dropped. While a more careful analysis might im-
prove the bound obtained, and in particular the de-
pendency of the exponent of 1/ε on d, the next sec-
tions show that pinning down the precise asymptotic
behavior of H(ε) requires taking into account the
shape of the objects in F .

3 Covering by squares

For axis parallel boxes in Rd, the analysis of the pre-
vious section holds for κ = 1/2; if, moreover, U
is a cube, then |R0| is 1 and this bound becomes
O

(
ε−O(d2d)

)
. We improve this bound in the planar

case:

Theorem 4 Let U ⊂ R2 be an axis-parallel square
of side r covered by a finite collection F of larger
axis-aligned squares. For ε > 0 sufficiently small, the
smallest ε-covering of U contained in F has size O

(
1
ε

)
;

this bound is tight in the worst-case.
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4 Covering by balls

When the objects of F are balls in Rd, we can prove
the following, almost tight, bound:

Theorem 5 Let F be a covering of a convex U ⊂ Rd

of diameter at most R by finitely many balls, each
of radius at least r. For any ε > 0, the smallest

ε-covering of U contained in F has size Õ
(
ε

1−d
2

)
.

This bound is tight up to the logarithmic factor in
the worst-case.

The proof of this theorem relies on a technical
lemma, presented here in the planar case (d = 2).
The general case is similar.

For two disks X and Y , we denote by XY the
half-plane containing X and bounded by the tangent
to X at the projection1 of the center of Y on the
boundary of X. We denote by FY the collection{
XY | X ∈ F

}
.

Lemma 6 Let Y be a disk of radius r < 1 and F a
covering of a unit disk U by larger disks. Then, U ∩Y
can be covered by a triple C(Y ) ⊂ F and a collection
R(Y ), of at most 3

r disks of radius 4r2.

Proof. Since the collection FY covers U , it also cov-
ers U ∩ Y and, by Helly’s theorem, three of these
half-planes must cover U ∩ Y . We denote by C(Y )
the corresponding disks in F . For any disk X ∈ F ,
the area

(
XY ∩ Y

)
\ (X ∩ Y ) is inscribed in a rectan-

gle (figure below, on the left) with sides respectively
smaller than 2r and 4r2. This rectangle can thus be

R ≥ 1

r

≤ 2r

≤ 2r

≤ 4r2

X

XY

Y

≤ 4r2

covered by overlapping disks of radius 4r2 centered
on its larger axis (figure above, on the right). By
choosing the disks so that the height covered at the
intersection between two disks is, at least, 4r2, we
need only 1

r disks. �

4.1 Smooth convex sets

The d-dimensional case of Lemma 6 requires that (i)
given a ball Y , the set U ∩ Y be convex and that (ii)
the difference between XY ∩Y and X ∩Y can be cov-
ered by O( 1

r ) balls of radius O(r2). If an object is

1If the two disks have the same center, we can choose any
tangent to X.

convex and its boundary has a curvature of bounded
norm, then for any point M on this boundary the ob-
ject contains a ball (of radius bounded away from 0)
and is contained in a half-space delimited by a hy-
perplane tangent to both the object and the ball in
M ; this means that covering the region between the
ball and the hyperplane is enough to cover the region
between the object and the hyperplane. Theorem 5
thus extends to:

Corollary 7 Let U ⊂ Rd be a convex set of diameter
at most R and F a covering of U by smooth convex
sets whose curvatures have a norm at most γ. For any
ε > 0, the smallest subset of F that is an ε-covering

of U has size Õ
(
ε

1−d
2

)
.

5 Visibility among 3D unit balls

Two among n objects are visible if they support the
endpoint of a segment that intersects no other ob-
ject, and such a segment is called a visibility segment.
Visibility between objects can be recast as a covering
problem by observing that two objects are mutually
visible if and only if the set of segments they support
is not covered by the set of segments supported by
these two objects and intersecting some other object.
Yet, it is not clear whether Theorem 3 applies in this
setting. In this section we show that Theorem 5 yields
a similar result for visibility among balls.

A natural “volume” to quantify approximate vis-
ibility between two objects – similarly to the ε-
coverings discussed so far – is given by the measure
of the set of lines supporting visibility segments be-
tween these two objects. In fact, this corresponds, up
to normalization, to the form factor used in computer
graphics (when constant basis functions are used) to
quantify visibility for simulating illumination. We call
this measure the amount of visibility between the two
objects. Building on Theorem 5, we prove:

Theorem 8 Let F ∪ {A,B} be a collection of dis-
joint unit balls in R3 such that A and B are mutually
invisible. For any ε > 0, there exists a subset Gε ⊂ F ,

of size Õ
(
ε−

7
2

)
, such that the amount of visibility

between A and B in Gε ∪ {A,B} is O(ε).

6 Algorithms

The proofs of Theorems 4, 5 and 8 are constructive
provided that C(Y ) and R(Y ) can be effectively com-
puted. As in previous sections, we consider here d as
a constant.

Covering by squares. In the case of covering by
squares, the sets C(Y ) and R(Y ) can be computed
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trivially in O (|F|) time. We thus have the following
consequence:

Corollary 9 Given a covering F of a unit square U

by unit squares, we can compute in O
(
|F|
ε

)
-time a

point in U not covered by F or an ε-cover of U of size
O

(
1
ε

)
contained in F .

Covering by balls. In the case of covering by balls,
the main difficulty is to compute C(Y ), R(Y ) follow-
ing immediately. Helly’s theorem yields that given a
collection FY of n halfspaces and a ball Y ⊂ Rd, ei-
ther there are d + 1 halfspaces in FY that cover Y or
there is a point in Y not covered by any half-space in
FY . In the case of covering of a ball Y by balls F ,
finding C(Y ) reduces in O (|F|) time into solving the
associated computational problem: finding such d+1
half-spaces or such a point.

Recall that LP-type problems are a special class of
optimization problems [13]. Using a technique intro-
duced by Amenta [1, 2], we can formulate the above
problem as a LP-type problem. As a consequence, we
obtain:

Corollary 10 Let F be a covering of a unit ball
U ⊂ Rd by unit balls. We can compute a point in U

not covered by F or an ε-cover of U of size Õ
(
ε

1−d
2

)
contained in F in time Õ

(
|F|ε 1−d

2

)
.

Visibility among unit balls. Corollary 10 makes the
proof of Theorem 8 constructive and we get:

Corollary 11 Let F be a collection of disjoint unit
balls in R3 and let A and B be two unit balls. We
can compute in Õ

(
|F|ε− 7

2

)
-time a visibility segment

between A and B or a subset Gε ⊂ F , of size Õ
(
ε−

7
2

)
,

such that the amount of visibility between A and B
in Gε ∪ {A,B} is O(ε).

7 Conclusion

We showed that the size of the smallest ε-covering
contained in a covering F of a set U can be bounded
polynomially in 1/ε and independently of |F| when
all sets are convex and the size of the sets in F are
comparable with that of U . The order

√
ε gap between

our bounds for smooth sets and squares indicate that
the asymptotic behavior of the size of the smallest
ε-covering depends on the shape of the objects. Do
other simple shapes lead to different bounds?

These bounds yield simple and efficient algorithms
for, given a family F and a set U , certifying either that
F does not cover U or that F misses at most a volume
ε of U . We gave an application to approximate 3D
visibility, with an algorithm to decide in linear time if

two balls are visible or if their form factor is at most
ε. A natural continuation would be to compare these
results to the provable bounds on the error provided
by methods for approximating visibility queries used
in application areas, e.g. sampling and point-to-point
visibility in computer graphics.
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Dynamic Free-Space Detection for Packing Algorithms

Tobias Baumann∗ Magnus Jans† Elmar Schömer∗ Christian Schweikert∗ Nicola Wolpert†

Abstract

We present easy-to-implement incremental algorithms
for computing the union of axis-aligned boxes. These
algorithms can effectively be used for the implementa-
tion of packing algorithms which try to fit differently
sized axis aligned boxes into a container modelled as
a fixed point cloud.

1 Introduction

Many industries have to find arrangements of objects
within a restricted amount of space. In car manufac-
turing, the luggage capacity of a trunk has to be deter-
mined early in the production process. The goal is to
cover as much volume as possible within the given ge-
ometry of the trunk, using boxes of given sizes. To ob-
tain good starting solutions for further optimization,
e.g. using Simulated Annealing, it is useful to restrict
the orientations of the boxes to be axes aligned.

In our application, the packing problem consists of
an irregularly shaped container (the luggage compart-
ment of a car). The geometry of the container is given
by its CAD-data. As the geometry usually is quite
difficult, we discretize the problem by approximating
the shape of the container by a point cloud P. We
focus on the US standard SAE J1100 where boxes of
seven different sizes have to be packed [4].

In this work we provide solutions for the following
basic operations needed by a trunk packing algorithm:
Check whether a given box would fit into the remain-
ing free space created by the container geometry and
boxes already inserted, insert boxes into the trunk,
delete boxes from the trunk, and compute the volume
of the free space. Previous work already described
a trunk packing algorithm on a uniform grid with a
large cell size [1]. The big cell size was inevitable
because the algorithm relied on the complete repre-
sentation of a conflict graph. Due to changes in the
packing algorithm it is now possible to work with a
finer grid. This necessitates new data structures and
algorithms for the basic operations described above.
In our application a grid size of 1/10 mm is sufficient.
So we assume the points to have integer coordinates.

We have developed and implemented two ap-
proaches providing data structures and algorithms for

∗Institut für Informatik, Johannes Gutenberg-Universität
Mainz

†Institut für Informatik, Hochschule für Technik Stuttgart

performing these operations. They both work in con-
figuration space as proposed in [2]. The suitcase S to
be inserted next is represented by its reference point
RS . Accordingly, the container P and also each suit-
case Sj , 1 ≤ j ≤ m, already inserted into the trunk is
enlarged by computing the corresponding Minkowski
difference P 	S and Sj 	S, respectively. For testing
whether the new box still fits into the trunk, we have
to query whether RS lies outside each Minkowski dif-
ference and lies inside the remaining freespace. In a
preprocessing step we compute the Minkowski differ-
ence P 	 S for of all possible boxes S to be inserted
and store them in a data structure.

We have developed two different strategies to rep-
resent freespace with the following requirements in
mind:

• Efficient construction of the data structure in the
preprocessing step,

• fast access to the freespaces within the container,

• volume computation for branch-and-bound ap-
plication,

• and efficient addition and deletion of boxes.

The first approach always maintains the boundary
of the freespace as a union of rectangles during in-
sertions and deletions. The second one is volumetric.
The freespace is stored as the union of disjoint boxes.
Our runtime experiments suggest that the first ap-
proach behaves better in practice.

2 The first approach - Union of rectangles

For every possible suitcase S the Minkowski differ-
ence P 	 S provides the possible placements of S
in the configuration space. With n points in P this
gives n axis aligned boxes B1, . . . , Bn in 3-space. We
want to compute the union Un =

⋃n
i=1 Bi and repre-

sent its boundary ∂Un by a set of oriented rectangles
Rn. The problem of computing volume(Un) ∈ R is
known as Klee’s measure problem [3]. Yap et al. [5]
developed an efficient algorithm for the d-dimenisonal
problem running in O(nd/2 log n) time. In contrast to
their solution we do not want to compute volume(Un)
alone but also an explicit representation of Un. If
we are able to find a set of rectangles Rn character-
izing the boundary ∂U , then it is easy to compute
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volume(Un) in time O(|Rn|) (by summing up the vol-
umes of all signed rectangular parallelepipeds induced
by the rectangles parallel to the xy-plane).

2.1 An incremental algorithm

Suppose we have computed Rn−1 as the boundary
∂Un−1 for the first n− 1 boxes. We now consider the
last box Bn and want to update Rn−1 to Rn. We
distinguish two cases:

1. Bn ∩ ∂Un−1 = ∅: In this case Bn either lies com-
pletely in the interior of Un−1 and thus Rn = Rn−1,
or Bn lies completely in the exterior of Un−1 and thus
Rn = Rn−1 ∪ ∂Bn.

2. Bn ∩ ∂Un−1 6= ∅: In this case all rectangles
R ∈ Rn−1 which lie completely in the interior (or
on the boundary) of Bn can be deleted. We denote
this set of rectangles D = {R ∈ Rn−1|R ⊆ Bn}.
Let S = {R ∈ Rn−1|R ∩ Bn 6= ∅} be the set of all
those rectangles in Rn−1, which partially lie within
Bn. Each rectangle R ∈ S has to be trimmed and
decomposed into (up to four) new rectangles. These
new rectangles represent R \ Bn. These new rectan-
gles resulting from the trimming process will be de-
noted T . Since parts of the rectangular boundary
facets of the box Bn also contribute to the boundary
∂Un, we examine the six arrangements of line seg-
ments which arise on the six facets of Bn when in-
tersecting them with the rectangles from Rn−1. Each
rectangular facet Fi is decomposed in regions, which
lie inside Un−1 and regions outside of Un−1 . A verti-
cal decomposition of the regions outside of Un−1 yields
a set Ai of new rectangles, which have to be added to
Rn−1 in order to get Rn.

Rn = Rn−1 \ (D ∪ S) ∪ T ∪
6⋃

i=1

Ai

2.2 Algorithmic details

After this overview of our incremental algorithm for
computing the union Un of the n axis aligned boxes
we want to discuss some details which are important
for an efficient and robust implementation of this al-
gorithm. The assumption of integer coordinates for
all boxes avoids robustness problems due to floating
point arithmetic. All steps of the algorithm above
can be performed with integer arithmetic, such that
all decisions can be safely made. The next question
we want to address is that of a suitable data structure
for the set of rectangles R. This data structure must
support the following operations: insertion and dele-
tion of rectangles, orthogonal range queries for finding
those rectangles R which intersect a new box Bn. We
have evaluated two different structures: a kd-tree and

a uniform grid for space-partitioning. In our applica-
tion context, the uniform grid (with an adequate grid
length) showed a better performance. Profiling of the
code revealed that 70 percent of the overall runtime is
spent for the range queries using the kd-tree, and 50
percent if the uniform grid is used. The data structure
for the rectangles has to support a further operation:
Does a given rectangle R lie completely in the inte-
rior of the union U calculated so far? This can also
be solved with an orthogonal range query by shooting
a ray (starting on R) in direction of an axis to infinity
and analyzing the orientation of the rectangle from R
which is first hit.

2.3 Running time

Although the theoretical running time of the incre-
mental algorithm is quadratic in n, its experimental
performance is far better at least in our application of
computing the Minkowski difference between a point
set and a box. The running time strongly depends
on the relation between the density of the point cloud
and the size of the boxes.

Figure 1: Runtimes of the incremental algorithm for
n boxes with varying density

Figure 1 shows the runtimes on randomly generated
points on a sphere with differing density. The black
line indicates the runtimes for a dense point cloud in
relation to the box size. The dark grey line shows
a less dense point cloud. For comparison, the lines
indicating n log n and n3/2 are shown as light grey
lines. The runtimes for these benchmark data sets
are in general higher than for real trunk geometries.
The complete preprocessing for a real trunk (≈ 20000
points) takes around 45 seconds for 7 different suit-
cases in 6 possible orientations. This improved run-
time was possible due to the following observation:
When computing the free space for stepwise increas-
ing suitcases, we started with the smallest box S1 and
checked which container points P ′ ⊆ P actually con-
tributed to the boundary of the freespace for S1. For
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the freespace of a larger suitcase containing S1 only
the relevant points P ′ need to be considered.

3 The volumetric approach

3.1 The idea

In our second approach, the setting is again that the
trunk is represented by a point cloud and the suitcases
are axis-aligned 3d-boxes. Again all points lie on an
integer grid and all side-lengths of a box are integers.
For a new suitcase we want to check whether it still
fits into the trunk and, if it does so, we want to insert
it.

We now make a volumetric approach. The suit-
case to be inserted next, we will call it insert-box in
the following, is represented by its reference-point RS .
As in the previous approach, building Minkowski dif-
ferences, each point of the point-cloud representing
the trunk and also each box already inserted into the
trunk leads to a set of boxes B1, . . . , Bn. We name
B1, . . . , Bn offset-boxes. The offset-boxes are stored in
an octree. For testing whether the insert-box still fits
into the trunk, we have to query the octree whether
RS lies outside each offset-box Bi. In other words,
we have to test whether RS lies inside the remaining
freespace.

The shape of the offset-boxes Bi stored in the oc-
tree strongly depends on the shape of the insert-box.
In the SAE standard we have seven different types of
suitcases. Each suitcase has six different axis-aligned
orientations. This leads to 7 ·6 = 42 different kinds of
insert-boxes. For each kind we build an octree stor-
ing the respective offset-boxes. We test whether a
given insert-box still fits into the trunk by checking
its octree. For packing the box into the trunk we
have to update each octree by inserting the respec-
tive Minkowski difference into each tree.

3.2 Preprocessing step

In a preprocessing step we build each of the 42 leaf-
oriented octrees storing the offset-boxes of the point
cloud representing the trunk. As usual, a node of an
octree represents an axis-aligned part of the configura-
tion space. We will call this part a node-box. In a leaf
we store all offset-boxes Bi which have a non-empty
intersection with its node-box.

We first determine an axis aligned bounding box
(AABB) containing all B1, . . . , Bn. For robustness
reasons we extend the AABB such that the length of
each edge equals the same power of two. The root-
node of the octree gets the AABB as its node-box. We
keep on making every node an inner-node by adding
its eight child-nodes until for a node one of the fol-
lowing conditions hold:

1) The edge length of the node-box is equal to one.

2) The node-box contains no freespace.

3) The number of offset-boxes intersecting the node-
box is smaller than a constant k and the freespace
in the node-box consists of only one connected
component.

In these cases the node becomes a leaf-node. In
the first case a further splitting is useless because we
have already reached grid-size. Also in the second
case a splitting is superfluous because no insert-box
with a reference-point lying in the node-box can be
inserted into the trunk. The first condition in the last
case is for controlling the depth of the octree. The
smaller the k the deeper the tree. The second con-
dition, namely that the freespace inside a node-box
has to be connected, is needed for the preprocessing
step we will explain in the following. But first we
describe how to check the criterion: We consider all
offset-boxes intersecting the node-box. We partition
the node-box in disjoint boxes such that each box is ei-
ther completely covered by offset-boxes or completely
belongs to the freespace. We call this step comput-
ing freespace-boxes and it is realized by cutting out
the offset-boxes one by one. Now we start with one
freespace-box and do a depth-first search on all adja-
cent freespace-boxes. If all freespace-boxes are visited,
we only have one connected freespace component in
the node-box, consider fig. 2.

offset−boxfreespace

Figure 2: In the left figure the freespace is connected,
in the right one it is not.

3.3 Forbidden freespace

Why do we need the last criterion for the preprocess-
ing step? In the preprocessing step we first compute
the AABB containing the trunk and insert each box
from the set P 	 S into the octree. Now we have
the following problem: There are points inside the
AABB lying inside the trunk and some lying outside
the trunk. More precisely, we have points inside the
AABB not contained in any offset-box B ∈ P	S (i.e.
points in the freespace of the AABB) which are inside
the trunk and some which are outside. In order to be
able to use the octree for our queries and insertions of
suitcases later on we have to mark the freespace out-
side the trunk as forbidden freespace. Here we assume
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that the freespace inside the trunk consists of one con-
nected component and has no connection with points
outside the trunk which makes sense for real trunks.

In order to find out and mark the forbidden
freespace in the octree we start with a leaf of the oc-
tree which surely contains freespace inside the trunk
and mark it. We omit the details on how to find this
leaf. Condition 3) now ensures that if a leaf contains
freespace inside the trunk, its whole freespace is in-
side. Using a depth-first search we consider all neigh-
boring leafs. Only in case the new leaf has freespace
connected with the freespace of the old leaf-node, the
new leaf is also marked and processed further on. At
the end all leafs which are not marked only contain
forbidden freespace and are not considered any more.

The preprocessing step is finished and we describe
how to perform the different queries using the octrees.

3.4 Computing the volume of the freespace

As mentioned before, an interesting question is to de-
termine how much freespace we still have. In general,
the freespace is different for every octree. For com-
puting the volume of the freespace for one octree we
consider all its leafs. For each leaf we compute its
freespace-boxes and sum up over all volumes of the
freespace-boxes:

volume (F ) =
∑

leaves l
in octree

∑
freespace-

boxes b of l

volume (b).

3.5 Checking a reference point

To check whether an insert-box can be inserted into
the trunk we consider its octree. We make a range
query of its reference point in order to determine the
leaf of the octree containing the reference point. If
the leaf is marked as containing no freespace we are
done, the insert-box is not admissible. Otherwise we
test the reference point against all offset-boxes stored
in the leaf which are less than k. If it is contained in
none of the boxes the insert-box is admissible.

3.6 Inserting a box

For inserting a box into the data structure we have
to insert its respective Minkowski difference into each
octree. Therefore we first search in each octree the
leafs intersecting the new offset-box. For each leaf we
store the new offset-box in its list of intersecting offset-
boxes. We have to check whether the leaf still contains
freespace (this is done by computing freespace-boxes)
and if not we have to mark it. It also can happen
that now the number of offset-boxes stored exceeds
the number k − 1. If additionally the node-box is
bigger than unit-size, the leaf becomes an inner node
and the eight child-nodes have to be computed.

3.7 Removing a box

For removing a box we search in each octree all leaves
containing the box. The box is deleted from the list
of intersecting offset-boxes. If the leaf was marked
containing no freespace, we have to check whether the
removal causes freespace in the leaf. If the deletion
has the effect that the number of different offset-boxes
stored in the leafs of an inner node becomes less than
k, the leafs are deleted and the inner node becomes a
leaf.

4 Summary

We have presented two different algorithms to cal-
culate the union of axis-aligned boxes and to deter-
mine available free space between these boxes. Both
approaches are implemented. The first one shows a
significantly better running time behaviour. This is
why this approach is integrated into an actual pack-
ing algorithm. In the second algorithm the most
time-consuming procedure is the computation of the
freespace boxes which is called several times in every
insertion and deletion step. One idea for further im-
provement is to relax condition 2) in order to reduce
the number of times the procedure is called.

References

[1] Ernst Althaus, Tobias Baumann, Elmar Schömer,
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On Computing the Vertex Centroid of a Polytope∗

Hans Raj Tiwary†

Abstract

Let P be an H-polytope in Rd with vertex set V . The
vertex centroid is defined as the average of the ver-
tices. We prove that computing the vertex centroid
of an H-polytope is #P-hard. Moreover, we show
that checking whether the vertex centroid lies in a
given halfspace is also #P-hard for H-polytopes. We
also consider the problem of approximating the ver-
tex centroid by finding a point within an ε distance
from it and prove it to be #P-easy by showing that
given an oracle for counting the number of vertices
of an H-polytope, one can approximate the vertex
centroid in polynomial time. Finally, we show that
any algorithm approximating the vertex centroid to
any “sufficiently” non-trivial (for example constant)
distance, can be used to construct a fully polynomial
approximation scheme for approximating the centroid
and also an output-sensitive polynomial algorithm for
the Vertex Enumeration problem.

1 Introduction

Let P be an H-polytope in Rd with vertex set V . Var-
ious notions try to capture the essence of a “center” of
a polytope. Perhaps the most popular notion is that
of the center of gravity of P. Recently Rademacher
proved that computing the center of gravity of a poly-
tope is #P-hard [6]. The proof essentially rests on the
fact that the center of gravity captures the volume of
a polytope perfectly and that computing the volume
of a polytope is #P-hard [3]. Also, polynomial algo-
rithms exist that approximate the volume of a poly-
tope within any arbitrary factor [4]. It is also easy
to see that approximating the center of gravity can
be done by simply sampling random points from the
polytope, the number of samples depending polyno-
mially on the desired approximation (See Algorithm
5.8 of [4]).

In this paper we study a variant of the notion of
“center” defined as the centroid (average) of the ver-
tices of P . Despite being quite a natural property of
polytopes, this variant seems to have received very
little attention both from theoretical and computa-
tional perspectives. Throughout this paper we will re-
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by Graduiertenkolleg fellowship for PhD studies provided by
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†FR Informatik, Universität des Saarlandes, D-66123,
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fer to the vertex centroid just as centroid. The reader
should note that in popular literature the word cen-
troid refers more commonly to the center of gravity.
We nevertheless use the same terminology for sim-
plicity of language. Our motivation for studying the
centroid stems from the fact that the centroid encodes
the number of vertices of a polytope. As we will see,
this also makes computing the centroid hard.

The parallels between centroid and the center of
gravity of a polytope mimic the parallels between the
volume and the number of vertices of a polytope.
Computing the volume and the number of vertices are
both #P-complete ([2, 3, 5]) and so are the problems
of computing the corresponding vertices ([6], Theo-
rem 1). The volume can be approximated quite well
but approximating the number of vertices of a poly-
tope is an interesting open problem. Similarly, the
center of gravity can be approximated quite well but
(as we will see in this paper) obtaining a polynomial
algorithm for approximating the centroid would be a
very interesting achievement.

The problem of enumerating vertices of an H-
polytope has been studied for a long time. However,
in spite of years of research it is neither known to be
hard nor is there an output sensitive polynomial al-
gorithm for it. A problem that is polynomially equiv-
alent to the Vertex Enumeration problem is to decide
if a given list of vertices of an H-polytope is complete
[1]. In this paper we show that any algorithm that
approximates the centroid of an arbitrary polytope to
any “sufficiently” non-trivial distance can be used to
obtain and output sensitive polynomial algorithm for
the Vertex Enumeration problem.

The main results of this paper are the following:

• Computing the centroid of an H-polytope is #P-
hard.

• Deciding whether the centroid of an H-polytope
lies in a halfspace remains #P-hard.

• Approximating the centroid of an H-polytope is
#P-easy.

• Any algorithm approximating the centroid within
a distance d

1
2−δ can be used to obtain a fully

polynomial approximation scheme for the cen-
troid approximation problem and also an out-
put sensitive polynomial algorithm for the Vertex
Enumeration problem.
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2 Results

The most natural computational question regarding
the centroid of a polytope is whether we can com-
pute the centroid efficiently. The problem is trivial
if the input polytope is presented by its vertices. So
we will assume that the polytope is presented by its
facets. Perhaps not surprisingly, computing the cen-
troid of an H-polytope turns out be #P-hard. We
prove this by showing that computing the centroid of
anH-polytope amounts to counting the vertices of the
same polytope, a problem known to be #P-hard.

Theorem 1 Given an H-polytope P ⊂ Rd, it is #P-
hard to compute its centroid c(P).

Proof. We embed P in Rd+1 by putting a copy of P
in the hyperplane xd+1 = 1 and making a pyramid
with the base P and apex at origin. Call this new
polytope Q. Treating the direction of the positive
xd+1-axis as up, it is easy to see that the centroid
of the new polytope lies at a height 1 − 1

n+1 iff the
number of vertices of P is n. Thus any algorithm
for computing the centroid can be run on Q and the
number of vertices of P can be read off the (d + 1)-st
coordinate. �

Suppose, instead, that one does not want to com-
pute the centroid exactly but is just interested in
knowing whether the centroid lies to the left or to
the right of a given arbitrary hyperplane. This prob-
lem turns out to be hard too, and it is not difficult to
see why.

Theorem 2 Given an H-polytope P ⊂ Rd and a hy-
perplane h = {a · x = b}, it is #P-hard to decide
whether a · c(P) ≤ b.

Proof. Consider the embedding and the direction
pointing upwards as used in the proof of Theorem
1. Given an oracle answering sidedness queries for
the centroid and any arbitrary hyperplane, one can
perform a binary search on the height of the centroid
and locate the exact height. The number of queries
needed is only logarithmic in the number of vertices
of P. �

As stated before, even though computing the grav-
itational centroid of a polytope exactly is #P-hard,
it can be approximated to any precision by random
sampling. Now we consider the problem of similarly
approximating the vertex centroid of an H-polytope.
Let dist(x, y) denote the Euclidean distance between
two points x, y ∈ Rd. We are interested in the follow-
ing problem:
Input: H-polytope P ⊂ Rd and a real number ε > 0.
Output: p ∈ Rd such that dist(c(P ), p) ≤ ε.

We would like an algorithm for this problem that
runs in time polynomial in the number of facets of P ,
the dimension d and 1

ε . Clearly, such an algorithm
would be very useful because if such an algorithm is
found then it can be used to test whether a polytope
described by m facets has more than n vertices, in
time polynomial in m,n and the dimension d of the
polytope by setting ε < 1

2n(n+1) . This in turn would
yield an algorithm that computes the number of ver-
tices n of a d-dimensional polytope with m facets, in
time polynomial in m,n and d. As stated before, a
problem that is polynomially equivalent to the Vertex
Enumeration problem is to decide if a given list of ver-
tices of an H-polytope is complete [1]. Clearly then,
a polynomial approximation scheme for the centroid
problem would yield an output-sensitive polynomial
algorithm for the Vertex Enumeration problem.

Also, the problem of approximating the centroid is
not so interesting if we allow polytopes that contain
an arbitrarily large ball, since this would allow one
to use an algorithm for approximating the centroid
with any guarantee to obtain another algorithm with
an arbitrary guarantee by simply scaling the input
polytope appropriately, running the given algorithm
and scale back. So we will assume that the polytope
is contained in the unit hypercube in Rd.

Now we prove that the problem of approximating
the centroid is #P-easy. We do this by showing that
given an algorithm that computes the number of ver-
tices of an arbitrary polytope (a #P-complete prob-
lem), one can compute the centroid to any desired
precision by making a polynomial (in 1

ε , the number
of facets and the dimension of the polytope) number
of calls to this oracle. Notice that in the approxima-
tion problem at hand, we are required to find a point
within a d-ball centered at the centroid of the poly-
tope and radius ε. We first modify the problem a bit
by requiring to report a point that lies inside a hyper-
cube, of side length 2ε, centered at the centroid of the
polytope. (The hypercube has a clearly defined cen-
ter of symmetry, namely its own vertex centroid.) To
see why this does not essentially change the problem,
note that the unit hypercube fits completely inside a
d-ball with the same center and radius

√
d

2 . We will
call any point that is a valid output to this approx-
imation problem, an ε-approximation of the centroid
c(P ).

Given anH-polytope P and a hyperplane {a·x = b}
that intersects P in the relative interior and does not
contain any vertex of P , define P1 and P2 as follows:

P1 = P ∩ {x|a · x ≤ b}
P2 = P ∩ {x|a · x ≥ b}

Let V1 be the common vertices of P1 and P , and
V2 be common vertices of P2 and P . The following
lemma gives a way to obtain the ε-approximation of
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the centroid of P from the ε-approximations of the
centroids of V1 and V2.

Lemma 3 Given P, V1, V2 defined as above, let n1

and n2 be the number of vertices in V1 and V2 respec-
tively. If c1 and c2 are ε-approximations of the cen-
troids of V1 and V2 respectively, then c = n1c1+n2c2

n1+n2
is

an ε-approximation of the centroid c∗ of P.

Proof. Let cij be the j-th coordinate of ci for i ∈
{1, 2}. Also, let c∗i be the actual centroid of Vi with
c∗ij denoting the j-th coordinate of c∗i . Since ci ap-
proximates c∗i within a hypercube of side-length 2ε,
for each j ∈ {1, · · · , d} we have

c∗ij − ε ≤ cij ≤ c∗ij + ε

Also, since c∗ is the centroid of P ,

c∗ =
n1c

∗
1 + n2c

∗
2

n1 + n2

Hence, for each coordinate c∗j of c∗ we have

n1(c1j−ε)+n2(c2j−ε)

n1+n2
≤ c∗j ≤

n1(c1j + ε) + n2(c2j + ε)

n1 + n2

⇒ n1c1j+n2c2j

n1+n2
− ε ≤ c∗j ≤

n1c1j + n2c2j

n1 + n2
+ ε

⇒ cj − ε ≤ c∗j ≤ cj + ε

⇒ c∗j − ε ≤ cj ≤ c∗j + ε

�

Now to obtain an approximation of the centroid, we
first slice the input polytope P from left to right into
1
ε slices each of thickness at most ε. Using standard
perturbation techniques we can ensure that any vertex
of the input polytope does not lie on the left or right
boundary of any slice. For each slice any point in the
interior gives us an ε-approximation of the vertices of
P that are contained in that slice. We can compute
the number of vertices of P lying in this slice by us-
ing the oracle for vertex computation and then using
the previous Lemma we can obtain the centroid of P .
Thus we have the following theorem:

Theorem 4 Given a polytope P contained in the
unit hypercube, the ε-approximation of the centroid
of P can be computed by making a polynomial num-
ber of calls to an oracle for computing the number of
vertices of a polytope.

Now we present a bootstrapping theorem indicat-
ing that any “sufficiently” non-trivial approximation
of the centroid can be used to obtain arbitrary ap-
proximations. For the notion of approximation let us
revert back to the Euclidean distance function. Thus,
any point x approximating the centroid c within a pa-
rameter ε satisfies dist(x, c) ≤ ε. As before we assume

that the polytope P is contained in the unit hyper-
cube. Since the polytope is thus contained in a hyper-
ball with origin as its center and radius at most

√
d

2 ,
any point inside P approximates the centroid within a
factor

√
d. Before we make precise our notion of “suf-

ficiently” non-trivial and present the bootstrapping
theorem, some preliminaries are in order.

Lemma 5 Suppose (x, y), (u, u) ∈ R2d, where
x, y, u ∈ Rd, then

||u− x + y

2
|| ≤ ||(u, u)− (x, y)||√

2
,

where || · || is the Euclidean norm.

The proof of the above lemma is easy and elemen-
tary, and hence we omit it here. Next, consider the
product of two polytopes. Given d-dimensional poly-
topes P,Q the product P × Q is defined as the set
{(x, y)|x ∈ P, y ∈ Q}. It is easy to see that the num-
ber of vertices of P ×Q is the product of the number
of vertices of P and that of Q, and the number of
facets of P ×Q is the sum of the number of facets of
P and that of Q. Moreover, the dimension of P × Q
is the sum of the dimensions of P and that of Q.

Observation 1 If c is the centroid of a polytope P
then (c, c) is the centroid of P × P .

Suppose we are given an algorithm for finding ε-
approximation of an arbitrary polytope contained in
the unit hypercube. For example, for the simple algo-
rithm that returns any point inside the polytope, the
approximation guarantee is

√
d

2 . We consider similar
algorithms whose approximation guarantee is a func-
tion of the ambient dimension of the polytope. Now
suppose that for the given algorithm the approxima-
tion guarantee is f(d). For some parameter k consider

the k-fold product of P with itself

k times︷ ︸︸ ︷
P × · · · × P , de-

noted by P k. Using the given algorithm one can find
the f(2kd) approximation of P k and using Lemma 5
one can then find the f(2kd)√

2
k -approximation of P . This

gives us the following bootstrapping theorem:

Theorem 6 Suppose we are given an algorithm that

computes an
√

d
g(d) -approximation for any polytope

contained in the unit hypercube in polynomial time,
where g(.) is an unbounded monotonically increasing
function. Then, one can compute an ε-approximation
in time polynomial in the size of the polytope and
g−1( 1

ε ).

In particular, if we have an algorithm with any fixed
constant approximation guarantee for finding the cen-
troid of any polytope, then this algorithm can be used
to construct a fully polynomial approximation scheme
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for the general problem. In fact any algorithm with
an approximation guarantee better than d

1
2−δ for any

fixed δ > 0 serves the purpose.

3 Concluding remarks

In this paper we studied the problem of computing the
vertex centroid exactly and approximately. Although
computing the centroid exactly turns out to be a hard
problem, the problem of approximating the centroid
remains open. We also showed via a bootstrapping
theorem that any algorithm for approximating the
centroid that has sufficiently non-trivial guarantee can
be used to obtain a fully polynomial approximation
scheme for this problem. Also, such an algorithm will
give an output sensitive polynomial algorithm for the
Vertex Enumeration problem for which no such algo-
rithm is known.
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Space-Filling Curve Properties for Efficient Spatial Index Structures

Herman Haverkort∗ Freek van Walderveen∗

Abstract

For the application of space-filling curves to the cre-
ation of efficient indexes on spatial objects, we develop
methods for assessing their effectiveness and provide
new curves that lead to better query efficiency of cre-
ated indexes.

By improving and completing earlier assessments of
the quality of orderings based on space-filling curves,
we try to give better theoretical background for choos-
ing the right curve for the right application.

1 Introduction

A space-filling curve is a continuous, surjective map-
ping from R to Rd. It was not always clear that such
a mapping would exist for d > 1, but in the late 19th
century Peano showed that it is possible for d = 2 and
d = 3 [16]. Since then, quite a number of space-filling
curves have appeared in the literature, but during the
early days they were primarily seen as a mathematical
curiosity.

Today however, space-filling curves are applied in
areas as diverse as load balancing for grid computing,
colour space dimension reduction, small antenna de-
sign, and the creation of spatial data indexes [10]. In
the remainder of this paper, we will mainly focus on
the application of space-filling curves to the creation
of query-efficient spatial data indexes and in particu-
lar R-trees.

R-trees An R-tree is a data structure designed for
storing spatial objects, or more specifically their
bounding boxes, in external memory. The primary
goal of an R-tree is to quickly answer spatial queries
on large sets of objects. For the purposes of this pa-
per, the structure of the tree itself is not very im-
portant. In practice, the query time of an R-tree is
dominated by the number of leaves retrieved. We will
therefore only look at the leaf level of the tree. Each
leaf stores the bounding boxes of a number of objects,
references to those objects, and the bounding box of
all objects in this leaf, used for querying. Note that
an R-tree is not uniquely defined by a set of input ob-
jects. Any distribution of the objects over the leaves
may be used as basis for an R-tree, as long as each

∗Department of Mathematics and Computer Science, Eind-
hoven University of Technology, cs.herman@haverkort.net,

freek@vanwal.nl

object

leaf

space-filling curve

object-to-curve
mapping

Figure 1: Leaves of an R-tree with B = 3

object is present in exactly one leaf, and each leaf fits
in one page of the external memory. We denote the
number of objects that fit in a page by B. Generally,
B is also referred to as the fan-out of the tree nodes.
One way of making the distribution is by somehow
ordering the input objects along a space-filling curve
(more details later) and then putting each next group
of B items together in a leaf (see for example Fig-
ure 1).

When querying these R-trees, we report all objects
that intersect a given query window by checking each
leaf whose bounding box intersects this query window.
Thus, leaves with smaller bounding boxes have less
chance of needing to be retrieved from slow external
memory (for example a hard disk needing 10 ms for
each seek). Using good space-filling curves that make
us fill each leaf with objects that lie close to each other
and thus have a small bounding box, will therefore
result in better query performance. The question thus
arising is: what makes a good space-filling curve?

Curves All space-filling curves considered in this pa-
per can be constructed using a geometrical recur-
sion scheme. See for example GP order in Figure 2,
which gives a representation of the original curve by
Giuseppe Peano. For convenience, we only describe
the behaviour of the curves within a unit region (in
this case the unit square). The first order approxima-
tion of the curve is given by the ordering of the nine
subsquares, indicated by sequence numbers. Second
and higher order approximations are obtained by ap-
propriately rotating and mirroring copies of the lower
order curve as indicated by the R shapes. We will call
this curve GP instead of Peano to avoid confusion
with other curves that have also been referred to as
the Peano curve by other authors.

EuroCG’08, Nancy – March 18-20, 2008

51



3 4 9

2 5 8

1 6 7

GP order [16]
With first, second and third order approximation.

Balanced GP order

1 2 3

√
3

1

21

3 4

Z order [11,13]

2 3

41

Hilbert order [9]

Meurthe order
[18, Serpentine 110 110 110]

3 4 9

2 5 8

1 6 7

1

2 3

4

1

2 3

4

3 4

2

1

1

2

Unit square:

H order [14]
The bottom-right figure shows one way of or-
dering squares using this curves.

βΩ order
An Ω-shaped section from [17].
J is J in reverse order.

Figure 2: Space-filling curve definitions.

Although a real space-filling curve is the limit of
such a recursive process, for the purposes of this paper
we will only consider the process of approximating
these curves by polylines and more specifically the
ordering of the subsquares imposed by the curves.

A selection of the curves considered in our study is
shown in Figure 2, together with their usual reference.
The quality measures that we will consider for these
curves will be detailed later.

Our results We propose new measures for assessing
the quality of space-filling curves in their application
to R-tree index creation. Bounds on these and other
measures are presented for a number of well- and new
or less-well-known space-filling curves. A number of
these bounds improve upon results found earlier in lit-
erature. Moreover, we show that our balanced version
of the GP order gives better results than the original
GP order in most measures considered (and in some
cases even the best).

We show that in the case of R-tree indexes on
rectangles—indexed using four coordinates such as x
and y coordinate of the centre, width and height—
new four-dimensional Hilbert-like space-filling curves
lead to better query efficiency. For these curves, we
show that they exhibit a certain nice property, namely
that they reduce to the well-known two-dimensional
Hilbert curve if the width and height of the rectangles
is zero.

2 Quality measures for curves ordering point data

We start with a simple case: ordering spatial objects
that are in fact points in two dimensions. As dis-
cussed in the introduction, we are looking for space-
filling curves that ensure that objects lying close to
each other on the curves have small joint bounding
boxes. In the literature, quite some work can be found
on measures related to the proximity of points on a
curve. For example, notable results were found for
the following measure [7] of so called curve-to-plane
locality

lim
n→∞

max
1≤i<j≤n

dp(C(i), C(j))2

(j − i)/n

where i and j are integers, C(i) is the position of
the ith subregion along the curve in a subdivision
of the unit region into n subregions, and dp(P,Q) is
the Lp distance between P and Q, thus dp(P,Q) =
((Px−Qx)p+(Py−Qy)p)1/p. We will call this measure
WDp, for Worst-case Dilation as it indicates for points
that lie close on the curve how far from each other
they might get in the plane. Niedermeier et al. [14]
show that for any plane-filling curve, WD1 ≥ 61/2,
WD2 ≥ 31/2 and WD∞ ≥ 31/2. Furthermore, sev-
eral results are known for these measures regarding
Hilbert order [1, 3, 7, 15, 5], GP order [12] and H
order [14] (see Table 1).

Curve-to-plane locality may however not give the
best prediction for bounding box areas. Therefore we
propose the Worst-case Bounding-box Area measure.

WBA = lim
n→∞

max
1≤i<j≤n

area(bbox(C(i, j)))
area(C(i, j))
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Order WD∞ WD2 WD1 WBA RBA

GP 8 8 102/3 2.00 1.42
Bal. GP 4.62 4.62 8.62 2.00 1.42
Meurthe 5.33 5.67 10.67 2.50 1.39

Hilbert 6 6 9 2.40 1.41
βΩ 5.00 5.00 9.00 2.22 1.40
H 4 4 8 3.00 1.69

Z ∞ ∞ ∞ ∞ 2.86

Table 1: Bounds for different measures and curves.
New bounds in bold computed to the indicated preci-
sion.

where C(i, j) is the union of all subregions between
i and j (inclusive), bbox(r) is the bounding box of
region r and area(r) is the area of region r. Thus,
for an approximation of curve C filling a grid of n
squares, area(C(i, j)) = (j − i + 1)/n.

We have the following

Lemma 1 Any recursively defined curve filling trian-
gles or a regular grid of axis-parallel rectangles satis-
fies WBA ≥ 2.

(Proof omitted from this extended abstract.)
To assess the predictive value of the WD and WBA

measures for the size of bounding boxes in practice,
we generated 50 sets of points uniformly distributed
in the unit region. The size of each set was chosen
randomly between 150,000 and 5,400,000. The points
were packed into groups of 1000 along the curves, and
we measured the total area of the bounding boxes of
the groups. Table 1 lists the results of this Random
Bounding-box Area (RBA) experiment, as well as re-
sults for the other measures. The latter were obtained
using an algorithm that approximates the values of
the measures for the curves by iteratively finding bet-
ter upper and lower bounds (details omitted from this
abstract).

We can see that although H order performs best on
the classical measures, it performs worst (when ignor-
ing the obviously incompetitive Z order) on RBA, well
predicted by WBA. Meurthe order on the other hand,
having the best value for the RBA measure is not
among the best regarding WBA. Thus, it would be
interesting to see whether we can either find a better
averaging metric instead of the current random one,
or a theoretical (worst-case or other) measure that
has better predictive value. Furthermore, it might
be interesting to investigate if other ways of taking
bounding boxes, such as using rotated axes, lead to
better performance of particular curves.

Finally, we see that the Balanced GP order, which
is really a horizontal stretching of GP order by

√
3,

achieves much better results for the WD measures
(note that such a scaling is not interesting for the
other curves as they have more symmetric behaviour).

1

2 3

4

5

6 7

8 9

10 11

12

1314

15 16

Figure 3: Second order approximation of the four-
dimensional Hilbert-like curve by Alber and Nieder-
meier [1] when restricted to points with xmn = xmx

and ymn = ymx.

3 Four-dimensional curves ordering rectangle data

Because R-trees are built using rectangular bound-
ing boxes (or even n-dimensional ones), it is also—
and perhaps even more—interesting to investigate or-
derings on four (or more) dimensions. Kamel and
Faloutsos [10] consider the use of a four-dimensional
version of the Hilbert space filling curve for or-
dering rectangles. They consider two variants of
this approach, which map an object’s bounding box
[xmn, xmx] × [ymn, ymx] to either a four-dimensional
point (xmn, ymn, xmx, ymx), dubbed the 4D-xy map-
ping, or a four-dimensional point (cx, cy, dx, dy),
where cx = 1

2 (xmn + xmx), cy = 1
2 (ymn + ymx),

dx = xmx − xmn, and dy = ymx − ymn, dubbed the
4D-cd mapping.

Kamel and Faloutsos compare the performance of
R-trees based on these approaches to the 2D Hilbert
order based only on the centre point of each rectangle.
Surprisingly, this last method performs best in their
experiments. Later experiments [2] agree on this when
the data is relatively close to point data. However on
more extreme, artificial data sets it was shown that
the 4D-xy approach easily outperforms 2D Hilbert or-
der. Apparently the 4D orders do not closely resemble
the 2D order when near-point data is supplied.

As shown by Alber and Niedermeier [1], there is
no one true four-dimensional version of the Hilbert
order. In fact there are very many 4D orders that
one could classify as having the “Hilbert property”.
Alber and Niedermeier also propose a formalism for
writing down higher dimensional Hilbert-like curves,
based on permutations of hyperquadrants and, as an
example of this generalization, give the constructing
elements for a four-dimensional curve. Another four-
dimensional curve that appears in the literature is
based on work by Butz [4] and implemented by Doug
Moore.

Both of these curves do not follow the original two-
dimensional Hilbert curve when we use them to order
objects for which xmn = xmx and ymn = ymx, see Fig-
ure 3 for an example. Moreover, the resulting orders
make jumps in the grid, eventually resulting in worse
query performance of R-trees based on them.

A natural question is thus, are there any four-
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Figure 5: Relative number of leaves accessed by dif-
ferent R-trees on a data set taken from VLSI design
for different query sizes.

dimensional Hilbert-like space-filling curves that do
follow the original Hilbert curve when “projected”
down to two dimensions? Using an automated search
procedure, we have found 218 such curves for the 4D-
cd case in a representative part of the search space
(which is much too large to be scanned completely).
From these curves, we picked the one that performed
best on some small experiments. Then we ran ex-
periments on large artificial and real-life data sets
and compared the query performance of R-trees based
on this curve to the some of the best performing R-
trees currently known [2, 6, 10]. Some results can be
found in Figures 4 and 5. For a more detailed dis-
cussion of these and other experiments, we refer to
our manuscript [8]. There, we conclude that our new
4D-cd based ordering matches the performance of the
2D Hilbert curve for data sets with only small rectan-
gles. For data sets with larger rectangles however, the
new ordering matches or outperforms any previously
known R-tree.

4 Conclusion

Space-filling curves are (still) both theoretically in-
teresting and useful in practice. We have shown that

the efficiency of R-tree indexes can be improved by
carefully picking the space-filling curve to be used. A
number of theoretical results regarding quality mea-
sures were given, but there is still a lot to explore.
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Optimizing Active Ranges for Consistent Dynamic Map Labeling

Ken Been∗ Martin Nöllenburg† Sheung-Hung Poon‡ Alexander Wolff§

Abstract

Map labeling encounters unique issues in the con-
text of dynamic maps with continuous zooming and
panning—an application with increasing practical im-
portance. In consistent dynamic map labeling, dis-
tracting behavior such as popping and jumping is
avoided. In our model a dynamic label placement is
a continuous function that assigns a 2d-label to each
scale. This defines a 3d-solid, with scale as the third
dimension. To avoid popping, we truncate each solid
to a single scale range, called its active range. This
range corresponds to the interval of scales at which the
label is visible. The active range optimization (ARO)
problem is to select active ranges so that no two trun-
cated solids overlap and the sum of the active ranges
is maximized. We show that the ARO problem is NP-
complete, even for quite simple solid shapes, and we
present constant-factor approximations for different
variants of the problem.

1 Introduction

Recent years have seen tremendous improvements
in Internet-based, geographic visualization systems
that provide continuous zooming and panning (e.g.,
Google Earth), but relatively little attention has been
paid to special issues faced by map labeling in such
contexts. In addition to the need for interactive speed,
several desiderata for a consistent dynamic labeling
were identified in [1]: labels do not pop in and out or
jump (suddenly change position or size) during pan-
ning and zooming, and the labeling is a function of
scale and view area—it does not depend on the user’s
navigation history.

Model. We adapt the following labeling model
from [1], with slight changes. In static labeling, the
key operations are selection and placement—select a
subset of the labels that can be placed without over-
lap. A static placement of a label L is a transforma-
tion πL, composed of translation, rotation, and dila-
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tion, that takes L’s canonical shape into world coordi-
nates. Once all labels are placed, a viewing transfor-
mation takes world coordinates to map coordinates.

In dynamic labeling we take scale as an additional
dimension. As with [1, 4], we define scale as the in-
verse of cartographic scale, so that it increases when
zooming out. A dynamic placement of L is a function
that assigns a static placement πL

s to each scale s ≥ 0.
The translation, rotation and dilation components of
the dynamic placement must each be continuous func-
tions of scale. This eliminates jumping and popping
during panning, and dependence on navigation his-
tory. Dynamic selection is similarly a Boolean func-
tion of scale. To eliminate popping during zooming
we require that each label Li, 1 ≤ i ≤ n, is selected
precisely on a single interval of scales, [ai, Ai], which
is called the active range of Li. Thus all consistency
desiderata can be satisfied by adhering to this model.

x

y

s

Figure 1: A dyna-
mic label placement
is a solid in world
coordinates.

Let Smax be a universal
maximum scale for all la-
bels. We define the available
range of Li to be an interval
of scales, [si, Si] ⊆ [0, Smax],
in which label Li “wants”
to be selected. We require
[ai, Ai] ⊆ [si, Si]. Since the
dynamic placement is con-
tinuous with scale, Ei =⋃

s∈[si,Si]
πLi

s (Li) is a solid
defined by sweeping the la-
bel shape along a continu-
ous curve that is monotonic
in scale, see Fig. 1. We call Ei the extrusion of Li

and Ti =
⋃

s∈[ai,Ai]
πLi

s (Li) its truncated extrusion.
The extrusion shapes are determined by the la-

bel shape and the translation, rotation and dila-
tion functions that compose the dynamic placement.
We restrict our attention to certain classes of extru-
sions. Our labels are rectangular. For translation,
we consider only invariant point placements, in which
a particular point on the label always maps to the
same location in world coordinates, so the label never
“slides”. Our rotation functions are constant, and
yield axis-aligned labels. We consider two classes of
dilation functions DL. If DL(s) = bs for a constant
b > 0, then label size is fixed on screen and propor-
tional to scale in world coordinates. The solid is then
a label-shaped cone with apex at s = 0 as in Fig. 1.
With invariant point placements, the cone contains
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extrusion shape ARO dilation approx. running time reference

congruent square cones bs 1/4 O((k + n) log2 n) Theorem 4
congruent square cones simple bs 1/8 O(n log3 n) Corollary 8
arbitrary square cones bs 1/24 O(n log3 n) Theorem 7
segments of congruent square cones bs 1/4 O((k + n) log2 n) Theorem 4
congruent frusta

general
bs + c 1/(4W ) O(n4) Theorem 3

Table 1: Results attained in this paper, where k is the number of pairwise intersections between extrusions and
W is the width ratio of top over bottom side.

the vertical line through its apex. The cone might
be symmetric to that line (e.g., for labeling a region)
or might have a vertical side incident to it (e.g., for
labeling a point). Secondly, we consider, in a more
general setting, functions of the form DL(s) = bs + c
for constants b > 0 and c 6= 0. The solid in this case
is a portion of a cone with apex at −c/b.

Objective. Let E denote the set of all extrusions,
and assume we are given an available range for each.
For a set T of truncated extrusions, define H(T ) =∑n

i=1(Ai−ai) to be the total active range height. This
is the same as integrating over all scales the func-
tion f(s) that counts the number of labels selected
at scale s. The (general) active range optimization
(ARO) problem is to choose the active ranges so as
to maximize H, subject to the constraint that no two
truncated extrusions overlap. This is the dynamic
analogue of placing the maximum number of labels
without overlap in the static case. We call any set
of active ranges that correspond to non-overlapping
truncated extrusions a solution. It is of both theoret-
ical and practical interest to also consider a version of
the problem in which [si, Si] = [0, Smax] and ai = 0
for all i. We call this variant of ARO simple. In this
version all labels want to be selected at all scales, and
a label is never deselected when zooming in.

Already the simple ARO problem is NP-complete.
Table 1 summarizes the approximation results ob-
tained in this paper. In the full version we also con-
sider 1d-labels, which are segments on the x-axis. The
1d-problem can be seen as a scheduling problem with
geometric constraints and is closely related to geomet-
ric maximum independent set problems.

Previous work. Map labeling has been the focus
of extensive algorithmic investigation, see the map-
labeling bibliography [5]. However, the majority of
the research efforts cover static labeling. For dynamic
labeling, Petzold et al. [2, 3] use a preprocessing phase
to generate a data structure that is searched during
interaction to produce a labeling for the current scale
and view area. Poon and Shin [4] build a hierarchy
of precomputed solutions, and interpolation between
these produces a solution for any scale. Neither of

these approaches satisfies the consistency desiderata.
In addition to introducing consistency for dynamic
map labeling, Been et al. [1] show that simple ARO is
NP-complete for star-shaped labels, and implement a
simple heuristic solution in a working system.

2 Complexity

Already the simple ARO problem for congruent
square cones as extrusion shape is NP-complete. The
proof is by reduction from Planar3SAT using 3d-
gadgets. We omit it here due to space constraints.

Theorem 1 Simple ARO with proportional dilation
is NP-complete, i.e., given a real K > 0 and a set
{E1, . . . , En} of congruent square cones, it is NP-
complete to decide whether there is a set of truncated
extrusions T = {T1, . . . , Tn} with T1 ⊆ E1, . . . , Tn ⊆
En and H(T ) ≥ K.

3 Approximation algorithms

In this section we give two algorithms that yield
constant-factor approximations for a number of dif-
ferent variants of the ARO problem. The first algo-
rithm in Sect. 3.1 is based on sweeping the extrusions
from top to bottom and the second one in Sect. 3.2
is a level-based greedy algorithm. Due to space con-
straints we omit the proofs of the running times.

3.1 Top-to-bottom fill-down sweep

Algorithm 1 below is based on the idea to sweep down
over the extrusions in E , and if Ei ∈ E is selected
at some height s, we “fill” Ei from s down to its
bottom—i.e., we set [ai, Ai] = [si, s]. Thus we have
ai = si for every Ei that contributes to the objective
function H at all.

Say that Ei is available if its available range in-
cludes the current sweep scale s, and active if its ac-
tive range has already been set and covers s. We are
interested in event points at which the conflict graph
over the available extrusions changes. This happens
at each Si and si, and with some extrusion shapes it
also happens at additional heights. If Ei and Ej are
both available at s and at s′ > s, and they intersect
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at s′ but not at s, then let sij refer to the lowest scale
at which they intersect. Let k be the number of sij

events over E . We make use of a subroutine, “try to
pick” Ei, which means, “if Ei does not intersect the
interior of any extrusion already chosen to be active
at the current sweep height s, then make Ei active
and set [ai, Ai] = [si, s]”.

Algorithm 1 Top-to-bottom sweep algorithm.

Sweep a plane from top to bottom. At each event
point of type Si, si, or sij , try to pick each avail-
able but inactive extrusion Ej , in non-increasing
order of Sj .

The following lemma will help proving approxima-
tion factors. Let A = {(ai, Ai)} be the solution com-
puted by Algorithm 1. Say that Ej blocks Ei at scale s
under a given solution if Ei and Ej overlap (i.e., their
interiors intersect) at s and s ∈ [aj , Aj ]. Note that
this implies that s /∈ [ai, Ai]. Say that two extru-
sions are independent at s if their restrictions to the
horizontal plane at height s are non-overlapping.

Lemma 2 If, for any E ∈ E and s ≥ 0, E can block
no more than c pairwise independent extrusions at s,
then A is a (1/c)-approximation for the maximum
total active range height of E .

Proof. Suppose that E ∈ E is inactive at scale s
under A. Then E must be blocked at the nearest
event point above (or at) s, since otherwise it would
be picked by Algorithm 1. Since the extrusion conflict
graph only changes at event points, E is blocked at s.
Thus, in A, if E is inactive at any scale s then E is
blocked at s.

If at any scale no extrusion can block more than c
pairwise independent extrusions, and in A every inac-
tive extrusion is blocked, then at any scale the number
of active extrusions in an optimal solution can be no
more than c times the number in A. Integrating over
all scales proves the lemma. �

Congruent frusta. The top-to-bottom nature of Al-
gorithm 1 ensures that if a frustum Ej blocks another
frustum Ei at scale s then Ei intersects a side face
of Ej . The number of independent frusta that can
intersect a single face depends on W , the ratio of the
side length of the top face of each frustum to that of
the bottom face.

Theorem 3 Algorithm 1 computes a 1/(4W )-ap-
proximation for the maximum total active range
height of a set of n congruent frusta in O(n4) time.

Frustal segments of congruent square cones. For
congruent underlying square cones the size of all
squares is the same at each scale. Thus any extrusion
blocked by an extrusion E at scale s must intersect

one of the four corner edges of E at s, so at most four
such extrusions can be independent. The approxima-
tion factor in Theorem 4 follows from Lemma 2.

Theorem 4 Given a set of n frustal segments of axis-
aligned unit square cones, Algorithm 1 computes a
(1/4)-approximation for the maximum total active
range height in O((n + k) log2 n) time.

Note that simple ARO with congruent square cones
is a special case of the above where each [si, Si] =
[0, Smax], so that Theorem 4 still holds in this case.

3.2 Level-based small-to-large greedy algorithm

In this section we give an algorithm for simple ARO
with square cones. It computes a 1/8-approxima-
tion when the cones are congruent, and a (1/24)-
approximation otherwise. The algorithm intersects
the given cones with O(log n) horizontal planes, start-
ing at Smax and proceeding downward.

Algorithm 2 Level-based algorithm for 3d-cones

Initially no extrusion is active. In phase i, i =
0, . . . , dlog ne, let πi be the horizontal plane at
scale s = Smax/2i. Let Ei

j be the intersection of
extrusion Ej with πi and call Ei

j active if Ej is
already active. As long as there is an inactive ob-
ject Ei

j that does not intersect any active object,
choose the smallest such object Ei

j? and make Ej?

(and Ei
j?) active by setting Aj? = s.

We first consider arbitrary square cones that are
symmetric to the vertical axes passing through their
apexes. When the algorithm terminates, all squares
at level i that are not active must intersect an active
square—they are blocked. We associate each blocked
square Ei

j to one of the active squares in the follow-
ing way: (i) If Ei

j was not blocked at the beginning
of phase i but became blocked by a newly activated
square Ei

k, then associate Ei
j to Ei

k. (ii) If Ei
j was

blocked in the beginning of phase i then associate Ei
j

to any of its blocking squares that were active at the
beginning of phase i. Next, we show that the squares
associated to an active square cannot be arbitrarily
small.

Lemma 5 Let Ei
j be an active square at level i with

side length `i
j . Then any square associated to Ei

j has

side length at least `i
j/3 and intersects the boundary

of Ei
j .

Proof. Let Ei
k be associated to Ei

j with `i
k < `i

j . By
the greedy choice of the algorithm, all squares associ-
ated to a newly active square are larger than it. This
implies that Ej must have been activated at a higher
level, and that Ek must have been reassigned to Ej

at some level h ≤ i. Thus, at level h− 1 square Eh−1
k
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Figure 2: Intersection behavior of Ej , Ek, El at two consecutive levels.
Figure 3: At most 12 indepen-
dent squares intersect Ei

j .

was associated to another square Eh−1
l . Note that

for this reassignment to take place at level h, Eh−1
j

must have been active. Thus we know that Eh−1
j and

Eh−1
l do not intersect, but they both intersect Eh−1

k ;
see Fig. 2a. At level h the reassignment takes place
because Eh

k no longer intersects Eh
l but still intersects

Eh
j ; see Fig. 2b. Now suppose `h

k < `h
j /3. Then by

going from level h to h − 1 the side lengths of the
squares are doubled and it is easy to verify that Eh−1

k

would be contained in Eh−1
j , a contradiction to the

fact that Eh−1
k ∩ Eh−1

l 6= ∅. As `h
k ≥ `h

j /3 this also
holds for level i, and since Eh−1

k intersects the bound-
ary of Eh−1

j this is also still true for level i. �

Let πdlog ne+1 be the plane s = 0, and denote the
active segments of the extrusions in the optimal solu-
tion S and our algorithm’s solution A between planes
πi−1 and πi by Si and Ai, respectively. We charge
the active range height H(Si) to that of H(Ai+1).

Lemma 6 For i ∈ 1, . . . , dlog ne − 1 it holds that
H(Ai+1) ≥ 1/24 H(Si).

Proof. Let square Ei
j be active in A and consider

the set D(Ei
j) of squares in πi associated to it. The

squares in D(Ei
j) that correspond to active extrusions

in Si cannot intersect each other.
By Lemma 5, all squares in D(Ei

j) have side length
at least `i

j/3 and intersect the boundary of Ei
j . Thus,

at most 12 of those squares can be independent in πi

and hence active in Si like in Fig. 3. Now the height
between levels i and i− 1 is twice the height between
levels i + 1 and i. Hence the active height of Ej in
Ai+1 is at least 1/24 times the sum of heights of active
extrusions in Si whose squares at level i are associated
to Ei

j . It follows that H(Ai+1) ≥ 1/24 H(Si). �

Theorem 7 Algorithm 2 computes a (1/24)-approx-
imation to the maximum total active range height of
a set of arbitrary square cones in O(n log3 n) time.

Proof. From Lemma 6, it remains to compare
H(Sdlog ne)+H(Sdlog ne+1) to H(Adlog ne+1)+H(A1).

The height of πdlog ne−1 is at most 2Smax/n and obvi-
ously there are at most n active cone segments in S
below πdlog ne−1, so their total active range height is
at most 2Smax. On the other hand, there is at least
one active cone segment in A1 of height Smax/2. Thus
the approximation factor is indeed 1/24. �

With congruent square cones, all squares at each
level are the same size, so at most four rather than 12
independent squares can intersect a given square. A
similar argument gives the following corollary.

Corollary 8 Algorithm 2 computes a (1/8)-approx-
imation to the maximum total active range height of
a set of congruent square cones in O(n log3 n) time.

4 Conclusions

ARO is an exciting new problem inspired by inter-
active web-based mapping applications and we have
given approximation algorithms for some variants. It
remains open whether any of the problems admits a
PTAS. Also, mapping applications in practice often
require more complex extrusion shapes.
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Order-k Triangulations of Convex Inclusion Chains in the Plane

Wael El Oraiby∗ Dominique Schmitt∗

Abstract

Given a set V of n points in the plane, we show that
there is a strong connexion between the k-sets of a
convex inclusion chain of V introduced in [5] and
the centroid triangulations of V defined in [8]. We
also show that one of these triangulations can be con-
structed in O(n log n + k(n− k) log2 k) time.

1 Introduction

Given a finite set V of n points in the Euclidean plane
(no three of them being collinear) and an integer k
(0 < k ≤ n), the k-sets of V are the subsets of k
points of V that can be strictly separated from the rest
by a straight line. The numbers of k-sets have been
studied in various ways in computational and combi-
natorial geometry (see [4], [12], and [10] for some best
bounds known in the plane). In [5], we have given
a new invariant of the number of k-sets, in connex-
ion with convex inclusion chains of V . Such a chain
is an ordering V = (v1, v2, ..., vn) of the points of V
such that, for every i ∈ {2, ..., n}, vi does not belong
to the convex hull conv(Si−1) (with Si = {v1, ..., vi},
for all i ∈ {1, ..., n}). The set of k-sets of the convex
inclusion chain V is then the set of distinct k-sets of
Sk, Sk+1, ..., Sn. We have shown that the number of
these k-sets does not depend on the chosen chain and,
surprisingly, it is equal to the number of regions of the
order-k Voronoi diagram of V .

Independently, while studying multivariate splines,
Lyu and Snoeyink have introduced the notion of cen-
troid triangulation [8]. It is a generalization of the
order-k Delaunay diagram, which is dual to the order-
k Voronoi diagram [3, 11] (note that this order-k De-
launay diagram has nothing to do with the order-k
Delaunay triangulation of [6]). For k ≤ 3, Lyu and
Snoeyink have proven the correctness of there con-
structive definition of centroid triangulations and they
have conjectured that it also holds for k > 3.

In this paper we establish the relation between the
k-sets of the convex inclusion chains of a point set V
and the centroid triangulations of V . More precisely,
we show that, for all k, the centroids of the k-sets
of a convex inclusion chain of V are the vertices of a
centroid triangulation of V . We call this triangula-
tion the order-k triangulation of the convex inclusion
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Figure 1: Edges and vertices of a 4-set polygon of 12
points.

chain.
On the one hand, this result allows us to find, for

all k, a family of centroid triangulations that verify
the definition of Lyu and Snoeyink. On the other
hand, it is a first step toward the understanding why
the number of k-sets of a convex inclusion chain is
equal to the number of regions of the order-k Voronoi
diagram.

Finally, we show that a particular centroid triangu-
lation can be constructed in O(n log n+k(n−k) log2 k)
time. This improves the algorithm that follows from
the constructive definition of Lyu and Snoeyink whose
time complexity is at least O(n log n + k2(n− k)).

2 k-set polygons

Given two points s and t of V , we denote by st the
closed line segment with endpoints s and t oriented
from s to t, by (st) the oriented straight line generated
by st, and by (st)− the open half plane on the right
of (st). For any subset E of the plane, we denote by
E the closure of E.

Let gk(V ) be the k-set polygon of V , i.e., the convex
hull of the centroids of all the k-element subsets of V .
Notice that, g1(V ) is the convex hull conv(V ) of V
and gn(V ) is a unique point, the centroid g(V ) of V .

We first recall two important properties of the ver-
tices and edges of gk(V ) given by Andrzejak and
Fukuda [1], and by Andrzejak and Welzl [2] (see Fig-
ure 1 for an illustration).

Proposition 1 (i) g(T ) is a vertex of gk(V ) if and
only if T is a k-set of V .

(ii) g(T )g(T ′) is a counterclockwise oriented edge
of gk(V ) if and only if there exist two points s and t
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Figure 2: Construction of the 4-set polygon of S∪{12}
from the 4-set polygon of S = {1, ..., 11}. The edges
to remove are in dashed lines and the edges to create
in bold lines.

of V and a subset P of k − 1 points of V such that
T = P ∪ {s}, T ′ = P ∪ {t}, and V ∩ (st)− = P .

From now on, any such oriented edge will be de-
noted by eP (s, t). Obviously, eP (s, t) is parallel to
(st) and it is not difficult to see that the any line that
separates the vertex g(T ) from the vertices of gk(V )
is parallel to a line that separates T from V (and con-
versely).

Let S be a non empty subset of V and v be a point
of V \ conv(S), and consider the edges to remove and
the ones to create when constructing gk(S∪{v}) from
gk(S) (see Figure 2). From [5], we know that:

Proposition 2 (i) The edges to remove are the edges
eP (s, t) of gk(S) with v ∈ (st)−. Together with their
endpoints, they form a connected polygonal line Dk

S,v.

(ii) The edges to create form a connected polygonal
line of at least two edges. The first (resp. last) of them
(in counterclockwise direction) is of the form eP (s, t)
with t = v (resp. s = v). The other edges to create
form a polygonal line Ck

S,v of edges of the form eP (s, t)
with v ∈ P .

For every vertex g(Ti) of Dk
S,v, let ϕ(Ti) be the set:

• of vertices g(T ) of Ck
S,v such that T and Ti can be

separated respectively from S ∪ {v} and from S
by two parallel straight lines ∆ and ∆′ with same
orientation and such that T ⊂ ∆− and Ti ⊂ ∆′−,

• and of edges of Ck
S,v that connect such vertices.

Using basic properties of convex hulls, it is easy to
see that ϕ(Ti) is a connected polygonal line and that:

Proposition 3 If (g(T1), ..., g(Tm)) is the counter-
clockwise-ordered sequence of vertices of Dk

S,v, then

Ck
S,v = (ϕ(T1), ..., ϕ(Tm)).

3 Triangulating gk(V)

We show now that the centroids of the k-sets of a con-
vex inclusion chain of V are the vertices of a triangu-
lation of gk(V ) that has some common characteristics
with the order-k Delaunay diagram of V . Recall that
this diagram is dual to the order-k Voronoi diagram
and that its vertices are the centroids of the k-element
subsets of V that determine the order-k Voronoi re-
gions of V . The order-k Delaunay diagram is then
a triangulation of gk(V ) whose every edge g(T )g(T ′)
is such that |T ∩ T ′| = k − 1 [7, 11]. We show now
that the centroids of the k-sets of any convex inclusion
chain of V are also the vertices of such a triangulation.
From Proposition 1, we already know that the edges
of every k-set polygon fulfill the property. Moreover:

Proposition 4 For every vertex g(Ti) of Dk
S,v and for

every vertex g(T ) of ϕ(Ti), there exists s ∈ Ti such
that T = (Ti \ {s})∪ {v} and the segments g(Ti)g(T )
triangulate the polygon P = gk(S ∪ {v}) \ gk(S).

Proof. (i) By definition, for every vertex g(T ) of
ϕ(Ti), there exist two parallel oriented straight lines ∆
and ∆′ such that ∆−∩S = Ti and ∆′−∩(S∪{v}) = T .
Thus, there is a unique point s of S between ∆ and
∆′ and we have T = (Ti \ {s}) ∪ {v}.

(ii) Now, it is not difficult to show that g(T ) can be
separated from gk(S) by a straight line and thus that
g(Ti)g(T ) ⊂ P. Moreover, from Proposition 3, two
such segments can only intersect at their endpoints.

(iii) The boundary of P is composed of the edges
of Dk

S,v, of the edges of Ck
S,v, and of the two other

edges to create. From Proposition 3, for every edge
g(T )g(T ′) of Ck

S,v, there exists a unique i ∈ {1, ...,m}
such that g(T )g(T ′) is an edge of ϕ(Ti). The triangle
g(T )g(T ′)g(Ti) splits then P into two simple poly-
gons. In the same way, if g(Ti)g(Ti+1) is an edge of
Dk

S,v, ϕ(Ti) and ϕ(Ti+1) have a common vertex g(T )
and the triangle g(T )g(Ti)g(Ti+1) splits P into two
simple polygons. By induction, P can thus be trian-
gulated by such triangles (see Figure 3). �

Now, if V = (v1, v2, ..., vn) is a convex inclusion
chain of V , by applying Proposition 4 successively to
the subsets Sk = {v1, ..., vk}, ..., Sn = {v1, ..., vn}, we
get:

Theorem 5 The centroids of the k-sets of V are the
vertices of a triangulation of gk(V ) whose every edge
g(T )g(T ′) is such that |T ∩ T ′| = k − 1.

The triangulation determined by this theorem is
called the order-k triangulation of V and is denoted
by T k(V) (see Figure 4).

It is easy to see that, if the edges of a trian-
gulation fulfill Theorem 5 then, for every triangle
g(T )g(T ′)g(T ′′) of this triangulation, either |T ∩ T ′ ∩
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T ′′| = k−1 (called a type-1 triangle), or |T∪T ′∪T ′′| =
k + 1 (called a type-2 triangle).

4 Order-k triangulations and centroid triangula-
tions

Lee has proposed an algorithm to construct the order-
k Voronoi diagram by starting with the (order-1)
Voronoi diagram and iteratively computing the order-
i diagram from the order-(i − 1) diagram [7]. This
algorithm can be dualized to construct iteratively the
order-k Delaunay diagram starting with the (order-
1) Delaunay diagram [11]. The method to construct
the order-i Delaunay diagram from the order-(i − 1)
diagram is the following:

Algorithm 1

• For every type-1 triangle g(P ∪ {r})g(P ∪ {s})
g(P ∪ {t}) of Deli−1(V ) compute the triangle
g(P ∪ {r, s})g(P ∪ {r, t})g(P ∪ {s, t}).

• The set τ of these triangles is the set of type-2
triangles of Deli(V ).

• The type-1 triangles of Deli(V ) are obtained by
computing the constrained (order-1) Delaunay

triangulation of gi(V ) \ τ .

In [8], Lyu and Snoeyink conjectured that, starting
with any triangulation of the point set V and com-
puting any constrained triangulation at every step,
this algorithm constructs triangulations whose edges
verify Theorem 5 (they proved the result for k ≤ 3).
The triangulations generated in this way are called
centroid triangulations. Here we show that, for all k:

Theorem 6 The order-k triangulation of any convex
inclusion chain is a centroid triangulation.

Proof. For every point set S we call (centroid) trian-
gulation sequence of S, any sequence (A1, ...,A|S|) of
centroid triangulations such that A1 is a triangulation
of S and, for all i ∈ {2, ..., |S|}, Ai is obtained from
Ai−1 by the generalization of Algorithm 1. Note that
A1 contains only type-1 triangles, A|S|−1 only type-2
triangles, and A|S| = g|S|(S) is reduced to the unique
point g(S).

Suppose by induction that, for every set S of n− 1
points, for every convex inclusion chain S of S, and for
every positive integer k ≤ n− 1, the order-k triangu-
lation T k(S) of S is a centroid triangulation of S and
that (T 1(S), ..., T n−1(S)) is a triangulation sequence
of S. This is trivially true for n− 1 = 1.

Let now v be a point not belonging to conv(S),
V = S ∪ {v}, and V = (S, v). When v is added to S,
C1

S,v is composed of the unique vertex v and D1
S,v is

composed of the edges and vertices of the boundary

11
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Figure 3: A triangulation of g4(S ∪ {12}) \ g4(S),
with S = {1, ..., 11}. The white triangles are of type
1 and the grey triangles are of type 2.

of T 1(S) visible from v. By connecting these vertices
to v, we get T 1(V) which is the first element of a
triangulation sequence of V . Assume now, as a sec-
ond induction hypothesis, that for a positive integer
h ≤ n− 1, (T 1(V), ..., T h−1(V)) is an initial part of a
triangulation sequence of V . T h(V) verifies Theorem
5 and, from the proof of Proposition 4, T h(V) \ T h(S)
has two kinds of triangles: Triangles with one edge
on Dh

S,v and the opposite vertex on Ch
S,v, and trian-

gles with one edge on Ch
S,v and the opposite vertex on

Dh
S,v (see Figure 3). Using Proposition 4, it can be

shown that these triangles are respectively of type 1
and 2. With the argument that eP (s, t) is an edge
of Ch

S,v if and only if eP\{v}(s, t) is an edge of Dh−1
S,v ,

the type-2 triangles of T h(V) \ T h(S) can be obtained
from the type-1 triangles of T h−1(V) \ T h−1(S) by
the generalization of Algorithm 1. From the first in-
duction hypothesis, T h(V) can then also be obtained
from T h−1(V) by this algorithm and, from the sec-
ond induction hypothesis, (T 1(V), ..., T h(V)) is an
initial part of a triangulation sequence of V , for all
h ∈ {1, ..., n − 1}. Since T n(V) is reduced to the
centroid gn(V ), it follows that (T 1(V), ..., T n(V)) is a
triangulation sequence of V . �

5 Construction of a centroid triangulation

As we know from [7] and [5], the order-k Delaunay di-
agram and the order-k triangulations of convex inclu-
sion chains have both 2kn−n− k2 + 1−

∑k−1
j=1 γj(V )

vertices (with γj(V ) the number of j-sets of V and∑0
1 = 0). Lyu and Snoeyink have conjectured that

any centroid triangulation has O(k(n − k)) vertices.
Thus, the generalization of Algorithm 1 constructs a
centroid triangulation in at least O(n log n+k2(n−k))
time (at least O(n log n) for the order-1 triangulation
and at least O(k(n − k)) for each of the k − 1 other
centroid triangulations). We show now that a par-
ticular centroid triangulation can be constructed in
O(n log n + k(n− k) log2 k) time.
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Figure 4: The order-4 triangulation of the convex in-
clusion chain (2, 3, 1, 4, 5, 9, 11, 7, 8, 6, 10, 12).

To handle a centroid triangulation, we need to know
its combinatorial structure, to maintain for every edge
g(P ∪ {s})g(P ∪ {t}) a link to s and t, and to store
the set T for exactly one vertex g(T ). Moreover, de-
noting by |Dk

S,v| and |Ck
S,v| the numbers of vertices

of Dk
S,v and of Ck

S,v, it has been shown in [5] that, if
gk(S) and v are given, Dk

S,v and Ck
S,v can be found in

O(|Dk
S,v| log2 k+|Ck

S,v|) time, provided that one vertex
g(Ti) of Dk

S,v is known and that the convex hull of Ti

is stored in a fully dynamic convex hull data structure
(see [9]). Then we have:

Theorem 7 V admits a centroid triangulation that
can be constructed in O(n log n+k(n−k) log2 k) time.

Proof. Let V = (v1, ..., vn) be a sequence of the
points of V sorted by increasing x-coordinates. Ob-
viously, V is a convex inclusion chain of V . For every
subset Sj = {v1, ..., vj} (j ∈ {k, ..., n − 1}), it can be
shown that Dk

Sj ,vj+1
contains a vertex of gk(Sj) with

maximal x-coordinate, i.e., the centroid of k points of
Sj with maximal x-coordinates. If we maintain the
dynamic convex hull of these k points and use the
triangulation method of the proof of Proposition 4,
given gk(Sj), a triangulation of gk(Sj+1) \ gk(Sj) can
be constructed in O(|Dk

Sj ,vj+1
| log2 k+|Ck

Sj ,vj+1
|) time.

Starting with gk(Sk) = g(Sk) and applying
this triangulation method for all j ∈ {k, ..., n −
1}, we get an order-k triangulation of V in
O(

∑n−1
j=k |Dk

Sj ,vj+1
| log2 k +

∑n−1
j=k |Ck

Sj ,vj+1
|) time.

Now,
∑n−1

j=k |Ck
Sj ,vj+1

| + 1 is the total number of ver-
tices of the order-k triangulation of V and it is easy
to see that

∑n−1
j=k |Dk

Sj ,vj+1
| <

∑n−1
j=k |Ck

Sj ,vj+1
|. Since

the total number of vertices of the order-k triangu-
lation of V is O(k(n − k)), this triangulation can be
constructed in O(k(n − k) log2 k) time, after having
sorted V . �

6 Conclusion

In this paper, we have shown that the family of cen-
troid triangulations of a planar point set, which is
known to contain the order k-Delaunay diagram, also
contains the family of order-k triangulations of the
convex inclusion chains of the point set.

Now, if we were able to show that all the centroid
triangulations have the same number of vertices, this
would completely explain why the number of k-sets
of a convex inclusion chain is equal to the number of
regions of the order-k Voronoi diagram. To achieve
this goal, we will probably need to find a geometric
characterization of centroid triangulations.
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Constructing the Segment Delaunay Triangulation by Flip

Mathieu Brévilliers∗ Nicolas Chevallier∗ Dominique Schmitt∗

Abstract

Using locally convex functions, we show that the dual
of the segment Voronoi diagram in the plane can be
computed by a flip algorithm.

1 Introduction

The flip algorithm is a classical method to construct
the Delaunay triangulation of a set of points in the
plane, starting with any given triangulation [6]. In
recent years, the method has been extended to gen-
eralized triangulations of point sets such as pseudo-
triangulations or pre-triangulations [2], [3], [1], ...

In this paper, we propose a flip algorithm to con-
struct the dual of the Voronoi diagram of a set of
segments in the plane. This diagram, called segment
Delaunay triangulation, has been introduced by Chew
and Kedem [5]. In [4], we have already defined a fam-
ily of diagrams containing the segment Delaunay tri-
angulation: the segment triangulations (see Figure 1).
The faces of such a triangulation form a maximal set
of disjoint triangles resting on three distinct segments.

A classical method to study flip algorithms con-
sists in lifting the triangulations to three-dimensional
space. The problem here is that lifting has to be per-
formed on non-convex regions in the plane. As in [2]
and [3], we overcome this problem with the help of
locally convex functions.

Another difficulty comes out of the fact that there
are infinitely many segment triangulations of a given
segment set. Thus, we give a flip algorithm that con-
structs, in a finite number of steps, a segment trian-
gulation that has the same topology as the segment
Delaunay triangulation.

2 Segment triangulations

In this section, we recall the main results about seg-
ment triangulations given in [4].

Throughout this paper, S is a finite set of n ≥ 2
disjoint closed segments in the plane, which we call
sites. A closed segment may possibly be reduced to a
single point. We say that a circle is tangent to a site
s if s meets the circle but not its interior. The sites of
S are supposed to be in general position, that is, we

∗Laboratoire MIA, Université de Haute-Alsace, Mul-
house, France {Mathieu.Brevilliers, Nicolas.Chevallier,

Dominique.Schmitt}@uha.fr

(a) (b)

Figure 1: A segment triangulation (a) (the sites ap-
pear in black, the faces in white, and the edges in
grey) and its topology (b).

suppose that no three segment endpoints are collinear
and that no circle is tangent to four sites.

Definition 1 A segment triangulation T of S is a
partition of the convex hull conv(S) of S in disjoint
sites, edges, and faces such that:
1. Every face of T is an open triangle whose vertices
belong to three distinct sites of S and whose open
edges do not intersect S,
2. No face can be added without intersecting another
one,
3. The edges of T are the (possibly two-dimensional)
connected components of conv(S) \ (F ∪ S), where F
is the set of faces of T .

In the following, the word “triangle” will only be
used for faces and never for edges, even if they have
the shape of a triangle.

An edge of such a triangulation is adjacent to ex-
actly two sites (see Figure 1). Moreover, the set of
sites and edges defines a planar graph and thus a com-
binatorial map which represents the topology of the
segment triangulation. The number of faces of a seg-
ment triangulation of S depends only on S and is
linear with the number of sites of S.

Definition 2 A segment triangulation of S is Delau-
nay if the circumcircle of each face does not contain
any point of S in its interior.

The segment Delaunay triangulation of S always
exists. Moreover, since S is in general position, it is
unique and dual to the segment Voronoi diagram of
S. Note that the geometry of the segment Delaunay
triangulation is easy to compute once its topology is
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known. Indeed, it suffices to put every triangle t in
tangency position on the three sites on which it rests,
i.e., its circumcircle is tangent to these three sites and
meets them in the same order as t.

As for point sets, a segment Delaunay triangulation
can be recognized with local tests using edge legality.
An edge of a segment triangulation is said to be (topo-
logically) legal if the triangles adjacent to the edge,
moved to their tangency positions, are Delaunay with
respect to the sites adjacent to the triangles and if
they retain locally the original topology. Hence:

Theorem 1 A segment triangulation of S whose all
edges are legal has the same topology as the Delaunay
one.

It is easy to see that the legality of an edge can
be checked in constant time. Thus, there is a linear
time algorithm that checks whether a given segment
triangulation has the same topology as the segment
Delaunay triangulation.

In this paper, we shall need to constrain the seg-
ment triangulations in some subsets of the convex hull
of S. Thus, we extend slightly the above results.

Definition 3 A subset U of conv(S) is S-polygonal
if U is closed and if the boundary of U is a finite union
of disjoint segments of two kinds:
– closed segments included in S,
– open segments ]p, q[ such that S ∩ [p, q] = {p, q}.

Now, the definition of segment triangulations ex-
tends to an S-polygonal subset U of conv(S) by re-
placing, in Definition 1, conv(S) by U and S by U∩S.
Here again we can show that the number of faces of a
segment triangulation of U depends only on the cou-
ple (U, S).

Definition 4 A segment triangulation T of U is De-
launay if the interior of the circumcircle of each trian-
gle t of T contains no point of S that is visible from an
interior point of t, i.e., the open segment connecting
these two points is not included in U \ S.

Theorem 5 of section 4, shows that a segment De-
launay triangulation of U always exists. However, it
is not necessarily unique since four connected compo-
nents of U∩S may be cocircular even if S is in general
position.

3 Description of the flip algorithm

The algorithm starts with a segment triangulation of
S. The edges of the triangulation are stored in a
queue. The edge e at the head of the queue is popped
and a Delaunay triangulation of the S-polygonal sub-
set P , union of e and of its adjacent triangles, is con-
structed (P is called the input polygon of e; see Fig-
ure 2). This gives rise to a new segment triangulation.

Figure 2: Input polygons of some edges.

(a) (b) (c)

(d) (e)

e1

e2

Figure 3: The flip algorithm transforms the given seg-
ment triangulation (a) in a segment triangulation (d)
that has the same topology as the Delaunay one (e).
The edge e1 of (a) is treated but remains illegal in (b)
because it cannot be flipped. The legal edge e2 has to
be processed before the flip of e1.

The edge replacing e is pushed at the tail of the queue.
Beside this queue, a list of illegal edges is maintained.
The algorithm ends when all edges are legal.

Studying the different cases, we can show that a
Delaunay triangulation of P can be computed in con-
stant time. If this triangulation admits two triangles
and if the edge between them does not connect the
same two sites as the edge used to determine P , then
the edge is said to be flipped.

Even if the algorithm looks very close to the classi-
cal flip algorithm, there are important differences in
their convergences. In case of segment sets:
– some illegal edges cannot be flipped (see Figure 3),
– a new constructed edge is not necessarily legal,
– a removed topological edge can reappear (Figure 4).

This shows that neither the legality of the edges nor
the flip count suffices to prove the convergence of the
algorithm. Another way to prove the convergence of
the point set flip algorithm to the Delaunay triangu-
lation, is to lift the point set on the three-dimensional
paraboloid z = x2 + y2. It is well known that the
downward projection of the lower convex hull of the
lifting is the Delaunay triangulation of the point set.
Conversely, every other triangulation lifts to a non
convex polyhedral surface above the lower convex hull.
Now, it is enough to notice that an edge flip brings
down the polyhedral surface.

The lower convex hull of a set S of segments lifted
on the paraboloid, also projects downward onto the
segment Delaunay triangulation of S (see Theorem
5). The main difficulty is to lift the other segment
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(a) (b)

(c) (d)

(e) (f)

(g)

s1
s2

s3 s4

Figure 4: The edge flipped between (a) and (b) re-
mains illegal. The edge connecting s2 and s4 in (b)
disappears in (c) and reappears in (d).

triangulations and especially their non convex edges.
To this aim we use locally convex functions.

4 Locally convex functions and segment triangu-
lations

Recall that a real-valued function φ on the line seg-
ment s is convex if φ(tx+(1−t)y) ≤ tφ(x)+(1−t)φ(y),
for all t in [0, 1] and all x, y ∈ s. More generally, if V
is a subset of R2 and φ : V → R is a function, we say
that φ is locally convex if the restriction of φ to each
segment included in V is convex.

We define now the lower convex hull of a function,
which we shall use instead of the usual lower convex
hull of a subset in R3.

Definition 5 Given a real-valued function f defined
on V ∩S, the lower convex hull of f on (V, S) is fV,S =
sup{φ : V → R : φ ∈ L(V ), ∀x ∈ V ∩S, φ(x) ≤ f(x)}
where L(V ) is the set of functions φ : V → R that
are locally convex on V .

In the following, U denotes an S-polygonal subset
of conv(S) and the above definition will be used with
the function f : R2 → R defined by f(x, y) = x2 +y2.
The convexity of f implies that fU,S = f on U ∩S. It
can also be proven that fU,S is continuous.

The main aim of this section is to explain that the
function fU,S determines a segment Delaunay trian-
gulation of U . Next theorem gives information about
the value of the function fU,S at a point p. It begins
by the simplest case where U is convex. Then it shows
how to reduce the general case to the convex case. For

every point p in U \ S, denote Sp the closure of the
set of points in S visible from p and Vp its convex hull
(in general, Vp is not contained in U). The theorem
asserts that fU,S(p) depends only on the lower convex
hull of f on (Vp, Sp).

Theorem 2
1. If U is convex, then every point of U \S belongs to
a closed convex subset C of U whose extremal points
are in S and such that fU,S is affine on C.
2. In case of a (non convex) S-polygonal subset U , let
p be a point of U \ S. If C is a closed convex subset
of Vp, containing p, whose extremal points are in Sp,
and such that fVp,Sp is affine on C, then C is included
in U and fU,S = fVp,Sp

on C.

The next step consists in showing that U can be
partitioned into maximal convex subsets where the
function fU,S is affine.

Theorem 3 Every point p in U \S belongs to a con-
vex subset Cp that is maximal for the inclusion among
the relatively open convex subsets of U where fU,S is
affine. Moreover, the extremal points of Cp are in S
and, if q is another point of U \S, either Cp∩Cq = ∅,
or Cp = Cq.

The last statement of Theorem 3 means that the
subsets Cp form a partition of U \ S. Now we have
to establish that the two-dimensional convex subsets
among the Cp are the faces of a segment triangulation.

Theorem 4 By decomposing the two-dimensional
(Cp)p∈U\S into triangles we get the faces of a segment
triangulation T of U , which we call a triangulation in-
duced by fU,S .

Suppose now that U = conv(S) and let t be a tri-
angle of T and h the affine function that is equal to
fU,S on t. The graph of h is a plane and its intersec-
tion with the graph of f is an ellipse whose downward
projection is the circumcircle of t. Since U is convex,
the function fU,S is convex. Therefore, h ≤ fU,S on
U . It follows that h ≤ f on S ∩ U . We deduce that
the circumcircle of t does not contain any point of S
in its interior. By definition of a face of a segment
Delaunay triangulation, we conclude that:

Theorem 5
1. If U = conv(S), the segment triangulation induced
by fU,S is the segment Delaunay triangulation of S.
2. For any S-polygonal subset U , a segment trian-
gulation of U is induced by fU,S if and only if it is
Delaunay.

Using locally convex functions, we are able to lift
any segment triangulation in the following way:
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Definition 6 Let T be a segment triangulation of U .
The function fU,S,T : U → R is equal to f on S, to
fe,S on any edge e of T , and to ft,S on the interior of
any triangle t of T .

The lifting of T to R3 is the graph of the function
fU,S,T . Using the previous results we have then:

Theorem 6
1. If T is a segment triangulation of U , then fU,S ≤
fU,S,T . Moreover fU,S = fU,S,T if and only if T is
induced by fU,S .
2. If U = conv(S), then T is the segment Delaunay
triangulation of S if and only if fU,S = fU,S,T .

5 Convergence of the flip algorithm

In case of point set triangulations, it is well known
that a flip increases the smallest angle of the triangles.
A weaker result holds for segment triangulations.

Given a segment triangulation T of U , let the slope
of T be:

σ(T ) = sup{ fU,S,T (p)−fU,S,T (q)
|p−q| : p ∈ U \ S, q ∈ U ∩ S,

[p, q] ⊂ U}

Denoting by θ(T ) the minimal angle of the triangles
of T , we get then:

Proposition 7 There exists a positive constant c de-
pending only on f , S, and U such that, for every seg-
ment triangulation T of U , θ(T ) ≥ c/(max(1, σ(T ))).

It is not difficult to prove that σ(T ) < +∞ and, if
T ′ is a segment triangulation of U such that fU,S,T ≤
fU,S,T ′ , then σ(T ) ≤ σ(T ′).

Consider now our algorithm: It starts with a seg-
ment triangulation T0 of conv(S) and computes a se-
quence T1, T2, ..., Tn, ... of triangulations.

Theorem 8 The sequence (fn = fconv(S),S,Tn
)n∈N

decreases to fconv(S),S as n goes to infinity.

Proof. At every stage n, we compute a Delaunay tri-
angulation of the input polygon Pn of the edge at the
head of the queue. Applying Theorem 6 to the S-
polygonal subset U composed of Pn and of all the
edges of Tn adjacent to Pn, we get that fn+1 ≤ fn on
U which implies that fn+1 ≤ fn on conv(S).

It follows that the sequence of functions (fn)n∈N

decreases to a function g : conv(S) → R. The only
thing to show is that g is locally convex, i.e., g is
convex on any open segment ]p0, p1[ included in the
interior of conv(S)\S. Since the angles of the triangles
generated by the algorithm are not too sharp, it can
be shown that, for every point p of ]p0, p1[, there exists
ε > 0 such that the neighbourhood Ip,ε of p of lenght
ε in ]p0, p1[ is included either in a triangle of Tn or in
the input polygon Pn treated at stage n, for infinitely

many integers n. Thus, for these integers n, either fn

or fPn,S is convex on Ip,ε, and since fn+1 ≤ fPn,S ≤
fn on Pn, the function g is a limit of a sequence of
convex functions on Ip,ε. �

Now, note that the set of topologies of all the seg-
ment triangulations of S is finite. We can also show
that the only topology that appears infinitely many
times in the sequence (Tn)n∈N, is the topology of the
segment Delaunay triangulation. Thus:

Corollary 9 There exists an integer N such that, for
all integers n ≥ N , the triangulation Tn has the same
topology as the segment Delaunay triangulation of
conv(S).

6 Conclusion

The aim of this paper was to show that the dual of
the segment Voronoi diagram can be constructed by a
flip algorithm in a finite number of steps. The remain-
ing computational problems concern the implementa-
tion of the algorithm: robustness, time complexity,...
The algorithm has also to be compared with standard
methods for computing segment Voronoi diagrams.

From the theoretical point of view, the fact that
the angles of the triangles that appear during the al-
gorithm cannot be too sharp, makes us believe that
the segment Delaunay triangulation should have some
optimality properties.

At last, possible extensions of segment triangu-
lations should be mentioned: Extension to three-
dimensional space, to more general sites, to more gen-
eral distance functions, ...
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Intersection Graphs of Pseudosegments and
Chordal Graphs: An Application of Ramsey Theory

Cornelia Dangelmayr∗ Stefan Felsner† William T. Trotter‡

Abstract

We investigate which chordal graphs have a represen-
tation as intersection graph of pseudosegments. In
previous work we have shown that all chordal graphs
which can be represented as vertex intersection graph
of subpaths in a tree are pseudosegment intersection
graphs. It was also shown that not all chordal graphs
are intersection graphs of pseudosegments. Study-
ing the limits of representability we now investigate
chordal graphs that can be represented as vertex in-
tersection graphs of substars of a star, where the sub-
stars are restricted to have degree at most three. Us-
ing a Ramsey argument we show that there are graphs
in this class that are not representable as intersection
graph of pseudosegments.

1 Introduction

A family of pseudosegments is understood to be a set
of Jordan arcs in the Euclidean plane that are pair-
wise either disjoint or intersect at a single crossing
point. A family of pseudosegments represents a graph
G, the vertices of G are the Jordan arcs and two ver-
tices are adjacent if and only if the corresponding arcs
intersect. A graph represented by a family of pseu-
dosegments is a pseudosegment intersection graph, for
short a PSI-graph.

PSI-graphs are sandwiched between the larger class
of string-graphs (intersection graphs of Jordan arcs
without condition on their intersection behavior) and
of segment-graphs (intersection graphs of straight line
segments). In one of the first papers on this sub-
ject Ehrlich et al. [4] proved that all planar graphs
are string-graphs. In fact this also follows from
Koebe’s coin graph theorem. Scheinerman in his the-
sis [7] conjectured that planar graphs are segment
graphs. See [3] and [1] for contributions to this prob-
lem. In general the recognition of PSI-graphs is NP-
complete [6].

There are some classes of graphs where segment
representation, hence, as well PSI representations, are
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trivial (e.g. permutation graphs and circle graphs) or
very easy to find (e.g. interval graphs). A large super-
class of interval graphs is the class of chordal graphs.
In [5] Gavril characterized chordal graphs as the ver-
tex intersection graphs of subtrees of a tree. In [2] we
have shown that path graphs, i.e. vertex intersection
graphs of paths in a tree, have a PSI-representation.
If we allow the subtrees to be stars (of large degree),
or (large) caterpillars of maximum degree three, there
need not exist a PSI-representation [2]. We define a
graph K3

n that is not in PSI for n ≥ 33. The vertex set
of K3

n is partitioned as V = VC∪VI such that VC = [n]
induces a clique and VI =

(
[n]
3

)
is an independent set.

The edges between VC and VI represent membership,
i.e, {i, j, k} ∈ VI is connected to the vertices i, j and
k from VC . K3

n can be represented as vertex intersec-
tion graph of subtrees of a star S with

(
n
3

)
leaves. The

leaves correspond to the elements of VI . Each v ∈ VI

is represented by a trivial tree with only one node. A
vertex i of the complete graph on VC is represented
by the star Si connecting to all leaves of triples con-
taining i. This shows that K3

n is chordal. The central
node of the star Si has high degree. If we take a path
of

(
n
3

)
nodes and attach a leaf-node to each node of

the path we obtain a tree T of maximum degree three
such that the graph K3

n can be represented as vertex
intersection graph of subtrees of T . Actually the tree
T and its subtrees are caterpillars of maximum degree
three.

These remarks show that the positive and the nega-
tive result of [2] leave little room for questions. Open
remains the PSI-representation of vertex intersection
graphs of substars with bounded degree of a star. Let
Sn be the chordal graph whose vertices are repre-
sented by all substars with three leaves and all leaves
on a star with n leaves. The following conjecture was
stated in [2]:

Conjecture: For n large enough Sn has no PSI-
representation.

2 Proof of the Conjecture

Our proof makes use of a Ramsey argument, hence, we
need a really large n for the result. Suppose there is a
PSI-representation of Sn. That is, there is a set D of
n pairwise disjoint pseudosegments representing the
substars that are leaves of S and a set Γ of pairwise
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intersecting pseudosegments representing the substars
of S that have three leaves. We obtain a contradiction
in the following two steps.

1. We apply Ramsey Theory to prove the existence
of a ’regular’ PSI-representation of a subgraph
Sm of Sn in a PSI-representation of Sn if n ∈ N
is large enough.

2. By a geometric argument we show that the exis-
tence of a regular PSI-representation of a graph
Sm for m ≥ 6 requires multiple intersections be-
tween pairs of pseudosegments of Γ. This is the
contradiction as pairs of pseudosegments inter-
sect at most once.

To simplify the picture we first transform the plane
such that the pseudosegments of D get vertical seg-
ments of unit length which touch the X-axis with their
lower endpoints at positions 1, 2, . . . , n. Let pi ∈ D be
the pseudosegment containing the point (i, 0). To el-
ements of D we refer as sticks.

With every ordered triple (i, j, k), 1 ≤ i < j < k ≤
n, there is a 3-segment γijk intersecting pi, pj and
pk. Let φijk denote the middle of the three sticks
intersected by γijk. We partition the ordered triples
(i, j, k) into three classes depending of the position
of φijk in the list (pi, pj , pk). If φijk = pi, i.e., the
middle intersection of γijk is on the stick left of the
other two, we assign (i, j, k) to class [L]. Analogously
assign (i, j, k) to class [M ] if φijk is the middle, and to
[R] if φijk is the right most stick of (pi, pj , pk). This
will be one part of our classification.

γijk

γxyz

px pi py

pkpj pz

Figure 1: Two 3-segments γijk and γxyz. Note that
φijk = pk and φxyz = py, hence, γijk ∈ [R] and γxyz ∈
[M ].

The other part is obtained by cutting γijk at the
intersection points with pi, pj and pk. This yields two
arcs γ1

ijk and γ2
ijk each connecting two of the sticks

of D and up to two ends. The ends are of no fur-
ther interest. For the arcs we adopt the convention
that γ1

ijk connects φijk to the stick further left and
γ2

ijk connects φijk to the stick further right. Let ~rx

be a vertical ray downwards starting at (x, 0), i.e.,
the ray pointing down from the lower end of stick px.
Let Is

x(ijk) be the number of intersections of ray ~rx

with γs
ijk and let Js

x(ijk) be the parity of Is
x(ijk), i.e.,

Js
x(ijk) = Is

x(ijk) (mod 2).

Given an ordered 7-tuple (a, i, b, j, c, k, d), we call
γijk the induced 3-segment and let T s

x = Js
x(ijk). The

pattern of the tuple is the binary 8-tuple

(T 1
a , T 1

b , T 1
c , T 1

d , T 2
a , T 2

b , T 2
c , T 2

d ).

γ1
ijk

b ca d

γ2
ijk

Figure 2: A 3-segment γijk ∈ [R] whose pattern with
respect to a, b, c and d is (1, 1, 0, 0, 0, 0, 1, 0), the third
entry T 1

c is 0 because I1
c (ijk) = 2 ≡ 0 (mod 2).

The color of a 7-tuple (a, i, b, j, c, k, d) is the pair
consisting of the class of the induced 3-segment and
the pattern. The 7-tuples are thus colored with the
768 colors from the set [3] × 28. Ordered 7-tuples
and 7-element subsets of [n] are essentially the same.
Therefore we can apply the following Ramsey Theo-
rem with parameters 768, 7, 6.
Theorem: For every choice of numbers r, p, k there
exists a number n such that whenever X is an n-
element set and c is a coloring of the system of all
p-element subsets of X using r colors, then there is
an k-element subset Y ⊆ X such that all the p-subsets
in

(
Y
p

)
have the same color.

This leaves us with a subset Y of sticks such that all
3-segments connecting three of them are of the same
class and all 7-tuples on Y have the same pattern
T = (T 1

1 , T 1
2 , T 1

3 , T 1
4 , T 2

1 , T 2
2 , T 2

3 , T 2
4 ). We will show

that there have to be two 3-segments γijk and γxyz

such that γ1
ijk and γ1

xyz intersect, and so do γ2
ijk and

γ2
xyz, hence, γijk and γxyz intersect at least twice

which is the contradiction we are striving for. To do
so we associate with an arc γab connecting sticks pa

and pb a closed curve γ̆ab as follows: At the intersec-
tion of γab with either of the sticks we append long
vertical segments and connect the lower endpoints of
these two segments horizontally. The union of the
three connecting segments will be called the bow βab

of the curve γ̆ab. If this construction is applied to
several arcs we assume that the vertical segments of
the bows are long enough as to avoid any intersection
between the arcs and the horizontal part of the bows
and any pair of horizontal segments.

Set X(γ, γ′) as the number of crossings of curves γ
and γ′. Then we can count the crossings of any pair
of curves γ̆ab and γ̆xy as:
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Figure 3: Three arcs γ and the corresponding closed
curves γ̆.

X(γ̆ab, γ̆xy) = X(γab, γxy) + X(γab, βxy) +
X(βab, γxy) + X(βab, βxy)

Fact 1 If γ and γ′ are closed curves, then X(γ, γ′) ≡
0 (mod 2).

Fact 1 is a consequence of the Jordan Curve Theorem.
From this we obtain

Fact 2

X(γab, γxy) ≡ X(γab, βxy) + X(βab, γxy) +
X(βab, βxy) (mod 2).

Consider a linear order on {i, j, k, x, y, z}. The par-
ity of the intersections between arcs of type γs

ijk and
bows βab with a, b ∈ {x, y, z} can be read off the pat-
tern T . This can be used, e.g. to prove the following
Lemmas:

Lemma 1 If T 1
1 = T 1

3 and i < x < j < y < k, then
there is an intersection between the arcs γij and γxy.

Proof. We evaluate the right side of the congruence
given in Fact 2.

X(γij , βxy) is the number of intersections of arc γij

with the bow connecting px and py. These intersec-
tions happen on the vertical part, hence on the rays
~rx and ~ry. The parity of these intersections can be
read from the pattern. The position of x between i
and j implies T 1

x = T 1
2 and the position of y between j

and k implies T 1
y = T 1

3 . Hence, X(γij , βxy) ≡ T 1
2 +T 1

3

(mod 2).
From the positions of i left of x and of j between

x and y we conclude that X(βij , γxy) ≡ T 1
1 + T 1

2

(mod 2).
Since the pairs ij and xy interleave the two bows

are intersecting, i.e., X(βij , βxy) = 1.
Together this yields X(γij , γxy) ≡ T 1

2 + T 1
3 +

T 1
1 + T 1

2 + 1 (mod 2). With T 1
1 = T 1

3 we see that
X(γij , γxy) is odd, hence, there is at least one inter-
section between the arcs.

Lemma 2 If T 1
1 6= T 1

3 and x < i < j < y < k, then
there is an intersection between the arcs γij and γxy.

Now consider the case where the class of all 3-
segments is [M ]. In addition to the arcs γij and γxy we
have the arcs γjk = γ2

ijk, and γyz = γ2
xyz. The follow-

ing two lemmas are counterparts to lemmas 1 and 2
they show that depending on the parity of T 2

1 +T 2
3 an

alternating or a non-alternating choice of jk and yz
force an intersection of the arcs γjk and γyz. For the
proofs note that reflection at the y-axis keeps class
[M ] invariant but exchanges the first and the second
arc, the relevant effect on the pattern is T 1

1 ↔ T 2
4 and

T 1
3 ↔ T 2

2 .

Lemma 3 If T 2
2 = T 2

4 and x < j < y < k < z, then
there is an intersection between the arcs γjk and γyz.

Lemma 4 If T 2
2 6= T 2

4 and x < j < y < z < k, then
there is an intersection between the arcs γjk and γyz.

The table below shows that it is possible to select
ijk and xyz out of six numbers such that the positions
of ij and xy respectively jk and yz are any combina-
tion of alternating and non-alternating. Hence, ac-
cording to the lemmas and still assuming that the
class is [M ] we have at least two intersections be-
tween 3-segments γijk and γxyz chosen appropriately
depending on the entries of pattern T . We represent
elements of ijk by a box � and elements of xyz by
circles •.

� • � • � • [T 1
1 = T 1

3 and T 2
2 = T 2

4 ]
� • � • • � [T 1

1 = T 1
3 and T 2

2 6= T 2
4 ]

• � � • � • [T 1
1 6= T 1

3 and T 2
2 = T 2

4 ]
• � � • • � [T 1

1 6= T 1
3 and T 2

2 6= T 2
4 ]

As an example: If the class is [M ] and T =
(1, ?, 1, ?, ?, 0, ?, 1), where the ?’s can be filled arbi-
trarily, then T 1

1 = T 1
3 and T 2

2 6= T 2
4 . From the table

we see that we have to choose two 3-segments γijk and
γxyz such that the order is i < x < j < y < z < k to
obtain 3-segments intersecting at least twice.

The cases for the other classes [L] and [R] can be
dealt with similarly. This yields a proof of the Con-
jecture of [2].
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Augmenting the Connectivity of Planar and Geometric Graphs

Ignaz Rutter∗ Alexander Wolff†

Abstract

In this paper we study some connectivity augmenta-
tion problems. Given a connected graph G with some
property P, we want to make G 2-vertex connected
(or 2-edge connected) by adding edges such that the
resulting graph keeps property P. The aim is to add
as few edges as possible. The property that we con-
sider is planarity, both in an abstract graph-theoretic
and in a geometric setting.

We show that it is NP-hard to find a minimum-
cardinality augmentation that makes a planar graph
2-edge connected. For making a planar graph 2-
vertex connected this was known. We further show
that both problems are hard in the geometric setting,
even when restricted to trees. On the other hand we
give polynomial-time algorithms for the special case
of convex geometric graphs.

We also study the following related problem. Given
a plane geometric graph G, two vertices s and t of G,
and an integer k, how many edges have to be added
to G such that G contains k edge- (or vertex-) disjoint
s–t paths? For k = 2 we give optimal worst-case
bounds; for k = 3 we characterize all cases that have
a solution.

1 Introduction

Augmenting a given graph to increase its connectivity
is important, e.g., for securing communication net-
works against node and link failures. The planar
version of the problem, where the augmentation has
to preserve planarity, also has applications in graph
drawing [8]. Many graph-drawing algorithms guaran-
tee nice properties (such as convex faces) for graphs
with high connectivity. To apply such an algorithm
to a less highly connected graph, one adds edges un-
til one reaches the required level of connectivity, uses
the algorithm to produce the drawing, and finally re-
moves the added edges again. However, with each
removal of an edge one might lose some of the nice
properties (such as the convexity of a face). Hence
it is natural to look for an augmentation that uses

∗Fakultät für Informatik, Universität Karlsruhe, P.O. Box
6980, D-76128 Karlsruhe, Germany. Supported by grant
WO 758/4-3 of the German Science Foundation (DFG).
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as few edges as possible. Recall that a graph is k-
vertex connected (k-edge connected) if the removal of
any subset of k−1 vertices (edges) does not make the
graph disconnected.

We consider the following two problems.

Planar 2-Vertex Connectivity Augmentation
(PVCA):

Given a connected planar graph G = (V,E)
with n := |V | and m := |E|, find a smallest
set E′ of vertex pairs such that the graph
G′ = (V,E ∪E′) is planar and 2-vertex con-
nected (biconnected).

Planar 2-Edge Connectivity Augmentation
(PECA) is defined as PVCA, but with 2-vertex
connected replaced by 2-edge connected (bridge-
connected).

The corresponding problems without the planarity
constraints have a long history, both for directed and
undirected graphs. The unweighted cases can be
solved in polynomial time, while the weighted ver-
sions are hard [2]. Frederickson and Ja’Ja’ [4] gave
O(n2)-time factor-2 approximations and showed that
augmenting a directed acyclic graph to be strongly
connected, and augmenting a tree to be bridge- or
biconnected, is NP-complete—even if weights are re-
stricted to the set {1, 2}. Hsu [5] gave an O(m + n)-
time algorithm for (unit-weight) 2-vertex connectivity
augmentation.

Kant and Bodlaender [8] showed that PVCA is NP-
complete and gave 2-approximations for both PVCA
and PECA that run in O(n log n) time. Their 1.5-
approximation turned out to be wrong [3]. Fialko and
Mutzel gave a 5/3-approximation [3]. Kant showed
that PVCA and PECA can be solved in linear time
for outerplanar graphs [7].

Provan and Burk [10] considered related problems.
Given a planar graph G = (V,EG) and a planar bicon-
nected (bridge-connected) graph H = (V,EH) with
EG ⊆ EH , find a smallest set E′ ⊆ EH such that
G′ = (V,EG ∪E′) is planar and biconnected (bridge-
connected). They show that both problems are NP-
hard if G is not necessarily connected and give O(n4)-
time algorithms for the connected cases.

We also consider a geometric version of the above
problems. Recall that a geometric graph is a graph
where each vertex v corresponds to a point µ(v) in
the plane and where each edge uv corresponds to the
straight-line segment µ(u)µ(v). We are exclusively
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problem planar outerplanar geometric convex
PVCA NPC [8] O(n) [7] NPC O(n)
PECA NPC O(n) [7] NPC O(n)
weighted PVCA NPC open NPC O(n2)
weighted PECA NPC open NPC O(n)

Table 1: Complexity of PVCA and PECA.

interested in geometric graphs that are plane, that
is, whose edges intersect at most in their endpoints.
Therefore, in this paper by geometric graph we always
mean a plane geometric graph. Given a geometric
graph G we again want to find a (small) set of vertex
pairs such that adding the corresponding edges to G
leaves G plane and augments its connectivity.

Rappaport [11] has shown that it is NP-complete
to decide whether a set of line segments can be con-
nected to a simple polygon, i.e., geometric PVCA and
PECA are NP-complete. Abellanas et al. [1] have
shown worst-case bounds for geometric PVCA and
PECA. For geometric PVCA they show that n − 2
edges are sometimes needed and are always sufficient.
For geometric PECA they prove that 2n/3 edges are
sometimes needed and 6n/7 edges are always suffi-
cient. In the special case of plane geometric trees
they show that n/2 edges are sometimes needed and
that 2n/3 edges are always sufficient for PECA.

Our results. First we show that PECA is NP-
complete, too. This answers an open question posed
by Kant [6].

Second, we sharpen the result of Rappaport [11] by
showing that geometric PVCA and PECA are NP-
complete even if restricted to trees.

Third, we give algorithms that solve geometric
PVCA and PECA in polynomial time for convex
geometric graphs, that is, graphs whose vertex sets
correspond to point sets in convex position.

Table 1 gives an overview about our results and
what has been known previously about the complexity
of PVCA and PECA.

Fourth, we consider a related problem, the geomet-
ric s–t path augmentation problem. Given a plane
geometric graph G, two vertices s and t of G, and
an integer k > 0, is it possible to augment G such
that it contains k edge-disjoint (k vertex-disjoint) s–t
paths? We restrict ourselves to k ∈ {2, 3}. For k = 2
we show that edge-disjoint s–t path augmentation can
always be done and needs at most n/2 edges. We give
an algorithm that computes such an augmentation in
linear time. The tree that yields the above-mentioned
lower-bound of Abellanas et al. [1] also shows that our
bound is tight. For k = 3 we show that edge-disjoint
s–t path augmentation is always possible, and we give
an O(n2)-time algorithm that decides whether a given
graph has a vertex-disjoint s–t path augmentation.

2 Complexity results

In this section we show that PECA is NP-complete.
This settles an open problem posed by Kant and Bod-
laender [8]. Our proof also implies that PVCA is
NP-complete, which was already shown by Kant and
Bodlaender [8].

Theorem 1 PECA is NP-complete.

The hardness proof is by reduction from Pla-
nar3SAT, which is known to be NP-hard [9]. The
main idea is to use a base graph that is 3-connected
(and hence has a unique embedding) and to add some
leaves (i.e., degree-1 vertices) to this graph. These
leaves can then be embedded in different faces of the
graph. It is clear that in order to increase the con-
nectivity the degree of each of the leaves must be en-
larged. Ideally (i.e., if the given planar 3SAT formula
is satisfiable) the embedding is chosen in such a way
that the number of leaves in each face is even, be-
cause in this case we need only one edge for every two
leaves, which is optimal.

Now we consider geometric PVCA and geometric
PECA for connected graphs. These problems are NP-
complete as well, however for reasons very different
from the planar case. In the geometric setting the
embedding is fixed, but two leaves lying in the same
face cannot necessarily be connected by a straight-
line segment without violating planarity. Especially
adding one edge can rule out several others. For ex-
ample in a square one could add one of the diagonals,
but not both. This can again be used to construct a
reduction from Planar3SAT.

Theorem 2 Let G be a plane geometric graph and
k > 0 be an integer. It is NP-complete to decide
whether adding k edges suffices to make G bridge- or
biconnected. This is true even if G has exactly 2k
leaves and G is a tree.

Once we have shown the result for connected graphs
it is easy to extend this to trees. We reduce from the
previous case. Let G be a connected plane geomet-
ric graph. As long as G contains a cycle, replace an
arbitrary edge of a cycle by the construction shown
in Figure 1. Call the resulting tree T . Clearly an
optimal augmentation connects the two leaves of the
construction. Hence an optimal augmentation of T
induces an optimal augmentation of G.
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Figure 1: Construction
for removing cycles in G.

Figure 2: A cycle (left)
and a near-cycle (right).

3 Convex geometric graphs

In this section we consider the geometric version of
PVCA and PECA in the special case that the input
graph is a convex geometric graph. We call an edge
outer edge if it belongs to the convex hull and inner
edge otherwise.

Note that PVCA for a convex geometric graph G
is trivial: G is biconnected if and only if it contains all
edges of the convex hull. Thus we focus on PECA.

If a connected convex geometric graph does not
contain an inner edge then it is either a cycle or a
near-cycle, see Figure 2. While the cycle is already
bridge-connected, we need a single edge to make the
near-cycle bridge-connected.

The basic idea is to decompose an arbitrary convex
geometric graph into cycles and near-cycles and use
this decomposition to compute an edge set of mini-
mum cardinality that bridge-connects the graph.

Given a convex geometric graph G = (S, E) and an
inner edge e of G, we define an operation that we call
splitting G at e. Splitting G at e yields two subgraphs
G+

e and G−
e of G induced by the vertices to the left

of or on e and to the right of or on e, respectively.

Lemma 3 Let G be a connected convex geometric
graph and let f be an outer edge of G. If G is not a
cycle or a near-cycle, then there exists an inner edge e
such that G+

e or G−
e is a cycle or a near-cycle that does

not contain f .

We use Lemma 3 to repeatedly cut off (near-) cy-
cles (i.e., remove all its edges except the split-edge)
from G. Each time we cut off a near-cycle, we add to
our augmentation the edge that completes the cycle.
This is optimal since no edge can cross the split-edge
and hence both sides can be processed independently.

If an endpoint of the split-edge is a leaf, we can also
remove the split-edge. Otherwise we mark the split-
edge and remove it as soon as one of its endpoints
becomes a leaf. This ensures that every near-cycle
that is cut off actually requires an additional edge in
the augmentation. Let’s summarize the above.

Theorem 4 Let S ⊂ R2 be a set of n points and let
G = (S, E) be a connected convex geometric graph. If
the convex hull of S and the corresponding embedding
of G are given, we can compute in O(n) time and
space a set E′ of vertex pairs of minimum cardinality
such that G′ = (S, E ∪ E′) is bridge-connected.

By combining the previous approach with dynamic
programming we can also solve the case where each
pair of vertices has a positive weight and the aim is to
minimize the total weight of the augmentation. Time
and space consumption become quadratic.

4 s–t path augmentation

In this section we consider the following problems:
Given a plane geometric graph G = (S, E), two ver-
tices s 6= t of G, and an integer k > 0, find a smallest
set E′ of vertex pairs such that G′ = (S, E ∪ E′) is
plane and contains k edge-disjoint s–t paths. We also
consider the corresponding problem for vertex-disjoint
s–t paths. We treat the cases k = 2 and k = 3.

4.1 Path augmentation for k=2

The case k = 2 is a relaxed version of PECA and
PVCA. Although the problem is very restricted in
comparison to full 2-edge or 2-vertex connectivity
augmentation, it does not seem to be much easier.
Like Abellanas et al. [1] we consider the correspond-
ing worst-case problem: how many edges are needed
for an s–t path augmentation in the worst case?

Let’s quickly discuss the vertex-disjoint case. For
the lower bound we can re-use the example of Abel-
lanas et al. [1]: a zig-zag path with end vertices s and t
whose vertices are in convex position. There, n − 2
edges are needed to establish two vertex-disjoint s–t
paths. On the other hand it is not hard to see that
n− 2 edges always suffice.

Now let’s turn to the more interesting edge-disjoint
case. Here, the zig-zag path yields a lower bound of
n/2. Note that the solution actually makes the graph
bridge-connected. In fact, Abellanas et al. [1] conjec-
ture that any geometric n-vertex tree can be made
bridge-connected by adding at most n/2 edges. We
show that there is always an s–t path augmentation
with at most n/2 edges, which is tight by the zig-zag
example. We also give a simple algorithm that finds
such an augmentation in linear time.

Lemma 5 Let S ⊆ R2, let G = (S, E) be a connected
plane geometric graph, and let G′ = (S, E′) with E ⊆
E′ be any plane geometric graph that contains G. If
s and t are two vertices of G, and G′ contains a path
of length ` between s and t, then there exists an s–t
path augmentation of G with at most ` edges.

The proof shows how the path in G′ can be used to
determine an augmentation for G. The most inter-
esting case is that the path in G′ uses an edge that
actually is a bridge b in G. The crucial step is to show
that we can add a suitable edge to G that induces a
cycle with b on it, i.e., b is no longer a bridge. In all
other cases we either do not need to add an edge, or
we can use the edge of the path.
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Let G = (S, E) be a geometric graph. A triangula-
tion of G is a triangulation T = (S, E′) of the convex
hull of S with E ⊆ E′. It is well known that every
geometric graph can be triangulated [1]. We show:

Lemma 6 Let S ⊂ R2 be a set of n points and let
T = (S, E) be a triangulation of the convex hull of S.
Then the diameter of T is at most n/2.

The basic idea is to consider growing neighborhoods
of the vertices s and t. The i-th iterated neighborhood
Ni(v) of a vertex v contains all vertices of G within
(graph-theoretic) distance at most i from v. Let k be
the smallest integer such that Nk(s) ∩Nk(t) 6= ∅. We
use a lower bound on the size of i-th iterated neigh-
borhoods and the fact that Nk−1(s) ∩Nk−1(t) = ∅ in
order to obtain an upper bound on k. Since G con-
tains an s–t path of length at most 2k, this upper
bound implies the claim.

Lemmas 5 and 6 immediately yield the following.

Theorem 7 Let S ⊂ R2, let G = (S, E) be any plane
connected geometric graph with n vertices, and let s
and t be any two vertices of G. Then there always
exists a set E′ of at most n/2 pairs of points in S
such that G′ = (S, E ∩E′) is again a plane geometric
graph and contains two edge-disjoint s–t paths. Such
a set can be computed in linear time.

This bound can be improved if the convex hull of S
does not contain too many points. Take any trian-
gulation and consider the iterated neighborhoods of s
and t. As long as a neighborhood has not reached the
convex hull it grows by at least three vertices with
every iteration. As soon as both neighborhoods have
reached the convex hull, we can connect them by a
path along the convex hull.

Lemma 8 The diameter of a plane triangulation T =
(S, E) is at most 2(n+3)/5+h/2, where n = |S| and
h is the number of vertices on the convex hull of S.

This improves Lemma 6 for h < (n− 12)/5.

4.2 Path augmentation for k=3

We first consider the problem of finding three vertex -
disjoint s–t paths in a geometric graph. Let T =
(S, E) be any plane geometric triangulation and let s
and t be any two vertices of T . An edge connecting
two vertices of the convex hull that does not belong
to the convex hull itself is called a chord. A chord uv
is (s, t)-separating if s and t are in different connected
components of T \ uv.

Obviously T has three vertex-disjoint s–t paths if
and only if T does not contain an (s, t)-separating
chord. Hence we can rephrase our original question
as follows: does any plane geometric graph G without

(s, t)-separating chords have a triangulation without
(s, t)-separating chords? Such a triangulation would
then contain the desired augmentation.

Theorem 9 Let S ⊂ R2 be a set of n points, let
G = (S, E) be a connected plane geometric graph, and
let s 6= t be two vertices of G. If G contains no (s, t)-
separating chord, then there is a triangulation TG of G
that contains three vertex-disjoint s–t paths. Such a
triangulation can be computed in O(n2) time.

Now we consider the problem of finding three edge-
disjoint s–t paths. For triangulations we have the
following characterization.

Theorem 10 Let T = (S, E) be a triangulation of
the convex hull of S and let s, t ∈ S. Then T contains
three edge-disjoint s–t paths if and only if s and t
have degree at least 3.

It is easy to check whether a given geometric graph
can be triangulated in such a way.
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Colour Patterns for Polychromatic Four-Colourings
of Rectangular Subdivisions
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Abstract

A non-degenerate rectangular subdivision is a subdi-
vision of a rectangle into a set of non-overlapping rect-
angles S, such that no four rectangles meet in a point.
We consider a problem that Katz and colleagues call
strong polychromatic four-colouring: Colouring the
vertices of the subdivision with four colours, such that
each rectangle of S has all colours among its four cor-
ners. By considering the possible colouring patterns,
we can give short constructive proofs of colourabil-
ity for subdivisions that are sliceable or one-sided.
We also present techniques and observations for non-
sliceable, two-sided subdivisions.

1 Introduction

A rectangular subdivision is a set S of rectangles with
disjoint interiors whose union is a rectangle r(S). The
set of vertices of S is the union of the sets of vertices
(corners) of the rectangles in S. If S contains four
rectangles that meet in a single vertex, we say that
S is degenerate. A non-degenerate rectangular subdi-
vision is a rectangular subdivision in which each ver-
tex is a corner of only one or two rectangles. Unless
otherwise specified, a subdivision is a non-degenerate
rectangular subdivision.

Dinitz et al. [1] showed that it is possible to colour
the vertices of any subdivision S with three colours
so that each rectangle in S is polychromatic—has at
least one vertex of each colour. They conjectured that
this is also possible with four colours. This conjecture
is in fact a special case of a much older conjecture by
Seymour [6] concerning the edge-colouring of a special
class of planar graphs, so-called 4−graphs. Seymour’s
conjecture was proven by Guenin [3]. We are thankful
to Dimitrov et al. [2] for pointing out that Guenin’s
result implies that each non-degenerate subdivision
has indeed a strong polychromatic four-colouring.
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Figure 1: From left to right: a degenerate subdivision
that is not colourable; a sliceable subdivision (but not
one-sided, because of the fat segment); a one-sided
(but not sliceable) subdivision.

Guenin’s proof is non-constructive. In the remain-
der of this abstract we focus on constructive proofs for
specialized subdivisions and report on observations
concerning so-called colour patterns. For any subdi-
vision S let a colouring pattern of S be an assignment
of four colours to the vertices of S such that each
rectangle is polychromatic. We say S is colourable if
it admits at least one colour pattern. Let a boundary
colouring pattern of S be the restriction of a colouring
pattern of S to the corners of the boundary of S.

Known and new results. Not all degenerate rectan-
gular subdivisions are colourable (see Figure 1).

Sliceable subdivisions. A subdivision is called
sliceable if it can be obtained by recursively slicing
a rectangle with horizontal and vertical lines. Horev
et al. [5] call these guillotine subdivisions, and show
that they are always colourable. We give a short proof
using boundary colour patterns.

Canonical form. We can order the rectangles of a
subdivision so that prefixes form monotone staircases;
for some subdivisions this order is unique. We show
that any colouring pattern of a subdivision can be
realized by a subdivision with a unique order, and
give a procedure to convert any given subdivision into
such a canonical form.

One-sided subdivisions. A maximal line seg-
ment of S is a line segment that is completely covered
by edges of the rectangles of S for which no extension
is covered. A subdivision is one-sided if and only if,
for every maximal line segment s, the vertices in the
interior of s are T-junctions that all have the leg on
the same side of s. We will prove that every one-sided
subdivision is colourable.

Other subdivisions. Here we present some ob-
servations regarding possible algorithms or hypothet-
ical counterexamples. We call a subdivision atomic
or semi-atomic if every proper subset S′ ⊂ S such
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that S′ is a subdivision, consists of only one rectan-
gle, or at most two rectangles, respectively. We show
that if there is a subdivision that is not colourable,
the smallest such subdivision must be semi-atomic,
or semi-atomic with one additional rectangle glued to
an external edge. We also study sets of boundary
colour patterns of different subdivisions of staircases
which are surprisingly dissimilar.

2 Corner colour patterns

Consider any subdivision S, whose union is a rectan-
gle r(S). We say S is even if |S| is even, and S is odd
if |S| odd.

Lemma 1 If S is odd and colourable, then every
boundary colouring pattern is polychromatic.

If S is even and colourable, then in every boundary
colouring pattern of S, either all four corners have the
same colour or two corners have the same colour and
two corners have another colour.

Proof. Number the colours to be used from 1 to 4.
For a given colouring pattern of S, let Cc be the num-
ber of corners of r(S) with colour c, and let Ic the
number of other vertices with colour c. Note that
each of the corners of r(S) gives its colour to exactly
one rectangle of S, while the remaining vertices of S
give their colour to exactly two rectangles of S. No
rectangle can have two corners of the same colour.
Thus, for every colour c, we have Cc + 2Ic = |S|.

When S is odd, Cc must be odd, and therefore pos-
itive for each colour. Since

∑
c∈{1,2,3,4} Cc = 4, this

implies that Cc = 1 for each c ∈ {1, 2, 3, 4}.
When S is even, Cc must be even, and therefore

either 0, 2 or 4, for each colour. �

Subdivisions thus allow five boundary colouring
patterns:

all corners have different colours;
corners use two colours, paired horizontally;
corners use two colours, paired vertically;
corners use two colours, paired diagonally;
all corners have the same colour.

3 Sliceable subdivisions

Theorem 2 Sliceable subdivisions are colourable.

Proof. We prove by induction on the number of
rectangles, that every odd sliceable subdivision with
|S| ≤ n can be coloured and must have as its only
boundary colouring pattern, and every even sliceable
subdivision with |S| ≤ n can be coloured and has at
least two of { , , } as boundary colouring patterns.

When n = 1, S has boundary colouring pattern .

Now, consider a subdivision with |S| = n + 1 com-
posed of two subdivisions, L and R, separated by a
vertical line (the case of a horizontal separating line
is symmetric). By induction, both L and R can be
coloured separately. We distinguish four cases, de-
pending on whether L and R are odd or even.

(i) If L and R are both odd, then, if necessary,
we relabel the colours of R to match the two corners
shared with L. The corners of r(S) now use the re-
maining two colours. We may swap these colours in R
so on the boundary they are paired either horizontally

or diagonally , satisfying the induction hypothesis.
(ii) If L is even and R is odd, then S is odd. By

induction, L has as a boundary colouring pattern or
. We can recolour R to match L on shared vertices,

resulting in a pattern for the boundary of S.
(iii) The case of L odd and R even is symmetric.
(iv) For the final case, in which L, R and S are

all even, we use the following notation for compos-
ing boundary colouring patterns: PLPR → PS means
that joining boundary colouring pattern PL for L with
PR for R gives boundary colouring pattern PS for S.

If L and R are both even and admit the pattern,
then S admits the pattern , ( → ). Furthermore,
by induction, both L and R admit at least one more
pattern out of and . Since → , → ,

→ , and → , we have that S has as a
pattern at least one of and .

If L and R are both even and L does not admit the
pattern, then, by induction, L admits both the

and patterns. R admits at least one of and .
Thus we can obtain the boundary colouring patterns

→ and → , or → and → ; in
both cases we obtain patterns and for S.

If L and R are both even and R does not admit
the pattern, we apply the above arguments sym-
metrically and again S admits and as boundary
colouring patterns.

Therefore the theorem holds for S by induction. �

4 Canonical form

One can build up a subdivision by listing rectan-
gles R1, . . . , Rn such that, for any i, the rectangles
R1, . . . , Ri cover the rectangle defined by the lower
right corner of S and the upper left corner of Ri. That
is, the rectangles with indices ≤ i are separated from
those with index > i by a staircase that is monoton-
ically increasing in x and y. Such an ordering can
be found for any subdivision by rotating it clockwise
and extending the “aboveness” partial order to a total
order [4]. We say that a subdivision has a canonical
ordering if there is a unique extension. We can use
aboveness to convert a subdivision into a canonical
form – a subdivision with a unique extension.
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Figure 2: A subdivision in ↖-order and ↗-order.

Lemma 3 One can in O(n log n) time convert a sub-
division into canonical form – having unique ordering
– without changing the colouring patterns.

Proof. [Sketch] Consider the rotated subdivision S
as a collection of open rectangles, and open maximal
line segments (i.e. not containing their endpoints, but
extending vertically or horizontally as far as possible –
ending at T-junctions.) These are convex and disjoint;
any set of disjoint convex objects can be given a total
order consistent with aboveness for the direction from
upper left to lower right corners of S.

Now, for the vertical and horizontal maximal seg-
ments, replace the x and y coordinates, respectively,
by their ranks, redraw the subdivision and rotate it
back, as in Figure 2. Including the segments in the
ordering makes the ordering unique, and the trans-
formation builds that uniqueness into the subdivi-
sion. This transformation does not affect the bipartite
graph in which each rectangle connects to the vertices
at its four corners. �

5 One-sided subdivisions

Theorem 4 One-sided subdivisions are colourable.

Proof. We may assume that S = {R1, . . . , Rn} is
a one-sided subdivision in canonical form (↖-order),
since conversion to canonical form preserves one-
sidedness. We claim that any two consecutive rect-
angles in ↖-order share a corner: Assume inductively
this claim holds after adding Ri−1. Up to reflection
we may assume we are adding Ri above Ri−1; let h
be the maximal line segment that contains the top
edge of Ri−1. Since S is in ↖-order, the left endpoint
l(h) of h must be the top left corner tl(Ri−1) of Ri−1,
and the right endpoint r(h) of h must be the bottom
right corner of Ri. If r(h) is also the top right corner
tr(Ri−1) of Ri−1, then Ri and Ri−1 share that cor-
ner. Otherwise tr(Ri−1) is a downward T-junction on
h. Since S is one-sided, the bottom left corner bl(Ri)
of Ri cannot be an upward T-junction on h, so we
have bl(Ri) = l(h) = tl(Ri−1), proving our claim.

We now define a path through S that we can use to
colour S. Consider the n rectangles of S in ↖-order,
R1, . . . , Rn. They define a path u0, . . . , un as follows:
let u0 be the lower right corner of R1, let un be the
upper left corner of Rn, and let ui (for 0 < i < n)
be the corner shared by Ri and Ri+1 (in case of a
tie, the left- and bottommost corner common to Ri

and Ri+1 is chosen). Symmetrically, we define a path
v0, . . . , vn from the lower left corner to the upper right

R
R′Q R
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R′Q
R

R′

Q
R′

RQ R′

R
Q

R′

RQ R′

R
Q

Figure 3: In all cases, Q appears between R and R′

either in ↖-order or in ↗-order.

corner of S, following the rectangles in ↗-order – the
canonical order of their horizontal mirror image. Ties
are now broken in favour of the right- and topmost
corner shared by two rectangles.

We claim that these two paths are vertex-disjoint.
Suppose, for the sake of contradiction, that there is a
vertex w that appears on both paths. Then the two
rectangles R and R′ of which w is a corner must be
adjacent in both ↖- and ↗-order. Moreover, R and
R′ share only one corner, otherwise the tie-breaking
mechanism would have put w in one path and the
other shared corner in the other path. Now consider
all ways in which R and R′ can share exactly one
corner. One can verify (see Figure 3) that in at least
one of the two orderings, R and R′ are not adjacent.
This contradicts our assumption, proving our claim.

We now colour ui black and vi red for even i, and
we colour ui white and vi green for odd i. Since each
rectangle has two successive corners on each path, this
ensures that each rectangle is polychromatic. �

6 On the hypothetical smallest counterexample

Lemma 5 If S is even and colourable, it allows at
least one boundary colouring pattern out of and ,
and at least one pattern out of and .

Proof. Consider a subdivision with boundary colour
pattern and assume that all corners are coloured
black. Consider the graph whose nodes are the ver-
tices of S that are coloured black or white, and whose
arcs are given by the pair of the black corner and
the white corner of each rectangle in S. This graph
consists of two paths whose four end nodes are the
corners of S, and possibly a number of cycles; if on
any of these paths or cycles we swap all black and
white vertices, we maintain a valid colouring pattern.

Since each rectangle contains only one arc, the two
paths cannot cross inside a rectangle; since each ver-
tex has degree at most two, the two paths cannot
cross in a vertex either. So the path that starts in the
lower left corner of S ends in either the upper left or
the lower right corner of S (never in the diagonally
opposite corner). In the first case, we can change the
-pattern into a -pattern by swapping the colours on

that path; in the second case, we can change the -
colouring into a -colouring by swapping the colours
on that path—see Figure 4. Note that by swapping
colours in this way, every rectangle is either left un-
changed (if the arc defined by it is not on the swapping
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Figure 4: Changing colour patterns into others.

path) or it has its black corner turned white and its
white corner turned black, so that each rectangle re-
mains polychromatic. Hence every subdivision that
admits a -pattern also admits a or a pattern.

With similar arguments we can show that a pat-
tern can always be changed into a or , and that
and can always be changed into or . �

For any subdivision S let the set of bound-
ary colouring patterns that S admits be P (S).
Then P (S) is one of the eleven sets: ∅, { , },
{ , }, { , }, { , }, { , , }, { , , }, { , , },
{ , , }, { , , , }, and { }. Figure 5 shows the
smallest subdivisions for the last eight sets.

Figure 5: Subdivisions for each good pattern set.

Observe that if there exists a subdivision S such
that P (S) = { , }, for every colouring pattern of
S, the top corners of S will have the same colour.
We can extend S to a subdivision S′ by gluing an
a rectangle R across the top of S. Then S′ is not
colourable as every colouring pattern of S forces R
to be non-polychromatic. Hence, if any subdivision
has P (S) = { , } or (by symmetry) P (S) = { , },
then there are subdivisions that are not colourable.
Therefore, we say that ∅, { , } and { , } are bad
pattern sets and the other pattern sets are good.

Theorem 6 Suppose there exist subdivisions with
bad boundary colouring pattern sets. Let S be a
smallest such subdivision. Then S does not contain
any proper subset T whose union forms a rectangle
with |T | > 2, that is, S is semi-atomic.

Proof. [Sketch] We claim that if S contains a proper
rectangular subset T with |T | > 2, then we can con-
struct a subdivision S′ with |S′| < |S|, such that
each colouring pattern of S′ can be transformed into a
colouring pattern of S with the same boundary colour-
ing pattern. Since S is the smallest subdivision with
a bad pattern set, the smaller subdivision S′ must
have a good pattern set. Now, since P (S′) ⊆ P (S),
and no superset of a good pattern set is bad, S must
have a good boundary colouring pattern set. But,
this contradicts our assumption that S is a smallest
subdivision with a bad pattern set.

To prove our claim we show how to construct S′ and
transform a colouring pattern for S′ into a colouring
pattern for S. If P (T ) = { }, then let S′ be the sub-
division obtained from S by replacing T with a single
rectangle T ′. Consider a colouring pattern of S′. By
definition of a valid colouring, T ′ must be polychro-
matic. Since ∈ P (T ), we can remove T ′ from S′

again, colour T with the same colours on its corners
as T ′, and insert T in S′. Thus we obtain a colour-
ing pattern for S, such that P (S) = P (S′). If P (T )
differs from { }, similar constructions are possible: if
P (T ) ⊇ { , }, we replace T by two rectangles sepa-
rated by a vertical line; if P (T ) ⊇ { , }, we replace
T by two rectangles separated by a horizontal line; if
P (T ) ⊇ { , , }, we shrink T to a line segment. �

7 Looking for algorithms and counterexamples

Trying to generalize the argument for colouring slice-
able subdivisions, we consider cutting a subdivision
S in ↖-order into a prefix set of rectangles S1 and
a postfix set of rectangles S2 and colouring each sep-
arately. Let P (S1) be the set of boundary colouring
patterns along the cut where each pattern is relabeled
to be in lex min order. Let S′

2 be S2, reflected in the
line x = y. We say that P (S1) and P (S′

2) couple with
pattern p ∈ P (S1) if S2 can be relabeled so that S is
colourable with pattern p along the cut.

We enumerated sets of rectangles that may arise as
a prefix in a subdivision in ↖-order. For stairs with
four corners, 359 distinct stair colouring pattern sets
were found. Of the possible 15 patterns the min set
size was 3 while the max was 14 with average 8.6. For
each pair of stair colouring pattern sets, the min size
of the coupling set was 1 while the max was 14 with
average 5.5. For each stair pattern we found a pair
where that was the only pattern they coupled along.
In the light of these results Guenin’s intricate proof is
particularly impressive.
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Polyhromatic 4-Colorings of Rectangular Partitions

Darko Dimitrov∗∗ Elad Horev† Roi Krakovski††

Abstract

A rectangular partition is a partition of a plane rectan-
gle into an arbitrary number of non-overlapping rect-
angles such that no four rectangles share a corner. In
this note, it is proven that every rectangular partition
admits a vertex coloring with four colors such that ev-
ery rectangle, except possibly for the outer rectangle,
has all four colors on its boundary. This settles a con-
jecture of Dinitz et al. [3]. The proof is short, simple
and based on 4-edge-colorability of a specific class of
planar graphs.

1 Introduction

A polychromatic k-coloring of a plane graph G is
an assignment of k colors to the vertices of G such
that each face of G, except for possibly the outer
face, has all k colors on its boundary. More for-
mally, a polychromatic k-coloring of a plane graph
G is a mapping ϕ : V (G) → {1, . . . , k}, such that
for every internal face of G there exist k vertices
{u1, . . . , uk} on its boundary such that ϕ(ui) = i, for
i = 1, . . . , k. Note that a polychromatic k-coloring al-
lows monochromatic edges. The polychromatic num-
ber of a plane graph G, namely χf (G), is the maxi-
mum number k such that G admits a polychromatic
k-coloring.

A general and elegant result concerning polychro-
matic colorings of plane graphs was recently obtained
by Alon et al. [1]. Let g be the length of a shortest
face of a plane graph G. Clearly, χf (G) ≤ g. Alon
et al. proved that for any plane graph G, χf (G) ≥
b(3g − 5)/4c, and showed that this bound is suffi-
ciently tight by presenting plane graphs G for which
χf (G) ≤ b(3g + 1)/4c. In addition, they proved that
for a plane graph G, determining whether χf (G) ≥ 3
is NP -hard.

Mohar and Škrekovski [9] proved that every sim-
ple plane graph admits a polychromatic 2-coloring.
Their proof is short and relies on the four-color theo-
rem. Bose et al. [2] provided an alternative proof that
does not rely on the four-color theorem. Hoffmann
and Kriegel [5] proved that every 2-connected bipar-
tite plane graph can be transformed into an Eulerian
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triangulation by adding edges only. Since every plane
Eulerian triangulation is 3-colorable in the regular
sense [11], it follows that every 2-connected bipartite
plane graph admits a polychromatic 3-coloring. Horev
and Krakovski [8] proved that every plane graph of de-
gree at most 3, other than K4 (the complete graph on
four vertices), admits a polychromatic 3-coloring. Fi-
nally, Horev et al. [6] proved that every 2-connected
cubic bipartite plane graph admits a polychromatic
4-coloring. This result is tight, since any such graph
must contain a face of size four.

A rectangular partition is a partition of a plane
rectangle into an arbitrary number of non-overlapping
rectangles, such that no four rectangles meet at a com-
mon vertex (see Fig. 1 for an illustration). The order
of a rectangular partition is the number of rectangles
in the partition including the outer rectangle. One
may view a rectangular partition as a plane graph
whose vertices are the corners of the rectangles and
edges are the line segments connecting these corners.
Consequently, we refer to the corners of a rectangular
partition as its vertices.

A rectangle r of a rectangular partition R may have
numerous vertices of R on its boundary. However, the
rectangle r is defined by a set of exactly four vertices
of R, denoted D(r). Two rectangles r1 and r2 of R
are said to be incident in R if D(r1) ∩ D(r2) 6= ∅.
Moreover, every vertex u of R such that u ∈ D(r1) ∩
D(r2) is called a common incidence vertex of r1 and
r2. Note that every vertex of R is a common incidence
vertex between some two rectangles of R.

A stronger extension of polychromatic 4-colorings
of rectangular partitions is to require a coloring that
for every rectangle all four colors appear on the four
vertices defining it. More formally, we define a strong
polychromatic 4-coloring of a rectangular partition R
as a vertex coloring of R with four colors such that
every rectangle r of R has all four colors appearing in
the vertex set D(r).

Guillotine subdivisions are a well-studied subfamily
of rectangular partitions. Horev et al. [7] showed that
every guillotine subdivision admits a strong polychro-
matic 4-coloring.

Dinitz et al. [3] proved that every rectangular par-
tition admits a polychromatic 3-coloring, and conjec-
tured that every rectangular partition admits a poly-
chromatic 4-coloring. In this note, we prove the con-
jecture raised by Dinitz et al. in [3]. Actually, we
prove a stronger claim by showing that every rect-
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angular partition admits a strong polychromatic 4-
coloring. Our proof is short and simple, and is based
on 4-edge-colorability of 4-graphs (see Definition 1).
The latter result relies on the four-color theorem of
planar graphs.

2 r-graphs and polychromatic 4-colorings of rect-
angular partitions

For a (multi)-graph G we write V (G) to denote the
vertex set of G. For a vertex set X ⊆ V (G) the set
of edges with one endpoint in X and the other in
V (G) \ X is called an edge-cut of G induced by X,
and is denoted (X, V (G) \X).

A k-edge-coloring of a (multi)-graph G is an assign-
ment of k colors to the edges of G such that edges that
share a common endpoint are assigned distinct colors.

Definition 1 An r-graph is an r-regular (multi)-
graph G on an even number of vertices with the prop-
erty that every edge-cut which separates V (G) into
two sets of odd cardinality has size at least r.

r-graphs were introduced in 1979 by Seymour [10],
who conjectured that every planar 4-graph is 4-edge-
colorable. This conjecture was later proved by Guenin
[4], who also showed that the corresponding result also
holds for 5-graphs.

Our proof that every rectangular partition admits a
strong polychromatic 4-coloring relies on the following
theorem.

Theorem 1 (Guenin) Every planar 4-graph is 4-
edge-colorable.

R′ R

Figure 1: Extending a rectangular partition of odd order

to a rectangular partition of even order.

Figure 2: Rectangular partition and its “dual” graph.

Our main result is as follows.

Theorem 2 Every rectangular partition admits a
strong polychromatic 4-coloring.

Proof. Let R be a rectangular partition. One may
assume that R is of even order; for otherwise, add one
rectangle to R, obtaining a new rectangular partition
of even order. Fig. 1 illustrates this addition. Define
G to be the graph obtained from R as follows. To
each rectangle of R (including the outer rectangle)
assign a vertex in G. For every vertex u of R add
an edge between the vertices of G that correspond
to the two rectangles of R for which u is a common
incidence vertex. Note that G is a 4-regular planar
(multi)-graph with an even number of vertices. See
Fig. 2 for an illustration of the graph G.

We proceed by showing that G is a 4-graph. We will
show that every edge-cut of G consists of at least four
edges. For a vertex set X ⊂ V (G), let (X, V (G) \X)
be an edge-cut of G. Consider a maximal connected
component, namely C, of G[X] (the subgraph of G
induced by X). Observe that in R, the component
C corresponds to a union of rectangles whose bound-
ary defines a rectilinear polygon P . Consequently, P
contains at least four vertices of R on its boundary
which are convex. Consider an edge e in G that cor-
responds to a convex vertex of P . The edge e does
not connect two vertices that correspond to rectangles
of P , i.e., the edge e does not connect two vertices in
C. Moreover, by the maximality of C, the edge e does
not connect two vertices in X. Consequently, e crosses
the edge-cut (X, V (G)\X). By Theorem 1, the graph
G is 4-edge-colorable. Given a 4-edge-coloring of G,
we color every vertex of R with the color of its corre-
sponding edge in G. By the definition of G, the claim
follows. �

Figure 3: Splitting a rectangular partition in to two sub-

sets of rectangles, and the corresponding edge-cut (fat

edges).

Consider a rectangular partition in which it is al-
lowed for four rectangles to share a common corner.
It is interesting to note that there are rectangular par-
titions of this type that do not admit strong a poly-
chromatic 4-coloring. An example of such a partition
is shown in Fig. 4. Note, however, that this partition
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Figure 4: A counterexample.

admits a polychormatic 4-coloring. Hence, we con-
clude this note with the following question.
Is it true that every rectangular partition, of the latter
form, admits a polychromatic 4-coloring?
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Exact Implementation of Arrangements of Geodesic Arcs on the Sphere
with Applications∗

Efi Fogel† Ophir Setter† Dan Halperin†

Abstract

Recently, the Arrangement 2 package of Cgal, the
Computational Geometry Algorithms Library, has
been greatly extended to support arrangements of
curves embedded on two-dimensional parametric sur-
faces. The general framework for sweeping a set
of curves embedded on a two-dimensional paramet-
ric surface was introduced in [3]. In this paper
we concentrate on the specific algorithms and im-
plementation details involved in the exact construc-
tion and maintenance of arrangements induced by
arcs of great circles embedded on the sphere, also
known as geodesic arcs, and on the exact compu-
tation of Voronoi diagrams on the sphere, the bi-
sectors of which are geodesic arcs. This class of
Voronoi diagrams includes the subclass of Voronoi
diagrams of points and its generalization, power di-
agrams, also known as Laguerre Voronoi diagrams.
The resulting diagrams are represented as arrange-
ments, and can be passed as input to consecutive op-
erations supported by the Arrangement 2 package and
its derivatives. The implementation is complete in
the sense that it handles degenerate input, and it pro-
duces exact results. An example that uses real world
data is included. Additional material is available at
http://www.cs.tau.ac.il/~efif/VOS.

1 Introduction

Given a finite collection C of geometric objects (such
as lines, planes, or spheres) the arrangement A(C) is
the subdivision of the space where these objects reside
into cells as induced by the objects in C. In this pa-
per we concentrate on the particular class of arrange-
ments, where the embedding space is the sphere, and
the inducing objects are geodesic arcs. There is an
analogy between this class of arrangements and the
class of planar arrangements induced by linear curves
(i.e., segments, rays, and lines), as properties of lin-
ear curves in the plane can be often, (but not always),
adapted to geodesic arcs on the sphere. The ability to
robustly construct arrangements of geodesic arcs on

∗This work has been supported in part by the IST Programme of
the EU as Shared-cost RTD (FET Open) Project under Contract
No IST-006413 (ACS - Algorithms for Complex Shapes), by the
Israel Science Foundation (grant no. 236/06), and by the Hermann
Minkowski–Minerva Center for Geometry at Tel Aviv University.

†School of Computer Science, Tel-Aviv University, 69978,
Israel. {efif,ophirset,danha}@post.tau.ac.il

the sphere, and carry out exact operations on them
using only (exact) rational arithmetic is a key prop-
erty that enables an efficient implementation.

Recently, a software package that computes exact
arrangements of general circles on the sphere was in-
troduced [5]. The extended Arrangement 2 package
was used to compute arrangements on quadrics [3]
and on Dupin cyclides [4], which contain the torus
as a special case. The technique to compute Voronoi
diagrams on two-dimensional parametric surfaces de-
scribed in this paper can be applied to these surfaces
as well, conditioned on the ability to handle bisectors
of sites embedded on these surfaces.

Voronoi diagrams were thoroughly investigated and
were used to solve many geometric problems [1, 17].
One of the interesting properties observed about this
decomposition of a space is its strong connection to
arrangements [6], a property that yields a very general
approach for computing Voronoi diagrams.

The concept of computing cells of points that are
closer to a certain object than to any other object,
among finite number of objects, was extended to var-
ious kinds of geometric sites, ambient spaces, and dis-
tance functions, e.g., power diagrams of circles in the
plane, multiplicatively weighted Voronoi diagrams,
additively weighted Voronoi diagrams [1, 2, 17]. One
immediate extension is computing Voronoi diagrams
on two-dimensional parametric surfaces [12] in gen-
eral, and on the sphere [15, 16] in particular.

2 Arrangements on surfaces

A parameterized surface S is defined by a function fS :
IP → IR3, where the domain IP = U × V is a rectan-
gular two-dimensional parameter space with bottom,
top, left, and right boundaries, and the range fS is a
continuous function. We allow U = [umin, umax], U =
[umin,+∞), U = (−∞, umax], or U = (−∞,+∞), and
similarly for V . A contraction point p ∈ S is a singu-
lar point, which is the mapping of a whole boundary
of the domain IP. For example, if the top boundary is
contracted, we have ∀u ∈ U, fS(u, vmax) = p′ for some
fixed point p′ ∈ IR3. An identification curve C ⊂ S is
a continuous curve, which is the mapping of opposite
closed boundaries of the domain IP. For example, if
the left and right boundaries are identified, we have
∀v ∈ V, fS(umin, v) = fS(umax, v). A curve in the do-
main is defined as a function γ : I → IP where (i) I is
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an open, half-open, or closed interval with endpoints
0 and 1; (ii) γ is continuous and injective, except for
closed curves, where γ(0) = γ(1); (iii) if 0 6∈ I, the
curve has no start point, and emanates “from infin-
ity”. It holds that limt→0+ ‖γ(t)‖ = ∞ (we have a
similar condition if 1 6∈ I), and we assume that these
limits exist. A weakly u-monotone curve C ⊂ S is the
mapping of a curve γ, such that if t1 < t2 then γ(t1)
is lexicographically smaller than γ(t2).

The Arrangement 2 package of Cgal, the Compu-
tational Geometry Algorithms Library,1 included in
Version 3.3 supports planar arrangements induces by
planar curves. Recently, this package has been ex-
tended to support arrangements of curves embedded
on a two-dimensional parametric surface [3]. The ex-
tended package can handle curves that approach a
boundary in case it is unbounded, or reach a bound-
ary in case it is bounded. In the bounded case, a
boundary can define either a contraction point or an
identification curve2. The extended package is real-
ized as a prototypical Cgal package, and is planned
to be included in the next public release.

The main class of the Arrangement 2 package repre-
sents the embedding of a set of continuous weakly u-
monotone curves that are pairwise disjoint in their in-
teriors on a two-dimensional parametric surface. The
package offers various operations on arrangements
stored in this representation, such as point location,
insertion of curves, removal of curves, and overlay
computation.

Code reuse is maximized by generalizing the preva-
lent algorithms and their implementations. The gen-
eralized code handles features embedded on a modi-
fied surface S̃ : feS = fS(u, v) | (u, v) ∈ ĨP defined over
a modified parameter space ĨP, where the boundaries
are removed. Specific code that handles features that
approach or reach the boundaries is added to yield a
complete implementation.

The implementation of the various algorithms that
construct and manipulate arrangements is generic, as
it is independent on the type of curves they handle.
All steps of the algorithms are enabled by a mini-
mal set of geometric primitives, such as comparing
two points in uv-lexicographic order, computing in-
tersection points, etc. These primitives are gathered
in a traits class, which models a geometry-traits con-
cept [19]. Different geometry-traits classes are pro-
vided in the Arrangement 2 package to handle various
families of curves, e.g., line segments, conic arcs, etc.

The geometry-traits concept is factored into a hi-
erarchy of refined concepts. The refinement hierar-
chy is defined according to the identified minimal
requirements imposed by different algorithms that
operate on arrangements, thus alleviating the pro-

1http://www.cgal.org
2We do not support surfaces, which contain a contracted

identification curve.

NoBoundaryTraits

HasBoundaryTraits

BoundedBoundaryTraitsUnboundedBoundaryTraits

AllBoundaryTraits

Figure 1: Hierarchy of Geometry Traits Concepts for Ar-

rangement on Surface.

duction of traits classes, and increasing the usabil-
ity of the algorithms. We refer to the entire hi-
erarchy of refinements defined in Version 3.3 as a
single concept called NoBoundaryTraits for simplic-
ity. The extended package introduces new con-
cepts, models of which are able to handle un-
bounded curves or bounded curves, the endpoints
of which coincide with contraction points or lie on
identification curves; see Figure 1. The “abstract”
HasBoundaryTraits sub-hierarchy lists additional pred-
icates required to handle both curves that reach or
approach the boundaries of the parameter space. It
has no models. The refined BoundedBoundaryTraits
and UnboundedBoundaryTraits sub-hierarchies list ad-
ditional predicates required to handle bounded and
unbounded curves respectively. The geometry-traits
class that handles arcs of great circles models the
BoundedBoundaryTraits concept, as the parameter
space is bounded in all four directions. Finally, the
AllBoundaryTraits sub-hierarchy refines all the above.
A model of this concept can handle unbounded curves
in some directions and bounded curves in others.

3 Handling arcs of great circles on the sphere

We use the following parameterization of the unit
sphere: IP = [−π, π] × [−π

2 , π
2 ] and fS(u, v) =

(cos u cos v, sinu cos v, sin v). This parameterization
induces two contraction points ps = (0, 0,−1) and
pn = (0, 0, 1), referred to as the south and north poles
respectively, and an identification curve that coincides
with the opposite Prime (Greenwich) Meridian.

The geometry-traits class for geodesic arcs on the
sphere is parameterized with a geometric kernel [10]
that encapsulates the number type used to represent
coordinates of geometric objects and to carry out al-
gebraic operations on those objects. The implemen-
tation handles all degeneracies, and is exact as long
as the underlying number type supports the arith-
metic operations +, −, ∗, and / in unlimited preci-
sion over the rationals, such as the one provided by
Gmp3. A point in our arrangement is defined to be an
unnormalized vector that emanates from the origin,
extended with an enumeration that indicates whether
the vector (i) pierces the south pole, (ii) pierces the

3http://www.swox.com/gmp/
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north pole, (iii) intersects the identification arc, or
(iv) is in any other direction. An arc of a great cir-
cle is represented by its two endpoints, by the normal
of the plane that contains the arc, and some Boolean
flags that cache information. The orientation of the
plane and the source and target endpoints determine
which one of the two great arcs is considered. The
flags are used to expedite the performance.

All the required geometric operations listed in the
traits concept are implemented using only rational
arithmetic. Degeneracies, such as overlapping arcs
that occur during intersection computation, are prop-
erly handled. The end result is a robust yet efficient
implementation.

4 Applications

Armed with the geometry-traits for geodesic arcs on
the sphere, we can use all the arrangement machinery
to solve a variety of problems involving such arrange-
ments. In particular, we compute Minkowski sums of
convex polyhedra [7], by overlaying their respective
Gaussian maps, which are arrangements of geodesics
on the sphere. We also compute various Voronoi dia-
grams on the sphere through the computation of the
lower envelope of the site-distance functions over the
sphere. This section describes the latter application.

We define lower envelopes of functions on the sphere
in a way similar to the standard definition of lower
envelopes of bivariate functions in space [8]:

Definition 1 Given a set of bivariate functions F =
{f1, . . . , fn}, where fi : S2 → R, their lower enve-
lope Ψ(u, v) is defined to be their pointwise minimum
Ψ(u, v) = min1≤i≤n fi(u, v).

The minimization diagram M(F ) of the set F is the
two-dimensional map obtained by central projection
of the lower envelope onto S2.

Definition 2 Given two points pi, pj ∈ S2, the dis-
tance between them ρ(pi, pj) is defined to be the
length of a geodesic arc that connects pi and pj .

Definition 3 Given a set of n points P =
{p1, . . . , pn}, pi ∈ S2, we define R(P, pi) = {x ∈ S2 |
ρ(x, pi) < ρ(x, pj), j 6= i}. R(P, pi) is the region of all
points that are closer to pi then to any other point in
P .

The Voronoi diagram of P over S2 is defined to be
the regions R(P, p1), R(P, p2), . . . , R(P, pn) and their
boundaries.

Edelsbrunner and Seidel [6] observed the connec-
tion between Voronoi diagrams in Rd and lower en-
velopes of the corresponding distance functions to
the sites in Rd+1. This also holds for our spher-
ical case. From the above definitions it is clear
that if fi : S2 → R is set to be fi(x) = ρ(x, pi),

for i = 1, . . . , n, then the minimization diagram of
{f1, . . . , fn} over S2 is exactly the Voronoi diagram of
P over S2.

A new framework based on the envelope algorithm
of Cgal [13] was developed to compute different types
of Voronoi diagrams. The implementation is exact
and can handle degenerate input. The framework
provides a reduced and convenient interface between
the construction of the diagrams and the construc-
tion of envelopes, which in turn are computed using
the Envelope 3 package [14]. Obtaining a new type of
Voronoi diagrams only amounts to the provision of a
traits class that handles the type of bisector curves of
the new diagram type [9]. This traits class models the
EnvelopeVoronoiTraits concept that refines one of the
traits concepts mentioned in Section 2. Essentially,
every type of Voronoi diagram, the bisectors of which
can be handled by an arrangement traits class, can
be implemented using this framework. The bisector
curves between point sites on the sphere are great cir-
cles [16, 17], handled by the newly developed traits
class described in Section 3; see Figure 2(a).

v
0

pi/2
!pi

u
0

pi

We implicitly con-
struct envelopes of
distance functions de-
fined over the sphere
to compute Voronoi
diagrams. The im-
age to the right il-
lustrates the distance
function from (0, 0) ∈
[−π, π] × [−π

2 , π
2 ] on

the sphere in the parameter space. The great circle
bisector of two point sites on the sphere is the inter-
section of the sphere and the bisector plane of the
points in R3 (imposed by the Euclidean metric).

The envelope code together with the traits class for
geodesic arcs on the sphere enable the computation
of Voronoi diagrams on the sphere, the bisectors of
which are great circles or piecewise curves composed
of geodesic arcs. Another type of Voronoi diagrams
whose bisectors are great circles is the power diagram
of circles on the sphere [18], which generalizes the
Voronoi diagram of points; see Figure 2(b). Power
diagrams on the sphere have several applications sim-
ilar to the applications of power diagrams in the plane.
For example, determining whether a point is included
in the union of circles on the sphere, and finding the
boundary of the union of circles on the sphere [11, 18].

Given two circles on the sphere c1 and c2, let p1 and
p2 be the planes containing c1 and c2 respectively.
The bisector of c1 and c2 is the intersection of the
sphere and the plane that contains the intersection
line of p1 and p2 and the origin. If p1 and p2 are
parallel planes, then the bisector is the intersection of
the sphere and the plane that contains the origin and
is parallel to both p1 and p2.
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(a) (b)
Figure 2: Voronoi diagrams on the sphere. Sites are drawn

in black and Voronoi edges are drawn in blue. (a) A Voronoi

diagram of 14 random points. (b) A power diagram of 10

random circles.

(a) (b)
Figure 3: Arrangements on the sphere.

Figure 3(a) shows an ar-
rangement on the sphere in-
duced by (i) the continents
and some of the islands on
earth, and (ii) the institu-
tions that participate in the
ACS project,4 which appear
as isolated vertices. The
sphere is oriented such that
Nancy is at the center. The arrangement consists of
1053 vertices, 1081 edges, and 117 faces. The data
was taken from gnuplot5 and from google maps6. Fig-
ure 3(b) shows an arrangement that represents the
Voronoi diagram of the eight cities, the institutions
above are located at, namely Athens, Berlin, Gronin-
gen, Nancy, Saarbrücken, Sophia-Antipolis, Tel Aviv,
and Zurich. The figure above shows the overlay of
the two arrangements shown in Figure 3. Recall that
arrangement points are represented as an unnormal-
ized vector; see Section 3. The coordinates of such
points are converted into machine floating-point only
for rendering purposes.
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Voronoi Diagram of Ellipses in CGAL

Ioannis Z. Emiris∗ Elias P. Tsigaridas† George M. Tzoumas‡

Abstract

We present a cgal-based implementation of the
Voronoi diagram of ellipses in 2D. Based on the pack-
age for the Apollonius diagram in the plane and ex-
ploiting the generic programming principle, our main
additions concern the implementation of the predi-
cates. For this, we develop practical algebraic meth-
ods like trivariate system resultant computation, thus
illustrating the concept of algebraic support to a geo-
metric library via an algebraic kernel.

1 Introduction

This paper discusses our implementation of an algo-
rithm for the Euclidean Voronoi diagram of ellipses,
in the exact computation paradigm, cf. fig. 1. This
is the first complete solution of how to implement
the Voronoi diagram (and Delaunay graph) of ellipses
under the exact computation paradigm, a non-trivial
problem tackled in nonlinear computational geometry,
because of the complexity of the algebraic operations
involved. In particular, the real algebraic numbers in-
volved in the InCircle predicate (defined later) are
of degree 184.

We apply the incremental algorithm of [6] where
the insertion of a new ellipse to the current Voronoi
diagram consists of the following: (i) Find a conflict
between an edge of the current diagram and the new
ellipse, or detect that the latter is internal (hidden)
in another ellipse, in which case it does not affect the
diagram. (ii) Find the entire conflict region of the
new ellipse and update the dual Delaunay graph.

We focus on non-intersecting ellipses, given para-
metrically (or constructively) in terms of their axes,
center and rotation angle, which are all rational [3].
Our code is based on the cgal package for the Apol-
lonius (or Voronoi) diagram of circles [2], which uses
the same incremental algorithm. cgal follows the
generic programming paradigm, hence the main is-
sue was to analyze and implement all 4 predicates for
ellipses: (κ1) given two ellipses and a point, decide
which ellipse is closest to the point; (κ2) given two el-
lipses, decide the position of a third one relative to a
specified external bitangent of the first two; (κ3) given

∗University of Athens, Greece, emiris@di.uoa.gr
†INRIA Sophia-Antipolis, France,

elias.tsigaridas@inria.fr
‡University of Athens, Greece, geotz@di.uoa.gr

Figure 1: Voronoi diagram of ellipses.

three ellipses, decide the position of a fourth one rela-
tive to one (external tritangent) Voronoi circle of the
first three; this is the InCircle predicate; (κ4) given
four ellipses, compute the part of the Voronoi edge
that changes due to the insertion of a new ellipse.

The theoretical foundations of our approach were
laid in [3]. A certified iterative subdivision algo-
rithm with quadratic convergence was proposed in [4]
for answering the InCircle predicate fast in non-
degenerate instances using interval arithmetic and
was a significant improvement over the correspond-
ing algorithm in [3]. In [4], the authors worked with
bisectors in the parametric space. So does the ap-
proach of [5] which is more general, since it applies
to arbitrary Bézier or B-spline curves. However, this
goes up to machine precision and is slower on ellipses.

Our main contribution is the first implementation1

for the exact Voronoi diagram of ellipses, including
a Graphical User Interface (GUI) for input, and vi-
sualization tools that can be used for any paramet-
ric curve. Our methods generalize to intersecting el-
lipses and pseudo-circles, but also to arbitrary closed
smooth parametric curves. They can also compute
an approximate Voronoi diagram of ellipses, with any
predetermined precision. We implement certain al-
gebraic methods in C++ to support InCircle, thus
improving upon previous implementations. State-of-
the-art general solvers are slow on InCircle, com-
pared to our adapted solutions [3, 4].

The implemented algebraic methods rely, in specific

1www.di.uoa.gr/˜geotz/vorell/
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ways, on the algebraic library synaps 2 and, through
this software, library mpfr,3 and ntl.4 We thus il-
lustrate the concept of providing algebraic support to
a geometric computing library such as cgal. Our
algorithms are described in sec. 2.

Lastly, in sec. 4 we report on experiments when
we vary the number of ellipses, their bitsize, and the
degeneracy of their configuration. We also test our
code on sets of circles, which allows us to compare it
against the Apollonius package; our software is one
to two orders of magnitude slower, which is to be ex-
pected because of the adapted methods employed for
circles.

2 The InCircle predicate

An ellipse is given in rational parametric form, which
is suitable for following its boundary in the subdivi-
sion algorithm. Moreover, given the parametric form
it is always possible to derive the implicit one using
only rational arithmetic.

InCircle is clearly the most challenging predicate
and the only one that had not been satisfactorily im-
plemented in C++. In order to decide InCircle, we
need to represent the Voronoi circle suitably. In [3],
we proved that there can be 184 complex tritangent
circles to three ellipses, hence this is the degree of the
algebraic numbers involved in an algebraic approach.
The corresponding algebraic system is very costly to
solve, see [3], therefore we take a different track. First,
we apply the certified subdivision solver of [4] and,
if the predicate cannot be decided, we solve system
{Q,B1, B3} below. This happens at (near)degenerate
configurations, where any fixed precision may not suf-
fice.

We express the Voronoi circle by considering the
intersection of three bisectors, namely the system:
B1(t, r) = B2(r, s) = B3(s, t) = 0, where t, r, s are the
parameters of the three ellipses. This system is used
in [4] for the subdivision algorithm with quadratic
convergence. Experiments showed that it is very ex-
pensive to compute its resultant in order to use it for
exact solving, due to the degrees of the Bi’s.

We employ resultants, which expresses the solvabil-
ity of a system of n + 1 equations in n variables, as a
condition on the coefficients. For the required notions
from computer algebra, see [8].

Consider the following alternative polynomial sys-
tem: Q(t, r, s) = B1(t, r) = B3(s, t) = 0. Here, Q is
the condition that makes the three normals of each
ellipse intersect at a single point. Q is a polynomial
of total degree 12, four in each variable t, r, s. This
system has a mixed volume of 432, like the system
of {B1, B2, B3} above, but, nonetheless, it leads to

2synaps.inria.fr/
3www.mpfr.org/
4www.shoup.net/ntl/

an efficient way of computing the resultant. In fact,
by exploiting the fact that not all variables appear
in all equations, we can compute the system’s resul-
tant via two Sylvester resultants. The resultant that
eliminates s from two polynomials is denoted by ress.

R1(t, r) = ress(Q(t, r, s), B3(s, t))
= (at28r24 + · · · )︸ ︷︷ ︸

R̄1

P1(t)(1 + t2)4,

R2(t) = resr(R̄1(t, r), B1(t, r))
= R(t)[P2(t)]6(1 + t2)28 (1)

where P1, P2 are univariate polynomials of degree 12,
R̄1 is the “interesting” factor of R1 and R is a univari-
ate polynomial of degree 184 which is the polynomial
we are looking for.

Lemma 1 The factorization of R1(t, r), given in ex-
pression (1), is always true. The shown factors of
R2(t) are always present; if they appear at the indi-
cated powers, then expression (1) gives the full fac-
torization of R2(t).

The proof is omitted, but can be found in [1]. P1

and P2 correspond to the condition that the normals
to two ellipses are parallel. The last factor in each
factorization has no real roots.

We have no complete proof for the exponents of the
extraneous factors in R2(t). Still, the shown expo-
nents are confirmed by every example we have tried.
In practice, we divide out these factors until we obtain
the resultant with the optimal degree, namely 184.

The above lemma and discussion allow us to ex-
ploit the fact that both Sylvester determinants are
factored. The factors which have no real roots, or
whose roots correspond to the normals being collinear
(which is a case handled apart), are divided out.
Hence, our approach reduces to solving a univariate
polynomial over the reals and comparing real alge-
braic numbers; the latter may require a univariate
GCD computation to identify the case of common
roots. To the best of our knowledge, there is no C++
implementation capable of computing efficiently the
resultant that appears in InCircle.

The certified subdivision of [4] exploits several ge-
ometric properties of the problem, and allows us
to decide InCircle before full precision has been
reached. The algorithm approximates Voronoi cir-
cle’s tangency points with precision up to 10−15 in up
to 100 msec, when using standard floating-point arith-
metic. When the specified precision is not enough (in
near-degenerate or degenerate cases), we proceed with
the resultant computation.

3 Implementation

For the implementation of the required algebraic op-
erations, we have relied on algebraic library synaps
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and, to be more precise, to library Mathemagix.5

First, we implemented Newton’s iteration with in-
terval arithmetic as part of the subdivix package
of Mathemagix (or synaps). This is important for
the numerical iterative algorithm for InCircle. The
floating-point types, and the associated arithmetic op-
erations, are implemented in the mpfr library.

In order to solve the degree-184 univariate polyno-
mials for InCircle, we use the fast implementation
of Continued Fractions [7], available in synaps. This
is comparable and, in most cases, faster than state-of-
the-art exact univariate solvers such as Rs, but also
numeric solvers such as mpsolve.6 The algorithm
isolates all real roots in rational intervals, which also
allows us to compare roots from different resultants.

We implemented bivariate and univariate polyno-
mial interpolation in synaps, in order to compute the
resultant of the system of bisectors, refer to eq. (1).
This is essentially a Chinese remaindering algorithm
in the ring of polynomials, where the moduli are val-
ues of the polynomial and the output are its coeffi-
cients. After computing the numeric Sylvester deter-
minants by ntl (see below), we use lemma 1 to divide
out the values of the factors described in that lemma.
Therefore, the number of moduli does not depend on
the total degree of the determinant but rather on the
total degree of the factor of interest, considered as a
univariate or bivariate polynomial.

When two roots are equal, we compute the GCD of
the defining polynomials. For this, we use ntl which
is, to the best of our knowledge, the only open source
C++ library that provides efficient implementation of
asymptotically fast algorithms for polynomial GCD’s
and univariate Sylvester-resultant computation. We
developed an interface between ntl and synaps. The
interface eliminates the need for unnecessary copies,
and allows us to work directly with ntl objects in
synaps (and vice versa). We take advantage of the
fact that integer arithmetic in ntl can be based on
gmp, and we built a wrapper around these objects.

The concept of an Algebraic kernel for the
Voronoi diagram of ellipses is quite demanding. It re-
quires, just to name the most important operations,
symbolic univariate polynomial resultant and GCD
computations, real root isolation and comparison of
real algebraic number and computation of the resul-
tant of a trivariate polynomial system.

In connecting to algebraic software, it was impor-
tant to separate the geometric from the algebraic op-
erations. This work is in line with the concept of
kernels, adopted by cgal, where different types of
operations are grouped into separate modules.

For the combinatorial part of the algorithm, we re-
lied on cgal. cgal follows the generic programming
paradigm, hence the main issue is to implement the 4

5www.mathemagix.org/
6www.dm.unipi.it/cluster-pages/mpsolve/

predicates for ellipses and generalize circular sites to
ellipses. We are based on the Apollonius graph 2
package. Besides the predicates, the most important
class is the Apollonius site 2, which represents the
sites of the Voronoi diagram; in our case the ellipses.
We modified the corresponding class so as to inherit
from our Ellipse class. A snapshot of the corre-
sponding code is as follows:

template < class K >

class Apollonius_site_2: public Ellipse

{

public:

typedef K Kernel;

typedef typename K::Point_2 Point_2;

typedef Apollonius_site_2<K> Self;

typedef typename K::FT FT;

// Field Number Type

typedef typename K::RT RT;

// Ring Number Type

.... };

4 Experiments

With elliptic sites. Let us now see several results
regarding elliptic sites. These experiments have been
carried out on a P4 2.6-GHz machine with 1.5GB of
RAM.

First, we consider the overall time for the con-
struction of the combinatorial structure of the dual
(Delaunay) graph. While the first few sites are in-
serted almost instantly, subsequent ones cause many
updates on the graph and require about a second for
their insertion. Total timings are shown in the first
two columns of table 1 (top). The runtime increases
roughly linearly with 15 sites or more and is about one
second for each ellipse. This is in accordance with the-
oretical bounds, although larger instances shall have
to be tested to verify this.

We have also measured the performance of the first
three predicates with varying bitsize (cf. the subse-
quent columns of the table). Using randomly per-
turbed coefficients by either adding or subtracting
10−e, we obtain large rational numbers. All runtimes
appear to grow subquadratically in e. For predicates
κ1 and κ2 the timings vary from a couple milliseconds
for e = 20 to 280 msec for e = 100. For InCircle,
the subdivision algorithm was used, since the situa-
tion was non-degenerate, and was roughly 10 times
slower. In case of degeneracies, the runtime of In-
Circle is dominated by the resultant computation,
varying from 25 sec for e = 4 to 231 sec for e = 20.
Note that the resultant computation is over 50 times
slower than the time required by the subdivision al-
gorithm.

Finally, we measured the time needed for the sub-
division algorithm to reach a precision of 2−b when
using mpfr floats. This version currently lacks some
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# sites insertion e κ1 κ2 κ3

5 0.752 20 0.0270 0.033 0.49
10 5.916 40 0.0696 0.076 1.02
15 13.000 60 0.1286 0.135 1.70
20 19.200 80 0.1996 0.197 2.49
25 25.602 100 0.2848 0.285 3.40

e resultant b subdivision

4 25.12 53 0.20
8 57.24 900 0.58

12 102.63 2000 1.06
16 160.44 12000 10.65
20 231.19 24000 31.61

Table 1: Performance of the predicates on elliptic
sites. Timings are in seconds.

optimizations making it about 2 times slower than
the one in [4] using alias.7 Standard floating-point
precision is achieved in about 0.2s, while 1 second
suffices for almost 2000 bits of precision. However,
higher approximations slow down considerably, such
as the 24k-bit approximation that needs about half a
minute. This raises some questions on whether the
theoretical separation bound of several million bits
can be achieved in practice by any implementation.

Against the CGAL Apollonius package. We per-
formed experiments per predicate, when the input
is restricted to circles. We used three data sets, in-
volving degenerate inputs, near-degenerate inputs (by
randomly perturbing the degenerate ones by 10−e)
and random inputs. These experiments were car-
ried out on a 1.83GHz Core 2 Duo processor with
1GB of RAM. The timings for the Apollonius package
were several milliseconds, while for our implementa-
tion varied from several milliseconds to a few seconds.

In most cases, degenerate inputs are solved faster
than near-degenerate ones because the former, from
the algebraic point of view, imply lower degree al-
gebraic numbers. This is not the case for the
subdivision-based algorithm, since in the degenerate
cases it has to use large precision in order to make a
decision. Another interesting observation is that run-
time increases linearly in the bitsize, especially with
perturbed input. This is because we implemented
algorithms of constant arithmetic time complexity,
which do not depend on how close to degeneracy the
configuration lies.

It seems that our current implementation of the
predicates for ellipses is up to two orders of magni-
tude slower that the dedicated one, when we restrict
to circles. The worst relative performance is observed,
as expected, for InCircle, which is the most expen-
sive predicate and, in the case of circles, has been
optimized. The best relative performance occurs for

7www-sop.inria.fr/coprin/logiciels/ALIAS/

κ2, because the two approaches follow similar algo-
rithms. The difference of performance is not surpris-
ing, since the case of circles reduces to computations
with real algebraic numbers of degree 2 and the Apol-
lonius predicates are specifically designed to exploit
this.

We may conclude that specialized implementations
for predicates involving small degree algebraic num-
bers, combined with algorithms exploiting the geo-
metric characteristics of the problem, are more effi-
cient than generic approaches.
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A CGAL-Based Univariate Algebraic Kernel and Application to
Arrangements

Sylvain Lazard ∗ Luis Peñaranda∗ Elias Tsigaridas †

Abstract

Solving univariate polynomials and multivariate poly-
nomial systems is critical in geometric computing with
curved objects. Moreover, the real roots need to be
computed in a certified way in order to avoid possi-
ble inconsistency in geometric algorithms. We present
a Cgal-based univariate algebraic kernel, which fol-
lows the Cgal specifications for univariate kernels. It
provides certified real-root isolation of univariate poly-
nomials with integer coefficients (based on the library
Rs) and standard functionalities such as basic arith-
metic operations, gcd and square-free factorization.

We compare our implementation with that of other
univariate algebraic kernels that follow the same
Cgal specifications. In particular, we compare it to
the one developed at MPII. We also apply this ker-
nel to the computation of arrangements of univariate
polynomial functions.

1 Introduction

Implementing geometric algorithms robustly is known
to be a difficult task for two main reasons. First, all
degenerate situations have to be handled and second,
algorithms often assume a real-RAM model which is
not realistic in practice. In recent years, the paradigm
of exact geometric computing arose as a standard for
robust implementations. In this paradigm, geometric
decisions, such as “is a point inside, outside or on a
circle?”, are made exactly, usually using exact arith-
metic combined with interval arithmetic for efficiency;
on the other hand, geometric constructions, such as
the coordinates of a point of intersection, may be ap-
proximated.

We address here one recurrent difficulty arising
when implementing algorithms dealing with curved
objects. Such algorithms usually require evaluat-
ing, manipulating and solving systems of polynomials
equations and comparing their roots. One of the most
critical parts of dealing with polynomials or polyno-
mial systems is the isolation of the real roots and their
comparison.

∗LORIA (INRIA, CNRS, Nancy Université) and INRIA
Grand Est, Nancy, France. Firstname.Name(AT)loria.fr

†INRIA Méditerranée, Sophia-Antipolis, France.
Elias.Tsigaridas(AT)inria.fr

We restrict here our attention to the case of uni-
variate polynomials and address this problem in the
context of Cgal, a C++ Computational Geometry
Algorithms Library, which is an open source project
and became a standard for the implementation of ge-
ometric algorithms [3].

Cgal is designed in a modular fashion. Algo-
rithms are typically parameterized by a traits class
which encapsulates the geometric objects, predicates
and constructions used by the algorithm. Typi-
cally, this allows implementing algorithms indepen-
dently of the type of input objects. For instance, a
sweep-line algorithm for computing arrangements can
be implemented generically for segments or curves.
Similarly, the model of computation, such as exact
arbitrary-length integer arithmetic or approximate
fixed-precision floating-point arithmetic are encapsu-
lated in the concept of kernel. An implementation is
thus typically separated in three layers, the geometric
algorithm which relies on a traits class, which itself
relies on a kernel for elementary operations. A choice
of traits class and kernel gives freedom to the users
and allows comparison.

We present here a kernel for solving and manipu-
lating the real roots of univariate polynomials with
integer coefficients which follows Cgal specifications
[2]. In particular, this kernel performs the isolation
and comparison of the real roots of such polynomials.
The kernel also provides various operations on polyno-
mials, such as gcd, which are central for manipulating
algebraic numbers. We also present experimental re-
sults and compare our kernel with the one developed
by Hemmer and Limbach [10].

2 Univariate algebraic kernel

We describe here our implementation of our univariate
algebraic kernel. The two main requirements of the
Cgal specifications, which we describe here, are the
isolation of real roots and their comparison. We also
describe our implementation of two important spe-
cific operations, greatest common divisor (gcd) com-
putation and refinement of isolating intervals, that are
needed, in particular, for comparing algebraic num-
bers.

Preliminaries. The kernel handles univariate polyno-
mials and algebraic numbers. The polynomials have
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integer coefficients and are represented by arrays of
Gmp arbitrary-length integers [9]. We implemented in
the kernel the basic functions on polynomials, includ-
ing basic arithmetics, evaluation, and input/output.
An algebraic number that is a root of a polynomial
F is represented by F and an isolating interval, that
is an interval containing this root but no other. We
implemented intervals using the Mpfi library, which
represents intervals with two Mpfr arbitrary fixed-
precision floating point numbers; note that Mpfr
is developed on top of the Gmp library for multi-
precision arithmetic [11] [12].

Root isolation. For isolating the real roots of uni-
variate polynomials with integer coefficients, we de-
veloped an interface with the library Rs [14]. This
library is written in C and is based on Descartes’ rule
for isolating the real roots of univariate polynomials
with integer coefficients.

We briefly detail here the general design of the Rs
library; see [13] for details. Rs is based on an algo-
rithm known as interval Descartes [4]; namely, the
coefficients of the polynomials obtained by changes of
variable, sending intervals [a, b] onto [0,+∞], are only
approximated using interval arithmetic when this is
sufficient for determining their signs. Note that the
order in which these transformations are performed in
Rs is important for memory consumption. The inter-
vals and operations on them are handled by the Mpfi
library.

Another characteristic of Rs is its memory man-
agement: it implements a mark-and-sweep garbage
collector, which is well suited to Rs needs.

Algebraic number comparison. As mentioned
above, one of the main requirements of the Cgal
algebraic kernel specifications is to compare two
algebraic numbers r1 and r2. If we are lucky, their
isolating intervals do not overlap and the comparison
is straightforward. This is, of course, not always
the case. If we knew that they were not equal, we
could refine both isolating intervals until they do not
overlap. See below for details on how we perform
the refinements. Hence, the problem reduces to
determining whether the algebraic numbers are equal
or not.

To do so, we compute the gcd of the polynomials
P1 and P2 associated to the algebraic numbers; see
below for details on this operation. The roots of this
gcd are the common roots of both polynomials. After
calculating the gcd, we isolate its roots and refine the
isolation intervals until each one of them overlap with
exactly one root of P1 and of P2. If the isolating
interval of r1 and r2 both overlap with the isolating
interval of a root of the gcd, then r1 = r2. Otherwise
they are not equal.

Gcd computations. Computing greatest common di-
visors between two polynomials is not a difficult task,
however, it is not trivial to do so efficiently. Indeed,
a naive implementation of the Euclidean algorithm
works fine for small polynomials but the intermediate
coefficients suffer an exponential grow in size, which is
not manageable for medium to large size polynomials.

We thus implemented a modular gcd function,
which calculates the gcd of polynomials modulo some
prime numbers and reconstructs later the result with
the help of the Chinese remainder theorem. Details
on these algorithms can be found in [8]. Note modular
gcd is always more efficient than regular gcd, especially
when the two polynomials have no common roots.

Refining isolating intervals. As we mentioned be-
fore, refining the interval representing an algebraic
number is critical for comparing such numbers. We
have implemented two approaches for refinement.

Both approaches require that the polynomial asso-
ciated to the algebraic number is square free. The first
step thus consists of computing the square-free part
of the polynomial. This is easily done by computing
the gcd of the polynomial and its derivative.

Our first approach is a simple bisection algorithm.
It consists in calculating the sign of the polynomial
associated to the algebraic number at the endpoints
and midpoint of the interval. Depending on those
three signs we can take as isolating interval the left of
right half of the previous one.1

The second approach we implemented is the
quadratic interval refinement [1]. Roughly speaking,
this method splits the interval in many parts and
guesses in which one the root lies. If the guess is
correct, the algorithm will divide, in the next refine-
ment step the (chosen) interval in more parts and, if
not, in less. Unfortunately, we can not always guar-
antee that we guess the correct interval at each step,
so on average the algorithm turns out to be just a bit
faster than the bisection one. Moreover, we have to
implement its data structures very carefully in order
to be efficient. In particular, this required the develop-
ment of functions to handle dyadic numbers efficiently.
Note that these functions are also useful in the bisec-
tion method when increasing the precision (because
working directly with Mpfr is rather tricky).

Currently, refinement function based on both ap-
proaches are present in our kernel and the user can
choose the one best suited to her/his needs.

3 Benchmarks

In this section, we compare the running time for root
isolation of our algebraic kernel with the one devel-

1Note that since the polynomial is square free the signs at
the two endpoints of any isolating interval always differ. We
thus do not need to compute the sign at both endpoints.
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Figure 1: Degree 12 polynomials.
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Figure 2: Polynomials of constant degree 100

oped by Hemmer and Limbach [10]. Running times
for root isolation is a very representative test because,
as explained before, it involves other non-trivial op-
erations on polynomials. For technical reasons, we
could not compare our running time for comparing
algebraic numbers with those of [10]. All tests were
ran on a single-core 3.2 GHz Intel Pentium 4 with 2
Gb of RAM, using 64-bit Linux.

The first test sets comes from [10]. See Figure 1. It
consists of polynomials of degree 12, each one being
the product of six degree-two polynomials that have
at least a root in the interval [0, 1]. The tests are
averaged over 50 trials. The value represented on the
x-axis is the total bitsize of all the coefficients of the
input polynomial.

Secondly, we consider random polynomials with
constant degree 100 and varying bitsize. See Figure
2. As before, the x-axis is the total bitsize of all the
coefficients. The tests are averaged over 100 trials.
We also consider random polynomials with constant
bitsize 20000 but varying degrees. The results, shown
in Figure 3 are averaged over 100 trials.

Finally, we tested Mignotte polynomials, that is
nearly degenerate polynomials of the form xd−2(kx−
1)2. The difficulty with solving these polynomials lies
in the fact that two of their roots are very close to each
other (the isolating intervals for these two roots are
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Figure 3: Polynomials of constant bitsize 20000
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Figure 4: Mignotte polynomials

thus very small). For these tests, we used Mignotte
polynomials with coefficients of bitsize 50, with vary-
ing degree d. Running time are shown in Figure 4:
the tests are averaged over 5 trials.

4 Discussion

Figure 1 shows that our kernel’s performance is worse
than MPII’s one for small degree polynomials. This
difference comes from the fact that Rs, the most con-
suming part of our process, is conceived for handling
high degree polynomials. This fact is confirmed by
Figures 2 and 3, which show that for polynomials of
larger degrees, our kernel runs faster.

We can also see in these two figures that the iso-
lation time does not depend much on the bitsize of
the input polynomials but mainly on the degree. This
makes sense because of the considered algorithms for
root isolation: bitstream Descartes [6] and interval
Descartes [13] do not use, in most cases, all the bits of
the coefficients. This should theoretically imply that,
on random polynomials, the running time does not
depend at all on the input bitsize. We however ob-
serve in Figure 1 that this is not quite the case for
our kernel. This is presumably caused by the cost of
copying the input polynomials to Rs memory space.

Despite this fact, we observe that the running time
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Figure 5: Arrangement calculation

of our implementation is very stable and does not de-
pend too much on the bitsize or on the degree of the
input polynomials. On the other hand, MPII’s kernel
does not either depend on the input bitsize. However
it is much more dependent on the degree and is less
stable.

Finally, we can mention that Figure 4 shows no sig-
nificant difference between both kernels for isolating
roots of Mignotte polynomials. MPII’s kernel is barely
faster for the smaller values of d, but that difference
disappears when this value grows. However, this fig-
ure depicts the expected difficulty of solving Mignotte
polynomials compared to random polynomials.

5 Arrangements

As an example of possible benefit of having efficient
algebraic kernels in Cgal, we used our implementa-
tion to construct arrangements of polynomial func-
tions. Wein and Fogel provided a CGAL package for
calculating arrangements [15]. This package calculates
the arrangements of general curves [7]. It is the user
who must implement the data structures to store the
curves and the primitive operations; requiring for ex-
ample comparing positions of points, comparing the
vertical order of curves at infinity and intersecting and
splitting curves. All these functions must be grouped
in a traits class, which is a transparent and conve-
nient way to work with a package in Cgal. We im-
plemented a traits class which uses the functions of
our algebraic kernel and compared its performance
with another traits classes which comes with Cgal’s
arrangement package and uses the Core library [5].

To test the arrangement calculation, we generated
n polynomials of degree n− 1 with (n) coefficients of
bitsize n. The running time for the construction of
this type of arrangements is shown in Figure 5. We
observe that we gain a factor of roughly two when
using our kernel.
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Generic Implementation of a Data Structure
for 3D Regular Complexes

Antoine Bru ∗ Monique Teillaud †

Abstract

We present the implementation of a data structure,
based on and extending the Cgal Halfedge Data
Structure, that allows to represent 3D manifold regu-
lar complexes.

1 Introduction

Whereas software for storing planar subdivisions are
publicly available [2, 19, 12], as well as software for
computing triangulations in 3D [18, 3, 16], software
for storing more general 3D subdivisions are seldom
found. Still, there is a strong need in practice for
such data structures. Indeed, while algebraic issues
are usually seen as the bottleneck for computing ar-
rangements of quadric surfaces in 3D, an appropriate
data structure is in fact also missing. Arrangements
of the simplest quadrics, namely spheres, may have
a complicated topology. However, when decomposed
in a careful way, such as the so-called vertical decom-
position [17, 15] the subdivision that is obtained is
actually simply a regular complex.

We follow the definition of a regular complex given
in [6], as the natural generalization of a simplicial
complex to cells that are not necessarily simplices:

• A k-cell is homeomorphic to a closed ball of di-
mension k.

• A regular complex K is a finite collection of cells
such that the following two conditions hold:

– Cells have pairwise disjoint interiors.

– The boundary of each cell c is the union of
other cells in K.

We present in this paper the design and implemen-
tation of a cellular data structure capable of storing
and traversing a manifold regular complex of dimen-
sion 3. We will use the standard terminology in 3D:
vertices for 0-cells, edges for 1-cells, facets for 2-cells,
and cells for 3-cells as long as no ambiguity arises.

∗This work was done while the first author was appointed
by INRIA Sophia Antipolis.

†INRIA Sophia Antipolis, Monique.Teillaud@sophia.inria.fr
http://www-sop.inria.fr/geometrica/team/

In the restricted case of polyhedral subdivisions,
our data structure can intuitively be seen as gluing to-
gether several polyhedral surfaces along their common
facets, just as the CIEL structure is doing [13] (see
Figure 1). The Nef polyhedra can store more general

Figure 1: The CIEL data structure (picture from [13])

non-manifold structures but is intrinsically restricted
to planar facets [4, 9]. Note that our definition does
not imply that the facets be planar. The structure is
independent from a geometric embedding into R3 but
is flexible and generic enough to allow curved facets
and edges.

The structure allows to represent a subdivision
of a k-manifold in 3D. It is of course less general
than the G-maps that represent subdivisions of quasi-
manifolds in dimension n [14], and the cell-tuple struc-
ture that represent subdivided manifolds in dimen-
sion n [5]. For the special case of 3D simplicial com-
plexes, a representation of non-manifold complexes is
proposed in [10].

We show how the data structure can be im-
plemented in the framework of the Computational
Geometry Algorithms Library Cgal, following the
generic programmic paradigm [1, 7, 8]. Our objec-
tive is, as more generally in Cgal, to develop flexible,
efficient and easy-to-use software.

We also aim at reusing existing code as much as pos-
sible to avoid useless code duplication, which would be
a waste, both in development and maintenance. More
specifically, Section 2 shows how the principles of the
Cgal Halfedge Data Structure (HDS for short) [12]
are reused in our 3D Cellular Data Structure (CDS
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for short). Reusing the Cgal HDS prevents code du-
plication, it allows us to benefit from already existing
functionalities, and allows our future users to see a
uniform interface. However, it creates constraints in
our implementation. Section 3 explains how difficul-
ties are overcome, and hidden from the end user. Sec-
tion 4 quickly mentions various functionality offered
by the data structure.

2 Main principles

HDS. The halfedge data structure is a representa-
tion of a three-dimensional polyhedral surface [11]. In
fact it can be used more generally to store non poly-
hedral two-dimensional manifold surfaces homeomor-
phic to spheres.

The HDS acts as a container of vertices, halfedges
and faces, which are the items of the HDS. The sets of
vertices, halfedges and faces are stored independently
in either a doubly-connected list or a vector. Items
are accessed through handles that can be roughly seen
as smart pointers. The HDS offers functionality like
insertion and removal of items, Euler operators, and
iterators to traverse the structure.

Figure 2: The halfedge data structure (picture from
[12])

Each item manages its own adjacency and incidence
relations (see Figure 2), which offers special flexibility.
It is possible to activate or disable these relations ac-
cording to the user need. For instance, a halfedge may
store its incident face as a handle, added to the item
structure. In this case, a Face_handle is added into
the item structure Halfedge, and it can be accessed
by the face() method as shown in Figure 4.

As the name says, HDS is a halfedge-based repre-
sentation. Only halfedges are needed to describe a
polyhedral surface as a graph. In the minimal situa-
tion when no option is activated, for each halfedge its
next and opposite halfedges are available.

Items are easily extendable to add other informa-
tions like coordinates of vertices, or color into faces:
The user can create new classes inherited from the
item classes and declare them in wrapper structures.
All these wrappers are gathered together in the same
structure, called Item, which is given as a template

  

Vertex FaceHalfedge

My_vertex My_faceMy_halfedge
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Figure 3: User defined items

parameter to the halfedge data structure. Figure 3
shows that the user extended items are used in the
HDS items.

template<class Refs, class Traits>

struct My_face

: public CGAL::HalfedgeDS_face<Refs> {

CGAL::color Color;

};

struct My_items

: public CGAL::Items {

template <class Refs, class Traits>

struct Facet_wrapper {

typedef My_face<Refs, Traits> Face;

};

};

typedef CGAL::HalfedgeDS_list<My_items> HDS;

CDS. A regular complex is considered here like a set
of 3D cells, that are polyhedra or more generally man-
ifold surfaces, tightly glued together by their facets
and edges (see Figure 1 for the polyhedral case). We
represent a regular complex as a Cellular Data Struc-
ture (CDS), that can be seen as a container of k-cells
for k = 0, 1, 2, 3.

As seen above, the HDS is based on the concept of
halfedge. In a similar way, the CDS introduces the
concept of two-dimensional halffacet. Each 2-cell (or
facet) common to two 3-cells is split into two sym-
metric opposite halffacets belonging to the two cells
incident to this facet.

The implementation of the CDS uses the flexibility
and extensibility of the Cgal HDS, by modifying and
reusing the HDS features.
◦ Each 3-cell (cell for short) is stored as a HDS.
◦ Halffacets reuse Faces. To this aim, an opposite
field is added to the Face structure and points to
another halffacet. This halffacet corresponds to the
common facet of the two adjacent cells, seen from the
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adjacent HDS.
◦ A given 1-cell (edge) of the regular complex cor-
responds to a full set of halfedges in the CDS, since
an edge is incident to several facets in the complex.
To complete the structure, each halfedge incident to a
halffacet f of a cell c must store access to its mirror
halfedge in the adjacent HDS: The mirror of e is the
halfedge of the cell c′ adjacent to c through f , that is
incident to the halffacet f ′ opposite to f , and corre-
sponds to the same edge of the regular complex

In the same way as the HDS, the CDS is a halfedge-
based structure. Only halfedges, with their next,
opposite and mirror halfedges, are necessary to de-
scribe entirely a regular complex.

Vertex

halfedge() halfedge()next()
opposite()
prev()
vertex()
face()

Halfedge Face

CellHalffacetHalfedgeVertex

mirror() halfedge()
halffacet()

halffacet()

HDS

CDS

Figure 4: HDS and CDS items (optional fields are
shown in italics)

3 Realization

As described above, a 3-cell is represented as a HDS,
which is a container of k-cells for k = 0, 1, 2. However,
a HDS stores 3 independent sets of faces, halfedges
and vertices, so, a 2-cell (face) is not a container of
halfedges and vertices. As a consequence, handling
incidence and adjacency relations in the CDS is not
straightforward, and we give in this section the main
ideas that allow us to deal with this issue.

Cells. A new Cell item is added. It is templated
by the HDS, which allows it to fetch the types for
halfedge and halffacet from the HDS. In a symmetric
way, the items vertices, halfedges and cells must now
be templated by the CDS to fetch the cell type. A
new implementation of these items, inherited from the
HDS items, is provided.

HDS items are able to store other information than
incidence and adjacency, for instance geometry or
color. It is necessary to propose the same possibil-
ity for the cells of the CDS, and this is done in the

same way as for other items: A cell wrapper structure
is created for user customisations.

Vertices. In our representation of a regular com-
plex, vertices do not have an important structural
role, since CDS is, as HDS, a halfedge-based structure.
The principal role of vertices is to carry information
such as coordinates.

In the HDS implementation, the HDS holds its con-
tainer of vertices. So, if HDS was used for representing
cells in a naive way, a vertex incident to n cells would
be stored as n independent objects, which we avoid
in the following way.

A vertex container is added in the CDS. However,
the sets (lists or vectors) of items of the HDS are de-
clared into the class HDS and the handles, defined in
Section 2, can’t directly be references to sets outside
the HDS. Still, the CDS can give its vertex handle
type to each HDS through a minimum vertex item,
that contains this new CDS vertex handle, and that
is created and defined into the Vertex wrapper given
as template parameter. In this way, a vertex of a HDS
now becomes a vertex handle pointing on a vertex of
the CDS.

CDS Items. To summarize, the CDS is templated
by a structure containing the four items for ver-
tex, halfedge, halffacet and cell. A second structure,
HDS_derived_item, is used to propose the new vertex
wrapper, and the halfedge, halffacet and cells wrap-
pers. This structure is then used as a template of the
HDS. See Figure 5.

  

CDS<Item>
HDS<HDS_derived_item>

Vertex<CDS,HDS>

HDS_derived_item<CDS>

Figure 5: General design of the Cellular Data Struc-
ture

4 Functionality

We only roughly sketch functionality here.
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As in the HDS, the CDS proposes various options
allowing to have vertices, facets and cells, or only
halfedges.

Reusing the HDS allows us to get all its iterators
and circulators for free. Adding functionality like an
iterator on the cell container, and using the mirror
pointer of halfedges, we can then easily implement
all iterators and circulators allowing to easily traverse
the whole structure.
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Online Uniformity of Integer Points on a Line

Tetsuo Asano ∗

Abstract

This paper presents algorithms for computing a uni-
form sequence of n integer points in a given interval
[0,m], where uniformity of a point set is measured by
the ratio of the minimum gap over the maximum gap.
Several nontrivial results are shown.

1 Introduction

A number of applications need uniformly distributed
points over a specific domain. It is commonly known
that randomly generated points are not always good
enough. In a mesh generation, for example, we have
to distribute points uniformly over a region of inter-
est to form good meshes. But, first of all, how can
we measure the uniformity of points? In the theory of
Discrepancy [3, 4] the uniformity of points is measured
by how the number of points in a small region like an
axis-parallel rectangle changes while moving around
the domain, more formally by the difference (or dis-
crepancy) between the largest and smallest numbers
of points in the moving region. For normalization we
usually divide the difference by the area of the moving
region. Then, the discrepancy is given as the supre-
mum of the ratios for all possible scales of the region.
One of the difficulties here is hardness of such evalu-
ation since we have to prepare all possible scales and
all possible locations.

We consider a special case of such a problem, that
is, how to insert n integer points in a given interval
[0,m] so that points are uniformly distributed, or in
other words, the ratio of the minimum gap over the
maximum gap is not so low. We present a simple
algorithm for achieving the ratio 1/2 for all integers
m and n with m > n > 0. It is not trivial at all
to achieve the ratio strictly greater than 1/2. We
characterize when n points can be inserted into an
interval [0,m] while keeping the ratio strictly greater
than 1/2.

2 Problem

An (n, m)-sequence is sequence of integers (or points
of integral coordinates) (p1, . . . , pn) between 1 and
m − 1, i.e., pi is an integer in the interval [1,m − 1]

∗School of Information Science, JAIST, Japan,
t-asano@jaist.ac.jp

for i = 1, . . . , n. For an (n, m)-sequence (p1, . . . , pn),
we define a gap at pi, denoted by δ(pi), by

δ[0,m](pi) = min{|pi−pj |; j = 0, 1, . . . , n, n+1, j 6= i},
(1)

where p0 = 0 and pn+1 = m. Let (p0 =
0, pi1 , . . . , pin , pn+1 = m) be a sorted list of the in-
tegers p0 = 0, p1, . . . , pn, pn+1 = m). Then, for each
integer pik

its associated gap is defined by

δ[0,m](pik
) = min{|pik

− pik−1 |, |pik
− pik+1 |},

k = 1, . . . , n. (2)

The maximum and minimum gaps are denoted by
δ
[0,m]
min (p1, . . . , pn) and δmax(p1, . . . , pn), respectively.
It may be natural and reasonable to measure uni-

formity of a point set {p0 = 0, p1, . . . , pn, pn+1 = m}
by the ratio of the minimum and maximum gaps, that
is, the (static) uniformity µ

[0,m]
s (p1, . . . , pn) of the set

is defined by

µ[0,m]
s (p1, . . . , pn) =

δmin(p1, . . . , pn)
δmax(p1, . . . , pn)

. (3)

In this paper we are interested in uniformity
achieved by a sequence of points. That is, points are
inserted one by one according to a given sequence.
Every time when a point is inserted, we measure the
uniformity of the point set. The worst uniformity we
obtain before inserting all the points is defined to the
online uniformity of the point sequence. Formally, we
define the online uniformity µ[0,m](p1, . . . , pn) for a
point sequence (p1, . . . , pn) of length n in the interval
[0,m] by

µ[0,m](p1, . . . , pn) = min
k=1,...,n

{µ[0,m]
s (p1, . . . , pk)}. (4)

An (n, m)-sequence is called uniform if its online
uniformity is strictly greater than 1/2.

3 Greedy algorithm

A natural idea is to halve the longest interval (max-
imum gap) to define a sequence of points on a line
in a given interval. We can generalize this idea to
higher dimensions. In higher dimensions we construct
a Voronoi diagram for a set of points and choose a
Voronoi vertex that is farthest from the closest point
as the next point to insert. The performance of the
greedy algorithm is not so bad. In fact, it achieves
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the uniformity 1/2 in one dimension [1, 2]. However,
it is not the case when points are limited to integer
points. As a simple example consider a sequence of
length 2 for an interval [0, 6]. The first point is 3, the
midpoint of the interval. Then, we have two subinter-
vals of length 3. Since we can only choose an integer
point, one of the subinterval is divided into two subin-
tervals of lengths 1 and 2. So, after choosing the two
points the minimum gap is 1 while the maximum gap
remains 3. So, the uniformity is 1/3 < 1/2.

0 6
δmin δmax

p1p2

Figure 1: Behavior of Voronoi Insertion on integer
points.

Another example is the case of (m,n) = (10, 4).
In the following we just maintain a set of lengths of
intervals. Initially we have {10}. By the first point
we must have {5, 5} or {4, 6}. The even partition
{5, 5} does not lead to uniformity 1/2 since in the
next division we have {2, 3, 5}, whose uniformity is
2/5 < 1/2. So, {4, 6} is the only choice and then
we obtain the set {4, 2, 4} by dividing the interval of
length 6. Now, we can divide 4 into {2, 2}. Thus,
the resulting set of interval lengths is {4, 2, 2, 2} with
uniformity 2/4 = 1/2. On the other hand, if we divide
6 into 3, 3, a bad partition, as we have seen before,
leads to a bad situation. It is actually bad. After
dividing 4 into 2, 2 we have {2, 2, 3, 3}. We have to
divide 3, but there is only one way of partition 3 →
{1, 2}. Thus, the resulting set is {2, 2, 1, 2, 3} with
uniformity 1/3 < 1/2. See Figure 2. This example
implies that we should not take the midpoint even if
there is a unique midpoint (note that there are two
midpoints in an interval of odd length).

(10)

(5) (5)

(2) (3) (5)

(4) (6)

(4) (2) (4)

(4) (2) (2) (2)

(2) (2) (2) (2) (2)

Figure 2: Partition of an interval of length 10 in two
different ways. If we divide 10 into 5, 5 as in the left
figure, it is impossible to keep the uniformity ≥ 1/2.
The division 10 → (4, 6) leads to a sequence with
uniformity ≥ 1/2.

Now, a natural question is whether there is an algo-
rithm for finding a sequence of points with uniformity

at least 1/2 for any pair of integers m and n with
m > n. The following lemma answers the question in
an affirmative way.

Lemma 1 There is an algorithm for finding a se-
quence of points with uniformity at least 1/2 for any
pair of integers m and n if m > n > 0.

Proof. We prove the lemma in a constructive man-
ner. The algorithm iteratively partitions the longest
interval (maximum gap). An important thing is to
divide an interval of length m into ones of lengths 2k

and the rest r = m− 2k using an integer k such that
3 × 2k−1 ≤ m < 3 × 2k. If m happens to be a power
of 2, say 2m′

, then 2m′
is partitioned into 2m′−1 and

2m′−1 since in this case we have k = m′ − 1. In fact,
we have

3× 2m′−2 ≤ 4× 2m′−2 = 2m′

= 2× 2m′−1 < 3× 2m′−1.

Thus, an interval of length 2k is exactly halved in a
way that 2k → 2k−1 → . . . → 2 → 1.
On the other hand, if we have any other integer, then
it is partitioned into a power of 2 and the rest in a
manner described above. Because of the definition of
the partition, the uniformity is at least 1/2. In fact,
if r = m− 2k is greater than 2k, then the uniformity
is given by

2k/(m− 2k) ≥ 2k/(3× 2k − 2k) = 1/2,

and if r is at most 2k then it is given by

(m− 2k)/2k ≥ (3× 2k−1 − 2k)/2k = 1/2.

Thus, dividing the interval of length r is safe in the
sense that it keeps the uniformity ≥ 1/2. Dividing
the interval of length 2k is also safe since it is divided
evenly. �

4 Known results

Some results are known for the problem defined on
real numbers in a unit interval [0, 1] instead of inte-
gers. In one dimension, an exact bound on the uni-
formity is known [1].

Theorem 2 For any integer n > 0 there is a se-
quence of n points (real numbers) in a unit interval
[0, 1] with uniformity ( 1

2 )bn/2c/(bn/2c+1) and also any
sequence of n points in the interval has uniformity
at most ( 1

2 )bn/2c/(bn/2c+1). Such an optimal sequence
can be computed in O(n) time.

Another important remark is that we can construct
an optimal sequence if n, the number of points, is
known in advance, but it is impossible otherwise.

Theorem 3 For any integer n > 0, the greedy algo-
rithm (Voronoi insertion) has uniformity 1/2 in a unit
interval and

√
2/2 in a unit square.
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5 Uniform point sequence

Lemma 1 guarantees that for any pair of integers m
and n there is a sequence of n integer points in the
interval of length m such that its uniformity is at least
1/2 if m > n > 0. What happens if we want to achieve
uniformity strictly greater than 1/2? First of all, we
cannot expect the same property as in Lemma 1 any
more. Suppose we are given an interval [0, 9]. Can
we find a uniform sequence of 2 points achieving the
uniformity strictly greater than 1/2? The first di-
vision is uniquely determined as {9} → {4, 5} since
{9} → {3, 6} has uniformity 3/6 = 1/2. Now, we have
to divide 5 into {2, 3} since {1, 4} is worse. Then, after
the second division we have {4, 2, 3} whose uniformity
is exactly 1/2. This simple example shows the diffi-
culty of this extension. Now we have the following
three problems.

Problem 1: Given two integers m and n with m >
n > 0, determine whether there exists a strictly
uniform (n, m)-sequence.

Problem 2: Given an integer n > 0, find the small-
est integer m such that there is a strictly uniform
(n, m)-sequence.

Problem 3: Given an integer m > 1, find the largest
integer n such that there is a strictly uniform
(n, m)-sequence.

In the problems above, a strictly uniform sequence
means a sequence of points with uniformity strictly
greater than 1/2.

a1

a2
a3

a4 a5 a6 a7

a8 a9 a10 a11

Figure 3: A tree describing the behavior of the algo-
rithm in the proof. A node for an interval of length
ak is divided into two nodes for a2k and a2k+1 with
ak = a2k + a2k+1. If ak is the last node having chil-
dren, then the first leaf node is ak+1 and the last one
a2k+1.

Let us first consider Problem 2. In this problem
we look for a sequence (p1, . . . , pn) in an interval [0,m]
such that its uniformity is strictly greater than 1/2.
When we insert points p1, . . . , pn in order into the
interval, then we can characterize the behavior of an
algorithm by how the set of interval lengths changes.
We start with the set {a1}, where a1 = m. Then, it is
partitioned into a2 and a3 (we assume a2 ≥ a3), and
then a2 is partitioned into a4 and a5 with a4 ≥ a5.

a1

a2
a3

a1

a2
a3

ak

ak+1

a2k+1a2k

ak
ak+1

a2k a2k+1

(a) k is odd.

(b) n is even.

Figure 4: Two trees for odd and even integers. The
node for ak+1 is a left or right child of its parent node
depending on whether k is odd or even, respectively.

The first important observation here is that we have
to partition the longest interval to keep the uniformity
> 1/2. For dividing an interval that is not longest into
two generates an interval of length shorter than half
of the longest one, which results in uniformity < 1/2.
If we always partition the longest interval, then the
set of interval lengths is {ak+1, . . . , a2k, a2k+1} after
the k-th partition. Therefore, it is well described by
a tree like a heap (see Figure 3).

In the algorithm we divide the intervals of lengths
a1, a2, . . . in this order. When we divide ak, a set
of interval lengths is {ak, ak+1, . . . , a2k−2, a2k−1}. Di-
viding ak produces two new interval lengths a2k and
a2k+1. Since we assume a2k+1 ≤ a2k in our conven-
tion, ak+1 and a2k+1 are the maximum and minimum
gaps after the division. Thus, we have

ak = a2k + a2k+1, and
a2k+1/ak+1 > 1

2 , for k = 1, 2, . . . , n.

When we are about to divide ak, those interval
lengths ak, ak+1, . . . , a2k−2, a2k−1 are leaves of the
corresponding tree. They are ordered in a way that

ak ≥ ak+1 ≥ · · · ≥ a2k−2 ≥ a2k−1.
Because of the uniformity condition a2k−1/ak > 1/2
must hold. Since the sum of those values ak + ak+1 +
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· · · + a2k−2 + a2k−1 is equal to a1, the length of the
original interval, we must minimize the sum to mini-
mize the length of the original interval. What is the
smallest value of a2k−1? It depends on whether k is
odd or even. See Figure 4.

Case 1: k is odd.
When ak+1 is to be divided, the set of interval

lengths is {ak+1, . . . , a2k, a2k+1}. If we go back to the
past divisions, ak, ak−1, . . . have been divided. When
ak was divided, we must have had a2k−1/ak > 1/2,
that is, a2k−1 > ak/2. Since ak = a2k + a2k+1 and
we assumed a2k ≥ a2k+1, it means a2k−1 > a2k+1.
Therefore, a2k+1 may be equal to a2k, but it must
be strictly smaller than a2k−1. Repeating this argu-
ment, we observe that the sum ak+1 + · · · + a2k+1

is minimized when a2k+1 = a2k, a2k + 1 = a2k−1 =
a2k−2, . . . , ak+3 + 1 = ak+2 = ak+1. Here note that
the node of ak+1 is a right child since k is odd. Tak-
ing the constraint a2k+1/ak+1 > 1/2 into accounts, we
can conclude that a2k+1 > (k − 1)/2, that is, a2k+1

must be at least (k + 1)/2.
For the pattern we have

a1 = ak+1 + · · ·+ a2k + a2k+1

= (3k2 + 4k + 1)/4.

Case 2: k is even.
The proof proceeds similarly as above, but this time

ak+1 is not paired. Considering the fact, we have

a1 = ak+1 + · · ·+ a2k + a2k+1

= (3k2 + 6k + 4)/4.

The results are summarized in the following theo-
rem.

Theorem 4 The length of the shortest interval that
accepts of a uniform point sequence of length n is
(3n2 + 4n + 1)/4 if n is odd and (3n2 + 6n + 4)/4
otherwise.

Table 1. The longest uniform sequence for each
length of an interval m.

m 2 3 4 5 6 7 8 9 10
n 1 - 1 1 1 2 2 1 3
m 11 12 13 14 15 16 17 18 19
n 3 2 2 3 3 3 3 3 4
m 20 21 22 23 24 25 26 27 28
n 4 4 3 3 5 5 5 4 4

In a similar manner we can characterize uniform
sequences. Using the characterization, it is not so
hard to solve the remaining problems. Due to space
limit, we omit the details.

Table 1 shows the largest integer n, the length of
the longest uniform sequence for each value of m, the

length of the initial interval. There is no uniform se-
quence of length at least 1 for m = 3, which is indi-
cated by the symbol − in the table.

Table 2 shows the shortest interval that accepts a
uniform point sequence of length n for each n.

Table 2. The shortest interval length accepting a
uniform point sequence of length n.

n 1 2 3 4 5 6 7 8
m 2 7 10 19 24 37 44 61
n 9 10 11 12 13 14 15 16
m 70 91 102 127 140 169 184 217

6 Conclusions and future works

In this paper we have presented algorithms for gen-
erating uniform sequences of points in a given inter-
val. One big difference from the existing study is that
points must have integer coordinates. Due to this
integrality the problem is now a combinatorial opti-
mization problem. One important extension of our
result is to higher dimensions, especially points sets
in the plane. Although the problem has a complete so-
lution in one dimension, no optimal solution has been
known for point sets in the plane or space. The dis-
crete version of the problem is expected to provide a
combinatorial approach to the two-dimensional online
discrepancy problem.
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Edge-Unfolding Medial Axis Polyhedra

Joseph O’Rourke∗

Abstract

It is shown that a convex medial axis polyhedron has
two distinct edge unfoldings: cuttings along edges
that unfold the surface to a simple planar polygon.
One of these unfoldings is a generalization of the point
source unfolding, and is easily established to avoid
overlap. The other is a novel unfolding that requires a
more complex argument to establish nonoverlap, and
might generalize.

1 Introduction

Medial axis polyhedron. Let P be a convex polygon.
The medial axis M = M(P ), M ⊂ P is the closure of
the locus of the centers of disks in P , each of whose
boundary touches ∂P in two or more points. The
medial axis is a well-studied construct that applies
much beyond convex polygons, but we restrict our
attention here to convex P . Then, M is a tree of
straight segments whose leaves are the vertices of P .
To each point m∈M may be associated the radius
r(m) of the maximal disk in P centered on m. Let
P lie in the xy-plane, and for each m∈M , define a
point p(m) = (mx,my, r(m)): it is vertically above
m at height z = r(m). Finally, define the medial axis
polyhedron P for P to be the convex hull of P∪{p(m) :
m∈M}. See Fig. 1 for an example that we will use
throughout. Let M be the tree of edges of P that
project to M .

The medial axis polyhedron is studied in [5, p. 376].
An alternative construction is to define a halfspace
through each edge of P that makes an angle of π/4
with respect to the xy-plane containing P , and in-
cludes P . The intersection of these halfspaces with
z ≥ 0 yields P. One property established in [5] (for
arbitrary piecewise-C2 closed curves, not just convex
polygons) is that the surface over the base is devel-
opable, i.e., it can be “developed” without distortion
flat to a plane. However, in general developable sur-
faces develop with overlap. Here we are explicitly
seeking a nonoverlapping development via cuttings
along edges.

Source unfolding. The medial axis M(P ) is also
known as the cut locus of ∂P : the closure of the locus
of points with more than one distinct shortest path

∗Dept. Comput. Sci., Smith College, Northampton, MA
01063, USA. orourke@cs.smith.edu.
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Figure 1: (a) A convex polygon P and its medial axis
M(P ). (b) The corresponding medial axis polyhedron
P.

from ∂P . The points M on P have the same prop-
erty, and so form the cut locus of the base rim ∂P
measuring shortest paths on the surface. It is well
known that the cutting the cut locus of a “source”
point x on a convex polyhedron unfolds the surface to
a nonoverlapping unfolding, the source unfolding [1,
p. 359]. Cutting M on a medial axis polyhedron P
is cutting the cut locus of ∂P , and it is easy to see
that this leads to a nonoverlapping unfolding for me-
dial axis polyhedra. For each face fi incident to a
base edge ei can be viewed as composed of shortest
paths to M, each path a segment perpendicular to
ei. Cutting M permits each face to flip out, rotating
about ei into the xy-plane. The perpendicularity of
the shortest segments to ei and the convexity of P
easily guarantee nonoverlap of this unfolding. This is
also a special case of a “dome unfolding,” which was
already known to avoid overlap [1, p. 322].

Convex cap unfolding. Of more interest is an un-
folding that in some sense “squashes” the convex cap
over P into the plane. Convex caps meet every line
orthogonal to P in at most one point. They are an
interesting special case to explore the long-unsolved
problem of whether or not convex polyhedra always
have an edge unfolding. One special case is studied
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in [4]; the work here establishes another special case.
The research in [2] led to the conjecture1 that cut-

ting the cut locus of a simple, closed quasigeodesic
leads to a nonoverlapping unfolding. As ∂P is such
a quasigeodesic, unfolding two medial axis polyhedra
glued base-to-base on the same P via the unfolding
described in the next section establishes a (very) spe-
cial case of this conjecture.

2 Unfolding

Unfolding defined. Let (v1, . . . , vn) be both the 2D
vertices of P and the corresponding 3D vertices of
P; the context will disambiguate. Let ei = vivi+1

be the edges of P (and P), let fi be the face of P
incident to ei, and let ui be the edge of P incident
to vi and shared between fi−1 and fi. The unfolding
U of P we study is obtained by cutting every edge of
M not incident to a leaf vertex vi, and cutting u1,
the edge of M incident to v1. We ignore the base P
for now; it is easily attached later. U consists of the
faces f1, f2, . . . , fn glued together at the shared edges
ui in a sequence. (See ahead to Fig. 2.) We view ∂U
as composed of two parts: the outer shell constituted
by the edges ei of P , and the inner path constituted
by images of cut edges of M. We continue to call
the vertices of the outer shell v1, . . . , vn, with v′1 the
second image of v1.

Let αi be the angle of P at vi, and βi the sum of
the two (equal) angles of P incident to vi in faces fi−1

and fi. Thus βi is the angle at vi in U .

Lemma 1 The outer shell of ∂U is a convex curve.

Proof. Sketch. Calculation shows that

βi = 2 cos−1

(√
2 cos(αi/2)√
3− cos αi

)

and that αi < βi < π. �

This ensures that P may be attached to U at any edge
ei and avoid overlap. Henceforth we concentrate on
the nonoverlap of U .

Medial axis overlay. We close the outer shell of U
into a convex region U∗ by extending rays from v2

through v1, and from vn through v′1. If these rays
do not meet, then U∗ is unbounded. This indeed can
occur (roughly, when α1 is small), but the medial axis
is easily defined for unbounded regions.

Define a cell of a medial axis M(P ) as one of the
convex regions into which M(P ) partitions P , i.e.,
closures of the sets P \M(P ). The key claim is the
following:

1Made only in the presentation [3].

Theorem 2 Each face fi of U nests inside a cell of
M(U∗).

We say fi nests inside cell Ci if they share edge ei

and fi ⊆ Ci. Because the cells of M(U∗) partition
U∗, this theorem implies nonoverlap of U . See Fig. 2.

1
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v

Figure 2: Unfolding U and polygon U∗ for P in
Fig. 1(b), overlaid with M(U∗).

3 Inductive construction

Our proof of Theorem 2 relies on the well-known in-
ductive construction of the medial axis for a convex
polygon. M(P ) = M(Pn) is constructed by extend-
ing a pair of edges ei−1 and ei+1 to meet at vi,j and
“engulf” ei to create a superset polygon Pn−1 of one
fewer vertex, (. . . , vi−1, vi,j , vi+2, . . .). See Fig. 3. We

1
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7 8
9

10

Figure 3: Partial inductive construction of M(P ) in
Fig. 1(a).

study two unfoldings Un and Un−1 that are based on
polygons Pn and Pn−1 related in just this manner. We
will use primes or the subscript n−1 to distinguish the
elements of Un−1 from the corresponding elements of
Un.

Lemma 3 Let Un and Un−1 be related by removing
ei from Pn, as described above. For j 6∈ {i−1, i, i+1},
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the cell C ′
j of M(U∗

n−1) nests inside the corresponding
cell Cj of M(U∗

n). For j ∈ {i− 1, i + 1}, the cells nest
except for the portion cut away to remove ei.

Here by “nests” we mean nests after a rigid move-
ment that places e′j and ej into coincidence. With
this lemma in hand, it will be straightforward to es-
tablish Theorem 2 by induction. We will use Fig. 4
to illustrate the proof. Here ei = e4 in U10 is removed
to create U9.

1
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5

6

7

8
9 10

v

e2e'2

e6=e'6

(a) U10

(b) U9

(c) U10  ∪  U9

ss'

z

e'e'22e'e'e'e'
z

e4

C'6

1'

Figure 4: Edge ei = e4 is engulfed in the U10 → U9

transition. ej = e6 and ek = e2. C ′
6 enlarges to C6.

Proof. Sketch. If the boundary of the cell C ′
j is com-

posed of subsegments of bisectors of edges of U∗
n−1

all indexed less than i − 1 or all greater than i + 1,
then C ′

j = Cj and there is nothing to prove. In Fig. 4
this holds for {C1, C7, C8, C9, C10}. So suppose C ′

j ’s
boundary contains a segment s′ that is a bisector of ej

and ek, where i lies between j and k. Let vj,k be the

point of intersection of the extensions of these edges,
through which the bisector containing s′ passes. Let
z be the vertex of Un that is the apex of the triangle
eliminated, 4vivi+1z. See Fig. 4(a).

Claim 1. When Un−1 is positioned so that e′j co-
incides with ej , then z lies to the same side of a per-
pendicular line through s′ as does vj,k. See Fig. 4(c).

The segment s′ of C ′
j changes to s of Cj by a rota-

tion of e′k about z to ek.
Claim 2. The rotation of the bisector of b′ = (e′j , e

′
k)

containing s′ to the bisector b = (ej , ek) containing s,
with e′j = ej fixed, is such that s strictly expands Cj .

These two claims rely on technical lemmas de-
scribed below. The consequence of Claim 2 (which
relies on Claim 1) is that every segment of C ′

j moves
in such a way as to expand to Cj .

For j 6∈ {i − 1, i, i + 1}, this suffices to show that
C ′

j nests inside Cj . For j ∈ {i − 1, i + 1}, C ′
j in fact

does not nest in Cj , because C ′
j includes 4zvivi,j or

4zvi,jvi+1, not present in Cj . Compare C3 and C5 in
Figs. 4(a,b). However, C ′

j \4 does nest in Cj (where
4 is the appropriate triangle), for the same reason:
the segment s′ rotates to s about z to enlarge the
cell. �

3.1 Technical lemmas

Lemma 4 Let s be a segment of the medial axis of
a convex polygon P deriving from a maximal disk
touching ej and ek, whose extensions meet at vj,k.
Then all points of the medial axis deriving from the
portion of ∂P from ej to k to the vj,k-side is to that
same side of any perpendicular line L through s.

Proof. Sketch. See Fig. 5. �

ej

ek

s

L

vj,k

Figure 5: Lemma 4.

Lemma 5 With e′j = ej fixed, let b′ and b be the
bisectors of ej with e′k and ek respectively, where ek

is a rotation of e′k about a point z that lies between
ej and b′; see Fig. 6. Then the bisectors meet at a
point q = s′ ∩ s which is left of the line through z
perpendicular to b′.
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ej=e'j

ek

e'k

bL

vj,kv'j,k

b'

z
q

Figure 6: When e′k rotates to ek about z, q = b′ ∩ b is
left of L, the perpendicular to b′ through z.

Proof. Sketch. Let e′k rotate δ about z. If b′ forms an
angle of θ′ with ej , then after rotation of ek, bisector
b forms an angle θ > θ′ with ej . One can show that
θ = θ′ + δ/2.

Case 1. vj,k lies right of v′j,k as in Fig. 6. As z
slides up a fixed L toward b′, q moves up b′ from v′j,k,
and q = z at b′. Prior to that, q lies left of L.

Case 2. vj,k lies left of v′j,k on the line containing
ej . Then q falls behind v′j,k on b′, well left of L. �

The reason that Lemmas 5 and 4 support the claims
of Lemma 3 is as follows. Lemma 4 places z to the
“correct” side of the endpoint of s′. Lemma 5 shows
that the rotation about z that constitutes the Un−1 →
Un transition causes the bisectors b ⊃ s and b′ ⊃ s′

to meet at a point q even further to the z-side of
the endpoint of s′. Thus, s is moved away from s′

throughout its length, and so Cj ⊃ C ′
j .

Completing the induction. Consider the con-
struction sequence hinted at in Fig. 3: P =
Pn, Pn−1, . . . , P3. Each polygon Pi leads to an un-
folding Ui and medial axis M(U∗

i ). We know from
Lemma 3 the cells of the M(U∗

i ) nest. So, starting
from face fj nested in Cj for some Ui, i ≥ 3, the nest-
ing will continue for all greater i, and thus establish
the nesting claimed in Theorem 2. All that remains
is establishing the base of this induction.

Lemma 6 For P3 a triangle, the three faces fi of U3

each nest inside the cell Ci of M(U∗
3 ).

Proof. Sketch. The apex z of P3 is equidistant from
the three edges of P3, and therefore z in U3 is at the
center of a circle that touches the three edges of U∗

3 .
See Fig. 7. �

4 Extensions

Pottmann and Walner consider in [5, p. 358ff] the
more general polyhedron constructed by slanting

1'

1 2

3

v

U
3

z

Figure 7: Induction base case: z is a vertex of the
medial axis of U∗

3 .

planes at some constant angle γ (“constant slope de-
velopable surfaces”). Call such a polyhedron P(γ);
the medial axis polyhedron is P(π/4). It is not dif-
ficult to prove that the projection of M from P(γ)
to the plane of P is independent of γ, i.e., it is al-
ways the medial axis M(P ). The following additional
hypotheses appear to hold, although I have not yet
proved them formally:

1. The main theorem (Theorem 2) holds for P(γ)
for any γ and therefore shows all these polyhedra
unfold without overlap in the same manner.

2. A polyhedron consisting of P(γ1) and P(γ2)
glued base-to-base on the same P unfolds by glu-
ing the convex outer shells of the two unfoldings
along a common edge.

3. For any given γ, deform P(γ) by driving γ → 0
continuously, meanwhile maintaining the original
βi face angles incident to each vi, and allowing
the faces to extend as needed to fill in the gaps
at the “cut” edges. When γ = 0 is reached, the
result is the unfolding U∗.

Finally, perhaps the analog of Theorem 2 holds for
cutting the cut locus of an arbitrary convex cap, which
would establish the quasigeodesic conjecture for con-
vex caps.
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Inducing Polygons of Line Arrangements

Elena Mumford∗ Ludmila Scharf† Marc Scherfenberg†

Abstract

We show that an arrangement A of n lines in general
position in the plane has an inducing polygon of size
O(n4/3). Additionally we prove that A has a subar-
rangement of at least 2n/3 lines with a linear size in-
ducing polygon. We present an alternative algorithm
for finding an inducing n-path for A and an algorithm
that constructs an inducing n-gon for a special class
of line arrangements.

1 Introduction

Every simple polygon induces an arrangement of lines,
simply by extending its edges. We consider the ques-
tion whether every arrangement of lines in the plane
has an inducing polygon, namely, a simple polygon P
such that every line l of the arrangement A is collinear
with an edge of P and that every edge of P is collinear
with some line of A, see Fig. 6(right) for an example.
There are arrangements that cannot be induced by a
simple polygon. An arrangement of lines that all in-
tersect in one point, and an arrangement of lines that
form a 3 × 2 parallel grid serve as examples of such
arrangements. However, we will show that when the
lines of an arrangement are in general position, i.e.,
no three lines intersect in one point, and no two lines
are parallel, the inducing polygon exists and can be
found in O(n2) time. From now on we consider only
arrangements of lines in general position in the plane.

A stronger version of the inducing polygon prob-
lem has been addressed by Bose et al. in [2]. Namely,
the authors required the inducing polygon to be an
n-gon, where n is the size of the arrangement. They
showed that every arrangement of n lines contains an
inducing simple n-path (also referred to as an induc-
ing polyline), that is, a polygonal path that uses every
line exactly once. Their algorithm produces an induc-
ing n-gon if there exists a line such that all intersection
points of the arrangement lie on one side of that line.
Moreover, they demonstrated that every arrangement
contains a subarrangement of size

√
n− 1+1 with an

inducing (
√

n− 1 + 1)-gon.
In this paper we describe an O(n2) time algorithm

for finding an inducing k-gon for an arrangement of
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{scharf,scherfen}@mi.fu-berlin.de

n lines, where k = O(n4/3). Additionally we present
an alternative algorithm for finding an inducing n-
path and an algorithm that constructs an inducing
n-gon for any arrangement that maps to a convex set
of points in dual space. Finally, we show that every
arrangement of n lines has a subarrangement of size at
least 2n/3 with an inducing m-gon, where m = O(n).

2 Algorithm based on the envelope polygon

In this section we describe an algorithm that con-
structs an inducing polygon P for every arrangement
A of n lines.

Define the envelope polygon PE of A as the polygon
consisting of the finite length segments at the bound-
ary of the unbounded faces of the arrangement [5]. A
face of A is a boundary face if it is adjacent to an edge
of PE and is bounded, see Fig. 1(a) for an example,
where the shading indicates the boundary faces of A.

Our algorithm is based on the following observa-
tion: every line l ∈ A is either induced by PE or
crosses an edge of PE . In the latter case l contains
an edge of some boundary face fl. Intuitively, the al-
gorithm traverses the edges of PE , scans every edge e
for unused lines that cross e and for every such line l
it augments the envelope polygon by “denting in” the
face fl as depicted in Fig. 1(b). More precisely, the

(a)

PE

(b)

l
fl

P

Figure 1: (a) The envelope polygon PE with shaded
boundary faces; (b) Augmenting the the polygon P
for a line l.

algorithm constructs an inducing polygon P for A in
the following way: First, set P = PE . Then traverse
the edges of PE in clockwise order and scan every edge
e for unused lines that cross it. The scanning direction
for e is chosen according to the following rules:
(a) If both end vertices v1 and v2 of e are reflex, the
scanning direction corresponds to the traversal direc-
tion of PE , Fig. 2(a).
(b) If exactly one incident vertex of e is convex, the
scanning direction is from the convex vertex to the
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reflex one, Fig. 2(b).
(c) If both end vertices are convex, find a line l′ in-
tersecting e, such that l′ contributes a convex vertex
x to PE . We split e at the intersection point with l′

and set the direction for two parts separately, each
from the corresponding convex vertex towards the in-
tersection point with l′, Fig. 2(c).

Note that the line l′ always exists due to the follow-
ing observations: PE has at least one convex vertex
x that is not v1 or v2. From the definition of PE and
convexity of v1 and v2 it follows, that the intersection
points of the line containing e with every other line of
A lie between or at the vertices v1 and v2.

e
(a)

v1 v2
e

(b)

v1 v2
e

x

(c)

l′

v1 v2

Figure 2: Direction rules for edge traversal. The shad-
ing indicates the interior side of P .

Next, for every unused line l that crosses e we con-
sider the boundary face fl that comes after l in the
scanning direction of the edge. Let ∂fl be the bound-
ary of fl and let e′ be the edge of ∂fl contained in e.
We replace e′ in P by ∂fl \ e′ (see Fig. 1(b)) and
mark all lines induced by ∂fl \ e′, including the line l,
as used.

Correctness. We need to show that P is a polygon,
P induces A, and that P is simple.

We start with P = PE . Every augmentation re-
places a line segment by a polygonal chain connecting
its end points. Hence P is a polygon.

Every unused line crosses an edge of PE . Therefore,
all unused lines have been handled by the time the
algorithm terminates. During each augmentation step
only a part of an edge e of PE is removed from P , so
we never “lose” any of the lines that P induced before
the augmentation. Thus, every line in A is induced
by P .

We say that a polygon has a self-intersection if it
has a pair of edges e1 and e2 intersecting in a single
point v such that v is not an end point of either e1 or
e2. A polygon has an edge-overlap if there exist two
edges e1 and e2 in the polygon such that e1 ⊆ e2. A
polygon has a vertex-overlap if it has two coinciding
vertices, see Fig. 3 for examples. We can show that
P does not have self-intersections, vertex- or edge-
overlaps and hence is simple. Due to space limitations
we omit the proof and refer the reader to the full
version of the paper [6].

A trivial bound for the running time of the algo-
rithm is O(n2). The bound for the complexity of the

v1
v2

v3 v4

v5

v6

(a) (b) (c)

v1
v2

v3 v4

v5

v6v1

v2

v3
v4

v1

v2v3
v4

v5 v6

Figure 3: (a) Self-intersection; (b) edge-overlap; (c)
vertex-overlap.

polygon is O(n4/3) and is derived from the result by
Clarkson et al. in [3].

3 The Christmas tree algorithm

The Christmas tree algorithm constructs a simple in-
ducing polyline for an arrangement A of size n that
induces every line of A exactly once.

Given an arrangement of lines in the plane π our
algorithm operates in the dual space π∗ as defined
in [4]: The dual of a point p : (a, b) ∈ π is the line p∗ :
f(x) = ax−b in π∗; the dual of a line l : f(x) = ax+b
in π is the point l∗ : (a,−b) ∈ π∗. We can assume
w.l.o.g. that A does not contain a vertical line.

Define L∗ as a set of duals of lines of A. Since
the lines of A are in general position, L∗ is in general
position, i.e., no three points of L∗ are collinear, and
all points in L∗ have different x-coordinates. Let M
be an inducing polyline in π with n edges. We define a
dual polyline for M as a polyline M∗ in π∗ that visits
the vertices of L∗ in the same order as M visits the
lines of A. M∗ is uniquely defined by M ; we omit the
proof due to space limitations. Our algorithm finds a
polyline P ∗ in π∗ that visits every point of L∗ exactly
once such that the corresponding polyline P in π is
simple.

The idea of the algorithm is to traverse all points
in L∗ and add them to P ∗ in a certain order. Let l∗1
be the bottommost point of L∗ (if it is not unique,
we take the rightmost of the two). We first con-
struct a convex chain P ∗

1 by traversing the lower hull
of L∗ starting with l∗1 in descending order of the x-
coordinate. The lower hull ([4]) of a set of points
is defined as the part of the convex hull of the set
that lies below or on the line connecting the leftmost
and the rightmost points of the set. The upper hull is
defined symmetrically. We add points of P ∗

1 to P ∗ ex-
cept for the leftmost point of L∗, preserving the order
of the vertices in P ∗

1 . Next, while we have unvisited
vertices, we incrementally do the following.

• We construct a chain P ∗
i , i > 1 by adding the

vertices of the lower hull of L∗ \ P ∗ one by one
in the order opposite to the order of vertices in
P ∗

i−1. That is, for odd i the vertices in P ∗
i come

in ascending order of their x-coordinate, and for
even i vertices in P ∗

i are in descending order of
their x-coordinate.
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• We add the vertices of P ∗
i , except for the last one,

to P ∗ preserving the order of vertices in Pi.

When we visited all the vertices in L∗ we add the last
point of the last chain to P ∗. Fig. 4 depicts an exam-
ple of the polyline P ∗ and the corresponding inducing
polyline P in π. Note that the chains P ∗

i resemble the
garlands decorating a Christmas tree. A trivial upper
bound for the running time of the algorithm is O

(
n2

)
.

l∗2

l∗8

l∗3 l∗4 l∗5

l∗6l∗7

l∗1

l∗9 points in dual space

P ∗
1

P ∗
2

P ∗
3

P ∗
4

l2

l8

l3

l4
l5

l6

l7

l1

l9

lines in primal space

Figure 4: The path P ∗ generated by Christmas tree
algorithm and the inducing path P for A.

Correctness. By construction every point of L∗ was
added to P ∗ exactly once, hence P is an inducing n-
path for A. Next we demonstrate that P is simple.

Recall that a dual of segment s in π is a left-right
double wedge in π∗ bounded by the duals of the end-
points of s, see [4]. From now on we refer to such a
double wedge as a d-wedge for short. Define a center
of a d-wedge as the intersection point of the lines that
bound it. We say that two d-wedges intersect if they
contain a common line, see Fig. 5. In other words,
two d-wedges intersect if and only if one contains the
center of the other. It is known ([4]) that two seg-
ments in π intersect if and only if the corresponding
d-wedges intersect in π∗.

p1

p2q1

q2x

p∗1

p∗2

q∗1

q∗2
x∗

Figure 5: Intersecting segments and d-wedges.

Consider our polylines P and P ∗. The edges of P
correspond to d-wedges formed by pairs of consecu-
tive edges of P ∗. Thus the edges of P intersect if and
only if the d-wedges formed by consecutive edges of
P ∗ intersect. Hence from now on we are only inter-
ested in the d-wedges formed by consecutive edges of
P ∗. We call two such d-wedges consecutive if they are
bounded by the same line. The d-wedges are consec-
utive if and only if they correspond to adjacent edges

of P . Hence P is simple if and only if only consecutive
d-wedges of P ∗ intersect.

Assume for a contradiction that we have two in-
tersecting non-consecutive d-wedges w and v in P ∗.
Let p∗1 and p∗2 be the lines bounding w and let q∗1 and
q∗2 be the lines bounding v. There are two cases to
consider: (a) the centers of w and v are in the same
chain P ∗

i and (b) they belong to two different chains
P ∗

i and P ∗
j , i < j.

Case (a): The center of v lies inside w, that is above
p∗1 and below p∗2 (or the other way round). Since P ∗

i is
convex, this can only happen if the center of v lies on
either p∗1 or p∗2. Assume w.l.o.g. it lies on p∗1. Since no
three points in L∗ are collinear, the center of v must be
consecutive to the center of w along P ∗. This means
that w and v are consecutive, which contradicts our
assumption.
Case (b): Recall that P ∗

i is a lower hull of a set of
points that includes the points of P ∗

j . It means that
for every edge e of P ∗

i every point of P ∗
j lies either

above or on the line containing e. The center of v can
lie inside of w if and only if it lies on either p∗1 or p∗2.
For the same reason as earlier it means that w and v
are consecutive. We came to a contradiction again.

We can now conclude that P is indeed simple.

4 The Zigzag algorithm

When the duals L∗ of the lines in A are in convex
position, we can find an inducing n-gon of A.

We first connect the leftmost point l∗left and the
rightmost point l∗right in L∗ with an edge e. The edge
e divides the points into the upper hull Hu and the
lower hull Hb of L∗. Starting with l∗left we connect the
the points of Hb in a zig-zag manner as illustrated
in Fig. 6. Namely, connect l∗left to a point l∗1 ∈ Hb

with the largest x coordinate. Then connect l∗1 to the
next point l∗2 in Hb \ {l∗left, l∗right, l

∗
1} with the small-

est x coordinate. We carry on connecting alternately
the so far unvisited points with the largest and the
smallest x-coordinate until all points of Hb are in the
path. Next, starting with l∗right, we traverse the up-
per hull in the “mirrored” way. Finally, we connect
the end points of the obtained path with an edge and
name the polygon P ∗. The corresponding path P in
primal space is an inducing n-gon for A. The time
complexity of the algorithm is O(n log n).

l∗2
l∗1

l∗right

l∗4l∗3

l∗left e

e′

l2

l1

lright

l4

l3
lleft

e e′

Figure 6: The polygons P ∗ and P produced by the
Zigzag algorithm.
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Correctness. During the traversal of the upper
(lower) hull the algorithm visits alternately the so
far unvisited points with the smallest and the high-
est x-coordinate. Hence, the x-coordinates of every
three consecutively visited points p1, p2, p3 form a
bitonic sequence, that is the x coordinate of p2 is ei-
ther larger or smaller than the x-coordinates of both
p1 and p2. Therefore, one part of the corresponding
d-wedge is bounded by the segments p2p1 and p2p3

(inner wedge) and the other part by the extensions of
these segments in the direction of p2 (outer wedge).
Obviously, the outer wedge cannot contain any other
point because it is faced outside the convex hull. The
inner wedge cannot contain any other point because
p1 and p3 are neighbors on the convex hull. Hence,
two non-consecutive wedges cannot share a common
line. Since the two endpoints do not lie inside any
other wedge, the closing edge also does not produce
double-wedges causing intersections in primal space.

5 A linear inducing polygon for a subarrangement

Theorem 1 An arrangement A of n lines has a sub-
arrangement of size s ≥ 2n/3 with an inducing poly-
gon with at most 3.5n vertices or edges.

Proof. Let nE be the number of lines inA induced by
the envelope polygon PE = E(A). We remove these
nE lines from the arrangement. We use the algorithm
by Bose et al. to find an inducing polyline for the
arrangement A′ of n′ remaining lines. Recall that the
algorithm first constructs a polyline I ′ of size n′ − 1
that induces n′ − 1 lines of A′ and has the following
properties: (a) I ′ starts and ends on an unused line l
of A′; (b) the start and end points of I ′ are the ex-
treme intersection points of I ′ and l on l, see Fig. 7(a).
Next the algorithm revises I ′ if necessary and adds a
segment of l to I ′ (see Fig. 7(b)) to obtain a poly-
line that induces A′ and contains n′ edges. Instead of
this last step, we add the unbounded parts of l to the
polyline I ′ (see Fig. 7(c)) to obtain the inducing poly-
line I with n′ +1 edges, two of which are unbounded.
This modification enables us to extend the first and
the last segments of the inducing polyline to infinity
while preserving its simplicity.

(a) (b) (c)l l l

Figure 7: (a) The polyline
I ′; (b) inducing polyline by
Bose et al.; (c) polyline I.

P1

P2

I

PE

Figure 8: PE cut by
the polyline I into
polygons P1 and P2.

We consider the polygon PE and the polygons P1

and P2 formed by cutting PE by the polyline I, see
Fig. 8. PE induces nE lines, P1 and P2 induce n1

and n2 lines respectively. Let Pmax ∈ {PE , P1, P2} be
the polygon that induces the largest subarrangement
in A. We can show that n1 + n2 + nE > 2n, and
max(nE , n1, n2) ≥ 2n/3. Thus Pmax induces at least
2n/3 lines of A. The size of Pmax is bounded from
above by nE , nE < 3.5n ([1]). Thus Pmax has at most
3.5n vertices or edges. Pmax can be found in O(n2)
time. �

6 Conclusions

We demonstrated that an arrangement A of n lines in
general position in the plane has an inducing polygon
of size O(n4/3) that can be constructed in O(n2) time.
Additionally we proved that A has a subarrangement
of at least 2n/3 lines with an inducing polygon of lin-
ear size. We also presented a new algorithm for find-
ing a simple inducing polyline of size n for A. More-
over, we showed that when the lines of A map to a set
of points in convex position in dual space an inducing
n-gon for A can be found in O(n log n) time. Thus we
widened the class of arrangements for which an induc-
ing n-gon can be constructed. The question whether
such a polygon exists for an arbitrary arrangement of
lines in general position remains open.
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Coloring Geometric Range Spaces

Greg Aloupis∗ Jean Cardinal∗ Sébastien Collette†∗ Stefan Langerman‡∗ Shakhar Smorodinsky§

Abstract

Given a set of points in R2 or R3, we aim to color
them so that every region of a certain family (for in-
stance disks) containing at least a certain number of
points contains points of many different colors. Us-
ing k colors, it is not always possible to ensure that
every region containing k points contains all k colors.
Thus, we introduce two relaxations: either we allow
the number of colors to increase to c(k), or we require
that the number of points in each region increases to
p(k). We give upper bounds on c(k) and p(k) for half-
spaces, disks, and pseudo-disks. We also consider the
dual question, where we want to color regions instead
of points. This is related to previous results of Pach,
Tardos and Tóth on decompositions of coverings.

1 Introduction

We are interested in coloring finite sets of points in R2

or R3 so that any region (within a specified family)
that contains at least some fixed number of points,
also contains a significant number of distinctly colored
points. For example, we study the following problem:
Does there exist a constant α such that given any set
of points in the plane, it is always possible to color the
points with k colors so that any halfplane containing
at least αk points contains a point of each color? In
Section 2 we answer this question on the affirmative.

We also allow the number of available colors and
the number of required distinct colors to be differ-
ent. We ask, for instance, Does there exist a constant
α such that given a set of points in the plane, it is
always possible to color the points with αk colors so
that any halfplane containing at least k points also
contains points of k distinct colors? We show this is
true as well. We ask similar questions for other types
of regions such as disks and pseudo-disks

These types of problems can be seen as coloring
range spaces induced by intersections of sets of points
with geometric objects. The corresponding dual range
spaces are those obtained by considering a finite set
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of regions in R2 or R3, and defining the ranges as
the subsets of all regions containing a given point, for
every possible point. The types of problems we ask
when dealing with dual range spaces are analogous
to the preceding questions. For instance: Does there
exist a constant α such that given any set of disks in
the plane, it is always possible to color the disks with
αk colors while ensuring that any point contained in at
least k disks is contained in disks of k distinct colors?

Definitions. A range space (or hypergraph) is a pair
(S, R) where S is a set (called the ground set) and
R is a set of subsets of S. Here, we consider finite
restrictions of infinite geometric range spaces of the
form S = (Rd,R) for d = 2 or 3, whereR is an infinite
family of regions of Rd. Such a finite restriction is a
range space (S, R) where the ground set S is a finite
set of points in Rd and the set of ranges R is the
collection of subsets of S defined by the intersection
of S with elements of R : R = {S ∩ r : r ∈ R}.

We also consider the corresponding dual range
spaces, denoted by S̃, of the form S̃ = (R, {r(p) :
p ∈ Rd}), where r(p) = {r ∈ R : p ∈ r} is the
set of regions containing the point p. The finite re-
strictions of these dual range spaces are of the form
(S, {r(p) ∩ S : p ∈ Rd}), where S ⊂ R is finite.

A coloring of a range space is an assignment of col-
ors to the elements of the ground set. A c-coloring
is a coloring that uses exactly c colors. A range is
k-colorful if it contains at least k elements of distinct
color. We are interested in the following two func-
tions, for a range space S:

1. cS(k) is the minimum number for which there al-
ways exists a cS(k)-coloring of any finite restriction
of S, such that every range r is min{|r|, k}-colorful.

2. pS(k) is the minimum number for which there al-
ways exists a k-coloring of any finite restriction of
S such that every range of size at least pS(k) is
k-colorful.
The goal of this paper is to provide upper bounds

on cS(k), pS(k), cS̃(k), and pS̃(k) for various families
of regions.

Previous results. The functions defined above are
related to two previously studied problems. The first
one is the decomposition of f-fold coverings in the
plane: given a covering of the plane by a set of re-
gions such that every point is covered by at least f
regions, is it possible to decompose it into two disjoint
coverings? This question was first asked by Pach in
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1980 [4]. It is similar to deciding whether pS̃(2) ≤ f
for the dual range space S̃ defined by the considered
family of regions, the difference being that we do not
assume that all points are f -covered.

For T the range space defined by translates of a cen-
trally symmetric convex polygon, Pach and Tóth [7]
recently proved that pT (k) = O(k2) and pT̃ (k) =
O(k2). Thus, a covering can be decomposed into k
coverings if each point is covered at least ck2 times
for some constant c. On the negative side, for the
range space induced by disks (denoted by D), Pach et
al. [6] proved that even pD(2) is unbounded. They ob-
tain a similar result for pÃ(2) where A is the family
of either strips or axis-aligned rectangles.

The previous impossibilities constitute our main
motivation for introducing some slack and defining
the problem of c(k)-coloring a finite range space such
that ranges are k-colorful, with k ≤ c(k).

The second previously studied problem is that of
computing the chromatic number of geometric hy-
pergraphs, defined as the minimum number of col-
ors needed to make all ranges polychromatic, that is,
2-colorful [8]. It was shown that for the family of
pseudo-disks P, cP̃(2) = O(1).

A recent result of Chen et al. ([2], Thm. 3) also
implies that cA(k) and pA(k) are unbounded, where
A is the range space induced on R2 by axis-aligned
rectangles. Furthermore, Pach and Tardos [5] proved
a result implying cÃ(2) = ∞, implying cÃ(k) = ∞.

Our results. In Section 2, we consider the range
space H = (R2,R), where R is the set of all half-
planes. We prove that cH(k) ≤ 3k − 2, and pH(k) ≤
4k−1. In other words, we can ensure that a halfplane
contains k points of different colors in two ways: either
we k-color the point set but require that the halfplane
contains at least 4k − 1 points, or we allow the point
set to be (3k − 2)-colored.

In Section 3, we consider the range space L =
(R3,R), where R is the set of all lower halfspaces.
We prove that cL(k) = O(k); and that cL̃(k) = O(k).

We provide a number of results on range spaces
defined by disks and pseudo-disks in Section 4. For
the range space D defined by disks, we prove that
cD(k) = O(k) by mapping disks in R2 to lower halfs-
paces in R3 and using the result of Section 3. For a
dual range space P̃ defined by pseudo-disks we prove
that cP̃(k) = O(k). Since halfplanes are a special case
of pseudo-disks, we directly have cH̃(k) = O(k). We
also show that cP(k) = O(k), with similar arguments.

By lifting a 2D point set to the unit paraboloid z =
x2+y2 in 3D, every lower halfspace in 3D isolates a set
of points which is contained in a disk in the original set
of points, and thus pL(k) ≥ pD(k). We also prove that
pL̃(k) = pL(k): coloring lower halfspaces is equivalent
in the projective dual to coloring points with respect
to lower halfspaces.

All the proofs are constructive, and polynomial-
time algorithms can be derived from them. The proofs
of several lemmas are omitted in this abstract. The
results are summarized in the following table, where
the symbol ? indicates new results; and the symbol
∞ indicates a function unbounded in terms of k.

S cS(k) pS(k) ceS(k) peS(k)

halfplanes ≤ 3k − 2 ≤ 4k − 1 O(k) ≤ 8k − 3
Thm. 3? Thm. 5? Thm. 14? Cor. 6?

lower half- O(k) ∞ From O(k) ∞ From
spaces in R3 Thm. 10? disks Cor.11? disks
transl. of a O(k) O(k2)

[7]
O(k) O(k2)

[7]
cent. sym.
cvx. poly.

Thm. 16? Thm. 14?

disks O(k) ∞ [6] ≤ 24k +
1

Cor. 12? Cor. 15?
pseudo O(k) ∞ [6] O(k)
-disks Thm. 16? Thm. 14?

2 Halfplanes

In this section we study the case where the family
R is the set of all halfplanes in R2. We denote by
H = (R2,R) the corresponding infinite range space.

It is not always possible1to color a set of points
S with k colors such that every halfplane of size k
(containing k points of S) is k-colorful, even for k = 2.
This is our main motivation for allowing either the
number of colors or the range size to be greater than
k.

We first need to recall the notion of Tukey depth:

Definition 1 Given a set S of points in Rd, the
Tukey depth of a point p (not necessarily in the set) is
the maximum integer t with the property that every
halfspace containing p contains at least t points of S.

It is well known that for any set of n points in the
plane, there exists a point in R2 at depth t ≥ n/3.
The depth-k region is the set of all points at depth k
or more. It is easily seen that this region is the inter-
section of all halfplanes containing more than n − k
points of S and thus its boundary is a convex polygon.
We observe the following for depth-k regions:

Lemma 1 Let S be a finite set of more than 3k points
in R2. Then every open halfplane not intersecting the
depth-k region of S and the bounding line of which is
tangent to the depth-k region of S contains at most
2k−2 points of S. The corresponding closed halfplane
contains at least k points.

We define the orientation of a halfplane as the ab-
solute angle of the inward normal of the line bounding
it. Thus, for example, the orientation of the halfplane
defined by all points lying above the x-axis is π

2 .

1The simplest example consists of an odd number of points
in convex position.
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Let p be a point of S lying outside the depth-k
region. It is easily seen that the set of orientations
of all closed halfplanes that are tangent to the depth-
k region and that contain p form a closed (circular)
interval of length at most π. Thus, each point may be
represented as an arc on the unit circle. Let A be the
set of arcs corresponding to points in S outside or on
the boundary of the depth-k region, and let A′ be the
same set of arcs but open (in particular, degenerate
arcs consisting of only one point are removed).

Lemma 2 Every point on the unit circle is covered
by at most 2k − 1 arcs of A′, and every point that
is not the endpoint of an arc is covered by at least k
arcs. Furthermore, the minimum number of segments
covering any point is at most k − 1.

Theorem 3 cH(k) ≤ 3k − 2. That is, we can color
any set of points in the plane with 3k − 2 colors such
that any halfplane containing h points is min{h, k}-
colorful.

Proof. A proper coloring of a set of arcs on the unit
circle is an assignment of colors to the arcs such that
no pair of arcs of the same color overlap. In [10] it
was proved that every set of arcs on the unit circle
has a proper coloring with m + M colors, where m
(resp. M) is the minimum (resp. maximum) number
of arcs covering each point of the circle. Combining
this with Lem. 2, we conclude that the corresponding
set A′ can be (3k − 2)-colored. Accordingly we can
color the points (outside the depth-k region) of S that
correspond to A′. The remaining points are colored
arbitrarily. Thus there exists a (3k − 2)-coloring of S
such that every open halfplane not intersecting – but
tangent to – the depth-k region is colorful (the colors
of points inside that halfplane are pairwise distinct).

Now it remains to prove that every halfplane of
size h is min{h, k}-colorful. Given such a halfplane
Π, there are two cases: (i) Π does not intersect the
depth-k region, meaning that it is strictly contained
in an open halfplane Π′ which has its boundary line
tangent to the depth-k region, and thus no two points
in it are colored with the same color. (ii) Π inter-
sects the depth-k-region and thus contains a closed
halfplane Π′ tangent to it. If the point p on the cir-
cle corresponding to Π′ is not the endpoint of an arc,
then Π′ contains at least k points of different colors.
If p is the endpoint of an arc then Π′ contains at least
all points corresponding to arcs that cover a point in-
finitesimally to the left of p, which also have at least
k different colors. �

We now consider the depth-2k region. As described
above, points outside the depth-2k region are associ-
ated with a set of closed arcs, A, on the unit circle.
Recall that each arc in A has length at most π and

that by Lem. 1 every point on the unit circle is covered
by at least 2k arcs.

Lemma 4 Let A be a set of arcs of length at most π
on the unit circle. If each point on the circle is covered
at least 2k times then we can k-color the arcs of A so
that each point on the circle is covered by k colors.

Theorem 5 pH(k) ≤ 4k − 1. That is, we can color
any set of points in the plane with k colors such that
any halfplane containing at least 4k − 1 points is k-
colorful.

Proof. Let A be the set of arcs corresponding to
the points that lie outside or on the boundary of
the depth-2k region. By Lem. 4, A can be made k-
colorful, as it covers every point of the unit circle
at least 2k times. This means that there exists a k-
coloring of S such that every closed halfplane tangent
to the depth-2k region is k-colorful. As we consider
large point sets in comparison to k, there always exists
a depth-2k region (specifically, as long as n ≥ 6k).

Let Π be a halfplane containing at least 4k − 1
points. Π must intersect (or touch) the depth-2k re-
gion, because every open halfplane tangent to the re-
gion contains at most 4k− 2 points, by Lem. 1. Thus
Π contains a closed halfplane Π′ with its boundary
tangent to the depth-2k region. By construction, Π′

must be k-colorful and therefore so must Π. �

Using projective duality, we obtain the following:

Corollary 6 pH̃(k) ≤ 8k − 3. That is, we can color
any set of halfplanes with k colors such that any point
in the plane covered by 8k− 3 halfplanes is contained
in halfplanes of k different colors.

3 Lower halfspaces in R3

We now deal with the case where R consists of all
lower halfspaces in R3. The proof of the following
lemma is similar to that of Lem. 1 in R2. We call
L = (R3,R) the corresponding infinite range space
and consider the value of cL(k). The depth-k region
in R3 is bounded by a convex polyhedron.

Lemma 7 Given a set of more than 4k points in
R3, every open halfspace not intersecting the depth-k
polyhedron and which has a bounding plane tangent
to the depth-k polyhedron contains at most 3k − 3
points. The corresponding closed halfspace contains
at least k points.

We consider lower halfspaces defined by planes tan-
gent to the depth-k polyhedron. Each normal vec-
tor to one of these planes corresponds to precisely
one lower halfspace and defines one point on the unit
sphere. We map the points from the unit sphere onto
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the xy plane so that every lower halfspace corresponds
to a single point in R2. This representation is used in
the remainder of the section.

Lemma 8 Let Rx denote the set of points in R2 cor-
responding to lower halfspaces tangent to the depth-k
polyhedron and containing x ∈ S. Let p and q be two
points of S outside the depth-k polyhedron. Then,
Rx is a connected subset of R2, and the boundaries of
Rp and Rq intersect at most twice.

The proof of the next theorem uses the following def-
inition and lemma [3]. We use the standard notion
of chromatic number χ(G) of a graph G, defined as
the minimum number of colors needed to color the
vertices so that no edge is monochromatic.

Definition 2 A simple graph G = (V,E) is called
k-degenerate for some positive integer k, if every
(vertex-induced) subgraph of G has a vertex of de-
gree at most k.

Lemma 9 Let G = (V,E) be a k-degenerate graph.
Then χ(G) ≤ k + 1.

Theorem 10 cL(k) = O(k). That is, we can color
any set of points in R3 with O(k) colors such that
any lower halfspace containing h points is min{h, k}-
colorful.

Proof. Let A = {Rx|x ∈ S, outside or on the
surface of the depth-k polyhedron}. By Lem. 8, we
know that A is a set of pseudo-disks. Let A′ be the
corresponding open pseudo-disks. By Lem. 7, we also
know that every point in the projection of the sphere
on R2 belongs to at most 3k − 2 regions of A′. We
consider the intersection graph of A′. Chan [1] ob-
served that this graph is O(k)-degenerate, hence by
Lem. 9, O(k)-colorable. �

Using projective duality again, we get the following:

Corollary 11 cL̃(k) = O(k). That is, we can color

any set of lower halfspaces in R3 with O(k) colors so
that any point in the intersection of more than k of
them is covered by k different colors.

4 Disks and pseudo-disks

In this section we consider the case where the ranges
in R are disks or pseudo-disks. We denote by D =
(R2,R) the range space for disks, and by D̃ its dual,
where the ground set is the set of disks and the ranges
are the subsets of all disks having a common point.
Similarly, we use the notations P and P̃ for the range
spaces defined by pseudo-disks.

The proof given above for lower halfspaces in R3

can be used to prove that cD(k) = O(k), by using a
standard lifting of the plane onto a parabola in R3.

Corollary 12 cD(k) = O(k).

We now give a bound for the value of cP̃(k), where P̃
is the dual range space defined by pseudo-disks. Simi-
lar to the proof of Thm. 10, we analyze the degeneracy
of a graph induced by a finite set of regions.

Definition 3 Let S be a finite family of simple closed
Jordan regions in R2. We denote by Gk(S) the graph
on S where the edges are all pairs r, s ∈ S such that
there exists a point p that belongs to r∩s and at most
k other regions of S.

The next lemma can be proved using a probabilistic
technique similar to the one used in the classical proof
of the crossing lemma [9].

Lemma 13 Let S be a family of pseudo-disks. Then
Gk(S) is O(k)-degenerate, and hence the chromatic
number of Gk(S) is at most O(k).

Theorem 14 cP̃(k) = O(k)

Corollary 15 For the special case of real disks, it
can be shown that the graph Gk(S) is 24k-degenerate.
Hence in the special case of real disks, we have
cD̃(k) ≤ 24k + 1.

For the version in the primal range space in which
we color points rather than regions, we can also prove
the following, using a similar technique.

Theorem 16 cP(k) = O(k)
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A Lower Bound for the Transformation of Compatible Perfect Matchings

Andreas Razen∗

Abstract

For a planar set of n points we consider the graph
whose vertices are the crossing-free perfect matchings
of the point set, and two such perfect matchings are
adjacent if their union is also crossing-free. It was
recently shown by Aichholzer et al. [2] that the diam-
eter of this graph is in O(log n), improving over the
previously best known upper bound of n− 2.

We show a lower bound of Ω(log n/ log log n) for
the diameter of this transformation graph of perfect
matchings which nearly matches the upper bound. So
far only constant lower bounds were known.

1 Introduction

Given a set P of n points in the plane let Tpm(P )
denote the set of all crossing-free straight-line perfect
matchings of P . A straight-line embedded graph is
called crossing-free if every pair of its edges does not
share any point other than common endpoints. Two
crossing-free perfect matchings M1 and M2 of P are
compatible if their union, i.e., the graph on P with
edge set M1 ∪M2, is crossing-free.

We are interested in the transformation graph
Tpm(P ) defined on the vertex set Tpm(P ) and with
edges between compatible perfect matchings. Houle
et al. [4] showed that for any set of n points this graph
is connected and has diameter at most n−2. Recently,
Aichholzer et al. [2] improved this upper bound to
O(log n). So far no example was known for which the
diameter is not constant. We give a sublogarithmic
but rather tight lower bound of Ω(log n/ log log n).
We do this constructively by providing point sets of
increasing size, and on each point set we specify two
perfect matchings achieving the bound.

Transformation graphs for various configurations
have been treated in the literature. Well known for
instance are the flip graphs for triangulations and
pseudo-triangulations, or the tree graphs defined on
the crossing-free spanning trees of the underlying
point set with some predefined rule of transformation.
In the case of transforming compatible spanning trees
the asymptotics of the currently best-known upper
bound (O(log n) due to Aichholzer et al. [1]) and lower
bound (Ω(log n/ log log n) due to Buchin et al. [3]) for
the diameter are the same as for perfect matchings.

∗Institute of Theoretical Computer Science, ETH Zurich,
razen@inf.ethz.ch

Although our construction for the lower bound
when transforming perfect matchings uses similar
ideas as in [3] note the problems’ immanent difference
of connectivity: Spanning-trees are connected graphs
whereas perfect matchings consist of n/2 components.
It is this property which makes the construction pre-
sented here more complicated.

2 The lower bound

In this section we construct planar point sets on which
we specify pairs of perfect matchings which need a
large number of steps to transform into each other
via compatible perfect matchings, i.e., their distance
in the transformation graph is large.

We start by introducing the concept of a prisoner
which is a point serving as a witness that two perfect
matchings have at least a certain distance in Tpm(P ).
Based on this we present a recursive construction in
order to obtain point sets P of increasing size for
which the diameter of Tpm(P ) grows as well. This di-
ameter is lower bounded by Ω(log n/ log log n), where
n is the size of the underlying point set. For the sake of
a simple description we use point sets with more than
two points on a line, i.e., the point sets are not in gen-
eral position. However, they can easily be changed to
do so by applying a small perturbation without losing
any of the construction’s relevant properties.

The key idea is to consider two perfect matchings
with a large number of crossings, in particular we will
use a first matching with near horizontal edges and a
second matching with near vertical edges. As intuitive
as this approach may seem, having many crossings is
not enough as can easily be seen by taking n ≥ 8
points equidistantly distributed on a circle. Then the
perfect matchings, one consisting of horizontal edges
only and the other one of vertical edges only, have a
large number of crossings. However, the diameter of
the transformation graph is 2, since a perfect match-
ing containing only edges on the boundary of the con-
vex hull is adjacent to every perfect matching.

In order to deal with this issue we will impose de-
pendencies onto the (near) horizontal edges such that
whatever transformation is made certain (near) hori-
zontal edges remain in the obtained matching.

Before making this statement precise, we introduce
some notation used in the following. The granularity
of a point set P is the smallest positive difference of
x-coordinates among points in P .
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A vertical strip R is a subset of R2 such that there
exist a, b ∈ R with

R =
{
(x, y) ∈ R2

∣∣a ≤ x ≤ b
}

=: [a, b]× R;

the width of this strip is b−a. An edge blocks a vertical
strip if the endpoints of the edge lie on different sides
or possibly on the boundary of the strip.

Given two crossing-free perfect matchings M1 and
M2 on a point set P , let p ∈ P and consider the
arrangement given by the set of edges in M1∪M2 not
incident to p. Then p is called prisoner w.r.t. M1 and
M2 if there is a cell C of this arrangement such that
C ∩ P = {p}, where C denotes the closure of C.

p

(a) M1 and M2 (b) Prisoner p

Figure 1: M1 and M2 have distance 3 in Tpm(P ).

A prisoner guarantees a certain distance of the cor-
responding matchings in the transformation graph.
Furthermore, as we will see later, given a fixed d ∈ N
we can construct point sets such that after any d
transformations the current matching and the target
matching define a prisoner.

Lemma 1 Let p be a prisoner w.r.t. M1 and M2.
Then at least 3 steps are necessary to transform M1

into M2 by compatible perfect matchings.

Proof. Observe that the existence of a cell C in the
arrangement with C ∩P = {p} implies M1 6= M2 and
also that M1 and M2 are not compatible. Hence, their
distance in Tpm(P ) is at least 2. Assume it is exactly 2
then there is a perfect matching M compatible to both
M1 and M2. However, this contradicts C ∩ P = {p}
since M matches p to some point outside C. �

2.1 A first recursive construction

In the following we describe a way to construct point
sets and two perfect matchings whose distance in the
transformation graph can be made arbitrarily large.
For this purpose consider the point set shown in Fig-
ure 2(a) given by three copies of a so-called base gadget
together with a perfect matching consisting of hori-
zontal edges only. The point set has granularity 1/2
assuming a proper coordinate system such that the
vertical strip indicated by dashed lines is [0, 1]× R.

After 1 transformation step to a compatible perfect
matching the edges leaving the points x, y and z block
vertical strips of width at least 1/2, see Figure 2(b).

x

y

z

x

y

z

(a) Three copies of (b) After the first
the base gadget transformation

Figure 2: Creating a prisoner.

Hence, by the pigeon-hole principle one of the vertical
strips [0, 1/2]×R or [1/2, 1]×R is blocked twice. Now,
placing a further point in-between the two blocking
edges creates a candidate for a prisoner; we only need
the vertical edges of a second matching in order to
induce a corresponding cell. We define this second
matching at the end of the discussion.

Since there are many ways to transform the initial
perfect matching we have to make sure that for every
possible pair of edges that block the same strip there is
a candidate prisoner in-between. Therefore, we place
points between the base gadgets that equidistantly
subdivide each of the vertical strips of width 1/2 into
three smaller strips, see Figure 3(a). It is crucial that
these new points all have distinct x-coordinates since
otherwise we might not obtain prisoners by adding
the vertical edges of the second matching.

(a) Adding all (b) The horizontal
candidate prisoners matching

Figure 3: The final point set.

In order to define the second perfect matching of
vertical edges we introduce a matching partner for
every candidate prisoner and place it below the so far
constructed point set with the same x-coordinate. We
call the hereby obtained set A which will be used in
the recursive construction. Moreover, every candidate
prisoner still lacks the two already mentioned vertical
edges we need for a prisoner’s cell.
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The points for these edges are placed at the very
top and the very bottom of A. Figure 3(b) shows
the point set A together with the top- and bottom-
most points and also the first horizontal matching.
Figure 4(a) shows the second matching, where for the
sake of readability only the first matching edges of
top- and bottom-most points are drawn.

(a) The vertical (b) A prisoner after
matching 1 transformation

Figure 4: Point set achieving diameter 4.

Note that in any matching M compatible with the
horizontal matching, there is a prisoner w.r.t. M and
the vertical matching, see for instance Figure 4(b).
Hence, by Lemma 1 the diameter of the corresponding
transformation graph is at least 4.

In order to continue recursively with this idea we
need to construct a point set with a prisoner after 2
transformation steps. For the sake of a readable pre-
sentation we refrain from specifying concrete coordi-
nates for the constructed point sets and rather focus
on explaining the construction more carefully.

Recall that we placed the candidate prisoners in
such a way that only their matching partners have the
same x-coordinate. Hence, a prisoner after 1 transfor-
mation cannot connect to its partner in the next step.
By construction A has granularity 1/6. Therefore, af-
ter 2 transformation steps there is a vertical strip of
width at least 1/6 which is blocked. This is because
we placed the candidate prisoners equidistantly in-
between the base gadgets.

Now, we vertically stack seven copies of A. By the
pigeon-hole principle we know that for at least one
i = 1, . . . , 6 the strip [(i − 1)/6, i/6] × R is blocked
twice after 2 transformations. Hence, we are left with
defining the new candidate prisoners (and their cor-
responding matchings partners). We have to make
sure that for every possible pair of blocking edges af-
ter 2 transformation steps there is a single candidate
prisoner in-between the blocking edges. We achieve
this in the following way: for i = 1, . . . , 6 we sepa-
rately consider the strip [(i − 1)/6, i/6] × R in which
we place six points, one in-between each copy of A,
equidistantly distributed inside [(i− 1)/6, i/6].

Hence, in total we add 36 candidate prisoners and
equally many matching partners. Note that this new
point set, call it B, has granularity 1/(6 · 7) = 1/42.
Similarly to Figure 4(a), we add top- and bottom-
most points for each candidate prisoner which we need
for defining the prisoner’s cell; recall again that these
points are not part of the recursive construction.

Starting with the horizontal matching, after any 2
compatible transformation steps we obtain a new per-
fect matching which induces a prisoner together with
the vertical perfect matching. Hence, the transforma-
tion graph has diameter at least 5.

By the same argument, stacking 43 copies of B and
spreading in all candidate prisoners we obtain a new
point set C which in turn, by adding top- and bottom-
most points as before, yields a transformation graph
with diameter at least 6. Note that the granularity of
C has already decreased down to 1/(42·43) = 1/1806.

We omit the exact calculation of the diameter’s
asymptotic behavior in terms of the number of points
used in this construction because we will drastically
improve on it in the following section. However, note
the doubly exponential decrease of the granularity
and accordingly the doubly exponential growth of the
number of previously constructed point sets used in
the recursion. Then this construction leads to point
sets of size n with perfect matchings M1 and M2 such
that if d steps are needed to transform M1 into M2

then n ∈ O
(
22d)

, that is d ∈ Ω(log log n).

2.2 More prisoners help

In the following we will further develop the concept of
the previous section for constructing point sets whose
transformation graphs have large diameter. Recall
that the sufficient condition for applying the pigeon-
hole principle in the recursion is that the number of
copies of previously constructed point sets is strictly
larger than the inverse of the granularity.

We will now subdivide the vertical strips by even
more candidate prisoners (still equidistantly) in order
to reduce the number of copies we need to increase
the diameter of the transformation graph by 1. This
is motivated by the following. We did not yet take
into account that (a lot) more than one strip may be
blocked (a lot) more than just twice, which clearly
happens when stacking more copies. Still every can-
didate prisoner in-between two blocking edges cannot
connect to its partner after the next transformation
step and hence will be incident to an edge blocking a
strip of width at least the current granularity.

In order to make this statement precise we consider
a single strip that is blocked at least twice and analyze
what happens in the next transformation. For every
pair of consecutive blocking edges we make the candi-
date prisoner in-between with the largest y-coordinate
responsible for the small vertical strip to its left.
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We show in the following that there is an injective
map from the set of responsible candidate prisoners
to the set of edges blocking the smaller strips after
the next transformation step.

(a) Responsible points (b) Many blocked strips

Figure 5: What happens in one large strip?

In the example of Figure 5(a) we have a single strip
marked by dashed vertical lines to the left and right.
The six copies of the previous recursive construction
step are shown as rectangles: they are empty if there
is no edge blocking the strip, and full if the strip is
blocked. The five prisoners between the copies sub-
divide the strip into six smaller strips indicated by
dotted vertical lines. The arrows mark the prisoners
responsible for their corresponding strip to their left.

After the next transformation step none of the re-
sponsible prisoners connects to its matching partner.
Thus (considering the granularity of the point set)
their incident edges either block the smaller strip to
their left or to their right, see Figure 5(b). Note that
the candidates are responsible for their left smaller
strip; if they connect to the right then their left strip
remains available unless a previous candidate already
claimed it. By construction, once a responsible pris-
oner connects to the left its incident edge has to block
all smaller strips until the very left end, and at least
one of these small strips was not yet accounted for.

In particular this implies that every (except the top-
most) edge which blocks the initial strip guarantees a
blocked strip after the next transformation of width
equal to the granularity. We are now ready to explain
the more sophisticated recursive construction using
this observation. We denote the base gadget from the
previous section by S0, and for i ≥ 1 let ai ∈ N be
the number of copies of Si−1 we use to construct Si.
Denote πk =

∏k
i=1 ai, for k ≥ 1. As before, from Sk

one can easily construct a point set and define the
corresponding horizontal and vertical matchings such
that after k transformations there exists a prisoner.

In S0 there are 2 strips, 1 of which is blocked after
1 step. Using the observation above, in S1 there are
2a1 strips, of which at least a1− 2 are blocked after 2
steps. In S2 there are 2a1a2 strips, of which at least
(a1−2)·a2−2a1 are blocked after 3 steps. Inductively,
we find that in Sk there are 2πk strips, of which at
least πk − 2

∑k
i=1

πk

ai
are blocked after k + 1 steps.

Note that in order for the construction to work we
need to be able to apply the pigeon-hole principle in
each recursion step. By induction, the last condition

πk − 2
k∑

i=1

πk

ai
= πk

(
1− 2

k∑
i=1

a−1
i

)
> 0, (1)

is necessary and sufficient for this purpose. Now, we
turn to the number of points used in the construction.
Note that in addition to the copies of previously con-
structed point sets we also add candidate prisoners
in-between. Let ni := |Si| for i ≥ 0, and recall that
n0 = 8. Then, clearly we have n1 = a1 ·n0 +2(a1−1)
and n2 = a2 · n1 + 2a1(a2 − 1). By induction we find

nk = aknk−1+2πk−1(ak−1) = (n0+2k)πk−2
k∑

i=1

πk

ai
.

With ai = 2d+1 for i = 1, . . . , d, condition (1) holds.
Hence, from Sd we obtain a prisoner after d transfor-
mations. Furthermore, there is a constant c with

nd = (n0 + 2d)(2d + 1)d − 2d(2d + 1)d−1 = O
(
cddd

)
.

Adding top- and bottom-most points needed for the
vertical edges of the prisoners’ cells we obtain a point
set with at most 2nd points for which the diameter of
the transformation graph is d + 3.

Theorem 2 For arbitrarily large n there is a point
set P of n points in the plane for which the diameter
of Tpm(P ) is in Ω(log n/ log log n).

Note that the choice of the ai is optimal here, since
(1) implies both nd > πd and 1 > 2

∑d
i=1 a−1

i . The
geometric-harmonic means inequality yields

d
√

πd ≥
d∑d

i=1 a−1
i

> 2d.
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Abstract

We study the following extremal problem for geomet-
ric graphs: How many arbitrary edges can be removed
from a complete geometric graph with n vertices such
that the remaining graph still contains a certain non-
crossing subgraph. In particular we consider perfect
matchings and subtrees of a given size. For both
classes of geometric graphs we obtain tight bounds
on the maximum number of removable edges. We
further present several conjectures and bounds on the
number of removable edges for other classes of non-
crossing geometric graphs.

1 Introduction

A geometric graph is a graph G = (V,E) drawn in the
plane, such that V is a point set in general position
(meaning that no three points of V lie on a common
line) and E is a set of straight-line segments whose
endpoints belong to V. A geometric graph is called
non-crossing if no two edges intersect in their inte-
rior, but two edges might have an endpoint in com-
mon. Two edges are disjoint if they have no point in
common.

Extremal problems for geometric graphs have re-
ceived considerable attention. One problem consid-
ered in this area, studied by Erdős, Perles, Kupitz,
and Avital and Hanani [1, 11], is to determine the
smallest number ek(n) such that every geometric
graph with n vertices and m > ek(n) edges con-
tains k + 1 pairwise disjoint edges. Erdős [5] proved
that e1(n) = n. For three pairwise disjoint edges,
bounds on e2(n) were given in [1, 7], culminating in
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e2(n) = 2.5n (plus a constant), as shown recently by
Černý [3]. Bounds for e3(n) have been obtained in
[7, 14].

For general values of k, Goddard et al. [7] showed
that ek(n) ≤ cn(log n)k−4 for some constant c.
This was improved by Pach and Törőcsik [12] to
ek(n) ≤ k4n, the first upper bound linear in n.
Tóth and Valtr [14] further improved this bound to
ek(n) ≤ k3(n + 1), and finally Tóth [13] showed that
ek(n) ≤ 29k2n, where the constant 29 has since been
improved by Felsner [6] to 256. Kupitz proved a
lower bound of ek(n) > kn, which was improved to
ek(n) ≥ 3

2 (k− 1)n− 2k2 by Tóth and Valtr [14]. It is
conjectured that ek(n) ≤ ckn for some constant c.

Research on ek(n) has focused on small values of k.
But k can be as large as n

2 −1, in which case we obtain
a non-crossing perfect matching. Looking at the prob-
lem from this angle, we ask for en−1(2n), or in other
words, we investigate how many (arbitrary) edges can
be removed from a complete geometric graph, such
that it still contains a non-crossing perfect matching.
We show that every complete geometric graph on 2n
vertices still contains a non-crossing perfect match-
ing after removing any set of n − 1 edges; that is
en−1(2n) =

(
2n
2

)
−n. This bound is achieved for com-

plete geometric graphs on point sets in convex posi-
tion, meaning that there exists a set of n edges whose
removal disallows a non-crossing perfect matching in
the remaining graph. For point sets in convex posi-
tion this question was completely settled by Kupitz
and Perles for each k. They showed that if a geomet-
ric graph on n vertices in convex position has at least
(k − 1)n + 1 edges then the graph contains k disjoint
edges, and this bound is tight; see [7].

Our research was motivated by a closely related
problem posed by Micha Perles in 2002 and studied
by Černý, Dvořák, Jeĺınek and Kára [4]: How many
arbitrary edges can be removed from a complete ge-
ometric graph on n vertices such that the remaining
graph still contains a non-crossing Hamiltonian path.
It is of interest to study this problem for other classes
of non-crossing geometric graphs. We consider sub-
trees of a given size. For the case of spanning trees,
removing n−2 arbitrary edges from any complete ge-
ometric graph on n vertices leaves a graph that still
contains a non-crossing spanning tree [9]. Removal of
more edges is possible if the set of removed edges has
certain properties. Benediktovich [2] recently showed
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that each complete geometric graph on n ≥ 5 ver-
tices still contains a non-crossing spanning tree after
removing any self-crossing 2-factor, i.e., a 2-regular
spanning subgraph with two edges sharing an inte-
rior point. We show that every complete geometric
graph on n vertices still contains a non-crossing sub-
tree that spans n − k vertices after removing

⌈
kn
2

⌉
arbitrary edges, for k ≥ 2, and this bound is tight.

Examples bounding the number of removable edges
often are defined on point sets in convex position. We
conjecture that for point sets with many points in the
interior of the convex hull many more edges can be
removed from the complete geometric graph to still
guarantee the considered subgraph. We finally briefly
consider this problem for other classes of geometric
graphs.

In the following, removal of a set E′ of edges of a
complete geometric graph G is expressed by G − H,
where E′ is the edge set of a subgraph H of G. The
edges of E′ are called removed or forbidden edges. We
omit several proofs in this abstract.

2 Perfect matchings

In this section we investigate the maximum number of
removable edges in a complete geometric graph such
that the remaining graph contains a non-crossing per-
fect matching. We first show a result for abstract
graphs.

Theorem 1 For all p ≥ 2, for every spanning sub-
graph H = (V,E′) of the complete graph Kkp with
|E′| ≤ k − 1, the graph Kkp − H contains the com-
plete p-partite graph Kk,...,k.

Proof. For each p we prove the theorem by induction
on k. For k = 1 the statement is trivial. Assume the
statement is true for every number k′ < k. Now, we
are given the complete graph Kkp and we are given
a spanning subgraph H = (V,E′) with |E′| ≤ k − 1.
Assume that |E′| > 0, as otherwise nothing has to be
proved. Observe that there exists a set Q of at least
p− 1 isolated vertices in H and there exists a vertex
v /∈ Q whose degree is at least 1 in H. Let N(v) de-
note the set of neighbors of v in H. Define a graph
H ′ = (V \(Q∪{v}), E∗) where E∗ is obtained by first
taking the set of edges of the induced subgraph of
(V \(Q ∪ {v}), E′) and then adding a minimum num-
ber of edges to the resulting set, such that N(v) is
connected. We have |E∗| ≤ |E′| − 1 ≤ k − 2, be-
cause we removed degH(v) edges and added at most
degH(v)−1 edges to restore the connectedness. By in-
duction, K(k−1)p−H ′ contains the complete p-partite
graph Kk−1,...,k−1. Since N(v) is connected in H ′, all
the vertices of N(v) belong to the same vertex class
of Kk−1,...,k−1. Add v to the vertex class containing
N(v), and add one vertex in Q to each of the other
vertex classes so that Kk,...,k ⊆ Kkp −H. �

v

Figure 1: Two examples where removing n edges from
the complete geometric graph on a set of 2n points
disallows a non-crossing perfect matching.

Corollary 2 For every complete geometric graph G
on 2n vertices and for every subgraph H of G with at
most n−1 edges, the geometric graph G−H contains
a non-crossing perfect matching. This bound is tight
with respect to the cardinality of the set of forbidden
edges.

Proof. Apply the case p = 2 of Theorem 1, which
states that G−H contains a complete bipartite graph
Kn,n. Color the point set according to this bipartition,
say red and blue. This 2-colored point set has a non-
crossing red-blue matching; that is, each edge of the
matching connects a red and a blue point. Thus, this
matching does not use edges of H.

Removing n edges from G does not always leave
a non-crossing perfect matching, as can be seen in
Figure 1 (left). There, if vertex v is matched to an-
other point not using the drawn ‘forbidden’ edges,
then this segment splits the point set into two sets
of odd size, which disallows a non-crossing perfect
matching. Thus, the bound of n−1 edges is tight. �

Another example that prohibits a non-crossing per-
fect matching without forbidden edges is shown in
Figure 1 (right). In both examples the graph defined
by the forbidden edges has one component that con-
tains n+1 vertices. The size of the largest component
in this graph turns out to be crucial for the existence
of a non-crossing perfect matching without forbidden
edges. To show this, we first show a result for colored
point sets (which extends a known proof for 2-colored
point sets).

Theorem 3 Let S be a set of colored points in gen-
eral position in the plane with |S| even. Then S ad-
mits a non-crossing perfect matching such that every
edge connects two points of distinct colors if and only
if at most half the points in S have the same color.

A related problem considering long alternating
paths for multicoloured point sets was studied in [10].

Corollary 4 For every complete geometric graph G
on 2n vertices, and for every subgraph H of G with
at most n vertices in each component, the geometric
graph G−H contains a non-crossing perfect matching.
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Note that Corollary 4 also implies Corollary 2.

Conjecture 1 For every complete geometric graph
G on a set of 2n points with k ≥ n− 2 of them in the
interior of the convex hull and for every subgraph H of
G which has at most k+1 edges, the geometric graph
G−H contains a non-crossing perfect matching.

3 Non-crossing subtrees

In this section we investigate how many arbitrary
edges can be removed from any complete geometric
graph such that the remaining graph still contains a
non-crossing tree of a given size. It turns out that
the connectivity of the subgraph H defined by the re-
moved edges is crucial for the size of the largest non-
crossing subtree. We recall that the connectivity of a
graph G is the size of a smallest vertex cut. A vertex
cut of a connected graph G is a set of vertices whose
removal disconnects G. A graph is called k-connected
if its connectivity is k or greater.

Lemma 5 For every complete geometric graph G on
n vertices and for every subgraph H of G with con-
nectivity k, the geometric graph G − H contains a
non-crossing subtree on n− k vertices.

In particular, Lemma 5 implies that for every sub-
graph H with n − 1 edges of a complete geometric
graph G on n vertices, the geometric graph G − H
contains a non-crossing subtree that spans n− 1 ver-
tices. Also, for every disconnected subgraph H of
a complete geometric graph G, the geometric graph
G−H contains a non-crossing spanning tree.

Theorem 6 For every 2 ≤ k ≤ n− 1, for every com-
plete geometric graph G on n vertices, and for every
subgraph H of G with at most dkn/2e edges, the ge-
ometric graph G−H contains a non-crossing subtree
that spans n− k vertices. Moreover, the complete ge-
ometric graph G on n points in convex position has a
subgraph H with dkn/2e edges such that G − H has
no non-crossing tree on n− k + 1 vertices.

Again we omit the proof and remark that for the
convex complete geometric graph G considering as
subgraph H the Harary graph Hk,n [8], see Figure 2,
yields the desired result.

We remark that also for point sets with many inte-
rior points we can not remove more edges than in the
convex case to guarantee a non-crossing subtree of a
given size in the remaining graph.

4 More classes of non-crossing geometric graphs

4.1 Spanning paths

Černý et al. [4] showed that for any subgraph H =
(V,E′) of the convex complete geometric graph G on
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Figure 2: The Harary graphs H4,10, H5,10 and H5,11.

n vertices with |E′| ≤
⌈

n
2

⌉
− 1, the geometric graph

G−H contains a non-crossing spanning path.
If the set S of n points has k ≤ n

2 −2 interior points,
then we can not remove more than

⌈
n
2

⌉
− 1 edges

of G; because each spanning path contains a perfect
matching, for n even, and Figure 1 (left) shows that
after removal of

⌈
n
2

⌉
edges, the remaining graph does

not even contain a non-crossing perfect matching.

Conjecture 2 For every complete geometric graph
G on a set of n points with k ≥

⌈
n
2

⌉
− 2 of them in

the interior of the convex hull and for every subgraph
H of G which has at most k + 1 edges, the geometric
graph G−H contains a non-crossing spanning path.

4.2 Spanning cycles

Point sets in convex position only admit one non-
crossing spanning cycle. Therefore, removal of only
one edge disallows such a cycle.

Conjecture 3 For every complete geometric graph
G on a set of n points with k of them in the interior
of the convex hull and for every subgraph H of G
which has at most

⌈
k
2

⌉
edges, the geometric graph

G−H contains a non-crossing spanning cycle.

Figure 3 shows an example where removal of⌈
k+4
2

⌉
edges disallows a non-crossing spanning cycle,

for k = n− 3.

q

p

Figure 3: This point set contains no non-crossing
spanning cycle if we disallow the

⌈
k+4
2

⌉
drawn edges.
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Figure 4: Removal of two avoidable edges disallows
a triangulation (left) and removal of four avoidable
edges disallows a pseudo-triangulation (right).

4.3 Triangulations and pseudo-triangulations

For each point set S there exist edges which appear
in every triangulation of S, for example edges of the
convex hull. We call these edges unavoidable edges.
Edges which do not appear in every triangulation are
called avoidable edges. Clearly, removal of only one
unavoidable edge of the complete geometric graph on
S disallows a triangulation for S. Thus, for removal
we only consider avoidable edges.

Theorem 7 For each subgraph H = (V,E′) of the
complete geometric graph G on n vertices in convex
position where E′ is a set of at most n − 3 avoid-
able edges, the geometric graph G − H contains a
triangulation. This bound is tight with respect to the
cardinality of E′.

Interestingly, in the case of triangulations less
(avoidable) edges can be removed if we also consider
interior points. Figure 4 (left) shows an example.

Lemma 8 There exist point sets with interior points,
such that removal of two avoidable edges disallows a
triangulation.

We finally consider pseudo-triangulations. A
pseudo-triangle is a simple polygon that has ex-
actly three interior angles less than π. A pseudo-
triangulation of a point set S is a partition of the
convex hull of S into pseudo-triangles whose vertex
set is exactly S. For the considered problem, pseudo-
triangulations behave similar to triangulations. Note
that for point sets in convex position triangulations
and pseudo-triangulations coincide.

Lemma 9 There exist point sets with interior points,
such that removal of four avoidable edges disallows a
pseudo-triangulation.

Figure 4 (right) shows an example. The four solid
edges are avoidable. To see that their removal dis-
allows a pseudo-triangulation, observe that the face

incident to the interior vertex with angle greater than
π has to have at least four convex vertices, whereas a
pseudo-triangle has exactly three.
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Computing the Dilation of Edge-Augmented Graphs in Metric Spaces

Christian Wulff-Nilsen∗

Abstract

Let G = (V,E) be an undirected graph with n vertices
embedded in a metric space. We consider the prob-
lem of adding a shortcut edge in G that minimizes the
dilation of the resulting graph. The fastest algorithm
to date for this problem has O(n4) running time and
uses O(n2) space. We show how to improve the run-
ning time to O(n3 log n) while maintaining quadratic
space requirement. In fact, our algorithm not only
determines the best shortcut but computes the dila-
tion of G ∪ {(u, v)} for every pair of distinct vertices
u and v.

1 Introduction

In areas such as VLSI design, telecommunication, and
distributed systems, a problem often arising is that of
interconnecting a set of sites in a network of small
cost. There are many different ways of measuring the
cost of a network, such as its total length, minimum
and maximum degree, diameter, and dilation (also
known as stretch factor).

Spanners are sparse or economic representations of
networks, making them important geometric struc-
tures in the areas mentioned above. They have re-
ceived a great deal of attention in recent years, see
e.g. surveys [2, 8].

A t-spanner is a graph embedded in a metric space
such that, for any pair of vertices in this graph, the
graph distance between them is at most t times their
metric distance. The smallest t such that a geometric
graph is a t-spanner is called the dilation of the graph.

Most algorithms construct networks from scratch,
but frequently one is interested in extending an al-
ready given network with a number of edges such that
the dilation of the resulting network is minimized.

Farshi et al. [7] considered the following problem:
given a graph G = (V,E) with n vertices embedded in
a metric space, find a vertex pair (u, v) ∈ V ×V (called
a shortcut) such that the dilation of G ∪ {(u, v)} is
minimized. They gave a trivial O(n4) time and O(n2)
space algorithm for this problem together with various
approximation algorithms.

In this paper, we present an O(n3 log n) time and
O(n2) space algorithm for the above problem. This
algorithm not only computes the best shortcut but

∗Department of Computer Science, University of Copen-
hagen, koolooz@diku.dk

returns a table T with a row and a column for every
vertex in G such that for any pair of distinct vertices
u and v, T (u, v) is the dilation of G ∪ {(u, v)}.

The organization of the paper is as follows. In Sec-
tion 2, we give various basic definitions and assump-
tions. In Section 3, we present one of the key ideas
of the paper which gives a powerful way of obtaining
the dilation of edge-augmented graphs. We present
our algorithm and prove its correctness in Section 4
and in Section 5, we show that the above time and
space bounds hold. In Section 6, we consider the case
where the given graph is disconnected. Finally, we
make some concluding remarks and pose open prob-
lems in Section 7.

2 Basic definitions and assumptions

Given a non-empty set M , we define a metric on M
to be a function d : M ×M → R+ which satisfies, for
all x, y, z ∈ M ,

d(x, y) = 0 ⇔ x = y

d(x, y) = d(y, x)
d(x, y) ≤ d(x, z) + d(z, y)

The latter condition is known as the triangle inequal-
ity. The pair (M,d) is called a metric space.

Let G = (V,E) be an undirected graph embedded
in metric space (M,d) and assume that G is con-
nected.

Given two vertices u, v ∈ V which are connected
by a path P ⊆ E in G, we refer to P as a shortest
path between u and v if

∑
e∈P d(e) is minimal over all

paths between u and v in G. We denote by dG(u, v)
the length of such a path.

We define the dilation δG(u, v) of a pair of distinct
vertices u, v ∈ V as dG(u, v)/d(u, v). The dilation of
G is defined as

δG = max
u,v∈V,u 6=v

δG(u, v).

In the following, G denotes an undirected, con-
nected graph (V,E) embedded in metric space (M,d)
and n = |V | denotes the number of vertices of G.

3 Upper envelope functions

In this section, we consider certain upper envelope
functions which will help us to compute the dilation of
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graphs obtained from G by the addition of a shortcut
(a single edge).

Let u, v, and w1 be three fixed vertices of G such
that u 6= v and let w2 be a fourth vertex of G (not
fixed).

Let G′ = G ∪ {e} be the graph obtained by adding
shortcut e = (w1, w2) to G. Suppose that dG(u, w2) <
dG(u, w1) + d(w1, w2). Then no shortest path in
G′ from u traverses e in the direction w1 → w2.
Letting x = dG(u, w2) + d(w2, w1), a = 1/d(u, v),
b = dG(w1, v)/d(u, v), and c = δG(u, v), we have

δG′(u, v) = min{c, ax + b} =
{

c if x ≥ c−b
a

ax + b if x ≤ c−b
a ,

Observe that a, b, and c are constants, since u, v, and
w1 are fixed. Hence, the dilation between u and v
in G′ may be expressed as a piecewise linear function
δ(x) of the length x ≥ 0 of a shortest path among
those paths in G′ from u to w1 having e as their last
edge.

We refer to the graph of δ(x) as a staircase step, see
Figure 1 (a). Assuming (c− b)/a > 0, the part of the
graph on interval [0, (c− b)/a] is a line segment with
slope a, which we refer to as the left leg of δ(x).

If (c− b)/a ≤ 0, we define the left leg of δ(x) to be
the degenerate line segment with slope a starting and
ending in the point (0, δ(0)).

The part of the graph on interval [max{0, (c −
b)/a},∞[ is a horizontal halfline, called the right leg
of δ(x).

We define the slope of δ(x) to be the slope a of its
left leg.

The left and right leg of δ(x) meet in a single point.
We refer to this point as the tip of δ(x).

(b)

x

(a)

x

right legtip

left leg

Figure 1: (a): A staircase step and (b): the upper
envelope (thick line segments) of a set of four staircase
steps.

Now, suppose we fix only u and w1. For each
v ∈ V \ {u}, we obtain a staircase step express-
ing the dilation between u and v in G′. We define
s(u,w1) : R+ → R+ to be the staircase function rep-
resenting the upper envelope of the union of all these
staircase steps as a function of x, see Figure 1 (b).
Note that this function is piecewise linear and non-
decreasing.

4 The algorithm and its correctness

In this section, we present our algorithm and prove
its correctness.

Initially, dG(u, v) is computed and stored for each
(u, v) ∈ V × V , and a table T with an entry for each
ordered pair of vertices of G is initialized. When the
algorithm terminates, the following holds for each pair
of distinct vertices (w1, w2)

max{T (w1, w2), T (w2, w1)} = δG∪{(w1,w2)}. (1)

A subsequent step may update T in Θ(n2) time such
that T (w1, w2) = δG∪{(w1,w2)} for all w1 6= w2. A best
shortcut is then a pair (w1, w2) maximizing T (w1, w2).

The algorithm consists of a loop which iterates over
all vertices of G. Let w1 be the vertex in the current
iteration. First, staircase functions s(u,w1) are com-
puted for each u ∈ V . Then for each vertex w2 6= w1,
entry (w1, w2) in T is set to

T (w1, w2) = max{s(u,w1)(dG(u, w2) + d(w2, w1))|
u ∈ V, dG(u, w2) < dG(u, w1)+
d(w1, w2)}.

This is well-defined since u = w2 satisfies dG(u, w2) <
dG(u, w1) + d(w1, w2).

The following theorem shows the correctness of our
algorithm.

Theorem 1 When the above algorithm terminates,
(1) holds for each pair (w1, w2) of distinct vertices.

Proof. Let (w1, w2) be any pair of distinct vertices
of G and let G′ = G ∪ {(w1, w2)}. For any u ∈ V for
which dG(u, w2) < dG(u, w1) + d(w1, w2) holds,

s(u,w1)(dG(u, w2) + d(w2, w1)) = max
v∈V \{u}

δG′(u, v).

Similarly, for any u ∈ V for which dG(u, w1) <
dG(u, w2) + d(w2, w1) holds,

s(u,w2)(dG(u, w1) + d(w1, w2)) = max
v∈V \{u}

δG′(u, v).

Furthermore, for any u ∈ V , either dG(u, w1) <
dG(u, w2) + d(w2, w1) or dG(u, w2) < dG(u, w1) +
d(w1, w2) for otherwise,

dG(u, w2) + d(w2, w1) ≤ dG(u, w1)
≤ dG(u, w2)− d(w1, w2)
< dG(u, w2) + d(w2, w1),

a contradiction. Thus, at termination,

max{T (w1, w2), T (w2, w1)} = max
u,v∈V,u 6=v

δG′(u, v)

= δG′ ,

as requested. �
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5 Running time and space requirement

In this section, we show that the algorithm of the pre-
vious section has O(n3 log n) running time and O(n2)
space requirement. We will need the following lemma.

Lemma 2 Given vertices u and w1, the graph of
staircase function s(u,w1) consists of O(n) line seg-
ments and one halfline and can be computed in
O(n log n) time when dG(w1, v) and dG(u, v) are pre-
computed for all v ∈ V . Furthermore, when this
graph is given, s(u,w1)(x) can be computed in O(log n)
time for any x ≥ 0.

Proof. Note that when dG(w1, v) and dG(u, v) are
precomputed for all vertices v, each staircase step may
be computed in constant time.

We represent the graph of s(u,w1) as a polygonal
chain P . To construct P , we start by computing
each staircase step and the tip with maximum x-
coordinate, say xmax. The upper envelope of P to
the right of xmax is the upper envelope of O(n) hor-
izontal halflines and may be computed in O(n) time.
The upper envelope of P on interval [0, xmax] is the
upper envelope of O(n) line segments. We use the
algorithm of Hershberger [6] to compute this upper
envelope in O(n log n) time. It follows that P may be
constructed in O(n log n) time.

Clearly, P consists of line segments and exactly one
halfline. We need to show that the number of line
segments is O(n).

Consider constructing P by iteratively adding stair-
case steps in non-decreasing order of slope. Let Pi be
the upper envelope of the first i staircase steps.

Upper envelope P1 consists of exactly one line seg-
ment (and one halfline). For i > 1, the left leg of the
ith staircase step si intersects Pi−1 at most once due
to the order of staircase steps. Since the right leg is
horizontal, it cannot intersect Pi−1 more than once.
Hence, Pi has at most two more line segments than
Pi−1.

One fine point: a degeneracy may occur if the left
leg of si overlaps with a line segment of Pi−1. It is
easy to see that in this case, Pi cannot contain more
line segments than Pi−1, again due to the order of the
staircase steps.

Since there are O(n) staircase steps, the above
shows that P consists of O(n) line segments.

Since s(u,w1) is a non-decreasing function of x, we
may apply a binary search in P to compute s(u,w1)(x)
for any x ≥ 0. Since P consists of O(n) line segments,
this takes O(log n) time. �

We are now ready for the main result of this section.

Theorem 3 The algorithm described in Section 4
has O(n3 log n) running time and O(n2) space require-
ment.

Proof. To prove the time bound, first observe that
computing all-pairs shortest paths takes O(n3) time
with the Floyd-Warshall algorithm [9] (faster algo-
rithms exist [12] but they will not improve the asymp-
totic running time of our algorithm).

Furthermore, the graph of each staircase function is
computed exactly once throughout the course of the
algorithm. Hence, by Lemma 2, the total time spent
on computing these functions is O(n3 log n). Once the
staircase functions have been computed, computing
an entry of T takes O(n log n) time by Lemma 2. Since
T has n2 entries, computing T takes O(n3 log n) time.
When all entries in T have been computed, finding
the best shortcut takes O(n2) time. Hence, the total
running time of the algorithm is O(n3 log n).

Space requirement is bounded by that of the Floyd-
Warshall algorithm and the space for storing the stair-
case functions, the shortest path lengths, and the ta-
ble T . The Floyd-Warshall algorithm requires Θ(n2)
space. Clearly, T and the shortest path lengths can be
stored using a total of Θ(n2) space. In each iteration
of the algorithm, we only store n staircase functions.
By Lemma 2, they take up a total of O(n2) space. �

6 Disconnected graph

Recall our assumption that G is connected. In this
section, we show that some simple modifications of
our algorithm allow us to handle the case where G is
disconnected without affecting the worst-case running
time and space requirement of the algorithm.

Note that if G consists of more than two connected
components, G has infinite dilation and no single edge
can be added to G to reduce the dilation, making the
problem we consider trivial. Since there are efficient
algorithms for determining the connected components
of a graph, we may therefore restrict our attention to
the case where G consists of exactly two connected
components and assume that these two components
have been computed.

So let G1 = (V1, E1) and G2 = (V2, E2) be the sub-
graphs defining the two connected components of G.
For all shortcuts (w1, w2) ∈ V1 × V1 ∪ V2 × V2, we
set T (w1, w2) = ∞ since they leave the graph dis-
connected and hence leave the dilation of the graph
unchanged.

As for the other entries in T , consider a pair of ver-
tices (w1, w2) in V1× V2 and let G′ = G∪ {(w1, w2)}.
Let u 6= v be two vertices of V . If u, v ∈ V1 or
u, v ∈ V2 then clearly δG′(u, v) = δG(u, v).

Now assume that v ∈ V1 and u ∈ V2. Then

δG′(u, v) = ax + b,

where x = dG(u, w2) + d(w2, w1), a = 1/d(u, v), and
b = dG(w1, v)/d(u, v). Comparing this with the re-
sults of Section 3, we see that we in effect obtain stair-
case steps with no right leg. We let s(u,w1) denote the

EuroCG’08, Nancy – March 18-20, 2008

125



staircase function representing the upper envelope of
the staircase steps obtained from each v ∈ V1 as a
function of x.

To determine all entries T (w1, w2) of T where
(w1, w2) ∈ V1 × V2, we make the following small
changes to the algorithm of Section 4. The loop only
iterates over vertices w1 ∈ V1. Furthermore, we only
compute staircase functions s(u,w1) for u ∈ V2 and we
set

T (w1, w2) = max{δG1 , δG2 ,max{s(u,w1)(dG(u, w2)+
d(w2, w1))|u ∈ V2}}.

for each w2 ∈ V2.
By the above it follows that, at termination, the

modified algorithm satisfies

max{T (w1, w2), T (w2, w1)} = δG∪{(w1,w2)}

for all distinct pairs of vertices w1 and w2 in G.
Computing the graph of staircase function s(u,w1)

is done in O(n log n) time using the algorithm of Her-
shberger [6] (as in the proof of Lemma 2, we pick a
maximum x-value in order to consider line segments
instead of halflines. Pick, say, the largest x-value ever
needed by the algorithm). The graph of s(u,w1) has
complexity O(n) and when it is given, s(u,w1)(x) can
be computed in O(log n) time for any x ≥ 0; the proof
of these claims is similar to the proof of Lemma 2.

From the above and from the results of Section 5,
it follows easily that all entries of T can be computed
in O(n3 log n) time using O(n2) space when G is dis-
connected.

7 Concluding remarks

We presented an O(n3 log n) time and O(n2) space al-
gorithm for the problem of computing the best short-
cut of a geometric graph G = (V,E) with n vertices.
This improves upon a previous bound of O(n4) time
and O(n2) space [7]. Our algorithm in fact solves a
harder problem, namely that of computing the dila-
tion of G∪{(u, v)} for each pair of distinct vertices u
and v.

The problem stated in [7] of whether there exists
a linear space algorithm with o(n4) running time for
finding the best shortcut of a geometric graph remains
open. We pose the following problems. Is our al-
gorithm optimal in terms of running time? Can we
reduce space requirement without affecting running
time? Is it possible to extend our results to the more
general case of adding a constant number of edges to
G?
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Approximating the Minimum Spanning Tree of Set of Points in the
Hausdorff Metric

Victor Alvarez∗ Raimund Seidel†

Abstract

We study the problem of approximating MST(P ), the
Euclidean minimum spanning tree of a set P of n
points in [0, 1]d, by a spanning tree of some subset
Q ⊂ P . We show that if the weight of MST(P ) is to
be approximated, then in general Q must be large. If
the shape of MST(P ) is to be approximated, then this
is always possible with a small Q.

More specifically, for any 0 < ε < 1 we prove:
(i) There are sets P ⊂ [0, 1]d of arbitrarily large

size n with the property that any subset Q′ ⊂ P that
admits a spanning tree T ′ with

∣∣|T ′| − |MST(P )|
∣∣ <

ε · |MST(P )| must have size at least Ω(n1−1/d). (Here
|T | denotes the weight, i.e. the sum of the edge lengths
of tree T .)

(ii) For any P ⊂ [0, 1]d of size n there exists a subset
Q ⊆ P of size O(1/εd) that admits a spanning tree
T that is ε-close to MST(P ) in terms of Hausdorff
distance (which measures shape dissimilarity).

(iii) This set Q and this spanning tree T can be com-
puted in time O(τd(n) + 1/εd log(1/εd)) for any fixed
dimension d. Here τd(n) denotes the time necessary
to compute the minimum spanning tree of n points
in Rd, which is known to be O(n log n) for d = 2,
O((n log n)4/3) for d = 3, and O(n2−2/(dd/2e+1)+φ),
with φ > 0 arbitrarily small, for d > 3 (see [1]).

All the results hold not only for the Euclidean met-
ric L2 but also for any Lp metric with 1 ≤ p ≤ ∞ as
underlying metric.

1 Introduction

The approximation of geometric problems by means
of reducing the size of the input has been the subject
of study of many researchers. The idea is the fast
identification of the part of the input that matters
for the problem at hand and the use of this extracted
data to speed up the computations.

In [2], Agarwal et al. developed a framework, called
Coresets, to approximate extent measures of a given
set of points P in any fixed dimension d. Such extent
measures include the diameter, the width, the radius

∗International Max-Planck Research School for Computer
Science and Fachrichtung Informatik, Universität des Saarlan-
des, alvarez@mpi-inf.mpg.de

†Fachrichtung Informatik, Universität des Saarlandes,
rseidel@cs.uni-sb.de

of the minimum enclosing cylinder, etc. Their idea is
basically the computation of a subset P ′ of P whose
size depends exclusively on ε and d and, whose con-
vex hull approximates the convex hull of P . Then, use
this new convex hull for further computations and ar-
gue that this produces good approximations for the
desired extent measures.

In this paper we are interested in approximating the
Euclidean minimum spanning tree of a set P ⊂ Rd of
points, but not in the sense of, say, Clarkson [4], who
wants to quickly find some spanning tree of P whose
weight is close to that of MST(P ). We are instead in-
terested in finding a spanning tree of a small subset of
P that in some sense approximates MST(P ). We will
show that the core set approach outlined above can-
not work in this context if the approximation measure
is the weight of the trees. However, if we want to ap-
proximate MST(P ) in a more topological (or shape)
sense, then this is indeed possible using a spanning
tree of a subset of P whose size depends exclusively
on ε, the approximation parameter, and on d. This
result potentially has applications in Image Compar-
ison and Pattern Recognition.

Throughout the paper let 0 < ε < 1 be a fixed
constant. Also the dimension d is meant to be fixed.

2 MST(P ) admits no constant size subset approx-
imation with respect to weight

The goal of this section is to prove the following result:

Theorem 1 For each n = kd with k ∈ N there exists
a set P ⊂ [0, 1]d of n points such that any subset
Q′ of P that admits a spanning tree T ′ with |T ′| ≥
(1− ε)|MST(P )| must have size at least Ω(k(d−1)).

Note that this theorem clearly implies Claim (i) of
the abstract.

Proof. Let n = kd with k ∈ N and let Gd be the d-
dimensional grid over [0, 1]d of cell size δ = 1/(k− 1).
Let P be the set consisting of the grid points of Gd.
It is clear that |P | = n. Any Euclidean minimum
spanning tree of such a set P only contains grid edges.
Thus |MST(P )| = (n− 1) · δ = (n− 1)/(k− 1) > n/k.
See Figure 1.

Now let T ′ be a spanning tree of some Q′ ⊂ P
such that |T ′| ≥ (1 − ε)|MST(P )|. Every edge inside
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δ

Figure 1: For P ⊂ [0, 1]2 of size 25 = 52, a rectilinear
spanning tree is shown. The vertical line l works as
a backbone and connecting all the horizontal lines of
G2 to it gives us a total weight of exactly 24/4 = 6.

the unit cube [0, 1]d has length at most
√

d. Hence
|T ′| < |Q′| ·

√
d. Combining this last inequality with

the ones above we have

|Q′| ·
√

d > |T ′| ≥ (1− ε)|MST(P )| > (1− ε)
n

k
.

Since n = kd and ε and d are constant, the result
follows.

�

3 The Hausdorff metric

The Hausdorff metric allows to define distances be-
tween subsets of a metric space. In our case the metric
space is Rd with the usual Euclidean metric.

Definition 1 (Hausdorff distance) The Haus-
dorff distance H(A,B) between two non-empty
subsets A,B of Rd is defined to be the radius of the
largest open ball centered in one set and not meeting
the other set.
We say that A and B are ε-close iff H(A,B) ≤ ε.

It is well known that the Hausdorff distance con-
stitutes a metric on the space of all non-empty com-
pact subsets of Rd. Moreover, in a way it expresses
the shape similarity, or rather dissimilarity between
sets: H(A,B) = 0 means A and B must be the same,
i.e. they are not at all dissimilar, and A and B are ε-
close means that they are only ε-dissimilar in the sense
that for any point in one set within Euclidean dis-
tance ε there must be a point of the other set. Many
computational geometry papers have used the Haus-
dorff distance as a measure of similarity/dissimilarity
between subsets of Rd, see e.g. [3]. We will use the
Hausdorff distance to measure similarity/dissimilarity
between spanning trees of finite sets embedded in Rd,
where such a tree is considered a subset of Rd, namely
the union of the segments formed by its edges.

It will turn out that if instead of closeness in weight
we consider closeness in Hausdorff distance the Eu-
clidean minimum spanning tree of any finite P ⊂ Rd

admits a good approximation by a spanning tree of a
constant sized subset of P .

4 Approximating MST(P ) by shape

At first a few graph theoretic preliminaries.
Let G be a complete undirected graph with vertex

set P and with weighted edges. For the sake of ex-
position we assume that all edge weights are distinct,
and thus the minimum edge of any cut of G and also
the minimum spanning tree MST(P ) are unique. This
assumption can be justified using a standard pertur-
bation argument. Let P = 〈P1, . . . , Pk〉 be a partition
of P into k ≥ 2 non-empty “clusters,” and let G be
the graph obtained from G by contracting each clus-
ter in P into a single node. G has parallel edges and
self-loops, still, its minimum spanning tree MST(P ) is
unique. Consider the forest on P formed by the k− 1
edges of G that induce the edges of MST(P ). Let us
call this forest the minimum cluster forest of P with
respect to P , for short MCF(P, P ).

What is the relationship between the edges in
MCF(P, P ) and MST(P )?

Lemma 2 Every edge in MCF(P, P ) also is an edge
of MST(P ).

Proof. Let e be an edge of MCF(P, P ) and let e be
the corresponding edge of MST(P ). The removal of
e from MST(P ) results in two subtrees producing a
partition of the node set P into two sets R and S.
The edge e must be the shortest edge between nodes
(i.e. clusters) in R and in S and hence e must be the
shortest edge between (original) vertices in R =

⋃
R

and in S =
⋃

S. Since R and S form a partition of P
this means that e must be an edge of MST(P ). �

Let us call an edge of G long (with respect to P ) iff
it is longer than any edge connecting two vertices in
the same cluster of P .

Lemma 3 Every long edge of MST(P ) is also an edge
of MCF(P, P ).

Proof. Let e be a long edge in MST(P ). Similar to
the previous proof the edge e induces a partition of P
into R and S, and e is the shortest edge connecting
vertices in R with vertices in S. No cluster of P can
have a vertex both in R and in S, since such two ver-
tices would be connected by an edge shorter than the
long edge e, a contradiction to e being the shortest
edge between R and S. Thus R and S induce a parti-
tion of the cluster set P into R and S, and e (induced
by e) is the shortest edge connecting a cluster in R
with a cluster in S. Thus e is an edge of MST(P ) and
therefore e is an edge of MCF(P, P ). �

24th European Workshop on Computational Geometry

128



In the following P will a set of points in Rd and
the weight of the edge connecting two points x, y ∈ P
will be the Euclidean distance between x and y. We
are now able to present the main result of this section
which will prove Claim (ii) of the abstract.

Theorem 4 Let P be a set of points in [0, 1]d and let
0 < ε < 1 be a given parameter. It is possible to find
a spanning tree T of some subset Q of P such that
MST(P ) and T are ε-close and |Q| = O(1/εd).

Proof. We will start by imposing a d-dimensional
grid Gd of cell size δ = 2ε

3
√

d
over P . The grid Gd

induces a partition P of P into k = O(1/εd) clusters,
with each cluster begin composed of the set of points
contained in a cell of Gd. See Figure 2. Note that two
points in the same cluster are at most 2ε/3 apart.

The claimed set Q will be the points in P incident to
the edges of the minimum cluster forest MCF(P, P ).
Since there are k − 1 edges in MCF(P, P ) it follows
that |Q| = O(1/εd).

The claimed spanning tree T of Q will contain all
edges in MCF(P, P ) and in addition for each cluster
C in P an arbitrary spanning tree of the points of Q
in C. See Figure 2.

We claim that T and MST(P ) are ε-close.
We need to prove that for every point on T there

is a point on MST(P ) within distance at most ε, and
vice versa.

Let e be an edge of T . If e is an edge of MCF(P, P ),
then by Lemma 2 it is also an edge of MST(P ) and
thus every point x on e is within distance 0 < ε of
some point of MST(P ). If e is an edge connecting two
points of the same cluster, then its length is at most
2ε/3. Thus any point x on e is at most at distance
ε/3 < ε from one of e’s endpoints, which are both in
MST(P ).

Now let e be an edge of MST(P ). If it has length
bigger than 2ε/3, then it is long in the sense of
Lemma 3, and therefore it is contained in MCF(P, P )
and hence also in T . Thus every point x on e is within
distance 0 < ε of some pont of T . If e has length less
than 2ε/3, then every point x is within distance ε/3
of an endpoint v of e. Let q some point of Q in the
cluster containing v. The distance between v and q
is at most 2ε/3, and thus by the triangle inequality
the distance between x and q (which lies on T ) is at
most ε. �

This result says that it is possible to find a constant-
size subset Q of P along with a spanning tree T of Q
such that shape-wise T and MST(P ) look essentially
the same. This gives a method to sort of “compress”
MST(P ) to a tree that is close in shape but has con-
stant size. Note, however, that one cannot conclude
anything from T about the total weight |MST(P )|.

δ
δ

Figure 2: The points chosen to form Q are highlighted
in light gray. The dashed edges connect points in
different clusters of P induced by G2

5 Computing T

The only computationally non-trivial step in comput-
ing Q and T is the determination of the edges of the
cluster forest MCF(P, P ). The straigtforward way of
computing these edges, forming the cluster graph G
and computing its minimum spanning tree MST(P ),
leads to an Θ(n2) time algorithm in the worst case,
since G can have Θ(n2) non-loop edges. (We assume
here ε and d to be fixed.)

Lemma 2 implies that for computing MST(P ) it
suffices to consider only those edges that are induced
by edges of MST(P ). This suggests the following algo-
rithm: Compute B = MST(P ), for each grid imposed
cluster contract the edges of B within the cluster to
produce a contracted graph B. Compute the mini-
mum spanning tree of B, which by Lemma 2 is the
same as MST(P ).

If τd(n) denotes the time necessary to compute the
Euclidean minimum spanning tree of n points in Rd,
then the time necessary for the outlined method is
τd(n) for computing MST(P ), plus O(n) for comput-
ing B and O(n+N log N) for computing the minimum
spanning tree of B, where N = O(1/εd) is the num-
ber of occupied grid cells, which is constant if ε and d
are considered to be constant. The total time for the
whole method is then dominated by τd(n), which is
known to be O(n log n) for d = 2 and O((n log n)4/3)
for d = 3, and O(n2−2/(dd/2e+1)+φ), with φ > 0 arbi-
trarily small, for d > 3 (see [1]).

Other methods suggest themselves, but they are ei-
ther incorrect or do not seem to lead to better time
bounds. For instance, we could choose a small sample
set of points from each occupied cluster and compute
the minimum spanning tree of the union of these sam-
ple sets. However, the tree produced this way may be
very different in shape from MST(P ) and will not lead
to a tree that is ε-close to MST(P ). Or, we could run
a minimum spanning tree algorithm on the clusters
(without forming G or some subgraph explicitly) by
repeatedly solving so-called bi-chromatic closest pair
problems. However, this is unlikely to produce a bet-
ter running time, since the complexity of solving a
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bi-chromatic closest pair problem on n points in Rd is
known to be Θ(τd(n)), see [5].

Finding a faster algorithm for computing a constant
sized tree that is ε-close to MST(P ) looks like a chal-
lenging problem.

6 Conclusion

We have shown that in general it is not possible to
approximate well the weight of the Euclidean mini-
mum spanning tree of a set of points P in Rd with
a subset of size independent of the size of P . How-
ever, changing the notion of approximation, we have
shown, that it is possible to compute a spanning tree
T of some small subset Q ⊆ P such that the Hausdorff
distance between T and the minimum spanning tree
of P is small, which means that the two trees are very
similar in shape. This potentially has applications in
Image Comparison or Pattern Recognition, and also
provides a potential way of compressing MST(P ) in
a meaningful and interesting way.

Our results and methods apply not just to the stan-
dard Euclidean L2 metric but also to any Lp metric
for 1 ≤ p ≤ ∞.
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Abstract

Mesh generation, surface reconstruction and quadrangle surface tiling are common problems in
digital geometry processing. My favourite approach consists of designing an energy function for each
problem, such that good solutions correspond to low-energy ones. The desired solutions can then
be found by applying optimization techniques. This talk will put an emphasis on the variety of the
designed energy functions and of the associated minimization techniques. The energy functions range
from size and compactness of Voronoi cells to alignment of gradients of implicit functions through size
and alignment of quadrangle edges. The optimization techniques range from 4D function approximation
to 3D generalized eigenvalue problems through computation of harmonic one-forms on triangle surface
meshes. Each of the algorithms presented will be illustrated with live demos implemented with the
CGAL library.
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Geometry with Imprecise Lines∗

Maarten Löffler† Marc van Kreveld†

Abstract

Practical application of geometric algorithms is hin-
dered by data imprecision. One of the primitive el-
ements in geometry is the concept of a line. We in-
vestigate what is the right way to model imprecise
lines, and present algorithms to compute bounds on
the solution to linear programming or vertical extent
problems on a set of imprecise lines.

1 Introduction

Data imprecision constitutes an important gap be-
tween theory and practice in computational geome-
try. We have studied the effects of imprecision on
points in the plane [12], and given algorithms to infer
bounds on basic measures of point sets from the im-
precision information. The two most basic elements
in Euclidean geometry are points and lines. This pa-
per is an investigation into the meaning of lines in an
imprecise context, and what can be done with them
algorithmically. In the next section we give a defi-
nition of imprecise lines, and in Sections 3 and 4 we
give algorithms to infer bounds on the outcome of two
important and well studied problems on lines: linear
programming and vertical extent.

2 Imprecise lines

An imprecise line is a line of which we don’t know
exactly where it is, but we do have some information.
The easiest way to model this is to define a set of
candidate lines for our imprecise lines: a set L of lines
in R2. Such a set will not be finite in most interesting
cases. We will assume that we have a collection of
imprecise lines L: a set of sets of lines in the plane.
Our goal is to do the same computations on a set of
imprecise lines that we could do on a set of normal
lines. To be able to do so, we must put some more
restrictions on the sets.

An imprecise line L is the set of possible lines that an
unknown line l could be. We would like to model this

∗Partially supported by the Netherlands Organisation for
Scientific Research (NWO) through the project GOGO.

†Department of Information and Computing Sciences,
Utrecht University. {loffler,marc}@cs.uu.nl

set in a natural way. When treating imprecise points,
we restricted the regions to be connected, and further-
more to be convex. Additional constraints to make the
regions easier to handle may include constant descrip-
tion size, or linear (polygonal) boundaries. We would
like to have similar properties for imprecise lines.

We will make a clear distinction between lines and
directed lines. Problems that take a set of lines as
input usually treat them as either directed or undi-
rected lines. There is also an important topological
difference between the set of all lines in R2 and the set
of all directed lines in R2: the former is isomorphic to
the Möbius-strip, while the latter is isomorphic to a
cylinder.

Connectedness is easy to define for a set of lines L:
if two lines can be transformed into each other by a
continuous movement inside L, they are connected.

Convexity of sets of lines is harder to define. This sub-
ject has been studied by various people, and several
different definitions have been proposed. A first ap-
proach is to define convexity based on point-line dual-
ity [2] and convex point sets. The straightforward way
to do this has the drawback that vertical lines cannot
be represented. Rosenfeld [11] proposes a definition
that gets around this problem and has nice properties,
but which is not translation-invariant. Goodman [6]
argues that no natural definition can exist, and gives
a definition that drops the connectedness of convex
sets. Gates [5] defines convexity for sets of directed
lines in a natural way. Bhattacharya and Rosenfeld
[1] give an extensive comparison between the various
definitions.

With the idea in mind that we want to represent im-
precise lines with our convex sets, it seems reasonable
to assume that for a given imprecise line, there is at
least one direction in which the line certainly does not
lie. This need not be the same for all lines, so not al-
lowing vertical lines is a bit too restrictive, but if we
assume that for every imprecise line there is some for-
bidden direction, we can use the following quite nat-
ural definition for convexity (for both directed and
undirected lines):

Definition (convex ): We will call a set of lines L
convex if there exists a direction d such that no line
l ∈ L lies in direction d, and for any pair of lines
l,m ∈ L the following holds:
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Figure 1: A convex set of lines.

• If l and m are parallel, then all other lines parallel
to them and between them are also in L.

• If l and m intersect in a point p, then all other
lines through p with a direction between l and m,
rotating such that d is not encountered, are also
in L.

Let L be a convex set of lines, and sort their directions
cyclicly from d to d. Then there are two lines l,m ∈ L
that have the smallest and largest direction. Let the
angle between l and m be α. We call α the limit angle
of L. If the lines are undirected, α is smaller than π. If
the lines are directed, α must be smaller than 2π. For
undirected lines, this means L will either be a strip
(α = 0), or it can be described by two convex curves
that have asymptotes with an angle α between them,
see Figure 1. The set L is the set of all lines that lie
completely within the portion of the plane bounded
by the curves.

For directed lines, something interesting happens as
soon as α > π. We can use the convexity properties
to prove that if some line l is in L, any translation
of l that is rotated some arbitrarily small ε is also
in L. However, when talking about imprecise lines it
seems reasonable to assume that α < π. In that case,
our definition for directed lines also coincides with the
definition from [5]. Our definition of convexity also
coincides with the dual definition, when we rotate the
plane such that d becomes vertical.

The other properties we mentioned, constant descrip-
tion size and piecewise linear boundaries, are now also
easy and natural to define for convex sets of lines: if
the defining curves are of constant description size or
polygonal, then so is the set of lines.

If a set of lines is connected, convex with a limit angle
α < π, and has linear boundaries and constant de-
scription size, we call it a bundle. There are of course
also different possibilities to naturally describe impre-
cise lines. Another natural model would be the set of
lines stabbing two given regions (imprecise points) in
order. These line-sets will in general not be convex.
Imprecise linear programming also occurs in other
fields, for example in biology [8]. These uses suggest
the axis-model : an imprecise line is the collection of
lines that intersect the x- and y-axes in certain fixed
intervals. This model clearly fits within the stabbing
model, and if no interval contains the origin it also
fits within our description of convexity.

3 Linear programming

Linear programming is a widely studied problem
where you are given a set of directed lines, and want
to find the point with the lowest y-coordinate, under
the restriction that it lies to the left of all lines. It can
be solved in O(n) time. In an imprecise context, we
are interested in finding the set of lines in a collection
of bundles L that maximises or minimises this value,
since this gives us bounds on the possible values.

3.1 Largest value

We want to choose one directed line from every bun-
dle such that the point to the left of all lines with the
lowest y-coordinate is as high as possible. To solve
this problem, consider for some imprecise line L the
line segments that make up the left boundary of its
bundle. Take the lines supporting those segments,
and do this for all imprecise lines. Apply a classical
linear time algorithm for linear programming to the
resulting set of lines. It is not hard to prove that the
solution we find this way is the solution to the impre-
cise problem; we defer the proof to the full version.

3.2 Smallest value

Now we want to find the lowest point such that in
every bundle, there is a line that has this point on
its left. Therefore, we can define for each imprecise
line L the potential free space as the union of the half-
planes to the left of all lines in L. Next we define the
potential free space of a collection of imprecise lines
L as the intersection of the potential free spaces of all
imprecise lines L ∈ L. If p is a point in the plane,
a choice of lines for L that has p to the left of all of
them exists if and only if p lies in the potential free
space of L.

As a consequence, we are now looking for the lowest
point in the intersection of a collection of concave re-
gions in the plane. We could find this point by explic-
itly computing this intersection, which takes O(n2)
time in general, and in Section 3.2 we show that in
general this is indeed the best we can do. However,
when our collection of imprecise lines satisfies some
additional, natural constraints, we can in some cases
solve the problem more efficiently. We call a bundle
diagonal if it contains no horizontal or vertical lines.
We call a bundle upfacing if all lines in the bundle are
oriented from left to right. We will call a bundle c-fat
if α < π − c for some constant c > 0.

Diagonal bundles. Let L be a collection of diagonal
and upfacing bundles, see Figure 2(a). We can solve
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(a) (b) (c) (d)

Figure 2: (a) The potential free space (white) of a set of diagonal, upfacing bundles. (b) The potential free space
of a set of upfacing bundles. (c) The potential free space of a set of fat bundles. (d) The potential free space of
a general set of bundles.

the problem in linear expected time using standard
randomised incremental construction techniques. The
details are in the full paper.

Upfacing bundles. Let L be a collection of upfacing
bundles, see Figure 2(b). We can solve the problem
by computing the upper envelope of the potential free
regions in O(n log n) time [7]. The complexity of this
envelope is O(nα(n)), and we can clearly find the low-
est point on it by just looking at all the points.

This bound is optimal, since we can reduce the maxi-
mum gap problem to it, which has a Θ(n log n) lower
bound [9]. Given a set of real numbers, for each num-
ber we create a wedge with the number as the x-
coordinate of its top, and some constant y-coordinate.
The wedges have two halflines with slope 1 and −1,
going down. The lowest point above all wedges cor-
responds to the two consecutive numbers with the
largest difference.

Fat bundles. Fatness seems to be a very reasonable
restriction on imprecise lines. We already assumed
that for each imprecise line, there is some direction
d which we know the line does not have. We now
weaken this a bit further, by saying that there is at
least a small angle of directions the line cannot have.

Let L be a collection of fat bundles, see Figure 2(c).
Efrat et al. [3] prove that the union of a set of δ-
fat wedges can be computed in O(n log n) time. The
proof can be adapted to also work for our more general
bundles instead of wedges.

General bundles. Let L be a collection of bundles
without any further restrictions, see Figure 2(d). In
this case, it is likely that there is no algorithm that
solves the problem faster than in Θ(n2) time. We can
reduce from covering a rectangle with strips, which
falls in a class of O(n2) problems [4]. It is easy to
achieve quadratic time by just explicitly computing
the arrangement of the bundles.

4 Vertical extent

The vertical extent of a set of lines is the shortest ver-
tical line segment that intersects a given set of lines.
This problem is dual to finding the smallest vertical
distance between two parallel lines containing a set of
points. It is an LP-type problem [10], and can there-
fore also be solved in O(n) time. When the lines are
imprecise, we are again interested in the smallest and
largest possible values for this problem.

4.1 Largest value

We call a bundle vertical if it contains at least one
vertical line. When there are vertical bundles, the
problem is trivial and the answer is ∞, since we can
take two parallel lines that are arbitrarily close to ver-
tical, and the vertical distance between them will be
arbitrarily large (except in the degenerate case where
vertical is one of the extreme directions of a bundle).
When there are no vertical bundles, the largest verti-
cal extent of the bundles is usually just the smallest
vertical extent of the set of lines that support the
boundaries of the bundles, which can be computed in
linear time. We need to be careful that the defining
lines of the result do not belong to the same bundle,
but this can be ensured; details are in the full paper.

4.2 Smallest value

We want to compute the shortest vertical segment
that stabs all of the bundles. Again, we separate the
case where none of the bundles contain vertical lines,
or when some of them do.

No vertical bundles. When there are no vertical
bundles, we can view the lines as directed lines from
left to right, and then the problem is very similar to
linear programming on upfacing bundles. We show in
the full paper that a similar approach also yields an
O(n log n) algorithm for this problem.
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Figure 3: An arrangement with four bundles. One of
the bundles does not contain a vertical line, the other
three do. The dotted line is the current sweepline,
and the arrows point to the highest possible lower
endpoint of an interval with the given upper endpoint
that stabs all bundles. Between the two lines, there
has been one event.

General. If there are vertical bundles, then we can
solve the problem in O(n2) time. The difference with
the previous case is that there any vertical line would
cross all bundles in exactly one interval. Now it may
cross a bundle in an ‘inverted’ interval, that is, there
is an interval where the bundle is not crossed but
outside the interval it is.

When we are given the vertical line that contains the
optimum, we need to solve a 1-dimensional problem.
Then we want the shortest interval that intersects n
‘inverted’ intervals (or a mixture of normal and in-
verted intervals). We can do this in linear time (after
sorting), because we can sweep an interval down the
line and both ends move in only one direction.

To solve the problem in quadratic time, we will sweep
a vertical line from left to right. The current line
will intersect a number of bundle boundaries. We call
such an intersection a ceiling if it has the interior of
the bundle above it, and a floor if it has the inte-
rior of the bundle below it. We maintain the follow-
ing structure: a sorted list with all bundle boundaries
currently intersected by the sweepline, and for all ceil-
ings we store the a pointer to the highest floor (below
it) such that the segment between the ceiling and the
floor intersects all bundles. We also need to maintain
a list of pointers from any floor to all ceilings pointing
to it. Figure 3 shows these pointers for some lines.

We have an event whenever two boundaries cross, or
when a ceiling and a floor meet and vanish or appear.
Most events can easily be taken care of; we will de-
scribe the most interesting one here.

When two ceilings intersect, the highest of the two
(before the event) must now start caring about one
extra bundle. If it already cared, nothing needs to
change, otherwise its pointer must jump to the floor
that corresponds to the same bundle that we crossed.
The lowest of the two can now stop caring about one

bundle. Only if it was currently pointing to floor that
corresponds to that bundle, something needs to hap-
pen. In this case, its pointer must jump to the place
the other ceiling was pointing to! This event takes
constant time. Figure 3 shows the situations before
and after a ceiling-ceiling event.

This completes the O(n2) algorithm; all events are de-
scribed in detail in the full paper, where we also show
how to generalise this algorithm to O(n log n + m2)
when only m of the bundles contain vertical lines.
An interesting open question is whether a faster algo-
rithm exists.
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The Linear Parametric Geometric Uncertainty Model:
Points, Lines and their Relative Positioning

Yonatan Myers and Leo Joskowicz ∗

Abstract

Characterizing geometric uncertainty is a central
problem in mechanical CAD/CAM, robotics, and
computer vision. Geometric uncertainty is often stud-
ied with simple ad-hoc models that assume indepen-
dent, isocentric, and isotropic geometric errors. These
models are often inadequate and can lead to erroneous
conclusions. In this paper, we introduce the Linear
Parametric Geometric Uncertainty Model, and derive
the worst-case first-order approximation of the uncer-
tainty zones of points and lines in the plane. The
model is general and expressive, and allows parame-
ter dependencies. We present the properties of point
and line uncertainty zones, and algorithms to compute
them and to answer relative positioning queries.

1 Introduction

Geometric uncertainty plays a central role in many
fields, including mechanical CAD/CAM, robotics,
and computer vision. While geometric models of
physical objects and their relative locations are ex-
act, in practice, manufacturing and measurement pro-
cesses introduce geometric uncertainties.

Modern tolerancing and metrology has extensively
studied the shape and position uncertainty of parts.
Despite recent advances, their characterization and
efficient computation remains an open problem [1].

Many models of geometric uncertainty have been
proposed. One approach bounds point variations with
simple geometric entities, such as rectangles, circles
[2, 3], convex polygons [4], edge variations [6], and
boundary offsets [5]. This assumes that point un-
certainties are isocentric and independent, which of-
ten overestimates the real geometric uncertainty. A
second approach models geometric feature variations
with intervals of the coefficients of their algebraic pa-
rameterization [7, 8]. This accounts for features but
not for the parameter dependencies between them. A
third approach models variations with infinitesimal
rigid body transformations that are concatenated to
propagate the geometric uncertainty [9]. This allows
for parameter dependencies but is limited to points
and does not explicitly describe the uncertainty zone.

∗School of Engineering and Computer Science,
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yoni m@cs.huji.ac.il, josko@cs.huji.ac.il

Two types of geometric uncertainty analysis meth-
ods are available. Sampling-based methods analyze
the sensitivity to parametric variations by sampling
parameter instances [9, 10]. This heuristic approach
is general but computationally intensive. Geometry-
based methods compute uncertainty zones with off-
setting operations and bounding volumes [2, 3, 5, 6].
They derive zones which minimally contain all valid
part instances. However, the resulting uncertainty
part models are often too simplistic.

Computational geometry research focuses on the
robustness and accuracy of basic geometric algo-
rithms, such as line intersections and convex hulls.
With few exceptions, they do not consider geometric
uncertainty, nor describe algorithms for computing it.

In this paper, we introduce the Linear Parametric
Geometric Uncertainty Model (LPGUM) and derive
the worst-case first-order approximations of the un-
certainty zones of points and lines in the plane. The
model is based on our prior work [11, 12] and is gen-
eral and expressive. We describe efficient algorithms
to compute point and line uncertainty zones and to
answer relative positioning queries.

2 The Linear Parametric Geometric Uncertainty
Model (LPGUM)

In the LPGUM, geometric entities are defined by joint
parameters, each with a nominal value and uncer-
tainty interval. First-order linear dependency and ge-
ometric uncertainty are modeled by a sensitivity ma-
trix. The uncertainty zone is the union of all instances
of an entity, resulting from all parameter value combi-
nations. The uncertainty envelope is the uncertainty
zone’s boundary.

Formally, a parametric uncertainty model PM =
(p, p̄,∆) is defined by a vector p of k parameters
over a domain ∆. The parameters’ uncertainty do-
main is the cross product of the individual parameter
domains ∆i, each defined by an uncertainty interval
∆i =

[
p−i , p

+
i

]
, where p−i < p+

i , and p−i , p
+
i ∈ R. Each

parameter pi has a nominal value p̄i ∈ ∆i, which is
the parameter’s value with no uncertainty. The nom-
inal parameters vector p̄ = (p̄1, ..., p̄k) is the vector of
the parameter values with no uncertainty.

A parametric point v (p) = (x (p) , y (p) , z (p))
is a point defined by three continuous functions
x (p) , y (p) , z (p) over the uncertainty domain ∆ of
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parameter vector p. The nominal point v (p̄) =
(x (p̄) , y (p̄) , z (p̄)), p̄ ∈ ∆, is the location of the point
with no uncertainty. The uncertainty zone of para-
metric point v (p) is the set of all point instances:
V (v) = {v (p) | p ∈ ∆}. The uncertainty zone is a
closed, connected set, whose boundary is defined by
the functions x (p) , y (p) , z (p). The geometric inter-
pretation of the uncertainty zone is that point v can
be anywhere in the uncertainty zone, depending on
the actual values of its parameters.

In general, the uncertainty zone boundary of a point
cannot be derived analytically or computed exactly.
However, since the parameters’ uncertainty intervals
are usually one order of magnitude smaller or less than
the nominal value, the standard approach is to ap-
proximate them as linear deviations from the nomi-
nal value. The deviations are the partial derivatives of
the point’s functions evaluated at nominal parameter
values:

v(p) ≈ v(p̄) +
k∑

i=1

(
∂v(p̄)
∂pi

)
ψi (1)

where ψi = (pi − p̄i) is the ith parameter offset, and
∂v(p̄)
∂pi

= ∂v(p)
∂pi

|p=p̄ is the partial derivative of v (p) with

respect to pi evaluated at p̄. The constants ∂v(p̄)
∂pi

can
be grouped in a 3× k uncertainty sensitivity matrix :

Av =


∂x(p)
∂p1

... ∂x(p)
∂pk

∂y(p)
∂p1

... ∂y(p)
∂pk

∂z(p)
∂p1

... ∂z(p)
∂pk


| p=p̄

(2)

Rows represent the sensitivity of the point coordinates
x, y, z to variations in the values of parameters p.
Columns, (Av)i represent the sensitivity of the point
coordinates to variations in the parameter pi value. A
point’s LPGUM, LPGUM (v) = (v (p̄) , p, p̄,∆, Av) is
defined by the nominal point location v (p̄), a vector
p of k parameters and their uncertainty domain ∆,
the nominal values vector p̄, and a 3 × k uncertainty
sensitivity matrix Av. Following Eq. 1, the LPGUM
of point v, is thus v (p) = v (p̄) +Av (p− p̄).

The LPGUM allows for dependent parameters and
asymmetric uncertainty intervals where

∣∣p−i − p̄
∣∣ 6=∣∣p+

i − p̄
∣∣. We transform an asymmetric model to a

symmetric one by substituting PM = (p, p̄,∆) by

PM ′ = (p, p̄′,∆) where p̄′i = p+
i +p−i

2 . To simplify the
notation we denote (p− p̄′) as q.

We illustrate the LPGUM with an example (Fig. 1).
Let v (p) be a point in the plane defined in radial co-
ordinates by two parameters: r, the distance from
the origin, and α the angle from the horizontal. Let
p = (r, α) be the parameters vector and p̄ = (ᾱ, r̄) the
nominal parameters vector. Let the parameter uncer-
tainty intervals be [α−, α+] and [r−, r+]. The point
uncertainty zone is a disc sector, with inner and outer
radii, r− and r+, at angles α− and α+(Fig. 1a). The
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(−,−)
α
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x
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r

y

x

(a) Exact model (b) Linear approximation
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Figure 1: Uncertainty models of a point. (a) Exact
model, and (b) linear approximation (the uncertainty zone
is shaded). The sign vectors indicate the extreme parame-
ter offsets that define the endpoints (−min, + max). Two-
point models: (c) independent, and (d) dependent param-
eters. The common uncertainty zone is shaded dark.

four endpoints correspond to the extremal parameter
values combinations. The sensitivity matrix Av is:

Av =

(
∂(r sin α)

∂r
∂(r sin α)

∂α
∂(r cos α)

∂r
∂(r cos α)

∂α

)
|(r=r̄,α=ᾱ)

=(
sin ᾱ r̄ cos ᾱ
cos ᾱ −r̄ sin ᾱ

)
The approximate uncertainty zone is a rectangle de-
fined by extremal parameter values (Fig. 1b).

To illustrate parameter dependencies, consider now
two uncertain points and their relative position.
When the point parameters are independent and the
uncertainty zones overlap (Fig. 1c), their relative or-
dering can change. In the common zone, some in-
stances of v2 might be below point instances of v1.
Outside the common zone, the order is preserved.
When the points depend on the same parameters
(e.g., they are on rigid body B), their relative order
is always preserved, although their uncertainty zones
overlap (Fig. 1d).

3 LPGUM of a point

Consider the uncertainty envelope of a point in the
plane defined in the LPGUM model.

v (q) = v̄ +Avq (3)

Finding the extreme vertex of the uncertainty enve-
lope in a given direction d is equivalent to finding the
point in direction d that maximizes

〈
A>

v d, q
〉
. The

vertex is obtained by solving the linear program:

max
q

〈
A>

v d, q
〉

subject to: q ∈ ∆

24th European Workshop on Computational Geometry

138



The maximization is done separately for every param-
eter qi, as the parameter inequalities are independent.

To compute the point uncertainty envelope; sort
the column vectors of the sensitivity matrix by their
angle, build the cone diagram and compute a sign
vector for one cone. Then iterate over all cones ac-
cording to the angle of the lines bounding them. For
every cone flip the parameter associated with the line
crossed between p+ and p−, and compute the vertex.

Theorem 1 Let v (q) = v̄+Avq be an LPGUM point
in the plane, dependent on k parameters. Its uncer-
tainty envelope is a convex polygon with at most 2k
vertices which can be computed in optimal O (k log k)
time, O (k) space. When the parameters q are defined
over symmetric intervals, the uncertainty envelope is
a centrally symmetric convex polygon (zonotope).

4 LPGUM of a line

The LPGUM of a parametric line l, defined by a point
v (q) and a vector u (q), with sensitivity matrices Av

and Au, is the affine combination of the parametric
point and the direction vector times a scalar, α ∈ R:

l (q) = l (v (q) , u (q)) = v̄ +Avq + α (ū+Auq) (4)

Theorem 2 Let l (q) be an LPGUM line defined by
Eq. 4 dependent on k parameters. If the line is
bounded it has two boundaries each of which hasO (k)
vertices. The regions outside the uncertainty zone are
open and convex.

To compute the uncertainty envelope of an LPGUM
line l (q), we sweep the values of α. Every value of
α yields a zonotope, lα (q). While α changes, lα (q)
traces out the line’s envelope. The sweep stops at
values of α called events, where the envelope changes.
The algorithm iterates over all the events, tracing out
the uncertainty envelope segments, and finding new
events. When the event queue is empty, the segments
are combined. The algorithm runs inO

(
k2 log k

)
time

and O
(
k2
)

space. We identify three types of events:

1. Switch events occur at values of α where two lines
of the cone diagram of the point lα(q), coincide. To
find the events, we solve,

〈
(Aα)i, (Aα)⊥j

〉
= 0.

2. Flip events, occur at values of α for which a col-
umn vector (Aα)i equals zero. To find the events, we
solve (Aα)i = 0 for α, for every column.
3. Twist events occur at α values for which the
part of lα (q) in contact with the uncertainty envelope
changes. To find the events, we solve l

(
q(i)
)

= l
(
q(j)
)

for the two values of α, where q(i), q(j) are neighbor-
ing vertices parameterizations on the zonotope lα (q).

To move the zonotope from event to event, we con-
nect points on the two zonotope boundaries with the
same parameterization by a line segment. The swept
segments generate a quadratic curve.

v(q) l u(q)

v(q)

w(q)

(c)(b)

u(q)

v(q)

(e)

u(q)

v(q)

l(q)

(a)

(d)

l(q)

v(q)

Figure 2: Examples of relative position relations be-
tween uncertain points and lines (uncertainty zones
are shaded): (a) classification of an uncertain point
with respect to a line; (b) relative position of two un-
certain points; (c) relative position of three uncertain
points; (d) classification of an uncertain point with
respect to an uncertain line; (e) uncertain perpendic-
ular bisector of two uncertain points.

5 Relative position relations

We study five types of relative position relations in
the LPGUM. Figure 2 illustrates each case.

5.1 Uncertain point/nominal line classification

Classifying an uncertain point with respect to a nom-
inal line is equivalent to classifying a convex polygon
with respect to a line, which takes O (n log n) time.

When the nominal line intersects the point’s zono-
tope, we compute the parameter values for which the
point instances lie on the line or on either side of it.
Let l be a line in closed form, y = ax + b and let v
be an LPGUM point. The classification of the point
instances depends on the value of q and is determined
by:

(v̄ +Avq)y < a (v̄ +Avq)x + b (5)

a (v̄)x − (v̄)y +
(
a (Av)x − (Av)y

)
q + b > 0 (6)

This k-dimensional hyperplane, which cuts the hy-
percube in parameter space, partitions the point in-
stances into points above, on or below the line.

5.2 Relative position of two uncertain points

Given two points u (q) , v (q), we define the vector
~̄d = −→̄

uv̄ as the nominal direction from u to v. To see
whether for a parameterization q the vector ~d (q) =
−−−−−−→
u (q) v (q) is in the opposite direction to −→̄uv̄, we check
to see whether

〈
~̄d, ~d (q)

〉
< 0. To determine whether

a direction flip can occur, we see if:

min
q

〈
v̄ +Avq −

( ¯u+Auq
)
, v̄ − ū

〉
subj. to: q ∈ ∆

is negative.
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5.3 Relative position of three uncertain points

To determine whether a point w(q) in the plane lies
to the left or right of the line from u(q) to v(q), we
consider the determinant of the matrix

M (q) =

 ux + (Au)x q uy + (Au)y q 1
vx + (Av)x q vy + (Av)y q 1
wx + (Aw)x q wy + (Aw)y q 1


det (M (q)) is a multivariate quadratic expression
(with qi as its variables) for which we must deter-
mine which of the following three cases holds.
1. ∃q(1), q(2) ∈ ∆ such that, det

(
M
(
q(1)
))
< 0 and

det
(
M
(
q(2)
))

> 0, for some parametrizations w (q)
is to the left and for others it is to the right.
2. ∀q det (M (q)) > 0, m (q) is always to the left.
3. ∀q det (M (q)) < 0, m (q) is always to the right.

To decide the second case, which is the exact op-
posite of the third, we solve Eq. (7). If the constraint
extremum on the determinant is > 0 the case holds.

min
q

det (M (q)) Subject to: q ∈ ∆ (7)

5.4 Uncertain point/uncertain line classification

To classify an LPGUM point v (q) with respect to an
LPGUM line, l (q), we define two points on the line
u (q) = lα1 (q) and w (q) = lα2 (q), α1 < α2 and solve
the three point classification question above. If case
(1) holds the point is on different sides of the line for
different qs. If case (2) holds the point is to the left
of the line; otherwise it is to the right.

5.5 Perpendicular bisector of two uncertain points

The perpendicular bisector of a segment connect-
ing two uncertain points is defined as follows. Two
LPGUM lines l (q) and m (q) are perpendicular to
each other if for every parameterization t, l (t) ⊥
m (t).

Let u (q) and v (q) be LPGUM points. An LPGUM
point a (q) is said to divide the segment u (q) v (q) in
the proportion λ ∈ [0, 1], if for any parameterization
t, a (t) = λu (t) + (1− λ) v (t). For λ = 1

2 , the point
a (q) is the mid-point of the segment u (q) v (q).

To compute the perpendicular bisector, we find the
point at the center of the nominal segment:

vmid (q) =
ū+ v̄

2
+
(
Au +Av

2

)
q (8)

To find the perpendicular to the line from u to v,
we compute the vector ~d (q) = v (q)−u (q) and rotate
it by π

2 by rotating the nominal part and all column
vectors of the sensitivity matrix. All rotations must
be in the same direction. The perpendicular bisector
to v (q)u (q) is:

l⊥ (q) = vmid (q) + α~d⊥ (q) (9)

6 Conclusion

This paper presents a parametric, first-order model
for the geometric uncertainty of points and lines in
the plane. The model is general, expressive, accounts
for parameter dependencies and for asymmetric zones.
We present the LPGUM of a point and a line in the
plane and describe properties and algorithms to effi-
ciently compute their uncertainty zones and to deter-
mine their relative position relations. In the future,
we plan to explore the properties of uncertain convex
hulls, Voronoi diagrams, and line arrangements, and
develop efficient algorithms for their computation.
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Smoothing Imprecise 1-Dimensional Terrains ∗

Chris Gray† Maarten Löffler‡ Rodrigo I. Silveira‡

Abstract

An imprecise 1-dimensional terrain is an x-monotone
polyline where the y-coordinate of each vertex is not
fixed but only constrained to a given interval. In this
paper we study four different optimization measures
for imprecise 1-dimensional terrains, related to ob-
taining smooth terrains. In particular, we present al-
gorithms to minimize the largest and total turning
angle, and to maximize the smallest and total turn-
ing angle.

1 Introduction

Terrain modeling is a central task in geographical in-
formation systems (GIS). Terrain models can be used
in many ways, for example for visualization or anal-
ysis purposes (to compute features like watersheds or
visibility regions [1]). One common way to represent a
terrain is by means of a triangulated irregular network
(TIN): a planar triangulation with additional height
information on the vertices.

This height information is often collected by air-
planes flying over the terrain and sampling the dis-
tance to the ground, for example using radar or laser
altimetry techniques, or it is sometimes obtained by
optically scanning contour maps and then fitting an
approximating surface. These methods often return a
height interval rather than a fixed value, or produce
heights with some known error bound. For example,
in high-resolution terrains distributed by the United
States Geological Survey, it is not unusual to have
vertical errors of up to 15 meters [7]. However, algo-
rithms in computational geometry often assume that
the height values are precise. This may lead to arti-
facts in the terrain.

An alternative to deal with this imprecision in ter-
rains is to use a more involved model that takes the
imprecision into account. Gray and Evans [2] pro-
pose a model where an interval of possible heights is
associated with every vertex of the triangulation. Fig-
ure 1 shows an example of an imprecise terrain, and
a possible instance of the real terrain. Kholondyrev

∗This research was partially supported by the Nether-
lands Organisation for Scientific Research (NWO) through the
project GOGO and project no. 639.023.301.

†Department of Computing Science, TU Eindhoven, the
Netherlands, cgray@win.tue.nl

‡Department of Information & Computing Sciences, Utrecht
University, the Netherlands, {loffler,rodrigo}@cs.uu.nl

(a) (b)

Figure 1: (a) An imprecise terrain. (b) A possible
instance of the real terrain.

and Evans [5] also study this model. Silveira and Van
Oostrum [6] also allow moving vertices of a TIN up
and down to remove local minima, but do not assume
bounded intervals.

In this paper we use the same model as in [2, 5]; each
vertex has a height interval. This leads to some free-
dom in the terrain: the real terrain is unknown. This
paper deals with trying to obtain a smooth terrain,
respecting the height intervals. This may be needed
either because some additional information about the
morphology of the terrain is known (that is, there
are not too many sharp ridges in that area) or for
visualization or compression purposes. Smoothing of
terrains has been previously studied in the context of
grid terrains [4, 7], where techniques from image pro-
cessing can be applied, but not, to our knowledge, for
imprecise TINs. In a TIN, a smooth terrain implies
that the spatial angles between triangle normals are
not too large. We can try to find a height value for
each vertex, restricted by the intervals, such that the
resulting terrain minimizes the largest spatial angle,
or the sum of all spatial angles.

We study these measures, and two other ones, but
only for 1-dimensional terrains. A 1-dimensional ter-
rain is essentially an x-monotone polyline. An im-
precise 1-dimensional terrain is the same thing, but
with a y-interval for each vertex rather than a fixed
coordinate—see Figure 2. This work constitutes a
first step towards solving the 2-dimensional case.

We study four variants of the problem. In Section 2
we minimize the sum of the turning angles of the poly-
line, while in Section 3 we minimize the largest one.
Both measures aim to smooth the terrain as much as
possible; which is best to use depends on the situa-
tion at hand. In Section 4 we maximize the sum of
the turning angles, and in Section 5 we maximize the
smallest one. These measures aim to make the terrain
as rough as possible: this gives some idea of the worst
possible case.
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In the discussion of the algorithms below, we as-
sume that the 1-dimensional terrain is an x-monotone
polyline. In this context, we define a left-turn and
right-turn as a vertex where this polyline, seen from
left to right, turns to the left (upwards) or right
(downwards) respectively.

2 Minimizing the total turning angle

To minimize the sum of (the absolute values of) the
turning angles, we make the following observations.
When we leave a certain vertex in a certain direction,
and we enter another vertex from a certain direction,
and the path between them is left-turning (or right-
turning), then it does not matter how exactly this
path goes: the total turning angle stays the same.
This means there will most likely be many equiva-
lent optimal solutions. An example is shown in Fig-
ure 2(a).

In fact, if the leftmost and rightmost intervals
would just be single points, the shortest path between
those points through the corridor between the poly-
lines defined by the upper and lower endpoints of the
intervals is one of the optimal solutions. To see why,
consider the global shape of the shortest path. This
will be a polyline, with a number of left and right
turns. Each right turn must lie on the lower endpoint
of its imprecision interval, otherwise there would be a
shorter path possible. Similarly, each left turn must
lie on the upper endpoint of its interval. Now call a
segment of the shortest path critical when it has one
left and one right turn. It is not hard to see that
we cannot get a better turning angle than the sum of
the turning angles between pairs of consecutive criti-
cal segments. However, the total turning angle of the
shortest path achieves exactly this lower bound, and
hence is optimal.

When the leftmost and rightmost intervals are not
single points but real intervals, we need to make one
additional observation. If we compute the shortest
path from some point on the leftmost interval to some
point on the rightmost interval, then this may contain
some unnecessary turns at the ends. We can iden-
tify the leftmost and rightmost critical segments of
the path, and note that the best thing to do is just
continue in a straight line from these segments to-
wards the leftmost and rightmost intervals since then
we make no extra turns. It can be that this is not
possible, but in that case we just make the turn at
those extreme critical segments as small as possible.

The shortest path can be computed in linear time
[3]. The adaptations that are necessary at the ends
are also easy to do in linear time.

3 Minimizing the largest turning angle

It appears that the problem of minimizing the maxi-
mum angle in a realization of an uncertain terrain is

difficult. The main problem is that finding a solution
requires finding the inverse of a non-algebraic func-
tion. Therefore, we present an approximate solution.
If the best realization of a given uncertain terrain has
a maximum turning angle α, we find a terrain with
maximum turning angle at most α + ε, for any given
ε. Our solution is a dynamic-programming algorithm
that works by discretizing the range of angles that
we consider.

Figure 2(b) shows an example of a path which min-
imizes the largest turning angle.

Let D be a set of k = dπ/εe angles, evenly spaced
from −π/2 to π/2. Our algorithm is based on solv-
ing subproblems of the form S[p1, p2, d1, d2], where
p1 and p2 are endpoints of intervals and d1 and d2

are directions from D. It is also based on the follow-
ing observation: let P be the optimal path through
a set of intervals between points p1 and p2 that are
assumed to have infinite length. If we remove the as-
sumption that the intervals are of infinite length and
P no longer passes through all of the intervals, then
the optimal path must pass through the endpoint of
at least one of the intervals in the set. This allows
us to find the optimal path recursively by trying all
endpoints of all intervals between p1 and p2 and all
directions from D.

We begin by describing the process of finding the
optimal path through a set of intervals, assuming that
the lengths of all the intervals are infinite. Let P ∗ be
the optimal path between p1 and p2 that leaves p1 at
angle d1 with respect to horizontal and enters p2 at
angle d2 with respect to horizontal. It is easy to see
that at almost all of the vertices of P ∗, the turning
angle is the same (call it θ∗). There may be one vertex
at which the turning angle is smaller than θ∗, if the
direction of curvature changes, but this happens at
most once. We can find an ε-approximation to P ∗ by
binary searching for θ∗.

We perform the binary search by constructing a
path P1 starting at p1 and a path P2 from right to
left starting at p2. We construct P1 and P2 so that
all the turning angles are some common θ. The angle
between P1 and P2 at their intersection allows us to
determine whether we should raise or lower θ. When
the angle at the intersection of P1 and P2 becomes less
than ε, we stop the binary search. Since the range
of angles for θ is bounded above by π/2, the time
complexity for the binary search is O(n log 1/ε).

Note that the direction of the turns in P1 and P2

is not specified. In fact, there are four options de-
pending on whether P1 or P2 are left-turning or right-
turning. We perform the binary search for each of
these options, keeping the search which returns the
lowest θ.

As in Section 2, we initially reduce the first
and last intervals to one of their endpoints. We
call these points p1 and pn. We then find the
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(a) (b) (c) (d)

Figure 2: Four different measures applied to the same imprecise terrain. Optimal terrains for (a) min total
turning angle, (b) min max angle, (c) max total turning angle and (d) max min angle.

lowest value of S[p1, pn, d1, d2] over all values of
d1 and d2. We construct the table S by com-
bining the results of recursively-computed subprob-
lems. We set S[pi, pk, di, dk] = minpj ,dj ,d′

j
max{|dj −

d′j |, S[pi, pj , di, dj ], S[pj , pk, d′j , dk]}.
Constructing the table S takes O(n2k2) space and

O(nk2 + n log k) per entry. Therefore the entire algo-
rithm takes O(n3(1/ε)4) time.

4 Maximizing the total turning angle

When analyzing imprecise terrains, we may also be
interested in the worst possible case for the real ter-
rain. When our goal is to maximize the sum of the
turning angles, we make the simple observation that
we only need to consider the endpoints of the impreci-
sion intervals. Indeed, if we have a solution that uses
some point on the interior of an interval, there is at
least one direction in which we can move the point
such that the total turning angle does not decrease:
if it lies on a left-turning or right-turning chain, mov-
ing it will not change the total angle at all, and if
it does not, then it is always good to make the turn
sharper, since this increases both its own turning an-
gle and that of (one of) its neighbors. See Figure 2(c)
for an example.

After making this observation, it is not hard to
come up with a linear time algorithm to solve the
problem. We simply apply 1-dimensional dynamic
programming: for each segment, defined by the up-
per/lower endpoints of two consecutive intervals, we
store the optimal solution to the left of that segment
that uses it. There are 4n such segments, and comput-
ing a value involves matching it with the two possible
stored solutions to the left of it and picking the best.

5 Maximizing the smallest turning angle

We can also try to maximize the smallest turning an-
gle to try to make the terrain as rough as possible.
Figure 2(d) shows an example.

For this problem we present a linear time approxi-
mation algorithm. The terrain computed by the algo-
rithm will have a minimum angle at least (α∗

min − ε),
where α∗

min is the minimum angle in the optimal ter-

rain and ε is any constant. It is based on going
through the intervals from left to right, and comput-
ing the solutions of partial subproblems defined be-
tween the first (leftmost) interval and the current one.

Given an instance of an imprecise terrain, we call
an interval extremal if its vertex is positioned at one
of the endpoints of the interval. An non-extremal in-
terval is called internal. With some abuse of notation,
we will also refer to extremal/internal vertices.

We base the algorithm on the following observa-
tions:

• Let T ∗ denote the optimal terrain, with mini-
mum angle α∗

min, and let α∗
i denote the angle

of the vertex xi of Ii in T ∗. We assume that
α∗

min > ε, otherwise any terrain will be within
the approximation factor.

• Let Ii be an internal interval. Then α∗
i =

α∗
min. Moreover, Ii is part of a left-turning/right-

turning chain of angle α∗
min.

• The leftmost and rightmost intervals of T ∗ are
extremal.

• If there is an interval Ii in T ∗ connecting a
left-turning chain to a right-turning chain which
is immediately followed by another left-turning
chain (or vice versa), then Ii is extremal. If it is
not, we can take the middle right-turning chain
as a whole and move it up, until Ii becomes ex-
tremal, and balance all the angles again, increas-
ing the overall minimum angle.

• The maximum number of vertices of any left-
turning or right-turning chain in T ∗ is K =
dπ/εe. Therefore the maximum number of con-
secutive intervals that are internal is 2K.

The previous observations imply that if a subproblem
has more than 2K intervals, there must be at least
one extremal interval among them. Extremal inter-
vals allow us to separate the problem into indepen-
dent subproblems. As in the algorithm of Section 3,
we will consider only k = d2π/εe possible directions.

Assume for now the following subproblem can be
solved in constant time. OptimalChain(pi, pj , di, dj),
for i < j, (j − i) < 2K, returns the solution to the
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subproblem from Ii to Ij , with fixed positions pi and
pj , and fixed incoming directions at Ii and Ij , given by
di and dj , under the assumption that all the intervals
between Ii and Ij are internal. Notice that since there
are at most 2K intervals, the whole subproblem has
constant size.

5.1 Main algorithm

The algorithm goes through the intervals from left to
right. Solutions to partial subproblems are stored in a
table with entries of the shape S[j, p, d]. Such an en-
try stores the value (and information to reconstruct
the terrain) of a solution for the terrain going from
I1 to Ij , finishing at Ij at position p (top/bottom
extreme) with direction d. We explain how to com-
pute the value of S[j, p, d], assuming that the values
for S[i, p, d], i < j, for all possible positions p and
directions d, have been already computed.

Assume that we are computing S[j, p, d] for p one of
the two extremes of Ij , and some incoming direction d
(incoming at Ij). In order to find the value of S[j, p, d]
we need to know which is the first extremal interval
found when going from Ij to I1. The previous observa-
tions show that such an interval lies between I(j−2K)

and Ij−1. We will consider each of them. For each
interval choice Ir, we will also consider both choices
for the position at Ir, pr, and all k choices for the
incoming direction dr. This gives rise to a total of
2K · 2 · k combinations. For each of them we must
solve the subproblem between Ir and Ij . To solve it
we apply the algorithm OptimalChain(pr, pj , dr, d).
The solution of OptimalChain(pr, pj , dr, d) is com-
bined with the entry S[r, pr, dr] to obtain the total
value of this alternative. The best value among all
the ones considered is stored at S[j, p, d].

5.2 Solving the subproblems

The previous observations imply that any optimal so-
lution for a series of intervals that does not use any ex-
tremal point must be a left-turning chain followed by
a right-turning chain, or vice versa, with all vertices
having turning angle α∗

min. It can also be comprised
of only one left-turning or right-turning chain, but we
see it as a degenerate case of the previous ones, hence
we consider two possible shapes: left-turning/right-
turning and right-turning/left-turning.

To find an approximation of the optimal chain, we
follow an approach similar to the one used in Sec-
tion 3. We first guess the minimum angle αmin and
the shape of the chains. Once the general shape of the
chain is known, we construct a chain that at every ver-
tex turns exactly αmin. If the final chain reaches the
last interval of the subproblem and it does it with an
angle of at least αmin, we are done. Otherwise we
need to try another value of αmin. Recall that the
number of possible angles to try is only dπ/εe, and

that the size of the subproblem is constant. There-
fore the subproblem can be solved in constant time.

It is easy to verify that the angle of the solution
computed by the algorithm is at most ε away from
α∗

min. The running time is O(n · (1/ε)4 log(1/ε)).

6 Conclusions

We studied several measures to compute the
smoothest or least smooth possible 1-dimensional ter-
rain, when height information is imprecise. We gave
efficient algorithms for three cases, and a somewhat
less efficient algorithm for the fourth case. Two of the
algorithms are approximate.

Future work includes trying to improve the O(n3)
algorithm for minimizing the maximum angle. We
would also like to tackle 2-dimensional terrains. This
poses challenges both at the modeling level (a defini-
tion of a smooth TIN is not straightforward) and also
at the algorithm level.
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Noisy Bottleneck Colored Point Set Matching in 3D

Yago Diez ∗ J. Antoni Sellarès ∗

Abstract

In this paper we tackle the problem of matching two
colored point sets in R3 under the bottleneck distance.
First we present an exact matching algorithm that re-
quires the computation of intersections of complicated
algebraic surfaces. To avoid this, we also present an
approximate algorithm that is implementable and has
improved asymptotic cost at the price of having the
risk of ”missing” some solutions. For the case of sets
with very different cardinality, we speed up calcula-
tions by using a Lossless Filtering preprocess that dis-
cards the zones of the bigger set where matches cannot
occur. We provide formal and experimental discussion
on the running time and accuracy of the approximate
algorithm (with and without Lossless Filtering pre-
process).

1 Introduction

Protein molecules possess unique three-dimensional
structures, defined by their amino-acid sequence, that
has been found to determine many of their functional
properties. Typically a protein molecule is modelled
as a set of balls in R3, each representing an atom.
Given a small collection of atoms, representing a sec-
ondary structure subunit or any other significant part
of a protein (as some significant union of such sec-
ondary structures, called motifs), the protein sub-
structure detection problem consists in determining
whether the substructure exists in a protein molecule.
We can see this problem as a colored point set match-
ing problem. Since atom positions are fuzzy due to
the finite precision of measuring devices, it is imprac-
tical to consider an exact match between two atoms.
Bearing in mind that the correspondences between
colored points to be one-to-one, we will use the bot-
tleneck distance.

2 Problem formulation

Let P (q, r) represent the colored point q ∈ R3 with
associated color r. Given a real number ε ≥ 0, we say
that two colored points A = P (a, r),and B = P (b, s)
match when r = s and d̃(A,B) = d(a, b) ≤ ε, where d
denotes the Euclidean distance.

∗Email: {ydiez,sellares}@ima.udg.es. IIA, Univ. de
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Let D, S be two colored points sets of the same
cardinality. A color preserving bijective mapping f :
D → S maps each colored point A = P (a, r) ∈ D to a
distinct and unique colored point f(A) = P (b, s) ∈ S
so that r = s. Let F be the set of all color preserving
bijective mappings between D and S. The bottleneck
distance between D and S is defined as:

db(D,S) = min
f∈F

max
A∈D

d̃(A, f(A)) .

The Noisy Colored Point Set Matching
(NCPSM) problem can be formulated as follows.
Given two Colored Points sets A, B, |A| = n, |B| = m,
n ≤ m, and ε ≥ 0, determine all rigid motions τ
for which there exists a subset B′ of B such that
db(τ(A),B′) ≤ ε. We define τ(P (a, r)) as P (τ(a), r)
and τ(A) as {τ(P (a, r))|P (a, r) ∈ A}

For the sake of clarity, through the rest of the paper
we will just mention the colors associated to points
only when necessary, thus we will speak about a ∈ A
instead of P (a, r) ∈ A.

2.1 Previous results

The study of the NPSM problem in R2was initi-
ated by Alt et al. [2] who presented an exact O(n8)
time algorithm for solving the problem for two sets
A,B of cardinality n. This cost can be reduced to
O(n7 log n) using the techniques in [6]. The 3D ver-
sion of the problem is much less explored than its two
dimensional counterpart. The only algorithms to the
best of our knowledge are: an algorithm by Ambühl,
Chakraborty and Gartner presented in [1] that suf-
fered from a computational cost of O(n32.5) and a
O(n13+5/6+ε) result presented in [4].

3 NCPSM problem solving algorithm

We present an algorithm to solve the NCPSM prob-
lem that extends the 2D algorithm presented in [5],
based in [6]. Due to space limitations, we focus in the
aspects that are directly relevant to our problem, only
sketch briefly the previous algorithm and present the
main results omitting their proofs.

The algorithm consists on two phases: enumeration
and testing. The enumeration phase makes the prob-
lem finite by partitioning all possible rigid motions of
A into equivalence classes and choosing a representa-
tive motion τ for each class. The testing phase runs a
matching algorithm between every set τ(A) and set B.
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As the enumeration phase requires the computation of
an arrangement of complex surfaces, we propose an al-
ternative, approximate version that is implementable
and will overcome most of the problem-inherent com-
plexity at the cost of ”missing” some solutions. We
will also dispose of a tradeoff between the computa-
tional time spent and the possibility of missing solu-
tions.

3.1 Enumeration

Generating every possible rigid motion that brings set
A onto a subset of B is infeasible due to the contin-
uous nature of movement. We partition the set of all
rigid motions in equivalence classes in order to make
their handling possible. Consider the arrangement of
spheres SB = {S(b, ε)|b ∈ B}. Any point p ∈ R3 be-
longs to the cell of the arrangement identified with
the set of points b ∈ B that hold p ∈ B(b, ε).

Definition 3.1 Two motions τ, µ are considered
equivalent if and only if, for any colored point a ∈ A
τ(a) and µ(a) lie in the same cell of SB.

Lemma 1 Any rigid motion µ that is a solu-
tion to the NCPSM problem can be trans-
formed to another motion µ′ such that there ex-
ist three points ai1 , ai2 , ai3 ∈ A holding that
their images µ′(ai1), µ

′(ai2), µ
′(ai3) lie on the spheres

S(bj1 , ε), S(bj2 , ε), S(bj3 , ε) respectively where bj1 =
µ(ai1), bj2 = µ(ai2) and bj3 = µ(ai3).

As a consequence of Lemma 1 we can generate a
representative for each equivalence class by consider-
ing each possible 6-tuple formed by three points in A
and their counterparts in B. As the matching must
preserve colors, we also demand the colors associated
to points to be matched to be the same.

Lemma 2 Any given position of point τ(ai1) in
S(bj1 , ε) leaves a total of one degree of freedom for the
positions of τ(ai2) and τ(ai3) in S(bj2 , ε) and S(bj3 , ε)
respectively.

Proof. For each possible position of point τ(ai1),
consider the geometric locus of all the points that
belong to S(bj2 , ε) and whose distance to τ(ai1) is
exactly d(ai1 , ai2). This corresponds, in the general
case to a circle Cai1 ,ai2

⊂ R3 resulting from the inter-
section of S(bj2 , ε) and S(τ(ai1), d(ai1 , ai2)). Consider
also the geometric locus of all the points that belong
to S(bj3 , ε) and whose distance to τ(ai1) is exactly
d(ai1 , ai3). Finally by choosing a point in one of the
circles (determining, thus τ(ai2)) and imposing that
d(τ(ai2), τ(ai3)) = d(ai2 , ai3) remains only a degree of
freedom.

�

The configuration space of our problem can be seen as
a cube of side 2π where each dimension corresponds
to one of the three angles that determine the asso-
ciated rigid motion i.e. the two polar coordinates
φ, ψ that determine the position of τ(ai1) and the re-
maining angle θ corresponding to the point chosen in
Cai1 ,ai2

. From now on, we will denote τφψθ the rigid
motion that corresponds to any given value of param-
eters φ, ψ and θ. Another key observation is that,
for any given values of parameters φ, ψ, θ any cou-
ple of the remaining points ai4 ∈ A, bi4 ∈ B defines
three possible positions corresponding to the position
of τφψθ(ai4) with respect to the sphere S(bi4 , ε) (in,
out or on the surface). These three possible positions
correspond to the values of φ, ψ and θ for which ai4
and bi4 may (or may not) be matched. Consequently,
given a 6-tuple ai1 , ai2 , ai3 , bj1 , bj2 , bj3 and an addi-
tional couple aih , bil , we have a finite number of re-
gions of [0, 2π[3 that encode the information concern-
ing when τ(aih) may be matched to bil for a motion τ
that brings ai1 , ai2 , ai3 to the boundary of the spheres
S(bj1 , ε), S(bj2 , ε), S(bj3 , ε) respectively.

Consequently, in searching for the possible match-
ings, it suffices to consider the collection of (n−3)(m−
3) ∈ O(nm) surfaces of [0, 2π[3 determined by the an-
gles φ, ψ, θ such that τφψθ(aih) belongs to the bound-
ary of the sphere S(bjl , ε) aih /∈ {ai1 , ai2 , ai3} and
bjl /∈ {bj1 , bj2 , bj3}. Since we only need to encode
the adjacency relationship among 3-dimensional cells
of the arrangement we compute the vertical decom-
position of the arrangement and then we compute the
adjacency relationship of cells in the decomposition
[7]. The number of cells of the vertical decomposition
of an arrangement of n surfaces in R3 is O(n2λq(n)),
where q is a constant depending on the maximum de-
gree of the surfaces, and λs(k)) is the maximum length
of (k, s) Davenport-Schinzel sequence that is roughly
linear in k [8]. The vertical decomposition of the ar-
rangement can be computed in randomized expected
time O(n3+ε), using the random-sampling technique
[3]. Putting it all together, what we need to determine
in order to generate a representative in every equiva-
lent class of motions is the arrangement of surfaces in
the cube [0, 2π[3 defined by all possible couples once
fixed a 6-tuple and then iterate over the set of all 6-
tuples. This takes O(n6+εm6+ε) expected time and
O(n5m5λq(nm)) space.

3.2 Testing

Once we have generated all possible motions for set
A in the Enumeration step we need to test if any of
them matches some subset of set B. To achieve this
we use the bipartite matching algorithm presented in
[5] for the two-dimensional case. In this algorithm
we implicitly work with a bipartite graph that en-
codes adjacency relationships, to make them explicit
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we use a compressed Octree. We generate values for
parameters φ, ψ and θ inside each of the regions of the
cube [0, 2π[3 defined in the Enumeration section and
test sets τφψθ(A) and B for matching. By traversing
the arrangement in order and maintaining the match-
ing information for previous cells, the total amortized
cost for testing each of the O(n5m5λq(nm)) cells is
O(n logm). Consequently:

Lemma 3 The computational cost of the exact
matching algorithm is O(n6m5λq(nm) logm).

As λq(nm) is in O(nm), this result meets the best
theoretical results up to date [4].

4 Approximate algorithm

The complexity of the arrangement renders the algo-
rithm difficult to implement and suffering from a very
high computational cost. If we partition the search
space using a cubic grid of side a given value γ, we
achieve a O( 2π

γ

3
n4m4λq(nm)) cost. This new algo-

rithm is implementable although it is only an approx-
imate algorithm. This has the problem that some of
the cells of the arrangement may not be sampled and,
consequently, some matches may be lost. More specif-
ically, the matches that may be missed are those that
have an associated cell in the arrangement that does
not contain an axis-parallel cube of volume smaller
than γ3. We denote γ3 as the Slackness of the match-
ing. If we picture the process of finding matches as
continuously moving a rigid copy of A over set B in
the way described in lemma 1, matches with higher
slackness are those that we can keep for a longer time
while we move.

By reducing γ, we also reduce the number of
matches that may be missed, although we also in-
crease the computational cost of the algorithm. We
will provide results to illustrate this tradeoff between
efficiency and accuracy in section 6.

In this case testing every motion generated takes
O(n1.5 logm) as we cannot take advantage of match-
ing information for previously calculated cells. As we
have O( 2π

γ

3
n4m4λq(nm)) cells, then:

Lemma 4 The computational cost of
the approximate matching algorithm is

O( 2π
γ

3
n5.5m4λq(nm) log n).

5 Lossless filtering preprocessing step

In most applications the cardinals of the two sets
involved in matching problems are dissimilar and
|A| << |B|. In general, algorithms are designed for
sets of roughly equal cardinalities so they cannot take
advantage of this situation if it occurs. We have
adapted the Lossless Filtering algorithm presented in

[5] to the three dimensional case. This algorithm dis-
cretizes the NCPSM problem by turning it into a
series of smaller instances of itself and then solves
them using the matching algorithm presented in Sec-
tion 3. To achieve this discretization we use a conser-
vative strategy that discards those subsets of B where
no match may happen and keep a number of zones
where this matches may occur. The discarding deci-
sions throughout the first part of the process are made
according to a series of geometric parameters that are
invariant under rigid motion. These parameters help
us to describe and compare the shapes of A and the
different subsets of B that we explore. To navigate
B and have easy access to its subsets, we use a com-
pressed octree that is built using the points in set B
as sites and completed with these geometric param-
eters. By doing this we achieve a reduction of the
total computational time, corresponding to a pruning
of the search space, as an effect of all the calculations
we avoid by discarding parts of B cheaply and at an
early stage.

The geometric parameters we use are: number of
points, histogram of points’colors and maximum and
minimum distance between points of every different
color. Finally, as the candidate zones need not be
located inside a certain node of the octree and may
fall between various of its branches we need to perform
diverse search function that take each possible case
into account.

Finally, we state that this step does not increase
the asymptotic cost of the algorithm, moreover, in
section 6 we will show how it does produce a practical
reduction in its running time.

Lemma 5 The computational cost of the algorithm
that combines the lossless filtering algorithm and the

matching algorithm is O( 2π
γ

3
n5m4λq(nm)) log n. The

bound is tight.

6 Implementation and results

For the implementation we have used the C++ pro-
gramming language under a Linux environment and
the g++ compiler without compiler optimizations.
All tests were run on a Pentium D machine with a
3 Ghz processor. Our implementation is still under
development although we can already present some
preliminary results.

For all the tests we begin with a specific realiza-
tion of set A that has 10 points of three different col-
ors. To build the various realizations of set B used,
we applied a variable number of random rigid mo-
tions (noted Numτ ) to set B and a small perturbation
to the point thus obtained. We completed set B by
adding additional points in a variable proportion. We
used a fixed value for parameter ε based on the aver-
age inter point distance. The values for parameter γ
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are indicated in every case.

Effects of the lossless filtering algorithm. The per-
formance of the algorithm depends on the effective-
ness that the lossless Filtering step has on every data
set, but at worst it meets the best (theoretical) run-
ning time up to date. In the best case, the initial
problem is transformed into a series of subproblems
of the same kind but with cardinality close to n = |A|,
producing a great saving of computational effort. In
the following we try to quantify this saving in com-
putational time. We compares the behavior of the
Matching algorithm with and without the lossless fil-
tering algorithm. The value used for gamma is 0.5.

The following table shows the cardinality of set B
and the percentage of noise points (i.e. points that
do not belong to any solution), the mean value of the
cardinal of the set present in each candidate zone af-
ter the Lossless Filtering algorithm (n′) the total time
spent by the algorithm with Lossless Filtering prepro-
cessing step (T1) and finally the total time spent by
the algorithm without it (T2).

|B| % noise n′ T1(s) T2(s)

120 66 13.25 8.9 903
250 80 24.4 113.3 8399.4
360 89 28.7 130.6 19290.4
400 87.5 20 106.6 38106
450 89 43.1 3000.9 54923.3
500 90 49.22 4955.6 73818.9

Concerning the mean value of n′, we observe that
the filtering algorithm manages to take away most
of the complexity of the problem. Consequently,
the main part of the computational effort can be
attributed to the complexity inherent to the prob-
lem. Finally computational times increase with |B|
although we believe that is kept to reasonable levels
given the complexity of the calculations involved.

We must state that the sizes considered here are
small given the huge computational costs of the algo-
rithm without lossless filtering. The data presented
shows that, even when the theoretical computational
costs are still high due to the complexity inherent to
the problem, using the lossless filtering results in sig-
nificant computational saving.

Running time and accuracy study. In this test we
seek to study the effect that parameter γ has on the
number of solutions found and the time needed to find
them. Amongst the values tested, we present two of
the most extreme to illustrate the main tendencies
that we observed. The table shows: The cardinal of
set B, de number of transformations of set B that it
includes (Numτ ), the percentages of success in terms
of the number of solutions found and the total times

spent by the algorithm for different values of param-
eter γ.

|B| Numτ γ = 2π γ = 0.1
succes% Time(s) succes% Time(s)

150 5 80 33.9 100 85.8
270 9 100 39.5 100 793.7
360 12 91.6 401.4 100 1924.3
420 14 92.8 1123.9 92.8 2204.6
540 17 94.4 6020 100 11536.9
690 23 87 13690 95.6 28322.1

We observe that, as expected, bigger values of
γ generally result in lower percentage of success.
This happens because they may miss matchings with
higher slackness. We also observe that smaller values
of γ present higher running times of the algorithm.
In this test we have increased the perturbation in ev-
ery point in order to force the worst possible behavior
of our algorithm by decreasing the slackness of the
matchings to be found.
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Pareto Envelopes in Simple Polygons∗

Victor Chepoi† Karim Nouioua† Edouard Thiel† Yann Vaxès†

Abstract

For a set T of n points in a metric space (X, d),
a point y ∈ X is dominated by a point x ∈ X
if d(x, t) ≤ d(y, t) for all t ∈ T and there exists
t′ ∈ T such that d(x, t′) < d(y, t′). The set of non-
dominated points of X is called the Pareto envelope
of T. H. Kuhn (1973) established that in Euclidean
spaces, the Pareto envelopes and the convex hulls co-
incide. Chalmet et al. (1981) characterized the Pareto
envelopes in the rectilinear plane (R2, d1) and con-
structed them in O(n log n) time. In this note, we in-
vestigate the Pareto envelopes of point-sets in simple
polygons P endowed with geodesic d2- or d1-metrics
(i.e., Euclidean and Manhattan metrics). We show
that Kuhn’s characterization extends to Pareto en-
velopes in simple polygons with d2-metric, while that
of Chalmet et al. extends to simple rectilinear poly-
gons with d1-metric. These characterizations provide
efficient algorithms for construction of these Pareto
envelopes.

1 Introduction

Convex hulls, in particular convex hulls in 2- and
3-dimensional spaces, are used in various applica-
tions and represent a basic object of investigations
in computational geometry. They host such remark-
able points as center, barycenter, and median as well
as the optimal solutions of some NP -hard problems
like the Steiner tree, the p-median, and the p-center
problems. H. Kuhn [13] noticed that conv(T ) can be
described in truly distance terms: a point p ∈ Rm

belongs to conv(T ) if and only if the vector of Eu-
clidean distances of p to the points of T is not dom-
inated by the distance vector of any other point of
Rm. Inspired by this characterization of conv(T ), one
can define analogous geometric objects by replacing
the Euclidean distance d2 by any other distance d on
Rm, or by replacing Rm by a polygonal or a polyhe-
dral domain endowed with an intrinsic distance. This
leads to the following general concept of Pareto en-
velope. Given a set T of n points in a metric space
(X, d), a point y ∈ X is dominated by a point x ∈ X
if d(x, t) ≤ d(y, t) for all t ∈ T and there exists t′ ∈ T
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BLAN06-1-138894 (projet OPTICOMB).

†LIF, Faculté des Sciences de Luminy, Université de
la Méditerranée, F-13288 Marseille Cedex 9, France,
{chepoi,nouioua,thiel,vaxes}@lif.univ-mrs.fr

such that d(x, t′) < d(y, t′). The set of non-dominated
points of X is called the Pareto envelope of T and is
denoted by Pd(T ).

Pareto envelopes have been investigated in several
papers under the name of “sets of efficient points”.
Thisse, Ward, and Wendell [17] proved that Pd2(T ) =
conv(T ) holds for all distances induced by round
norms. The investigation of Pareto envelopes for par-
ticular polyhedral norms has been initiated by Wen-
dell, Hurter, Lowe [21] and continued by Chalmet,
Francis, Kolen [2] and Durier, Michelot [6, 7]. The
main result of [2] is the following nice characteriza-
tion of Pareto envelopes in the Manhattan plane:

Pd1(T ) = ∩n
i=1(∪n

j=1Id1(ti, tj)), (1)

where Id1(ti, tj) is the smallest axis-parallel rect-
angle with diagonal [ti, tj ]. This result was used
in [2] to establish the correctness of an optimal
O(n log n) sweeping-line algorithm for constructing
Pd1(T ) in R2. Consequently, Pelegrin and Fernandez
[14] described an algorithm for constructing Pareto
envelopes in the plane endowed with a polygonal
norm. Recently, Chepoi and Nouioua [5] character-
ized Pd1(T ) in (R3, d1) and showed that the charac-
terization of Chalmet et al. [2] holds for Pd∞(T ) in
(Rm, d∞). They also presented efficient algorithms for
constructing Pd1(T ) and Pd∞(T ) in R3. We refer to
[5] for other references on Pareto envelopes in normed
spaces and their applications.

In this note, we characterize and efficiently con-
struct the Pareto envelopes of sets in simple poly-
gons endowed with the geodesic d2 and d1-distances.
Distance problems for simple polygons constitute a
classical subject in computational geometry; [9, 11,
15, 16, 18] is a small sample of papers devoted to
this subject. We show that, like in Euclidean spaces,
Pareto envelopes of finite sets in simple polygons with
d2-distance coincide with their geodesic convex hulls
and therefore can be constructed using an algorithm
of Toussaint [18]. On the other hand, we show that
Pareto envelopes in simple rectilinear polygons can
be characterized using equality (1). This characteri-
zation is used to design an efficient algorithm for con-
structing these envelopes. Due to space constraints,
the proofs of several results in last section are post-
poned to the full version.

We conclude this section with some definitions. Let
(X, d) be a metric space. The interval I(x, y) between
two points x, y ∈ X consists of all points between x

EuroCG’08, Nancy – March 18-20, 2008

149



Figure 1: Example of Pd2(T )

and y: I(x, y) := {u ∈ X : d(x, u)+d(u, y) = d(x, y)}.
A set M of X is convex if I(x, y) ⊆ M for all x, y ∈ M.
The convex hull conv(S) of a set S ⊂ X is the smallest
convex set containing S.

2 Simple polygons

In this section, P is a simple polygon with m sides
endowed with the geodesic d2-metric. For two points
x, y ∈ P, γ(x, y) is the unique geodesic path inside
P between x and y, and d2(x, y) is the length of
this path. For a set of n points T ⊂ P, we denote
by conv(T ) and Pd2(T ) the geodesic convex hull and
the Pareto envelope of T. Since two points of a sim-
ple polygon P are connected by a unique geodesic,
(P, d2) is a metric space of global non-positive curva-
ture, i.e. a CAT(0)-space [1]. CAT(0) spaces are char-
acterized in several ways (in particular, by uniqueness
of geodesic paths, convexity of the distance function,
etc.) and have many important properties, placing
them in the center of modern geometry; for results
and definitions the reader can consult the book [1].
Below we will show that Pd(T ) ⊆ conv(T ) holds for
any finite subset of a CAT(0)-space (X, d) and we
conjecture that in fact Pd(T ) = conv(T ) holds.

2.1 Pd2(T ) = conv(T )

We aim to establish the following result:

Proposition 1 Pd2(T ) = conv(T ). Consequently,
Pd2(T ) can be constructed in O(m + n log m)-time.

The inclusion Pd2(T ) ⊆ conv(T ) follows from the
following more general result:

Lemma 1 Pd(T ) ⊆ conv(T ) for any finite set of a
CAT(0) metric space (X, d).

Proof. Let x /∈ conv(T ). By Proposition 2.4(1) of [1]
there exists a unique point π(x) (the metric projection
of x) such that d(x, π(x)) = infy∈conv(T ) d(x, y). As in
the case of Euclidean spaces, π(x) can be viewed as
the orthogonal projection of x on conv(T ), because
by Proposition 2.4(3) the Alexandrov angle α at π(x)
between the geodesics γ(x, π(x)) and γ(y, π(x)) is at
least π/2 for any point y ∈ conv(T ), y 6= π(x). By
law of cosines which holds in CAT(0) spaces (page
163 of [1]), if a = d(x, π(x)), b = d(y, π(x)), and c =

d(x, y), then c2 ≥ a2 + b2 − 2ab cos α ≥ a2 + b2 >
b2 for any y ∈ conv(T ), y 6= π(x). Hence d(x, y) >
d(π(x), y), i.e., x is dominated by π(x). Since x is
an arbitrary point outside conv(T ), this implies that
Pd(T ) ⊆ conv(T ). �

Now we show the converse inclusion conv(T ) ⊆
Pd2(T ). Pick q ∈ conv(T ). If q belongs to the bound-
ary of conv(T ), then q belongs to the geodesic path
γ(t, t′) between two vertices t, t′ of conv(T ). Since
t, t′ ∈ T, if q is dominated by some point p, then
d2(p, t) ≤ d2(q, t) and d2(p, t′) ≤ d(q, t′). Since q ∈
γ(t, t′), this is possible only if these inequalities hold
as equalities, thus p ∈ γ(t, t′), yielding p = q. Thus
q ∈ Pd2(T ) in this case. Now, suppose that q be-
longs to the interior of the simple polygon conv(T ).
Suppose by way of contradiction that q is dominated
by some point p′ ∈ P . By Lemma 1 of [15] the dis-
tance function d2 on P is convex. This means that
for any point t ∈ T, as p varies along the geodesic
γ(p′, q), d2(t, p) is a convex function of p. Since q be-
longs to the interior of conv(T ), one can select a point
p ∈ γ(p′, q) ∩ conv(T ) which still dominates q and is
visible from q (i.e., [p, q] ⊆ P ). Denote by q′ the first
intersection of the boundary of conv(T ) with the ray
with origin p which passes via the point q. By the
definition of q′, we infer that q ∈ [p, q′] = γ(p, q′).
Pick any point t ∈ T. By second part of Lemma
1 of [15], d2(t, q) < max{d2(t, q′), d2(t, p)}. Since
d2(t, p) ≤ d2(t, q) by the choice of p, we obtain that
d2(t, q) < d2(t, q′). Since this inequality holds for all
points of T , q and p both dominate the boundary
point q′, a contradiction with q′ ∈ Pd2(T ).

G. Toussaint [18] presented an O(m+n log m)-time
algorithm for constructing the geodesic convex hull of
an n-point set T of a simple polygon P with m sides.
Together with Proposition 1 this shows that Pd2(T )
can be constructed within the same time bounds.

3 Simple rectilinear polygons

In this section, P is a simple rectilinear polygon (i.e.,
a simple polygon having all edges axis–parallel ) with
m edges endowed with the geodesic d1-metric.. A rec-
tilinear path is a polygonal chain consisting of axis–
parallel segments lying inside P . The length of a rec-
tilinear path in the d1-metric equals the sum of the
lengths of its constituent segments. For two points
x, y ∈ P, the geodesic d1-distance d1(x, y) is the length
of the minimum length rectilinear path (i.e., rectilin-
ear geodesic) connecting x and y. An axis–parallel
segment c is a cut segment of P if it connects two
edges of P and lies entirely in P . One basic property
of resulting metric space (P, d1) is that its axis-parallel
cuts and the two subpolygons defined by such cuts are
convex and gated [4]. A subset M of a metric space
(X, d) is called gated [19] provided every point v ∈ X
admits a gate in M , i.e. a point g(v) ∈ M such that
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Figure 2: Example of Pd1(T )

g(v) ∈ I(v, u) for all u ∈ M .

3.1 Characterization

We extend the characterization of [2] to Pareto en-
velopes Pd1(T ) in rectilinear polygons:

Proposition 2 Pd1(T ) = ∩n
i=1(∪n

j=1I(ti, tj)).

Proof. One direction of the proof is obvious: if p
is not Pareto, then p /∈ ∪n

j=1I(ti, tj). To prove the
converse, let p ∈ Pd1(T ) but p /∈ ∪n

j=1I(ti, tj) for some
ti. Let cv = [q′, q′′] and ch = [p′, p′′] be the maximal
vertical and horizontal cuts which pass through the
point p. Denote by P1, P2, P3 and P4 the subpolygons
of P defined by these cuts. Let P1∩P3 = P2∩P4 = {p}
and ti ∈ P1. Obviously, P1, . . . , P4 are gated. Note
that p is the gate in P1 of any point of P3. As p /∈
∪n

j=1I(ti, tj), we conclude that P3∩T = ∅. Set Pj,k :=
Pj ∪ Pk, where j, k ∈ {1, 2, 3, 4} and j 6= k. Note that
the four subpolygons Pj,j+1(modj) are gated sets of P
as intersection of gated sets. We distinguish two cases:
(i) p is the gate of ti in one of the cuts ch or cv, say
the first, and (ii) the gates q and z of ti in cv and ch

are different from p.
First, consider the case (i). Since p is the gate of ti

in ch, obviously it is also the gate of ti in P3,4. From
the choice of p and ti we conclude that P3,4 ∩ T = ∅.
Let g1, . . . , gn be the gates of t1, . . . , tn of T in cv.
First, suppose that these gates are all different from p.
Then all g1, . . . , gn belong to the segment [q′, p] ⊂ cv

which separates P1 and P2. Let gk be the closest to p
such gate. Then gk ∈ I(p, gj) and, since gj ∈ I(p, tj),
we infer that gk ∈ ∩n

j=1I(p, tj), thus gk dominates p,
contradiction that p is Pareto. Now assume that p is
the gate of some point tj 6= ti in cv. If tj ∈ P2, then p
is the gate of tj in P1,4, contrary to p /∈ I(ti, tj). Thus
tj ∈ P1. Let u and w be the gates of ti and tj in cv and
ch. Pick some rectilinear geodesics γ(ti, u), γ(tj , w),
and γ(ti, tj) between the pairs ti, u; tj , w, and ti, tj ,
respectively. Since p /∈ I(ti, tj), γ(ti, tj) cannot share
common points with both segments [u, p] and [p, w].
Let γ(ti, tj)∩ [u, p] = ∅. Let u′ be a closest to u point
of γ(ti, u) ∩ γ(ti, tj). Necessarily u′ 6= u. Let w′ be
a closest to w point of γ(tj , w) ∩ γ(ti, tj). Since P is
a simple polygon, the region of the plane bounded
by [u, p], [p, w], the part of γ(ti, u) between u, u′, the

part of γ(ti, tj) between u′, w′, and the part of γ(tj , w)
between w′, w, is contained in P. Let [u′′, u] be the
last link in the subpath of γ(ti, u) between u′ and u.
Then for some δ > 0, the segment [v′, v′′] belongs
to P, where v′ ∈ [u′′, u], v′′ ∈ [p, w] and d(u, v′) =
d(p, v′′) = δ. This contradicts that p is the gate of ti
in ch.

Now, consider case (ii). Let u be the furthest from
ti point of I(ti, q)∩ I(ti, z). Pick rectilinear geodesics
γ(u, q) and γ(u, z) between u, q and u, z. Let [q′, q]
and [z′, z] be the last links of these paths. Let q′′

be the point of ch with the same x-coordinate as q′.
Let z′′ be the point of cv with the same y-coordinate
as z′. Since P is a simple polygon, the region between
[q, p], [z, p] and γ(u, q), γ(u, z) belongs to P. Moreover,
since q, z ∈ I(p, ti) and I(p, ti) is convex, this region
necessarily belongs to I(p, ti). In particular, both rect-
angles R′ = [q′, q, p, q′′] and R′′ = [z′, z, p, z′′] belong
to I(p, ti). As we already stated, all points of T are
outside P3. Let gv be the closest to p gate in cv of
a point of T ∩ P2, while gh be the closest to p gate
in ch of a point of T ∩ P4. Since p /∈ ∪n

j=1I(ti, tj),
we conclude that gv and gh are different from p. Let
0 < δ < min{d(p, gv), d(p, gh), d(z′, z), d(q′, q)}. Con-
sider a point p′ ∈ R′ ∩ R′′ whose coordinates differ
by δ from those of p. Since p′ ∈ I(p, ti), we obtain
that d(p′, ti) = d(p, ti) − 2δ. For any other tj we
have d(p′, tj) ≤ d(p, tj). This contradicts that p is
Pareto. �

A subset S of P is ortho-convex if the intersection
of S with any axis–parallel cut of P is connected.

Lemma 2 Pd1(T ) is a closed ortho-convex set of P .

3.2 The algorithm

Now, we describe the algorithm for constructing the
Pareto envelope Pd1(T ) for a set T of n points in
a simple rectilinear polygon P with m vertices. In
the sequel, we will refer to points of T as terminals.
The algorithm uses Chazelle’s algorithm for comput-
ing all vertex-edge visible pairs of a simple polygon
[3] and the optimal point-location methods [8, 12].
Using Chazelle’s algorithm, we derive a decomposi-
tion of the polygon P into rectangles, employing only
horizontal cuts which pass through the vertices of P.
Using the optimal point-location methods [8, 12] we
compute in O(n log m) total time which rectangles of
the decomposition contain the terminals (notice that
the induced subdivision is monotone, hence the point-
location structure can be built in linear time). At the
next step, we sort by y all terminals from each rect-
angle. With these sorted lists, we refine the initial
subdivision by dividing each rectangle containing ter-
minals with the horizontal cuts passing via terminals.
The dual graph of this decomposition D is a tree T :
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the nodes of a tree are the rectangles of D, and two
nodes in T are adjacent iff the corresponding rectan-
gles are bounded by the common cut. We suppose
that T is rooted at some rectangle. Any cut c of our
subdivision divides the polygon P into two subpoly-
gons P ′

c and P ′′
c which correspond to two subtrees T ′

c

and T ′′
c of T . It can be easily shown that if P ′′

c ∩T = ∅
(in this case we say that P ′′

c is T -empty), then Pd1(T )
is contained in P ′

c ∪ c (any point of P ′′
c is dominated

by its gate in c). By proceeding the tree T , in lin-
ear time we can remove all T -empty subpolygons and
their corresponding subtrees. We will denote the re-
sulting polygon, subdivision, and tree also by P,D,
and T . The resulting decomposition D and its tree T
can be constructed in time O(m + n(log n + log m)).
If all terminals are vertices of P, then we avoid the
application of point-location methods and ranking of
terminals, requiring only O(n + m) time.

Given a non-root rectangle R, we denote by e′R and
e′′R the horizontal sides of R, so that e′R separates R
from to the root of T . The set of gates of all termi-
nals in R can be partitioned into the subset G′

R of
gates located on e′R and the subset G′′

R of gates lo-
cated on e′′R. Let g′l(R), g′r(R) be the leftmost and the
rightmost points from G′

R and let g′′l (R), g′′r (R) be the
leftmost and the rightmost points from G′′

R. In the full
version, we show how to compute the four extremal
gates g′l(R), g′r(R) g′′l (R) and g′′r (R) for all rectangles
R ∈ D in total linear time by using an upward and a
downward traversal of T .

For each rectangle R ∈ D, given the quadruplet of
gates QR = {g′l(R), g′r(R), g′′l (R), g′′r (R)}, at the next
step we compute the Pareto envelope Pd1(QR) of QR.
It consists of a box BR having its horizontal sides on
the sides of R and two horizontal segments which are
incident either to two points of the quadruplet lying
on the same horizontal side of R or to two opposite
points lying on different horizontal sides of R (one or
both these segments can be degenerated). In general,
these segments do not necessarily belong to the final
Pareto envelope Pd1(T ). On the other hand, as we will
show below, BR minus its horizontal sides is exactly
the set Pd1(T )∩R0, where R0 := R\(e′R∪e′′R) (clearly,
the horizontal sides of BR belong to Pd1(T ) as well
because Pd1(T ) is closed). Now, if we consider any
horizontal cut c, then we show that Pd1(T ) ∩ c is the
smallest segment sc ⊆ c spanned by the terminals
and/or the horizontal sides of all boxes BR located
on c. Clearly, having at hand the four gates of each
rectangle, the sets BR and sc can be determined in
O(n + m) time. To conclude, it remains to prove the
correctness of two last steps of the algorithm. This
follows from the following two lemmata whose proof
is given in the full version.

Lemma 3 Pd1(T ) ∩R0 = BR ∩R0.

Lemma 4 Pd1(T ) ∩ c = sc.

g′
l
(R)

R

g′′
l

(R) g′′
r (R) g′′

l
(R) g′′

r (R) g′′
l

(R) g′′
r (R)

g′
l
(R) g′

r(R) g′
l
(R) g′

r(R) g′
r(R)

R R

Figure 3: Pd1(QR)

Summarizing the results of this section, we obtain
our main result:

Theorem 5 The Pareto envelope of n terminals lo-
cated in a simple rectilinear polygon P with m edges
can be constructed in time O(n + m(log n + log m))
(O(n + m) if all terminals are vertices of P ).
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Shortest Inspection-Path Queries in Simple Polygons

Christian Knauer∗ Günter Rote∗ Lena Schlipf∗

Abstract

We want to preprocess a simple n-vertex polygon P
to quickly determine the shortest path p from a fixed
source point s ∈ P to view a set Q ⊆ P of query
points (i.e., such that each point q ∈ Q is visible from
some point on the path p). We call such queries short-
est inspection-path queries. For |Q| 6 2 we describe
data structures that answer such queries in logarith-
mic time. The structures have linear (for |Q| = 1)
respectively quadratic (for |Q| = 2) size and prepro-
cessing time.

1 Introduction

Many variations of the problem of computing short-
est paths in simple polygons have been studied in the
past, c.f. [1]. One instance of the problem is to find
the shortest path from a given fixed source point s
in a simple polygon P with n vertices to view a set
Q ⊆ P of query points. Our goal is to preprocess the
input (P, s) to answer queries of this type: Given a
set Q ⊆ P of query points, find the shortest distance
one needs to travel in P from s to see all points in Q.
For |Q| = 1 the query can be answered in O(n) time
without preprocessing [6], and in O(log n) time with
O(n2) preprocessing time and space [7]. We improve
and simplify the latter result and describe a solution
with linear preprocessing time and space that achieves
O(log n) query time. For |Q| = 2 we describe a solu-
tion with quadratic preprocessing time and space that
also achieves logarithmic query time. The results are
summarized in the following

Theorem 1 Let P be a simple polygon with n ver-
tices and let s ∈ P be a fixed point. We can preprocess
(P, s)

• in O(n) time into a data structure of O(n) size
that can answer shortest inspection-path queries
for Q ⊆ P with |Q| = 1 in O(log n) time, and

• in O(n2) time into a data structure of O(n2) size
that can answer shortest inspection-path queries
for Q ⊆ P with |Q| = 2 in O(log n) time.

∗Institut für Informatik, Freie Universität Berlin,
Takustraße 9, D–14195 Berlin, Germany. E-mail:
{knauer,rote,schlipf}@inf.fu-berlin.de

Preliminaries. The visibility polygon of a point q ∈
P will be denoted by V (q), the shortest path in P
between two points x, y ∈ P by p(x, y) and the short-
est path tree from s in P by Ts. For a shortest path
p = p(x, y) we denote by x̂ (resp. ŷ) the first ver-
tex of P on p after x (resp. the last vertex of P on
p before y). If we remove V (q) from P , the polygon
splits into disconnected regions that we call invisible
regions. Each such region has exactly one edge in
common with V (q). By Ps(q) we denote the region
which contains s. The common edge w(q) between
V (q) and Ps(q) will be called the window of q. Let a
and b be the endpoints of w(q), and r be the last com-
mon vertex between the two paths p(s, a) and p(s, b)
(i.e., the lowest common ancestor LCATs

(a, b) of a
and b in Ts), cf. Fig. 1. The paths p(r, a) and p(r, b)
together with the segment w(q) form the funnel of q
which will be denoted by F (q), cf. Fig. 2; the vertex
r is called the root of the funnel, the segment w(q)
is called the base of the funnel. Note that the paths
p(r, a) and p(r, b) are outward convex. In Section 3
we require a generalization of the notion of a funnel
which was introduced in [3]: The hourglass between
two line segments l1, l2 ⊆ P is the boundary of the
union of all shortest paths p(x, y) for x ∈ l1, y ∈ l2 ;
it will be denoted by H(l1, l2). For two paths p, q we
denote the concatenation of p and q by p + q.

In Section 2 we first give a structural characteriza-
tion of the solution that forms the basis of our ap-
proach and then prove the case |Q| = 1 of Theorem 1.
We consider the case |Q| = 2 in Section 3 and pro-
vide some conclusions in Section 4. Due to space con-
straints we omit most of the technical details from
this abstract; they can be found in [8, 10].

2 The data structure for one query point

If Q = {q} we have to find a point c ∈ P visible
from the query point q ∈ P that has the shortest dis-
tance from s. If q is invisible from s, then s lies in
an invisible region (if q is visible from s, then clearly
c = s). In this case it is easy to see that the point c
lies on the window w(q), in particular c is the point
on w(q) that has the shortest distance to s, cf. Fig. 1.
A simple characterization of c was given in [7]: Let
a = v0, v1, . . . , r = vm, . . . , vk, vk+1 = b denote the
vertices of the funnel from a to b. F (q) can be decom-
posed into triangles by extending the edges of F (q)
until they intersect w(q). Let xi denote the intersec-
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s

b

c

q

V (q)

ar

Figure 1: The window w(q) = ab separates Ps(q) and
V (q). The point with shortest distance to s that is
visible from q is c. The drawing shows p(s, a), p(s, b)
and p(s, c).

tion point of the extension of the edge vivi+1 with
w(q) (hence, x0 = a and xk = b). The shortest path
from s to points on the segment xixi+1 passes through
vi as the last vertex of P . Denote the angles between
the extension edges and the window by θ0, θ1, . . . , θk,
i.e., θi = ∠bxivi for 0 ≤ i < k and θk = π − ∠abvk.
The outward convexity of the paths p(r, a), p(r, b) im-

r = v3

a = v0 b = v6

v1

v2

v4

v5

x1 x2 x3

c

x4

θ2

Figure 2: The funnel F (q) over the window w(q) = ab.
The optimal point c is the foot of the perpendicular
from v2 to w(q).

plies that the sequence θ0, θ1, . . . , θk is increasing.
The optimal contact point c can now easily be char-
acterized in terms of the sequence θ0, θ1, . . . , θk, e.g.,
in the case where θi < π/2 and θi + 1 > π/2 for some
0 ≤ i ≤ k, c is the foot of the perpendicular from vi+1

to w(q). We can therefore search for c by looking at
the angles θi: If θi > π/2 then c lies left of xi, whereas
if θi < π/2 then c lies right of xi.

To answer a query q we will proceed in two steps:
First we compute the window w(q) of q along with the
funnel root r. Then we compute the optimal point c
on w(q).

After the preprocessing phase, the first step and the

second step can be done in O(log n) time.

2.1 Preprocessing phase

1. Store the vertices of P in an array A, sorted in
clockwise order along the boundary of P .

2. Compute a data structure D1 that supports
O(log n) time shortest path queries in P between
any pair of points u, t ∈ P [2].

3. Compute a data structure D2 that supports
O(log n) time ray-shooting queries to P [5].

4. Compute the shortest path tree Ts [3] and pre-
process it to support O(1) time LCA-queries [4].

The total preprocessing time and space is O(n).

2.2 Query phase

In the query phase we will check at first if q is visible
from s (in this case c = s). This can be done in
O(log n) time by shooting a ray from q in the direction
of s and testing if the boundary of P is hit before s.
In the following we can assume that q is not visible
from s.

Computing the funnel. To find w(q) = ab and r
in O(log n) time in the first step of the query phase
we proceed as follows: Since the window separating s
from V (q) is specified by the last vertex of P on the
shortest path from s to q (Fig. 1), we can find a = q̂
in O(log n) time via D1. To find b in O(log n) time
we shoot a ray from q in the direction of a. Next, we
compute vk = b̂ in O(log n) time via D1, and finally,
we get the funnel root r = LCATs(a, vk) in O(1) time.

Computing the optimal point on the window. To
find the optimal point c on w(q) in O(log n) time in
the second step of the query phase we proceed as fol-
lows:

• First we check if θ0 > π/2 or θk < π/2. In the
first case c = a, in the second case c = b, and in
either case we are finished.

• Next we look at the extensions of the edges em-
anating from the apex r = vm of the funnel. If
θm−1 = π/2, or θm = π/2, or θm−1 ≤ π/2 < θm,
c is the foot of the perpendicular from vm to w(q)
and we are finished.

• If θm−1 > π/2, then θi > π/2 for m ≤ i ≤ k,
since the angle sequence is increasing. In partic-
ular c is the foot of the perpendicular from some
vertex vi to w(q), where vi is on the left side
p(r, a) of the funnel F (q), i.e., 1 ≤ i < m. To
determine for which vertex vi the perpendicular
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to w(q) has to be drawn, we would like to per-
form a binary search on the sequence v0, . . . , vk.
However this sequence is not directly accessible,
so we use the array A instead, and perform a bi-
nary search on the interval [r, a] in A (if r = s and
s is not a vertex from P , we take the next vertex
ŝ after s on p(s, a) and search in the interval [ŝ, a]
instead). For a vertex u in this interval we com-
pute LCATs(u, a), which is one of the vertices
v0, . . . , vm on the left edge of the funnel, say vi.
By computing the angle θi we can decide if the
binary search has to continue to the left or to the
right of u. After O(log n) iterations the binary
search is narrowed down to an interval between
two successive vertices in A. This implies that
the point vi from which the perpendicular to c
has to be drawn is also determined.

Note that for several successive vertices uj in
[r, a] we can get the same vertex vi as a result
of computing LCATs(uj , a). But the number of
vertices in [r, a] is O(n) and so still after O(log n)
iteration the binary search is narrowed down to
an interval between two successive vertices in A.

• The case that θm−1 < π/2 is symmetric to the
previous case.

In the end, we can compute the length of the shortest
path in constant time from the information stored in
Ts. The shortest path itself can be output in time
linear in its length.

3 The data structure for two query points

There are several cases for the optimal path p if Q =
{q1, q2}. We discuss here only the most interesting
one: p first reaches w1 = w(q1) to see q1 where it is
reflected and then proceeds to w2 = w(q2) to see q2

(or vice versa), c.f. Fig. 4 for an example (we will also
restrict our attention here to the case where w1 and
w2 do not cross). For a full discussion of all cases, like
when w1 and w2 intersect, or when w1 lies ’behind’ w2

(meaning that w1 lies completely inside P \Ps(q2)), or
the easy cases when q1 or q2 are already visible from
s, we refer to [10].

The basic idea behind computing p is to (concep-
tually) reflect the polygon P1 = Ps(q1) at the window
w1. The resulting polygon P ′

1 is then ’glued’ to P1

along w1 (and the polygon P \ P1 is discarded) to
form a (possibly self-overlapping) polygon P ∗

1 . We
then compute the shortest path p∗ in P ∗

1 from s to
see q′2, the reflection of q2 at w1.

To compute (the length of) p∗ during a query, we
(implicitly) determine the funnel F ∗ of q′2 in P ∗

1 and
then compute the optimal point on the funnel base w′

2

by binary search on its boundaries as in the previous
section. We get F ∗ by combining the funnel F1 =

F (q1) and the hourglass H ′
12 = H(w1, w

′
2) using the

technique of [2] (which is essentially a binary search).
(The boundaries of) F1 and H ′

12 (and thus of F ∗)
will be represented implicitly as paths in precomputed
shortest-path trees.

Note that the reflection at w1 is not performed ex-
plicitly, but ’on demand’.

3.1 Preprocessing phase

1. Compute A, D1, D2, and Ts as in Section 3.1.

2. For each vertex v of P compute the shortest path
tree Tv and preprocess it to support O(1) time
LCA-queries.

The total preprocessing time and space is O(n2).

3.2 Query phase

As in Section 2.2 a query will be answered in two
steps: First we compute the funnel F ∗ of q′2 in P ∗

1

(which represents the shortest paths in P from s to
the points of w2 which are reflected on w1). Then we
compute the optimal point c on w′

2, the base of the
funnel F ∗.

Computing the funnel. As in Section 2.2 we first use
D1 and Ts to compute in O(log n) time the windows
w1 = a1b1 and w2 = a2b2, and the root r of the fun-
nel F1. The hourglass H12 (which is the ’unreflected’
version of H ′

12) consists of the segments w1 and w2

together with the two paths p(a1, a2) and p(b1, b2)
(which are mirrored at the line through w1).

We then compute F ∗ by combining the funnel F1

and the hourglass H ′
12 using the technique of [2]. To

this end we need to construct the four common tan-
gents t1, . . . , t4 that touch one side from F1 or H ′

12.
Since we cannot afford to reflect P1 explicitly at w1

during a query we compute F ∗ as the combination
of F1 with H12 instead. To this end the ’tangents’
t1, . . . , t4 have to be ’folded’ at w1, cf. Fig 3. Each
tangent can be found in O(log n) time by perform-
ing a binary search on the vertices of p(r, a1), p(r, b1),
p(a1, a2) and p(b1, b2) [9]. These vertices are not di-
rectly accessible but given only implicitly via the trees
Tr̂, Tâ1 , and Tb̂1

(we can compute r̂, â1 and b̂1 using
D1 in O(log n) time). Therefore we have to perform
the binary search on the array A instead (as in the
previous section).

In the example depicted in Fig. 4 the sides of F ∗ are
p(r, a2)′ = p(r, m1)+m1m

∗
2+p(m2, a2) and p(r, b2)′ =

p(r, m3)+m3m
∗
4+p(m4, b2) where m1 is the last point

on p(r, a1) which belongs also to a side of F ∗ and m2

is the first point on p(a1, a2) which belongs also to
a side of F ∗. The same holds for m3 and m4. The
points m1, m2, m3 and m4 are the points on which
F1 and H12 are connected, so they can be obtained in
the same way as in [2].
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q1

a2

b2

q2

r = r∗
m1

m2

b1

a1

m′2

Figure 3: To obtain m′
2 we reflect m2 on w1. We

construct the line l1 between m′
2 and m1 and reflect

l1 on w1. Let m1m
∗
2 be the line segment between m1

and m2 which is folded on w1. If l1 is tangent to
p(r, a1) and the reflection of l1 is tangent to p(a1, a2),
m1m

∗
2 is the tangent to p(r, a1) and p(a1, a2).

q1

a2

b2

q2

r = r∗ b′2

a′2

c

m1

m4

c′

m3

m2 = d

b1

a1

Figure 4: This drawing shows F ∗ and the optimal
point c as well as H ′

12 and the ’unfolded’ version of
F ∗.

Computing the optimal point on the window. We
compute the optimal point c on w′

2 in F ∗ in almost the
same way as in Section 2.2. Additionally the following
issues have to be considered:

• We have to reflect w2 at w1, the reflection w′
2 is

obtained in O(1) time.

• We have to reflect the extension of an edge vivi+1

in O(1) time on the window w1 for vivi+1 ⊆
p(m2, a2) or vivi+1 ⊆ p(m4, b2) if we want to
compute the angle θi.

• If we want to perform a binary search on p(r, a2)′

we first have to look at the angle between w′
2 and

the extension edges incident to m2. Therefore we
have to reflect m2 on w1. Via this angle we can
decide if we have to perform a binary search on
p(r, m1) or p(m2, a2). Note that, if we perform

a binary search on p(m2, a2), i.e., on [m2, a2], we
compute LCATm2

(u, v1) for a vertex u ∈ [m2, a2].

• If we want to perform a binary search on p(r, b2)′

we proceed analogously.

In the end, we can compute the length of the short-
est path in constant time from the information stored
in Ts. E.g., if c is the foot of the perpendicular from
d ∈ p(m2, a2), the length of the shortest path is the
sum of the lengths of p(s,m1), m1m

∗
2, p(m2, d) and

dc. The shortest path itself can be output in time
linear in its length.

4 Conclusion

It remains open if the problem can still be solved ef-
ficiently for polygons with holes. It also remains un-
clear if the algorithm can be generalized to more than
two query points.
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A Search for Medial Axes in Straight Skeletons

Kira Vyatkina∗

Abstract

For a simple polygon P , let Sc(P ) denote the sub-
graph of the straight skeleton for P traced out by the
convex vertices of the linear wavefront. We show that
Sc(P ) decomposes into a set of “pruned” medial axes
for certain convex polygons closely related to P , and
give an optimal algorithm for computation of those
polygons.

1 Introduction

The straight skeleton for a simple polygon was first
introduced by Aichholzer et al. [1], and has promptly
found a number of applications in such areas as sur-
face reconstruction [3], computational origami [6], and
many others. Besides, it has served as a basis for an-
other type of skeleton called linear axis [8]. Its ad-
vantage over the only previously known skeleton –
the medial axis – resides in the fact that all its edges
are straight line segments, while the medial axis for
a non-convex polygon necessarily contains parabolic
edges as well.

Both the straight skeleton and the medial axis can
be defined through wavefront propagation. Initially,
the wavefront coincides with the given polygon. To
obtain the straight skeleton, we let the wavefront
edges move inside the polygon at equal speed, thereby
remaining parallel to themselves, and keep track of
the movement of all the vertices. The underlying pro-
cess is referred to as the linear wavefront propaga-
tion. To obtain the medial axis, we apply a uniform
wavefront propagation, during which all the wavefront
points move inside at constant speed. Thus, at time
t > 0, the uniform wavefront consists of the interior
points of the polygon at the distance t from its bound-
ary. In the process, the medial axis is traced out by
the convex vertices of the wavefront.

However, the straight skeleton is computationally
more expensive than the medial axis: the fastest
known deterministic algorithm for its construction re-
quires O(n1+ε + n8/11+εr9/11+ε) time and space [7],
where r is the number of reflex vertices of the poly-
gon, and ε is an arbitrarily small positive constant.
The best existing randomized algorithm computes the
straight skeleton for a non-degenerate simple polygon
in O(n log2 n + r

√
r log r) expected time; for a de-

∗Department of Mathematics and Mechanics, Saint Peters-
burg State University, kira@meta.math.spbu.ru

generate one, the expected time bound amounts to
O(n log2 n + r17/11+ε) [4]. But the medial axis for a
simple polygon can be obtained in linear time [5]. It
is a common belief that the straight skeleton can be
computed in a more efficient way than it is possible
nowadays. Yet development of such methods is likely
to require investigation of additional properties of the
straight skeleton. In this work, we take one step fur-
ther in that direction.

P

S(P)

Q

MS(Q)

b)

P

S(P)

a)

Figure 1: a) A simple polygon P and its straight skele-
ton S(P ). b) The subtree MS(Q) of S(P ) is a pruned
medial axis for the convex polygon Q.

Our main observation is that during the linear
wavefront propagation, the pieces of the wavefront
locally interact exactly in the same way as if they
originated from the boundary of a (bounded or un-
bounded) convex polygon, the sides of which either
coincide or overlap with certain sides of the given
polygon P . Since for a convex polygon, the two kinds
of propagation proceed identically, this implies that
some pieces of the medial axes for such polygons are
embedded in the straight skeleton S(P ) for the poly-
gon P . We formalize our ideas by indicating those
pieces in S(P ), providing an efficient algorithm for
computation of the corresponding convex polygons,
and pointing out that for each such polygon Q, the
piece MS(Q) of its medial axis M(Q) present in S(P )
can be obtained by appropriately trimming the edges
of M(Q) incident to the vertices of Q not being those
of P , and the unbounded ones, if any exist (Fig. 1a,b).
Therefore, we say that MS(Q) is a pruned medial axis
for Q.
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2 Event taxonomy

Let P be a simple polygon with n vertices, r of those
being reflex; assume that r ≥ 1. Consider the pro-
cess of constructing the straight skeleton S(P ) for P
through linear wavefront propagation. During the
propagation, the structure of the wavefront changes in
a discrete manner at certain events; thereby, some old
vertices vanish, and new ones appear in the wavefront.
The basic event taxonomy [1] distinguishes between
edge events, at which a wavefront edge shrinks to zero,
and split events that occur when a reflex vertex col-
lides with an edge, causing a split of a connected wave-
front component into two. More elaborated classifi-
cations also recognize vertex events, which correspond
to collisions between two or more reflex vertices, with
nothing else being at the same place. Vertex events
may lead to appearance of new reflex vertices in the
wavefront, and are often treated as a special degener-
ate case [4, 7]. We shall first assume that no vertex
events occur during construction of S(P ), and give
remarks on handling degeneracies at the end of our
exposition. In the absence of vertex events, the trace
of the reflex vertices is given by the union of the edges
of S(P ) incident to the reflex vertices of P . Also, un-
der this assumption, any node of S(P ) of degree d ≥ 4
is produced by (d − 2) edge and/or split events that
simultaneously occur at the same location. Those
events can be handled one at a time, with any two
consecutive ones being separated by a zero time in-
terval. Therefore, any node of S(P ) having degree
d ≥ 4 can be interpreted as (d − 2) coinciding nodes
of degree three connected by (d − 3) edges of zero
length in such a way that the subgraph induced by
those nodes is a tree. Consequently, we may further
suppose that any inner node of S(P ) has degree three.

3 Decomposition of the straight skeleton

Let us remove from S(P ) all the edges incident to the
reflex vertices of P . The remaining subgraph Sc(P ) of
S(P ) has been traced out by the convex vertices of the
linear wavefront. Next, split Sc(P ) at the inner nodes
that were incident to the deleted edges (Fig. 2a,b). As
a result, we obtain a decomposition of Sc(P ) into k ≤
r +1 connected components, which we denote by M1,
M2, . . . , Mk. We claim that for any i, 1 ≤ i ≤ k, Mi is
a part of the medial axis for a convex polygon. Strictly
speaking, there are infinitely many such polygons; of
course, we would like to retrieve one with the least
computational effort. Below we shall formalize our
intent.

For any edge e of P , we define its corresponding
cell C(e) to be the face of the partition of P induced
by S(P ), which is adjacent to e. Equivalently, C(e)
is the region swept in the propagation by the portion
of the linear wavefront originating from e.

Consider any Mi. Since S(P ) is a tree, Mi is a tree
as well. The embedding of Mi in the plane induces a
cyclic order of its leaves. For any consecutive pair of
leaves, when walking from one of them to the other
along the edges of Mi, we follow the boundary of some
cell. Moreover, in can be easily verified that for any
two such pairs of leaves, the corresponding cells must
be different. These cells are also cyclically ordered, in
compliance with the ordering of the leaves.

Now retrieve all the edges of P , such that the
boundaries of their cells contribute to Mi; denote the
resulting set by Ei (Fig. 2c). From the above dis-
cussion, it follows that |Ei| equals the number of the
leaves in Mi. Let the edges in Ei inherit the cyclic
order of the cells. For any two consecutive edges
e, e′ ∈ Ei, their cells C(e) and C(e′) share an edge
of Mi incident to a leaf. If the leaf corresponds to a
convex vertex of P , then e and e′ share this vertex.
Otherwise, the leaf corresponds to an inner node u of
S(P ) adjacent to a reflex vertex of P . In this case, e
and e′ can be (but not necessarily are) adjacent only
if Ei consists solely of e and e′. To see this, suppose e
and e′ are adjacent. Then C(e) and C(e′) must share
an edge of S(P ) incident to a vertex of P . On the
other side, any two cells can share at most one edge
of S(P ). Therefore, the edge of Mi shared by C(e)
and C(e′) must have one endpoint at u, and the other
– at a convex vertex of P . Consequently, Mi consists
of a single edge, which is incident to two cells C(e)
and C(e′), and e and e′ are the only two edges in Ei.

Thus, we conclude that the edges from Ei together
compose one or a few disjoint convex chains cut out
of the boundary of P . Let Ci = {ci

1, . . . , c
i
mi
} denote

the set of those chains; observe that mi equals the
number of the leaves of Mi that correspond to the
inner nodes of S(P ). Denote by f(ci

j) and l(ci
j) the

first and the last edge of the chain ci
j , respectively;

assume that ci
j is traversed from f(ci

j) to l(ci
j) when

walking counterclockwise along the boundary of P ,
where 1 ≤ j ≤ mi. If ci

j consists of a single edge, then
f(ci

j)=l(ci
j). Let vf (ci

j) and vl(ci
j) denote the first

and the last vertex of ci
j , respectively. Without loss

of generality, suppose that the order of the chains in
Ci corresponds to the one, in which they are traversed
when walking counterclockwise along the boundary
of P . To unify the notation, let ci

mi+1 = ci
1, and let

ci
0 = ci

mi
.

Lemma 1 For any j, 1 ≤ j ≤ mi, at least one of
vl(ci

j) and vf (ci
j+1) is reflex.

Let us take any chain ci
j and prolong l(ci

j) to in-
finity, thereby eliminating vl(ci

j). Denote the result-
ing chain by −→c i

j , and its last (unbounded) edge – by
−→
l (ci

j). Similarly, let ←−c i
j denote the chain obtained

from ci
j by appropriately prolonging f(ci

j) to infinity,
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P

S(P)

P

P

M1

e2

e1

e5

e4

e3

p14l=p11f
vf(c11)

vl(c41)

p12l=p13f

c)

a)

b)

Figure 2: a) A simple polygon P and its straight skele-
ton S(P ). b) Decomposition of the subgraph Sc(P )
of S(P ) traced out by the convex vertices of the linear
wavefront. The edges of S(P ) traced out by the re-
flex vertices are shown dashed. c) For the subtree M1

of S(P ), E1 = {e1, e2, e3, e4, e5}; C1 = {c1
1, c

1
2, c

1
3, c

1
4},

where the chain c1
1 is formed of e1 and e2, and each of

c1
2, c1

3, and c1
4 consists of a single edge – of e3, e4, and

e5, respectively. By prolonging the edges as shown in
dotted lines, we obtain the chains ←−c 1

1,
−→c 1

2,
←−c 1

3, and
−→c 1

4, respectively; pl
14 = pf

11 =
−→
l (c1

4) ∩
←−
f (c1

1), and
pl
12 = pf

13 =
−→
l (c1

2) ∩
←−
f (c1

3).

and let
←−
f (ci

j) denote its first (unbounded) edge.

Lemma 2 For any j, 1 ≤ j ≤ mi, if −→c i
j ∩
←−c i

j+1 6= ∅,
then −→c i

j and ←−c i
j+1 intersect at a point p =

−→
l (ci

j) ∩←−
f (ci

j+1).

For any j, 1 ≤ j ≤ mi, if
−→
l (ci

j−1) and
←−
f (ci

j)

intersect, let pf
ij =

−→
l (ci

j−1) ∩
←−
f (ci

j); otherwise, let

pf
ij be an artificial point at infinity lying on

←−
f (ci

j).

Similarly, if
−→
l (ci

j) and
←−
f (ci

j+1) intersect, let pl
ij =

−→
l (ci

j) ∩
←−
f (ci

j+1); otherwise, let pl
ij be an artificial

point at infinity lying on
−→
l (ci

j) (see Fig. 2c). Note
that pl

i,j−1 and pf
ij either both are finite and coincide,

or both are infinite.

Lemma 3 Let ci
j be a chain consisting of a single

edge. Then pf
ij lies on the same side of pl

ij as vf (ci
j).

For each j, construct a chain ci
j from ci

j by adjusting
the first and the last edge of the latter, so that they
will terminate at pf

ij and pl
ij , respectively. Correctness

of the construction is assured by Lemmas 2 and 3. Let
ci = ∪jc

i
j .

Lemma 4 ci bounds a convex region in the plane.

To make it more precise, one of the following three
possibilities occurs:

- ci is a closed convex chain, which bounds a convex
polygon (Fig. 3a);

- ci is an open convex chain, the first and the last
edges of which are infinite, and it bounds an infinite
convex region (Fig. 3b);

- ci is formed of two parallel lines, which bound an
infinite strip (Fig. 3c).

Let Qi denote the convex region bounded by the
chain ci. We shall refer to Qi as to a convex polygon,
either bounded or unbounded. Let M(Qi) denote the
medial axis for Qi.

Lemma 5 Mi is part of M(Qi), and can be obtained
from the latter by appropriately trimming its edges
incident to the vertices of Qi not being those of P ,
and the unbounded ones, if any exist.

It is easy to see that each Mi is a maximal fragment
of a medial axis, in a sense that it cannot be extended
along the edges of S(P ) while remaining a part of the
medial axis for any polygon.

Given P and S(P ), and assuming that the represen-
tation of the latter provides information on the par-
tition of P induced by S(P ), it is straightforward to
decompose Sc(P ) into the subtrees M1, . . . , Mk, and
to retrieve the corresponding sets of chains C1, . . . ,
Ck. For any i, 1 ≤ i ≤ k, the convex polygon Qi can
then be constructed from Ci following the procedure
described above.

We summarize our results in the next Theorem.

Theorem 6 Let P be a simple polygon. The part
Sc(P ) of the straight skeleton S(P ) for P , traced out
by the convex vertices of the linear wavefront, can be
uniquely decomposed into a set of maximal fragments
of medial axes. Each of those fragments represents
a pruned medial axis for a certain convex polygon.
Both the decomposition and the corresponding set of
convex polygons can be computed from P and S(P )
in linear time.
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c)

a)

b)

P

Q3
M3

Q1

P

M1

Q2
P

M2

Figure 3: A simple polygon P and its straight skele-
ton S(P ) are depicted gray. The convex region Qi

bounded by ci (dashed) can be of one of the three
types: a) a convex polygon; b) an infinite convex re-
gion bounded by a chain, the first and the last edges of
which are infinite; c) an infinite strip bounded by two
parallel lines. For any Qi, the corresponding subtree
Mi of S(P ) is shown bold; parts of edges of M(Qi) not
belonging to Mi are shown dotted, where 1 ≤ i ≤ 3.

If vertex events do occur during the construction
of S(P ), the trace of the reflex vertices of the linear
wavefront represents a forest F of subtrees of S(P ). In
particular, all the reflex vertices of P are leaves of F .
Removal of F gives us a subgraph Sc(P ) of S(P ), the
edges of which has been traced out by the convex ver-
tices of the linear wavefront. Having split Sc(P ) at
the inner nodes, at which the reflex wavefront ver-
tices vanish, we obtain a decomposition of Sc(P ) into
several connected components M1, . . . , Mk. Follow-
ing essentially the same considerations as given above,
we can show any Mi to be a part of the medial axis
for a certain convex polygon, where 1 ≤ i ≤ k.

4 Conclusion

For a simple polygon P , we have demonstrated that
the subgraph Sc(P ) of its straight skeleton S(P ),
traced out by the convex vertices of the linear wave-
front, decomposes into a set of pruned medial axes
for certain convex polygons, which can be easily re-
constructed from P and S(P ) in linear time. More-
over, each element of the proposed decomposition is
a maximal fragment of a medial axis, in a sense that
it cannot be extended along the edges of S(P ) while
remaining a part of the medial axis for any polygon.

The concept of the straight skeleton was generalized
by Aichholzer and Aurenhammer to the case of planar
straight line graphs [2]. So, a natural generalization
of our results would be to extend them accordingly.
Another direction for future research is to attempt to
compute the straight skeleton as a union of the pruned
medial axes.
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On Computing Integral Minimum Link Paths in Simple Polygons

Wei Ding∗

Abstract

We consider the problem of finding the minimum link
path connecting two points in a simple polygon under
the restriction that the interior vertices of this path
have integral coordinates. We show that this prob-
lem is NP-complete even if the underlying polygon is
restricted to be monotone. On the positive side we
give a polynomial time 4-approximation algorithm.
The underlying model of computational complexity
is the bit model with constant cost per bit operation,
and not the usual real RAM with constant cost per
arithmetic or comparison operation on arbitrary real
numbers.

1 Introduction

Connecting two points s and t inside a simple poly-
gon P by polygonal path consisting of as few seg-
ments as possible was investigated in the context of
computational geometry already in the mid 1980’s by
researchers such as H. El Gindy, S. Suri, S.K. Ghosh,
J. Hershberger, and J. Snoeyink, see [2] for an ex-
tensive survey. They showed that such a “minimum
link path” could be constructed in time linear in n,
the number of vertices of the polygon P . About a
decade later S. Kahan and J. Snoeyink [4] pointed out
that this result was only true in the real RAM model,
and that this computational model was not really ap-
propriate for this type of problem: They exhibited
classes of example polygons with vertices drawn from
the N ×N integer grid, where the natural coordinate
representation of the minimum link path between two
points needed Ω(n2φ), φ = log N bits. Thus in the
bit model of computation any algorithm for explicitly
producing a minimum link path needs time and also
space at least Ω(n2φ).

Kahan and Snoeyink proposed to improve the com-
plexity by considering only paths whose interior ver-
tices are restricted to lie on some finite point set R(P ).
They considered two alternatives:

In the first they took R(P ) to be the vertices of the
arrangement of the

(
n
2

)
lines spanned by the n ver-

tices of P . They showed that this kind of restriction
increases the link-distance between two points s and
t at most by a factor of 2 over the unrestricted link-
distance ldP (s, t) between s and t. Moreover such a

∗Department of Computer Science, Saarland University,
wding@cs.uni-sb.de

restricted path could be found in O(n) time (which
is to mean with O(n) operations on integers repre-
sentable by O(φ) bits).

In the second alternative they took R(P ) to be the
integer grid points contained in P . They showed that
this restriction can increase the link-distance between
two points by a multiplicative factor of Θ(φ) over the
unrestricted link-distance ldP (s, t), but not by more.
Here it is assumed that the n vertices of P are drawn
from the N ×N integer grid. They also gave an algo-
rithm that produced such a grid-restricted link path
between points s and t consisting of O(ldP (s, t)φ) with
φ = log N segments in time O(n + ldP (s, d)φ).

In this note we consider further that second alter-
native, where the corners of the paths are restricted
to integer grid points in P . On the negative side we
show that the problem of computing the minimum-
link path with this restriction is NP-complete. This
holds even if P is monotone. On the positive side
we give for x-monotone polygons polynomial time 4-
approximation algorithms, one algorithm produces a
grid restricted path, the other computes a grid re-
stricted simple path, i.e. it has no self-intersections,
connecting s and t that has at most 4 times as many
segments than any such restricted path between s
and t.

2 Preliminaries and statement of results

Let P be a simple polygon in the plane with n ver-
tices, all from the N×N integer grid. For s, t ∈ P∩Z2

let link-path ΠP (s, t) denote the set of all polygonal
chains connecting s and t contained in P , let inte-
ger link-path i-ΠP (s, t) be all paths in ΠP (s, t) all
whose vertices lie on the integer grid, let simple in-
teger link-path si-ΠP (s, t) denote the set of simple
paths in i-ΠP (s, t). For path π ∈ ΠP (s, t) we de-
fine its link-length ll(π) to be the number of segments
forming π. For s, t ∈ P define their link-distance
ldP (s, t) as min{ll(π) |π ∈ ΠP (s, t)}, their integer
link-distance i-ldP (s, t) as min{ll(π) |π ∈ i-ΠP (s, t)},
and their integer simple link-distance si-ldP (s, t) as
min{ll(π) |π ∈ si-ΠP (s, t)}.

In the rest of the paper we sketch proofs of the
following results:

Theorem 1 The problem of determining whether
i-ldP (s, t) = k, given polygon P , integer k, and
s, t ∈ P is NP-complete. This holds true even if P
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is a monotone polygon. The same results hold also
for si-ldP (s, t).

Theorem 2 Given an x-monotone polygon P with
vertices from the N ×N integer grid and two points
s, t ∈ P ,

1. a path π ∈ i-ΠP (s, t) with ll(π) ≤ 4 · i-ldP (s, t)
can be found in time O(n2 · φ) measured in the
bit model of computation.

2. a path π ∈ si-ΠP (s, t) with ll(π) ≤ 4 · si-ldP (s, t)
can be found in time O(n4 · φ).

3 Integral minimum link integer path is NP-hard

The purpose of this section is to prove Theorem 1.
Clearly the problem at hand is in NP. To prove NP-
hardness we use a reduction from the well-known NP-
complete problem PARTITION.

Let M = {m0,m1, . . . ,mn−1} be an instance of
PARTITION, and S =

∑
m∈M m. The purpose of

the PARTITION problem is to decide, whether there
is a subset M ′ ⊂ M , so that

∑
m∈M ′ m = 1

2S.
We construct a polygon PM out of M and points

s, t ∈ PM , such that:

i-ldP (s, t) = 3n ⇔ ∃M ′ ⊂ M,
∑

m∈M ′

m =
1
2

∑
m∈M

m.

s
2

s
2

s
2

s
2

s
2

s
2

G0

GL 0

GR 0 ML0

MR0
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GR 1

C1

D1

M0
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MRn!1
MLn!1
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Dn!1

0

0

0

0

0

0

Figure 1: PM

PM is a polygon with 2n narrow gaps
G0,M0, G1,M1, . . . , Gn−1,Mn−1 from left to right,
as depicted in Figure 1. Ci, 0 ≤ i ≤ n, in the figure
is a horizontal line segment that contains S

2 + 1
integer points representing the number 0 to S

2 . Let
ci(v) denotes the point in Ci that represents the
value v. Di, 0 ≤ i ≤ n − 1, contains 2(S

2 + 1) integer
points on two horizontal line segments. Each value
v ∈ {0, 1, . . . , S

2 } finds two representations in Di,
do

i (v) and db
i (v) denote the two integer points of value

v on the top and bottom segments in Di. GLi is the
area between Ci and the gap Gi, GRi is the area
between Di and Gi, MLi is the area between Di and
the gap Mi, MRi is the area between Ci+1 and Mi.

The gaps are constructed with the following restric-
tions:

1. i-ldP (ci(v), do
i (v)) = 1; i-ldP (ci(v), do

i (u)) > 1,
for u 6= v.

2. i-ldP (ci(v), db
i (v)) = 1; i-ldP (ci(v), db

i (u)) > 1,
for u 6= v.

3. i-ldP (db
i (v), ci+1(v)) = 2; i-ldP (db

i (v), ci+1(u)) >
2, for u 6= v.

4. i-ldP (do
i (v), ci+1(v + mi)) = 2;

i-ldP (db
i (v), ci+1(u)) > 2, for u 6= v + mi.

5. GRi ∩MLi ∩ Z2 = Di ∩ Z2.

6. MRi ∩GLi+1 ∩ Z2 = Ci+1 ∩ Z2.

7. s = c0(0); t = cn(S
2 ).

Items 1 and 2 imply, from the integer point ci(v) the
two points do

i (v) and db
i (v) in Di are exclusively vis-

ible. 3 and 4 mean that from a value v in Di, either
v or v + mi is reached in Ci through two segments.
Restriction 5 and 6 show that in order to reach an
integer point in Ci+1 from an integer point in Ci with
3 segments, an integer link-path have to turn at an
integer point at Di.

The following holds for the PM satisfying these 6
restrictions: ∀v ∈ {

∑
0≤j≤i−1 sjmj}, sj ∈ {0, 1},

i-ldPM
(s, ci(v)) = 3i; ∀v 6∈ {

∑
0≤j≤i−1 sjmj}, sj ∈

{0, 1}, i-ldPM
(s, ci(v)) > 3i.

It follows that i-ldPM
(s, cn(v)) = 3n for v ∈

{
∑

0≤j≤n−1 sjmj}, which means, for all M ′ ⊂ M ,
i-ldPM

(s, cn(
∑

m∈M ′ m)) = 3n. In other words,
i-ldPM

(s, t) = 3n ⇔ ∃M ′ ⊂ M ,
∑

m∈M ′ m = S
2 .

In the following part we explain the geometry of
the PM . We call the part between Ci and Di a se-
lector, where an integer path through ci(v) performs
a selection between do

i (v) and db
i (v). We denote the

part between Di and Ci+1 an adder, an integer path
will reach ci+1(v + mi) from do

i (v) and reach ci+1(v)
from db

i (v).

C i

D i

G i

GLi

L

S S
S
2

S
2

S
2

1

1

S

o u

S
0

0

2 2

iGR

Figure 2: Selector

Figure 2 depicts a selector for space reason rotated
by 90o. The construction achieves, from a point ci(v),
the points do

i (v) and db
i (v) in Di are exclusively visi-

ble, which guarantees the restrictions 1,2. L is a line
that has distance S

2 from the component Di, none in-
teger points between L and Di is visible from some
integer point in Ci, which realizes the restriction 5.
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Figure 3: Adder

Figure 3 shows an adder of a number mi. The ge-
ometry of this adder guarantees that: From the point
db

i (v) the point ci+1(v) in Ci+1 is exclusively reach-
able with 2 segments. From the point do

i (v) the point
ci+1(v + mi) in Ci+1 is exclusively reachable with 2
segments, correspond to the restrictions 3,4. No inte-
ger points under the Ci+1 is visible from some integer
points in Di, which makes the restriction 6 true.

4 Approximation algorithms

Given an x-monotone polygon P with vertices from
the N ×N integer grid and two points s, t ∈ P ∩ Z2,
we compute a path π ∈ i-ΠP (s, t) with ll(π) ≤ 4 ·
i-ldP (s, t) in time O(n2 ·φ), and a path π′ ∈ si-ΠP (s, t)
with ll(π′) ≤ 4 · si-ldP (s, t) in time O(n4 · φ).

We call two areas A1 and A2 inside P integer con-
nective, if ∀p1 ∈ A1, ∃p2 ∈ A2 with p1p2 ⊂ P ;
∀p2 ∈ A2, ∃p1 ∈ A1 withp1p2 ⊂ P and there are a
p1 ∈ A1 ∩ Z2, a p2 ∈ A2 ∩ Z2.

T j

T i B ij

ij
I ij

o

u

U

q

pOij

Figure 4: 3-approximation of the minimum link inte-
ger path

An x-monotone polygon P of n vertices is bounded
by two x-monotone polylines upper chain and lower
chain. W.l.o.g, assume no vertices have the same
x-coordinate. P is partitioned into trapezoids
T1, . . . , Tn−1 from left to right, see Figure 4. W.l.o.g,
we suppose s is the left-most vertex of P and t is the
right-most vertex of P , let T0 = {s}, Tn = {t}. Two
trapezoids Ti and Tj are called integer visible, denoted
as IV(Ti, Tj), if there exist Ai ⊂ Ti and Aj ⊂ Tj , so
that Ai and Aj are integer connective.

How do you decide, whether two trapezoids Ti and
Tj , j > i are integer visible? We consider the parts of
the upper chain and the bottom chain between trape-
zoids Ti and Tj . Let Bij be the bottom convex hull
of the upper chain and Uij be the upper convex hull
of the bottom chain. If Bij and Uij intersect in more
than one segment, then Tj and Ti are not visible. Oth-
erwise we find the two inner tangent of Bij and Uij .
These two tangent lines form a wedge Oij in Ti and a
wedge Iij in Tj , these two wedges are connective. Fur-

thermore if both Oij and Iij contain integer points,
then Oij and Iij are integer connective, and Ti and
Tj are integer visible.

Corollary 3 IV(Ti, Tj) ⇔ ∀p ∈ Oij ∩ Z2 ∧ q ∈ Iij ∩
Z2, i-ldP (pq) ≤ 3.

Proof. For integer points p ∈ Oij and q ∈ Iij , π ∈
i-ΠP (p, q) is a path through p, o, u, q, where o, u are
a pair of inner tangent points of the convex hulls Bij

and Uij , see Figure 4. �

4.1 Computing an integer link-path

To compute an integer link-path in P between s, t ∈
P ∩Z2, we at first construct a visible graph GP , then
we do a breadth first search on GP .

GP is defined as GP = (V,E), with V =
{T0, T1, . . . , Tn}, E = {(Ti, Tj)|IV (Ti, Tj)}. GP can
be computed in time O(n2) ·φ. In n2 time we can find
wedges Oij and Iij for all pairs of trapezoids Ti, Tj ,
see [1], to check if Oij and Iij contain integer points
need time O(φ) according to [3].

Do a breadth first search on GP , starting from the
node T0, until the node tn is found. T0 is at the depth
0 in the breadth first search tree.

Lemma 4 tn+1 is found by a breadth first search in
the depth d, then i-ldP (s, t) ≥ d and d ≤ 4 · i-ldP (s, t).

Proof. There cannot be an integer link-path with
link-length less than d. If there exists such a path
π of length l < d, the vertices of this path are sequen-
tially from the trapezoids T0, Tp1, Tp2, . . . , Tp(l−1), Tn,
each neighbor of the trapezoids in this list are integer
visible to each other, then the breadth first search will
stop at the depth l instead of d.

Suppose T0, Tp1, Tp2, . . . , Tp(l−1), Tn is the path
form T0 to Tn in the breadth first search tree. Con-
nect each pair of successive trapezoids in the list
with an integer Link-path of link-length 3, see Corol-
lary 3. Call the path between Tpi and Tp(i+1) sub-
path SP (Tpi, Tp(i+1)). Connect sequentially these sub-
paths to form an integer link path from s to t, this
path is a path π with ll(π) ≤ 4 · i-ldP (s, t). �

I
O kl

T k

T j

ij

Figure 5: Non-simple path

Note that the path π need not be simple, as show
in Figure 5.
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4.2 Computing a simple integer link-path

Let’s study the visible graph GP . With breadth
first search on GP we get a list of trapezoids
(T0, Tp1, Tp2, . . . , Tp(d−1), Tn), an integer link-path
π ∈ i-ΠP is the connection of SP (Tpi, Tp(i+1))’s.
As we ask the integer link-path to be simple, a
question arises: does SP (Tp(i−1), Tpi) intersects with
SP (Tpi, Tp(i+1)) or other subpaths? We call two
edges (ti, tj) and (tl, tk) in GP coincident, denoted
as coin((ti, tj), (tl, tk))

• in case of i < j = l < k, see Figure 6 (A), if the
shaded area contains at least one integer point.

• in case of i < l < j < k, see Figure 6 (B), if the
shaded area to the left of segment at contains at
least one integer point. a is one of the tangent
point that forms Olk, t is an integer point lying
at the convex hull of integer points in Olk that
tangent to a.

(A) (B)

a

t
T j

OjkI ij

T l T j
Olk I ij

Figure 6: Simple path

Corollary 5 (ti, tj) and (tl, tk) are coincident, then
for a pair of integer points p ∈ Oij∩Z2 and q ∈ Ilk∩Z2,
there is a π ∈ si-ΠP , ll(π) ≤ 7.

Construct a coincidence graph KP = (Υ,Σ), with
Υ = {vi,j |(Ti, Tj) ∈ GP } ∪ (T0, T0) ∪ (Tn, Tn),
Σ = {(vi,j , vl,k)|coin((Ti, Tj), (Tl, Tk))}. KP is con-
structed in time O(n4 ·φ). There are n4 edges in KP ,
one decide an edge of case (A) through finding integer
points in the shaded area in O(φ) time, see [3]; in case
(B), one find the segment at in time O(φ) using the
idea from [3], and find integer points in the shaded
area in time O(φ).

A path L in KP with L =
(v0,0, vi(1),j(1), vi(2),j(2), . . . , vn,n) is a valid path,
if i(m) > j(m − 2),∀2 < m < n. The length
of a valid path L is the number of edges in L,
denoted as len(L). Let vp(KP ) denote the set of
all valid paths connecting v0,0 and vn,n in KP . Let
d = min{l|l = len(L), L ∈ vp(KP )}.

A invalid path has at some place i(m) ≤ j(m− 2),
if coin((Ti(m−2), Tj(m−2)), (Ti(m), Tj(m))) then we can
go directly from node vi(m−2),j(m−2) to vi(m),j(m); the
worse case is coin((Ti(m−2), Tj(m−2)), (Ti(m), Tj(m)))
does not hold, one cannot find a π ∈ si-ΠP according
to the L.

Lemma 6 si-ldP (s, t) ≥ d; we can find a π ∈ si-ΠP

with ll(π) ≤ 4 · si-ldP (s, t).

Proof. Assume there is an path π ∈ si-ΠP with
ll(π) = d′ < d. The vertices of π are sequentially
from the trapezoids T0, Tp1, Tp2, . . . , Tp(d′−1), Tn,
there must be a valid path in KP in form of
v0,0, vo,p1, . . . , vp(d′−1),n, whose length less equal to d′.

If L = (v0,0, vi(1),j(1), vi(2),j(2), . . . , vn,n) is the valid
path with minimal length, there exists a subpath
SP (Ti(m), Tj(m)) for each vi(m),j(m) ∈ L such that
these subpaths donot intersect each other. Each sun-
path has 3 segments and to connect pairs of them we
need d− 1 segments. �

The whole procedure of finding a simple integer
link-path takes time O(n4 · φ). To initialize GP and
KP need time O(n4 · φ). A path π ∈ si-ΠP (s, t) with
ll(π) ≤ 4 · si-ldP (s, t) can be found in time in O(n4)
time.

References

[1] M.Berg and M.Kreveld and Stefan Schirra. A new
approach to subdivision simplification. Twelfth
International Symposium on Computer-Assisted
Cartography,volume 4, page 79-88, Charlotte,
North Carolina, 1995.

[2] A. Maheshwari, J.-R. Sack and H. Djidjev. Link
Distance Problems. Handbook of Computational
Geometry.

[3] Friedrich Eisenbrand and Günter Rote. Fast 2-
Variable Integer Programming. IPCO, page 78-89,
1995.

[4] Simon Kahan and Jack Snoeyink. On the
Bit Complexity of Minimum Link Paths: Su-
perquadratic Algorithms for Problems Solvable in
Linear Time. Symposium on Computational Ge-
ometry, page 151-158, 1996.

24th European Workshop on Computational Geometry

164



Constant-Working-Space Image Scan with a Given Angle

Tetsuo Asano ∗

Abstract

This paper proves that there is a linear-time algorithm
for scanning an image with a given angle using only
constant size of working space. This is an extension
of a popular raster scan using O(1) working space.

1 Introduction

There are increasing demands for highly intelligent
peripherals such as printers, scanners, and digital
cameras. To achieve intelligence they need sophis-
ticated built-in or embedded softwares. One big dif-
ference from ordinary software in computers is little
allowance of working space which can be used by the
software. In this paper we propose a space-efficient
algorithm used for image processing. Especially, we
present an algorithm for scanning an image with any
angle. It is rather easy to do it using only constant-
size working space with some sacrifice of running time.
This paper achieves the goal without any sacrifice of
running time. That is, we present an algorithm for
scanning an image consisting of n2 pixels with an ar-
bitrarily given angle using only constant-size working
space which runs in O(n2) time. More important for
embedded software is simpleness of an algorithm. In
fact, it requires no sophisticated data structure or re-
cursive function.

The work in this paper would open a great num-
ber of possibilities in applications to computer vision,
computer graphics, and build-in software design. Im-
age scan is just one of the most important topics in
the direction.

2 Rotated raster scan

Let G be an image consisting of n×n pixels where each
pixel has integer coordinates ranging from 0 to n− 1.
It is easy to enumerate all those pixels in a raster
order, that is, in the order of (0, 0), (1, 0), . . . , (n −
1, 0), (0, 1), (1, 1), . . . , (n− 1, n− 1). That is,

G = {(x, y) | x, y = 0, 1, . . . , n− 1}. (1)

This enumeration can be implemented by a program
of double loops:

∗School of Information Science, JAIST, Japan,
t-asano@jaist.ac.jp

0 1 2 n − 1

1
2

n − 1

y = ax + b

Figure 1: A square image and a line determining scan
order.

for y = 0 to n-1 do
for x = 0 to n-1 do

output a pixel (x, y);

This scan is referred to as a row-major raster scan.
In a similar way we can define a column-major raster
scan. As an extension or generalization we consider
a rotated raster scan in which pixels are enumerated
along lines of a given angle. Throughout the paper
we assume that the angle of those lines is given as a
slope a instead of angle and we call the line y = ax
the guide line for the rotated scan. Figure 1 shows
an example of an image and a guide line specifying
scan order.

Throughout the paper we assume that the slope a
of the guide line is negative to simplify the argument.
The case of a positive slope is symmetric. We start
from the pixel (0, 0). The next point is either (0, 1) or
(1, 0) depending on which is closer to the line y = ax
of slope a passing through the origin (0, 0). In this
way we output pixels in the increasing order of the
vertical distances to the line y = ax. Therefore, we
can describe the rotated raster scan using a priority
queue PQ.

Rotated Raster Scan with Slope a
— Algorithm 1:
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PQ: priority queue keeping pixels with vertical
distances to the line y = ax as keys.
for x = 0 to n− 1

Put a pixel (x, 0) into PQ with key = −ax.
repeat{

Extract a pixel (x, y) of the smallest key from PQ.
Output the pixel (x, y).
if (x, y) = (n− 1, n− 1) then exit from the loop.
if (y < n− 1) then put a pixel (x, y + 1) into PQ

with key = y + 1− ax.
}

It is easy to see that the algorithm is correct and
runs in O(n2 log n) time using O(n) working space.
Correctness of the algorithm is based on the observa-
tion that in each column (of the same x coordinate)
pixels are enumerated from bottom to top one at a
time. Thus, whenever we output a pixel (x, y), we
remove the pixel from the priority queue and insert
the pixel just above it, i.e., (x, y+1) if it is still in the
image area G.

3 Scanning by rational slope

Recall that the objective of this paper is to reduce
the space requirement by an algorithm for scanning
an image with a given angle. As a first step we show
it is possible to reduce the working space if a slope a
of a guide line is a rational number −q/p such that its
numerator and denominator are both less than n, the
image size, and the two integers p and q are prime to
each other.

Now, we want to sort all the pixels in the increasing
order of their vertical distances to the guide line y =
ax = −(q/p)x. If we denote the vertical distance from
a pixel (x, y) to the guide line by d(x, y), then we have

d(x, y) = y +
q

p
x = (py + qx)/p. (2)

Since p is fixed, sorting pixels by the values of d(x, y)
is equivalent to sorting them by the values py + qx.

Now, we partition a set of pixels by lines passing
through the bottom pixels (0, 0), (1, 0), . . .. That is,
by Pk we denote a set of pixels which lie above the line
y = (−q/p)(x− k) and below y = (−q/p)(x− k − 1),
or more formally we define

Pk = {(x, y) ∈ G |
(−q/p)(x− k) ≤ y < (−q/p)(x− k − 1)},

k = 0, 1, . . . , r, r = b(n− 1)(1 + p/q)c.

An easy observation here is that if we can order
all pixels in each such set then it suffices to output
pixels in the order of P0, P1, . . . , Pr. Then, how can
we order those pixels in a set Pk? We further partition

the set of pixels in Pk by their y coordinates, that is,
we define a set

Pk[m] = {(x, y) ∈ Pk | m ≤ y/q < m + 1},
m = 0, 1, . . . , dn/qe}.

Figure 2 shows P6[0] and P6[1] in an image of size
11 × 11, where the guide line is y = (−5/2)x, i.e.,
p = 2, q = 5, and n = 11. The set P6[0] consists
of (6, 0), (6, 1), (6, 2), (5, 3), (5, 4) and P6[1] consists of
(4, 5), (4, 6), (4, 7), (3, 8), (3, 9). Because of the defini-
tion, if (x, y) is an element of Pk[m] then (x−p, y+q)
is an element of Pk[m + 1] if (x − p, y + q) ∈ G.
In the example of Figure 2, (6, 0) ∈ P6[0] implies
(6 − 2, 0 + 5) = (4, 5) ∈ P6[1]. More generally, if
(x, y) is an element of the set Pk[0] then the pixel
(x − jp, y + jq) belongs to the set Pk[j] for any inte-
ger j if the pixel is within the image area, that is, if
0 ≤ x− jp < n and 0 ≤ y + jq < n. Now we define a
natural equivalence relation:

(x, y) ≡ (x′, y′) ⇐⇒ (x, y), (x′, y′) ∈ G and
x ≡ x′ mod p and y ≡ y′ mod q.

Two equivalent pixels have the same vertical dis-
tance to the guide line. In fact, for two equivalent
pixels (x, y) and (x− jp, y + jq) we have

d(x, y) = (py + qx)/p = (p(y + jq) + q(x− jp))/p

= d(x− jp, y + jq).

This implies that once we can order elements of the
set Pk[0] then it is easy to order all the elements of the
set Pk. Whenever we output a pixel (x, y) in Pk[0], we
should output its equivalent pixels in Pk[1], Pk[2], · · ·
in order before reporting the next pixel in Pk[0].

Now consider how to order pixels in the set Pk[0].
Note that the x coordinates of those pixels are be-
tween k and k− p+1. If there are two or more pixels
in the same x coordinates then they are reported in
the increasing y order. Thus, if a priority queue of size
p is available, the previous mechanism can order the
pixels in the set Pk[0]. Thus, we have the following
lemma.

Lemma 1 Given an n × n image G and a rational
slope a = −q/p, there is an algorithm for enumerating
all pixels in the order determined by the slope which
runs in O(n2 log p) time using O(p) working space.

Proof. The x-coordinates of the pixels in the set
Pk[0] range from k to k − p + 1 (the pixel (k − p, q)
belongs to Pk[1]). In each column j, the first pixel
to be enumerated is the one just above the line y =
(−q/p)(x−k) passing through the pixel (k, 0) ∈ Pk[0].
Since the pixels in the columns k − 1, k − 2, · · · are
(k−1, dq/pe), (k−2, d2q/pe), · · · . In general, the pixel
at column k − j is (k − j, djq/pe). Starting from
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those pixels, we repeatedly choose pixels in the in-
creasing order of their vertical distance to the line
y = (−q/p)(x−k), that is, djq/pe+(q/p)(k−j−k) =
djq/pe− (jq/p) since p and q are prime to each other.
Whenever we choose a pixel (x, y) then we remove it
from the priority queue and then insert a pixel just
above it, that is, (x, y + 1) as far as it also belongs to
the same set Pk[0]. Then, we report the pixel (x, y)
and then all of its equivalent pixels in order.

The algorithm is as follows:

Rotated Raster Scan with Slope a
— Algorithm 2:

PQ: priority queue keeping pixels with vertical
distances to the line y = ax as keys.
for k = 0 to n− 1

Enumerate all pixels in the set Pk in order.
Enumeration of pixels in Pk.

for j = 0 to p− 1
put a pixel (k − j, djq/pe) into PQ with
key = djq/pe − (jq/p).

repeat{
Extract a pixel (x, y) having the smallest key out
of PQ.
do{

Output the pixel (x, y).
x = x− p, y = y + q.

} while((x, y) ∈ G)
if y < (−q/p)(x− k − 1)

then put a pixel (x, y + 1) with
key = y + 1 + (q/p)(x− k).

}

�

Of course, if p = O(n) then this algorithm is not an
improvement of the previous trivial algorithm which
runs in O(n2 log n) time using O(n) working space.
Now, a natural question is whether there is an algo-
rithm which runs in linear time using only constant
size of space. In the next section we present one such
algorithm.

4 Linear-time constant-working-space algorithm

Our goal here is to achieve constant size of working
space while keeping the running time linear in the
number of pixels. If the goal is just to achieve the
constant size working space, then it is rather easy.
Let (xi, yi) be the current pixel (its initial value is
of course (0, 0)). To find the next pixel, for each
column we compute the pixel just above the line
y = a(x − xi) + yi and measure the vertical distance
from the pixel to the line. We just choose the pixel
of the smallest vertical distance. If there is a tie, we
prefer one of a smaller x coordinate. Since it is just
minimum-finding process, working space we need is

0 1 2 n − 1

1
2

n − 1

Pk[0]

Pk[1]

k k + 1

Figure 2: An image with a guide line y = (−5/2)x.
Two sets of pixels, P6[0] and P6[1] are depicted by
empty circles.

just constant size. Of course, for each pixel we need
O(n) time to choose the next pixel, and thus O(n3)
time in total.

Our question is whether we can implement the scan
using constant-size working space without sacrificing
the running time. Fortunately, the answer is yes. A
key idea is to use integer properties. The algorithm
itself is quite similar to Algorithm 2 described before.
An important difference is that no priority queue is
used to reduce the working space.

A key is how to order pixels in the set Pk[0]. It is
known that the first pixel is (k, 0). How can we know
the next pixel without using a priority queue? As we
have observed before, scan order coincides with the
increasing order of the key values py + qx in the set
Pk[0]. The key value for the starting point (k, 0) is
qk. We want to know where is a pixel of key value
qk + i for i = 1, 2, . . . , p− 1 (note that Pk[0] consists
of p pixels).

Suppose we are at a pixel (x, y). If we move to
the left, that is, from (x, y) to (x − 1, y), then the
key decreases by q, and when we move to (x, y + 1)
then it increases by p. As far as we stay in the same
column (x-coordinate), the value of key modulo p re-
mains unchanged. To move to a pixel whose key value
is different from the current key value by i, 0 < i < p,
we have to move horizontally by di or −(p− di), that
is, to (x + di, y) or (x− (p− di), y), determined by

diq ≡ i mod p. (3)

Since either (x+di, y) or (x−(p−di), y) lies in the set
Pk[0], we can easily choose the right one. In practice,
we do not need all of d1, . . . , dp−1 since we want to
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x = 7

8 64 72 80 88 96 104
7 59 67 75 83 91 99
6 54 62 70 78 86 94
5 49 57 65 73 81 89
4 44 52 60 68 76 84
3 39 47 55 63 71 79
2 34 42 50 58 66 74
1 29 37 45 53 61 69
0 24 32 40 48 56 64

Figure 3: Ordering pixels in the set P7[0].

find pixels of key values kq, kq + 1, . . . , kq + p − 1 in
an incremental fashion. So, it suffices to know the
integer d1 defined by

d1q ≡ 1 mod p. (4)

Once we know the x-coordinate and key value of the
next pixel, it is easy to calculate its y-coordinate since
we know that the key value is given by py + qx.

For example, when p = 5, q = 8, we have d1 = 2
since 2q mod p = 16 mod 5 = 1. When k = 7, the
pixel (7, 0) has a key 56. The next pixel is either at
x = 7 + 2 = 9 or x = 7 − (5 − 2) = 4. Since x = 9
is outside P7[0], we can conclude that the next pixel
must be at x = 4. Now we know the key value is
57. Thus, the y-coordinate is (57 − 8 × 4)/5 = 5. In
this way, we can find the next pixel without using a
priority queue. See Figure 3.

The algorithm is as follows:

Rotated Raster Scan with Slope a
— Algorithm 3:

Calculate a smallest positive integer d satisfying
dq ≡ 1 mod p.

for k = 0 to n− 1
Enumerate all pixels in the set Pk in order.

Enumeration of pixels in Pk{
report(k, 0).
(x, y) = (k, 0).
for i = 1 to p− 1 {

if x + d ≤ k then x′ = x + d
else x′ = x− (p− d).
y′ = (kq + i)/p.
report(x′, y′).
(x, y) = (x′, y′).

}
}
procedure report(x, y){

do{
Output the pixel (x, y).
x = x− p, y = y + q.

} while((x, y) ∈ G)
}

Algorithm 3 needs a small modification to handle
the part after the bottom right corner pixel (n−1, 0),
but it is omitted due to page limit.

Theorem 2 Given an n× n image G and a rational
slope a = −q/p, Algorithm 3 above correctly enumer-
ates all the pixels in the order determined by the slope
and runs in O(n2) time using O(1) working space.

5 Irrational angles

So far we have considered the case where a slope is
given as a rational number with its numerator and
denominator less than image size. What happens if
the slope is irrational? Fortunately, it is not so hard
to adapt the proposed algorithm for the case. An im-
portant observation is that our guide line is well char-
acterized by which two pixels should be separated.
Thus, if we consider a finer grid defined by half grid
gap, then such a line is characterized by a line passing
through two grid points in the finer grid. Thus, it is
not so hard to adapt our algorithm for the case.

6 Applications

Such a rotated scan is required for scanner technol-
ogy. When we scan a document by a scanner, the
document is sometimes rotated. Correction of such
rotation is usually done in a scanner. Since scanners
cannot possess much working space, space-efficient al-
gorithms are desired. Asano et al. [1] propose a space-
efficient algorithm for correcting such a rotation. Es-
pecially, it is an in-place algorithm which uses no ex-
tra working space other than a given image. In the
algorithm a row-major or column-major raster scan
is used to scan a rotated subimage. However, by our
experience a rotated raster scan sensitive to rotation
angle is more desirable.
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Consistent Digital Rays

Jinhee Chun∗ Matias Korman∗ Martin Nöllenburg† Takeshi Tokuyama∗

Abstract

Given a fixed origin o in the d-dimensional grid, we
give a novel definition of digital rays dig(op) from o
to each grid point p. Each digital ray dig(op) ap-
proximates the Euclidean line segment op between o
and p. The set of all digital rays satisfies a set of ax-
ioms analogous to the Euclidean axioms. We measure
the approximation quality by the maximum Hausdorff
distance between a digital ray and its Euclidean coun-
terpart and establish an asymptotically tight Θ(log n)
bound in the n×n grid. Without a monotonicity prop-
erty for digital rays the bound is improved to O(1).

1 Introduction

The digital line segment dig(pq) between two grid
points p and q is a fundamental digital geometric ob-
ject, but its definition is not that obvious. Indeed,
the digital representation of line segments has been
an active subject of research for almost half a century
now (see an excellent survey of Klette and Rosen-
feld [2]). In digital geometry, a geometric object is
represented by a set of d-dimensional grid points in a
digital grid G = Zd and its topological properties are
considered under a grid topology defined by a graph
on the grid. In two dimensions, it is common to con-
sider the orthogonal grid topology, where each point p
is connected to the four grid points that are horizon-
tally and vertically adjacent to p, and we focus on this
topology; however, as a variant, we may consider the
octagonal grid topology that connects each grid point
to the eight neighboring grid points with a coordinate
difference of at most 1 in each coordinate.

Since a digital line segment is the analogue of a line
segment in Euclidean geometry, it is natural to set up
the following axioms for a digital line segment:

(S1) A digital line segment dig(pq) is a connected
path between p and q.

(S2) For any two grid points p and q there is a unique
digital line segment dig(pq) = dig(qp).

(S3) If s, t ∈ dig(pq), then dig(st) ⊆ dig(pq).
(S4) For any p and q there is a grid point r /∈ dig(pq)

such that dig(pq) ⊂ dig(pr).

∗GSIS, Tohoku University, Japan. (jinhee, mati,

tokuyama)@dais.is.tohoku.ac.jp
†Faculty of Computer Science, Karlsruhe University, Ger-
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Note that axiom (S3) implies that a non-empty in-
tersection of two digital line segments is either a grid
point or a digital line segment. Axiom (S4) implies
that a digital line segment can be extended to a dig-
ital line. We often identify a path in a grid with its
vertex set if the correspondence is clear. Accordingly,
if we say a grid point p is in a path P , it means that
p is a vertex of P .

Unfortunately, popular definitions of two-dimensio-
nal (2D) digital line segments in computer vision do
not satisfy these axioms. For example, in the standard
definition of a digital straight segment (DSS) [2], a
digital line segment (in the octagonal topology) that
corresponds to the line segment y = mx+b, x0 ≤ x ≤
x1 is defined as the set of grid points {(i, bmi + bc) |
i ∈ Z, x0 ≤ i ≤ x1} if |m| ≤ 1. Using this definition
the intersection of two DSSs is not always connected,
and axiom (S3) is violated in some cases.

Another possibility to define digital line segments
would be to use the system of L- and Γ-shaped short-
est paths. An L- or Γ-shaped path between two points
p = (xp, yp) and q = (xq, yq) such that xp ≤ xq, is the
(at most) 2-link path that consists of the grid points
on the vertical segment pp′ and on the horizontal seg-
ment p′q where p′ = (xp, yq). We can confirm that
the system of these paths satisfies axioms (S1)–(S4)
for digital line segments. A clear drawback is that an
L-shaped path is visually very different from the Eu-
clidean line segment, and the Hausdorff distance from
pq to the L-shaped path becomes n/

√
2 for p = (0, n)

and q = (n, 0). Therefore, it seems that there is a
trade-off between the axiomatic requirements and the
visual quality of digital line segments. It is a chal-
lenging problem to find a system of digital line seg-
ments that satisfies the axioms and is visually alike
Euclidean line segments at the same time.

In this paper we study a less ambitious but impor-
tant subproblem, motivated by geometric optimiza-
tion applications like extracting digital star-shaped
regions in pixel images [1]: we consider only digi-
tal line segments that have a fixed origin o as one
of their endpoints. In other words, we consider digi-
tal halflines emanating from o, and dig(op) is defined
as the unique portion of the halfline that has p as its
second endpoint. We call such segments digital ray
segments or simply digital rays emanating from o.

For digital rays, the axioms for digital line segments
should be modified as follows:
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(R1) A digital ray dig(op) is a connected path be-
tween o and p.

(R2) There is a unique digital ray dig(op) between o
and any grid point p.

(R3) If r ∈ dig(op), then dig(or) ⊆ dig(op).
(R4) For any dig(op), there is a grid point r /∈ dig(op)

such that dig(op) ⊂ dig(or).

We also give an additional monotonicity axiom, which
is not combinatorial, but a reasonable condition for a
digital ray:

(R5) For any r ∈ dig(op), |or| ≤ |op|, where |ab| is
the length of the Euclidean segment ab.

A system of digital rays is called consistent if it satis-
fies axioms (R1)–(R5). From these axioms, it follows
that the union of all digital rays forms an infinite span-
ning tree T of the grid graph on G rooted at o, such
that dig(op) is the unique path between o and p in the
tree. Because of axiom (R4), T cannot have leaves.
Thus, the problem is basically to embed the infinite
“star” consisting of the halflines emanating from o in
the d-dimensional Euclidean space as a tree in the
d-dimensional grid. Although embedding a tree in a
grid is a popular topic in metric embedding and graph
drawing, it is a novel and interesting problem to geo-
metrically approximate ray segments by paths.

We give the asymptotically tight Θ(log n) bound
for the maximum Hausdorff distance between dig(op)
and op among all p in an n×n grid. The lower bound
argument is based on discrepancy theory, and the up-
per bound is attained by a simple and systematic con-
struction of a tree T that can be extended to the d-
dimensional case. Surprisingly, if we do not include
the monotonicity axiom (R5), the bound can be re-
duced to O(1).

2 The lower bound result

The Hausdorff distance H(A,B) of two objects
A and B in d-dimensional space is defined by
H(A,B) = max{h(A,B), h(B,A)}, where h(A,B) =
maxa∈A minb∈B d(a, b) and d(a, b) is some distance be-
tween the points a and b. We will use the L∞-metric
in the following for technical convenience, since the
choice of the metric is irrelevant if we consider the
bounds in big-O and big-Ω notations.

Let’s consider the set V = {(i, j) | i, j ∈ Z} of
grid points. We define a planar graph G on V that
represents the adjacency relations of a pixel grid. In
G = (V,E) each vertex (i, j) is connected to its four
neighbors (i, j − 1), (i− 1, j), (i + 1, j), and (i, j + 1).
This also defines the orthogonal topology of the grid
G. A subset of V is connected in this topology if
its induced subgraph in G is connected. We focus on
the part G(n) of the planar orthogonal grid clipped
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Figure 1: A spanning tree T of G(n) for n = 10. The
labeled nodes are used in a low-discrepancy sequence.

to the region defined by x + y ≤ n in the first quad-
rant. From the monotonicity axiom it follows that
dig(op) ⊂ G(n) for any p ∈ G(n), and that dig(op) is
a shortest path in the grid. We show that there ex-
ists a point p ∈ G(n) such that the Hausdorff distance
H(dig(op), op) is Ω(log n). Let T be the spanning tree
of G(n) that is the union of dig(op) for all p ∈ G(n).
An example spanning tree is shown in Fig. 1.

We use a classical result on pseudo-random num-
ber generation [3, 5]. Consider an infinite sequence
X = x0, x1, x2, . . . of real numbers in [0, 1]. For any
given a ∈ [0, 1] and any natural number m define
Xm(a) = |{0 ≤ i ≤ m | xi ∈ [0, a]}|. The discrep-
ancy of the subsequence x0, x1, . . . , xm is defined as
supa∈[0,1] |am − Xm(a)|. We use discrepancy theory
in the form of the following theorem.

Theorem 1 (Schmidt [4]) Given a sequence X =
x0, x1, x2 . . . of real numbers in [0, 1] and a sufficiently
large integer n, there exists an integer m < n and
a real number a ∈ [0, 1] such that the subsequence
x0, x1, . . . , xm satisfies that |am − Xm(a)| > c log n,
where c is a positive constant independent of n.

For m = 1, 2, . . . n + 1, let L(m) = {(i,m− 1− i) |
i = 0, . . . ,m − 1} be the subset of G(n) satisfying
x + y = m − 1. Since there is no leaf of T in L(m)
for m ≤ n we must have exactly one branching node
of degree 3 and m − 1 nodes of degree 2 in L(m) in
order to connect the m points of L(m) to the m + 1
points in L(m + 1).

We associate the leaf (j, n − j) ∈ L(n + 1) to the
number j/n and define the set N = {j/n : j =
0, 1, . . . n} ⊂ [0, 1]. For each edge e of T in G(n),
the set of vertices of L(n + 1) in the subtree rooted
at e forms an interval I(e) ⊂ N . Let x(e) denote the
largest element in I(e). An example is given in Fig. 1,
where I(e) = {0.4, 0.5, 0.6} and x(e) = 0.6.

For a given spanning tree T we create a sequence
X(T ) of values x(e) for certain edges e. The lower
bound on the discrepancy of X(T ) is used to show
the following theorem.
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Theorem 2 For any spanning tree T there is a grid
point p ∈ L(n + 1) and q in G(n) such that q is on
the path dig(op) in T and the L∞ distance from q to
the line segment op exceeds c log n− 1, where c is the
constant considered in Theorem 1.

Proof. For m = 1, . . . , n + 1 let xm = x(em), where
em is the upper (i.e. vertical) branch of the unique
branching node in L(m). We artificially set x0 = 1.
Thus we obtain a sequence X(T ) = x0, x1, . . . , xn,
which is a permutation of N . Let E(m) be the set of
edges in T going from L(m) towards L(m + 1). The
following lemmas are obvious from the definitions:

Lemma 3 The set {x(e) : e ∈ E(m)} is equal to the
set {x0, x1, . . . , xm}.

Lemma 4 Let e and f be edges in E(m). If e is to
the left of f then x(e) < x(f).

For example, the tree T in Fig. 1 creates the fol-
lowing sequence: X(T ) = 1, 0, 0.6, 0.3, 0.8, 0.2, 0.7,
0.4, 0.9, 0.1, 0.5. The labels in Fig. 1 show the cor-
respondence between the unique internal branching
node in L(i) and the leaf located at (nxi, n− nxi) in
L(n+1) that is associated to the number xi. For each
i = 1, . . . , n the corresponding nodes are labeled by
i. In other words, each branching node and the right-
most leaf in the subtree of the upper branch of that
node have the same numbering.

We now consider the discrepancy of X(T ). From
Theorem 1, we have 0 ≤ a ≤ 1 and m < n for n
large enough such that |am − Xm(a)| > c log n. The
following two cases should be considered:

Case 1: Xm(a) > am+ c log n. Consider the node
q located at (Xm(a)−1,m−(Xm(a)−1)) ∈ L(m+1),
and let e be the edge between q and its parent in T .
By definition, q is on the path dig(op) from o to the
node p = (x(e)n, n − x(e)n) ∈ L(n + 1). Because of
the definition of Xm(a) and Lemma 3, we have exactly
Xm(a) edges f ∈ E(m) for which x(f) ≤ a. However,
there are also exactly Xm(a) edges of E(m) to the left
of e, including e itself, since q is the Xm(a)-th node
in L(m + 1) counted from the left. Lemma 4 implies
that no edge g to the right of e can attain x(g) ≤ a.
Thus, e itself must satisfy x(e) ≤ a. Now, consider
the L∞ distance of the line segment op and q. The
line op goes through (x(e)m,m−x(e)m), which is the
L∞-nearest point from q on op. The L∞ distance is
(Xm(a)−1−x(e)m) ≥ (Xm(a)−1−am) > c log n−1.

Case 2: Xm(a) < am− c log n. Consider the node
q located at (Xm(a),m−Xm(a)) ∈ L(m+1) and the
edge e between q and its parent. Since there are only
Xm(a) edges f ∈ E(m) for which x(f) ≤ a we have
x(e) > a (again by Lemma 4). Node q is on the path
dig(op) to p = (x(e)n, n − x(e)n). Similarly to Case
1, we can show that the L∞ distance from q to op is
greater than c log n. This proves the theorem. �

Figure 2: The spanning tree DT (2) in G(n).

3 The upper bound results

As for the upper bound, we only give the flavor here
and refer to the full version of this paper, which also
gives a higher dimensional construction. We con-
struct a spanning tree DT(2) of G, such that for ev-
ery p = (i, j) ∈ V , the unique path from p to o in
DT(2) defines the digital ray dig(op) simulating the
line segment op. This is illustrated in Fig. 2. The con-
struction is recursive: We consider the diagonal (bold)
center path. In the part below the center path, every
edge in E(2k−1) is horizontal for k = 1, 2, . . .. As for
the edges in E(2k) below the center path, we copy the
structure of E(k). The part above the center path is
constructed in a similar way.

The set of digital rays defined by DT(2) is con-
sistent, and for any grid point p ∈ G(n), the L∞-
Hausdorff distance between dig(op) and op is less than
1 + log n.

The tree DT(2) is related to a famous low discrep-
ancy sequence called van der Corput sequence [5]. As-
sume that n is a power of 2, and construct the se-
quence X(DT (2)) using the method of Section 2 (ig-
noring x0 = 1). Then, we have x1 = 0, x2 = 1/2,
x3 = 1/4, x4 = 3/4, and in general, if b1b2b3 . . . bs is
the 2-adic expansion of i−1, xi = 0.bsbs−1 . . . b1 in 2-
adic decimal expansion for 1 ≤ i ≤ n. This sequence
is indeed the van der Corput sequence.

Surprisingly, if we omit the monotonicity axiom
(R5), the lower bound does not hold, and we can give
a constant upper bound on the Hausdorff distance.
The digital ray that we construct is locally snake-like
almost everywhere; however, considered from some
distance it can approximate a line segment well.

The idea is as follows: We first consider a coarse
grid of width 2, and construct a spanning forest T1 of
it allowing internal leaves. Then, we replace each node
v of this tree by four nodes in the original unit-width
grid such that v is located in the center of gravity
of these four nodes. In the last step, we convert the
forest T1 into a tree T2 in the original unit-width grid.

Let c > 1 be an irrational constant. The forest
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Figure 3: Trapezoid decomposition and two trees of
the forest T1.
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Figure 4: Walks around the two trees (top) and the
corresponding part of the tree T2 (bottom).

T1 is constructed as follows: We consider the belt
R(k) ⊃ G(2k+1)\G(2k) defined by 2k < x+y ≤ 2k+1

in the first quadrant, and subdivide it into trapezoids
by lines `t : y = 2k−tc

tc x passing through the non-
grid points (tc, 2k − tc) on the line x + y = 2k for
t = 1, 2, . . . , b2k/cc. The widths of the two parallel
edges of each trapezoid are (at most)

√
2c and 2

√
2c,

respectively. Further, each trapezoid F is adjacent to
one trapezoid p(F ) in R(k−1) called the parent of F ,
and two trapezoids l(F ) and r(F ) in the belt R(k+1)
that are called the left and right child, respectively.
Let q be the intersection of x + y = 2k+1 and the
dividing line of l(F ) and r(F ). The nearest grid point
to q in F is called the exit node of F , and the nearest
grid points to q in l(F ) and r(F ) are called their entry
nodes. Each trapezoid has exactly one entry and one
exit node. In Fig. 3, the entry and exit nodes are
marked by “E” and “X”, respectively.

By gathering these trapezoids for all k ≥ dlog ce,
we have a decomposition of the first quadrant of the
plane. Since c > 1, each trapezoid is wide enough
so that the induced subgraph of the grid points in a
trapezoid is connected. It is easy to find a spanning
tree of the vertices in each trapezoid consisting of a
stem that is shortest path from its entry node to its
exit node, together with branches such that the length
of each branch (i.e., the path length from the stem to
the furthest leaf) is at most 2c as seen in Fig. 3. This
gives a forest T1 consisting of small trees, one in each
trapezoid. Now, let’s convert T1 to T2 as shown in
Fig. 4. Each node of T1 is replaced by four nodes at
the corners of the surrounding unit square. Thus, we
can realize the walk around each subtree of T1 in a
trapezoid F as a Hamiltonian cycle in the finer grid.
We cut the cycle at the exit node, and connect it to
the entry nodes of the trees in the two child trapezoids
l(F ) and r(F ) as in Fig. 4. We obtain a tree T2 that
has no internal leaf.

Theorem 5 If the monotonicity axiom (R5) is not
considered, the tree T2 defined above gives a system
of digital rays in the plane grid such that the Haus-
dorff distance between each digital ray and its corre-
sponding Euclidean line segment is O(1).

Proof. For any grid point p in a trapezoid F , the
line segment op is contained in the union of the an-
cestor trapezoids of F , and also all ancestors of p in
the tree T2 are in the same union of trapezoids. Since
the width of each trapezoid is at most 2

√
2c, the dis-

tance from any point q in the path dig(op) in T2 to
the line op is at most 2

√
2c. It might happen that

the nearest point from q to the line op is not in the
segment op since we do not assume the monotonicity
axiom. However, since the length of each branch of
a subtree in T1 is at most 2c, the Hausdorff distance
between the segment op and the path from o to p in
the tree is at most (2

√
2 + 2)c. �
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Matching a Straight Line on a Two-Dimensional Integer Domain

Emilie Charrier∗ Lilian Buzer†

Abstract

A two-dimensional integer domain B is defined by
{(x, y) ∈ Z2|h ≤ x ≤ h+D,h′ ≤ y ≤ h′+D} where h,
h′ and D are positive integer values. Let us consider
a straight line L of the form ax + by = c with real co-
efficients. A straight line L′ of the form a′x+ b′y = c′

is equivalent to L relative to a domain B iff the upper
and the lower half planes associated with L and L′

contain the same grid points in B. This paper intro-
duces a new method to transform a straight line L into
an equivalent one L′ relative to B such that L′ passes
through at least two grid points of the domain. Our
method achieves an O(log(D)) time complexity. It
uses elementary statements from number theory and
computational geometry.

1 Introduction

We consider a two-dimensional integer domain defined
by {(x, y) ∈ Z2|h ≤ x ≤ h + D,h′ ≤ y ≤ h′ + D}
where h, h′ and D are positive integer values and we
want any straight line to pass through at least two
grid points in the domain. Given a straight line L of
the form ax + by = c with real coefficients, a straight
line L′ is equivalent to L relative to this domain iff
the upper and the lower half planes associated with
L and L′ contain the same grid points of the domain.
Moreover, the straight line L′ is reduced relative to the
domain iff L′ passes through at least two grid points of
the domain. This reduction consists in transforming
the straight line L into an equivalent one L′ such that
the absolute value of the coefficients of L′ does not ex-
ceed D. Considering w.l.o.g. that the coefficients of
the straight line L satisfy |a| ≤ |b|, it is equivalent to
reducing the straight line L relative to the domain K
defined by {(x, y) ∈ Z2|h ≤ x ≤ h+D}. Such a reduc-
tion is useful to compress the size of the coefficients of
a straight line such that their absolute values do not
exceed the size of the screen. For this, we compute the
convex hulls of grid points of the domain K included
in the upper (resp. lower) half-plane associated with
L. Then, to determine a reduced straight line of L,
we can compute one of the two critical support lines1

∗Laboratory CNRS-UMLV-ESIEE, UMR 8049,
DGA/D4S/MRIS charriee@esiee.fr

†Laboratory CNRS-UMLV-ESIEE, UMR 8049,
buzerl@esiee.fr

1Critical support lines of two convex polygons are straight
lines tangent to both polygons, such that the polygons lie on

of these two convex hulls. As each convex hull has at
most 1 + log(D + 1) vertices, this computation takes
O(log(D)) time (see [6] and [7]).

The best worst-case time complexity known to
the authors to compute these integer convex hulls is
O(log(max{|a|, |b|})). This method uses properties of
Klein polygonal lines (see [2]). Unfortunately, it only
works when the coefficients of the straight line are
integer. Thus, we propose a new method which com-
putes the integer convex hulls in O(log(D)) time even
if the coefficients of the straight line are irrationals.

In Sec. 2, we recall some notions from number the-
ory used in the algorithm we present. Then, we briefly
introduce the existing approaches to compute the in-
teger convex hulls in Sec. 3. Finally, we describe our
method and make its complexity analysis in Sec. 4.

2 Number theory

2.1 Bezout’s identity

In number theory, the Bezout’s identity is a linear
Diophantine equation. It states that if a and b are
non-zero integers, then there exist two integers x and
y such that ax + by = gcd(a, b) where gcd(a, b) de-
notes the greatest common divisor of a and b. More
generally, the linear Diophantine equation ax+by = c
admits integer solutions iff the gcd of a and b divides
c. The set of solutions is given by:

{(
x0 +

kb

gcd(a, b)
, y0 −

ka

gcd(a, b)

)
| k ∈ Z

}
where (x0, y0) denotes a particular solution.
You can consult [4] for more details on Bezout’s

identity.
A vector u = (u1, u2) with integer coordinates is

called irreducible if gcd(u1, u2) is equal to one. Let
u = (u1, u2) and v = (v1, v2) denote two vectors, the
value u∧v is equal u1v2−u2v1. It corresponds to the
z component of the cross product of u and v and it is
equal to the signed area of a parallelogram generated
by u and v.

Definition 1 Let u denote an irreducible vector. A
Bezout vector of u is a vector v with integer coor-
dinates such that u ∧ v = 1. This means that the
parallelogram (0, u, u + v, v) contains no grid points
in its interior.

opposite sides of the lines.
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2.2 Continued fractions

2.2.1 Definitions and properties

We present the definition of continued fractions and
some of their properties (see [1] for a more detailed
introduction).

Definition 2 The simple continued fraction decom-
position of a real number x corresponds to:

x = a0 +
1

a1 + 1
a2+

1
a3+ 1

···

where a0 denotes an integer value and where ai de-
notes a strictly positive integer value for all i ≥ 1. We
usually use the notation x = [a0, a1, a2, · · · ].

The principal convergents of x correspond to its ra-
tional approximations pk/qk. The two convergents
p0/q0 and p1/q1 are respectively set to 0/1 and 1/0
whereas the others are obtained by truncating the
continued fraction decomposition after the k-th par-
tial quotient. The numerator and the denominator of
the principal convergents are computed as follows:

{
p0 = 0 p1 = 1 pk+2 = pk + akpk+1

q0 = 1 q1 = 0 qk+2 = qk + akqk+1

Each convergent of even order is less than the whole
continued fraction and each convergent of odd order
is greater than the whole continued fraction. Each
convergent is closer in value to the whole continued
fraction than the preceding. The intermediate con-
vergents between two principal convergents pk/qk and
pk+2/qk+2 are defined as:

pk + ipk+1

qk + iqk+1
, i = 1 · · · ak − 1

Let SE (resp. SO) denote the series defined by all
the principal convergents of even (resp. odd) order in-
tercalated with their corresponding intermediate con-
vergents. If x is a rational number then the last term
of one of the two series is not equal to x. The rational
number x is added to the end of this series. Let us
enunciate a useful proposition (see [1] for the proof).

Proposition 1 Let s denote the rational number
which is less (resp. greater) than a real number r,
which most closely approximates r and such that its
denominator does not exceed an integer value d. The
rational number s is the term of the series SE (resp.
SO) of r with the greatest denominator which does
not exceed d.

Example 1 We want to find the rational number
whose denominator does not exceed 60 and which

(11, 4)

d = 6

Q

P

Figure 1: Example of Klein’s polygonal lines for 4/11
and d = 6

is the best approximation of 779/207. We have
779/207 = [3, 1, 3, 4, 2, 5]. It follows the two series:

SE =
0
1
,
1
1
,
2
1
,
3
1
,
7
2
,
11
3

,
15
4

,
79
21

,
143
38

,
779
207

SO =
1
0
,
4
1
,
19
5

,
34
9

,
49
13

,
64
17

,
207
55

,
350
93

,
493
131

,
636
169

,
779
207

We deduce that the rational number 143/38 in SE

(resp. 207/55 in SO) is the best approximation of
779/207, which is less (resp. greater) than 779/207
and whose denominator does not exceed 60.

2.2.2 Geometrical interpretation

We can establish a correspondence between a rational
number a/b and an integer vector of coordinates (b, a)
in the Euclidean plane. As a result, the two series SE

and SO approximating the rational number p/q corre-
spond to two series of integer vectors in the Euclidean
plane approximating the integer vector (q, p). We can
interpret Prop. 1 in the Euclidean plane. The ra-
tional number which most closely approximates the
rational number p/q such that its denominator does
not exceed d corresponds in the Euclidean plane to
the integer vector which most closely approximates
the vector (q, p) such that its abscissa does not ex-
ceed d. The two series SE and SO interpreted in the
Euclidean plane are called Klein’s polygonal lines (see
[3]). Figure 1 shows an example of the series SE and
SO where p/q = 4/11 and d = 6 interpreted in the
Euclidean plane. In this example, P = (5, 2) and
Q = (3, 1) correspond to the best approximations of
the vector (11, 4) whose abscissa does not exceed 6.

3 Existing methods to compute integer convex
hulls

As introduced in Sec. 1, we have to compute the bor-
der of the convex hull of grid points located above
(resp. below) L in the domain K. We call them re-
spectively the upper and the lower convex hulls (see
Fig. 2 for an example).

To compute these convex hull borders, a brute force
approach would consist in considering the D + 1 grid
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lines

upper convex hull
border

critical support

lower convex hull
border

L

Lleft Lright

Figure 2: Lower and upper convex hulls

points located just above the straight line L and the
D + 1 grid points located just below the straight line
L (digital straight lines of L). Then, we would com-
pute their convex hulls in O(D log(D)) time (see [5]).
When a and b are integer values, we can also use a
more efficient approach which consists in using Klein
polygonal lines and Prop. 1 (see [3] and [2]). This sec-
ond approach runs in O(log(max{|a|, |b|})) time. In
this paper, we propose a new algorithm to compute
these convex hulls which runs in O(log(D)) time even
if a and b are irrational values.

4 Introducing a new approach

We present our approach to compute the border of
the upper and of the lower convex hull of L.

4.1 Algorithm design

Let b·c denote the floor function. Let Lleft and Lright

respectively denote the straight lines of the form x = h
and x = h + D that delineate the domain K.

4.1.1 General presentation

The computation of the upper and of the lower con-
vex hull is done in two steps. We first successively de-
termine the vertices (Ai)1≤i≤n (resp. (Bj)1≤j≤m) of
the upper (resp. lower) convex hull from left to right,
starting from two grid points lying on the straight line
Lleft (see Fig. 5). When we find a vertex which does
not lie in K, we stop. Then, we begin the second step
by computing new vertices of the upper and of the
lower convex hull from right to left, starting from two
grid points lying on the straight line Lright. Let us de-
scribe the first part of the computation, from left to
right (the second part of the computation is similar).

Suppose we know the vertices Ai and Bj of the
upper and of the lower convex hulls respectively. Our
approach determines in constant time the vertex Ai+1

or the vertex Bj+1. For this, we look for a grid point

integer point

uij

Ai

vij

Bj

vij

L

Ai+1
Iij

N

Figure 3: Example when vij ·N < 0

located above or below L and such that the angle
between the vectors Ai−1Ai and AiAi+1 or the angle
between the vectors Bi−1Bi and BiBi+1 is minimal.
In the next section, we explain how to determine this
next vertex.

4.1.2 Carrying out the method

We determine the next vertex Ai+1 or Bj+1 of the
convex hulls by linear combination of two vectors uij

and vij . At each iteration, the vector uij corresponds
to the vector AiBj and the vector vij corresponds to
a particular Bezout vector of uij , defined as follows:
the grid point Ai +vij is located above L and the grid
point Ai + vij + uij is located below L. Such a vector
vij is called a valid Bezout vector of uij relative to L.
At the first iteration, the vector uij is equal to (0,−1).

Let N denote the normal vector of the straight line
L such that the dot product Ai ·N is greater than c for
all vertices Ai, 1 ≤ i ≤ n. Let Iij denote the intersec-
tion of the straight line L and the straight line of di-
rection vector vij passing through Ai. Let Jij denote
the intersection of the straight line L and the straight
line of direction vector vij passing through Bj . At
each iteration, we look at the sign of the dot product
vij ·N . When vij ·N is strictly negative, it means that
Iij is equal to Ai + αvij where α is a positive value
greater than one. By definition of Bezout vector, the
triangle AiIijBj contains no grid point in its interior.
As a consequence, the grid point Ai + bαcvij corre-
sponds to the vertex Ai+1 of the upper convex hull
(see Fig. 3). In the same way, when vij ·N is strictly
positive, it means that Jij is equal to Bj +βvij where
β is a positive value greater than one. The triangle
BjJijAi contains no grid point in its interior. As a
result, the grid point Bj + bβcvij corresponds to the
vertex Bj+1 of the lower convex hull (see Fig. 4).

Remarks 1 Some special cases can occur but they
are not detailed in this paper. Indeed, the case where
the dot product vij ·N is equal to zero is trivial and
is left to the reader. In the same way, the case where
intermediate grid points lie on the last found edge is
treated very simply.
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integer point L

Bj+1

vij

vij

Bj

Ai

uij

Jij

N

Figure 4: Example when vij ·N > 0

A2

B2

Lleft

A3

A1

B1

L

Lright

Sequence of the computed vertices: A2, B2, A3

Figure 5: The first step of the computation

4.2 Complexity analysis

The first two vertices A1 and B1 correspond to the
grid points lying on Lleft which are closest to L re-
spectively above and below L. We compute them in
O(1) time. Then, at each iteration we determine a
new vertex of the upper or of the lower convex hull.
For this, we use an oracle which computes in constant
time the intersection of two straight lines. Moreover,
we notice that the vector vij also corresponds to a Be-
zout Vector of the vector ui+1 j or ui j+1. So, we can
transform the vector vij into a valid Bezout vector for
ui+1 j or ui j+1 using the same oracle in O(1) time.
As a result, each iteration runs in constant time. As
each convex hull border has at most 1 + log(D + 1)
vertices (see [7]), our algorithm computes each convex
hull in O(log(D)) time. Algorithm 4.2 is a simplified
overview of our algorithm. Indeed, we show only the
main steps and we consider that vij · N is not equal
to zero. Moreover, we also consider that the straight
line L does not pass through grid points.

5 Conclusion

We describe a method to reduce the straight line L
of the form ax + by = c into an equivalent one rela-
tive to a domain K of size D such that the reduced
straight line passes through at least two grid points
of the domain. For this, we compute the border of
the convex hull of the grid points lying in the domain

Algorithm 1 Simplified overview of the algorithm
1 Init(A1,B1,u11,v11)
2 i← 1 j ← 1
3 WHILE (Ai and Bj on the left of Lright)
4 IF(vij ·N < 0)
5 bβc ← Intersection(Ai, vij , L)
6 Ai+1 ← Ai + bβcvij i← i + 1
7 ELSE
8 bβc ← Intersection(Bj , vij , L)
9 Bj+1 ← Bj + bβcvij j ← j + 1
10 update(uij ,vij)

which are located above and below the straight line.
Each critical support line of the two convex hulls cor-
responds to a reduced straight line of L. We prove
that our method runs in O(log(D)) time contrary to
the other approaches which run in O(D log(D)) time
or in O(log(max{|a|, |b|})) time. Our algorithm runs
even if the coefficients of the straight line are irrational
numbers. Moreover, when we compute the lower and
the upper convex hulls, we know the grid point of
the domain K which is closest to the straight line L.
Interpreted as a rational number, this grid point cor-
responds to the rational number whose denominator
is greater than h and less than h + D, which best
approximates the slope of L.
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Exploring Simple Triangular and Hexagonal Grid Polygons Online

Daniel Herrmann∗ Tom Kamphans∗∗ Elmar Langetepe∗

Abstract

We examine online grid covering with hexagonal and
triangular grids. For arbitrary environments without
obstacles we provide a strategy that produces tours
of length S ≤ C + 1

4E − 5
2 for hexagonal grids, and

S ≤ C + E − 4 for triangular grids. C is the num-
ber of cells—the area—, E is the number of boundary
edges—the perimeter—of the environment. We show
that our strategy is 4

3 -competitive, and give lower
bounds of 14

13 ( 7
6 ) for hexagonal (triangular) grids.

Keywords: Exploration, covering, grid graphs

1 Introduction

Exploring an unknown environment is one of the ba-
sic tasks of autonomous mobile robots. For some ap-
plications such as robots with limited vision or robots
that have to visit every part of the environment (lawn
mowers, cleaners), it is convenient to subdivide the
given environment by a regular grid into cells. The
robot’s position is always given by the cell currently
occupied by the robot. From its current position, it
knows the neighboring cells and it can move to a free
one. The robot’s task is to visit every free cell and to
return to the start.

There are three regular tilings: square, hexagonal,
or triangular subdivisions. We call the subdivisions of
the given environment a square polygon (hexagonal
polygon, triangular polygon; respectively). Hexago-
nal cells are a matter of particular interest for robots
that are equipped with a circular tool such as lawn
mowers, because hexagonal grids provide a better ap-
proximation for the tool than square grids [1].

In a square polygon with obstacles, the offline prob-
lem (i.e., finding a minimum length tour that visits
every cell) is NP-hard [13], but there are 1 + ε ap-
proximation schemes (e.g., [3]). For square polygons
there is a 53

40 approximation by Arkin et al. [1].
In a square polygon without obstacles, the com-

plexity of constructing offline a minimum length tour
is still open. There are approximations with fac-
tors 4

3 [14] and 6
5 [1]. There is an O(C4) algorithm

for deciding the existence of Hamiltonian cycles in a
square grid. Hamiltonian paths were considered by

∗University of Bonn, Institute of Computer Science I, 53117
Bonn, Germany.
∗∗Braunschweig University of Technology, Computer Science,

Algorithms Group, 38106 Braunschweig, Germany

Everett [6]. HCs on triangular and hexagonal grids
were studied by Arkin et al. [2], and Islam et al. [12].

Our interest is in the online version of the cell ex-
ploration problem for hexagonal and triangular poly-
gons. Square polygons with holes were considered by
Gabriely and Rimon [7] and Icking et al. [11]. Our ex-
ploration strategy is based on the 4

3 -competitive strat-
egy SmartDFS by Icking et al. [10], which needs at
most #Cells+ #Edges

2 −3 steps from cell to cell. Also,
there is a lower bound of 7

6 on the competitive factor.
Subdividing the robot’s environment into grid cells

is used also in the robotics community (e.g., [4]). See
also the survey by Choset [5].

2 Preliminaries

(ii) (iv)(iii)(i)

Figure 1: (i) A simple grid polygon, (ii)-(iv) neigh-
boring (arrows) and touching cells.

We consider polygons that are subdivided by a reg-
ular grid into cells. A cell is free if it can be visited by
the agent, otherwise blocked. We call two cells neigh-
boring if they share a common edge, touching if they
share a common corner. A path is a sequence of con-
secutively neighboring cells, a grid polygon is a path-
connected set of free cells. A polygon without blocked
cells inside its boundary is called simple. From its cur-
rent position, the agent can find out which neighbor
is free and which one is blocked, and it can move in
one step to a free neighbor, see Fig. 1. The agent has
enough memory to store a map of known cells.

= 2(C+1)

C = 24
E = 50

C = 24
E = 20 << 2C

Figure 2: E distinguishes thin and thick polygons.

We analyze the performance of an online explo-
ration strategy using the area, C (the number of cells),
and the perimeter, E (the number of boundary edges).
E is adequate to distinguish between thin environ-
ments that have many corridors of width 1, and thick
environments that have wider areas; see Fig. 2.

EuroCG’08, Nancy – March 18-20, 2008

177



3 Lower bounds

First, our interest is in the best competitive factor we
can expect for an online strategy that visits every cell
and returns to the start cell.

(vi) (vii)

(ii)

s

(i)

(v)

s

(iv)

s s

s
(iii)

s

s

Figure 3: A lower bound on the exploration of simple
triangular polygons (thin dashed: optimal solution,
bold dashed: next block).

Theorem 1 There is no online strategy for the explo-
ration of simple triangular (hexagonal) grid polygons
with a competitive factor better than 7

6 ( 14
13 , resp.).

Proof. For triangles, we start in a cell with two
neighbors, see Fig 3(i). If the first step is to the south,
we add a cell such that the only possible step is to the
southwest (3(ii)). Otherwise, we force a step to the
east (3(iii)). In both cases, the agent has the choice
to leave or to follow the polygon’s boundary. In either
case we close the polygon. In the first case, the agent
needs at least 12 steps while the optimal path has
10 steps (3(iv),(vi)). In the second case, the agent
needs ≥ 26 steps; the optimal path needs 22 steps
(3(v), (vii)). To construct arbitrarily large polygons,
we use more of these blocks and glue them together,
the cell shown with bold dashed lines is the next start
cell. Unfortunately, both the online strategy and the
optimal path need two additional steps for the tran-
sition. For n blocks we have in the best case a ratio
of 26+28(n−1)

22+24(n−1) , which goes to 7
6 if n goes to infinity.

s

(iii)

ss

s

(i)

(iv)(ii)

Figure 4: A lower bound for the exploration of simple
polygons. The dashed lines show the optimal solution.

For hexagons, we start in a cell with four neigh-
bors, see Fig. 4(i). The agent may leave the polygon’s
boundary with a step NW or SW, or follow the bound-
ary by walking north or south. In either case we fix
the polygon (Fig. 4(ii),(iii)), yielding a ratio of 7

6 or 13
12 ,

respectively. The subsequent block attaches using the
cell(s) shown with bold dashed lines. Again, we need
one or two additional steps for the transition (4(iv)),
yielding a best-case ratio of 13+14(n−1)

12+13(n−1) −→
14
13 . �

4 Exploring simple polygons

In this section, we briefly describe the exploration
strategy SmartDFS [11]. As a first approach, we can
apply a depth-first search (DFS): We explore the poly-
gon following the left-hand rule; that is, for every en-
tered cell the agent tries to continue its path to a
neighboring unexplored cell in clockwise order. This
results in a complete exploration, but takes 2C − 2
steps. We introduce two improvements.

(i) (ii)

c1

c2 s

c2
DFS
improved DFS

c1

s

Figure 5: Improvements to DFS: (i) optimize return
path, (ii) detect polygon splits.

First, we return directly to those cells that have
unexplored neighbors. See Fig. 5(i): DFS walks from
c1 to c2 through the completely explored corridor. A
more efficient strategy walks on a shortest path (on
known cells) from c1 to c2.

In Fig. 5(ii), DFS walks four times through the cor-
ridor. A more clever solution explores the right part
immediately after the first visit of c1, and continues
with the left part, resulting in only two visits. When
c1 is explored, the graph of unvisited cells splits into
two components. We call cells with this property split
cells. The second improvement is to handle split cells.

SmartDFS(P, start):
Choose dir, such that reverse(dir) is blocked;
ExploreCell(dir);
Walk on the shortest path to start;

ExploreCell(dir):
base := current position;
if not isSplitCell(base) then

forall neighbors c of base, in clockwise order
ExploreStep(base, direction towards c);

else Choose different order, see Sect. 5.

ExploreStep(base, dir):
if unexplored(base, dir) then

Walk on shortest path to base;
move(dir);
ExploreCell(dir);

end if

5 The analysis of SmartDFS

In this section, we briefly analyze the performance of
our strategy in hexagonal and triangular grids. See
our full version [9, 8] for the complete proofs.

To show our main theorem, we need an upper
bound on the length of a path inside a grid polygon.
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Lemma 2 The length of a shortest path, Π, between
two cells in a grid polygon is bounded by
|Π| ≤ 1

4E(P )− 3
2 for hexagonal polygons, and

|Π| ≤ E(P )− 3 for triangular polygons.

First, we give an upper bound on the number of
steps needed by our strategy. The basic idea is an
induction on the number of split cells, so let P ∗ be the
part of P that is currently explored. When we meet
a split cell, c, P ∗ divides into three parts: P ∗ = K1

•
∪

K2

•
∪ { visited cells of P ∗ }, where K1 and K2 denote

the connected components of the set of unvisited cells
of P ∗, see Figs. 6 and 7.

P ∗

Q

P1s

K1

c

P2

s

K1

Q K2 Q

c

K2

s′

c

Figure 6: A split: K1 is of type C, K2 type A.

K2

K1

Q

P∗

c

K2

Q

P2
s′

c

s

K1

Q

P1

c

s

Figure 7: A split: K1 is of type C, K2 type B.

Now, we divide P ∗ into two parts, P1 and P2, such
that each of them is an extension of the two compo-
nents. Both polygons overlap in the area around the
split cell c. If there is a polygon that does not contain
s, we explore the corresponding component first, ex-
pecting that in this part the path from the last visited
cell back to s is the shorter than in the other part. In
the following, let K2 denote the component that is
explored first.

We can decide which component we have to visit
first using the following definition:

Definition 1 The boundary cells of P uniquely de-
fine the first layer. P without its first layer is the
1-offset. The `th layer and the `-offset are defined
successively. When a split cell occurs in layer `, every
component is one of the following types:
A. the part of layer ` that surrounds Ki is not visited
B. . . . completely visited
C. . . . partially visited

If a component of type C exists, it is reasonable to
explore it at last. Otherwise, we proceed using the
left-hand rule, but omit the first possible step [9].

Now, let Q be the polygon made of c extended by q
layers, where q := ` if K2 is of type B, and q := `− 1
if K2 is of type A. We choose P2 ⊂ P ∗ ∪Q such that
K2 ∪ {c} is the q-offset of P2, and P1 := ((P ∗\P2) ∪
Q) ∩ P ∗. Further, we require P ∗ ∪ Q = P1 ∪ P2 and
P1∩P2 ⊆ Q. The choice of P1, P2, and Q ensures that
the paths in P1\Q and P2\Q do not change compared
to P ∗. The parts of the path that lead from P1 to
P2 and back are fully contained in Q. Just the parts
inside Q are bended to connect the appropriate paths
inside P1 and P2; see Figs. 6, 7.

Theorem 3 Let P be a simple grid polygon with
C(P ) cells and E(P ) edges. P can be explored with
S(P ) ≤ C(P ) + 1

4E(P )− 5
2 (hexagonal polygons)

S(P ) ≤ C(P ) + E(P )− 4 (triangular polygons)
steps. This bound is tight.

Proof. (sketch for hexagonal polygons)
We show by an induction on the number of split cells
that the number of additional cell visits, ex(P ∗), is
smaller than 1

4E(P ∗)− 5
2 .

In the induction base we have no split cell:
SmartDFS visits every cell and returns to the start
cell. Without a split, all cells of P can be visited by
a path of length C(P )− 1. By Lemma 2, the shortest
path back to s is smaller than 1

4E(P ∗)− 3
2 .

Now, let c be the first split cell in P ∗. Two new
components, K1 and K2, occur. Let P1, P2, and Q
defined as earlier. There is no split in P2\(K2 ∪ {c}),
but c is visited twice. Thus, we have

ex(P ∗) ≤ ex(P1) + ex(K2 ∪ {c}) + 1.
Now, we apply the induction hypothesis to P1 and
K2 ∪ {c} and get

ex(P ∗) ≤ 1
4E(P1)− 5

2 + 1
4E(K2 ∪ {c})− 5

2 + 1.
The `-offset, P ′, of P fulfills E(P ′) ≤ E(P )− 12` [9]:

ex(P ∗) ≤ 1
4E(P1) + 1

4E(P2)− 3q − 4.
With E(P1) + E(P2) = E(P ∗) + E(Q) and E(Q) =
12q + 6 we have

ex(P ∗) ≤ 1
4E(P ∗) + 3

2 − 4 = 1
4E(P ∗)− 5

2 .

It is easy to see that this bound is exactly achieved
in corridors of width 1. The exploration of such a
corridor needs 2(C(P )− 1) steps. On the other hand,
the number of edges is E(P ) = 4C(P ) + 2. �
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Theorem 4 The strategy SmartDFS is 4
3 -

competitive in hexagonal and triangular polygons.
This factor is tight.

Proof. (sketch for hexagonal polygons)
Corridors of width 1 or 2 play a crucial role in the fol-
lowing, so we refer to them as narrow passages. More
precisely, a cell, c, belongs to a narrow passage, if c
can be removed without changing the layer number
of any other cell. It is easy to see that narrow pas-
sages are explored optimally: In corridors of width
1 both SmartDFS and the optimal strategy visit ev-
ery cell twice, and in the other case both strategies
visit every cell exactly once. Thus, we can assume
that P is a polygon without narrow passages. If P
has no split cell in the first layer, we can show that
E(P ) ≤ 4

3 C(P ) + 26
3 holds (E(P ) ≤ 1

3 C(P ) + 14
3 for

triangular polygons). Further, in these type of poly-
gons SmartDFS needs two steps fewer than shown in
Theorem 3.

Now, we show by induction on the number of split
cells in the first layer that S(P ) ≤ 4

3C(P )− 7
3 holds.

For the induction base we can apply the observa-
tions from above: S(P ) ≤ C(P ) + 1

4 E(P ) − 9
2 ≤

C(P ) + 1
4

(
4
3 C(P ) + 26

3

)
− 9

2 = 4
3 C(P )− 7

3 .
Two cases occur if we meet a split cell, c, in the first

layer: Either the new component was never visited
before (type A), or we meet a visited cell, c′, that
touches the current cell (type B). In the first case let
Q := {c}, in the second case Q := {c, c′}.

Similar to the proof of Theorem 3, we split the poly-
gon P into two parts, both including Q. Let P ′′ de-
note the part that includes the component of type
A or B, P ′ the other part. For |Q| = 1 we conclude
S(P ) = S(P ′)+S(P ′′) and C(P ) = C(P ′)+C(P ′′)−1.
Applying the induction hypothesis to P ′ and P ′′

yields S(P ) = S(P ′) + S(P ′′) < 4
3 C(P )− 7

3 .
For |Q| = 2 we gain some steps by merging the

polygons. If we consider P ′ and P ′′ separately, we
count the steps from c′ to c—or vice versa—in both
polygons, but in P the path from c′ to c is replaced
by the exploration path in P ′′. Thus, we have S(P ) =
S(P ′) + S(P ′′) − 2 and C(P ) = C(P ′) + C(P ′′) − 2.
Applying the induction hypothesis yields our claim.

OPT needs at least C steps, which, altogether,
yields a competitive factor of 4

3 . This factor is
achieved in a corridor of width 3, see Fig. 8. �

OptimalSmartDFS

s s

Figure 8: S(P ) = 4
3SOpt(P )− 7

3 holds.

6 Summary

We considered the online exploration of hexagonal
and triangular grid polygons with SmartDFS.

For hexagonal polygons we gave a lower bound of
14
13 and showed that SmartDFS explores polygons with
C cells and E edges using no more than C + 1

4E − 5
2

steps. For triangular polygons we have a lower bound
of 7

6 (matching the lower bound for square polygons)
and an upper bound of C + E − 4 on the number of
steps. Further, we showed that both strategies are 4

3 -
competitive. An interesting open problem is how to
close the gap between the upper bound and the lower
bound on the competitive factors.
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Manifold Homotopy via the Flow Complex

Bardia Sadri∗

Abstract

It is known that the critical points of the distance
function induced by a dense sample P of a submani-
fold Σ of Rn are distributed into two groups, one lying
close to Σ itself, called the shallow, and other close to
medial axis of Σ, called deep critical points. We prove
that under (uniform) sampling assumption, the union
of stable manifolds of the shallow critical points have
the same homotopy type as Σ itself and the union of
the stable manifolds of the deep critical points have
the homotopy type of the complement of Σ. The sep-
aration of critical points under uniform sampling en-
tails a separation in terms of distance of critical points
to the sample. This means that if a given sample is
dense enough with respect to two or more submani-
fold of Rn, the homotopy type of all such submanifolds
as well as that of their complements are captured as
unions of stable manifolds of shallow critical points, in
a filtration of the flow complex based on the distance
of critical points to sample.

1 Introduction

The flow complex was introduced by Giesen and John
[9] as a tool for geometry modeling. Much of the
mathematical foundations behind the flow complex
were well-explored; see [10] and references therein.
Further important properties of the flow map induced
by a generalized gradient of the distance function in-
duced by compact sets have been subject of recent
investigations, see e.g. [12]. In [8], it was noted em-
pirically that the flow complex derived from a dense
sample of a surface, though often much coarser than
the Delaunay complex of the same point set, does
contains a subcomplex that approximates the surface
much in the same was as the Delaunay complex.

Surface reconstruction is the problem of producing
from a discrete sample of a surface Σ a concisely rep-
resented surface Σ̃ that closely approximates Σ and
shares its topology, provided that the sample is dense
enough. This problem has a rich literature spanning
several disciplines; see [2] for a survey of Delaunay-
based algorithms which have particularly been the
most successful in providing geometric and topolog-
ical guarantees. Traditionally, “topological equiva-
lence” is interpreted as homeomorphism or even am-
bient isotopy. This in particular requires the recon-

∗Duke University, Durham, NC 27708, sadri@cs.duke.edu

structed object to also be a manifold and of the same
dimension as the target surface. In this paper, we re-
lax this interpretation to homotopy equivalence (See
[11] for definitions). In other words, we seek to cap-
ture the homotopy type of a manifold by finding a
topological space that that is not necessarily a mani-
fold but approximates the original manifold in Haus-
dorff distance.

Prior to [8], flow methods were employed in surface
reconstruction (e.g. [7]) but the first of such algo-
rithms with geometric and topological guarantees was
found by Dey et al. [5] who proved a sharp separation
of critical points of the distance function induced by
surface samples into two groups one lying close to the
surface (shallow) and the other close to its medial axis
(deep). They further showed that in 3D, the bound-
ary of the union of stable manifolds of inner or outer
deep critical points is homeomorphic to the original
surface, provided that the sample is dense enough and
tight. However, this does not generalize to higher di-
mensions. This paper aims to achieve this, albeit with
certain modifications. On the down-side, we use uni-
form sampling (as opposed to adaptive sampling used
in [5]) although we relax the tightness requirement.
Moreover, homeomorphism is weakened to homotopy
equivalence. On the upside, we prove that the union
of stable manifolds of shallow critical points approx-
imates the manifold and captures its topology while
that of deep ones does the same for the complement
of the manifold. Plus, we show that this works for
any closed submanifold of a Euclidean space of any
dimension not just for (codimension-1) surfaces. Cap-
turing the homotopy type of the complement in ad-
dition to that of the manifold substantially improves
the quality of topological guarantee. For example, all
closed curves have the same homotopy type (in fact
are homeomorphic) and its is the homotopy type of
the complement of the curve that distinguishes knots
from one another. Similarly, a knotted torus is homeo-
morphic to an unknotted one while their complements
have different homotopy types.

For uniform samples, the separation of critical
points which is determined in terms of their dis-
tance from the manifold translates into a separation
in terms of distance from the sample itself. In other
words, if one sorts the critical points in the order of
their distance to the sample, shallow critical points
make a prefix of this ordering. Thus if one filters
the flow complex by putting together the stable man-
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ifolds, i.e. cells associated to, critical points in all pre-
fixes of this order, one is guaranteed to reach in this
filtration a shape homotopy equivalent to the mani-
fold in question.

As mentioned above, the union of
stable manifolds of the remaining crit-
ical points then captures the homo-
topy type of the complement of the
manifold. Since the filtration is re-
gardless of the manifold, this state-
ment is true for any manifold for
which the given sample is a dense
enough sample. For example, if the given sample
is dense for a curve embedded on a torus and for
the torus itself, the above filtration results homotopy
equivalent reconstruction of both the curve and the
torus, as well as their complements, in different stages.

2 Background and preliminaries

Let P be closed nonempty subset of Rn. The com-
plement of P is the open set P c = Rn \ P . For any
point x ∈ P c, let hP (x) = infy∈P ‖x − y‖ be the dis-
tance function defined by P and let AP (x) = {y ∈ P :
‖x− y‖ = hP (x)}.

While the distance function hP is not smooth, it
induces a vector field vP over P c which behaves like
the gradient of hP in the sense that vP (x) 6= 0 if
and only if there is a unique direction of steepest as-
cent for hP at x in which case the direction of this
steepest ascent is given by vP (x) (See [10] for more
general statement and details). The vector vP (x) at
a point x is characterized by vP (x) = x−dP (x)

hP (x) , where
dP (x), called driver of x is the center of the smallest
enclosing ball of AP (x), or equivalently, the closest
point in conv AP (x), the convex hull of AP (x), to x.
The critical points of hP are those points x for which
vP (x) = 0, or equivalently, x = dP (x) ∈ conv AP (x).

Lieutier [12] proved that if P c is bounded, then Eu-
ler schemes defined by vP on P c uniformly converge
and this results in a flow map φP : R+ × P c → P c

(where R+ is the set of non-negative reals) which
he also proved to be continuous (on both variables).
Intuitively, φP (t, x) is the point y that is reached
from following the vector field vP for time interval
of length t, starting at x, by infinitesimal movements
proportional to the magnitude of vP . The map φP

has the classical properties of a flow map, namely
φP (0, x) = x, φP (s + t, x) = φP (s, φP (t, x)), and for
any point x and any t ≥ 0, vP (φP (t, x)) is the right-
derivative of φP (t, x). Lieutier also proved that hP

along any flow orbit, i.e. t 7→ hP (φP (t, x)) is increas-
ing and in addition satisfies

hP (φP (t, x)) = hP (x) +
∫ t

0

‖vP (φP (τ, x))‖2dτ. (1)

The special case where P is finite is of particular
interest to us and the rest of this section goes over
special properties of the flow maps in this case. Let
VorP and DelP respectively denote the Voronoi and
Delaunay complexes induced by P . For any point
x ∈ Rn, we represent by VP (x) the lowest dimensional
face of VorP that contains x, and by DP (x) the face
in Del P dual to VP (x). The set AP (x) is the vertex
set of DP (x) and dP (x) becomes the closest point on
DP (x) to x. It can be verified that all points in the
relative interior of the same Voronoi face have the
same driver. Since the affine hulls of a Voronoi face
and its dual are orthogonal with total dimension n,
they intersect in exactly one point. Thus if VP (x)
and DP (x) intersect, then this intersection consists of
a single critical point which is the driver of x. All
critical points (except for the maximum at infinity)
are characterized the same way (as intersection points
of duals). Following [9], we make a general position
assumption that all pairs of Voronoi and Delaunay
objects that are dual to and intersect each other, do
so in their relative interiors. The index of a critical
point c is defined as the dimension of DP (c).

For a given flow map φP , the flow orbit of a regular
point x, denoted φP (x) is defined as φP ([0,+∞), x).
For a set T we use φP (T ) for

⋃
x∈T φP (x). Notice

that by this definition T ⊆ φP (T ).
For a critical point c of hP , the set of all

points x whose flow orbit converges to c is called
the stable manifold of c and denoted by Sm(c) =
{x : φP (+∞, x) = c}. Although there is no flow out
of a critical point c, we study the orbits of points
very close to c. Some of these points flow into c while
other flow away from it. We define the unstable mani-
fold Um(c) of a critical point c, as the set of all points
into which points arbitrarily close to c flow. Formally,
Um(c) =

⋂
ε>0 φ(B(c, ε)), where B(c, ε) denotes the

open ball of radius ε centered at c. In other words,
the unstable manifold of c consists of c and all the
integral lines that start infinitesimally close to c.

Proposition 1 Let P be finite. For a critical point
c of hP , Um(c) = φP (VP (c)).

A set T is said to be flow-tight for φP if φP (T ) = T .
Stable and unstable manifolds of critical points and
their union and intersections are flow tight. Let CP be
the set of critical points of hP induced by P (includ-
ing the critical point at infinity). The (stable) flow
complex of P , denoted Sfc P is the collection of stable
manifolds of all critical points in CP . Generically, the
cell associated to an index k critical point is a topo-
logical open k-ball. Moreover, if for critical points
c, c′ ∈ CP , c ∈ ∂ Sm(c′), then Sm(c) ⊂ ∂ Sm(c′).

Lemma 1 If for c ∈ CP , ind c = k, then every critical
point c′ ∈ ∂ Sm(c) has index less than k, provided that
Sm(c) does not intersect the (n − k − 1)-skeleton of
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VorP . Under the same assumption, if c ∈ ∂ Um(c′),
then ind c′ < ind c.

All but a measure-0 set of points P satisfy the re-
quirement that Sm(c) must stay clear from faces of
VorP of dimension n− k − 1 or smaller (See [14]).

By a manifold we refer to a C2-smooth closed sub-
manifold Σ of Rn. The medial axis M(Σ) of Σ consists
of points in space with 2 or more closest points in Σ.
The reach of Σ is the distance between Σ and M(Σ).
We assume the reach of Σ is strictly positive. Any
point x 6∈ M(Σ), has a unique closest point x̂ in Σ.
The half-line bounded at x̂ through x hits M(Σ) for
the first time at a point x̌ (or at infinity).

A point set P ⊂ Σ is a uniform ξ-sample of Σ if
∀x ∈ Σ ∃p ∈ P : ‖x− p‖ ≤ ξ. For a given parameter
r ≥ 0, the union of balls

⋃
p∈P B(p, r) is denoted by

B(r)(P ). The α-shape of P of parameter r, denoted
K(r)(P ) is the underlying space of restriction of DelP
to B(r)(P ) (See [6]). The flow shape of P for parame-
ter r, denoted F (r)(P ) is the union of stable manifolds
of critical points at distance ≤ r from P (See [4]).

3 Shallow versus deep critical points

For any point x ∈ Rn \(Σ∪M(Σ)) let µ(x) = ‖x̌− x̂‖.
If x̌ is at infinity, then µ(x) = ∞. Otherwise, the ratio
0 < ‖x−x̂‖

‖x̌−x̂‖ < 1, is a relative measure of how close to
Σ or M(Σ) the point x is. It turns out [5, 3] that
when a (possibly noisy) sample P of Σ satisfies some
density requirements, then critical points of hP are
distributed, according to the above measure, into two
distinguishable groups, one lying very close to Σ and
the other to M(Σ). We use a weaker version of the
Lemma for uniform samples here.

Theorem 2 Let P be an ετ -sample of a manifold Σ
of reach τ with ε ≤ 1/

√
3. Then for every critical

point c of hP , either ‖c− ĉ‖ ≤ ε2τ, or ‖c− ĉ‖ ≥ (1−
2ε2)τ. In the former case we call c a shallow critical
point and a in the latter case a deep one.

Corollary 1 Under the settings of Theorem 2, for
every shallow critical point c of hP , hP (c) ≤

√
5/3·ετ ,

and for every deep critical point c′ of hP , hP (c′) ≥
(1− 2ε2)τ .

For any 0 ≤ δ < 1, the δ-tubular neighborhood of
a manifold Σ of reach τ is defined as the set Σδ =
{x ∈ Rn : ‖x− x̂‖ ≤ δτ}. Notice that M(Σ) ⊂ Σc

δ.

Lemma 3 For any 0 ≤ δ < 1, clΣc
δ is homotopy

equivalent to Σc. In fact, the former is a strong de-
formation retract of the latter.

Lemma 4 Let P be an ετ -sample of a manifold Σ of
reach τ with ε ≤ 1/(1+

√
2). Then, clΣc

δ is flow-tight

under the flow φP , for any ε2

1−ε < δ < 1− ε− ε2

1−ε . In
particular this is true for δ = 1/2.

The above lemma implies that union of stable mani-
folds of shallow critical points is contained in Σδ for
δ = ε2/(1 − ε) thus providing the Hausdorff distance
guarantee for our reconstructions.

4 Homotopy type of the manifold

In this section we show that in a dense enough sample
of a submanifold of Rn, the union of stable manifolds
of the shallow critical points has the same homotopy
type as the manifold itself. This statement follows
from the following sequence of results.

Lemma 5 [13] Let Σ be a manifold of reach τ and
let P be an ετ -sample of Σ for any ε ≤ 1

2

√
3/5. Then

B(r)(P ) deformation retracts (and is in particular ho-
motopy equivalent) to Σ, for any 2ετ < r <

√
3/5 · τ .

Lemma 6 [6] For any r ≥ 0, B(r)(P ) and the α-
shape K(r)(P ) are homotopy equivalent.

Lemma 7 [4, 1] For any r, the flow shape F (r)(P )
and the α-shapes K(r)(P ) are homotopy equivalent.

Theorem 8 Let Σ be a manifold of reach τ and let P
be an ετ -sample of Σ for ε ≤ 1

2

√
3/5. Then Σ is ho-

motopy equivalent to the union U of stable manifolds
of shallow critical points of hP .

Proof. For a critical point c of hP , by Corollary
1 hP (c) ≤

√
5/3 · ετ if c is shallow and hP (c) ≥

(1 − 2ε2)τ if c is deep. For ε < 1
2

√
3/5 the latter

bound is strictly greater than the former and there-
fore there is a positive value r for which hP (c) < r for
every shallow critical point c and hP (c′) > r for every
deep critical point c′. Thus the flow shape F (r)(P )
is precisely the union of stable manifolds of shallow
critical points of hP with respect to Σ. Lemmas 5, 6,
7 now imply that this union is homotopy equivalent
to Σ. �

5 Homotopy type of the complement of the man-
ifold

In this section we prove that the union of stable man-
ifolds of deep critical points has the homotopy type
of Σc using the continuity of the flow map φP . The
technique is inspired from the work of Lieutier [12].
A proof can found in [14].

Theorem 9 Let P be a finite set of points in Rn. If
for sets Y ⊂ X ⊂ Rn, X and Y are both flow-tight
for φP , i.e. φP (X) = X and φP (Y ) = Y , and if X \Y
is bounded, and, finally, if there is a constant c > 0
for which ‖vP (x)‖ ≥ c for all x ∈ X \ Y , then X and
Y are homotopy equivalent.
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A difficulty in using the above theorem is that φP is
proven in [12] to be continuous on P c as long as it is
a bounded set. This can be overcome by clipping the
space with a very large ball, thus letting P0 = P ∪Bc

where B is a very large ball satisfying P ⊂ 1
5B. It can

then be verified that within 1
2B, φP and φP0 agree

which is enough for what we want to prove. In the
sequel CΣ denotes the set of shallow critical points of
P where P is an ετ -sample of a manifold σ of reach
τ . The value of ε is determined later. For shorthand,
we write S for Σc as well Sδ for Σc

δ.

Lemma 10 Let c be a critical point of hP and let
U ⊆ Rn be a flow-tight set for φP with c 6∈ U . Let
V = rel int VP (c). For r ≥ 0, let Vr = V ∩ B(c, r).
Then for every r ≥ 0, U and U \ Vr have the same
homotopy type and if U ∩B(c, r) ⊂ V then U \ Vr is
flow-tight for φP .

Theorem 11 Let ε ≤ 1
2

√
3/5. Let S̃ =⋃

c∈C\CΣ
Sm(c) be the union of stable manifolds of

all deep critical points of hP with respect to Σ. Let
UΣ =

⋃
c∈CΣ

Um(c) be the union of unstable mani-

folds of all shallow critical points. Then S̃ is homo-
topy equivalent to S.

Proof. (sketch) We use Theorem 9 to show that
X = S is homotopy equivalent to Y = S̃1/2 which
is itself homotopy equivalent to S by Lemma 3. The
main difficulty in the proof is that although both X
and Y are flow-tight for φP , ‖vP ‖ can be arbitrarily
small in X \ Y because the boundary of X can con-
tain critical points that drive points in the interior of
X arbitrarily close to them. To handle this difficulty,
a first idea is to use Lemma 10 to remove from X a
neighborhood of these critical points, thus creating a
strictly positive distance between these critical points
and points in the trimmed X. However, in order to
do this in a manner that ensures the trimmed X is
still flow tight, this has to be done in several steps
where the i-th step gets rid of critical points of in-
dex i. We thus first delete from X a neighborhood
of every critical point of index-0 to get a flow-tight
set X0 that by Theorem 9 will be homotopy equiva-
lent to the set X̃0 consisting of the union of Y and
the unstable manifolds of critical points of index 1
and higher on boundary of X, restricted to X. One
can then remove from x a neighborhood of all index-1
critical points resulting a set X1 that using Lemmas
1 and 10 is flow-tight for φP . Applying Theorem 9
then results a set X̃1 consisting of the union of Y
and unstable manifolds of critical points of index 2 or
higher clipped by X. Continuing this way, all criti-
cal points on the boundary of X can be eliminated
resulting a sequence of homotopy equivalent shapes
X0, X̃0, X1, X̃1, . . . , Xn, X̃n the first of which is ho-
motopy equivalent to X and the last one to Y . �

Corollary 2 Let Σ1, . . . ,Σs be manifolds of various
dimensions for all of which the same sample P is an
ετi-sample where τi is the reach of Σi, i = 1, . . . , s. If
c1, . . . , cm are the set of critical points of hP sorted
such that hP (c1) < · · · < hP (cm), then for each
i, there is a ji such that

⋃
j≤ji

Sm(cj) ' Σi and⋃
j>ji

Sm(cj) ' Σc
i .
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Surface Deformation on a Discrete Model for a CAD System

Ioana G. Ciuciu∗ Frederic Danesi† Yvon Gardan‡ Estelle Perrin§

Abstract

Discrete geometry is becoming one of the most power-
ful and easy to use fields of Mathematics which applies
with great success in most of the Computer Science ar-
eas concerned with the geometric modelling and with
the visualisation of shapes. We aim to obtain a sur-
face modelling tool within a larger CAD framework,
the DIJA system developed by our research team, to
allow local deformation of discrete surfaces in a man-
ner as free as the constraints specific to a certain trade
would allow.

1 Introduction

Classical Computer Aided Design systems for surface-
modelling are built on continuous models such as
polynomial surfaces and super quadrics. The draw-
back with these systems is that they are complex in
terms of representation, manipulation and visualisa-
tion of surfaces, difficult to apply and time consum-
ing [1, 2]. The deformations that we can operate on
these models are often limited to global deformations
and the deformed shapes are restricted to a certain
topology [3, 4, 5].

Opposite to these methods lie the discrete geomet-
ric modelling techniques which provide the simplest
way to represent the geometry of any surface and to
make direct interactions on this one [6, 7, 8]. We can
though manipulate surfaces with any kind of shape in
the simplest and fastest manner. The representations
are point-based and generally constitute discretiza-
tions of the continuous shapes. This greatly facili-
tates the internal storing and processing of the model
on a workstation. The user can interact directly with
the points lying on a surface deciding where a point
should go and which should be the region of influence
of the displacement [4].
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In this paper we propose a discrete surface mod-
elling tool to allow local deformations on surfaces in
the domain of CAD. The deformations are submitted
to geometric constraints and obey laws specific to a
certain trade specified by the user at the beginning of
the modelling. This approach is part of a much larger
CAD framework developed by our research fellows,
the DIJA project. DIJA is a federative concept whose
idea is to create a functional, distributive, collabora-
tive and intuitive CAD system. Only the functional
and intuitive aspects count here.

The intuitiveness is reached by the bias of trade-
based tools which help the user emerge into his/her
world and gives him/her the possibility to make ge-
ometric transformations only by using his/her know-
how. For example, a tool for blacksmiths would be
to soften the filets of their shapes by applying a loga-
rithmic function in order to improve metal flaw. This
definition of tool must not be related to tools using
peripheral devices [9]. This fact is not convenient for
us, as we want to develop tools which conserve the
classical peripheral device: the mouse.

The functional aspect is reached by a progressive
decomposition of the object, which is at the opposed
pole from the modelling used by the actual CAD
systems [10]. The precision of the resulting form is
achieved thanks to deformations which are no longer
done on a classical model but on some visible entities
called dialog elements. Dialog elements are elements
representing the objects silhouette and which permit
to obtain visual details on the modelised object.

Actually, only deformations applied on 2D dialog
elements are implemented and we are trying to im-
prove them in order to perform them on a particular
3D dialog element, the surface under a supplemen-
tary constraint that is to obtain satisfactory response
times.

In this article we propose a new local deformation
method of surfaces in order to preserve constraints in-
duced by fillets. For reaching our purposes we choose
a discrete model which fits the best the synthetic mod-
elling approach and the constraints imposed by a spe-
cific trade. In section 2 we present a state of the art
on the discrete deformation models highlighting and
motivating the main directions of our research study.
Section 3 presents the geometric model which is at
the basis of our system. In section 4 we explain our
first practical results and we finalize by resuming this
paper and by making our future intentions known.
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2 Overview

In this section we present an overview on the differ-
ent surface deformation techniques with the focus on
those which interest us the most, keeping in mind
the fact that we want a modelling method which ap-
plies deformations on the 3D face dialog element using
trade-based intuitive tools with acceptable response
times from the system.

The first studies in the field of surface deformation
are made using the explicit deformation technique
proposed by Barr [11]. Other approaches use the me-
chanical properties of solids for expressing the defor-
mation as a system which changes in time, dependent
on inertial and elastic properties. These methods do
not correspond to our needs because they are time
consuming and not necessarily intuitive. We concen-
trate on purely geometric spatial deformations which
give the geometric form of the physical result, the
model not being though induced by physical proper-
ties.

Other methods are based on the geometric descrip-
tion of the object [12]. In this case, the user must
know the geometric properties of the model in order
to make changes on this one, which is non-intuitive.

Free Form Deformation - introduced by Sederberg
and Parry in [4] - is a technique which can be applied
to any object, independently of its geometrical and
topological description. The model is based upon a
patch of control points placed along three axes mu-
tually perpendicular which define a tri-variate Bezier
volume. This model has been extended to models
where the control patch has an arbitrary topology. In
[13], Coquillart proposes a model which allows com-
bining the control meshes. Lazarus [4] introduced the
axial-based deformation in which a deformation axis
is associated with the object and the deformation of
the last one is made in accordance to that applied to
the axis. The major inconvenient of the patch-based
or axial-based deformations is the lack of intuitive-
ness due to inexact control over the surface and the
impossibility to apply local deformations to it. Bor-
rel and Bechmann [14] have tried to eliminate this
problem by proposing a constraint-based method. It
basically consists in fixing displacement constraints
on the points of an object and ensuring their satisfac-
tion through the deformation. The resulting object is
a combination of deformation functions called decay
functions and the imposed constraints. Apart from
the displacement constraint and from the type of de-
cay function, the user can specify also the extent of
the constraints’ influence on the surface.

Decay functions have great importance over the de-
formation process, since they apply a mathematical
function directly and locally on the points of the sur-
face. They establish the deformation style, the action
to be taken on the surface and the radius of influence.

The style gives the visual aspect of the deformation,
the action is that of locally deforming the surface and
the radius of influence specifies the number of neigh-
bour vertices affected. In [7] we are presented a series
of deformation styles, such as Goo, Bell, Cusp, Cone,
and Flat.

Figure 1: Shapes of decay functions [7].

The inconvenient with the constrained based de-
formations using decay lies in the way of linking the
local deformed region of the surface with the rest of
the surface.

An interesting solution in this direction would be
the subdivision surfaces which can be used in order
to smooth the deformed surface. This gives visu-
ally pleasant results but without respecting the trade-
based constraints.

The next paragraph reminds us how deformations
are made under the DIJA system and we finish by
studying how we could solve the trade-based con-
straints problem induced by the constrained-based
method and decay functions.

3 DIJA deformations

The architecture of the DIJA system is based upon
five abstraction levels, each of which being different
from the others in terms of possible tasks and vocab-
ulary.

Figure 2: The different abstraction levels.

Deformations are the heart of the “synthetic ap-
proach” and are possible at the “trade”, “common”
and “dialog” levels thanks to the different available
tools. They are based on visual elements that can be
found at the “dialog” level. There exist three types of
dialog elements: the characteristic line and contour,
the fiber and the face. The characteristic line and con-
tour represent visible lines on the object’s surface, the
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fibre is a line giving the general silhouette of the ob-
ject. Those are 2D objects. The results of a deforma-
tion process using these elements is seen in Fig.3. The
term face corresponds to a 3D element and designs a
homogeneous surface or a portion of a homogeneous
surface.

Figure 3: Objects modelised with 2D dialog elements.

Deformations are done on any geometric model - ei-
ther a B-Rep model, a CSG, an octree, a mixed model
or a model from the research field - stored at the “ge-
ometric” level, provided that this one can answer the
demands of the “dialog” level and in particularly col-
lect the points of the face element starting from these
models.

With the 3D deformation method we wish the user
to be able to deform the surface in the following man-
ner: he/she starts with selecting a point on the sur-
face, then he/she indicates a radius of influence en-
circling the selected point and a decay function for
the shape of the deformation. Then he/she pulls the
selected point out of the surface and it modifies in
accordance to his/her users choices. In the following
section we present the deformation model we created
in order to conserve the trade-based constraints.

4 Implementation

Our CAD system is conceived to fit several trades,
each of them having its own set of trade-specific defor-
mation tools which apply on an initial surface in order
to deform it. The user starts his/her modelling pro-
cess by selecting a trade, an initial shape, and by spec-
ifying the parameters which correspond to the trade
rule to be applied. It is then the system’s task to in-
terpret the user choices and to find the parameterized
deformations to apply to the surface in a way that
ensures its quality in terms of continuity.

The application was developed using the Java pro-
gramming language and the VTK visualization li-
brary. It was tested on a 2.4GHz duo processor with
2GB of memory.

The internal model is formed by 3D points and tri-
angles read from an STL source file. The surface we
use is planar and contains a list of points, i.e. all the
points on the surface at a deformation level, a list of
triangles formed by these points and a value specify-
ing the radius of influence of the deformation at each
step. Its internal structure changes at each deforma-
tion step. The surface has a deformation entity asso-

ciated, which indicates at any time the shape of the
applied deformation, and a smoothing entity which
specifies the type of smoothing operation applied.

The deformation model contains three types of
deformation corresponding to different deformation
laws: cone, bell, and cylinder. We have chosen them
for their simplicity in order to simulate the basic de-
formations a CAD user can perform to deform the
object. Examples of the three are presented in Fig.4.

Figure 4: The three types of deformation allowed:
cone, bell, cylinder.

The three laws increase progressively in complexity
and quality. If the first law simply pushes a point out
of the surface in a cone-like deformation with no worry
for the continuity of the resulted surface, the second
one increases the quality of the deformation by using
the Gauss function which assures itself the continuity,
while in the third case we had to assure ourselves the
smoothness between the deformed region and the rest
of the surface by applying an appropriate mathemat-
ical function. We used 1/x at different scales on the
interval [0.25, 12] on the points inside the region of
influence. The scaling of the cylinder basis is done in-
teractively with a slider. Three examples are done in
Fig.5. The first one presents the cylinder in its origi-
nal shape, while the other two use a version of 1/x at
a much larger scale to represent it.

Figure 5: Improving the smoothness by scaling the
cylinder basis.

Fig.6 shows an example of a deformation process
applied on a plane. The user starts by marking on
this one an initial point and a radius of influence
which in our case determines a disc of influence. Then
he/she chooses the bell deformation law and indicates
a displacement position in the 3D space by a mouse
left-click. The last two pictures show the results af-
ter having modified the displacement position and the
radius of influence respectively.

5 Conclusion

We created a discrete geometric model which allows
the representation and deformation of surfaces in the
domain of CAD. The representation is realized in
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Figure 6: Bell deformation applied on a planar sur-
face. Upper left: the starting surface with the chosen
point and area of deformation; upper right: the result
of a bell deformation; lower left: the result of modi-
fying the displacement point; lower right: the surface
after having modified the area of influence

terms of triangular polygonal meshes, while the de-
formation model is based on constrained deforma-
tions and decay functions. In practice, this model is
concretized in a prototype which permits interactive
real-time deformations locally on planar 3D discrete
surfaces according to the choices made by the user.
In present we concentrate on the deformation of free
form discrete surfaces following from laws straight re-
lated to real world rules applied in various trades and
upon the development of virtual tools.

6 Future work

The prototype we have developed will be further
transformed into a real CAD application in which the
deformation laws will be generalised and strongly cor-
related to trade rules from different domains. We will
have to find a way to associate any trade-rule with any
type of deformation to ensure generality. For so do-
ing we need to extend our internal model to contain
vicinity relations between vertices, edges and trian-
gles. The deformations will be done on surfaces of any
form by making use of the new implemented intuitive
virtual tools. We will also implement a method to
redescend the results of the deformation at the “ge-
ometric” level, this one not being done purely at a
discrete geometric level beacuse the parameters of the
tool - forme, distance, etc. - are known.
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Optimal Insertion of a Segment Highway in a City Metric

Matias Korman∗ Takeshi Tokuyama†

Abstract

Given two sets of points in the plane, we are inter-
ested in locating a highway h of length ` such that an
objective function on the city distance between points
of the two sets is minimized (where the city distance
is measured with speed v > 1 on h and 1 in the un-
derlying metric elsewhere). Extending the results of
Ahn et al. ([6]), we consider the option that there are
some already built roads. Our algorithm has polyno-
mial time complexity, and unified structure for several
optimization criteria.

Keywords: facility location, city metric, computa-
tional geometry, optimization problems, algorithms,
urban planning.

1 Introduction

We consider the following problem: Given two sets
of points in the plane S and T (called sources and
sinks respectively) and a set of isothetic (i.e: horizon-
tal or vertical) segments H called highways, we locate
another highway h that minimizes an objective func-
tion related to the city distance between sources and
sinks considering that we can travel v times faster on a
highway. This problem arises naturally in urban plan-
ning where source points correspond to houses, sinks
to working centers, and highways to real highways or
railways.

Abellanas et al. ([5]) considered the construction of
the Voronoi diagram for point sets under the L1 met-
ric given an isothetic and monotone highway of speed
v > 1. Aichholzer et al. ([3]) introduced efficient algo-
rithms for calculating Voronoi diagrams under a set
of isothetic highways. The problem of constructing
a line highway to minimize the maximum distance
was considered by Cardinal and Langerman ([6]) in
the context of a facility location problem. Ahn et
al. ([1]) and afterwards Cardinal et al. ([7]) further
improved those results and considered different high-
way types. Up to our knowledge, there has been no
research in optimal highway location that considers
previously built highways or focuses in an objective
function other than maximum travel distance. In this
paper, we introduce a general algorithm to build a
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University, mati@dais.is.tohoku.ac.jp

†Graduate School of Information Sciences (GSIS), Tohoku
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Figure 1: Sources and their paths to their closest sinks

segment highway of length ` (a fixed value) that can
be adapted to work for different evaluation functions
under the L1 metric. In Figure 1 we can see a sam-
ple problem with four sources (filled points) each one
connected to its closest sink (hollow points).

2 Definitions and results

Given the sets of sources S, sinks T , and highways
H, we call the triplet (S, T ,H) a transportation con-
figuration. Other than a configuration, an underlying
metric d and a constant speed v > 1 are needed to
define the problem. We consider that each highway
in H is either one of the following types: railway (we
can only enter/exit at endpoints) or road (one can
enter/exit at any point of the highway). The travel
time of the path π = (s = p0, . . . , pk = t) is defined
as |π| =

∑
0≤i<k

1
vi

d(pi, pi+1), where vi is v if the seg-
ment pi, pi+1 is a railway or is on a road, 1 otherwise.
The transportation distance between s and t is de-
fined by dH(s, t) = infπ∈P(s,t) |π|, where P(s, t) is the
set of all s-t-paths. Since we consider the L1 distance
as d, we can observe that any path between s and t is
a sequence of isothetic segments (pi, pi+1).

For each source s in S we consider a function
cost(s) = �t∈T dH

S
{h}(s, t), where � stands for an

operation in {
∑

,min,max}, and dH
S
{h}(s, t) is the

city distance with the set of highways H
⋃
{h}. Each

function cost(s) indicates a statistical measure of how
far the sinks are from source s. Our objective func-
tion is Φ = �′

s∈Scost(s), which shows an aggregated
measure of cost(s) for s ∈ S using an operation
�′ ∈ {

∑
,min,max}.

Main result. The main result of this paper is the
introduction of a new algorithm to find the optimal
location of a new segment highway in a transportation
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Road Railway
H

H
H

HH�′
�

min max
∑

min max
∑

min O(STH3) O∗(ST 2H6) O(ST 2H6) O(STH2) O∗(ST 2H4) O(ST 2H4)
max O∗(S2T 4H12) O∗(S2T 2H6) O∗(S2T 4H12) O∗(S2T 4H8) O∗(S2T 2H4) O∗(S2T 4H8)∑

O∗(S2T 4H12) O∗(S2T 4H12) O(S2T 2H6) O∗(S2T 4H8) O∗(S2T 4H8) O(S2T 2H4)

Table 1: Computational cost of locating a segment highway under the evaluation function Φ = �′ � dH(s,t)
S
{h}

configuration with already built highways. Although
the algorithm presents a unified approach (indepen-
dent of the objective function), the exact computa-
tional cost depends on S, T and H as well as the par-
ticular evaluation function. The results are summa-
rized in Table 1 (for clarity reasons we denote S = |S|,
T = |T |, and H = |H|).

3 Overview of the algorithm

The following is our base problem: building a vertical
segment highway h in a transportation network with
a single source s and a single sink t. The insertion of h
is parameterized by the location β = (ξ, η) of its bot-
tom endpoint. We may denote by hβ for the inserted
highway and also denote Hβ or Hξ,η for the updated
set of highways (i.e: Hβ = Hξ,η = H

⋃
{hβ}). Re-

garding as a function of parameters x = ξ and y = η,
we define fs,t(x, y) = dHx,y

(s, t). In a general situa-
tion where we have more than one source and sink,
our objective function Φ is described by using the set
{fs,t|s ∈ S, t ∈ T }. We now proceed to give an in-
formal explanation of the algorithms: compute fs,t

function for every possible pair source-sink, and then
merge those functions to obtain the minimum of Φ.

We say that the complexity of a piecewise linear
function f is k if there exists a subdivision of the
domain of f (whose complexity is k) such that f re-
stricted to each cell of the division is linear. The fol-
lowing lemma enables us to solve the problem in a
unified fashion irrespective to the choice of our objec-
tive function:

Lemma 1 For any s ∈ S, t ∈ T we have that
fs,t(x, y) is a piecewise linear function in the two
coordinates of the new highway. Moreover, given
F = {fi,j(x, y)|1 ≤ i ≤ S, 1 ≤ j ≤ T}, a family of
piecewise linear two dimensional functions with same
domain and complexity k each, the function f(x, y) =
�′

i �j fi,j(x, y) is a piecewise linear function (where
�,�′ ∈ {

∑
,min,max}). Moreover, the point p =

(x, y) minimizing f(x, y) can be found in polynomial
time as shown in Table 2.

Proof of the first part of the lemma comes from lin-
earity of L1 distance, while the latter part comes from
the general theory of the lower envelope of bivariate

�
min max

∑
min O∗(kST ) O∗(k2ST 2) O∗(k2ST 2)

�′ max O∗(k4S2T 4) O∗(k2S2T 2) O∗(k4S2T 4)∑
O∗(k4S2T 4) O∗(k4S2T 4) O(k2S2T 2)

Table 2: Cost of finding the minimum of f = �′
i�jfi,j

piecewise linear functions ([8]). For simplicity, poly-
nomial factors of the inverse Ackermann function have
been ignored (O∗ notation is used wherever needed).
That is, k ∈ O∗(f(x)) ↔ k ∈ O(f(x)α(x)), where
α(x) is the inverse of the Ackermann function.

4 Computing fs,t(x, y) function for a fixed source
and sink

4.1 Preliminaries

According to the overview, we will focus on computing
fs,t(x, y) function for a fixed a source s and sink t.
We define the shortest path map [4] that is defined as
follows in our context:

Given a point p and H, we define SPM(p,H, δ) ={
q ∈ R2|dH(p, q) = δ

}
, which is a polygon. Let

V (p,H, δ) be the set of vertices of SPM(p,H, δ).
The straight skeleton of p is defined as SK(p,H) ={
q ∈ R2|∃δ ≥ 0, q ∈ V (p,H, δ)

}
. Let SPM(s,H) be

the division of the plane into the regions defined by
SK(p,H). The shortest path map divides the plane
into regions such that points in the same region have
topologically identical shortest paths to p.

The following theorem is given by Bae et al. ([2]):

Theorem 2 SPM(p,H) can be constructed in
O(H log H) time and stored in O(H) space for any
given set of isothetic segment highways H and p ∈ R2.

We characterize the usage of roads in shortest
paths. Given a point p, we define the North neighbor-
ing road as the first road that we find along the ver-
tical semiline {p + (0, t)|t ≥ 0} if it exists. The point
found in the intersection is called its North neighbor
point pN (analogously we define pS , pE and pW ). Let
N(p) the set of neighboring points of p, V the set of
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endpoints of highways in H, and I the set of inter-
section points of roads. Given a point p, we define
Mp(H) = V

⋃
I

⋃
N(p)

⋃
q∈V N(q).

A path π = (s = p0, . . . , pk = t) is called primi-
tive if it has at most 1 bend, passes through at most
one highway and does not pass through any point in
Mt(H). A primitive path with shortest length is called
a shortest primitive path. The following lemma is
given in [2], and implies that even if we allow hopping
on and off of a road r at any point, there is a finite
amount of such points in a shortest path:

Lemma 3 For any s ∈ S and t ∈ T in a transporta-
tion configuration, there exists a shortest path π from
s to t such that π is a sequence of primitive paths
whose endpoints (except s) are in Mt(H).

4.2 Computing fs,t(x, y) from the shortest path
map

We compute fs,t(x, y) from SPM(s,H) and
SPM(t,H). If h is a road, For a fixed sink t
and a point β (corresponding a potential loca-
tion of the new highway h) we define Et(β) as
the set of points in Mt(Hβ) that lie in hβ (i.e:
Et(β) = Mt(Hβ)

⋂
hβ). Intuitively, Et(β) is the set

of candidates of the entrance or exit point from hβ in
the shortest path from s to t (see Figure 2). If h is
a railway, we define Et(β) = {β, β + (0, `)}, since the
only possible exit/entry points to h are endpoints of
h.

Let k(β) = |Et(β)|. For any i ∈ [1, k(β)], let βi be
the point in Et(β) whose y coordinate is the i − th
lowest one. Note that β1 = β and βk(β) = β + (0, `).

For i, j ∈ [1, k(β)], the length of the shortest s-t
path entering hβ at point βi and exiting at point βj

equals

gi,j(β) = dH(s, βi) + d(βi, βj)/v + dH(βj , t).

We define

fnew
s,t (ξ, η) = min

i,j∈[1,k(β)]
gi,j(β).

By definition, for any s ∈ S, t ∈ T and H, we have

fs,t(x, y) = min{dH(s, t), fnew
s,t (x, y)}.

Given a region R, we consider the translation of R
vertically by `, and denote it by

R` = R− (0, `) = {(x, y) ∈ R2|(x, y + `) ∈ R}.

Accordingly, we define R` = {R`
1, . . . R

`
k} for a plane

subdivision R = {R1, . . . Rk}.
We can observe that for the majority of locations

for β, the set Et(β) is stable against a small move-
ment of β (except for its top and bottom points). We
will thus find a subdivision R = A(t,H) of the plane

t
β1 = β

β4 = β + (0, ")

β2

β3

Figure 2: H (bold), its extension T (H, t) (dashed),
and exit points Et(β) of a highway

such that, in every cell c ∈ A(t,H), the y-value of βi

is independent of choice of the point β = (ξ, η) ∈ c
if i 6= 1, k(β). The subdivision A(t,H) is defined as
follows: we draw horizontal rays to both sides from
each endpoint of each highway (and from t as well)
until they hit a road as in Figure 2. Thus we obtain a
horizontal trapezoidal map T (H, t) that decomposes
the plane into rectangles. Let A(t,H) be the subdivi-
sion of the plane induced by the arrangement of the
set of segments T (H, t)

⋃
T `(H, t) (such as the one in

Figure 3).
We can observe the following:

Lemma 4 For any cell c, the value kβ = |Et(β)| is in-
dependent of choice of β ∈ c. Thus, we write kc for kβ .
For any two points p, q in the same cell c ∈ A(t,H),
their corresponding highways hp and hq intersect ex-
actly the same horizontal edges in T (H, t). Thus, the
y coordinate of βi is independent of choice of β ∈ c
for i = 2, 3, . . . , kc − 1.

Lemma 5 The function gi,j(β) = gi,j(ξ, η) is piece-
wise linear within each cell c if i, j ≤ kc.

Proof. Recall that the x-value of βi equals ξ. From
Lemma 4, within a cell c, the y-value of βi is constant
if i 6= 1, kc, and linear in η if i = 1 or i = kc. Since the
dH shortest path distance from a fixed point (say, s)
to a point is linear within a cell of the shortest path
map, all terms dH(s, βi) + d(βi, βj)/v + dH(βj , t) are
piecewise linear, and hence gi,j(β) is piecewise linear
if β ∈ c. �

Given s ∈ S, t ∈ T , and H, we say that a subdi-
vision R is an admissible s-t-subdivision if it satisfies
the following:

1. R is a refinement of A(t,H)

2. Fixed any cell C ∈ R such that C ⊆ c for a
cell c of A(t,H). Then, for every β, β′ ∈ C, and
i ∈ [1, kc], points βi and β′i are in the same cells
of SPM(s,H) and SPM(t,H) .
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t
β′

β′
4

β′
2

β′
3

β
β2

β3

β4

Figure 3: The y coordinates of exit points do not
depend on the location of β in a cell of A(t,H)

Lemma 6 For any cell c of A(t,H) and i, j ∈ [1, kc],
the function gi,j(x, y) is linear within each refined cell
C ⊂ c of an admissible s-t-subdivision R.

Once we have an admissible s-t-subdivision we can
compute fs,t(x, y) as follows:

Lemma 7 Suppose that we have an admissible s-t-
subdivision of complexity k. Then each cell is further
refined into O(1) cells such that fnew

s,t (x, y) is linear
in each subcell. This refinement can be computed in
O(k) time.

Thus, our task is to obtain an admissible s-
t-subdivision with a low complexity. The first
and third terms in the expression dH(s, βi) +
d(βi, βj)/v + dH(βj , t) are controlled by SPM(s,H)
and SPM(t,H) within a cell c ofA(t,H), respectively.
Thus, we overlay the planar subdivisions SPM(s,H),
SPM(t,H) and A(t,H), refine if necessary, to obtain
an admissible s-t-subdivision.

4.3 Computing an admissible s-t-subdivision

Given s ∈ S, t ∈ T , let I(s, t) be the arrange-
ment induced by the overlay of regions SPM(s,H),
SPM `(s,H), SPM(t,H), SPM `(t,H), T (H, t) and
T `(H, t), that is: two points p and q are in the same
cell of I(s, t) if and only if they are in the same cell
of each of these subdivisions.

Lemma 8 Given s ∈ S, t ∈ T , and H, the subdivi-
sion I(s, t) has complexity O(H2) (and can be com-
puted in O(H2) time).

Obviously, I(s, t) is a refinement of A(t,H). If h is
a railway, the only possible entrance and exit points
are the endpoints of h, and we can observe that the
second condition of an admissible s-t-subdivision also
holds. Namely, we have the following:

Theorem 9 If h is a railway, I(s, t) is an admissible
s-t-subdivision.

For the case where h is a road, we need to further
refine I(s, t). From Lemma 4, βi is on a horizontal seg-
ment at a fixed height νc,i if β ∈ c and 1 < i < kc. We
trace the changes of SPM(s,H) and SPM(t,H) at
each height νc,i: Consider the piecewise linear func-
tion ft(x, y) = dH((x, y), t) that is the distance be-
tween t and q = (x, y). Consider the one dimensional
function ft(x, νc,i), piecewise linear if (x, νc,i) ∈ c.
Let Bt(c, i) be the set of breakpoints of ft(x, νc,i) for
a fixed c and 1 < i < kc. We cut each cell c ∈ I(s, t)
into subcells by all vertical lines that pass through
points in

⋃
1<i<kc

Bt(c, i). Let I∗(s, t) be the result-
ing subdivision. We can prove the following lemma:

Theorem 10 If h is a road, I∗(s, t) is an admissi-
ble s-t-subdivision of complexity O(H3) that can be
computed in O(H3) time.

This leads us to the main result of this paper:

Theorem 11 Given S, T and H, the optimal loca-
tion of a new isothetic segment highway of length ` for
any of the nine objective functions can be calculated
in polynomial time. The time complexities in Table 1
follows from Theorems 9, 10 and Table 2.
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Algorithms for Graphs of Bounded Treewidth
via Orthogonal Range Searching

Sergio Cabello∗ Christian Knauer†

Abstract

We show that, for any fixed constant k ≥ 3, the sum
of the distances between all pairs of vertices of an
abstract graph with n vertices and treewidth at most
k can be computed in O(n logk−1 n) time.

We also show that, for any fixed constant k ≥ 2,
the dilation of a geometric graph (i.e., a graph drawn
in the plane with straight-line segments) with n ver-
tices and treewidth at most k can be computed in
O(n logk+1 n) expected time.

The algorithms for both problems are based on
the same principle: data structures for orthogonal
range searching in bounded dimension provide a com-
pact representation of distances in abstract graphs of
bounded treewidth.

1 Introduction

Let G = (V,E) be a graph with n vertices and assume
that each edge of E has an associated nonnegative
abstract length `(e). We can define the length of a
path in G as the sum of the lengths of its edges. The
shortest path distance dG(u, v) between any pair of
vertices u, v is defined as the minimum length over all
walks in G between u, v. We are interested in the sum
over all ordered pairs of vertices of their distance, that
is,

Σ(G) =
∑

(u,v)∈V 2

dG(u, v).

If the length of each edge is one, the value 1
2Σ(G)

is known as the Wiener index of G, which is a gen-
eralization of the original definition given by Wiener
in 1947 [21]. Molecular topological indices are values
defined by the graph-model of a molecule with the
hope that they correlate with physical and chemical
properties of the molecules [20]. The Wiener index is
probably the most studied molecular topological in-
dex, with over thousand publications.

From the algorithmical point of view, the main
question is what classes of graphs do not require

∗Department of Mathematics, IMFM, and Department of
Mathematics, FMF, University of Ljubljana, Slovenia. E-mail:
sergio.cabello@fmf.uni-lj.si. Research supported by the
Slovenian Research Agency, project J1-7218.

†Institut für Informatik, Freie Universität Berlin,
Takustraße 9, D–14195 Berlin, Germany. E-mail:
christian.knauer@inf.fu-berlin.de.

to compute all the pairwise distances to obtain the
Wiener index, or more generally, the value Σ(G). Lin-
ear time algorithms are known for trees [16], cacti [23],
and benzenoid systems1 [10, 11]. One of the main al-
gorithmical open problems in this context concerns
the existence of subquadratic algorithms for comput-
ing the Wiener index of planar graphs.

The average distance of a graph and Σ(G) are essen-
tially the same object, and have been studied in other
models. For abstract discrete metric spaces, given
by a matrix of distances, Indyk [14] gives a sublinear
(1 + ε)-approximation algorithm based on sampling.
Note that this model is substantially different, since
it assumes that any distance is available at constant
time, which does not hold in general graphs. The
well-separated pair decomposition [7] can be used to
obtain deterministic (1+ε)-approximations to the av-
erage distance in Euclidean spaces or, more generally,
in spaces of bounded doubling dimension [13].

A geometric graph is a graph whose vertex set is
a finite set of points, and where the weight/length of
each edge equals the Euclidean distance between its
vertices. The dilation (or stretch-factor) ∆(G) of a
geometric graph G is the largest ratio between the
distance dG and the Euclidean distance:

∆(G) := max
u,v∈V (G),u 6=v

dG(u, v)
||u− v||

.

Substantial research has been done about construct-
ing so-called geometric spanners: geometric graphs
with small dilation, few edges, and other additional
properties; see the monograph [18]. Here, we turn
our attention to a different problem: computing the
dilation of a given geometric graph.

One can trivially compute the distance between all
pairs of vertices, and then compute the dilation. How-
ever, this approach neglects all the geometry of the
problem, and the question of whether one actually
needs to compute all distances naturally arises. Agar-
wal et al. [1] give near-linear time algorithms for com-
puting the exact dilation of geometric paths, cycles,
and trees. For computing a (1 + ε)-approximation
to the dilation, assuming that ε > 0 is constant,
Narasimhan and Smid [17] show that the problem re-
duces in O(n log n) time to compute the graph dis-

1Benzenoid systems are subgraphs of the regular hexagonal
grid enclosed by a circuit.
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tance between O(n) pairs of vertices. Combining this
result with the data structure of Chaudhuri and Zaro-
liagis [9], one obtains, for any fixed ε > 0, a (1 + ε)-
approximation algorithm for the dilation that runs in
O(n log n) time.

Our results. We show that the sum of distances of an
abstract graph and the dilation of a geometric graph
can be computed in near-linear time when the graphs
have bounded treewidth. More precisely:

• for any fixed constant k ≥ 3, the sum of distances
Σ(G) can be computed in O(n logk−1 n) time for
any abstract graph with n vertices and treewidth
at most k. See Section 4.

• for any fixed constant k ≥ 2, the dilation ∆(G)
can be computed in O(n logk+1 n) expected time
for any geometric graph with n vertices and
treewidth at most k. Due to space constraints
we will omit the proof of this result from this
abstract; details can be found in [6].

Similar results were only known for graphs of
treewidth 1 (trees) and some subclasses of graphs with
treewidth 2 (cycles and cacti), c.f. [1, 23]. Our algo-
rithms are based on divide-and-conquer, using the fact
that graphs with bounded treewidth have balanced
small separators. Although most algorithms that use
treewidth are based on dynamic programming, this
approach does not seem appropriate here.

The approach in both cases is the same: distances
in abstract graphs of treewidth k are closely related
to orthogonal range searching in Rk−1; see Section 3.
This approach is implicit in [2] and more explicitly
mentioned by Shi [19]. This relation allows to use
techniques from computational geometry to design ef-
ficient algorithms for problems involving distances in
graphs of bounded treewidth.

2 Toolbox

Treewidth. Treewidth is a parameter measuring, in
some sense, the complexity of a graph. We next give
its definition; see Bodlaender [5] for an overview.

Definition 1 A tree decomposition of a graph G is
a pair (X, T ), where X = {Xi ⊆ V (G) | i ∈ I} is a
collection of subsets of V (G) (called bags), and a tree
T = (I, F ) with a node set I such that: (i) V (G) =⋃

i∈I Xi; (ii) for every edge uv ∈ E(G) there is some
bag Xi ∈ X such that u, v ∈ Xi; (iii) for all u ∈ V (G),
the nodes {i ∈ I | u ∈ Xi} form a connected subtree
of T . The width of a tree decomposition ({Xi | i ∈
I}, T ) is maxi∈I |Xi| − 1. The treewidth of G is the
minimum width over all tree decompositions of G.

It is known that graphs of treewidth k have O(kn)
edges, an thus graphs of bounded treewidth have O(n)

edges. Computing the treewidth of a graph is NP-
hard. However, for any fixed constant k > 0, we can
decide in linear time if a given graph has treewidth at
most k, and in such case, construct a tree decomposi-
tion of linear size and width k in linear time [4]. Our
main results apply assuming that we have graphs of
bounded treewidth.

Our approach will be based on divide-and-conquer.
We will use the following concept, closely related to
separators.

Definition 2 Let A be a subset of vertices of the
graph G. The portals of A are the vertices of A that
have some edge incident to V (G) \A.

A standard result for graphs with treewidth at most
k is the existence of (2/3)-separators of size k + 1. In
our approach, the number of vertices in the separa-
tor is very relevant, and therefore we will reduce the
size of the separator by making the separation more
unbalanced. A sketch of the following result can be
found in the notes of Biedl [3].

Lemma 1 Let k ≥ 1 be a constant. Given a graph G
with n > k + 1 vertices and treewidth at most k, we
can find in linear time a subset of vertices A ⊆ V (G)
such that:

(i) A has between n
k+1 and nk

k+1 vertices;

(ii) A has at most k portals;

(iii) adding edges between the portals of A does not
change the treewidth.

Assume that we have a graph G with treewidth k
and a subset of vertices A with the properties stated
in Lemma 1. Let S be the set of portals of A and let
B = (V (G) \ A) ∪ S. Note that the set of portals of
B is a subset of S.

Consider the graph G′ obtained from G by adding
an edge ss′ with weight dG(s, s′) between each pair
s, s′ ∈ S. If G′ has multiple edges, we only keep the
edges with minimum weight. Finally, let GA denote
the subgraph of G′ induced by A. From the prop-
erty (iii) of A, we know that G′ has treewidth k, and
thus GA has treewidth at most k. Furthermore, it is
straightforward to see that dG(a, a′) = dGA

(a, a′) for
any a, a′ ∈ A. Using the notation B = (V (G)\A)∪S,
the same argument applies to GB : it has treewidth at
most k and dG(b, b′) = dGB

(b, b′) for all b, b′ ∈ B.

Orthogonal range searching. Let P be a set of
points in Rd. Assume we are given a function w : P →
R that assigns a weight w(p) to each point p ∈ P . We
extend the weight function to any subset Q of points
by w(Q) :=

∑
p∈Q w(p). A rectangle R in Rd is the

Cartesian product of d intervals, R = I1 × · · · × Id,
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where each interval Ii can include both extremes, one
of them, or none.

Orthogonal range searching deals with the problem
of preprocessing P such that, for a query rectangle R,
certain properties of P ∩R can be efficiently reported.
We will use the following two results.

Theorem 2 ([22]) Let d ≥ 2 be a constant. Given a
set of n points P ⊂ Rd and a weight function w : P →
R, there is a data structure that can be constructed in
O(n logd−1 n) time such that, for any query rectangle
R, the weight w(P∩R) can be reported in O(logd−1 n)
time.

3 Distances and orthogonal range searching

Let G be a graph and let A be a subset of its vertices
with k portals S, enumerated as s1, . . . , sk. Let B =
(V (G) \A)∪S. We use the notation [k] = {1, . . . , k}.
For any vertex b ∈ B and any index i ∈ [k], let A(b, i)
be the subset of vertices a ∈ A such that:

(i) There exists a shortest path from b to a through
si, that is, dG(a, b) = dG(a, si) + dG(si, b).

(ii) There is no shortest path from b to a through sj

for j < i, that is, dG(a, b) < dG(a, sj) + dG(sj , b)
for all j ∈ [i− 1].

For any b ∈ B, the union of A(b, 1), . . . , A(b, k) is
the whole A. We include (ii) to ensure that the sets
A(b, 1), . . . , A(b, k) are pairwise disjoint, which will be
relevant for not over counting in Section 4. Note that
different enumerations of the portals may give com-
pletely different sets A(b, 1), . . . , A(b, k), not just a re-
ordering.

Assume that we have a weight function φ : A → R
assigning a weight to each vertex of A. We extend
the weight function to any subset A′ ⊆ A by φ(A′) :=∑

a∈A′ φ(a). For each i ∈ [k], we can use orthogonal
range searching to preprocess the graph G so that,
for any query vertex b ∈ B, information concerning
A(b, i) can be reported quickly and in a compact form.

Theorem 3 Let k ≥ 3 be a constant. Assume we are
given a graph G with n vertices and m edges, a subset
of vertices A with k portals S enumerated s1, . . . , sk, a
weight function φ : A → R, and let B = (V (G)\A)∪S.
For any given i ∈ [k], there is a data structure that can
be constructed in O(m + n logk−2 n) time such that,
for any query vertex b ∈ B, the weight φ (A(b, i)) can
be reported in O(logk−2 n) time.

Proof. We first construct a shortest path tree from
each of the portals s1, . . . , sk and store the values
dG(sj , v) for all j ∈ [k] and v ∈ V (G). Since we
assume k = O(1), we spend O(m + n log n) time for
computing these shortest path trees.

For each vertex a ∈ A we define a point pa ∈ Rk

with coordinates pa(j) = dG(a, si)− dG(a, sj), where
pa(j) denotes the j-th coordinate of point pa. Let P
be the set of points pa, a ∈ A. Note that the i-th coor-
dinate of the points in P is always 0, and therefore we
can regard P as a set of |A| points in Rk−1. We define
a weight function for each point pa ∈ P by w(pa) :=
φ(a). Clearly, we have φ(A′) = w ({pa ∈ P | a ∈ A′}).
Finally, we preprocess the point set P with weight w
into a data structure as described in Theorem 2, where
d = k − 1. This finishes the description of the data
structure. Preprocessing P takes O(|A| logk−2 |A|) =
O(n logk−2 n) time, and hence we spend O(n logk−2 n)
time to construct the data structure.

When we receive a query b ∈ B, we proceed as
follows. For j ∈ [k] define the interval Ij(b) by

Ij(b) =


(−∞, dG(sj , b)− dG(si, b)) if j < i,
(−∞, +∞) if j = i,
(−∞, dG(sj , b)− dG(si, b)] if j > i.

Consider the rectangle R(b) = I1(b)× · · · × Ik(b).
Any path from a ∈ A to b has to use some portal

of A, and hence the condition dG(a, b) = dG(a, si) +
dG(si, b) can be rewritten as

dG(a, si) + dG(si, b) ≤ dG(a, sj) + dG(sj , b) ∀j ∈ [k].

It is now easy to verify that

A(b, i) = {a ∈ A | pa ∈ R(b)}.

Since

φ (A(b, i)) = φ ({a ∈ A | pa ∈ R(b)}) = w (P ∩R(b)) ,

we can obtain φ(A(b, i)) in O(logk−2 n) time by query-
ing the data structure storing P for the value w(P ∩
R(b)). �

4 Sum of distances

We are interested in computing Σ(G) for a weighted
graph G whose treewidth is bounded by a constant
k ≥ 3. Let A be a set of vertices of G obtained
by Lemma 1. Like before, we enumerate the (at
most) k portals S of A by s1, . . . , sk, and set B =
(V (G) \ A) ∪ S. Recall the definition of GA and GB ,
given after Lemma 1. Using the notation Σ(C,C ′) =∑

c∈C

∑
c′∈C′ dG(c, c′) for any C,C ′ ⊆ V (G), we have

Σ(G) =Σ(GA) + Σ(GB)+
2 · (Σ(A,B)− Σ(S, A)− Σ(S, B)). (1)

Lemma 4 We can compute Σ(A,B) in O(n logk−2 n)
time.
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Proof. For any b ∈ B, we know that A is the disjoint
union of A(b, 1), A(b, 2), . . . , A(b, k). Define weight
functions φ0, φ1, . . . φk : A → R by φ0(a) = 1 for
all a ∈ A and by φi(a) = dG(si, a) for a ∈ A, i ∈ [k].
We can then write Σ(A,B) as

∑
b∈B

k∑
i=1

[φ0(A(b, i)) · dG(si, b) + φi(A(b, i))] . (2)

We now use Theorem 3 several times: for each i ∈
[k] we make a data structure DS

(i)
0 for weight φ0

and a data structure DS
(i)
1 for weight φi. We con-

struct 2k = O(1) data structures, and each one
takes O(n logk−2 n) preprocessing time. Any value
φ0(A(b, i)) or φi(A(b, i)) can now be obtained in time
O(logk−2 n) by querying the appropriate data struc-
ture. Therefore, we can get the values φ0(A(b, i))
and φi(A(b, i)) for all (b, i) ∈ B × [k] in time
O(k|B| logk−2 n) = O(n logk−2 n). Finally, the val-
ues dG(si, b) for all (si, b) ∈ S × B can be obtained
in O(n log n) time constructing a shortest path tree
from each portal si ∈ S, and thus we can compute
Σ(A,B) using (2). �

Theorem 5 Let k ≥ 3 be a constant. Given a graph
G with n vertices and treewidth at most k, we can
compute Σ(G) in O(n logk−1 n) time.

Proof. If G has O(1) vertices, we compute Σ(G) by
brute force. Otherwise we find a set A as described
in Lemma 1. The values Σ(S, A) and Σ(S, B) are
computed using shortest path trees from each portal
s ∈ S, while Σ(A,B) is computed using Lemma 4.
The graphs GA and GB can be constructed using
shortest path trees from each s ∈ S, and we can then
recursively compute Σ(GA) and Σ(GB). Finally, we
use the relation (1) to compute the value Σ(G). The
conquer step can be done in O(n logk−2 n) time. Since
we assume that k is constant, the recursion is balanced
because of Lemma 1(i), and the result follows. �
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A Tight Bound for the Delaunay Triangulation of Points on a Polyhedron

Nina Amenta∗ Dominique Attali† Olivier Devillers‡

Abstract

We show that the Delaunay triangulation of a set
of n points distributed nearly uniformly on a p-
dimensional polyhedron (not necessarily convex) in
d-dimensional Euclidean space is O(n

d−k+1
p ), where

k = dd+1
p+1e. This bound is tight, and improves on the

prior upper bound for most values of p.

1 Introduction

Overview. The Delaunay triangulation of a set of
points is a fundamental geometric data structure,
used, in low dimensions, in surface reconstruction,
mesh generation, molecular modeling, geographic in-
formation systems, and many other areas of sci-
ence and engineering. In higher dimensions, it is
well-known [9] that the complexity of the Delaunay
triangulation of n points is O(nd d

2 e) and that this
bound is achieved by distributions of points along one-
dimensional curves such as the moment curve. But
points distributed uniformly in Rd, for instance inside
a d-dimensional ball, have Delaunay triangulations of
complexity O(n); the constant factor is exponential
in the dimension, but the dependence on the number
of points is linear. In an earlier paper [1], we began
to fill in the picture in between these two extremes,
that is, when the points are distributed on a mani-
fold of dimension 2 ≤ p ≤ d − 1. We began with
the easy case of a p-dimensional polyhedron P , and
showed that for a particular (probably overly restric-
tive) sampling model the size of the Delaunay trian-
gulation is O(n(d−1)/p).

Main result. Here as in [1], we consider a fixed p-
dimensional polyhedron P in d-dimensional Euclidean
space Rd. Our point set S is a sparse ε-sample from
P . Sparse ε-sampling requires the sampling to be nei-
ther too sparse nor too dense. Let n be the number
of points in S. We consider the complexity of the
Delaunay triangulation of S, as n → ∞, while P re-
mains fixed. The main result in this paper is that the
number of simplices of all dimensions is O(n

d−k+1
p )

∗Computer Science Department, University of California,
amenta@ucdavis.edu

†Gipsa-lab, CNRS Grenoble,
Dominique.Attali@gipsa-lab.inpg.fr

‡INRIA, Sophia-Antipolis ,
Olivier.Devillers@sophia.inria.fr

where k = dd+1
p+1e. The hidden constant factor de-

pends, among other things, on the geometry of P ,
which is constant since P is fixed.

At the coarsest level, the idea of this proof is the
same as that of [1]: we map Delaunay simplices to the
medial axis and then use a packing argument to count
them. The key new idea is the observation that when
k = dd+1

p+1e > 2, the vertices of any Delaunay simplex,
which must span Rd, have to be drawn from more
than two faces of P . This allows us to map Delau-
nay simplices to only the lower-dimensional subman-
ifolds of the medial axis, induced by k or more faces.
To realize this scheme, we introduce a new geometric
structure, the quasi medial axis, which replaces the
centers of tangent balls defining the medial axis with
the centers of tangent annuli. In this paper, we only
present an outline of the proof. Full details can be
found in [2].

Prior work. The complexity of the Delaunay trian-
gulation of a set of points on a two-manifold in R3

has received considerable recent attention, since such
point sets arise in practice, and their Delaunay tri-
angulations are found nearly always to have linear
size. Golin and Na [6] proved that the Delaunay tri-
angulation of a large enough set of points distributed
uniformly at random on the surface of a fixed con-
vex polytope in R3 has expected size O(n). They
later [7] established an O(n log6 n) upper bound with
high probability for the case in which the points are
distributed uniformly at random on the surface of a
non-convex polyhedron.

Attali and Boissonnat considered the problem us-
ing a sparse ε-sampling model similar to the one we
use here, rather than a random distribution. For such
a set of points distributed on a polygonal surface P ,
they showed that the size of the Delaunay triangula-
tion is O(n) [3]. In a subsequent paper with Lieu-
tier [4] they considered “generic” smooth surfaces,
and got an upper bound of O(n log n). Specifically,
a “generic” surface is one for which each medial ball
touches the surface in at most a constant number of
points.

The genericity assumption is important. Erickson
considered more general point distributions, which he
characterized by the spread: the ratio of the largest
inter-point distance to the smallest. The spread of a
sparse ε-sample of n points from a two-dimensional
manifold is O(

√
n). Erickson proved that the De-
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launay triangulation of a set of points in R3 with
spread ∆ is O(∆3). Perhaps even more interestingly,
he showed that this bound is tight for ∆ =

√
n, by

giving an example of a sparse ε-sample of points from
a cylinder that has a Delaunay triangulation of size
Ω(n3/2) [5]. Note that this surface is not generic and
has a degenerate medial axis.

To the best of our knowledge, ours [1] is the only
prior result for d > 3.

2 Statement of Theorem

In this section, we introduce the setting for our result.
Given a polyhedron P ⊆ Rd and a point x on P , let
Fx be the unique face that contains x. We say that a
set of points S ⊆ P is a λ-sparse ε-sample of P iff it
satisfies the following two conditions:

Density: Every point x in P is at distance ε or less
to a point s in S lying on the closure of Fx.

Sparsity: Every closed d-ball with radius 6dε con-
tains at most λ points of S.

Note that our density condition implies that all
faces of all dimensions are uniformely sampled, not
just faces with highest dimension as in [3, 4]. Here-
after, we consider λ to be a constant. The number
n of points in a λ-sparse ε-sample of a p-dimensional
polyhedron is related to ε by n = Θ(ε−p). Thus, as n
tends to infinity, ε tends to zero. We are now ready
to state our main result:

Theorem 1 Let S be a λ-sparse ε-sample of a p-
dimensional polyhedron P in Rd, and let n be the
number of points in S. The Delaunay triangulation

of S has size O(n
d−k+1

p ) where k = dd+1
p+1e.

Note that our result requires no non-degeneracy as-
sumption, neither on P nor on S.

3 Essential quasi medial axes

In this section, we introduce the ε-quasi k-medial axis,
a variant of the medial axis based on tangent an-
nuli rather than tangent balls, which is the key ge-
ometric object in our proof. We then define the part
of the ε-quasi k-medial axis to which Delaunay sim-
plices will be mapped: the essential ε-quasi k-medial
axis (considering only the parts of dimension at most
d − k + 1 and lopping off the parts which extends to
infinity). Along the way, we give a tool to identify
lower-dimensional parts of the ε-quasi k-medial axis.

3.1 Quasi medial axes

We start by defining ε-quasi k-medial axes. We say
that a (d−1)-sphere Σ is tangent to a face F at point x
if both the closure of F and the affine space spanned

by F intersect Σ in a unique point x. An annulus
with center z, inner radius r and outer radius R is the
set of points x whose distance to the center satisfies
r ≤ ‖x−z‖ ≤ R. The boundary of an annulus consists
of two (d − 1)-spheres and we call the smallest one
the inner sphere and the largest one the outer sphere.
Extending what we just defined for spheres, we say
that an annulus A is tangent to F at x if one of the
two spheres bounding A is tangent to F at x. Point x
is called a tangency point of A. An annulus is P -empty
if its inner sphere bounds a d-ball whose interior does
not intersect P . An annulus is called ε-thin if the
difference between the outer and inner radii squared
is R2 − r2 = ε2.

Definition 1 The ε-quasi k-medial axis Mk(P, ε) of
P is the set of points z ∈ Rd for which for the largest
P -empty ε-thin annulus centered at z, A(z, ε), is tan-
gent to at least k faces of P (see Figure 1).

z

ε

A(z, ε)

Figure 1: A rectangle and its ε-quasi 2-medial axis com-
posed of 16 half-lines, 5 segments and 8 pieces of hyper-
bolas.

3.2 Identifying lower-dimensional strata

Because P might be degenerate, we must introduce
a tool to identify the parts of Mk(P, ε) which have
dimension d − k + 1 or less very carefully. We recall
that a stratification of a subset X ⊆ Rd is a filtration

∅ = X−1 ⊆ X0 ⊆ · · · ⊆ Xj = X

by subspaces such that the set difference Xi \ Xi−1

is a i-dimensional manifold, called the i-dimensional
stratum of X. In particular, semi-algebraic sets admit
a stratification [8] and since ε-quasi k-medial axes of
polyhedra are piecewise semi-algebraic, they also ad-
mit a stratification.

Definition 2 We say that k faces F1, . . . , Fk are in-
dependent if none of them is contained in the affine
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space spanned by the union of the others, that is for
1 ≤ i ≤ k,

Fi 6⊆ Aff(F1 ∪ · · · ∪ F̂i ∪ · · · ∪ Fk),

where the symbol ̂ over Fi indicates that it is omitted
in the union.

Lemma 2 Let z ∈ Mk(P, ε) and suppose that
A(z, ε) is tangent to j faces amongst which k faces are
independent. Then, z lies on a stratum of Mk(P, ε)
of dimension d− k + 1 or less.

3.3 Essential part

The ε-quasi k-medial axis in general extends to infin-
ity and therefore can have an infinite volume. In this
section, we select a subset of the ε-quasi k-medial axis
called the essential ε-quasi k-medial axis, M̄k(P, ε) in
such a way that all its strata will have a finite vol-
ume bounded by a constant that does not depend on
ε. For this, we need some definitions. We say that
a hyperplane supports X ⊆ Rd if it has non-empty
intersection with the boundary of X and empty inter-
section with the interior of X.

Definition 3 A point z is ε-essential if there exists
no hyperplane supporting the convex hull of P and
containing all faces tangent to A(z, ε).

It follows immediately from the definition that:

Lemma 3 If the union of faces tangent to A(z, ε)
spans Rd, then z is ε-essential.

Definition 4 The essential ε-quasi k-medial axis,
M̄k(P, ε), is the set of ε-essential points lying on the
union of the i-dimensional strata of the ε-quasi k-
medial axis over all i ≤ d− k + 1.

Lemma 4 For ε smaller than the diameter of P , the
i-dimensional stratum of the ε-quasi k-medial axis has
a i-dimensional volume bounded by a constant, that
does not depend on ε.

4 Covering Delaunay spheres

The goal of this section is to prove that the intersec-
tion of a p-dimensional polyhedron P with any Delau-
nay sphere Σ is contained in the cover of some point z
on the essential ε-quasi k-medial axis, for k = dd+1

p+1e.
We first state crucial properties of Delaunay spheres
and polyhedra before defining the cover of a point.
The first property is induced by our sampling condi-
tion.

Definition 5 We say that a sphere Σ with center z
is ε-almost P -empty if Σ ⊆ A(z, ε).

Lemma 5 Delaunay spheres are ε-almost P -empty.

The second property concerns polyhedra.

Definition 6 We say that a polyhedron P is k-
reductible if for any collection of k − 1 faces
{F1, . . . , Fk−1} of P , there exists a hyperplane that

contains the union
⋃k−1

i=1 Fi.

Lemma 6 Any p-dimensional polyhedron of Rd is
dd+1

p+1e-reductible.

We now define the cover of a point z ∈ Rd. Writing
πx(z) for the orthogonal projection of z onto the tan-
gent plane of x ∈ P , we say that x is a critical point
of the distance-to-z function if πx(z) = x. We define
χ(z, ε) as the set of critical points lying in P ∩A(z, ε)
and the cover of z as:

Cover(z, ε) =
⋃

x∈χ(z,ε)

B(x, 5dε).

Lemma 7 Consider a k-reductible polyhedron P
that spans Rd. For every ε-almost P -empty sphere
Σ, there exists a point z ∈ M̄k(P, ε) such that

Σ ∩ P ⊆ Cover(z, ε).

In the next section, it will be convenient to use a
slightly different notion of cover. Let Π(z) be the set
of orthogonal projections of z onto the planes sup-
porting faces of P . We define the extended cover of
point z as

ExtendedCover(z, ε) =
⋃

x∈Π(z)

B(x, 6dε).

Lemma 8 For every points z and z′ with ‖z−z′‖ ≤ ε:

Cover(z, ε) ⊆ ExtendedCover(z′, ε).

5 Size of Delaunay triangulation

In this section, we collect results from previous sec-
tions and establish our upper bound on the number
of Delaunay simplices. We then prove that our bound
is tight. We recall that the number of points in a λ-
sparse ε-sample S of a p-dimensional polyhedron P
is n = Θ(ε−p) and that the i-faces of P have Θ(ε−i)
points of S [1].

5.1 Upper bound

Without loss of generality, we may assume that the
polyhedron P spans Rd. An ε-sample of the essential
ε-quasi k-medial axis is a subset M ⊆ M̄k(P, ε) such
that every point x ∈ M̄k(P, ε) is at distance no more
than ε to a point z ∈ M , ‖x− z‖ ≤ ε. We claim that
we can construct an ε-sample M of M̄k(P, ε) in such
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a way that the i-dimensional stratum of the essen-
tial ε-quasi k-medial axis receives O(ε−i) points of M
and the number of points in M is m = O(ε−(d−k+1)).
This is a consequence of Lemma 4 which says that the
i-dimensional volume of the i-dimensional stratum of
M̄k(P, ε) is bounded by a constant that does not de-
pend on ε. To establish our upper bound, we map
each Delaunay simplex σ ∈ Del(S) to a point z ∈ M .
Consider a Delaunay sphere Σ passing through the
vertices of σ. By Lemma 5, Delaunay spheres are ε-
almost P -empty. We can therefore combine Lemma
6, Lemma 7 and Lemma 8 and get that for d ≥ 2 and
k = dd+1

p+1e, there exists a point z ∈ M such that

Σ ∩ P ⊆ ExtendedCover(z, ε)

The extended cover of z is a union of d-balls of radius
6dε, one for each face of the polyhedron and therefore,
it contains a constant number of points of S. It follows
that the number of simplices that we can form by
picking points in the extended cover of z is constant.
Hence, each point z ∈ M is charged with a constant
number of Delaunay simplices and using n = Ω(ε−p),
we get that the number of Delaunay simplices is

O(m) = O(ε−(d−k+1)) = O(n
d−k+1

p ),

where k = dd+1
p+1e.

5.2 The bound is tight

We now prove that our upper bound is tight. Con-
sider a set of d+1 affinely independent points that we
partition into k = dd+1

p+1e groups Q1, . . . , Qk in such a
way that the maximum number of points in Qi, over
all i ∈ [1, k], is p + 1. Writing qi for the dimension of
the affine space spanned by Qi, we have

k∑
i=1

qi = d− k + 1. (1)

Letting Ci be the convex hull of Qi, we consider the
polyhedron P =

⋃k
i=1 Ci. Let S be a λ-sparse ε-

sample of P . The simplex σ = {s1, . . . , sk} obtained
by picking a sample point si ∈ S ∩ Ci for 1 ≤ i ≤ k
belongs to the Delaunay triangulation. Indeed, since
the points s1, . . . , sk are affinely independent, there
exists a (d − 1)-sphere Σ tangent to P at si for 1 ≤
i ≤ k, whose center lies on the 0-quasi k-medial axis
of P . By construction, this sphere encloses no sample
point of S in its interior, showing that σ is a Delaunay
simplex. Since Ci contains Ω(ε−qi) points of S, the
amount of Delaunay simplices that we can construct
this way is at least

Ω(ε−q1 × · · · × ε−qk) = Ω(ε−(d−k+1)) = Ω(n
d−k+1

p ).

6 Conclusion

This paper answers only the first of many possible
questions about the complexity of the Delaunay tri-
angulations of points distributed nearly uniformly on
manifolds. Similar bounds for smooth surfaces rather
than polyhedra would be of more practical interest.
The proof in this paper seems to rely on some prop-
erties specific to polyhedra, particularly that sample
points on k faces are needed to form a simplex. On
the other hand, the tight bound seems to be “right”,
at least in the sense that it agrees with the well-known
bounds in the cases p = 1 and p = d.
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Discrete Voronoi Diagrams on Surface Triangulations and
a Sampling Condition for Topological Guarantee ∗

Masaki Moriguchi † Kokichi Sugihara †

Abstract

Given a triangulation T of a surface S other than the
sphere and a subset P of its vertex set V (T ), we de-
fine the vertex-based discrete Voronoi diagram Vor(P )
using the shortest path distance on the unweighted
graph G(T ). In this paper, we provide a sampling
condition on P such that Vor(P ) is 3-representative
(i.e. any noncontractible cycle in T intersects at
least three Voronoi regions). We also show that a
3-representative discrete Voronoi diagram can be eas-
ily modified to a decomposition of S such that its dual
decomposition is a triangulation of S.

1 Introduction

A triangulation of a surface S (connected, compact
2-manifold without boundary) is a simple graph em-
bedded on S, such that each face is homeomorphic
to a 2-cell and is bounded by three edges, and any
two faces share at most one edge. For a triangula-
tion T , we denote the vertex set, edge set and face set
by V (T ), E(T ) and F (T ), respectively. The graph
(V (T ), E(T )) is denoted by G(T ). We refer to [6] for
embeddings of graphs into surfaces and to [7] for tri-
angulations in topological graph theory.

Given a triangulation T of a surface S other than
the (topological) sphere and a subset P of its vertex
set V (T ), we define the vertex-based discrete Voronoi
diagram Vor(P ) using the shortest path distance on
the unweighted graph G(T ). (The formal definition is
described in Section 2.) In some applications, such as
mesh simplification, topology preservation is impor-
tant [3, 4] and it requires that the dual of Vor(P ) is a
triangulation of S. We say that a discrete Voronoi di-
agram is topology-preserving if its dual is a triangula-
tion of S. This is equivalent to the condition that each
Voronoi region is homeomorphic to a disk and the in-
tersection of any two Voronoi regions is either empty,
a single vertex or a single edge. We also say that a
decomposition of a surface is topology-preserving if
its dual is a triangulation of the surface.

∗This work is partly supported by the Grant-in-Aid for Sci-
entific Research (S) of the Japan Society for Promotion of Sci-
ence.

†Department of Mathematical Informatics, University of
Tokyo, {Masaki Moriguchi, sugihara}@mist.i.u-tokyo.ac.jp

If a sample set P is too sparse, the dual of the dis-
crete Voronoi diagram Vor(P ) might not be a triangu-
lation or even the dual might not be defined. Leibon
and Letscher study geodesic Voronoi diagrams on Rie-
mannian surfaces and show a sampling condition such
that its dual is a triangulation of S [5]. We will show
a similar sampling condition in a discrete setting.

In this paper, we provide a sampling condition on
a sample set P such that Vor(P ) is 3-representative
(i.e. any noncontractible cycle in T intersects at
least three Voronoi regions). We also show that a
3-representative discrete Voronoi diagram can be eas-
ily modified to a decomposition of S such that its dual
decomposition is a triangulation of S.

1.1 Related work

Leibon and Letscher show a sampling condition
for geodesic Voronoi diagrams on Riemannian sur-
faces [5].

Theorem Let S be a Riemannian surface and P be
a set of points on S. Suppose that P satisfies that
for every point x ∈ S there exists a point p ∈ P such
that d(x, p) ≤ ε f(x), for ε ≤ 0.2. Then the geodesic
Voronoi diagram of P is topology-preserving. Here,
d(x, y) is the geodesic distance between x and y, and
f(x) is a strong convexity radius of S at x.

Although the context is different, in surface recon-
struction, a sampling condition for restricted Voronoi
diagrams on surfaces embedded in R3 is provided
[1, 2]. The restricted Voronoi diagram is the decom-
position of the surface constructed by restricting the
three-dimensional Voronoi diagram to the surface.

Theorem Let S be a surface embedded in R3 and P
be a set of points on S. Suppose that P satisfies that
for every point x ∈ S there exists a point p ∈ P such
that d(x, p) ≤ εf(x), for ε ≤ 0.18. Then the restricted
Voronoi diagram of P is topology-preserving. Here,
d(x, y) is the Euclidean distance between x and y,
and f(x) is a local feature size of S at x.

While they derive sampling conditions for topology-
preserving continuous Voronoi diagrams, we derive
a sampling condition for 3-representative discrete
Voronoi diagrams.
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2 Preliminaries

In this section, we first formally define the discrete
Voronoi diagram. Then we provide basic lemmas in-
cluding the 3-path condition for noncontractible cy-
cles.

2.1 Discrete Voronoi diagrams

We define discrete Voronoi diagrams on a triangula-
tion T using the shortest path distance on the un-
weighted graph G(T ). The length of a path is the
number of edges in the path, and the distance d(x, y)
between two vertices x and y is the length of the short-
est path connecting x and y.

Let T be a triangulation on a surface S and P =
{pi}k

i=1 ⊂ V (T ) be a set of vertices. We first define
the Voronoi set Vi for each sample vertex pi as

Vi = {v ∈ V (T ) | d(v, pi) ≤ d(v, pj), pj 6= pi} .

We also require that each Voronoi set Vi satisfies the
following condition:

dG[Vi](v, pi) = d(v, pi) (∀v ∈ Vi) ,

where dG[Vi](x, y) is the length of the shortest path in
G[Vi], which is the subgraph of G(T ) induced by Vi,
between x and y. If some vertex has more than one
closest vertices in P , it must be assigned to exactly
one Voronoi set using some tie-breaking rule. One can
use arbitrary tie-breaking rules as long as the condi-
tion on the Voronoi sets is satisfied. The Voronoi sets
can computed, for example, using the multiple-source
Dijkstra algorithm.

Then, we define the discrete Voronoi diagram
Vor(P ) of P as a decomposition of S into subsets,
called Voronoi regions. The Voronoi region V ∗

i of a
sample vertex pi is defined as the set of dual faces
associated with Vi:

V ∗
i = {v∗ ∈ V ∗(T ) | v ∈ Vi} ,

where v is the primal vertex of a dual face v∗ and
V ∗(T ) is the dual faces of T . Due to the condition of
the Voronoi sets, each Voronoi region is connected.

2.2 Basic lemmas

Let T be a triangulation on a surface S other than the
sphere. A discrete Voronoi diagram is said to be 3-
representative if any noncontractible closed curve on
S intersects at least three Voronoi regions. A noncon-
tractible closed curve is a closed curve which cannot
be continuously deformed into a single point. How-
ever, we do not need to consider all noncontractible
closed curves on S; it is enough to consider only non-
contractible cycles in T , since T is a triangulation.
Thus, we obtain the following lemma.

Lemma 1 Let T be a triangulation on a surface other
than the surface. A discrete Voronoi diagram on T
is 3-representative if and only if any noncontractible
cycle in T intersects at least three Voronoi regions.

Next, we introduce the 3-path condition for non-
contractible cycles. Let K be a family of cycles. Let
u, v be vertices of T and P1, P2, P3 be internally dis-
joint paths connecting u and v. K is said to satisfy
the 3-path condition if it satisfies the following. If one
of the three cycles P1∪P2, P1∪P3 and P2∪P3 is con-
tained in K, then at least one of the rest of cycles is
contained in K.

Thomassen showed that noncontractible cycles sat-
isfy the 3-path condition [8].

Lemma 2 Let u, v be vertices of T and P1, P2, P3 be
internally disjoint paths connecting u and v. If one
of the three cycles P1 ∪ P2, P1 ∪ P3 and P2 ∪ P3 is
noncontractible, then at least one of the rest of cycles
is also noncontractible.

From this lemma, we can prove that if a cycle C,
which can be decomposed into a set of cycles {Ki},
is noncontractible then at least one of Ki is noncon-
tractible. We use this corollary to prove our sampling
condition.

3 Modification for topology preservation

We show that the 3-representative discrete Voronoi
diagram can be easily modified to be topology-
preserving. A discrete Voronoi diagram on a surface
triangulation is said to be topology-preserving if and
only if its dual is a triangulation of the surface. The
following lemma implies the importance of the condi-
tion to be 3-representative.

Lemma 3 Let T be a triangulation on a surface S
other than the sphere and P ⊂ V (T ) be a set of ver-
tices. If Vor(P ) is 3-representative, it can be modified
such that its dual is a triangulation of S.

Proof. We show that a 3-representative decomposi-
tion can be modified to be topology-preserving. Sup-
pose that D be a 3-representative decomposition. The
dual of D is a 3-representative triangular embedding.
By repeatedly applying edge flips to this triangular
embedding, we get a triangulation. We apply the
dual operations of these edge flips to C, and we get a
topology-preserving decomposition. �

4 Sampling condition

In this section, we provide a sampling condition on a
sampling set so that its discrete Voronoi diagram is
3-representative.
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Figure 1: Left: all the vertices in a noncontractible
cycle C is contained in the Voronoi region of p. Right:
cycle C can be decomposed into a set of cycles.

We first define a function D(l) (l ≥ 3) as follows.
Suppose that Cl is a cycle of length l and u, v are two
vertices on Cl. Let du,v denote the maximum distance
between x and {u, v}, taken over all x ∈ Cl. Then we
define D(l) to be the minimum of du,v taken over all
u, v ∈ Cl,

D(l) = min
u,v∈Cl

du,v

= min
u,v∈Cl

max
x∈Cl

d(x, {u, v})

= min
p+q=l,p≥0,q≥0

⌊
max{p, q}

2

⌋
= min

dl/2e≤p≤l

⌊p

2

⌋
=

⌊
l + 1

4

⌋
.

Noting that d < D(l) ⇐⇒ d ≤ D(l) − 1, we define
another function

δ(l) = D(l)− 1 =
⌊

l − 3
4

⌋
.

Then, we present a sampling condition using this func-
tion.

Lemma 4 Let T be a triangulation on a surface
other than the sphere and P be a subset of its vertex
set. Suppose that P satisfies that, for every noncon-
tractible cycle C in T , each vertex v ∈ C has a ver-
tex p ∈ P within distance δ(`(C)), where `(C) is the
length of C. Then the discrete Voronoi diagram of P
is 3-representative.

Proof. We will show any noncontractible cycle in T
intersect at least three Voronoi regions by contradic-
tion. Suppose that a noncontractible cycle C inter-
sects only one Voronoi region of a vertex p ∈ P . Let
Tp be a shortest-path tree (actually it is a breadth-
first-search tree) rooted at p. Tp decomposes C into
a set K of cycles, see Figure 1. Some of K might be
non-simple. In such case, removing repeated edges
within each cycle resolves non-simple cycles. Then by

Figure 2: Left: all the vertices in a noncontractible
cycle C is contained in the Voronoi region of p and
the Voronoi region of q. Right: cycle C can be de-
composed into a set of cycles.

the 3-path condition, at least one of these cycles is a
noncontractible cycle. Let K be such a cycle. See Fig-
ure 3 (left) for the notations. We can assume s1 ≥ s2

without loss of generality. Then, we will show that
the sampling condition for K contradicts the assump-
tion that the distance from u1 to its closest vertex in
P is s1. By the sampling condition for K, u1 has a
vertex in P within distance

δ(s1 + s2 + 1) =
⌊

s1 + s2 − 2
4

⌋
< s1 .

This contradicts the assumption that the distance
from u1 to its closest vertex in P is s1.

Next, suppose that a noncontractible cycle C inter-
sects only two Voronoi regions of vertices p ∈ P and
q ∈ P . Let Tp and Tq be shortest-path trees rooted
at p and q, respectively. Tp and Tq decomposes C
into a set K of cycles, see Figure 2. Some of K might
be non-simple. In such case, removing repeated edges
within each cycle resolves non-simple cycles. Then by
the 3-path condition, at least one of these cycles is a
noncontractible cycle. Let K be such a cycle. There
are three configurations for K, see Figure 3. For each
case, the sampling condition for K contradicts the
assumption that the distance from u1 to its closest
vertex in P is s1.

Case 1 (Figure 3 left): We can assume s1 ≥ s2

without loss of generality. By the sampling condition
for the new noncontractible cycle, u1 has a vertex in
P within distance

δ(s1 + s2 + 1) =
⌊

s1 + s2 − 2
4

⌋
< s1 .

This contradicts the assumption that the distance
from u1 to its closest vertex in P is s1.

Case 2 (Figure 3 center): We can assume s1 ≥ s2

without loss of generality. By the sampling condition
for the new noncontractible cycle, u1 has a vertex in
P within distance

δ(s1 + s2 + 2) =
⌊

s1 + s2 − 1
4

⌋
< s1 .
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Figure 3: Left: Case 1. A cycle consists of two paths
in the shortest-path tree Tp and an edge u1u2 in C.
Center: Case 2. A cycle consists of two paths in the
shortest-path tree Tp and two edges u1v and u2v in
C. Right: Case 3. A cycle consists of two paths in the
shortest-path tree Tp, two paths in the shortest-path
tree Tq, and two edges u1v1 and u2v2 in C.

This contradicts the assumption that the distance
from u1 to its closest vertex in P is s1.

Case 3 (Figure 3 right): We can assume s1 ≥
s2, t1, t2 without loss of generality. By the sampling
condition for the new noncontractible cycle, u1 has a
vertex in P within distance

δ(s1+s2+t1+t2+2) =
⌊

s1 + s2 + t1 + t2 − 1
4

⌋
< s1 .

This contradicts the assumption that the distance
from u1 to its closest vertex in P is s1.

�

In this sampling condition, the number of conditions
is too large and they are verbose. To simplify the sam-
pling condition, we define the edge-width, denoted by
ew(v), at a vertex v as the minimum length of a non-
contractible cycle containing v. Using this quantity,
the sampling condition can be simplified into the fol-
lowing theorem.

Theorem 5 Let T be a triangulation on a surface
other than the sphere and P be a subset of its vertex
set. Suppose that P satisfies that for every vertex v ∈
V (T ) there exists a vertex p ∈ P such that d(v, p) ≤⌊

ew(v)− 3
4

⌋
. Then the discrete Voronoi diagram of

P is 3-representative.

The edge-width at a vertex v measures the size of
a topological feature at v, and this theorem states
that if a sample set is dense enough with respect to
the edge-width then its discrete Voronoi diagram is
3-representative. Note that our definition of the edge-
width is slightly different than that defined in topo-
logical graph theory where the edge-width is defined
for embedding of graphs and it is the minimum length
of a noncontractible cycle in the embedding [6].

If a set of vertices P satisfies the assumption in
Theorem 5, then the discrete Voronoi diagram of P

is 3-representative and, as shown in Section 3, we can
get a topology-preserving decomposition by modify-
ing Vor(P ).

5 Discussion

We have presented a sampling condition for 3-
representative discrete Voronoi diagrams. We use the
shortest path distance on the unweighted graph and
the sampling density is measured using edge-width.
Since the shortest path distance on the weighted
graph is much more desirable, we would like to deal
with it. Currently we are considering weighted graphs
whose weights satisfy the triangle inequality.

While we study vertex-based discrete Voronoi dia-
grams on a surface triangulation, face-based discrete
Voronoi diagrams are also used in geometry process-
ing [3]. By duality, they can be treated as vertex-
based discrete Voronoi diagrams on the dual embed-
ding of the triangulation. By defining the face-width
at a vertex v as the minimum number of faces whose
union contains a noncontractible cycle containing v,
we can derive a similar sampling condition using face-
width instead of edge-width. However, contrary to tri-
angulations, 3-representative Voronoi diagrams can-
not necessarily be modified to polyhedral embeddings.
We would also like to resolve this issue.
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On the Locality of Extracting a 2-Manifold in R3

Daniel Dumitriu∗ Stefan Funke† Martin Kutz∗ Nikola Milosavljevic‡

Abstract

Algorithms for reconstructing a 2-manifold from a point
sample in R3 based on Voronoi-filtering like CRUST [1] or
CoCone [2] still require – after identifying a set of candi-
date triangles – a so-called manifold extraction step which
identifies a subset of the candidate triangles to form the
final reconstruction surface. Non-locality of the latter step
is caused by so-called slivers – configurations of 4 almost
cocircular points having an empty circumsphere with cen-
ter close to the manifold surface.

We show that under a certain mild condition – local uni-
formity – which typically holds in practice but can also be
enforced theoretically, one can compute a reconstruction
using an algorithm whose decisions about the adjacencies
of a point only depend on nearby points. While the the-
oretical proof requires an extremely high sampling den-
sity, our prototype implementation – which is described
in a companion paper [5] – exhibits pretty good results on
typical sample sets and might have some potential in par-
ticular in parallel computing or external memory scenarios
due to its local mode of computation. The full version of
this paper is available under [4].

1 Introduction

Reconstructing a surface Γ in R3 from a finite point
sample V has attracted a lot of attention both in the
computer graphics community as well as in the com-
putational geometry community. While in the former
the emphasis is mostly on algorithms that work ‘well
in practice’, the latter has focused on algorithms that
come with a theoretical guarantee: if the point sample
V satisfies a certain sampling condition, the output of
the respective algorithm is guaranteed to be ‘close’ to
the original surface.

In [1], Amenta and Bern proposed a framework
for rigorously analyzing algorithms reconstructing
smooth closed surfaces. They define for every point
p ∈ Γ on the surface the local feature size lfs(p)
as the distance of p to the medial axis1 of Γ. A
set of points V ⊂ Γ is called a ε-sample of Γ if
∀p ∈ Γ ∃s ∈ V : |sp| ≤ ε · lfs(p). For sufficiently
small ε, Amenta and Bern define a canonical correct

∗Max-Planck-Institut für Informatik, Saarbrücken, Ger-
many, dumitriu@mpi-inf.mpg.de

†Ernst-Moritz-Arndt-Universität, Greifswald, Germany,
stefan.funke@uni-greifswald.de

‡Stanford University, Stanford, CA, U.S.A.,
nikolam@stanford.edu

1The medial axis of Γ is defined as the set of points which
have at least 2 closest points on Γ.

reconstruction of V with respect to Γ as the set of
Delaunay triangles that are dual to Voronoi edges in
the Voronoi diagram of V that are intersected by the
surface Γ. Unfortunately, due to certain point config-
urations called slivers – 4 (almost) cocircular points
that are nearby on the surface and have an empty, (al-
most) diametral circumsphere – it is not possible to
algorithmically determine the canonical correct recon-
struction of V without knowing Γ. Algorithms have
been proposed, though, that determine a collection
of Delaunay triangles which form a piecewise linear
surface that is topologically equivalent to the canoni-
cal correct reconstruction and converges to the latter
both point-wise as well as in terms of the surface nor-
mals as the sampling density goes to infinity (ε → 0).

The CoCone algorithm [2] is one example; in its
last step, it first removes triangles with free edges
and then determines the final reconstruction as the
outside surface of the largest connected component of
the remaining triangles; observe that this is a highly
non-local operation. There have been attempts to lo-
cally decide for each sample p which of the candidate
triangles to keep for the final reconstruction; such lo-
cal decisions might disagree, though, and hence the
selected triangles do not patch up to a closed mani-
fold. Again, the reason why local decisions might dis-
agree is the presence of slivers which induce a Voronoi
vertex inside the CoCone region of the involved sam-
ple points. Each involved sample point has to decide
whether in ‘its opinion’ the true surface Γ intersects
above or below the Voronoi vertex and create the re-
spective dual Delaunay triangles. If these decisions
are not coordinated contradicting decisions are made.
Not only in theory but even in practice the manifold
extraction step is still quite challenging and requires
deliberate engineering to actually work as desired.

One potential way to obtain a local manifold ex-
traction step is to decide on triangles/adjacencies in
a conservative manner by only creating those trian-
gles/adjacencies which are ‘safe’, i.e. where essen-
tially the respective dual Voronoi edge/face com-
pletely pierces the CoCone region. It is unclear,
though, how much connectivity is lost – whether the
resulting graph is connected at all and how big po-
tential holes/faces are. The main contribution of this
paper is to show that it is actually possible to make
local decisions but still guarantee that the resulting
graph exhibits topological equivalence to the original
surface. That is, it is connected, locally planar, and
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contains no large holes.
In [6] Funke and Milosavljevic present an algorithm

for computing virtual coordinates for the nodes of a
wireless sensor network which are themselves unaware
of their location. Their approach crucially depends on
a subroutine to identify a provably planar subgraph
of a communication graph that is a quasi-unit-disk
graph. The same subroutine will also be used in our
surface reconstruction algorithm presented in this pa-
per.

While we deal with the problem of slivers in some
sense by avoiding or ignoring them, another approach
coined sliver pumping has been proposed by Cheng
et al. in [3]. Their approach works for smooth k-
manifolds in arbitrary dimension, though its practi-
cality seems uncertain. There are, of course, other
non-Voronoi-filtering-based algorithms for manifold
reconstruction which do not have a manifold extrac-
tion step; they are not in the focus of this paper,
though.

Our contribution

We propose a novel method for extracting a 2-
manifold from a point sample in R3. Our approach
fundamentally differs from previous approaches in two
respects: first it mainly operates combinatorially on
a graph structure, which is derived from the original
geometry; secondly, the created adjacencies/edges are
“conservative” in a sense that two samples are only
connected if there is a safe, sliver-free region around
the two samples. Interestingly we can show, though,
that conservative edge creation only leads to small,
constant-size faces in the respective reconstruction,
hence completion to a triangulated piecewise linear
surface can easily be accomplished using known tech-
niques. The most notable advantage compared to pre-
vious Voronoi-filtering based approaches is that the
manifold extraction step can be performed locally, i.e.
it only relies on adjacency information of geometri-
cally nearby points.

While the theoretical analysis requires an absurdly
high sampling density – like most of the above men-
tioned algorithms do – our prototype implementation
of the novel local manifold extraction step (see com-
panion paper [5]) suggests that the approach is viable
even for practical use.

From a technical point of view, two insights are
novel in this paper (and not a result of the mere com-
bination of previous results): first, we show that the
neighborhood graph that our algorithm constructs is
locally a quasi-unit-disk graph; it is this property that
allows us to actually make use of the machinery de-
veloped in [6]. Second, we provide a more elegant
and much stronger result about the density of the
extracted planar graph based on the β-skeleton and
power-spanner properties; this insight also improves

the overall result in [6].

2 Graph-based, conservative adjacencies

In this section we present an algorithm that given a
ε-sample V from a closed smooth 2-manifold Γ in R3

computes a faithful reconstruction of V with respect
to Γ as a subcomplex of the Delaunay tetrahedraliza-
tion of V . The outline of our method is as follows
(with the novel steps being 2.–5.):

1. Determine a Lipschitz function φ(v) for every v ∈ V
which lower-bounds ε lfs(v) (as in [7])

2. Construct a local neighborhood graph G(V ) by cre-
ating an edge from every point v to all other points
v′ with |vv′| ≤ O(φ(v)).

3. Compute a subsample S of (V )

4. Identify adjacencies between elements in S based on
the connectivity of G(V ) (as in [6])

5. Use geometric positions of the points in S to identify
faces of the graph induced by certified adjacencies
when embedded on the manifold

6. Triangulate all non-triangular faces

7. reinsert points in V − S by computing the weighted
Delaunay triangulations on the respective faces (as
in [7])

The core components of the correctness proof of this
approach are:

• We show that the local neighborhood graph cor-
responds locally to a quasi-unit-disk graph for a
set of points in the plane.

• The identified adjacencies locally form a planar
graph.

• This locally planar graph has faces of bounded
size.

Essentially this means that we cover Γ by a mesh with
vertex set S consisting of small enough cells that the
topology of Γ is faithfully captured. Note that the first
and last item from above are original and novel to this
paper and do not follow from our previous results in
[7] and [6] (the last item makes the theoretical result
in [6] much stronger).

We first discuss the 2-dimensional case, where we
are given a uniform ε-sampling (i.e. the local feature
size is 1 everywhere) of a disk and show that steps 2.
to 5. yield a planar graph with ‘small’ faces. Then we
show how the same reasoning can be applied to the
3-dimensional case.

The main rationale of our approach is the “conser-
vative” creation of adjacencies; that is, we only create
an edge between two samples if in any good recon-
struction the two points are adjacent, which can be
interpreted as creating edges only in the absence of
slivers in the vicinity.
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2.1 Conservative adjacencies in R2

Let V be a set of n points that form a ε-sampling
of the disk of radius R around the origin o, that is,
∀p ∈ R2 with |po| ≤ R, ∃v ∈ V : |vp| ≤ ε.

Definition 1 A graph G(V,E) on V is called a α-
quasi-unit-disk-graph (α-qUDG) for α ∈ [0, 1] if for
p, q ∈ V

• if |pq| ≤ α then (p, q) ∈ E

• if |pq| > 1 then (p, q) /∈ E

That is, for distances between α and 1 the presence
of an edge is left open.

Within G we consider the distance function dG de-
fined by the (unweighted) graph distances in G(V,E).
Let k ≥ 1, we call a set S ⊆ V a tight k-subsample of
V if

• ∀s1, s2 ∈ S: dG(s1, s2) > k

• ∀v ∈ V : ∃s ∈ S with dG(v, s) ≤ k.

A tight k-subsample of V can easily be obtained by
a greedy algorithm which iteratively selects a so far
unremoved node v into S and removes all nodes at
distance at most k from consideration.

The following algorithm determines adjacencies be-
tween nodes in S based on a Graph Voronoi diagram
such that the induced graph on S remains planar.

2.1.1 Graph-based conservative adjacencies

The idea for construction and the planarity property
of our construction are largely derived from the geo-
metric intuition. The planarity follows from the fact
that our constructed graph – we call it combinatorial
Delaunay map of S, short CDM(S) – is the dual graph
of a suitably defined partition of the plane into simply
connected disjoint regions.

In the following we use the method for identify-
ing adjacencies between nodes in S purely based on
the graph connectivity as described in [6]; the reason-
ing relies on the fact that the original communication
graph is not an arbitrary graph but reflects the geom-
etry of the underlying domain by being a qUDG.

First we introduce a labeling of G(V,E) for a given
set S ⊆ V assuming that all elements in V (and hence
in S) have unique IDs that are totally ordered.

Definition 2 Consider a vertex a ∈ S and a vertex
v ∈ V − S. We say that v is an a-vertex (or: labeled
with a) if a is one of the elements in S which is closest
to v (in graph distance), and a has the smallest ID
among such.

Clearly, this rule assigns unique labels to each vertex
and edge, due to the uniqueness of nodes’ IDs. Also
note that any a ∈ S is an a-vertex. Next we present a

criterion for creating adjacencies between vertices in
S.

Definition 3 Vertices a, b ∈ S are adjacent in
CDM(S) iff there exists a path from a to b whose
1-hop neighborhood (including the path itself) con-
sists only of a- and b-vertices, and such that in the
ordering of the nodes on the path (starting with a
and ending with b) all a-nodes precede all b-nodes.

We have the following result of [6]:

Theorem 1 If G is an α-qUDG with α ≥ 1√
2

and S

a tight k-subsample of G, then CDM(S) is a planar
graph.

Of course, just planarity as such is not too hard to
guarantee – one could simply return a graph with no
edges.

2.1.2 CDM(S) is dense (!)

Interestingly we can show that in spite of the con-
servative adjacency creation, CDM(S) is relatively
dense, in particular it exhibits (internal) faces of size
O(1). Due to space restrictions we cannot provide a
proof in this paper but instead refer to the complete
version under [4], therefore we only state the following
corollary:

Corollary 2 The graph induced by S and the ad-
jacencies identified by our algorithm is planar, con-
nected and has (internal) faces of size O(1).

2.2 Conservative adjacencies in R3

All the reasoning which has been concentrating on a
flat, planar setting can be translated with little effort
to our actual setting in R3 as we can show that locally
the neighborhood graph we construct looks like an α-
quasi-unit-disk-graph.

Here the steps of our algorithm are as follows: (1)
we have to compute a Lipschitz2 function φ with
φ(p) ≤ ε lfs(p) for all p ∈ V . This can be done using
the procedure given in [7] in near-linear time. Then in
step (2) the graph G(V,E) is constructed by creating
edges between samples p1, p2 iff |p1p2| ≤ 6 · φ(p1) or
|p1p2| ≤ 6 · φ(p2) (Note that the constant 6 is some-
what arbitrary and only chosen such that every sam-
ple is connected to at least its neighbors in the canoni-
cal correct reconstruction). The following steps (3) to
(5) are exactly the same as in the 2-dimensional case.
We now want to argue that locally around a sample
point p the constructed graph looks like an α-quasi-
unit-disk graph. The following basic observation are
easy to derive:

2In fact one computes a δ-approximate ω-Lipschitz function.
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Lemma 3 For γ ≤ 1/16 the γ lfs(p)-neighborhood
of p in the constructed graph is an α-quasi-unit-disk
graph with α > 1√

2
.

Now we can invoke Corollary 2 which implies that
locally for any p ∈ S the graph constructed by our
algorithm is planar, connected and has internal faces
of constant size.

What does this mean? The graph that we con-
structed on the subsample of points S is a mesh that
is locally planar and covers the whole 2-manifold.
The mesh has the nice property that all its cells (aka
faces) have constant size (that is, number of bound-
ing vertices). The edge lengths of the created adja-
cencies between S are proportional to the respective
local feature sizes. Therefore its connectivity struc-
ture faithfully reflects the topology of the underlying
2-manifold.

2.2.1 Algorithm epilog

We did not talk about steps (6) and (7) of our ap-
proach since they follow exactly the description in [7]
and are not novel to this work; we nevertheless give a
brief summary here.

Essentially in step (6) we triangulate non-triangular
faces by projecting them into a nearby (almost) tan-
gent plane and computing the Delaunay triangulation.
The resulting triangulated faces behave nicely since all
faces have small size (the respective points hence are
almost coplanar) and because S is a locally uniform
sampling of the surface. In step (7) the points pruned
in step (3) are reinserted by computing a weighted
Delaunay triangulation on the supporting planes of
the respective faces. The resulting triangulations are
guaranteed to patch up.

The proofs for convergence both point-wise as well
as with respect to triangle normals can be carried over
from [7] since S can be made an arbitrarily good, lo-
cally uniform ε′-sampling (the original ε-sampling V
has to be accordingly denser, i.e. ε � ε′). Therefore,
the same theorem holds for the result of our algo-
rithm:

Theorem 4 There exists ε∗ such that for all ε < ε∗,
smooth surfaces Γ in R3 and ε-samplings V ⊂ Γ, the
triangulated surface Γ̃ output by our algorithm satis-
fies the following conditions:

1. Bijection: µ : Γ̃ → Γ, determined by closest
point, is a bijection

2. Pointwise Approximation: For all x ∈ Γ̃,
d(x, µ(x)) = O(ε2 lfs(µ(x)))

3. Normal Approximation: For all x ∈ Γ̃,
∠neΓ(x)nΓ(µ(x)) = O(ε) where nF (y) denotes the

(outside) normal of F at y3.

4. Topological Correctness: Γ and Γ̃ have the
same topological type.

3 Conclusions

We proposed a novel algorithm for extracting a 2-
manifold from a point sample in R3, differing funda-
mentally from previous approaches by mainly operat-
ing combinatorially on a graph structure derived from
the original geometry, and conservatively creating ad-
jacencies/edges. We showed that when local unifor-
mity is satisfied, the algorithm computes a faithful
reconstruction of the original surface, both point-wise
and in terms of triangle normals; this could also be
observed with our prototype implementation, which
is described in [5].

Theoretically our approach has the potential to
work for reconstructing 2-manifolds even in higher
dimensions. It does not extend to non-2-manifolds,
though, as the “local planarity property” of a graph
that our algorithm crucially depends upon, has no
equivalent for non-2-manifolds.

While we proved theoretically that our new method
allows for a localized manifold extraction step when
reconstructing a 2-dimensional manifold in R3, it re-
mains to be seen whether this localization property
leads to practically more effcient algorithms in the
parallel computing or external memory scenario.
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Arrangements on Surfaces of Genus One: Tori and Dupin Cyclides

Eric Berberich∗ Michael Kerber∗

Abstract

An algorithm is presented to compute the exact ar-
rangement induced by arbitrary algebraic surfaces on
a parametrized ring Dupin cyclide, including the spe-
cial case of the torus. The intersection of an algebraic
surface of degree n with a reference cyclide is repre-
sented as a real algebraic curve of bi-degree (2n, 2n)
in the cyclide’s two-dimensional parameter space. We
use Eigenwillig and Kerber [11] to compute a planar
arrangement of such curves and extend their approach
to obtain more asymptotic information about curves
approaching the boundary of the cyclide’s parameter
space. With that, we can base our implementation on
a general software framework by Berberich et. al. [3]
to construct the arrangement on the cyclide. Our con-
tribution provides the demanded techniques to model
the special topology of the reference surface of genus
one. Our experiments show no combinatorial over-
head of the framework, i.e., the overall performance
is strongly coupled to the efficiency of the implemen-
tation for arrangements of algebraic plane curves.

1 Introduction

Consider a surface S in R3 and a set C of curves on
S. The arrangement A(C) is the subdivision of S into
cells of dimensions zero, one, and two with respect
to C. The cells are called vertices, edges, and faces,
respectively.

Berberich et al. [3] introduced a general software
framework for sweeping a set of curves on a para-
metric surface S. We present an implementation for
the case that S is a ring Dupin cyclide and the ar-
rangement on it is induced by intersections of S with
algebraic surfaces of arbitrary degree. Our approach
always computes the exact arrangement, undistorted
by rounding errors, of the given input. It also handles
all degeneracies like singular points or intersections
with high multiplicity.

Dupin Cyclides have been introduced by Dupin [9]
as surfaces whose lines of curvature are all circular.
One can think of a (ring) Dupin cyclide as a torus
with variable tube radius. Dupin cyclides are the
generalization of the “natural” geometric surfaces like
planes, cylinders, cones, spheres and tori, what makes

∗Max-Planck-Institut für Informatik, 66123 Saarbrücken,
Germany, email: {eric,mkerber} @mpi-inf.mpg.de

them useful for applications in solid modeling; com-
pare, e.g., [6], [15], [16], [8].

Our algorithm is this: we follow the framework
of [3], and perform a sweep-line algorithm [2] on the
intersection curves of the Dupin cyclide with the sur-
faces in the parameter space. The primitives of the
sweep are specified by a model of the GeometryTraits
concept which is given by the recent work of Eigen-
willig and Kerber [11]. With that model, one can
sweep over algebraic plane curves of arbitrary degree.
The applied sweep line algorithm interacts with a
model of the TopologyTraits concept; this model con-
trols the creation and manipulation of arrangement
features at the boundary of the parameter space, i.e.,
identifications in our case. We implemented such a
model for the case of a Dupin cyclide. The arrange-
ment on the Dupin cyclide is represented by a doubly-
connected edge-list (Dcel), where points are attached
to vertices and curves are stored with edges. Our
implementation in C++ deeply benefits from generic
programming capabilities, i.e., we are using Cgal’s1

class template Arrangement on surface 2 that ex-
pects proper models of the GeometryTraits and the
TopologyTraits concept.

Related work: Arrangements in the plane have been
well studied during the past decades, and also quite
a number of exact and efficient implementations ap-
peared [13]. Two-dimensional arrangements on sur-
faces, especially with exact implementation, became
more popular recently, e.g., arrangements of great
arcs on a sphere [3], arrangements of small arcs on
a sphere by Cazals and Loriot [7]. The most com-
plicated surfaces considered so far are arrangements
induced by quadrics intersecting a reference quadric.
Three approaches exist. The first actually computes
more, namely the adjacency relationship between in-
tersection of a set of quadrics [10]. The other two
project the intersection curves onto the xy-plane. The
original work [4] maintains two arrangements, one for
the lower part of the reference quadric and one for
its upper part; a connection between them is missing.
Instead, [3] introduces a small extension of the projec-
tion to simulate the parameter space of the reference
quadric. This way, it benefits from the framework
that we also apply for ring cyclides. Instead of such
a simulation, the sweep on a cyclide is explicitly per-
formed in parameter space.

A more detailed version of this paper appears in [5].

1See the project homepage: http://www.cgal.org
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2 Dupin cyclides

The maybe most intuitive way of constructing a
Dupin cyclide (called cyclide for brevity) goes back
to Maxwell, we cite it from Boehm [6]:

Let a sufficiently long string be fastened
at one end to one focus f of an ellipse, let
the string be kept always tight while sliding
smoothly over the ellipse, then the other end
z sweeps out the whole surface of a cyclide Z.

Note that choosing a circle in this construction yields
a torus. We assume that the cyclide is in standard
position and orientation, i.e., the chosen base ellipse
is given by (x/a)2 + (y/b)2 = 1, a ≥ b > 0.

We define c :=
√
a2 − b2, and µ as the length of the

string minus a. We assume that c < µ ≤ a which
means that the cyclide has no self-intersections (it is
a ring cyclide).

Figure 2.1: (Left) Cyclide with a = 1, b = 0.99, µ =
0.5, (Right) Cyclide with a=13, b = 12, µ = 9

The parameterization of the cyclide [14] is given by

(
φ
ψ

)
7→


µ(c−a cosφ cosψ)+b2 cosφ

a−c cosφ cosψ
b(a−µ cosψ) sinφ
a−c cosφ cosψ
b(c cosφ−µ) sinψ
a−c cosφ cosψ


with φ, ψ ∈ [−π, π]. For φ = π and φ = −π, this
yields the tube circle (x + a)2 + z2 = (µ + c)2 in the
plane y = 0, for ψ = π and ψ = −π, it yields the
outer circle (x + c)2 + y2 = (a + µ)2 in the plane
z = 0. The tube circle and the outer circle meet in
the pole p := (−µ− c− a, 0, 0).

To get a rational parameterization of the cyclide
without trigonometric functions, we use the identities

cos θ =
1− tan2 θ

2

1 + tan2 θ
2

sin θ =
2 tan θ

2

1 + tan2 θ
2

,

and set u := tan φ
2 , v := tan ψ

2 . We write the obtained
parametrization in homogeneous coordinates, i.e., the
common denominator is written as a separate vari-
able: Define u+ := 1 + u2, u− := 1− u2, v+ := 1 + v2

and v− := 1− v2 then P̂ : R2 → R4 is given by

(
u
v

)
7→


µ(cu+v+ − au−v−) + b2u−v+

2u(av+ − µv−)b
2v(cu− − µu+)b
au+v+ − cu−v−



The image of P̂ is the cyclide without the tube cir-
cle and the outer circle. Intuitively, the cyclide is cut
along the outer circle and the tube circle, and “rolled
out” to the plane. Therefore, we call the outer circle
and the tube circle the cut circles. Paths on the cy-
clide crossing the cut circles correspond to paths in the
parameter space crossing the infinite boundary. More
precisely, an intersection with the tube (outer) circle
causes a horizontally (vertically) asymptotic path in
the parameter space. Paths passing through the cy-
clide’s pole correspond to paths converging to one of
the “corners” (±∞,±∞) in parameter space.

3 Our implementation

We use the software framework implemented in
Cgal’s new Arrangement on surface 2 package [3].
It provides an arrangement class that can be used
to construct, maintain, overlay, and query two-
dimensional arrangements on a parametric surface.
It conceptually performs a sweep in the parameter
space, i.e., a line u = u0 is swept to the right through
the parameter space.

Special diligence is needed for such curves at bound-
aries of the parameter space. The parameter space of
the cyclide contains so called identifications of both
pairs of opposite boundaries, i.e., for its parameteri-
zation PS , it holds ∀v ∈ V, PS(umin, v) = PS(umax, v)
and ∀u ∈ U,PS(u, vmin) = PS(u, vmax), so for each
point on the outer- and the tube-circle there exist
two pre-images (four for the pole) in parameter space.
This leads to problems for the sweep, since the event
queue of the sweep line algorithms needs a unique
order, and since only one Dcel-vertex should be con-
structed for each multiple pre-image. The modularity
of Cgal’s new Arrangement on surface 2 package
tackles these problems. To instantiate the package’s
main class, models of two concepts must be provided
as template parameter.

First, the GeometryTraits fullfills the Cgal’s Ar-
rangementTraits 2 concept. It defines the types
Curve 2, X monotone curve 2, and Point 2, and pro-
vides predicates and constructions on points and sub-
curves, e.g., lexicographic comparison of two points,
or the construction of all intersection of two x-
monotone curves.

Second, the TopologyTraits is responsible to deter-
mine the underlying Dcel-representation, to create
the empty representation and to construct and main-
tain Dcel-features related to the boundary of the pa-
rameter space.

We describe next our models for both concepts:
GeometryTraits: We aim to represent the curves

on the cyclide as algebraic curves in parameter space,
and to realize the geometric predicates by computa-
tions in the parameter space.

For a cyclide with homogeneous parametrization
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P̂ and a surface F with homogeneous equation F̂ ∈
Z[x, y, z, w], the cut curve in the parameter space is
implicitly defined by f := F̂ (P̂ (u, v)) ∈ Z[u, v]. The
resulting curve f has bidegree up to (2 · degF, 2 ·
degF ), hence we need a model of Cgal’s Arrange-
mentTraits 2 concept for algebraic curves in R2,
regardless of their degree.

Such a model has recently been provided by Eigen-
willig and Kerber [11] based on the observation that
all required operations emerge from the topological
and geometric analyses of single curves [12] and pairs
of them. No condition is imposed on the input, i.e.,
curves can have arbitrary degree, and contain degen-
eracies, like covertical intersections, vertical asymp-
totes and isolated points.

Figure 3.1: Cut-out of an arrangement in the param-
eter space of a cyclide, induced by 5 cubic surfaces

TopologyTraits: We provide a new Topology-
Traits class for the cyclide. To handle the identifica-
tions at boundaries, it maintains two sorted sequences
of Dcel-vertices to store the intersection of intersec-
tion curves with the cut circles. The position of such
intersections is determined by horizontal and verti-
cal asymptotes of curve-ends approaching infinity, the
boundary of the parameter space.

Whenever the arrangement detects a curve-end ap-
proaching a cut circle, it asks the topology traits
whether a Dcel-vertex is already stored for this po-
sition. If not, a new one is created and stored in the
proper sequence; if yes, that one is used and the iden-
tification interactively takes place.

The analysis of curves contains the information
about vertical asymptotes of curves (compare [12]),
but not about horizontal asymptotes. We also imple-
mented this step, with the following idea: there can be
only finitely many positions where horizontal asymp-
totes might appear, since they are roots of a leading
coefficient with respect to u. The curve-ends of arcs
towards u = ±∞ can be assigned to such asymptotes
by analysing the curve at some value u0 “far” on the
left or on the right.

Instance #S #V,#E,#F t t (2D)

ipl-1 10 119,190,71 0.14 0.14
ipl-1 20 384,682, 298 0.58 0.58
ipl-1 50 1837,3363,1526 2.14 2.00
ipl-2 10 358,575,217 1.07 1.25
ipl-2 20 1211,2147,937 3.14 3.04
ipl-3 10 542,847,305 4.84 4.62
ipl-3-6points 10 680,1092,412 32.43 31.17
ipl-3-2sing 10 694,1062,368 5.82 5.57
ipl-4 10 785,1204,419 50.42 49.97
ipl-4-6points 10 989,1529,540 461.74 450.54
ipl-4-2sing 10 933,1471,538 53.01 52.78

Table 1: Running times (in seconds) to construct ar-
rangements on S1 induced by algebraic surfaces

4 Results

We performed tests of our C++ implementation, ex-
ecuted on an AMD Dual-Core Opteron(tm) 8218
multi-processor Debian Etch platform, each core
equipped with 1 MB internal cache and clocked at
1 GHz. The total memory consists of 32 GB. As
compiler we used g++ in version 4.1.2 with flags -O2
-DNDEBUG. Two results were computed for each in-
stance, one that computes the arrangement using the
cyclidean topology (onSurface), the other is comput-
ing the two-dimensional arrangement of the induced
intersection curves in parameter space, i.e., with the
topology of an unbounded plane (Arrangements).
Our implementation allows to translate and rotate the
reference cyclide in space. For the experiments pre-
sented in this work, we use the torus S1 with a = 2,
b = 2, µ = 1, centered at the origin and the cyclide S2

with a = 13, b = 12, µ = 11, translated by a rational
vector and rotated by a rational matrix.

We interpolated surfaces of fixed degree by ran-
domly chosing points on a three-dimensional grid,
having no or some degeneracies wrt S1: the surfaces in
“6points” instances share at least 6 common points,
one of them is the pole of S1. The surfaces in the
“2sing” instances induce (at least) two singular inter-
sections. The running times are listed in Table 1 that
show good behavior of the implementation, even for
higher degree surfaces. Degeneracies with respect to
the reference surface result in higher running times
as the instance “6points” shows. But this effect al-
ready appears in parameter space, as the last col-
umn indicates. In general, it is remarkable that in
all tested instances, the spent time on the cyclides is
(almost) identical to the computation of the curves
in their parameter space. This let us conclude that
the cyclidean topology is as efficient as the one for
the unbounded plane and that the extra computation
of horizontal asymptotes seems to be a cheap task.
Most time is spent for geometric operations on alge-
braic curves. Thus, we infer that the chosen approach
strongly hinges on the efficiency of the underlying 2D-
implementation for arrangements of algebraic curves.
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Instances #S #V,#E,#F t

quadrics 10 428,646,219 1.59
degree-3 5 240,314,74 1.56
Overlay - 942,1508,566 1.91

degree-3 10 794,1218,424 6.25
degree-4 10 325,418,93 13.36
Overlay - 1623,2644,1021 13.83

degree-4 10 816,1188,372 50.86
degree-4 5 325,418,93 13.52
Overlay - 1581,2488,907 47.30

Table 2: Running times (in seconds) to construct ar-
rangements induced by algebraic surfaces of different
degree on S2, and to overlay them afterwards.

We also generated instances of random surfaces
with degree up to 4 intersecting S2, picked two of
them, computed their arrangement and also the over-
lay of these arrangements. Reading Table 2, one sees
that the overlay step is usually faster than the two ini-
tial constructions, as only a few new pairs of algebraic
curves have to be analyzed newly.

Finally, we remark, that we also can immedi-
ately use other techniques implemented for Cgal’s
Arrangement on surface 2, such as point location,
extending the Dcel by user data, and notifications.

5 Conclusion

Our work demonstrates the usefulness of generic pro-
gramming: the combination of the planar arrange-
ment algorithm for arbitrary curves with the software
framework for arrangement on surfaces yields an ar-
rangement algorithm for tori and Dupin cyclides al-
most immediately. New code was only written for the
computation of the parameterized intersection curves,
for the asymptotic behavior of infinite curve arcs, and
for the topology traits of the cyclide. Relying on al-
ready tested and optimized code reduces the imple-
mentation effort, and makes the algorithm more ro-
bust and more efficient. We are already working on
the adaptation of our traits classes with respect to
the next version of the framework that will support
geometric objects on identifications.

We also believe that the performance could be fur-
ther improved: the computed arrangements often
contain numerous vertically asymptotic arcs (com-
pare Figure 3.1). The strategy proposed in [12] to
shear non-regular curves and shearing back afterwards
therefore results in a change of coordinates for many
curves. A comparably efficient alternative approach
that avoids to shear might be more suitable for this
special subclass of curves.
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On the Topology of Planar Algebraic Curves

Jinsan Cheng∗ Sylvain Lazard∗ Luis Peñaranda∗

Marc Pouget∗ Fabrice Rouillier† Elias Tsigaridas‡

Abstract

We introduce a method to compute the topology of
planar algebraic curves. The curve may not be in
generic position and may have vertical asymptotes.
The algebraic tools are rational univariate represen-
tation for zero-dimentional ideals and multiplicities in
these ideals. Experiments show the efficiency of our
algorithm.

1 Introduction

We consider the problem of computing a geometric
representation of a planar real algebraic curve C, de-
fined in a Cartesian coordinate system by a bivariate
polynomial f with rational coefficients. More pre-
cisely, we address the problem of computing a pla-
nar graph whose vertices are mapped to points in
the plane (possibly at infinity) and such that draw-
ing the arcs as line segments gives a drawing isotopic
to the input curve (see Figure 1). We assume that C
is square-free and has no vertical lies. The assump-
tion is a standard one in the context of this type of
problems, while treating vertical lines is easy to deal
with. There is no other assumptions on C.

There have been many papers addressing the prob-
lem of computing the topology of algebraic plane
curves [2, 3, 4, 8]. All algorithms use a sheared curve
if it is not in generic position.

All these algorithms perform the following phases.
(1) Project the x-critical points of the curve on the
x-axis, using resultants or Sturm-Habicht sequences,
and isolate the real roots of the resulting univariate
polynomial in x. This gives the x-coordinates of all
the x-critical points. (2) For each such value xi, com-
pute the intersection points between the curve C and
the vertical line x = xi. (3) Through each of these
points, determine the number of branches of C com-
ing from the left and going to the right. (4) Connect
all these points appropriately.

The main difficulty in all these algorithms is to
compute efficiently all the critical points in Phase 2

∗LORIA (INRIA, CNRS, Nancy Université) and INRIA
Nancy-Grand Est, Nancy, France. Firstname.Name@loria.fr

†LIP6 (Université Paris 6, CNRS) and INRIA Paris-
Rocquencourt, Paris, France. Fabrice.Rouillier@lip6.fr

‡INRIA Sophia-Antipolis Méditerranée.
Elias.Tsigaridas@inria.fr

Figure 1: C : 16x5−20 x3+5 x−4 y3+3 y = 0 plotted
in maple and its isotopic graph computed by isotop.

because the x-critical values in Phase 1 are, a pri-
ori, non-rational thus computing the corresponding
y-coordinates in Phase 2 amounts, in general, to solv-
ing a univariate polynomial with non-rational coeffi-
cients and at least a multiple root (corresponding to
the critical point).

Our contributions. Unlike most previous algo-
rithms, this algorithm handles curves in non-generic
positions in the given Cartesian coordinate system
without shearing. The other originality of our ap-
proach is that we succeed to avoid the computation of
sub-resultant sequences. As a result, our maple im-
plementation, isotop, substantially outperforms pre-
vious available maple implementations, top [3] and
insulate [8]. Recall that top requires an initial
precition to be set, thus the results may not correct
if the precision is not set appropriately. insulate is
certified but the critical points may be computed in
a sheared coordinate system. We observe on prelim-
inary tests that the running time of our implementa-
tion is remarkably stable. Furthermore, we observe,
on 24 curves of degree between 4 and 13, that iso-
top is, on average, 8.34 times faster than insulate
with a median of 4.3 and extrema of 0.8 and 43.9.
Compared to top using 60 (resp. 500) digits of initial
precision, isotop is, on average, 10.36 (resp. 26.7)
times faster with a median of 1.2 (resp. 4.25) and
extrema of 0.2 and 103.3 (resp. 0.7 and 193.2).

The novelty of our algorithm mainly relies upon the
use of three new ingredients for this problem. First,
we use a formula of Teissier relating the multiplicities
of the roots of a polynomial or a system, which avoids
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Figure 2: Example of rectangle decomposition of the
plane induced by the isolating boxes (critical and
asymptotes).

computing Sturm-Habicht type sequences.
Second, we isolate the roots of bivariate systems

using (i) Gröbner bases, (ii) Rational Univariate Rep-
resentations (RUR) , and (iii) a subdivision technique
based on Descartes’ rule for isolating the roots of the
univariate polynomials.

Third, we present a variant of the standard com-
binatorial part of the algorithm for computing the
topology. This variant avoids computing points of the
curve on (rational) vertical lines between the critical
points. Alternatively, we compute a decomposition
of the plane by rectangular boxes containing at most
one critical point. To achieve the connection in each
box, we use their multiplicities in the system of critical
points.

We also present an output-sensitive bound on the
worst-case complexity of our algorithm. To the best
of our knowledge, this is, for the problem considered
here, the first time that the complexity of a (certified)
algorithm based on refinements and approximations
is analyzed. Our technique, even though not novel,
could presumably also be used to analyze the com-
plexity of some previous algorithms.

2 Notations and preliminaries.

Let Cf be a real algebraic plane curve defined by a
bivariate polynomial f in Q[x, y].

Let fx denote the derivative of f with respect to x
and fyk (sometimes also fk) denote the kth derivative
with respect to y. A point p = (α, β) ∈ C2 is called
x-critical (simply called critical) if f(p) = fy(p) = 0,
singular if f(p) = fx(p) = fy(p) = 0, and x-extreme
(simply called extreme) if f(p) = fy(p) = 0 and
fx(p) 6= 0. Similarly are defined y-critical and y-
extreme points.

The ideal generated by polynomials P1, . . . , Pi is
denoted I(P1, . . . Pi). In the following, we often iden-

tify the ideal and the system of equations {P1 =
0, . . . , Pi = 0} (or any equivalent system induced by
a set of generators of the ideal). Let Ic = I(f, fy) and
Is = I(f, fx, fy). Their roots are, respectively, the x-
critical and singular points of C. We also consider the
Jacobian ideal Ij = I(fx, fy) and its associated ideal
Im = I(fx/ gcd(fx, fy), fy/ gcd(fx, fy)) called the Mil-
nor ideal.

We now recall the notion of multiplicity of the roots
of an ideal, then we state two lemmas using this no-
tion for studying the local topology at singular points.
Geometrically, the notion of multiplicity of intersec-
tion of two regular curves is intuitive. If the inter-
section is transverse, the multiplicity is one; other-
wise, it is greater than one and it measures the level
of degeneracy of the tangential contact between the
curves. Defining the multiplicity of the intersection
of two curves at a point that is singular for one of
them (or possibly both) is more involved and an ab-
stract and general concept of multiplicity in an ideal
is needed.

Definition 1 ([1]) Let I be an ideal of Q[x, y] and
Q the algebraic closure of Q. To each zero (α, β) of I
corresponds a local ring (Q[x, y]/I)(α,β) obtained by

localizing the ring Q[x, y]/I at the maximal ideal I(x−
α, y−β). When this local ring is finite dimensional as
Q-vector space, we say that (α, β) is an isolated zero
of I and this dimension is called the multiplicity of
(α, β) as a zero of I.

Let f, g ∈ Q[x, y] be such that the intersection of
Cf and Cg in C2 contains a zero-dimensional compo-
nent equal to point p = (α, β). Then (α, β) is an
isolated zero of I(f, g) and its multiplicity, denoted
by Int(f, g,p), is called the intersection multiplic-
ity of the two curves at this point. A singular
point of a curve Cf is an isolated zero of the Jacobian
ideal Ij = I(fx, fy) and the multiplicity of this point
as a zero of this system is called the Milnor number
of the singular point.

We call a fiber a vertical line of equation x = α.
For a point p = (α, β) on the curve Cf , we call the
multiplicity of β in the univariate polynomial f(α, y)
the multiplicity of p in its fiber and denote it as
mult(f(α, y), β).

Lemma 1 ([7]) For a singular point p = (α, β) of
the curve Cf , we have

mult(f(α, y), β) = Int(f, fy,p)− Int(fx, fy,p) + 1.
(1)

For an x-extreme point, the same formula holds and,
as the Milnor number vanishes, it simplifies into

mult(f(α, y), β) = Int(f, fy,p) + 1. (2)

Lemma 2 ([8]) Let p = (α, β) be a real singular
point of the curve Cf of multiplicity k in its fiber. Let

24th European Workshop on Computational Geometry

214



Extreme
point

Extreme
point

odd

odd

even

even

Figure 3: Different connections according to multi-
plicities for the same crossing pattern.

B be a box satisfying (i) B contains p and no other
x-critical point, (ii) the function fyk does not vanish
on B, and (iii) the curve Cf crosses the border of B
only on the left or the right sides. Then the topology
of the curve in B is given by connecting the singular
point with all the intersections on the border.

Given a zero-dimensional ideal I = I(P1, . . . , Ps)
where the Pi ∈ Q[x1, . . . , xn], a Rational Univari-
ate Representation (RUR) [6] of the solutions V(I)
is given by F (t) = 0, x1 = G1(t)

G0(t)
, . . . , xn = Gn(t)

G0(t)
,

where F,G0, . . . , Gn are univariate polynomials in
Q[t] (where t is a new variable). All these univariate
polynomials, and thus the RUR, are uniquely defined
with respect to a given polynomial γ ∈ Q[x1, . . . , xn]
which is injective on V (I); γ is called the separating
polynomial of the RUR. 1

3 Algorithm

Input. A square free bivariate polynomial f ∈ Q[x, y]
without factor in Q[x].

Step 1. Isolating boxes of the singular points and of
the x-extreme points. First compute the RURs of Ic

and Im with the same separating polynomial γ. Let
Fc and Fm denote the univariate polynomials of the
RURs of Ic and Im. Isolate the roots of Fc and those
of the gcd of Fc and Fm and match the resulting in-
tervals. The roots of Fc that are roots of gcd(Fc, Fm)
map to the singular points of C and the other roots of
Fc map to the x-extreme points of C. Using the RUR
of Ic, compute isolating boxes of the singular points
and of the x-extreme points. Note that these boxes
are pairwise disjoint since they isolate the x-critical
points of C (see Figure 2).

1The polynomial F is the characteristic polynomial of
mγ , the multiplication operator by the polynomial γ, in
Q[x1, . . . , xn]/I.

Step 2. Refinement of the isolating boxes of the x-
extreme points. For each vertical or horizontal side of
each such box, B, isolate its intersections with C and
refine the box (by refining the corresponding isolating
interval of Fc) until there are two intersection points
on the border of B. We further refine until there is at
most one crossing on the top (resp. bottom) side of B.
Unlike comparable algorithms, we do not require that
C intersects the boundary of B only on its vertical
sides.

Step 3. Refinement of the isolating boxes of the sin-
gular points. We refine these boxes exactly as in [8]
(see Lemma 2) except for the way the multiplicity k
of each singular point in its fiber is computed. We de-
duce k from the Teissier formula (see Lemma 1) and
from the RURs computed above.

Consider each singular point, p, in turn. Compute
the multiplicities kc and km of the root associated
to p in the univariate polynomials Fc and Fm, re-
spectively. This gives the multiplicity of p in Ic and
Im because the RURs preserve multiplicities. By the
Teissier formula, the multiplicity of p in its fiber is
k = kc − km + 1. Refine the box containing p until
fyk does not vanish in the box. Further refine the
x-coordinates of the box until C only intersects the
vertical boundary of the box.

Step 4. Vertical asymptotes. If there exist vertical
asymptotes, we can work as follows.

First, compute an upper bound My on the abso-
lute value of the y-coordinates of the y-critical points
(this is of course done without computing these crit-
ical points). Compute also a bound Mx on the abso-
lute value of the y-coordinates of the x-critical points
(which are already computed). Isolate the roots of the
polynomial in x obtained as the leading coefficient of f
seen as a polynomial in y. For each root α we have an
isolating interval [a, b]. Substitute x = a (resp. x = b)
in f and deduce an upper bound, Mα, on the absolute
value of the y-coordinates of the intersection of C and
x = a (resp. x = b). Set M = max(Mα,Mx,My).
Then, a branch crossing the segment ]a, b[×M (resp.
]a, b[× − M) goes to +∞ (resp. −∞) with asymp-
tote x = α. Finally, we determine whether a given
branch is to the left or to the right of the asymptote
by comparing the x-coordinates of the asymptote and
the crossing point (see Figure 2).

Step 5. Connections. For simplicity, all the boxes
computed above are called critical boxes and the
points at infinity on vertical asymptotes are also called
critical. First compute, with a sweep-line algorithm,
the vertical rectangular decomposition obtained by
extending the vertical sides of the critical boxes either
to infinity or to the first encountered critical box (see
Figure 2). On each of the edges of the decomposition,
isolate the intersections with C. Create vertices in the
graph corresponding to these intersection points and
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to the critical points. For describing the arcs con-
necting these vertices in the graph, we assimilate, for
simplicity, the points and the graph vertices. In each
critical box, connect the critical point to the points
on the boundary of the box.

For computing the connections in the non-critical
rectangles of the decomposition, we use the multiplic-
ities of the extreme points and a greedy algorithm.
According to Lemma 1, the multiplicity k of an ex-
treme point p in its fiber is one plus the multiplicity
of p in Ic. Recall that the multiplicity of p in Ic is
the multiplicity of the corresponding root in the poly-
nomial Fc of the RUR. All the multiplicities of the
extreme points in their fibers can thus be efficiently
computed.

The geometric meaning of the parity of this multi-
plicity is the following: if it is even, the curve makes
a U-turn at the extreme point; else, the curve is x-
monotone in the neighborhood of the extreme point.
Still, there are some difficulties for connecting the ver-
tices, as illustrated on Figure 3: on the left is the infor-
mation we may have on the crossings for two extreme
points with x-overlapping boxes; the second and third
drawings are two possible connections in the middle
rectangle for given parities of the multiplicities. To
distinguish between these two situations we compute
the connections in rectangles starting from the top
such that the connections in a rectangle below a crit-
ical box are computed once the connections in all the
rectangles above the box are done.

First, the connections in the unbounded rectangles
above critical boxes are straightforward: the connec-
tions between the vertices on the two vertical walls
are one-to-one starting from infinity and if a vertex
remains on a vertical wall, there is a vertex on the
horizontal wall which it has to be connected with.
Now, once all the connections have been computed in
the rectangle(s) above the box of an extreme point,
these connections and the multiplicity of the extreme
point yield the connections in the rectangle(s) below.
Indeed, if there is a vertex on the bottom side of the
critical box, it lies on the top side of a rectangle and,
inside this rectangle, the vertex is connected to the
topmost vertex on the left or right wall, depending on
the multiplicity of the extreme point and on the side
of the connection of the branch above the extreme
point; the other connections in this rectangle and in
the possible other rectangles below the critical box are
performed similarly as for unbounded rectangles.

Note that the two unbounded rectangles that
are vertical half-planes are treated separately in a
straightforward manner: for each vertex on the verti-
cal wall is associated an arc going to infinity.

Output. A graph isotopic to the curve is output.
In addition x-critical, singular points and vertical
asymptotes are identified and their position is approx-
imated by boxes.

4 Complexity analysis

Consider a real algebraic plane curve defined by a
square-free polynomial f ∈ Z[x, y] of degree bounded
by d and maximum coefficient bit-size bounded by τ .
Let sk be the bit-size of the separation bound of f and
all its derivatives with respect to y, sc be the bit-size
of the separation bound between all the critical points
of f , s = max{sc, sk} and R be the number of critical
points. Let ÕB denote the bit complexity where the
polylogarithmic factors are omitted. For reasons of
space we omit the proof of the following theorem.

Theorem 3 Our algorithm computes the topology
in ÕB

(
R(d12τs + d12s2 + d7τ2)

)
time, which is in

ÕB(N22), where N = max{d, τ}.
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Topological Considerations for the Incremental Computation of
Voronoi Diagrams of Circular Arcs

Martin Held∗ Stefan Huber†

Abstract

We study the computation of Voronoi diagrams of
points, straight-line segments and circular arcs in the
two-dimensional Euclidean plane. Our algorithm is
based on a randomized incremental insertion of the
sites and makes use of the topology-oriented approach
by Sugihara et alii. It was implemented and inte-
grated into the Voronoi package Vroni. However, in
this extended abstract we focus only on the topologi-
cal and graph-theoretic details of an insertion.

1 Introduction

1.1 Motivation

Voronoi diagrams of straight-line segments turned out
to be useful in a variety of applications with a geomet-
ric flavor. We note that supporting circular arcs is im-
portant for the practical application of a Voronoi al-
gorithm: offsetting a polygon introduces circular arcs,
and it is generally requested that the result of an off-
setting operation can again be used as input for a
Voronoi algorithm. Handling circular arcs as genuine
arcs is imperative in the PCB1 business, since PCB
data may be huge; typically, one cannot afford to re-
place every arc by tens or even hundreds of straight-
line segments as this would cause the memory foot-
print of a Voronoi-based application to sky-rocket.

1.2 Basic definitions

For two points p, q ∈ R2, let d(p, q) denote the Eu-
clidean distance between p and q. If Q ⊂ R2 is a set
then d(p, Q) is defined as inf{d(p, q) : q ∈ Q}. Sim-
ilarly, if Q is a set of a finite number of sets, then
d(p,Q) := minQ∈Q d(p, Q).

In the sequel we explain how to compute VD(S),
where S is a set of points, straight-line segments and
circular arcs. For technical reasons, we regard a line
segment or a circular arc as the union of three objects:

∗Universität Salzburg, FB Computerwissenschaften, A–5020
Salzburg, Austria; held@cosy.sbg.ac.at; Partially supported
by Austrian FWF Grants L43-N12 and L367-N15.

†Universität Salzburg, FB Computerwissenschaften, A–5020
Salzburg, Austria; shuber@cosy.sbg.ac.at; Supported by Aus-
trian FWF Grant L43-N12.

1Printed-circuit board.

an open segment/arc and its two end points. Further-
more, we assume that every arc is oriented counter-
clockwise (CCW), and that no arc is greater than a
semi-circle2. Points, open straight-line segments and
open circular arcs are called sites. If for every open
segment and arc of S its end points also belong to S
and if no sites intersect pairwise then S is called a
proper input set.

For a vector v and a point p, let H(p, v) be the
half-plane {q ∈ R2 : q · v ≥ p · v}. The re-
sult of the rotation of v around the origin by 90o

is denoted by vCCW, while vCW stands for a rota-
tion by −90o. Following [3], the cone of influence
CI(s) of a site s is defined as CI(s) := R2 if s is
a point, CI(s) := H(a, b − a) ∩ H(b, a − b) if s is
a segment with end points a and b, and CI(s) :=
H(c, (s− c)CCW) ∩H(c, (e− c)CW) if s is an arc cen-
tered at c with start point s and end point e. We
define the Voronoi cell of a site s ∈ S as VC(s, S) :=
cl{q ∈ int CI(s) : d(q, s) ≤ d(q, S)}, where intQ de-
notes the (topological) interior of the set Q and clQ
stands for the closure of Q. (The consideration of the
interior and exterior in the definition of VC(s, S) is
a technical twist3 in order to avoid undesired “one-
dimensional” portions of a Voronoi cell if two circu-
lar arcs meet tangentially in an end point such that
the interiors of their cones of influence overlap.) The
Voronoi polygon VP(s, S) is given by the boundary
of VC(s, S), and the Voronoi diagram VD(S) of S is
defined (as usual) as VD(S) :=

⋃
s∈S VP(s, S). For

two sites s1, s2 ∈ S, the bisector b(s1, s2) is defined
as the loci of points out of CI(s1) ∩ CI(s2) which are
equidistant to s1 and s2. A Voronoi edge between
s1, s2 is a connected portion of VP(s1, S)∩VP(s2, S);
it lies on b(s1, s2). Voronoi nodes are points where
three or more Voronoi edges meet. The clearance disk
CD(p, S) of a point p ∈ R2 is the closed disk centered
at p with clearance radius r := d(p, S).

1.3 Prior and related work

A worst-case optimal O(n log n) algorithm for the
computation of the Voronoi diagram of n points,
straight-line segments and circular arcs was intro-

2We split arcs greater than semi-circles.
3Yap [5] resorts to ε-neighborhoods. Alt and Schwarzkopf

[1] consider cells that are partially open; as a consequence, the
intersection between adjacent cells may be empty.
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duced by Yap [5]. At least in theory, Fortune’s sweep-
line algorithm [2] is also applicable to circular arcs.
However, for both algorithms we are not aware of an
actual implementation that handles circular arcs.

More recently, Alt and Schwarzkopf [1] studied
Voronoi diagrams of so-called “harmless sites” (which
include circular arcs). They first select one point out
of the relative interior of each curve and then insert
the curves in a randomized order, obtaining an ex-
pected running time of O(n log n). However, their
paper focuses mostly on establishing a theoretical ba-
sis for the definition of Voronoi diagrams of planar
curves, while the actual algorithmic aspect of the in-
sertion of a curve is only sketched. In any case, no
implementation of their algorithm is known.

1.4 Survey of the Voronoi algorithm

The success of Held’s Voronoi package Vroni [3] mo-
tivated us to extend its construction scheme to points,
straight-line segments and circular arcs in the two-
dimensional Euclidean plane. Once again we resort to
the topology-oriented approach by Sugihara et al. [4].
Starting with an initially empty set of processed sites,
the final Voronoi diagram is obtained by incrementally
adding one new site at a time to the set of processed
sites and updating the Voronoi diagram accordingly.

Every update of the Voronoi diagram is performed
by deleting old Voronoi nodes (and creating new
Voronoi nodes). As in the case of segment Voronoi
diagrams, care has to be taken in order to prevent
the removal of cycles of Voronoi edges while deleting
Voronoi nodes during an incremental update. How-
ever, the insertion of circular arcs causes problems to
surface that do not occur for segment Voronoi dia-
grams. In the sequel, we discuss all topological and
graph-theoretical extensions of the incremental inser-
tion needed for handling circular arcs.

Our new algorithm has been implemented in ANSI
C and integrated into Vroni. We emphasize, though,
that the basic scheme presented below for incremen-
tally inserting a circular arc into a Voronoi diagram
is not bound to the limits of Vroni.

2 The algorithm

Let S be a set of sites and consider an open arc s /∈ S
that is to be inserted into VD(S). Let S+ := S ∪{s}.
We assume that S+ is a proper input set and that
VD(S) is known. In order to insert the arc s into
VD(S), we proceed as follows:

1. We mark a Voronoi node (“seed node”) of VD(S)
whose clearance disk is intersected by s.

2. We scan VD(S) and mark all other nodes whose
clearance disks are intersected by s.

3. We remove all those Voronoi edges of VD(S)
which have both nodes marked, and compute new
nodes4 on the edges with only one node marked.

While the second task boils down to a simple graph
traversal that is identical to the case of segment
Voronoi diagrams [3], the first and the third task re-
quire some caution, as explained below.

2.1 Selecting a seed node

A seed node is a node of VD(S) which lies in
VC(s, S+). Thus, its clearance disk is intersected by
s and it needs to be removed. We search for a seed
node in VP(p, S) ∩ CI(s), where p is the start point
of s. If one or more candidates for a seed node exist
in VP(p, S)∩ int CI(s), then we select the node whose
clearance disk is violated the most: We pick the node
v such that d(v, S) − d(v, s) is minimized. A second
seed node is selected within the Voronoi polygon of the
end point of s. In any case, we do not select a node
as seed node, or mark it in the subsequent scan of
VD(S), if it coincides with the start or end point of s.
If, however, no node of VP(p, S) lies within int CI(s)
then one can prove that there exist nodes of VP(p, S)
on bd CI(s), and we distinguish the following cases.

2.1.1 Selecting a seed node in the presence of
tangential sites

Suppose that s meets exactly one site s′ ∈ S tangen-
tially in the common end point p. Let e1, e2 be the
two Voronoi edges that emanate from p, see Fig. 1.
We note that e1 and e2 lie on the same supporting
line g through p.

p

s s′s
s′ s′ s

e1 e2 pe1 e2pe1 e2p

s

s′

e1 e2

Figure 1: Selecting a seed node if sites meet tangen-
tially.

The start node shared by e1 and e2 is excluded from
further consideration because we do not select as seed
node a node that coincides with the point p. Since
VP(p, S) ∩ CI(s) ⊂ g, the two other nodes on e1 and
e2 are the only nodes of VP(p, S) that can be selected
as seed node. Suppose that the center of s is on the
side of e1 relative to g and p. We base our decision
on the relative order of the sites incident upon p:

• Case: s′ is an arc.
If the center of s′ is on the side of e2 then the
node on e1 is admissible as seed node. If the

4The computation of the new Voronoi nodes is explained in
the full version of this paper.
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center of s′ is on the side of e1 and the radius of
s′ is greater than the radius of s, then the node
on e1 is admissible; otherwise, the node on e2 is
admissible.

• Case: s′ is a segment.
The node on e1 is admissible.

In Fig. 1 the little arrows point to the edge on which
we select the seed node. If, however, more sites are
incident upon p then we need to handle spikes; see
below.

2.1.2 Selecting a seed node in the presence of
spikes

Suppose that several segments or arcs meet in a com-
mon end point p. We scan all nodes of the Voronoi
polygon VP(p, S). If VP(p, S) has a node v with
a clearance greater than zero then v does not coin-
cide with p. In this case we proceed as normal: if v
lies on bd CI(s) then we evaluate d(v, S)− d(v, s). If
some sites meet tangentially at p we also have to check
whether v is admissible; see above. Again, we select
that (admissible) node as seed node whose clearance
disk is violated the most.

p p

s s

e2

e3
e4

e1
e2

e1

e3
e4

v1
v2
v3v4

s1

s2

s3

s4

s1

s2

s3

s4

Figure 2: Selecting a seed node when multiple sites
meet in a common end point. Left: Geometric view.
Right: Topological view.

Otherwise, if no such (admissible) node exists, then
we scan the Voronoi edges that are incident upon the
nodes which coincide with p. (In Fig. 2, these nodes
are numbered v1, . . . , v4.) For such a node vi we con-
sider the Voronoi edge ei incident upon vi whose sec-
ond node does not belong to VP(p, S). (If no such
edge is incident upon vi then we originate a recursive
search in VD(S), starting at vi.) For every such edge
ei it is tested whether s intersects the clearance disk of
its second node. (One can prove5 that such a suitable
node always exists.)

We emphasize that nodes which coincide with an
input point are never deleted during an incremen-
tal update. Therefore, it is guaranteed that in the
final Voronoi diagram every point site will have a
Voronoi region associated with it; it may have zero
area, though.

5All proofs are given in the full version of this paper.

2.2 Removing a tree of Voronoi edges

Assume that two seed nodes have been determined.
Starting at one seed node we recursively scan the
Voronoi diagram VD(S) and mark all those nodes
whose clearance disks are intersected by s. Obvi-
ously, all those nodes need to be deleted since they
cannot belong to VD(S+). Similarly, it seems natural
to remove a Voronoi edge if both of its nodes have
been marked for deletion. However, we have to check
whether a cycle exists within the portion T of VD(S)
which is marked for deletion. It can be shown that
those portions of edges of VD(S) which are completely
contained in VC(s, S+) form a tree. In other words,
T contains a cycle if and only if T contains an edge
of VD(S) which has both nodes marked but needs to
be preserved partly. Figure 3 depicts a (dashed) cir-
cular arc whose insertion would cause the removal of
all nodes of the Voronoi cells of its two end points.

Figure 3: The insertion of the dashed arc causes the
nodes depicted by circles to be marked. Splitting the
two parabolic arcs at their apices avoids the (incor-
rect) removal of two Voronoi cells.

Suppose that e is an edge whose two nodes are
marked for deletion but which needs to be preserved
partly. We can distinguish two cases, depending upon
whether or not e is completely contained in CI(s).

2.2.1 Voronoi edge partly outside of cone of influ-
ence

Consider a Voronoi edge and assume that the apex
of its supporting conic lies on the edge. As suggested
in [3], we insert a degree-two node in order to split a
conic Voronoi edge at its apex. (See Fig. 3.) Hence,
for the sequel we may assume that no Voronoi edge
has the apex of its supporting conic in its (relative) in-
terior. Then one can prove that every Voronoi edge of
a segment Voronoi diagram either does not have both
nodes marked for deletion or is completely contained
in the current cone of influence of the new segment
to be inserted. Unfortunately, once we deal with cir-
cular arcs the insertion of apex nodes is of limited
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help for avoiding cycles: even if all Voronoi edges are
split at the apices of their supporting conics, it still is
possible that both nodes of an edge e are marked for
deletion while e is not completely contained in CI(s),
as illustrated in Fig. 4.

s1

s

e
v1

v2

s2

V

p

g

Figure 4: The insertion of the arc s causes both nodes
of e to be marked although some portion of e lies
outside of CI(s).

This sample arrangement of input sites is con-
structed as follows: We consider the hyperbolic bisec-
tor between two circles that are disjoint. We choose
two arcs s1, s2 on these circles and the corresponding
Voronoi edge e on their bisector such that e does not
contain the apex in its interior and such that VC(s1, S)
contains all secants of e. We denote by v1 (resp. v2)
that node of e which has smaller (resp. larger) clear-
ance. We want to insert an arc s such that the clear-
ance disks of v1 and v2 are intersected by s, even
though e is not completely contained in CI(s).

Let V be the union of all line segments resulting
from the normal projection of points of e onto s1 and
s2. Now consider the supporting line g of a secant of e
that is parallel to the line through v1 and v2: We get
that g′ := g \ int(V ∪CD(v1)∪CD(v2)) consists of two
parts because the set g ∩ int(V ∪ CD(v1) ∪ CD(v2)) is
connected. Within each part of g′ we choose a point
close enough to the neighboring clearance disk such
that the line through this point orthogonal to g inter-
sects this clearance disk. All that remains to do is to
use these two points as the end points of a semi-circle
(which has to lie on that side of g which contains s1).
By construction, s intersects the clearance disks of v1

and v2. Also by construction, some portion of e does
not lie on the side of v1, v2 relative to g. Thus, this
portion of e is outside of CI(s)! This construction
scheme can be adapted to nearly every combination
of input sites s1, s2 as long as e does not take on the
form of a straight-line segment.

We solve this problem by inserting a dummy
degree-two node p that breaks up the cycle: We al-
ways find a proper point p on e by considering the

normal projection of the center of s onto s1, and by
intersecting the resulting projection line with e. The
resulting node p need not lie outside of CI(s) but one
can prove that it will never lie in the future Voronoi
cell VC(s, S+).

2.2.2 Voronoi edge completely contained in cone
of influence

Now suppose that e is a Voronoi edge of VD(S) which
does not lie completely within VC(s, S+) although
both of its nodes are marked and although it is con-
tained completely in CI(s). As Fig. 5 illustrates, the
site s1 enclosed by the cycle that contains the Voronoi
edge e may be a segment or arc. Both nodes of e are
marked even though a point p exists on e whose clear-
ance disk is not violated by s.

e

s1

s

v1

v2

p
s2

Figure 5: Both nodes v1, v2 of the edge e are marked
even though some portion of e has to be preserved.

Fortunately, the same strategy that we used in
Sec. 2.2.1 to break up a cycle is applicable once more:
we consider the normal projection of the center of s
onto s1 and intersect the resulting projection line with
e in order to obtain a split point p. Summarizing, we
get a uniform strategy for breaking up cycles.
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The Entropic Centers of Multivariate Normal Distributions

Frank Nielsen∗ Richard Nock†

Abstract

In this paper, we seek for a single best representa-
tive of a set of statistical multivariate normal dis-
tributions. To define the “best” center, we consider
either minimizing the average or the maximum rela-
tive entropy of the center to the given set of normal
distributions. Since the relative entropy is an asym-
metric divergence, this yields the notion of left- and
right-sided, and symmetrized entropic centroids and
circumcenters along with their respective information
radii. We show how to instantiate and implement for
this special case of multivariate normals very recent
work that tackled the broader case of finding centers
of point sets with respect to Bregman divergences.

1 Information-theoretic centers

Consider a set of n multivariate normal distributions
D = {N(µ1,Σ1), ..., N(µn,Σn)} with µi ∈ Rd de-
noting the mean vector and Σi the d × d symmetric
positive semi-definite variance-covariance matrix (i.e.,
xT Σix ≥ 0 for all x ∈ Rd). The probability density
function Pr(X = x) = p(x;µ,Σ) of a normal random
variable X ∼ N(µ,Σ) is given as:

p(x; µ, Σ) =
1

(2π)
d
2
√

detΣ
exp

„
− (x− µ)T Σ−1(x− µ)

2

«
.

A normal distribution N(µ,Σ) can thus be uniquely
characterized by a parameter point Λ̃ = (µ,Σ) in di-
mension D = d + d(d+1)

2 = d(d+3)
2 by stacking the d

mean coordinates of µ with the d(d+1)
2 matrix coeffi-

cients of Σ. We use the tilde notation ˜ to emphasize
on the mixed-type nature vector/matrix of the param-
eter. For example, bivariate parametric distributions
are represented by 5D points lying in the parame-
ter space X = R2 × Cone(R2×2), where Cone(R2×2)
denotes the convex cone of positive semi-definite ma-
trices. Given a set of n d-variate distributions D han-
dled as D-dimensional point set S = {Λ̃1, ..., Λ̃n} with
Λ̃i = (µi,Σi), we seek to define a proper center. Ig-
noring for a while the fact that S is a point set lying in
a parameter space X , we may consider the two usual
centers in Euclidean geometry ED: (1) The centroid
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that is commonly called and defined as the center of
mass ¯̃Λ = 1

n

∑n
i=1 Λ̃i of S, and (2) The circumcenter

Λ̃∗ that defines the smallest radius enclosing ball of
S.

Both the centroid and the circumcenter are appro-
priate centers for simplifying the point set down to
its best single representative. In other words, these
centers solve the 1-clustering task for the following
respective minimization criteria:

(1) The centroid c+ is found as the unique min-
imizer of the minimum average for the squared Eu-
clidean distance:

c+ = arg minx∈RD

∑n
i=1

1
n ||xΛ̃i||2.

(2) The circumcenter C∗ is defined as the center
that minimizes the radius of enclosing balls:

C∗ = arg minx∈RD maxn
i=1 ||xΛ̃i||.

While these minimization problems look quite sim-
ilar at first glance, they bear in fact very different
mathematical properties. Although it could be tempt-
ing to consider “as is” these Euclidean centers for the
parameter space Λ, this may not yield meaningful cen-
ters properly characterizing well the normal sets. The
reason is that the Euclidean distance (or its squared
distance) does not make sense1 for normals. Indeed,
consider two univariate normals X1 ∼ N(µ, σ2

1) and
X2 ∼ N(µ, σ2

2) centered on the same mean µ. Ap-
plying straightforwardly the Euclidean distance on
the parameter points λ1 = (µ, σ2

1) and λ2 = (µ, σ2
2),

we get a large distance
√

(σ2
2 − σ2

1)2 for σ1 deviating
much from σ2, a clearly wrong notion of statistical dis-
tance since the bell shape distributions get closer to
each other in that case. An appropriate distance be-
tween statistical distributions is the Kullback-Leibler
divergence (KL) better known as relative entropy. The
KL divergence is an asymmetric measure of dissimilar-
ity of probability distributions defined as KL(p||q) =∫

x
p(x) log p(x)

q(x)dx. The KL divergence relates the
Shannon entropy H(p) = −

∫
p(x) log p(x)dx with the

cross-entropy H(p; q) =
∫

p(x) log 1
q(x)dx as follows:

KL(p||q) = −H(p)−
∫

p log qdx = H(p; q)−H(p). For
multivariate normal distributions, the closed-form for-
mula for the entropy and relative entropy are obtained
after carrying out fastidious integral computations
as H(p(x;µ,Σ)) = d

2 + 1
2 log(2π)ddetΣ, (indepen-

dent of µ) and KL(p(x;µi,Σi)||p(x;µj ,Σj)) = 1
2 (µi−

µj)T Σ−1
j (µi−µj)+ 1

2 log det(Σ−1
i Σj)+ 1

2 tr
(
Σ−1

j Σi

)
− d

2

(*), where tr(Σ) =
∑d

i=1 Σi,i denotes the matrix trace
1Except iff. all covariance matrices are the same.
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(i.e. the sum of the diagonal elements Σi,i). Observe
that the relative entropy of normals with identity co-
variance matrices collapses to the squared Euclidean
distance.

2 Relative entropy of exponential families

It turns out that the normal distributions belong
to the (full regular) exponential families [2, 5] in
statistics. Besides normal distributions, exponential
families include many familiar discrete or continu-
ous distributions such as Poisson, Bernoulli, Beta,
Gamma but do not fully cover the spectrum of
usual distributions either (e.g., uniform, Lévy SαS
or Cauchy distributions). Let λ denote the usual
parameters of parametric distributions. Exponential
families admit the following canonical decomposition
of their probability measures: p(x;λ) = p(x; θ) =
exp {< θ, t(x) > −F (θ) + C(x)}, where θ ∈ RD are
the natural parameters associated with the sufficient
statistics t(x) (t : Rd 7→ RD). The real-valued log nor-
malizer function F (θ) is a strictly convex and differen-
tiable function that specifies uniquely the exponential
family, and the function C(x) is the base counting or
Lebesgue measure. Once this canonical decomposi-
tion is figured out, we can apply the key equivalence
theorem [2, 5] Kullback-Leibler of distributions of the
same exponential family⇐⇒Bregman divergence for
the log normalizer F : KL(p(x;µi,Σi)||p(x;µj ,Σj)) =
DF (θj ||θi), to get without integral computations the
closed-form formula (notice that parameter order
swaps). The Bregman divergence [2, 5] DF is de-
fined as the tail of a Taylor expansion for a strictly
convex and differentiable function F as DF (θj ||θi) =
F (θj) − F (θi)− < θj − θi,∇F (θi) >, where < ·, · >
denotes the vector inner product (< p, q >= pT q =∑d

i=1 piqi) and ∇F is the gradient operator. For
multivariate normals, we get the mixed-type natural
parameters Θ̃ = (θ, Θ) = (Σ−1µ, 1

2Σ−1), F (Θ̃) =
1
4 tr(Θ−1θθT ) − 1

2 log detΘ + d
2 log 2π and the one-to-

one mapping from the source Λ̃ = (µ,Σ) to natural
parameters Θ̃:

Λ̃ =
(

λ = µ
Λ = Σ

)
⇐⇒ Θ̃ =

(
θ = Σ−1µ
Θ = 1

2Σ−1

)
.

The inner product < Θ̃p, Θ̃q > in the corresponding
Bregman divergence DF is a composite inner prod-
uct obtained as the sum of two inner products for
vectors and matrices: < Θ̃p, Θ̃q >=< Θp,Θq >
+ < θp, θq >. For matrices, the inner product
< Θp,Θq > is defined by the trace of the matrix
product ΘpΘT

q : < Θp,Θq >= Tr(ΘpΘT
q ). One can

check by hand that KL(p(x;µi,Σi)||p(x;µj ,Σj)) =
DF (Θ̃j ||Θ̃i) yields formula (∗) by elementary calcu-
lus, bypassing complex integral computations.

3 Legendre transformation and duality

We refer to [2, 5] for detailed explanations that we
quickly summarize here: Any Bregman generator
function F admits a dual Bregman generator func-
tion G = F ∗ via the Legendre transformation G(y) =
supx∈X {< y, x > −F (x)}. The supremum is reached
at the unique point where the gradient of G(x) =<
y, x > −F (x) vanishes, that is when y = ∇F (x).
Writing X ′

F for the gradient space {x′ = ∇F (x)|x ∈
X}, the convex conjugate G = F ∗ of F is the func-
tion defined by F ∗(x′) =< x, x′ > −F (x). It fol-
lows from Legendre transformation that any Bregman
divergence DF admits a dual Bregman divergence
DF∗ related to DF as follows: DF (p||q) = F (p) +
F ∗(∇F (q))− < p,∇F (q) >= F (p) + F ∗(q′)− <
p, q′ >= DF∗(q′||p′). Yoshizawa and Tanabe [10] car-
ried out that non-trivial Legendre transformation for
multivariate normals. The strictly convex and differ-
entiable dual Bregman generator function F ∗ (ie., po-
tential function in information geometry) is F ∗(H̃) =
− 1

2 log(1 + ηT H−1η) − 1
2 log det(−H) − d

2 log(2πe).
The H̃ ⇔ Θ̃ coordinate transformations obtained
from the Legendre transformation are given by H̃ =

∇Θ̃F (Θ̃) =
(

1
2Θ−1θ

− 1
2Θ−1 − 1

4 (Θ−1θ)(Θ−1θ)T

)
, and

Θ̃ = ∇H̃F ∗(H̃) =
(
−(H + ηηT )−1η
− 1

2 (H + ηηT )−1

)
. This yields

the dual expectation coordinate systems arising from
the canonical decomposition:

H̃ =
(

η = µ
H = −(Σ + µµT )

)
⇐⇒ Λ̃ =

(
λ = µ
Λ = Σ

)
.

These formulas simplify when we restrict ourselves
to diagonal-only covariance matrices Σi, spherical
Gaussians Σi = σiI, or univariate normals N (µi, σ

2
i ).

The expectation parameter H̃ plays an important
role for infering the source parameters Λ̃ from a se-
quence of identically and independently distributed
observations x1, ..., xv. Indeed, the maximum likeli-
hood estimator (MLE) of exponential families is ˆ̃H =
1
v

∑v
i=1 t(xi), where t(xi) is the sufficient statistics

evaluated at xi. This yields a simple procedure to in-
fer from raw data x1, ..., xv ∈ Rd the multivariate nor-
mal parameters Λ̂ ⇔ ˆ̃H ∈ RD by taking the centroid
on the sufficient statistics for t(x) = x̃ = (x,− 1

2xxT ).
(This MLE is biased.) Gaussian distribution model-
ing abound in practice as explicited for three applica-
tions in [3].

4 Entropic centroids of multivariate normals

The entropic centroids e+ of normals are defined sim-
ilarly to the Euclidean geometry case by considering
minimizing the average distance: the information ra-
dius r+. Because the relative entropy is asymmetric,
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Figure 1: Right-sided (red), left-sided (blue) and sym-
metrized centroids (green) for 2D normals.

we consider three entropic centroids defined as the
following unique minimizers:

e+
L = arg min

Λ̃

n∑
i=1

1
n

KL(p(x; Λ̃)||p(x; Λ̃i)),

e+
R = arg min

Λ̃

n∑
i=1

1
n

KL(p(x; Λ̃i||p(x; Λ̃)),

e∗ = arg min
Λ̃

n∑
i=1

1
2n

KL(p(x; Λ̃i||p(x; Λ̃)),

+KL(p(x; Λ̃)||p(x; Λ̃i).

The latter symmetrical KL divergence is also called
J-divergence and plays an important role in sig-
nal processing [4]. Using the equivalence theorem
KL ↔ DF , it follows that the minimizers match up to
source↔natural parameter conversions the following
Bregman centroids c+ for the log normalizer F by the
swapping argument order:

e+
L ↔ c+

R = arg min
Θ̃

n∑
i=1

1
n

DF (Θ̃i||Θ̃),

e+
R ↔ c+

L = arg min
Θ̃

n∑
i=1

1
n

DF (Θ̃||Θ̃i),

e+ ↔ c+ = arg min
Θ̃

n∑
i=1

1
n

DF (Θ̃i||Θ̃) + DF (Θ̃||Θ̃i)
2

.

It has been shown in [7] that the sided Bregman
centroids admit closed-form formulas that are gen-
eralized means2: c+

R is simply the center of mass
c+
R = ¯̃Θ (independent of F , a mean for the iden-

tity function) and c+
L = ∇F−1(

∑n
i=1∇F (Θ̃i)), a ∇F -

mean. The information radius [7] r+ coincides for
the sided centroid, and is expressed as a Burbea-Rao
divergence (i.e., a generalized F -Jensen reminder):
r+(S) = 1

n

∑n
i=1 F (Θ̃i) − F ( ¯̃Θ) ≥ 0. These results

extend to barycenters as well, and allow one to per-
form interpolation and model merging on statistical
normal manifolds [9]. (Note that centroids are ro-
bust to outliers.) Further, the symmetrized entropic
centroid e+ does not admit closed-form solution but

2A f -mean is defined as f−1( 1
n

Pn
i=1 f(xi)).

Figure 2: The circumcenter of the smallest enclosing
disk is lying on the furthest Voronoi diagram.

is characterized geometrically exactly as the intersec-
tion of the geodesic linking the left-sided and right-
sided Bregman centroids (say, cL and cR respectively)
with the mixed-type bisector: MF (cF

R, cF
L) = {x ∈

X | DF (cF
R||x) = DF (x||cF

L)}. This yields an efficient
approximation algorithm by walking dichotomically
on the geodesic (wrt. the relative entropy) linking
the two sided Bregman (c+

L and c+
R) or equivalently

entropic centroids (e+
L and e+

R). Figure 1 depicts the
sided and symmetrized KL entropic centroids derived
from Bregman centroids. The geodesic walk algo-
rithm [7] simplifies and generalizes a former complex
and time consuming ad-hoc method [4], and allows one
to extend the k-means algorithm [2] to hard sided and
symmetrized entropic clustering of normals [3]. The
Bregman loss function of sided k-means monotonously
decreases. (k-means is a Bregman k-means [2] in dis-
guise for the generator F (x) = x2.)

5 Entropic circumcenters of normals

The MinMax optimization problem differs from the
MinAvg optimization in the sense that it further op-
timizes the KL radius r+ to its smallest possible value
r∗ but becomes sensitive to outliers. The MinMax
optimization problem is not differentiable on the fur-
thest Voronoi diagram [5] (see Figure 2). We similarly
define the sided and symmetrized entropic circum-
centers: E∗

L ↔ C∗
R = arg minΘ̃ maxn

i=1 DF (Θ̃i||Θ̃),
E∗

R ↔ C∗
L = arg minΘ̃ maxn

i=1 DF Θ̃||(Θ̃i), and E∗ ↔
C∗ = arg minΘ̃ maxn

i=1
DF (Θ̃i||Θ̃)+DF (Θ̃||Θ̃i)

2 . We
showed that Welzl’s MiniBall algorithm extends to
arbitrary Bregman divergences [8] allowing us to com-
pute exactly the sided entropic circumcenters E∗

R and
E∗

L on the plane (see Figure 3). The basis computa-
tions relies on using the fact that the right-sided Breg-
man Voronoi bisector [5] is a straight line. (In small
dimensions, computing these bases proceed by dimen-
sion reduction by constructing the Bregman generator
restricted to affine subspaces.) Note that the circum-
center of the entropic ball passing through exactly
three points may not exist as this circumcenter ob-
tained as the common intersection point of three lin-
ear bisectors may potentially fall out of domain X .

EuroCG’08, Nancy – March 18-20, 2008

223



Probability density functions Natural parameter points

Expectation parameter points
Source parameter points

λ∗ = arg minλ∈Λ maxi∈{1,...,n} KL(p(x; λ)||p(x; λi)) (left-sided)

θ∗ = arg minθ∈Θ maxi∈{1,...,n} DF (θi||θ) (right-sided)

η∗ = arg minη∈H maxi∈{1,...,n} DF∗(η||ηi) (left-sided)

F ∗(η) = − 1
2 log(η2 − η2

1)

F ∗(λ) = − log σ

λ = (µ, σ)

Sufficient statistics
t(x) = (x, x2)

MLE estimators: expectation parameters
=

centroids of sufficient statistics

Legendre transformation
F ←→ F ∗ =

∫
∇−1F

∇F ∗ = ∇−1F

η = ∇θF (θ) = (µ, µ2 + σ2)

p(x; µ, σ) = 1√
2πσ

exp
(
− (x−µ)2

2σ2

) Θ = R × R−

Λ = R × R+

H = R × R+
η = ∇θF (θ) = (− θ1

2θ2
, θ2

1
4θ2

2
− 1

2θ2
)

θ = ∇ηF ∗ = ( 1
η2−η1

, 1
2(η2−η2

1)
)

F (θ) = − θ2
1

4θ2
+ 1

2 log− π
θ2

F (λ) = µ2

2σ2 + 1
2 log 2πσ2

θ = ∇ηF ∗(η) = ( µ
σ2 ,− 1

2σ2 )

Legendre transformation
F ←→ F ∗ =

∫
∇−1F

∇F ∗ = ∇−1F

θ = ∇ηF ∗(η) = ( µ
σ2 ,− 1

2σ2 )

F (λ) = µ2

2σ2 + 1
2 log 2πσ2

F (θ) = − θ2
1

4θ2
+ 1

2 log− π
θ2

Figure 3: The left KL circumcenter of a set of 1D normals.

However, this never happens for the recursive gener-
alization of Welzl’s algorithm [8]. As dimension in-
creases, it is not possible to compute in practice the
exact circumcenter as Welzl’s algorithm exhibits the
curse of dimensionality: an exponential time depen-
dence with the dimension. We considered in [6] a
generalization of the approximation of the smallest
enclosing ball based on the notion of core-sets work-
ing in very large dimensions (d ∼ 10000). As men-
tioned above, the computation of the smallest enclos-
ing entropic balls rely on the property that right-type
Bregman bisector are hyperplanes [5], and therefore
the right-type Bregman Voronoi is an affine diagram
that can be computed equivalently using a power di-
agram [5]. This allows us to define entropic Voronoi
diagrams for multivariate normals with correspond-
ing dual regular/geodesic entropic Delaunay triangu-
lations.

6 Concluding remarks

We have concisely presented in view of our results on
information-theoretic Bregman centers [7, 8, 6] the en-
tropic centers of statistical multivariate normal distri-
butions, i.e. the Kullback-Leibler entropic centroids
and circumcenters. We have described the Legendre
transformation for the mixed-type vector/matrix log
normalizer of that exponential family and reported
on our implementation. We can reinterpret these en-
tropic centers under the auspices of information ge-
ometry [1] by considering the dually flat Riemannian
manifolds where Bregman divergences arise naturally
as the canonical divergences [10].
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Quantum Voronoi Diagrams

Frank Nielsen∗ Richard Nock†

Abstract

We introduce the smooth parametric family of
Bregman-Csiszár quantum entropies including the
usual von Neumann and Burg quantum entropies. We
then describe the dualistic nature of Voronoi diagrams
for 1-qubit quantum states inside the 3D Bloch ball
representation. We show that these diagrams can
be computed as Bregman Voronoi diagrams for the
corresponding entropic Bregman generator acting on
Hermitian density matrices. This implies that these
dual diagrams can be derived from equivalent power
diagrams of balls in the Laguerre geometry, and al-
lows one to prove by extension that the von Neumann
quantum Voronoi diagram on the degenerated Bloch
sphere of pure quantum states coincides with the or-
dinary Euclidean Voronoi diagram, bypassing the fact
that the quantum divergence is not properly defined
there.

1 Introduction and preliminaries

The 21st century attests the accelerated rise of the
deployment of quantum mechanics into various in-
dustrial prototypes like the prominent quantum cryp-
tographic systems. Recent breakthroughs in experi-
mental physics bridged the gap between mathemati-
cal theory and practice, and the analysis of quantum
channel characteristics such as its capacity become
a fundamental problem associated with related open
problems.1 In quantum information theory [1], par-
ticle state distributions are analyzed probabilistically
by means of density matrices X. A d-level system
is characterized by a d × d matrix X ∈ Cd×d with
complex coefficients that satisfies the following three
properties:

1. X is Hermitian. That is, X is equal to its conju-
gate transpose: X = X∗T ,

2. X has unit trace. That is, the sum of diagonal
elements sums up to one and has no imaginary
part: Tr(X) =

∑d
i=1 Xi,i = 1,

∗Sony Computer Science Laboratories Inc. (FRL) and
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1See the quantum information problems list at http://www.
imaph.tu-bs.de/qi/problems/

3. X is semi-positive definite. That is, X belongs to
the positive cone: xT Xx ≥ 0 ∀x 6= 0. This con-
dition is equivalent to non-negative determinant:
detX ≥ 0.

Let S(Cd) denote the space of such semi-positive
definite density matrices of size d × d. One qubit
(quantum bit) systems2 are the simplest fundamental
case obtained for d = 2. The above three conditions
imply the following family of 2× 2 complex matrices:

X =
{

1
2

[
1 + z x− iy
x + iy 1− z

] ∣∣ x2 + y2 + z2 ≤ 1
}

,

where i denotes the imaginary number i2 = −1. The
condition x2 + y2 + z2 ≤ 1 is derived from the semi-
positive definiteness assumption (detX ≥ 0). Thus
1-qubit states X can be represented equivalently by a
triple x = (x, y, z) of reals, a 3D point x ∈ R3, and
the set S(C2) of 1-qubits is referred to as the Bloch
ball3. We distinguish between pure states which have
degenerated density matrices of rank 1 (noninvertible
matrix), and mixed states of full rank 2. The pure
state condition is geometrically visualized by density
matrices lying on the boundary of the Bloch ball: The
Bloch sphere. The state X of a 1-qubit is expressed us-
ing three reals x = (x, y, z) that can be reinterpreted
using spherical coordinates as x = (r, θ, φ) where r de-
notes the radius of the state to the origin, and θ and
φ encode the latitude and longitude rotation angles:

(r, θ, φ) ↔

 x = r sin θ cos φ
y = r sinφ
z = r cos θ cos φ

 .

In order to define the quantum divergence that
is the generalization of the Kullback-Leibler diver-
gence (better known as relative entropy [1]) to den-
sity matrices, we first define the logarithm of a den-
sity matrix using its spectral decomposition. Con-
sider the singular value decomposition (SVD) of a
Hermitian matrix X: X = V Diag(λ) V∗, with
both V and V∗ unitary orthonormal matrices, and
all eigenvalues λi ≥ 0 real and positive. The di-
agonal matrix represents the eigenspectra and the
complex orthonormal rotation matrix V the associ-
ated eigenspace. Using the spectrum decomposition

2In general, n-qubit systems require dimension d = 2n.
3Named after physicist Felix Bloch, first director of the

CERN institute.
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of a matrix X, we define the logarithm of a den-
sity matrix as: log X = V Diag(log λ1, ..., log λd) V∗.
The quantum von Neuman entropy H(X) (matrix en-
tropy) is a generalization of the classical Shannon en-
tropy4 to density matrices: H(X) = −Tr(X log X).
It can be shown that the quantum entropy is equal
to the Shannon entropy for the eigenvalue distri-
bution: H(X) = H(λ) = −

∑d
i=1 λi log λi. The

quantum information divergence I (matrix relative
entropy) generalizes the Kullback-Leibler divergence
(KL) by considering the following distortion measure:
I(P||Q) = Tr (P(log P− log Q)) ≥ 0. This diver-
gence is not symmetric nor does it satisfy the tri-
angle inequality. It is therefore not a metric. Note
that the quantum divergence is defined for P → 0
by taking the limit: limX→0 Tr(X log X) = 0 (since
limx→0 x log x = 0). However, the divergence is not
properly defined when Q is not full rank (i.e., Q en-
codes a pure state) because of the undefined loga-
rithm. The quantum information divergence is re-
flexive: I(P||Q) = 0 ⇔ P = Q. We further have
the following quantum/classical information inequal-
ity: I(P||Q) ≥ KL(λP||λQ) ≥ 0, where λP and
λQ are the eigenvalue distributions of the spectral
decomposition of the density matrices P and Q, re-
spectively. The inequality is strict if and only if the
eigenspaces of P and Q differ. Interestingly, this von
Neumann quantum information divergence belongs to
a broader class of parametric divergences called Breg-
man divergences [2]. Bregman divergences are pa-
rameterized families of distortion measures induced
by a strictly convex and differentiable convex func-
tion F : S(Cd) → R such that:

DF (P||Q) = F (P)− F (Q)− 〈P−Q,∇F (Q)〉 (1)

where the inner product is defined as: 〈P,Q〉 =
Tr(PQ∗), and ∇F (·) is the Gâteaux derivative: The
gradient. We have DF (P||Q) = 0 if and only if P = Q
(positive-definiteness generalizing Gibb’s inequality).
Bregman divergences can also be interpreted locally as
quadratic distance measures by considering the Tay-
lor expansion of F with an exact remainder term:
DF (P||Q) = (P − Q)∗∇F 2(ε)

2 (P − Q), where ε de-
pends on both P and Q. The quantum information
divergence is a Bregman divergence obtained for the
Bregman generator F (X) = Tr(X log X). Dhillon
and Tropp [3] thoroughly investigated Bregman ma-
trix distortion measures for “matrix nearness” decom-
positions with a special care given to the squared
Fröbenius, von Neumann information and the log
det divergences obtained respectively for the gener-
ators F (X) = 1

2 ||X||
2, F (X) = Tr(X log X) and

F (X) = − log detX. It follows that the quantum
relative entropy I = DF (von Neumann Bregman

4The Shannon entropy of a discrete d-dimensional distribu-
tion p is defined as H(p) = −

Pd
i=1 pi log pi.

divergence) has thus a neat axiomatic characteriza-
tion [4], and can further be extended following Csiszár
least square projection characterization [4], by using
for the Bregman generator the extended negative en-
tropy F (X) = Tr(X log X − X). The gradient of
F (X) is ∇F (X) = log X, the quantum Burg en-
tropy. In summary, the extended von Neumann quan-
tum divergence is a Bregman divergence in disguise
for generator F (X) = Tr(X log X − X): I(P||Q) =
DF (P||Q) = Tr (P(log P− log Q)−P + Q). Breg-
man divergences are invariant by affine terms and en-
joy a remarkable bijection with probability distribu-
tions of the statistical exponential families [5]. Car-
rying out the calculations for the 3D Bloch ball rep-
resentation of 1-qubits, we obtain [7]:

I(P||Q) =
1 + rP

2
log

1 + rP

2
+

1− rP

2
log

1− rP

2

−1
2

log
1− r2

Q

4
− < p,q >

2rQ
log

1 + rQ

1− rQ
(2)

def= a(rP ) + b(rQ)− c(rQ) < p,q > . (3)

2 Quantum Bregman-Csiszár divergences

The choice of the proper quantum divergence may
depend upon the situation implied by the underlying
study or application needs [1]. It is therefore interest-
ing to design a flexible generic quantum divergence
by generalizing parametric divergences proposed in
classical information theory. We propose to extend
the von Neumann quantum/Log det divergences [3]
to the class of quantum Bregman-Csiszár divergences
for density matrices. First, define the smooth family
of strictly convex and differentiable Bregman genera-
tors Fα on density matrices for a single parameter α ∈
[0, 1] as: Fα(X) = 1

α(1−α)Tr (−Xα + αX− αI + I),
where I denotes the identity matrix, and Xα is
defined from the spectral decomposition of X =
V Diag(λ) V∗ as Xα = V Diag(λα

1 , ..., λα
d ) V∗.

It follows from the Bregman divergence of Eq. 1
the α-quantum Bregman divergence: Dα(P||Q) =

1
α(1−α)Tr

(
Qα −Pα + αQα−1(P−Q)

)
. Note that

since Bregman generators are equivalent up to affine
terms [8], we find in the limit case that F0 is the quan-
tum Burg entropy and F1 is the usual von Neumann
entropy. Fα(X) is defined on both mixed and pure
states for α ∈ (0, 1). Further, notice that we have in
the limit case limα→1 Fα(X) = F (X) = Tr(X log X−
X) and limα→1 ∇Fα(X) = limα→1

1
1−α (I−Xα−1) =

log X.

3 Quantum Voronoi diagrams

Kato et al. [6, 7] studied the Voronoi diagram for 1-
qubit systems with respect to the Fubini-Study DFS

and Bures DB metric distances for pure states. Let P
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Figure 1: Quantum Voronoi diagram of 1-qubit pure
states: Voronoi cells annotated with density matrices
on the latitude-longitude map (left) and Voronoi cells
visualized on the 3D Bloch sphere (right).

and Q denote two pure state density matrices repre-
sented on the Bloch sphere by 3D points p and q, re-
spectively. We have DFS(P,Q) = arccos

√
Tr(PQ) =

arccos
√

1+<p,q>
2 and DB(P,Q) =

√
1− Tr(PQ) =

1√
2
||p−q||. Observe that we just need the diagonal el-

ements5 selected by the trace operator for computing
these quantum distances. Kato et al. [6, 7] thus show
that for the case of pure state 1-qubits, these Voronoi
diagrams are equivalent to the ordinary Voronoi dia-
gram on the sphere. This spherical Voronoi diagram
can in turn be simply obtained as the ordinary 3D Eu-
clidean Voronoi diagram restricted to the unit (Bloch)
sphere. Figure 1 depicts such a quantum Voronoi di-
agram under these metrics with density matrix an-
notations in each Voronoi cell. Moreover, Kato et
al. [6, 7] investigated the Voronoi diagram with re-
spect to the quantum information divergence and car-
ried out calculations in the limit case of Q being a
pure state. They deduce that the quantum Voronoi
diagram of pure states is identical to the conventional
spherical Voronoi diagram although they differ for
mixed states. We revisit concisely these results un-
der the framework of Bregman Voronoi diagrams [8]
and show how to naturally extend these diagrams to
pure states from corresponding affine power diagrams
fully defined over R3. Since Bregman divergences are
usually asymmetric [8], we consider the left-sided and
right-sided Bregman Voronoi diagrams of density ma-
trix set P = {P1, ...,Pn} defined as the cell complex
induced by the left- and right-sided Bregman bisec-
tors. The Voronoi cells VorF (Pi) = ∩j 6=iH

+
F (P,Pj)

and Vor′F (Pi) = ∩i 6=jH
′+
F (P,Pj) are defined respec-

tively as intersections of influence regions bounded us-
ing the corresponding sided bisectors HF and HF ′ as
follows: HF (P,Q) = {X| DF (X||P) = DF (X||Q)},
and H ′

F (P,Q) = {X | DF (P||X) = DF (Q||X)}.
These bisectors match only for symmetric Breg-

man divergences that are generalized quadratic dis-
tances [8]. Let X′ = ∇F (X) denote the gradi-
ent of Hermitian matrix X. The left-sided bisec-

5In general, for computing the quantum divergence between
any two d × d states P and Q, we just need O(d2) operations
for computing the matrix product of density matrices along the
diagonal only.

tor is always a hyperplane [8] whatever the con-
sidered generator F : HF (P,Q) : 〈X,P′ −Q′〉 +
F (P) − 〈P,P′〉 − F (Q) + 〈Q,Q′〉 = 0. This equa-
tion becomes for the case of the extended negative
von Neuman entropy (with P′ = log P), the follow-
ing hyperplane equation in dimension d: HF (P,Q) :
{X | Tr (X(log P− log Q)−P + Q) = 0}. Using the
a, b, c notations of the spherical coordinates of Eq. 3,
it follows that for 1-qubit states on the 3D Bloch ball
we have the bisector plane equation: HF (p,q) : {x| <
x, c(rQ)q − c(rP )p > +b(rP ) − b(rQ) = 0}. Next, we
show that the right-type bisector is not linear but du-
ally linear in the gradient space ∇F (X).

3.1 Legendre duality and bisectors

Since F is strictly convex and differentiable, we
associate to F a unique dual conjugate function
F ∗ via the Legendre-Fenchel slope transformation
such that: F ∗(Y) = supX∈S(Cd){〈Y,X〉 − F (X)}.
The unique supremum is reached at point Y =
∇F (X) = X′. The Legendre transformation de-
fines a dual quantum Bregman divergence for the
dual generator F ∗(X) = Tr(expX) (expX is again
defined using the spectral decomposition expX =
V Diag(expλ1, ..., expλd) V∗): DF (P||Q) = F (P) +
F ∗(Q′) − 〈P,Q′〉 = DF∗(Q′||P′). Thus although the
right-sided bisector is not linear, it is dually linear by
considering the associated dual Bregman generator:
H ′

F (P,Q) ≡ HF∗(Q′,P′).
For 1-qubit states represented by a 3D point in-

side the Bloch ball, we have the Legendre conjugate
explicited using 3D coordinates as [6]: (x∗, y∗, z∗) =
∇FB(x, y, z) = 1

2r log 1+r
1−r (x, y, z), where ∇FB is the

gradient for the 3D Bloch generator function, and r is
the radius r =

√
x2 + y2 + z2. Observe that the dual

Legendre function FB
∗ =

∫
∇F−1

B does not admit any
closed-form formula although we can easily tabulate
it in practice for fine approximations by using a 1D
look-up-table array.

3.2 Affine parametric quantum Voronoi diagrams

Since the left-type Voronoi diagram is affine, we use
the handy universal construction of affine diagram
from power diagram [9] to define quantum Voronoi
diagrams as power diagrams of balls in the Laguerre
geometry. We associate to density matrix Xi the ball
with Hermitian matrix center:

∇Fα(Xi) =
1

1− α

(
I−Vi

[
λα−1

i,1 0
0 λα−1

i,2

]
V∗

i

)
(4)

with Vi = 1√
2

 xi−iyi√
x2

i +y2
i

√
ri+zi

ri

xi−iyi√
x2

i +y2
i

√
ri−zi

ri√
ri−zi

ri
−

√
ri+zi

ri



EuroCG’08, Nancy – March 18-20, 2008

227



and squared radius [8]

r2
i = 〈∇Fα(Xi),∇Fα(Xi)〉

+ 2(Fα(Xi)− 〈Xi,∇Fα(Xi)〉), (5)

that is potentially imaginary and infinite in the limit
case α → 1 for pure states since one eigenvalue 1−r

2
is zero [6]. The power bisector of two 3D Euclidean
balls B(p, rP ) and B(q, rQ) centered at 3D points p
and q is the radical hyperplane of equation [8]: 2 <
x,q − p > + < p,p > − < q,q > +r2

Q − r2
P =

0. Since pure states have the same equivalent ball
radius (being infinite in this limit case, see Eq. 5) it
follows that the dual quantum Voronoi diagrams on
the Bloch sphere has in the limit case (proof omitted)
matching affine bisectors which coincides exactly with
the bisector equation6 for the 3D ordinary Euclidean
Voronoi diagram for 3D points p and q on the Bloch
sphere.

Theorem 1 The α-entropic quantum Voronoi dia-
grams are Bregman Voronoi diagrams that can be
computed from equivalent power diagrams. In the
limit case α → 1, the von Neumann quantum Voronoi
diagrams on the Bloch sphere of pure states coin-
cides with an ordinary Euclidean Voronoi diagram re-
stricted to the sphere.

This reduction to power diagrams is attractive since
power diagrams are defined on the full Euclidean space
E3 (i.e., inside mixed states, on pure states and out-
side the Bloch sphere). Figure 2 depicts an exam-
ple of equivalence of the quantum Voronoi↔power
Voronoi diagrams for quantum states expressed in
the same eigenspace (i.e., a 2D slice of the 3D quan-
tum Voronoi diagram that is also equivalent to a 2D
power diagram). In that case, the sliced quantum
Voronoi diagram is a classical extended Kullback-
Leibler Voronoi diagram on the eigenvalues. The 1-
qubit quantum Voronoi diagram can be computed eas-
ily using 3D power diagrams [9] and X ↔ ∇Fα(X)
conversions [8]. Although the left-side and right-
side quantum Voronoi diagrams on pure states match
and coincide with the Euclidean Voronoi diagram for
α = 1, it is not anymore the case inside the Bloch
ball of mixed states where they provably differ [8]. As
an application, notice that the Holevo capacity of a
quantum channel [10] can be computed from the fur-
thest quantum Voronoi diagram [6].
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Triangulating the 3D Periodic Space∗

Manuel Caroli † Nico Kruithof ‡ Monique Teillaud §

Abstract

In this extended abstract we discuss the computa-
tion of Delaunay triangulations of point sets in the
3-dimensional periodic space T3. We reuse the stan-
dard incremental algorithm for computing Delaunay
triangulations in R3 and describe how to adapt it to
compute in T3. We present solutions to several prob-
lems we encountered as well as some basic ideas of the
implementation and optimizations.

1 Introduction

Computing Delaunay triangulations of point sets is
a well-studied subject in Computational Geometry.
There are many algorithms available [4, 1] as well as
implementations [3, 12, 7, 9]. However, these algo-
rithms are usually restricted to triangulations in Rd.
The goal of our work is to extend the Cgal 3D tri-
angulation package [8] to compute triangulations in
3-dimensional spaces other than R3. We explore here
the periodic space T3. There are several applications
of Delaunay triangulations in this space, particularly
in simulation [10], but up to now there has not been
an implementation available. Usually, heuristic ap-
proaches duplicating points close to the boundary and
computing R3 triangulations of these modified point
sets have been used. However, this is inefficient and
gives only an approximation of the triangulation.

In the following we first review triangulations, then
we examine T3. Next, we present our solutions to
several problems we encountered regarding both cor-
rectness and efficiency. Finally, we give benchmarks
comparing the triangulations of R3 and T3 and mea-
suring the impact of some optimizations. More de-
tails about implementation and software design can
be found in [2].

2 Triangulations

Given a set S of points in Rd, a triangulation par-
titions the space into cells (tetrahedra in 3D) whose

∗This work was partially supported by the ANR
(Agence Nationale de la Recherche) under the “Triangles”
project of the Programme blanc (No BLAN07-2 194137)
http://www-sop.inria.fr/geometrica/collaborations/triangles/

†INRIA Sophia-Antipolis (Manuel.Caroli@sophia.inria.fr)
‡Nico Kruithof worked on this during his stay at INRIA

Sophia-Antipolis (Kruithof@jive.nl)
§INRIA Sophia-Antipolis (Monique.Teillaud@sophia.inria.fr)

vertices are the given points. The Delaunay triangu-
lation has the property that the circumscribing ball of
each cell does not contain any other point of S [1, 4].

To give a more precise definition of a triangulation
we need to recall the notion of a simplicial complex
first. More details can be found in [14, 11].

Definition 1

• A k-simplex is the convex hull of a set of k + 1
affinely independent points. A 0-simplex is called
a vertex.

• If σ is a simplex defined by a finite point set S,
then any simplex τ defined by T ⊂ S is called a
face of σ.

• A simplicial complex K is a finite collection of
non-empty simplices such that the following two
conditions hold:

1. if σ ∈ K and τ is a face of σ, then τ ∈ K,

2. if σ1, σ2 ∈ K, then their intersection σ1∩σ2

is either empty or a face of both σ1 and σ2.

For 0 ≤ k ≤ 3 we use the following terms to denote the
respective k-simplices: vertex, edge, facet, cell. Now
we can define a triangulation as follows:

Definition 2 Let S be a finite point set in some space
X. A simplicial complex K is a triangulation of S, if

1. each point in S is a vertex of K,

2.
⋃

σ∈K σ is homeomorphic to X.

3 The periodic space T3

Topologically, T3 is the hypersurface of a torus in 4D.
Let S1 denote the 1-dimensional sphere, then T3 is
generated by S1 × S1 × S1. Therefore we can assume
a coordinate system in the torus with coordinates in
[0, 1)3. We denote points in R3 by p = (x, y, z) and
points in T3 by q = (u, v, w). We map T3 onto R3 in
the following way:

g(q) := {(u, v, w) + (i, j, k) | i, j, k ∈ Z}

Intuitively, we repeat [0, 1)3 infinitely many times
in all three directions of space.

Definition 3 Let S be a point set in T3. By DTR(S)
we denote the Delaunay triangulation of g(S) in R3.
We define the Delaunay triangulation of S in T3 as
follows: DTT(S) := g−1(DTR(S)).
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In further discussions we will need the following def-
inition:

Definition 4 (domain) The domain (i, j, k) is de-
fined as (i, j, k) + [0, 1)3. It is a cube into which g
maps each point of T3 exactly once.

Our idea is to reuse an algorithm for R3 to compute
the triangulation in T3. Since g maps the points from
T3 to infinitely many points in R3 we have to restrict
on finitely many domains, when actually computing
DTT.

As mentioned in Section 2, a triangulation is de-
fined as a simplicial complex. It might happen that
DTT(S) is not a simplicial complex and thus not a
triangulation. As an example, consider DTT({q}). It
consists of 7 edges, 12 facets and 6 cells (see Figure 1
for a 2D illustration). Thus it is not a simplicial com-
plex because the vertices of all edges and facets are
equal.

Figure 1: Left: DTT({q}). Right: 4 periodic copies
are shown.

4 Coverings

In this section we describe how we overcome the prob-
lem that DTT might not be a simplicial complex. The
idea is to use coverings.

Definition 5 (Covering) A covering space of a
topological space X is a space C together with a con-
tinuous surjective map f : C → X that fulfills the
following condition: Every point of X has an open
neighborhood V such that f−1(V) is a disjoint union
of open sets in C.

Note that together with g defined in Section 3, R3 is
a covering space of T3.

Definition 6 (k-sheeted covering) The cardinal-
ity of f−1(x) is locally constant over X . If X is con-
nected, this cardinality is constant and it is called the
number of sheets of the covering.

For more background in topology cf. [6, 13].
Since T3 is connected, we can define a k-sheeted

covering as follows. We use the notation T3
n to de-

note an n3-sheeted covering of T3 induced by the map

hn : T3 → T3
n defined as:

hn(q) := {(u, v, w) + (i, j, k) | i, j, k ∈ [0, n) ∩ Z}

In T3
n we have a coordinate system with coordinates

in [0, n)3.

Proposition 1 h2(DTT(S)) is always a simplicial
complex.

Proof. It is easy to see that it is enough to prove
that there are no self-edges in T3

2. A self-edge in T3
2

has length ≥ 2, so there are no self-edges if the radius
of the largest empty ball is < 1. The largest empty
ball we can place in DTT({q}) has radius

√
3

2 , which
is < 1. Adding further points cannot increase the ra-
dius of the largest empty ball, so self-edges can never
occur. �

Since computing in T3
2 is quite expensive, we want to

have a simple criterion telling whether it is possible
to compute in T3

1.

Proposition 2 Let S ⊆ T be two point sets in T3.

If the longest edge length of DTR(S) is <
√

2
3 , then

DTT(T ) is a simplicial complex in T3
1.

Proof. If the largest empty ball has radius < 1
2 , then

DTT(S) is a simplicial complex in T3
1. We assume the

existence of an empty ball of radius 1
2 . The longest

edge of this triangulation has a length of at least√
2
3 (regular tetrahedron with circumscribing ball of

radius 1
2 ). If all the edges of the triangulation are

shorter than
√

2
3 , then this is a contradiction to the

assumption, so then there are no empty balls of radius
≥ 1

2 . This means that there are no self-edges and thus
DTT(S) is a simplicial complex in T3

1. Since adding
further points cannot increase the largest empty ball
size, even DTT(T ) is a simplicial complex in T3

1. �

5 Implementation

In this section we describe solutions to several prob-
lems we encountered and accelerations we imple-
mented. The algorithm used in the Cgal 3D triangu-
lation package is incremental. For each inserted point
p, it first performs a point location, then it marks all
cells in conflict with p1. At last it updates the data
structure by removing all cells in conflict and filling
the hole with new cells incident to p.

1i.e. cells whose circumscribing ball contains p
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5.1 Offsets

In R3 a tetrahedron is uniquely defined by four ver-
tices. In g(T3) four vertices can define several tetra-
hedra because each vertex corresponds to infinitely
many points (cf. Fig. 2 for an illustration of the 2D
case). However, in the case of Delaunay triangulation,
a tetrahedron can have vertices in different domains
only if the boundaries of these domains meet in at
least one corner. To specify the desired tetrahedron

p

r

p

pqq

q

r

Figure 2: The triangle pqr is not uniquely defined in
T2.

we store with each vertex an offset ∈ Z3, telling the
domain in which it has to be found. The offset is
chosen relative to the other offsets in the cell. As ver-
tices have to lie in neighboring domains, we are free to
choose the offsets such that we only need to store off-
sets ∈ {0, 1}3 within one tetrahedron. This is useful
to accelerate the computation and to save memory.

5.2 2-cycles

If the triangulation contains cycles of length 2, then
the union of the closure of all cells in conflict might
not be homeomorphic to a ball, and the updating step
of the algorithm described in the beginning of this
section does not work. More details will be given in a
forthcoming publication.

Proposition 3 Let S be a point set in T3.
h3(DTT(S)) does not contain cycles of length 2.

Proof. To be sure that there are no cycles of length
≤ 2 in T3

3, the radius of the largest empty ball has to
be < 3

4 . However, the largest empty ball we can place
into the point grid generated by one point in T3 has
a radius of

√
3

2 ≈ 0.866 > 3
4 .

Since it is not enough to use the size of the largest
empty balls, we argue using their position in space:
They are centered at q+{0, 1, 2}3 (q ∈ [0, 1)3). There-
fore the distance between the centers of two neighbor-
ing balls is at least 1 (axis-aligned direction). This im-
plies that it is 2 if we walk along the torus in the other
direction because the length of the shortest loop in T3

3

is 3. Since the radius computed above is clearly < 1

the balls can never overlap on both sides and thus a
2-cycle cannot occur. If we consider non-axis-aligned
directions it is even easier to argue, because in this
case the length of a cycle is larger and the ball radius
argument alone is sufficient (length of a cycle ≥

√
18,

4·ball radius =
√

12,
√

12 <
√

18). �

We can reuse the proof of Proposition 2 with the

threshold 1
2 ·

√
2
3 = 1√

6
to prove that there are no

more 2-cycles in T3
1, if every edge is shorter than 1√

6
.

Our algorithm works as follows:

• Compute initially in T3
3.

• Maintain a data structure D storing pointers to
all edges that are longer than 1√

6
.

• Once D is empty: switch back to T3
1.

It remains to remark that using this approach does
not mean that when computing in T3

1 all the edges are
shorter than 1√

6
but only that there are no 2-cycles

and there cannot occur any by only adding further
points.

Note that once we compute in T3
1, the algorithm

does not keep track of edge lengths anymore and thus
imposes no more overhead.

This approach also handles vertex removal, the
complete description will be given in a full paper.

5.3 Dummy grid points

If the point set for which the triangulation should be
computed does not contain 2-cycles in T3

1, then the
usage of T3

3 and the keeping track of edge lengths takes
unreasonably much time. For this case we provide a
more efficient possibility. The idea is to precompute a
triangulation of a dummy point grid such that we only
need to compute in T3

1 to add further points. Once
all the points from the given point set are added, we
remove the dummy points from the triangulation. If
the number of dummy points is very small compared
to the number of all points, the overhead of removing
them is negligible.

To implement this idea, we first need to have a
dummy point set that is small and easy to precom-
pute. It turns out to be enough to add 27 points in a
regular grid, e.g.

{
0, 1

3 , 2
3

}3. The Delaunay triangula-
tion of this point set in T3

1 is topologically equivalent
to the Delaunay triangulation of one vertex in T3

3.
Therefore the proof of Proposition 3 can be reused.

Note that usually, it is not possible to decide
whether a triangulation contains 2-cycles beforehand.
However, our algorithm works in any case by resorting
to T3

3 during the dummy point removal, if necessary.

5.4 Spatial sort in T3

To accelerate the point location while inserting point
sets, the points are sorted beforehand with the prop-
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erty, that two consecutively inserted points are spa-
tially close [5]. Then a cell incident to the vertex
added in the step before, can be used as a starting
cell for the point location of the next point. This
makes the point location very fast.

If we compute in T3, we encounter the following
problem: Cells cut by domain boundaries are always
stored such that they are cut by the boundary with
larger coordinates. E.g. a cell cut by the horizontal
boundary plane is stored to be cut by z = 1 and not
z = 0. So if we add for example a point with a small
z coordinate (z ≈ 0), it might happen that the cell
that contains it is stored on the upper boundary of
the domain (z ≈ 1). If the point location starts in a
cell close to the point (z ≈ 0), we will have to traverse
the whole domain for the point location.

The solution is as simple as effective: The point lo-
cation function gets an offset to know in which domain
it should operate. So if one of the three coordinates of
the point to locate is < 1

2 , we diminish the respective
offset entry by 1. In the above example case we would
diminish the z-value of the offset by one because the
z-coordinate of the point to locate is < 1

2 .

6 Benchmarks

We first compare the computations of Delaunay tri-
angulation in R3 and T3. We clearly see that trian-
gulations of small point sets are comparatively very
expensive in T3 because of the overhead due to com-
puting in T3

3. For large point sets this amortizes and
we finally get a factor of about 2. This is not com-
pletely satisfactory and we are currently working on
further improvements.

no. of points R3 T3

1000 0.0240 2.65
10000 0.244 4.46
100000 2.46 8.35

1000000 25.1 52.3

Using grid points (cf. Section 5.3) improves com-
puting Delaunay triangulations in T3 especially for
smaller point sets:

no. of points w/o grid w/ grid
1000 2.65 0.0593
10000 4.46 0.498

100000 8.35 4.72
1000000 52.3 49.6

All benchmarks have been run on an Intel Pentium
4 CPU clocked at 3.6 GHz. The used operating sys-
tem is Linux Fedora Core 5 and gcc version 4.1.1 with
the optimization option -O2. The given results are ob-
tained by using CGAL::Timer and computing the av-
erage of the run time of three runs rounded to three
significant digits. All computations have been per-
formed on a random point set, uniformly distributed

in a half-open unit cube. The results are given in
seconds.
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Realizability of Solids from Three Silhouettes

Tomohiro Ohgami ∗ Kokichi Sugihara †

Abstract

Given three arbitrary silhouettes whose viewpoints
are unknown, we are interested in judging whether
there exists a solid that has these three silhouettes
and in constructing one if it exists. If we know the
viewpoint for each silhouette, we can construct a solid
uniquely by the volume intersection method and check
whether this solid has given silhouettes. In this paper,
we propose an algorithm for searching for the solid
which has given silhouettes when their viewpoints are
unknown.

1 Introduction

Understanding the 3D shape from various image fea-
tures is a fundamental and important problem in com-
puter vision. Some images are often given as sil-
houettes or contours. Silhouette-based techniques do
not require finding correspondences between images.
Some approaches to reconstructing shapes from sil-
houettes have been proposed [1, 2, 3, 4, 5]. For in-
stance, there is the volumetric approach that recon-
structs an object as the intersection of the cones ob-
tained by back-projecting silhouettes from the corre-
sponding viewpoint as shown in Figure 1. The result-
ing solid approximates the object which has all silhou-
ettes closely. This simple technique is called volume
intersection [6, 7]. Volume intersection technique re-
quires the positions of silhouettes and viewpoints, but
this information is not often available. Bottino and
Laurentini study the problem of understanding 3D
shape from silhouettes when the relative positions of
the viewpoints are unknown [2].

In this paper, we study the problem of construct-
ing an object from three silhouettes that are given
arbitrarily. In our problem, the relative positions of
viewpoints are unknown. We assume that all viewing
directions are parallel to the horizontal plane. The
object which is constructed by volume intersection
has three degrees of freedom under this assumption.
Those are two angles and one horizontal displacement.
This fact is mentioned closely in Section 2. First, we
propose an algorithm of calculating a feasible range
of the horizontal displacement when two angles are

∗Department of Mathematical Informatics, University of
Tokyo, tomohiro oogami@mist.i.u-tokyo.ac.jp

†Department of Mathematical Informatics, University of
Tokyo, sugihara@mist.i.u-tokyo.ac.jp

fixed. Next, we propose a heuristic search algorithm
of finding two angles which realize the given silhou-
ettes.

Figure 1: Volume intersection.

2 Preliminaries

The perspective projection and the orthographic pro-
jection are used in computer graphics. In this pa-
per, we consider the orthographic projection. That is,
the view direction and the corresponding projection
plane are perpendicular to each other and the view
point is located at infinity. We will restrict ourselves
to the case that all viewing directions are horizontal.
Clearly, all silhouettes must have the same height and
all cylinders obtained by back-projection must be sup-
ported by a common horizontal plane. In this setting,
the object that is constructed by volume intersection
has three degrees of freedom.

Now, suppose that three silhouettes are given. To
construct the object by volume intersection, we have
to determine three viewing directions and three pro-
jection planes corresponding to the silhouettes. Thus,
the location and the shape of the constructed object
have six degrees of freedom, but we are interested in
the shape of the object and hence we consider only
three degrees of freedom. Let θ be the angle between
the viewing directions of the first silhouette and the
second silhouette. Let φ be the angle between the
viewing directions of the second silhouette and the
third silhouette. Let d be the horizontal displacement
of the third silhouette on the corresponding projec-
tion plane. These notations are used throughout the
paper. To find feasible solutions, we must search the
three-dimensional space (θ, φ, d). In the next section,
we fix the two parameters θ and φ and we consider a
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method for determining whether the feasible solutions
exist.

3 Feasibility check for the fixed angles

In Section 2, we saw that three degrees of freedom
are needed in order to determine the shape of the
constructed object. In this section, when two param-
eters θ and φ are fixed, we propose an algorithm for
calculating the feasible range of the other parameter
d.

First, we place and fix the silhouette on the projec-
tion plane coordinate system corresponding to each
silhouette. For an arbitrarily chosen k, we consider
the horizontal plane y = k, cut the silhouette by
this plane, we restrict our consideration to this plane.
Then, the silhouette consists of line segments. We
represent it. A silhouette is represented by the end
points of all line segments as follows;

S(k) =
p(k)⋃
i=1

[x(k)
2i−1, x

(k)
2i ], 0 ≤ k ≤ ymax, (1)

where S(k) is the set of the closed intervals at y = k,

Figure 2: Silhouette cut by a horizontal plane.

and p(k) is the number of connected line segments
at y = k as shown in Figure 2. Since we have three
silhouettes, we get three sets of line segments at y = k
as follows:

S1(k) =
p(k)⋃
i=1

[a(k)
2i−1, a

(k)
2i ], (2)

S2(k) =
q(k)⋃
i=1

[b(k)
2i−1, b

(k)
2i ], (3)

S3(k) =
r(k)⋃
i=1

[c(k)
2i−1, c

(k)
2i ], (4)

0 ≤ k ≤ ymax,

where a
(k)
i , b

(k)
i and c

(k)
i are the end points of line

segments and p(k), q(k) and r(k) are the numbers of
connected line segments, respectively. We call S1(k),
S2(k), S3(k) the “one dimensional silhouettes” (or
just “silhouettes” if there is no ambiguity).

We consider the shape of the 2D object obtained by
volume intersection in the cutting plane at y = k. We
can rewrite the third silhouette by using d as follows:

S3(k, d) =
r(k)⋃
i=1

[c(k)
2i−1 + d, c

(k)
2i + d], (5)

where d is a parameter corresponding to the degree
of freedom in the displacement of the third silhouette
on the projection plane. An example shape of the 2D
object obtained by volume intersection is shown by
the shaded areas in Figure 3. Recall that θ is the angle
between the viewing directions of the first silhouette
and the second silhouette, and φ is the angle between
the viewing directions of the second silhouette and the
third silhouette.

Figure 3: Volume intersection on the plane y = k.
p(k) = q(k) = r(k) = 2.

Once θ , φ and d are fixed, we can check whether the
set of (θ, φ, d) is feasible or not easily by the volume
intersection method. Suppose that θ and φ are fixed,
but d is free. We consider a method for calculating
the feasible range of d. By volume intersection, we ob-
tain p(k)q(k) parallelograms from the first silhouette
and the second silhouette. Let us number the vertices
of those parallelograms from 0 to 4p(k)q(k) − 1, and
let vi be the value on x3-axis obtained by projecting
the i-th vertex to x3-axis. Suppose that we displace
the third silhouette on the third projection plane by
continuously changing the value of d. The feasibility
status as to whether all the silhouettes are realizable
can change only when one of the end points of the
third silhouette hits one of the projected vertices of
the parallelograms. Hence, we just have to check at
all d that satisfy following equation:

ci + d = vj , 1 ≤ i ≤ 2r(k), 0 ≤ j ≤ 4p(k)q(k)− 1.
(6)

Let D(k) be the range of feasible d at y = k. Similar
ranges of d can be computed at all k. Let us define

D =
⋂

0≤k≤ymax

D(k). (7)

If D 6= ∅, feasible solutions exist for the fixed θ and
φ. If D = ∅, feasible solutions do not exist.
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4 Heuristic search for parameters (θ, φ)

We proposed the algorithm for determining the real-
izability of solids from silhouettes for fixed θ and φ in
Section 3. In this section, we propose an algorithm
for searching for a solid which has given silhouettes
utilizing the algorithm proposed in Section 3.

As we saw in Section 2, there are three degrees of
freedom, corresponding to (θ, φ, d), when we recon-
struct a solid by volume intersection under our as-
sumption. When two of these parameters θ, φ are
fixed, we can calculate the range of parameter d where
a set of parameters (θ, φ, d) is feasible. If the feasible
range of d is empty, there is no feasible set of param-
eters at this pair of (θ, φ). The problem that needs to
be solved next is how to calculate the feasible region
of (θ, φ) in parameter space. The simplest way for
this problem is to search with a fine tooth comb in
all (θ, φ). Both θ and φ are continuous quantity, and
hence we need to discretize these value. When we use
a large step size for the discretization, we are apt to
overlook a tiny feasible region. When we use a small
step size, it requires a large amount of time to finish
the computation.

We do not want to check all the combination of
(θ, φ, d). Hence, we consider a heuristic search to find
one of feasible solutions. The first good point of this
method is that we can expect we do not overlook a
tiny feasible region. The second good point of this
method is that it takes less time in computation. We
start with an initial set (θ, φ, d). This set needs not be
feasible. We update this set by using the evaluation
function which we will propose in the following.

Given silhouettes are represented as follows:

S(k) =
p(k)⋃
i=1

[x(k)
2i−1, x

(k)
2i ]. (8)

Now, we define the filled silhouette for this given sil-
houette by

S′(k) = [x(k)
1 , x

(k)
2p(k)]. (9)

When we cut a filled silhouette at any y = k, we ob-
tain a single line segment. This means that we obtain
the filled silhouettes by filling the breach of given sil-
houettes as in Figure 4. Then, following proposition
is satisfied.

Proposition 1 The feasible region of parameters for
filled silhouettes includes the feasible region of param-
eters for original silhouettes.

According to Proposition 1, the set of parameters
(θ, φ, d) we want to obtain should be feasible also for
filled silhouettes.

Let us consider the horizontal plane at y = k. When
two parameters (θ, φ) are fixed, we can compute the
range of the other parameter d. The range of d for

Figure 4: (a) An original silhouette and (b) a filled
silhouette.

filled silhouettes consists of one connected component
at y = k. Let d

(k)
min be the minimum value of param-

eter d at y = k, let d
(k)
max be the maximum value of

parameter d at y = k. Let us define

dmin = max
0≤k≤ymax

d
(k)
min, (10)

dmax = min
0≤k≤ymax

d(k)
max. (11)

The feasible range of d is represented by inequalities

dmin ≤ d ≤ dmax. (12)

We propose an evaluation function as follows:

f(θ, φ) = dmax − dmin. (13)

When we choose a pair of (θ, φ) that satisfies
f(θ, φ) > 0, a set of feasible parameters (θ, φ, d) ex-
ists. When we choose a pair of (θ, φ) that satisfies
f(θ, φ) < 0, a set of parameters (θ, φ, d) is infeasible
for any d. If (θ, φ) satisfies f(θ, φ) = 0, we obtain
only one set of feasible parameters (θ, φ, d) that sat-
isfies d = dmax = dmin.

We calculate the pair (θ∗, φ∗) that maximizes
f(θ, φ). If f(θ∗, φ∗) < 0, we know that there is no
set of feasible parameters. Algorithm 1 calculates the
pair (θ∗, φ∗) which maximizes f(θ, φ) in local area.

There is no guarantee for this algorithm to be able
to always find a feasible set of parameters, but our ex-
periments show that the algorithm could find feasible
set successfully.

5 Experimental results

In this section, we illustrate an example of our experi-
mental results. Suppose that the three silhouettes are
given as shown in Figure 5.

First, we calculated the feasible region by the ex-
haustive search for θ and φ by the step size 1◦. This
result is as shown in Figure 6. The dark gray ar-
eas show the feasible region for both original silhou-
ettes and filled silhouettes, while the light gray ar-
eas show the feasible region only for filled silhouettes.
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Algorithm 1 Heuristic search

Input: Silhouettes S1, S2, S3,
initial solution (θ0, φ0) , h0, hf .

Output: (θ∗, φ∗).
Procedure:
1: (θ, φ) := (θ0, φ0) , h := h0

2: while h > hf do
3: Calculate f(θ, φ), f(θ + h, φ), f(θ − h, φ),

f(θ, φ + h), f(θ, φ− h).
4: if f(θ, φ) is not the largest then
5: replace (θ, φ) with the largest pair.
6: else if f(θ, φ) is the largest then
7: h := h

2 .
8: Output (θ, φ) as (θ∗, φ∗)

Figure 5: Given three silhouettes.

Figure 6 shows the trajectory of the search path gen-
erated by our heuristic method. We chose 121 initial
sets (θ0, φ0) = (30i◦, 30j◦), i, j = 0, 1, . . . , 10, and 88
of them arrived in the feasible region for filled sil-
houettes. For example, when we chose (θ0, φ0) =
(60◦, 60◦) as the initial set and h = 0.01 , we obtained
the final set (θ∗, φ∗) = (38.6875◦, 50.75◦).

Figure 6: Feasible set of parameters.

In Figure 7, we illustrate the object which has the
original silhouettes constructed by these values.

6 Conclusion

We considered the problem of constructing the ob-
ject which has all aimed silhouettes when three user-
established silhouettes are given. We first proposed
the algorithm of determining whether the object
which have the given silhouettes when the two degrees

Figure 7: A solid which has given silhouettes.

of freedom are fixed. We next proposed the heuristic
search algorithm of finding two angles which realize
the given silhouettes. Experiments showed good per-
formance of the proposed algorithm.

Future work includes (1) the construction of suffi-
cient condition for the infeasibility, (2) the improve-
ment of the search method, and (3) extension to few
or more silhouettes.
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Good Visibility Maps on Polyhedral Terrains

Narćıs Coll∗ Narćıs Madern∗ J. Antoni Sellarès∗

Abstract

Let V be a set of view points on or over a polyhedral
terrain T . The good visibility of a point q on T de-
termined by V describes the relationship between q
and the distribution of the points in V from which q
is visible. A point q on T is t-well visible relatively
to V if and only if every closed halfspace defined by a
vertical plane through q contains at least t points of V
that are visible from q. The greater the number t the
better the visibility of q. The good visibility depth of
q is the maximum t such that q is t-well visible rela-
tively to V . The good visibility map of T determined
by V is the subdivision of the terrain T in good vis-
ibility regions where all points have the same fixed
good visibility depth. In this paper we present algo-
rithms for computing and efficiently drawing, using
graphics hardware capabilities, good visibility maps
on polyhedral terrains.

1 Introduction

Good visibility (or illumination) in the plane, intro-
duced by Canales et al. [6, 3, 2, 1], combines two
well studied concepts: visibility with obstacles and
location depth. Given a set of points P and a set of
segment obstacles S, a point q is t-well visible rela-
tively to P and S if and only if every closed halfplane
defined by a line through q contains at least t points
of P visible from q. So the good visibility of a point
q describes the relationship between q and the dis-
tribution of the points in P from which q is visible
taking into account the effect of the segments of S.
The good visibility map determined by P and S is
the subdivision of the plane in regions whose points
have the same good visibility relative to P and S.
Coll et al. [7, 8] present algorithms for computing
and efficiently drawing, using graphics hardware ca-
pabilities, the good visibility map determined by P
and S. The drawing algorithm is also extended to
the case of restricted view points, for example visible
within an angular region or/and with limited range.

Let T be a polyhedral terrain, a polyhedral sur-
face that is intersected by any vertical line at most
once, represented as a mesh consisting of m trian-

∗Institut d’Informàtica i Aplicacions, Universitat de Girona,
Spain, {coll,nmadern,sellares}@ima.udg.es. Partially sup-
ported by grant TIN2007-67982-C02-02. Narcis Madern is also
partially supported by grant BES-2005-9541.

gular faces. The domain D of T is the connected
region of the xy-plane covered by the triangles ob-
tained vertically projecting the faces of T . A point q
on T is visible from a point v on or above T if and
only if the interior points of the line segment vq lie
above T . The visibility map for v, denoted Tv, is the
subdivision of T into visible and invisible maximal
connected components. The orthogonal projection of
Tv onto the domain D defines a planar subdivision
Dv of D. The combinatorial complexity of Tv, and
consequently of Dv, might be Ω(m2). Reif and Sen
[14] developed an O((m + k) log m log log m) time al-
gorithm to compute the visibility map Tv, where k is
the combinatorial complexity of Tv. Katz et al. [11]
presented an output-sensitive algorithm for comput-
ing Tv that runs in O((mα(m)+k) log m) time, where
α(m) is the extremely slowly growing inverse of the
Ackermann function. Ben-Moshe et al. [5] presented
a generic radar-like algorithm for computing an ap-
proximation of Tv. Multi-visibility maps related to
a set V of view points are obtained combining the
visibility maps of the elements in V according to dif-
ferent criteria, typically: union, intersection, counting
and overlay [9].

In this paper we extend the good visibility concept
to the case of a set V of view points on or over a poly-
hedral terrain T . The good visibility map of T deter-
mined by V is the subdivision of T in good visibility
regions whose points have the same good visibility.
Drawing the good visibility map of T determined by
V helps to visualize the distribution of the points of
V relative to the faces of T . We present algorithms
for computing and efficiently drawing, using graphics
hardware capabilities, the good visibility map of T .
We also extend the drawing algorithm to the case of
view points visible within an angular region or/and
with limited range.

2 Planar depth maps

Let P be a set of n points in the plane. The location
depth of an arbitrary point q relative to P , denoted by
ldP (q), is the minimum number of points of P lying
in any closed halfplane defined by a line through q.
The k-th depth region of P , represented by drP (k), is
the set of all points q with ldP (q) = k. For k ≥ 1, the
external boundary dcP (k) of drP (k) is the k-th depth
contour of P . The depth map of P , denoted dm(P ),
is the set of all depth regions of P . The complexity
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of dm(P ) is O(n2). This bound is tight, for example,
when all points of P are in convex position. We denote
dmr(P ) the restriction of dm(P ) to a planar region r.

2.1 Computing depth contours

Miller et al [13] present an algorithm for computing
the depth contours for a set P of points n in the plane
that makes an extensive use of duality. First, the algo-
rithm maps the points of P to their dual arrangement
of lines. Then, a topological sweep is applied to find
the planar graph of the arrangement and its vertices
are labeled with their levels (the number of dual lines
above them). Finally, for a given k, dcP (k) is com-
puted by finding the lower and upper convex hulls of
the vertices at depth k. The complexity of this algo-
rithm, that has been shown to be optimal, is O(n2) in
time and space. In [10, 12] an algorithm is presented
that draws, using graphics hardware capabilities, an
image of the depth contours as a set of colored pix-
els, where the color of a pixel is its depth value. The
algorithm consists of two steps: in the first step, the
input point set P is scan-converted to lines in the dual
image plane. The algorithm runs on two bounded du-
als due to the finite size of the dual plane, in order
to guarantee that all intersection points of the lines
lie in this finite region. Since each dual plane is dis-
crete, it is possible to compute the level of each pixel
by drawing the region situated above every dual line
of P , incrementing by one the stencil buffer for each
region. In the second step, the two images formed by
all the dual lines are scanned, and for each pixel on
a dual line the corresponding primal line at the ap-
propriate depth is rendered as a colored 3D graphics
primitive using the z-buffer.

3 Good visibility maps on polyhedral terrains

Let T be a polyhedral terrain composed of m trian-
gular faces and V be a set of n view points on or over
T . A point q on T is t-well visible relatively to V if
and only if every closed halfspace defined by a vertical
plane through q contains at least t points of V visible
from q. The good visibility depth of q relative to V ,
denoted by gvdV (q), is the maximum t such that q is
t-well visible relatively to V . The k-th good visibility
region relative to V , denoted gvrV (k), is the set of all
points q on T such that gvdV (q) = k. Observe that
gvrV (k) can be formed by several connected compo-
nents of T . The good visibility map of T relative to V ,
denoted gvm(V ), is the subdivision of T determined
by the set of all k-th good visibility regions gvrV (k).

Let Vq be the subset of points of V that are visible
from a point q on T . We denote q∗, V ∗ and V ∗

q the
orthogonal projection of q, V and Vq onto the domain
D of T , respectively. We also denote gvrV (k)∗ the
orthogonal projection of the k-th good visibility re-

gion gvrV (k) onto D. Finally, we denote gvm(V )∗ the
subdivision of D determined by the set of all regions
gvrV (k)∗, and gvmr(V )∗ the restriction of gvm(V )∗

to a region r of D.

3.1 Computing good visibility maps

We will first compute gvm(V )∗ on the domain D of
T and next we will lift up gvm(V )∗ to T to obtain
gvm(V ). Our algorithm to compute gvm(V )∗ will be
based on the following

Lemma 1 For any q ∈ T : gvdV (q) = ldV ∗
q
(q∗).

The algorithm starts computing for each one of the
n points v ∈ V the visible region Tv of T and its or-
thogonal projection Dv onto the domain D. This can
be done, by using the algorithm of Katz et al. [11],
in O(n((mα(m) + k) log m)) time, where k ∈ O(m2)
is the maximal combinatorial complexity among the
n visibility maps Tv. The overall combinatorial com-
plexity of the n visibility maps Tv, and consequently
of their n projections Dv, is O(nm2).

Next, the algorithm computes the overlay O of the
n planar subdivisions Dv. All points in a cell c of O
are seen from exactly the same subset Vc of points of
V . Observe that may exist two cells c 6= c′ of O so
that Vc = Vc′ , it is to say the points in c and c′ are
seen from the same subset of points of V . The overlay
O can be computed by using an algorithm for finding
segments intersections. Since there exist an optimal
algorithm that finds the k intersections between n seg-
ments in O(n log n + k) time and O(n) space [4], the
overlay O can be computed in O(nm2 log nm+k) time
and O(nm2) space, with k ∈ O(n2m4).

Finally, for each cell c of O whose points are
seen from the subset Vc of V , Lemma 1 states that
gvmc(V ∗

c ) can be computed as dmc(V ∗
c ), the depth

map of the set V ∗
c restricted to c. Then, we have:

gvm(V )∗ =
⋃
c∈O

dmc(V ∗
c ) .

We compute dmc(V ∗
c ) by intersecting the cell c with

the depth contours determined by dm(V ∗
c ). Assuming

that on average the complexity of the cell c is constant
(however, the complexity of a single cell can be super-
linear in the worst case) and since |V ∗

c | ∈ O(n), this
can be done in O(n2) time.

So, putting this all together we can conclude with
the following

Theorem 2 We can compute gvm(V )∗, and conse-
quently the good visibility map gvm(V ), in O(n4m4)
time.
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4 Drawing good visibility maps

The implemented solution uses GPU capabilities to
solve the problem. The algorithm has four steps:

1. Approximating Dv, for every v ∈ V

The first step obtains an approximation of the or-
thogonal projection Dv of Tv onto D, for every view
point v ∈ V .

We associate to each point v of V a bit of the RGBA
channel: the first point of V has associated the first
RGBA bit, the second point the second bit, etc. Ob-
serve that our approach is restricted to a maximum
of 32 view points.

First of all, for each point v ∈ V , we paint the
projection of the faces of T on D. For each v we use a
pixel shader on the GPU to obtain a texture Fv. The
RGBA buffer of each texel of Fv stores the index of
its corresponding face f on T . During this process we
mark the texels of the back faces of T when seen from
v, so that they are not considered any more during the
whole process.

Next, in the CPU, we visit all texels t in Fv in order
to generate a texture Gv representing Dv. For each
t with associated point q on T we have to test if vq
is partially below T , in which case q is not visible
from v. This test can be done by using a line of sight
GPU technique (see [15] for more details) based on the
OpenGL Occlusion Query extension. In our case, the
occlusion query returns the number of pixels of the
segment vq covered by the triangles of the terrain. If
the number of pixels is 0 we assign 1 to the RGBA bit
associated to v of the Gv texel t, otherwise we assign
0. Since it is possible that during the testing process,
due to rasterization, the face f , where is located q, can
be tested erroneously as partially occluded by itself,
the segment vq is modified before the occlusion query
test by clipping it with vertical planes through the
edges of f .

2. Computing the overlay O of all Dv

We represent the overlay O of the planar subdivi-
sions Dv, v ∈ V , as a texture O that can be com-
puted with the OpenGL LogicOp operation using the
textures Gv. Since we have used a bit of color for
each point of V , we can assure that any combination
of colors in a cell c of O will correspond to a distinct
subset of points of V , so we know from which subset
Vc of points of V is visible each c, simply by looking
into the bits of its color.

3. Computing dmc(V ∗
c ) for every cell c of O

By adapting the second part of the algorithm for
computing good visibility maps in 2D [7, 8], we com-
pute dmc(V ∗

c ) for each distinct subset V ∗
c . In this way

we obtain gvm(V )∗ on D.

4. Drawing gvm(V )

Finally we have to map gvm(V )∗ to gvm(V ) on T .
Using graphics hardware this process is a mapping of
the texture O on the faces of T .

4.1 Results

We have implemented the proposed method using
C++ and OpenGL, and all the tests and images have
been carried out on a Intel Pentium at 3GHz with
2GB of RAM and a GeForce 7800 graphics card using
a screen resolution of 500x500 pixels.

Figures 1 and 2 show some examples of good vis-
ibility maps on a terrain obtained using our imple-
mentation. In these figures T is colored in a grey gra-
dation according to its good visibility depth (black
corresponds to level one, but white corresponds to
level zero). The light grey spheres represent the view
points of V .

Figure 1: We can observe gvm(V ) from a set of 11
view points on an approximation with 110.000 faces
of the Mount Kilimanjaro.

As an example of running time in the particular
cases of Figures 1 and 2, our algorithm takes 38 and
87.5 seconds for the whole process, respectively. An
important part of these times is dedicated to the com-
putation of O, 10 and 13.5 seconds respectively.

5 Future work

We are improving some parts of the implemented al-
gorithm to reduce its running time. In particular,
we are programming a method that is executed com-
pletely inside the GPU for computingO without using
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Figure 2: The image shows gvm(V ) from a set of 14
view points on T , a representation of the Mont Blanc
mountain with 40.000 faces.

occlusion query calls. In this way, the time needed to
compute O will be reduced at least one order of mag-
nitude.

We are also working in the study and implemen-
tation of Good Visibility Maps when the view points
have limited visibility [1, 2, 7, 8].

Another important future work is the study and
implementation of Good Visibility Maps in 3D, where
the view points can be placed in any position of the
space and obstacles are represented by triangles.
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Directly Visible Pairs and Illumination by Reflections
in Orthogonal Polygons

Mridul Aanjaneya∗ Arijit Bishnu∗ Sudebkumar Prasant Pal∗

Abstract

We consider direct visibility in simple orthogonal poly-
gons and derive tight lower and upper bounds on
the number of strictly internal and external visibility
edges. We also show a lower bound of dn

2 e − 1 on the
number of diffuse reflections required for completely
illuminating an orthogonal polygon from an arbitrary
point inside it. Further, we derive lower bounds on
the combinatorial complexity of the visibility polygon
of a point source S after k ≥ 1 specular reflections
within special classes of polygons.

1 Introduction

Let P be a simple polygon with n vertices. The in-
ternal (external) visibility graph [2] of P is a graph
with vertex set equal to the vertex set of P , in which
two vertices are adjacent if the line segment connect-
ing them does not intersect the exterior (interior) of
P . A visibility edge is called strictly internal (strictly
external) [2] if it is not an edge of P and lies com-
pletely inside (outside) P . Line segments connecting
non-consecutive vertices of the polygon that intersect
polygon edges are called mixed visibility edges [2]. The
edge bc (resp. ab) in Figure 1(i) is a strictly external
(resp. internal) visibility edge, and cd is a mixed vis-
ibility edge. We focus on a special class of polygons,
namely orthogonal polygons, in which the internal an-
gle at each vertex is either 90 or 270 degrees.

We consider direct visibility and derive a lower
bound of (2n − 6) on the sum S of the number of
strictly internal and strictly external visibility edges.
We also derive an upper bound on S by counting
the number of mixed visibility edges. We show these
bounds to be tight by constructing two families of or-
thogonal polygons which achieve these bounds.

Next, we consider visibility with reflections. We
prove that dn

2 e − 1 diffuse reflections are sometimes
necessary for completely illuminating a simple poly-
gon from an arbitrary point inside it by considering
a spiral orthogonal polygon. We also derive several
lower bounds on the combinatorial complexity of the
visibility polygon VP (S) of a point source S after k ≥ 1
specular reflections within special classes of polygons

∗Department of Computer Science and Engineering, IIT
Kharagpur, {mridul, bishnu, spp}@cse.iitkgp.ernet.in

P . For simple orthogonal polygons, we show that
VP (S) can have Ω(n2) holes with one reflection. We
also show that VP (S) is simply-connected after at
most two reflections in spiral orthogonal polygons,
and that VP (S) can have Ω(n) holes after Θ(n) re-
flections in general spiral polygons.

2 Counting visibility edges

Let int(P ) (resp. ext(P ), mix(P )) denote the num-
ber of strictly internal (resp. strictly external, mixed)
visibility edges of a polygon P . Determining the sum
of the number of strictly internal (i) and strictly ex-
ternal (e) visibility edges, i + e, of a simple polygon
was posed as an open problem in [1]. This problem
was settled by Urrutia in [2]. He also suggested a fam-
ily of polygons (as shown in Figure 1(ii)) that achieve
the bound in Theorem 1.

Theorem 1 (Urrutia [2]) For any simple polygon
P with n vertices, the number of strictly internal and
strictly external visibility edges is at least d 3n−1

2 e−4.

(ii)(i)
a

b

c

d

Figure 1: (i) Visibility edges. (ii) A family of simple
polygons which achieve the lower bound for (i + e).

2.1 Lower bound on the number of visibility edges

A partitioning of P into convex quadrilaterals is called
a convex quadrilateralization of P . Only vertices of
the polygon P may serve as vertices of the quadri-
laterals. Kahn, Klawe and Kleitman [3] proved that
every orthogonal polygon P (with or without holes)
is convexly quadrilateralizable. Any convex quadri-
lateralization of P has n−2

2 convex quadrilaterals [5].
Adding a diagonal to each quadrilateral gives us a tri-
angulation of P which has (n − 3) edges. If we now
flip the diagonal of each quadrilateral, we again get a
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triangulation of P with n−2
2 distinct edges. Using this

fact to count the number of strictly internal visibility
edges, we have the following lemma:

Lemma 2 Any n-sided simple orthogonal polygon P
has at least 3n−8

2 strictly internal visibility edges.

A vertex v of P is internal if it is inside the convex
hull of P . We use Lemma 3 proved by Urrutia in [2]
to derive a lower bound of (2n− 6) on the number of
strictly internal and strictly external visibility edges.

Lemma 3 (Urrutia [2]) If P is a simple polygon
with k internal vertices, then there are at least k
strictly external visibility edges, i.e., ext(P ) ≥ k.

Theorem 4 There are at least (2n−6) strictly inter-
nal and strictly external visibility edges in any simple
orthogonal polygon P with n vertices.

Proof. First note that all reflex vertices of P are in-
ternal vertices. O’ Rourke showed that there are n−4

2
reflex vertices in any orthogonal polygon with n ver-
tices [5]. So from Lemma 3, there are at least n−4

2
strictly external visibility edges in P . Using this fact
and Lemma 2, we get int(P ) + ext(P ) ≥ 2n− 6. �

x

y x

(0.99)y
(0.98)x

(0.99)(0.97)y
(0.98)(0.96)x

(a) (b)

Figure 2: (a) Staircase polygons which achieve the
lower bound of (2n− 6). (b) Construction scheme for
the staircase (x and y are any two positive integers).

We show this bound to be tight by constructing a
family of staircase polygons for which i + e = 2n− 6
(see Figure 2(a)). A staircase polygon is an isothetic
polygon bounded by two monotonically rising (falling)
staircases. The staircase is constructed as shown in
Figure 2(b).

2.2 Upper bound on the number of visibility edges

In simple polygons, it is easy to see that int(P ) +
ext(P ) ≤ (nC2 − n). This bound is achieved by a
convex polygon where the number of mixed visibility
edges is zero. However, mix(P ) is never zero for or-
thogonal polygons. We call a horizontal edge of P a
top (bottom) edge if int(P ) is below (above) it. Sim-
ilarly, we define left (right) vertical edges of P . We
derive the following upper bound and also show it to
be tight by constructing a family of staircase poly-
gons. See Figure 4 for the construction.

r s e

e1

2e2

e1

(a) (b)

s

p q

r

p q

Figure 3: A mixed visibility edge is present between
any two top edges (symmetric cases are also possible).

Theorem 5 There are at most n(n−3)
2 −∑4

i=1
ni(ni−1)

2 strictly internal and strictly external
visibility edges in any simple orthogonal polygon P
with n vertices, where n1 (resp. n2, n3, n4), is the
number of top (resp. bottom, left, right) edges in P .

Proof. Let e1 and e2 be any two top edges in P with
e1 lying below e2. Let p and q (resp. r and s) be
the end-points of e1 (resp. e2). See Figure 3. Con-
sider the quadrilateral Q formed by joining p to r and
q to s, where traversal of the boundary bd(P ) of P
in an anticlockwise fashion starting from p gives the
sequence of the vertices visited as p → s → r → q.
Since rs is a top edge, there exists a point x inside
Q infinitesimally below rs lying inside P . Similarly,
there exists a point y inside Q infinitesimally above
pq lying outside P . We conclude that bd(P ) inter-
sects the interior of Q. So at least one of the four
edges of Q must be a mixed visibility edge. So there
is at least one mixed visibility edge corresponding to
every pair of top edges. Symmetrically, this claim also
holds for every pair of left (resp. right, bottom) edges
also. From the above observation we conclude that,
mix(P ) ≥

∑4
i=1

ni(ni−1)
2 . Using this observation and

the fact that int(P )+ ext(P )+mix(P ) = n(n−1)
2 −n,

we get int(P )+ext(P ) ≤ n(n−3)
2 −

∑4
i=1

ni(ni−1)
2 . �

x

y x

(a) (b)

(1.01)y
(1.02)x

(1.01)(1.03)y
(1.02)(1.04)x

Figure 4: (a) Staircase polygons which achieve the up-
per bound. (b) Construction scheme for the staircase
(x and y are any two positive integers).
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3 Visibility with reflections

The problem of visibility when reflections from the
interior of edges are allowed was first considered in [6,
7, 8]. Two kinds of reflections were defined, specular,
in which Newton’s laws of reflection are obeyed, and
diffuse, in which light is reflected back in all possible
directions over a spread of 180 degrees. We denote the
visibility polygon [4] of a point source S in a simple
polygon P by VP (S).

3.1 Illumination with diffuse reflections

An interesting problem in visibility is to bound the
number of diffuse reflections required for completely
illuminating a given polygon. The portion m of an
edge e that becomes visible at the kth reflection is
called a mirror at the kth stage. The union of mir-
rors at the kth stage of reflection, lying on an edge e of
P , form connected components called reflecting seg-
ments. Prasad et al. [8] proved the following lemma:

Lemma 6 ([8]) Let the edge e of P have a reflecting
segment at the lth stage of reflection. Then, the entire
edge e is a reflecting segment at the (l + 2)nd stage.

S

Figure 5: Illumination after two diffuse reflections
in spiral polygons. (Illuminated regions are shaded
white, non-illuminated regions are shaded black.)

Consider an n-sided spiral orthogonal polygon Q.
We claim that dn

2 e − 1 reflections are necessary for
completely illuminating Q from any arbitrary point
inside it. Using Lemma 6 one can show that start-
ing from the arm containing the source S light suc-
cessively floods adjoining arms, thereby propagating
inside the polygon. So each arm of Q requires one
diffuse reflection to become illuminated. Hence, Q
becomes completely illuminated after dn

2 e − 1 diffuse
reflections. It is well-known that the entire polygon
will be illuminated after n diffuse reflections [9]. How-
ever, we believe that dn

2 e − 1 diffuse reflections are
also sufficient for complete illumination. We have
not been able to prove it as yet.

One approach for proving this result would be to
study diffuse reflections in the light of the cooperative
guards problem (see [10]). However, the guards chosen
should be edge guards instead of vertex guards since
the latter can see “around the corner”, which is not
permitted in reflections.

3.2 Combinatorial complexity of visibility poly-
gons with specular reflections

Let P be any n-sided simple polygon. A blind spot
is a connected component of P\VP (S). Holes are
blind spots which do not intersect the boundary of P .
Aronov et al. [7] proved that the visibility polygon
VP (S) of a point source S has complexity O(n2) with
one specular reflection and that this bound is tight.
We show that this bound can also be achieved in case
of orthogonal polygons, even though the topology of
such polygons does not permit the initial angle of in-
cidence of a ray to change significantly. See Figure 6
for an example with Ω(n2) holes.

S

hole

Figure 6: Ω(n2) holes with one specular reflection.

Now consider spiral orthogonal polygons. For at
most two reflections, we show that VP (S) is simply-
connected in such polygons. For one specular reflec-
tion, a vpath limit is defined as any 2-link path in P
from S to bd(P ) that obeys the reflection property
but passes through a vertex of P . Blind spots are
created by the intersection of vpath limits. Each link
of a vpath is given a direction which is same as that of
the ray defining it. Suppose two vpath links cross at
x. Removal of these two links produces four or more
quadrants, which are classified as left, right, bottom,
or top. If the blind spot lies in the left (right, bottom,
top) quadrant with respect to x, locally near x, then
x is called a left (right, bottom, top) vertex. See [7] for
details on the above definitions. The following result
was proved in [7]:

Lemma 7 ([7]) A hole is a closed convex polygon
with each vertex on two vpath limits; it contains ex-
actly one top and one bottom vertex.

Lemma 7 can be generalized to multiple specular
reflections. Using this result, one can show that at
least three sources (real or virtual), which throw light
in a shadow, are required for creating a hole at the kth
stage of reflection. See Figure 7. There exist only two
sources after both one and two specular reflections.
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Figure 7: VP (S) is simply connected after one and
two specular reflections.

So VP (S) remains simply-connected. However, after
k ≥ 3 specular reflections, we observed that the anal-
ysis became extremely complicated. We are unaware
of the combinatorial complexity of VP (S) after k ≥ 3
specular reflections. In case of general spiral poly-
gons however, we observed that VP (S) is multiply-
connected after three specular reflections (see Figure
8). Note that the construction shown in Figure 8 iso-
lates a single beam of light in each curl of the spi-
ral polygon. The part of the beam reflected back in
the previous curl can be made infinitely thin, so that
it has no subsequent effect on the connectedness of
VP (S). We can extend this construction by curling
the polygon Θ(n) times to prove the following result:

Theorem 8 The visibility polygon VP (S) of a point
source S can have Ω(n) holes in an n-sided spiral poly-
gon P after Θ(n) specular reflections.

4 Conclusion

We derived tight lower and upper bounds on the com-
plexity of the internal and external visibility graphs
of orthogonal polygons. We considered the problem
of illuminating a polygon by multiple diffuse reflec-
tions and also studied the complexity of the visibil-
ity polygon VP (S) of a point source S after multiple
specular reflections within special classes of polygons.
Apart from the several open problems discussed in
the paper, we are also studying the complexity of
VP (S) after multiple diffuse reflections. We believe
that VP (S) is always simply-connected in orthogonal
polygons. However, we still lack a proof. We also be-
lieve that it might be possible to solve the following

S

hole

Figure 8: A hole after three specular reflections.

conjecture stated in [8] for orthogonal polygons, and
we are currently working towards proving this result.

Conjecture 1 ([8]) The total complexity of VP (S)
after k diffuse reflections is Θ(n2).
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Abstract

Many algorithms from computer algebra are used in computational geometry such as cylindrical
algebraic decomposition for computing the topology of curves. They mostly concern univariate solving
(resultants, Sturm sequences, Descartes method, etc.).

In this lecture, the goal is to show that some sophisticated algorithms for exact/certified multivariate
solving (solving zero-dimensional systems, study of semi-algebraic sets, etc.) can also be used efficiently
in computational geometry in different ways ranging from a straightforward use as plugin for replacing
or complementing some numerical methods to dedicated methods for off-line studies to get qualitative
information or to prepare a numerical study.
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On Planar Visibility Polygon Simplification∗

Alireza Zarei† Mohammad Ghodsi†

Abstract

The boundary of a region illuminated by a light source
may be composed of many vertices and points. In
this paper, we propose a criterion to represent such
polygons by a smaller number of vertices and, show
how this criterion can be used in offline and streaming
models.

1 Introduction

In a planar scene which is composed of a set of polyg-
onal objects in the plane, two points are visible from
each other if their connecting segment does not inter-
sect the scene objects. The set of points visible from
a point q is called its visibility polygon and is denoted
by VP(q). The visibility polygon of a point in a pla-
nar domain is always a star-shaped simple polygon.
The boundary of a visibility polygon, simply referred
to by visibility polygon in the rest of this paper, is
composed of many consecutive line segments, some of
which may be so far from the observer.

In real applications, an observer usually has a lim-
ited vision power, i.e., it can not distinguish small
visibility differences at far distances. Moreover, the
required space to maintain the exact visibility poly-
gon is too high and it will be impossible to maintain
such polygons exactly. On the other hand, the accu-
racy of the display screens is also limited. That is, to
display such a polygon on a display screen, only its
approximation is displayed.

In this paper, we consider the problem of simpli-
fying (approximating) the visibility polygon of such
observers inside a polygonal domain. This problem
is a special case of the well-known line simplification
problem for which there are several algorithms. These
methods approximate a given path of line segments by
another path with smaller number of segments which
minimizes the difference between the initial and the
simplified paths. This difference, to be formally de-
fined later, is called the error of this simplification.

There are two optimization goals in the line simpli-
fication algorithms: min-k and min-δ. In the min-k
version, there is a given error threshold and we are to

∗This research was in part supported by a grant from IPM.
(No. CS1386-2-01)

†Computer Engineering Department - Sharif University
of Thechnology, School of Computer Science - Institute
for Studies in Theoretical Physics and Mathematics (IPM),
zarei@mehr.sharif.edu, ghodsi@sharif.edu

use the minimum number of vertices in the simplified
path meeting the error threshold. In min-δ, we are
allowed to use at most k vertices for some given k in
the simplified path and the goal is to minimize the
error of the simplification.

Almost all current simplification algorithms solve
the line simplification problem under the Hausdorff
distance for L1, L2 or L∞ metrics or under the Fréchet
distance which are not proper for our purpose of sim-
plifying visibility polygons. In our target applications,
the vertices of the path that are closer to the observer
are more important than the farther points.

To solve this problem, we define a new approximat-
ing error function which considers the distance be-
tween the points of the visibility polygon and the ob-
server. We prove that this error function can be com-
puted efficiently and can be used along with current
simplification methods without increasing their time
or space complexities. Therefore, our target problem
can be solved efficiently under min-k or min-δ opti-
mization goals.

We further consider the streaming cases in which
the observer is like a radar inside a dynamic environ-
ment that circularly sweeps its neighbor and draws
its visibility polygon. In such applications, the visi-
ble points are given continuously as a stream of input
data and we assume that it is impossible to maintain
and show all of these points. Therefore, it is neces-
sary to approximate the exact visibility polygon by
another polygon of smaller number of vertices.

In this model, regardless of the number of points
in the input path, we must simplify the path by at
most k points. Also, we must continuously update
the simplification as new points are received. For
this version of the problem, our proposed method uses
O( k2

√
ε
) additional storage and each point is processed

in O( k√
ε log ε

) amortized time. Then, the error of the
resulting simplification with 2k points is not bigger
than (2 + ε) times the error of the optimal simplifi-
cation with k points. This method is based on the
general algorithm proposed in [1].

There is a similar attempt in rendering based sim-
plification by Buzer [4], however, without considering
the observer position. To the best of our knowledge,
the results of this paper are the first in this area and
there are several interesting open directions in apply-
ing and extending this notion.
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Figure 1: Simplifying VP(q).

2 Visibility-dependent simplification

We focus on the restricted version of the line sim-
plification problem. For this problem, let P be a
path defined by a sequence of points p0, p1, p2, . . . , pn.
Any subsequence Q = q0, q1, . . . , ql, ql+1 of P is a l-
simplification of P if q0 = p0 and ql+1 = pn. In
this simplification, any segment qiqi+1 of Q (0 ≤
i ≤ l) is the corresponding simplification of the sub-
path ps, ps+1, . . . , pt of P where qi = ps and qi+1 =
pt. In other words, we have replaced the subpath
ps, ps+1, . . . , pt of P with segment qiqi+1 in Q.

Therefore, Q is an approximation of P and can be
stored using smaller size of memory, however, at the
cost of losing the accuracy of P . Assume that error
is our error function used to compare similarity of
Q and P . Using this metric, we denote the error of
this approximation by error(Q) and it is defined to
be the maximum error of segments qiqi+1(0 ≤ i ≤ l)
under this metric. The error of a segment qiqi+1 un-
der a metric error is denoted by error(qiqi+1) and
is defined to be the error of approximating the sub-
path ps, ps+1, . . . , pt by segment qiqi+1 under this er-
ror metric. Usually, the definition of the error metric
error depends on the application.

Hausdorff error function, errorh, is the metric used
in almost all simplification algorithms. For a seg-
ment qiqi+1 which is the simplification of a subpath
ps, ps+1, . . . , pt, errorh(qiqi+1) is defined as the max-
imum euclidian distance of the points ps, ps+1, . . . , pt

from segment qiqi+1.
The Hausdorff error function only depends on the

initial and the simplified paths and therefore, is not
proper for simplifying visibility polygons in which the
position of the observer has an important role. As-
sume that P = p1, p2, . . . , pn, p1 of Figure 1 is the
visibility polygon of a point observer q. Here, pj is
closer to the observer than pi which is assumed to be
too far from q. If we are to simplify P by removing
one point and we have only two choices pi and pj , it
would be better to remove pi while if we use Hausdorff
error function, pi will be removed. In order to use cur-
rent simplification algorithms, we formalize this issue
as an error function as follows.

Assume that we are to approximate the path pippj

(See part A of Figure 2), a part of the visibility poly-

part A part B

p

q

t

t′

p

pi pj

p′

errorvis(t, pipj) = |tt′|
|tq|

q

errorvis(t, pipj) = |tt′|
|t′q|

p′

pj

t

t′pi

Figure 2: Visibility-dependent simplification error.

gon of the observer q, by segment pipj . From the
viewpoint of q, this approximation maps the point p
to point p′. Also, other points of segments pip and ppj

are mapped to their corresponding points of segments
pip

′ and p′pj .
The corresponding visibility-dependent error of this

simplification for a point t on the path pippj is de-
noted by errorvis(t, pipj) and is defined as |tt′|

|tq| where
t′ is the intersection point of segments tq and pipj .
This means that in this simplification and at distance
|tq| from the observer we have violated from the ini-
tial path by a value of |tt′|. This definition is also
extended to paths of more internal vertices. The visi-
bility polygon of q is a star-shaped polygon and p lies
between pi and pj on the boundary of this polygon.
Therefore, the supporting line of pq always intersects
pipj . If pi, pj and q are collinear, p and all other
points of the polygon boundary from pi to pj must
also lie on segment pipj . For such situations, the er-
ror of all points of the path from pi to pj is zero which
corresponds to our definition of the error function.

In some cases like part B of Figure 2, tq does not
intersect pipj . For such situations, point t is mapped
to point t′ which is the intersection point of pipj and
the supporting line of tq. In these cases, the visibility-
dependent error of point t is defined to be |tt′|

|t′q| . Com-
paring the definition of errorvis function for these two
cases, when the corresponding values of |tq| in parts
A and B of Figure 2 are equal, we assign greater error
value to point t in part A. This means that in the
same situations we prefer to simplify using the outer
diameters of the visibility polygon compare to the in-
ternal ones. Another benefit of this definition is that
this error function is monotone which will be defined
and used in Section 3.

Our visibility-dependent error function associated
with a path pi, pi+1, . . . , pj simplified by segment pipj ,
denoted by errorvis(pipj), is defined to be the maxi-
mum visibility-dependent error of points of this path.

This definition for visibility-dependent error func-
tion strongly relates to the notion of width. The width
of a set of points with respect to a given direction

−→
d

is the minimum distance of two lines being parallel to−→
d that enclose the point set. Let PL(i, j)(PU (i, j)) be
the set of points of subpath P (i, j) = pi, pi+1, . . . , pj
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that lie in the closed half plane defined by the sup-
porting line of pipj which contains(does not contains)
the point observer q. We denote by wL(i, j)(wU (i, j))
the width of the points of PL(i, j)(PU (i, j)) with re-
spect to the direction −−→pipj . We have,

Lemma 1 For a subpath P (i, j) = pi, pi+1, . . . , pj of
VP(q),

errorvis(pipj) = max( wU (i,j)
d(q,pipj)+wU (i,j) ,

wL(i,j)
d(q,pipj)

)

where d(q, pipj) is the orthogonal distance of point q
from the supporting line of pipj .

A direct consequence of this lemma is that the as-
sociated error of a segment pipj belongs to a vertex
pk(i ≤ k ≤ j) which makes computation of this er-
ror function straightforward. Using this result we can
simply compute the corresponding error of any seg-
ment pipj that may appear in simplification during
the simplification process by only checking vertices of
the subpath P (i, j).

Fortunately, algorithms proposed for both re-
stricted and unrestricted versions of the line simplifi-
cation problem do not require any special property for
the error function and we can plug our error function
into. Moreover, this error function can be used under
min−k and min−δ optimization goals as well. The
only change in these algorithms is to use our error
function for a segment pipj when we want to simplify
the path pi, pi+1, . . . , pj with this segment.

3 Visibility-dependent simplification in streaming
model

In some applications, we can not maintain the whole
path because of the limited amount of memory or un-
necessity of maintaining these points. For example,
consider a radial sweep line which trace the scene
around a point observer. In such applications, we
want to compute an approximation of the visibility
polygon as the visible points are identified by the
sweep line.

Formally, the vertices of the visibility polygon are
given as a stream of input data and we want to sim-
plify the path. Abam et.al proposed a general algo-
rithm that can be used to simplify a path whose ver-
tices are given as a stream of input points[1]. Their
algorithm only solves the min−δ version of the line
simplification problem. Because of the large number
of the input vertices, the result of the min−k version
of the line simplification in streaming model, may be
too large to store, and therefore, no result exists for.

In order to use this algorithm on a path P (n) =
p0, p1, . . . , pn with an error function error, two con-
ditions must be satisfied:

• error must be a c-monotone error function on the
path P (n) for any n > 0. This means that for
any two segments pipj and plpm such that i ≤ l ≤
m ≤ j and pi, pj , pl and pm are vertices of the
path P (n) we have, error(plpm) ≤ c.error(pipj).

• There must be an e-approximate error oracle for
error on the path P (n) to be defined as fol-
lows. In streaming models, we may lose some
vertices of the subpath P (i, j) between points pi

and pj . Then, we can not compute the exact
value of the error function for this segment and
we must approximate this error value. We de-
note the approximated error value of a segment
pipj by error∗(pipj). We call the procedure that
computes this approximation as our error oracle.
An error oracle is e-approximate if for any seg-
ment pipj for which the oracle is called by the
algorithm we have

error(pipj) ≤ error∗(pipj) ≤ e.error(pipj).

Having these two conditions, the algorithm of
Abam et al. [1] simplifies a streaming path P by a
path Q of at most 2k internal vertices. The time the
algorithm needs to update the simplification upon the
arrival of a new point is O(log k) plus the time spent
by the error oracle. Besides the storage needed for
the simplification Q, the algorithm needs O(k) storage
plus the storage needed by the error oracle. The error
of the simplification Q obtained by this algorithm is
at most ce times the error of the optimal simplifica-
tion of P with k points in non-streaming model which
we have all points in memory. So, in order to use this
algorithm we must show that our visibility-dependent
error function, errorvis, is c-monotone and we must
propose an error oracle to approximate the error of
any segment pipj for which the oracle is called in this
algorithm.

Lemma 2 Over the visibility polygon of a point ob-
server, the visibility-dependent error function errorvis

is 2-monotone.

Proof. Assume that points pi, pj , pl and pm lie on
VP(q) such that i ≤ l ≤ m ≤ j and errorvis(plpm)
belongs to a point pk where l ≤ k ≤ m and p′k and p′′k
are respectively the intersection points of the support-
ing line of qpk and segments plpm and pipj . VP(q) is
a star-shaped polygon and q is a point in its center.
Following the order of points on the boundary of this
polygon, the supporting line of segments plq, pmq and
pkq intersect segment pipj and the supporting line of
pkq intersects plpm. There are six permutations for
positions of points pk, p′k and p′′k on the supporting
line of qpk (shown in Figure 3). For all of these con-
figurations we have

errorvis(pipj) ≥
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Figure 3: The visibility-dependent error function is
2-monotone.

max(errorvis(pl, pipj), errorvis(pm, pipj), errorvis(pk, pipj)),

and

errorvis(p′k, pipj) ≤
max(errorvis(pl, pipj), errorvis(pm, pipj)).

Consequently, we have
errorvis(pipj) ≥ max(errorvis(p

′
k, pipj), errorvis(pk, pipj)).

We prove the lemma for all these configuration by
showing that

errorvis(plpm) = errorvis(pk, plpm)

≤ 2max(errorvis(p
′
k, pipj), errorvis(pk, pipj))

≤ 2errorvis(pipj).

The first equality is our assumption that pk has
the maximum error on plpm among all points of path
pl, pl+1, . . . , pm and we have already shown the last
inequality. Therefore, it is only enough to show the
middle inequality. We prove this inequality for the
case shown in part A of Figure 3 and skip the other
cases. In this configuration we have,

errorvis(pk, plpm) =
|pkp′

k|
|pkq| ≤

|pkp′′
k |

|pkq| = errorvis(pk, pipj)

≤ 2max(errorvis(p
′
k, pipj), errorvis(pk, pipj)).

So, we proved that errorvis(plpm) ≤ 2errorvis(pipj).
This can be proved for the other cases. Also, it can
be shown that this upper bond is tight in cases shown
in parts B and E of Figure 3. �

Now, we propose an approximating procedure that
approximates errorvis(pipj), the error value of any
segment pipj for which the simplification algorithm is
called.

According to Lemma 1, the approximating oracle
can approximate d(q, pipj), wL(i, j) and wU (i, j) to
find an approximation of errorvis(pipj). It is easy to
find the exact value of d(q, pipj). We use the method
described by Agarwal and Yu [2] to approximate wL

and wU .

Agarwal and Yu [2] have described a streaming al-
gorithm for maintaining a core-set that can be used
to approximate the width of a set of points in any
direction. Their algorithm requires O( 1√

ε
) space and

O( 1
log ε ) amortized time per point to maintain a core-

set from which the width of the input stream can
be computed efficiently. This is done by addition-
ally maintaining the convex hull of the core-set us-
ing the data structure by Brodal and Jacob [3]. This
data structure uses linear space and can be updated
in logarithmic time. Also it supports queries for the
extreme point in a given direction in logarithmic time.
Using these results, we have an (1+ε)-approximate er-
ror oracle for errorvis and the value of errorvis(pipj)
can be computed in O( 1

log ε ) time. Therefore, we can
prove the following lemma:

Lemma 3 There is a (1+ε)-approximate error oracle
for the visibility-dependent error function on visibility

polygon of a point observer that uses O( k2
√

ε
) storage

and has O( k√
ε log ε

) amortized update time where k is

the number of the internal points of the simplification.

Combining the result of lemmas 2, 1 and 3 with the
algorithm of Abam et al. [1] described at the begin-
ning of this section, we have the following result on
simplifying the visibility polygon of a point observer
based on the visibility-dependent error function:

Theorem 4 There is a streaming algorithm that
maintains a 2k-simplification for VP(q) under the
visibility-dependent error function. This algorithm

uses O( k2
√

ε
) additional storage and each point is pro-

cessed in O( k√
ε log ε

) amortized time and the error of

the result simplification is not larger than (2+ε) times
the error of the optimal offline k-simplification.
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The Kinetic Facility Location Problem∗
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Abstract

We present a deterministic kinetic data structure for
the facility location problem that maintains a subset
of the moving points as facilities such that, at any
point of time, the sum of the maintenance cost for the
facilities and the connection cost for the clients is at
most a constant factor larger than the current optimal
cost. In our scenario, each point can open a facility
and moves continuously along a known trajectory in a
d-dimensional Euclidean space where d is a constant.

Our kinetic data structure has a storage require-
ment of O(n(logd(n) + log(nR))), where n is the
number of points and R is the ratio of the prod-
uct of the maximum maintenance cost and demand
to the product of their corresponding minimum val-
ues. In the case that each trajectory can be described
by a bounded degree polynomial, the data struc-
ture processes O(n2 log2(nR)) events, each requiring
only O(log(nR)) facility changes and O(logd+1(n) ·
log(nR)) time. This results in a total processing time
of O(n2 logd+1(n) · log3(nR)). To the best of our
knowledge, this is the first kinetic data structure for
the facility location problem.

1 Introduction

The facility location problem (FLP) is a classical com-
binatorial problem in computer science where we want
to find a placement of facilities, like factories or stores
of a fast-food chain, such that the combined costs for
the maintenance of the facilities and the transporta-
tion costs for the customers are minimized.

In this work, we consider a scenario of continuously
moving objects in which each object can either be
a facility or a client. Applications for this scenario
are obviously in sensor networks and mobile ad-hoc
networks. In these networks, nodes move continu-
ously and interact with each other. One among many
applications is monitoring certain parameters of the
sea (e.g. algae population, water pollution) by sensor
networks. Imagine those sensors to be a set of micro-

∗Partially supported by the EU within FP7-ICT-2007-1 un-
der contract no. 215270 (FRONTS), and the DFG-project
“Smart Teams” within the SPP 1183 “Organic Computing”

†Heinz Nixdorf Institute and Department of Computer
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‡International Graduate School Dynamic Intelligent Sys-
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submarines to examine parts of the sea. Clearly, the
micro-submarines are in motion since they are moved
by the currents of the sea. A micro-submarine can be
either in sensor mode (client) or in processing mode
(facility). In sensor mode, it collects data and sends
it to the nearest facility, inducing connection costs
depending on the distance. In processing mode, it
analyzes the data received and uploads a compressed
snapshot via a satellite connection to a research sta-
tion, which causes maintenance costs. Thus, solving
this problem at minimum costs is the FLP.

The kinetic data structure (KDS) framework is
well-suited to maintain a combinatorial structure for
continuously moving objects and is common in the
field of computational geometry [2, 7]. The input is a
set of objects and a flight plan, i.e., each object moves
continuously along a known trajectory. At any point
of time, it is possible to change the flight plan by per-
forming a so called flight plan update, which means
that one object changes its trajectory. The main idea
is now, that the continuous motion of the objects is
utilized in a way that updates take place only at dis-
crete points of time and can be processed fast. As
a result, by maintaining the KDS, a lot of computa-
tional effort can be saved compared to handling just
a series of instances of the corresponding static prob-
lem. This property is called responsiveness. Other
important properties of a KDS are its efficiency, com-
pactness, and locality.

To guarantee that the required properties of the
combinatorial structure are fulfilled at any point of
time, a KDS ensures that certain so called certificates
are always kept. Certificates provide a proof that
the combinatorial structure has the desired property.
Whenever a certificate fails, we call this an event and
an update gets necessary.

One challenge to construct a KDS for the FLP is
that the underlying combinatorial structure of an ex-
act solution is not stable, i.e., a slight change of the
position of a point in an exact solution might require
an update on all the points to restore an optimal so-
lution. Therefore, we use a new approach to comply
with the condition that an update takes only poly-
logarithmic time. For a more detailed explanation as
well as omitted proofs we refer to [5].

Related work. The KDS framework was introduced
by Basch et al. [2]. Only some results are known for
problems related to clustering, like the FLP. For in-
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stance Gao et al. [6] provided a KDS to maintain an
expected constant factor approximation for the mini-
mal number of centers to cover all points for a given
radius. The centers that they considered are a subset
of the moving nodes, like in this paper, whereas Be-
spamyatnikh et al. [4] studied k-center problems for
k = 1 in the KDS framework, where the centers are
not necessarily located at the moving points. Her-
shberger [8] proposed a kinetic algorithm for main-
taining a covering of the moving points in Rd by unit
boxes. For other work on KDSs, we refer to the survey
by Guibas [7].

2 Preliminaries

We define the kinetic FLP as follows. Let
p1, p2, . . . , pn be n independently moving points inRd,
where d is a constant. Let pi(t) denote the position of
pi at time t and let P(t) = {p1(t), p2(t), . . . , pn(t)}.
At any point of time t, the point set P(t) is di-
vided into two subsets, namely the current set of fa-
cilities F(t) and the current set of clients G(t) =
P(t)\F(t). With each facility pi(t) ∈ F(t), there
are non-negative maintenance costs fi associated and
each client pj(t) ∈ G(t) has a non-negative demand dj .
Note that both the maintenance cost and the demand
of a point do not change over time. The problem is
now to maintain, at each point of time t, a subset
F(t) ⊆ P(t), such that

cost(F(t)) :=
∑

pi(t)∈F(t)

fi +
∑

pj(t)∈G(t)

dj ·D(pj(t),F(t))

is minimized. Here, D(pj(t),F(t)) is the minimum
Euclidean distance from pj(t) to a facility in F(t). At
first we consider the uniform FLP, i.e. fi = 1 for each
facility pi(t) and dj = 1 for each client pj(t).

Cubes. For a point pi(t) ∈ P(t) and a non-negative
value r, we define C(pi(t), r) to be the axis-parallel
cube whose center is the point pi(t) and whose side
length is 2r. Given such a cube C(pi(t), r), we let
weight(C(pi(t), r)) denote the number of all the points
in P(t) that are located in the cube C(pi(t), r).

Radius of a point. For each point pi(t) ∈ P(t), we
calculate a special radius r∗i (t) which is an approxima-
tion for the value ri(t) that is used in [9] and satisfies∑
pj(t)∈P(t)|D(pi(t),pj(t))≤ri(t)

ri(t)−D(pi(t), pj(t)) = 1 .

Due to this definition, the radius ri(t) ranges be-
tween 1/n and 1. To obtain a constant factor ap-
proximation for ri(t), we define r∗i (t) to be the value
2−k∗ , such that k∗ = k0 − dlog(4

√
d)e and k0 is the

maximum integer in {0, 1, . . . , blog(n)c}, for which
weight(C(pi(t), 2−k0)) ≥ 2k0 holds. The choice of k∗

is explained in Section 4. Note that a cube C(pi(t), r)
is a ball with radius r with respect to the L1-metric.

Walls around a point. For each point pi(t) ∈
P(t), we consider a set of blog(n)c + 1 nested
cubes. In particular, for each k ∈ {−dlog(4

√
d)e, 1 −

dlog(4
√

d)e, . . . , blog(n)c − dlog(4
√

d)e}, there is the
cube C(pi(t), 2−k). The side faces of such a cube form
a wall around pi(t), which we call Wi,k(t).

Range trees. We maintain two (d + 1)-dimensional
dynamic range trees denoted by T1 and T2. At any
time, range tree T1 is used to manage the current set
of facilities, and T2 stores the current set of clients.
Both range trees are constructed in the same way. In
the first d levels, the points are handled according to
their coordinates and in the (d + 1)-st level according
to their special radii. Additionally, with each node
v we store the number of all points contained in the
subtree of v.

The dynamic data structure described in [3] sup-
ports all required properties of T1 and T2 efficiently.
The movement of the points in our case is reflected by
insertion and deletion operations on T1 and T2 upon
an event. That means that the actual position of a
point pi is represented by its coordinates at the latest
event it was involved in. Although its exact coordi-
nates might slightly deviate between two events that
involve pi, we will show that, at any point of time t,
the point pi(t) ∈ P(t) is stored in the correct range
with respect to the walls of all other points.

3 The Kinetic Data Structure

In this section, we describe the event queue and how
an update of the KDS is processed.

Event Queue. To maintain an appropriate set of
facilities, we have to update our KDS at certain
points of time. More precisely, we perform an update
each time a point pj(t) crosses a wall Wi,k(t) with
−dlog(4

√
d)e ≤ k ≤ blog(n)c−dlog(4

√
d)e, of another

point pi(t). In order to keep track of these events,
we need another data structure beside the two range
trees: For each dimension `, 1 ≤ ` ≤ d, we store
all n points and all O(n log(n)) wall faces which are
orthogonal to the `-th coordinate axis in a list sorted
by the `-coordinate. For each consecutive pair in each
list, we keep up one certificate to certify the sorted or-
der of the lists. The failure time of the certificate for
any pair of consecutive objects is the first future time
when these objects swap their places in their sorted
list. We maintain the failure times of all certificates
in one event queue. Certainly, it is not the case that
each event implicates that a point crosses a wall of
another point, but definitely every crossing of a wall
is discovered by a failure of at least one certificate.
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Handling an event. To get an initial solution for
the kinetic FLP, we apply the algorithm of Mettu-
Plaxton [9] on the input points. Afterwards, when-
ever an event occurs, we update both points involved
according to their actual position in the two range
trees. Then we update the event queue. All further
steps are performed to keep up one invariant, which
is fulfilled if the following conditions hold:

a) for each closed point pi(t) ∈ G(t) there is an open
point pj(t) ∈ F(t) with r∗j (t) ≤ r∗i (t) in C(pi(t), 4·
r∗i (t)) and

b) for each open point pi(t) ∈ F(t) there is no other
open point pj(t) ∈ F(t) with r∗j (t) ≤ r∗i (t) in
C(pi(t), 2 · r∗i (t)).

We will show that, at each point of time t, if the
invariant is fulfilled, cost(F(t)) is at most a constant
factor larger than the current optimal cost. Now, let
us assume that the invariant is fulfilled by any point of
time t when an event e occurs. Then the only possibil-
ity that the invariant gets violated is that e indicates
that any point in P(t) crosses a wall of any other point
pe(t). Thus, if e is not a wall crossing, handling e is
finished after updating the event queue. Otherwise,
we perform the following steps. At first, we update
the radius r∗e(t). Note that r∗e(t) can be found by
performing a binary search on its O(log(n)) possible
values, in which each step of the binary search requires
only one range query on both T1 and T2. Afterwards,
we test if pe(t) violates the invariant by using a range
query on T1. If this is the case, we change the sta-
tus of pe(t). As an effect of changing the radius or the
status of one point, the invariant might be violated by
many other points (e.g. their open facility has been
closed).

Suppose that, due to an event e, the radius or the
status of point pe(t) changed and its new radius is
r∗e(t) = 2−k∗ . First, we restore the invariant at all
points with radius 2−(k∗+1), to ensure that no point
with radius less than or equal to 2−(k∗+1) violates the
invariant. Then, we handle the points with radius
2−k∗ , then the ones with radius 2−(k∗−1), . . . , up to
radius 2dlog(4

√
d)e. Now, we describe how to proceed

in general for any radius 2−k (cf. Algorithm 3.1).
We define two cubical shells S1 := C(pe(t), 4 ·

2−(k−1)) and S2 := C(pe(t), 6 · 2−(k−1)) \ C(pe(t), 4 ·
2−(k−1)). Both cubical shells are divided into equally
sized cubelets with radius 2−k. Figure 1 (a) illus-
trates this decomposition in the plane for k and the
next iteration k − 1.

To guarantee that no open point with radius 2−k

violates the invariant, we perform the following test
for each cubelet in S1: Let m be the center point
of the considered cubelet. If there is a facility with
radius less than 2−k in C(m, 3 · 2−k), then close all fa-
cilities with radius 2−k in C(m, 2−k). Note that there

W (t)i,k-2

W (t)i,k-4

W (t)i,k-3

m

2
k

32.
k

(a) (b)

Figure 1: (a) Decomposition. (b) Tested area.

is at most one of them. The considered area around
a cubelet is illustrated in Figure 1 (b).

Then, we perform a similar test for each cubelet in
both cubical shells (cf. Algorithm 3.1), to guarantee
that the certificate of every closed point with radius
2−k hold.

Algorithm 3.1 Restore(pe(t), k∗)

1: for k ← k∗ + 1 downto −dlog(4
√

d)e do
2: define cubical shells S1 := C(pe(t), 4 · 2−(k−1)),

S2 := C(pe(t), 6 · 2−(k−1)) \ C(pe(t), 4 · 2−(k−1))
3: for each cubelet C with radius 2−k and center

mC in cubical shell S1 do
4: if ∃ open facility with radius < 2−k in

C(mC , 3 · 2−k) then
5: close all facilities with radius 2−k in C
6: for each cubelet C with radius 2−k and center

mC in cubical shell S1 ∪ S2 do
7: if @ open facility with radius ≤ 2−k in

C(mC , 3 · 2−k) then
8: open one point with radius 2−k in C (if

existing)

4 Quality and complexity

The difficulty in proving the correctness of maintain-
ing the invariant is that both range trees contain out-
dated information. For any point of time t and any
pi(t) ∈ P(t), let pT

i (t) be the position of pi stored in
the range trees at time t. The following proposition
shows that, at any time, every point is stored in the
correct range with respect to the walls of all other
points.

Proposition 1 Let pi, pj ∈ P, let −dlog(4
√

d)e ≤
k ≤ blog(n)c − dlog(4

√
d)e be an integer and let t

be any point of time between two successive events
which involve pi and pj . If and only if we have
pT

j (t) ∈ C(pT
i (t), 2−k), then pj(t) ∈ C(pi(t), 2−k) is

true as well.
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Proof. Let t1 < t be the latest point of time when pi

and pj have been involved in one event. Furthermore,
pT

j (t) ∈ C(pT
i (t), 2−k) implies that we have updated pi

and pj at time t1, such that pT
j (t1) ∈ C(pT

i (t1), 2−k).
Because we have updated both pi and pj in the range
trees at time t1, pj(t1) ∈ C(pi(t1), 2−k) is also true.
Now let us assume that we have pT

j (t) ∈ C(pT
i (t), 2−k)

but pj(t) /∈ C(pi(t), 2−k). Thus, there must be a point
of time t2 with t1 < t2 < t when the point pj(t2)
crosses the wall Wi,k(t2). Then t1 could not be the
latest point of time when pi and pj have been in-
volved in one event, leading to a contradiction. Anal-
ogously, we can show that pT

j (t) /∈ C(pT
i (t), 2−k) im-

plies pj(t) /∈ C(pi(t), 2−k). �

It is easy to prove that the invariant is fulfilled as
long as the algorithm does not call the subroutine Re-
store. Next, we show that the invariant is restored
after each call of the subroutine Restore.

Proposition 2 If no point with radius less than or
equal to 2−(k∗+2) violates the invariant before calling
algorithm Restore with input parameter k∗, then
this holds after running algorithm Restore as well.

Proposition 3 Let pe(t) be a point whose radius or
status is changed due to an event e. Let r∗e(t) = 2−k∗

be the updated radius of pe(t). If the invariant is ful-
filled before e and no point with radius less than or
equal to 2−(`+1) violates the invariant before running
the outer for-loop of algorithm Restore for k = `,
where −dlog(4

√
d)e ≤ ` ≤ k∗ + 1, then, after run-

ning this for-loop, no point with radius 2` violates
the invariant.

Proof. (sketch) Since pe is updated in the range trees
at time t, we have pT

e (t) = pe(t). Due to Propo-
sition 1, we know that pi(t) ∈ S1 if and only if
pT

i (t) ∈ S1. Furthermore, due to Proposition 1, if we
have pi(t) ∈ S2, then we also know that pT

i (t) /∈ S1.
Consequently, we have to consider the following five
possible combinations for pi(t) and pT

i (t): i) pi(t) ∈ S1

and also pT
i (t) ∈ S1, ii) pi(t) ∈ S2 and also pT

i (t) ∈ S2,
iii) pi(t) ∈ S2, but pT

i (t) /∈ S1 ∪S2, iv) pi(t) /∈ S1 ∪S2

and also pT
i (t) /∈ S1 ∪ S2, and v) pi(t) /∈ S1 ∪ S2, but

pT
i (t) ∈ S1 ∪ S2.
Due to the tests performed for the cubelets in S1

and S2 and by making use of Proposition 1, we can
prove each of the five cases by contradiction. �

Lemma 4 The invariant is fulfilled after the algo-
rithm has handled an event.

The special radii. The authors in [1] showed how
to approximate the radius ri(t) (cf. Section 2) by
counting the number of points in a certain distance
of pi(t). Our algorithm uses their approach, but we
approximate the number of points in a distance 2−k,
for an integer k, by a cube with radius 2−k.

Lemma 5 Let k0 be the maximum integer k, with
0 ≤ k ≤ log(n), such that weight(C(pi(t), 2−k)) ≥ 2k.
Then 1

4
√

d
· ri(t) ≤ 2−k0 ≤ 2 · ri(t) holds.

In order to get ri(t) ≤ r∗i (t), we set r∗i (t) =
2−k∗ = 2−(k0−dlog(4

√
d)e). This implies ri(t) ≤ r∗i (t) ≤

23+dlog(
√

d)e · ri(t).

Lemma 6 There is a KDS maintaining an O(1)-
approximation for the uniform kinetic FLP in an ar-
bitrary but fixed dimension d.

Proof. Since for each point pi(t) ∈ P(t) there is a fa-
cility pj(t) in C(pi(t), 4·r∗i (t)), we get D(pi(t), pj(t)) ≤√

d · 4 · r∗i (t) ≤
√

d · 4 · 23+dlog(
√

d)e · ri(t). Now, the
lemma follows from the analysis in [9]. �

Generalization to the non-uniform FLP yields:

Theorem 7 There is a KDS maintaining an O(1)-
approximation for the kinetic FLP for a set of n points
in Rd, where d is arbitrary but fixed. The space re-
quirement is O(n(logd(n)+ log(nR))), where R is the
ratio of the product of the maximum maintenance
cost and demand to the product of their correspond-
ing minimum values. In the case that each trajectory
can be described by a bounded degree polynomial,
the total number of updates is O(n2 log2(nR)), each
requiring O(logd+1(n) · log(nR)) time. A flight plan
update involves O(log(nR)) certificates and requires
O(log2(nR)) time.
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Probabilistic Matching of Polygons∗

Helmut Alt† Ludmila Scharf† Daria Schymura†

Abstract

We analyze a probabilistic algorithm for matching
plane compact sets with sufficiently nice boundaries
under translations and rigid motions (rotation and
translation). Given shapes A and B, the algorithm
computes a transformation t such that the area of
overlap of t(A) and B is close to maximal with high
probability. We give a time bound that does not de-
pend significantly on the number of vertices in the
case of polygons.

1 Introduction

Shape matching is a problem that occurs in various
areas of computer science and in various flavors, par-
ticular in computer vision.

We model shapes as bounded polygonal regions in
the plane. Given two shapes A and B, as well as a
set of transformations F and a distance measure d,
we look for the transformation t ∈ F such that t(A)
and B match optimally with respect to d. Two shapes
are similar if there is a transformation t for that the
distance between t(A) and B is small.

This is a well-studied problem in the case of rigid
motions and the Hausdorff distance, if the shapes are
modeled as sets of line segments, for example. For a
survey on the topic, see [3].

We study the case where F is the set of transla-
tions or rigid motions (rotation and translation) in
the plane and the distance measure is the area of the
symmetric difference, that is the area that belongs to
exactly one of the shapes. Minimizing the area of the
symmetric difference under translations or rigid mo-
tions is the same as maximizing the area of overlap,
and that is what we will speak about from now on.
The area of overlap is a well-known similarity mea-
sure, which is insensitive to noise.

There are efficient algorithms for polygons that
maximize the area of overlap under translations.
Mount et al. [8] show that the maximal area of over-
lap of a simple n-polygon with a translated simple
m-polygon can be computed in O(n2m2) time. Re-
cently, Cheong et al. [7] gave a general probabilistic
framework that computes an approximation with pre-

∗This research was supported by the European Union under
contract No. FP6-511572, Project PROFI.

†Institute of Computer Science, Freie Universität Berlin,
{alt,scharf,schymura}@inf.fu-berlin.de

specified absolute error ε in O(m + (n2/ε4) log(n)2)
time for translations and O(m+(n3/ε4) log(n)5) time
for rigid motions. De Berg et al. [6] consider the case
of convex polygons and give a O((n + m) log(n + m))
time algorithm that maximizes the area of overlap.
Alt et al. [2] give a linear time constant factor ap-
proximation algorithm for minimizing the area of the
symmetric difference under translations and homoth-
eties (scaling and translation).

Surprisingly little is known about maximizing the
area of overlap under rigid motions and similarities.

Here, we analyze a probabilistic algorithm that ap-
proximates the maximal area of overlap under trans-
lations and rigid motions. Given an allowable error ε
and a desired probability of success p, we show bounds
on the required number of random experiments, guar-
anteeing that the absolute difference between approx-
imation and optimum is at most ε with probability at
least p.

This algorithm is a special case of a probabilis-
tic algorithmic scheme for approximating an optimal
match of compact sets under a subgroup of affine
transformations. Alt and Scharf [4] analyzed an
instance of this algorithmic scheme that compares
polygonal curves under translations, rigid motions,
and similarities.

2 The algorithm

The idea of the algorithm is to draw random points
from the shapes, to compute a transformation that
maps the points onto each other, and to keep this
transformation, called a “vote”, in mind. This is re-
peated very often; in each step, we grow our collection
of “votes” by one. Clusters of “votes” indicate trans-
formations that map large parts of the shapes onto
each other. The parameter δ adjusts the clustering
size. Now we state the algorithm for translations.

Given: shapes A and B, integer n, positive real δ.

1. Do the following experiment n times:
Draw uniformly distributed random points a ∈
A and b ∈ B. Give one “vote” to the unique
translation that maps a onto b.

2. Determine and return one of the transla-
tions whose δ-neighborhood obtained the most
“votes”.

The term δ-neighborhood refers to the maximum
norm; we identify each translation with its translation
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vector and equip the translation space R2 with the
maximum norm.

The algorithm captures the intuitive notion of
matching. Translations that many pairs of points vote
for should be “good” translations since many points
from A are mapped onto points from B. Figure 1
illustrates this idea.

B

F
A

a

b

tt

t(A)

Figure 1: We compare two copies of a square un-
der translations. The area of overlap of t(A) and B
corresponds to the chance of choosing a point pair
(x, y) ∈ A×B such that y − x = t.

Now we explain the algorithm for rigid motions.
The space of rigid motions R is given as [−π, π)×R2,
equipped with the maximum norm. A point (α, t) ∈ R
denotes the rigid motion

x 7→ Mαx + t, Mα =
(

cos α − sinα
sinα cos α

)
.

For matching under rigid motions, we draw in each
step uniformly distributed an angle α and random
points a ∈ A and b ∈ B. We give one “vote” to the
unique rigid motion with counterclockwise rotation
angle α that maps a onto b, namely

x 7→ Mαx + (b−Mαa).

When speaking of transformations, we refer to trans-
lations and rigid motions.

The algorithm does not require the shapes to be
polygons; it works for measurable sets in R2, pro-
vided there is a method to draw uniformly distributed
random points from them and the density function
is Lipschitz continuous (see Section 4.3). The latter
is fulfilled, for example, if the shapes’ boundaries are
unions of piecewise differentiable simple closed curves.
The algorithm can be directly applied on bitmap data
as well.

3 Main result

We study the transformation space with the proba-
bility distribution that is implicitly given by the ran-
dom experiment and the fact that we draw the ran-
dom points from the shapes in a uniformly distributed
way.

The distribution of “votes” in the transformation
space approximates the probability distribution that
results from the experiment; the fraction of “votes”
that fall in a set approximates its probability. The
output of the algorithm is a transformation t whose δ-
neighborhood has approximately highest probability.

The probability Pr of an event E and the
density function g are by definition related by
Pr(E) =

∫
E

g(s)ds. If the density function is uni-
formly continuous and δ is small enough, the trans-
formations whose δ-neighborhood have highest prob-
ability and the transformations at which the density
function is maximal are the same. Then, the output
is a transformation t at which the density function is
close to the maximum with high probability.

It turns out that, in our case, the density function
is the function mapping a transformation vector to
the area of overlap of the transformed shape A and B
divided by a constant.

Let µ be the Lebesgue measure on R2, which for
polygons equals the area. We always assume the
shapes not to be degenerate.

Lemma 1 The density function of the probability
distribution on the translation space that results from
the experiment is given by

f(t) =
µ(t(A) ∩B)
µ(A) µ(B)

.

In the case of rigid motions, the density function on R
is given by

g(r) =
µ(r(A) ∩B)

2π µ(A) µ(B)
.

The main result is the following approximation theo-
rem, which states that, for each allowable error ε and
each desired probability of success p, there is a num-
ber of experiments N guaranteeing approximation of
the maximal area of overlap with error at most ε and
with probability at least p.

Theorem 2 Let t∗ be a transformation that is out-
put of the algorithm (described in Section 2) and topt

a transformation that maximizes the area of overlap
of A and B, when applied to A. Let ε > 0 and p < 1.
There are a positive real δ = O(ε) and an integer N
such that with probability at least p

|µ(t∗(A) ∩B)− µ(topt(A) ∩B)| < ε

if N is the number of performed random experiments.
In the case of translations,

N = O(c/ε6 × log(c(p− 1)/ε6)).

In the case of rigid motions,

N = O(C/ε8 × log(C(p− 1)/ε8)).
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where c = µ(A)2µ(B)2∆4, C = µ(A)2µ(B)2∆6D6,
∆ is the maximum of the boundary lengths of A and
B, and D is the maximum of the diameters of A
and B.

A sketch of the proof is given in Section 4.4.
In the case of polygons, after triangulation, we can

draw random points in logarithmic time. The ar-
rangement of δ-spheres whose center is a “vote” can
be built and traversed within O(N2) and O(N3), re-
spectively. The runtime of the algorithm is bounded
by O(N2 + N log n + n log n) for translations and by
O(N3+N log n+n log n) for rigid motions, if N is the
required number of experiments and n is total num-
ber of vertices of the polygons. In contrast to all other
known approaches, the runtime does not depend sig-
nificantly on the number of vertices.

4 Analysis of the algorithm

For a transformation t, let Bδ(t) be the δ-
neighborhood of t in the maximum norm. Recall that
Bδ(t) is two-dimensional in the case of translations
and three-dimensional in the case of rigid motions.
Denote by Xδ

n(t) the fraction of “votes” that lies δ-
close to t after n experiments. Intuitively, it is not sur-
prising that the following convergence relations hold

Xδ
n(t) n→∞

−→ Pr(Bδ(t)) δ→0
−→ µ(Bδ(t)) g(t),

where the first convergence is in probability.

4.1 Estimating the probability of a fixed δ-ball

The estimate Xδ
n(t) is called naive estimator in the

theory of density estimation [9]. The next lemma
states that for each transformation t the estimate
Xδ

n(t) is close to Pr(Bδ(t)) with high probability; it
can be proven by using the Chernoff bound, as stated
in [7].

Lemma 3 For each transformation t and for all
0 < ε < 1 the following holds

Pr(|Xδ
n(t)− Pr(Bδ(t))| > ε) < 2e−

ε2n
2 .

Later, we will have to show that the output of the al-
gorithm is a transformation that approximately max-
imizes Pr(Bδ(t)). The latter is not an obvious corol-
lary of Lemma 3 since the output transformation t is
a random vector depending on the sequence of exper-
iments.

4.2 Density function

In this section we show the proof of Lemma 1 for rigid
motions; the proof for translations is a simpler version
of it.

We will use the following special case of a transfor-
mation formula for density functions of random vari-
ables, which can be found in introductory books about
probability theory.

Theorem 4 Let X : Rn → Rn be a random variable
with density function fX and h : Rn → Rn, h : x 7→
Mx a linear map with det(M) 6= 0. Then h◦X has the
density function fh◦X(y) = fX(M−1y) |det(M−1)|.

Proof. (of Lemma 1) Our random experiment con-
sists in drawing uniformly distributed points from
Ω = I ×A×B where I = [−π, π). We are interested
in the density function fX of the random variable

X : Ω → R, X : (α, a, b) 7→ (α, b−Mαa).

Drawing the counterclockwise rotation angle uni-
formly distributed in I corresponds to the random
variable idI with density function fI(α) = 1

2π .
Determining the translation vector t depends on the

rotation angle α. First, we compute the density func-
tion fα of the random variable Xα that is defined as
follows:

Xα : A×B → R2, (a, b) 7→ b−Mαa.

Understanding fα as conditional density fX(α, ·) on
R2 gives then

fX(α, t) = fI(α) fα(t).

Therefore it suffices to compute fα.
The function h : R4 → R4, h : (a, b) 7→ (a, b−Mαa)

is a linear map with determinant 1. Let π : R4 → R2

be the projection on the third and forth coordinate,
then Xα = π ◦ h ◦ idA×B . For a set E ⊂ X,
let χE : X → {0, 1} be its characteristic function
that is one iff x ∈ E. We know fidA×B

(a, b) =
χA(a)χB(b)/(µ(A)µ(B)). Using Theorem 4, we get

fh◦idA×B
(a, b) = χA∩(M−α(B−b))(a)/(µ(A)µ(B)).

Now we can compute fα, which proves the theorem:

fα(t) =
∫

A

fh◦idA×B
(a, t)da

= µ((MαA + t) ∩B)/(µ(A)µ(B)).

�

4.3 Lipschitz continuity of the density function

A function f from a metric space M to R is called
Lipschitz continuous if there is a constant L such
that for all x, y ∈ M holds that ‖x − y‖ < δ implies
|f(x)− f(y)| < Lδ.

Denote by µδ the Lebesgue measure of the δ-
neighborhood of a transformation t in the metric in-
duced by the maximum norm. The number µδ does
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not depend on t since the Lebesgue measure is in-
variant under translations and rotations. For transla-
tions, µδ = 4δ2 and for rigid motions, µδ = 8δ3. We
are interested in the density functions to be Lipschitz
continuous because then holds

|Pr(Bδ(t))− µδ f(t)| ≤ Lµδδ.

Translations. Let ∆A,B be the sum of the bound-
ary lengths of A and B.

It is easy to show, that for the density function f on
the translation space,

√
2∆A,B/(µ(A)µ(B)) is a Lip-

schitz constant. Observe that the constant depends
heavily on the shapes.

Rigid motions. Let DB be the minimum radius
of a ball around the origin that contains B and DA

the analogue for A. Standard geometric arguments
show that for the density function g on the space of
rigid motions, (2DB + DA)∆A,B/(2πµ(A)µ(B)) is a
Lipschitz constant.

4.4 Proof sketch of the main result

We have already seen that for fixed t

Xδ
n(t)

n→∞
−→

in prob.
Pr(Bδ(t)) δ→0

−→ µδ g(t).

Obviously, two errors are involved in the approxima-
tion process. One we call the sampling error; it be-
comes smaller if the number of experiments increases
and can be bounded by the Chernoff inequality. The
other we call the smoothing error; it becomes smaller
if δ decreases and can be bounded by the Lipschitz
continuity of the density function. Instead of smooth-
ing, we could discretize the shapes and would end up
with a discretization error added to the sampling er-
ror. This would simplify the analysis a little but could
not be generalized so nicely to other transformation
groups.

Now we need to analyze what happens if the trans-
formation vector is determined by the sequence of
random experiments, namely the vector whose δ-
neighborhood obtains the most “votes”, and thus is a
random vector itself.

The output of the algorithm can be modeled as ran-
dom variable

Zδ
n = max

t∈R2
Xδ

n(t).

Let S = (s1, . . . , sn) be a sequence of trans-
formations from the random experiments. Con-
sider the arrangement induced by the boundaries of
Bδ(s1), . . . , Bδ(sn), which are the δ-spheres of the
points in S. The depth of a cell is defined as the num-
ber of Bδ(si) it is contained in. The candidates for the
output of the algorithm are the transformations cor-
responding to the deepest cells in this arrangement.
A transformation t lies in the intersection of k of the
neighborhoods if and only if its neighborhood contains
k “votes”.

The next lemma can be proven using an idea of [7].

Lemma 5 Let V be a set of points such that V con-
tains for each cell of the arrangement induced by the
δ-spheres with centers in S one point of its lowest-
dimensional face. There is such a V that contains
at most n2 points in the case of translations and n3

in the case of rigid motions. For each ε > 0 and all
n ≥ 6

ε + 2, it holds that

Pr(∃t ∈ V : |Xδ
n(t)− Pr(Bδ(t))| > ε)

is less than 2n2e−ε2(n−2)/8 in the case of translations
and less than 2n3e−ε2(n−3)/16 in the case of rigid mo-
tions.

Using Lemma 5 and the Lipschitz continuity of the
density functions, the main result can be proven.

We note that the proof provides explicit bounds
for the required number of experiments to ensure ap-
proximation with error at most ε with probability at
most p.
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