Collection of Abstracts

supported by
%I INRIA

Nancy-Université

)

! lorraine

X conseil régional

DRT

Collection of abstracts of the

24t* European Workshop on Computational Geometry
LORIA, Nancy, France

March 18-20, 2008

For information about obtaining copies of this volume, contact

Sylvain Petitjean
LORIA

Campus scientifique

BP 239

54506 Vandceuvre cedex
France

Sylvain.Petitjean@loria.fr

Cover art by Craig S. Kaplan, University of Waterloo.
Panoramic picture of Place Stanislas by Emmanuel Faivre.
Cover design by Sophie Nertomb and Sylvain Petitjean.

Compilation copyright (©)2008 by Sylvain Petitjean.
Copyrights of individual papers retained by the authors.

http://www.cgl.uwaterloo.ca/~csk/
http://en.wikipedia.org/wiki/Place_Stanislas

EuroCG’'08, Nancy — March 18-20, 2008

Preface

The 24*" European Workshop on Computational Geomety (EuroCG’08) was held at the Lab-
oratoire Lorrain de Recherche en Informatique et ses Applications (LORIA) on March 18-20, 2008. It
was preceded by a one-day workshop entitled “CGAL Innovations and Applications: Robust Geometric
Software for Complex Shapes” held on March 17, 2008. More information about both events can be
found at http://eurocg08.loria.fr (see also http://www.eurocg.org for previous workshops).

The present collection of abstracts contains the 63 scientific contributions as well as three invited talks
presented at the workshop. It is also available electronically from the workshop’s web site at http:
//eurocg08.loria.fr/EuroCGO8Abstracts.pdf. This year’s record of 72 submissions with authors
from 22 different countries, covering a wide range of topics, shows that Computational Geometry is a
lively and still growing research field in Europe.

Following the tradition of the workshop, many contributions present ongoing research, and it is expected
that most of them will appear in a more complete version in scientific journals. Selected papers from
the workshop will be invited to a special issue of Computational Geometry: Theory and Applications.
We thank the editors-in-chief, Kurt Mehlhorn and Jorg-Riidiger Sack, for their cooperation.

We would also like to thank all the authors for submitting papers and presenting their results at the
workshop. We are especially grateful to our keynote speakers Pierre Alliez, Jean Ponce, and Fabrice
Rouillier for accepting our invitation. Special thanks go to our sub-referees and to Bettina Speckmann
for providing us with the BTEX class used to format this collection.

Finally, we are grateful to LORIA for providing the necessary infrastructure, and to our sponsors for
their support: INRIA, Université Henri Poincaré, Université Nancy 2, Institut National Polytechnique
de Lorraine, GDR Informatique Mathématique of CNRS, Communauté Urbaine du Grand Nancy,
Conseil Général de Meurthe-et-Moselle, Conseil Régional de Lorraine, Dassault Systémes and Institut
Francais du Pétrole.

Note that the next edition of EuroCG will be held in 2009 in Brussels, Belgium.

Sylvain Petitjean (Editor)

Program Committee Organizing Committee
Laurent Dupont Anne-Lise Charbonnier Sylvain Lazard (chair)
Hazel Everett Julien Demouth Luis Penaranda
Xavier Goaoc Laurent Dupont Sylvain Petitjean
Sylvain Lazard (chair) Hazel Everett Marc Pouget
Sylvain Petitjean Xavier Goaoc Mirsada Tihic

Marc Pouget

il

http://eurocg08.loria.fr
http://www.loria.fr/
http://www.cgal.org/UserWorkshop/
http://www.cgal.org/UserWorkshop/
http://eurocg08.loria.fr
http://www.eurocg.org
http://eurocg08.loria.fr/EuroCG08Abstracts.pdf
http://eurocg08.loria.fr/EuroCG08Abstracts.pdf
http://www.elsevier.com/locate/comgeo
http://www.loria.fr/
http://www.inria.fr
http://www.uhp-nancy.fr/
http://www.univ-nancy2.fr/
http://www.inpl-nancy.fr/
http://www.inpl-nancy.fr/
http://www.gdr-im.fr/
http://www.cnrs.fr/
http://www.grand-nancy.org/
http://www.cg54.fr/
http://www.lorraine.eu/
http://www.3ds.com/
http://www.ifp.fr/
http://www.ifp.fr/

24th European Workshop on Computational Geometry

iv

EuroCG’'08, Nancy — March 18-20, 2008

Table of Contents

Tuesday, March 18

9:30 - 10:30, Session 1
Delaunay Edge Flips in Dense Surface Triangulations
S.-W. Cheng and T. Dey

Decomposing Non-Convex Fat Polyhedra
M. de Berg and C. Gray

Schnyder Woods for Higher Genus Triangulated Surfaces
L. Castelli Aleardi, E. Fusy and T. Lewiner

Seed Polytopes for Incremental Approximation
O. Aichholzer, F. Aurenhammer, T. Hackl, B. Kornberger, S. Plantinga, G. Rote, A. Sturm, and
G. Vegter

10:50 - 11:50, Session 2
On the Reliability of Practical Point-in-Polygon Strategies
S. Schirra

Minimizing the Symmetric Difference Distance in Conic Spline Approximation
S. Ghosh and G. Vegter

Mixed Volume Techniques for Embeddings of Laman Graphs
R. Steffens and T. Theobald

Geometric Analysis of Algebraic Surfaces Based on Planar Arrangements
E. Berberich, M. Kerber and M. Sagraloff

12:00 - 13:00, Invited Talk 1

The Challenge of 3D Photo/Cinematography to Computational Geometry
J. Ponce

14:30 - 15:50, Session 3A

Improved Upper Bounds on the Number of Vertices of Weight < k in Particular Arrangements
of Pseudocircles
R. Ortner

Helly-Type Theorems for Approximate Covering
J. Demouth, O. Devillers, M. Glisse and X. Goaoc

Dynamic Free-Space Detection for Packing Algorithms
T. Baumann, M. Jans, E. Schomer, C. Schweikert and N. Wolpert

On Computing the Vertex Centroid of a Polytope
H. R. Tiwary

13

17

21

25

29

33

35

39

43

47

24th European Workshop on Computational Geometry

14:30 - 15:50, Session 3B

Space-Filling Curve Properties for Efficient Spatial Index Structures 51
H. Haverkort and F. van Walderveen
Optimizing Active Ranges for Consistent Dynamic Map Labeling 55
K. Been, M. Néllenburg, S.-H. Poon and A. Wolff
Order-k Triangulations of Convex Inclusion Chains in the Plane 59
W. El-Oraiby and D. Schmitt
Constructing the Segment Delaunay Triangulation by Flip 63
M. Brévilliers, N. Chevallier and D. Schmitt

16:10 - 17:30, Session 4A
Intersection Graphs of Pseudosegments and Chordal Graphs: An Application of Ramsey Theory 67
C. Dangelmayr, S. Felsner and W. T. Trotter
Augmenting the Connectivity of Planar and Geometric Graphs 71
I. Rutter and A. Wolff
Colour Patterns for Polychromatic Four-Colourings of Rectangular Subdivisions 75
H. Haverkort, M. Léffler, E. Mumford, M. O'Meara, J. Snoeyink and B. Speckmann
Polychromatic 4-Coloring of Rectangular Partitions 79
D. Dimitrov, E. Horev and R. Krakovski

16:10 - 17:30, Session 4B
Exact Implementation of Arrangements of Geodesic Arcs on the Sphere with Applications 83
E. Fogel, O. Setter and D. Halperin
Voronoi Diagram of Ellipses in CGAL 87
I. Z. Emiris, E. Tsigaridas and G. M. Tzoumas
A CGAL-Based Univariate Algebraic Kernel and Application to Arrangements 91
S. Lazard, L. Peharanda and E. Tsigaridas
Generic Implementation of a Data Structure for 3D Regular Complexes 95
A. Bru and M. Teillaud

Wednesday, March 19

0:30 - 10:30, Session 5
Online Uniformity of Integer Points on a Line 99
T. Asano
Edge-Unfolding Medial Axis Polyhedra 103
J. O'Rourke
Inducing Polygons of Line Arrangements 107
E. Mumford, L. Scharf and M. Scherfenberg
Coloring Geometric Range Spaces 111

vi

G. Aloupis, J. Cardinal, S. Collette, S. Langerman and S. Smorodinsky

EuroCG’'08, Nancy — March 18-20, 2008

10:50 - 11:50, Session 6

A Lower Bound for the Transformation of Compatible Perfect Matchings 115
A. Razen
Edge-Removal and Non-Crossing Configurations in Geometric Graphs 119

O. Aichholzer, S. Cabello, R. Fabila-Monroy, D. Flores-Pefaloza, T. Hackl, C. Huemer, F. Hur-
tado and D. R. Wood

Computing the Dilation of Edge-Augmented Graphs in Metric Spaces 123
C. Wulff-Nilsen
Approximating the Minimum Spanning Tree of Set of Points in the Hausdorff Metric 127

V. Alvarez and R. Seidel

12:00 - 13:00, Invited Talk 2

Optimization Techniques for Geometry Processing 131
P. Alliez

14:30 - 15:50, Session 7A

Geometry with Imprecise Lines 133
M. Loffler and M. van Kreveld

The Linear Parametric Geometric Uncertainty Model: Points, Lines and their Relative Positioning 137
Y. Myers and L. Joskowicz

Smoothing Imprecise 1-Dimensional Terrains 141
C. Gray, M. Loffler and R. Silveira

Noisy Bottleneck Colored Point Set Matching in 3D 145
Y. Diez and J. A. Sellarés

14:30 - 15:50, Session 7B

Pareto Envelopes in Simple Polygons 149
V. Chepoi, K. Nouioua, E. Thiel and Y. Vaxes

Shortest Inspection-Path Queries in Simple Polygons 153
C. Knauer, G. Rote and L. Schlipf

A Search for Medial Axes in Straight Skeletons 157
K. Vyatkina

On Computing Integral Minimum Link Paths in Simple Polygons 161
W. Ding

16:10 - 17:30, Session 8A

Constant-Working-Space Image Scan with a Given Angle 165
T. Asano
Consistent Digital Rays 169

J. Chun, M. Korman, M. Néllenburg and T. Tokuyama

Matching a Straight Line on a Two-Dimensional Integer Domain 173
E. Charrier and L. Buzer

Exploring Simple Triangular and Hexagonal Grid Polygons Online 177
D. Herrmann, T. Kamphans and E. Langetepe

vii

24th European Workshop on Computational Geometry

16:10 - 17:30, Session 8B

Manifold Homotopy via the Flow Complex 181
B. Sadri
Surface Deformation on a Discrete Model for a CAD System 185
|.-G. Ciuciu, F. Danesi, Y. Gardan and E. Perrin
Optimal Insertion of a Segment Highway in a City Metric 189
M. Korman and T. Tokuyama
Algorithms for Graphs of Bounded Treewidth via Orthogonal Range Searching 193
S. Cabello and C. Knauer

Thursday, March 20

0:30 - 10:30, Session 9A
A Tight Bound for the Delaunay Triangulation of Points on a Polyhedron 197
N. Amenta, D. Attali and O. Devillers
Discrete Voronoi Diagrams on Surface Triangulations and a Sampling Condition for Topological 201
Guarantee
M. Moriguchi and K. Sugihara
On the Locality of Extracting a 2-Manifold in R3 205
D. Dumitriu, S. Funke, M. Kutz and N. Milosavljevic

0:30 - 10:30, Session 9B
Arrangements on Surfaces of Genus One: Tori and Dupin Cyclides 209
E. Berberich and M. Kerber
On the Topology of Planar Algebraic Curves 213
J. Cheng, S. Lazard, L. Pefiaranda, M. Pouget, S. Lazard, F. Rouillier, E. Tsigaridas
Topological Considerations for the Incremental Computation of Voronoi Diagrams of Circular 217
Arcs
M. Held and S. Huber

10:50 - 11:50, Session 10A
The Entropic Centers of Multivariate Normal Distributions 221
F. Nielsen and R. Nock
Quantum Voronoi Diagrams 225
F. Nielsen and R. Nock
Triangulating the 3D Periodic Space 229

viii

M. Caroli, N. Kruithof and M. Teillaud

EuroCG’'08, Nancy — March 18-20, 2008

10:50 - 11:50, Session 10B

Realizability of Solids from Three Silhouettes 233
T. Ohgami and K. Sugihara

Good Visibility Maps on Polyhedral Terrains 237
N. Coll, N. Madern and J. A. Sellares

Directly Visible Pairs and lllumination by Reflections in Orthogonal Polygons 241
M. Aanjaneya, A. Bishnu and S. P. Pal

12:00 - 13:00, Invited Talk 3

Computer Algebra and Computational Geometry 245
F. Rouillier

14:30 - 15:30, Session 11

On Planar Visibility Polygon Simplification 247
A. Zarei and M. Ghodsi

The Kinetic Facility Location Problem 251
B. Degener, J. Gehweiler and C. Lammersen

Probabilistic Matching of Polygons 255
H. Alt, L. Scharf and D. Schymura

ix

24th European Workshop on Computational Geometry

EuroCG’'08, Nancy — March 18-20, 2008

Delaunay Edge Flips in Dense Surface Triangulations*

Siu-Wing Cheng'

Abstract

We study the conversion of a surface triangulation to
a subcomplex of the Delaunay triangulation with edge
flips. We show that the surface triangulations which
closely approximate a smooth surface with uniform
density can be transformed to a Delaunay triangu-
lation with a simple edge flip algorithm. The con-
dition on uniformity becomes less stringent with in-
creasing density of the triangulation. If the condition
is dropped, the output surface triangulation becomes
“almost Delaunay” instead of exactly Delaunay.

1 Introduction

The importance of computing Delaunay triangula-
tions in applications of science and engineering can-
not be overemphasized. Among the different Delau-
nay triangulation algorithms, flip based algorithms
are most popular and perhaps the most dominant ap-
proach in practice. The sheer elegance and simplicity
of this approach make it attractive to implement.

In R2, if the circumcircle of a triangle ¢ contains a
vertex of another triangle ¢ sharing an edge e with it,
flipping e means replacing e with the other diagonal
edge contained in the union of t and #’. A well-known
elegant result is that this process terminates and pro-
duces the Delaunay triangulation. In higher dimen-
sions, the edge flips can be naturally extended to bi-
stellar flips. Edelsbrunner and Shah [8] showed that
bi-stellar flips can be used with incremental point in-
sertion to construct weighted Delaunay triangulations
in three and higher dimensions.

Given the increasing demand of computing surface
triangulations that are sub-complexes of Delaunay tri-
angulations [1, 6, 7], it is natural to ask if a surface
triangulation can be converted to a Delaunay one by
edge flips and, if so, under what conditions. Once the
surface triangulation is made Delaunay, a number of
tools that exploit Delaunay properties can be used for
further processing.

We show that a dense triangulation can be flipped

*Research supported by NSF grants CCF-0430735 and
CCF-0635008 and Research Grant Council, Hong Kong, China
(612107).

fDepartment of Computer Science and Engineering,
HKUST, Clear Water Bay, Hong Kong, scheng@cse.ust.hk

fDepartment of Computer Science and Engineering,
The Ohio State University, Columbus, OH 43210, USA,
tamaldey@cse.ohio-state.edu

Tamal K. Dey*

to a Delaunay triangulation if the density is uniform
in some sense. The practical implication of this result
is that reasonably dense triangulations can be con-
verted to Delaunay triangulations with a simple edge
flip algorithm. Furthermore, the results in this paper
have been used for a recent algorithm on maintaining
deforming meshes with provable guarantees [5]. What
happens if we do not have the uniformity condition?
We show that the flip algorithm still terminates but
the output surface may not be Delaunay. Nonetheless,
this surface is “almost Delaunay” in the sense that
the diametric ball of each triangle shrunk by a small
amount remains empty. These approximate Delaunay
triangulations may find applications where exact De-
launay triangulations are not required; for example,
see the work by Bandyopadhyay and Snoeyink [3].

2 Preliminaries

Surface. Let ¥ C R? be a smooth compact surface
without boundary. The medial azxis is the set of cen-
ters of all maximally empty balls. The reach 7y of X is
the infimum over Euclidean distances of all points in
¥ to its medial axis. Let n, denote the outward unit
normal of ¥ at a point x € 3.

Triangulation. We say T is a triangulation of a sur-
face X if vertices of T lie in 3 and its underlying space
|T| is homeomorphic to X. For any triangle t € T', n
denotes the outward unit normal of ¢.

The triangulation 7" has a consistent orientation
if for any triangle ¢ € T and for any vertex q of ¢,
Zng,ng < %

If a triangle ¢ € T shares an edge pq with a triangle
pgs, we call s a neighbor vertex of t. Let p(t) denote
the circumradius of ¢. The ratio of p(t) to the shortest
edge length of ¢ is called the radius-edge ratio. We call
the maximum radius-edge ratio of triangles in T the
radius-edge ratio of 7.

We call T' e-dense for some ¢ < 1 if p(t) < ev for
each triangle t € T and T has a consistent orientation.
Also, if the distance between any two vertices in T is
at least dey for some 6 < 1, we call T' (e, §)-dense.

Stab and flip. Let B(c,) denote the ball with center
c and radius r. A circumscribing ball of a triangle ¢
is any ball that has the vertices of ¢ on its boundary.
The diametric ball is the smallest such ball and we
denote it by D;.

24th European Workshop on Computational Geometry

A vertex v of T' stabs a ball B if v lies inside B. A
triangle t € T is stabbed if D; is stabbed by a vertex
of T. The triangle t is locally stabbed if the stabbing
vertex is one of the three neighbor vertices of .

The common edge pq between two triangles pgr and
pgs in T is flippable if pgr is stabbed by s (i.e., locally
stabbed). We will show later that this definition is
symmetric. Flipping pq means replacing pgr and pgs
by the triangles prs and grs. If the new triangulation
is T" we write T 24 1.

Power distance. Given a point = and a ball B(c,r),
the power distance pow(x, B(c,7)) is ||c — x||? — r2.
Given two balls By and Bs, their bisector C(By, Bs)
consists of points at equal power distances from B;
and Bg. It turns out that C(Bi, Bg) is a plane. If
B; and B intersect, C'(By, Bs2) contains the circle

0B1 N0Bs.

Background results. The following previous results
on normal approximations will be useful.

Lemma 1 ([2, 4]) For any two points x and y in &
such that ||z —y| < ey for somee < %, /n,,n, < £

1—¢
and /ng, (y —) > arccos(5).

Combining Lemmas 1 and a result in [7], we get:

Corollary 2 Let T be an e-dense triangulation for
some ¢ < 0.1. For any vertex q of a triangle t € T,
Zng,ng < Te.

Define the dihedral angle between two adjacent tri-
angles pgr and qrs as Znpgr, Ngprs. Corollary 2 implies
that:

Corollary 3 Let T be an e-dense triangulation for
some ¢ < 0.1. For any two adjacent triangles pqr and
grs inT, /Npgr,Ngrs < 14e.

3 Flip algorithm

The flip algorithm that we consider is very simple: as
long as there is a flippable edge, flip it.

MeshFlip(T)

1. If there is a flippable edge e € T then
flip e else output T’

2. T :=T where T 5 T’; go to step 1.

There are two issues. First, under what condition
does MeshFlip terminate? Second, what triangulation
does MeshFlip produce? In this section, we show that
MeshFlip terminates if 7" is an e-dense triangulation.
We address the second issue later.

The following lemma establishes the symmetry in
local stabbing.

Lemma 4 Let pqr and pqs be two adjacent triangles
such that s stabs pqr. If Zn,g,, npes < 5, v stabs pgs.

Proof. It can be shown that the bisector Cq sep-
arates r and s if pgr and pgs make an angle larger
than 5 or equivalently /n,q.,np.s < 5. Let Cf be
the half-space supported by C}, and containing s. De-
fine €, similarly as the half-space not containing s.
Clearly, Dpgs NCf, C DpgrNCf, as s is on the bound-
ary of Dygs. So Dpgr N Cpy C Dpgs N Cpp. But Cp
contains r which is on the boundary of D,q. So r is
inside Dpgs. Il

Next, we show that an edge flip produces two tri-
angles with a smaller maximum circumradius.

Lemma 5 Let T be a triangulation with dihedral an-
gles less than 7. Let pqr,pgs € T be triangles such
that s stabs pgr. Then p(qrs) < max{p(pqr), p(pqgs)}

and p(prs) < max{p(pqr). p(pqs)}.

Proof. We prove the lemma for p(¢grs). The analysis
for p(prs) is similar. Consider the bisectors Cy, =
C(Dypgr, Dgrs) and Cqs = C(Dpgs, Dyrs). Let Cf,. be
the half-space supported by Cy, containing s. Let C’;;
be the half-space supported by Cys containing p.

By assumption the dihedral angle between pgr and
pgs is at most 7. Then, Lemma 4 applies to claim
that r stabs pgs.

Clearly, the center of Dg, lies in the union C;;, U
CJ,. First, assume that C contains the center of
Dgyrs. Clearly, Dyps N CJ. C Dpgr N CJy as s is con-
tained in D4 by the assumption that s stabs pgr.
This implies that Dpg. N C[; contains the center of
Dgrs. So Dgyps is smaller than Dy, establishing the
claim. If C;S contains the center of Dg,,, the above
argument can be repeated by replacing C,f. with C;

as
Dpgr with Dy, and s with 7. O

Since the maximum circumradius decreases mono-
tonically by the edge flips, the triangles can still be
oriented consistently with ¥ and a homeomorphism
using closest point map [7] can be established between
Y. and the new triangulation. Hence, the new trian-
gulation satisfies the conditions for being e-dense.

Corollary 6 If T 5 T’ for a flippable edge e and T
is e-dense for some ¢ < 1, then T" is also e-dense.

Lemma 7 If T is e-dense for some ¢ < 0.1, then
MeshFlip(T) terminates.

Proof. Let Ry, Rs, .., R, be the decreasing sequence
of the radii of the diametric balls of the triangles at
any instant of the flip process. First of all, an edge flip
preserves the number of triangles in the triangulation.
An edge flip may change the entries in this sequence

EuroCG’'08, Nancy — March 18-20, 2008

of radii, but not its length. We claim that after a flip
the new radii sequence R}, RY, ..., R}, decreases lexico-
graphically, that is, there is a j such that R; = R], for
all1 <i<jand Rj1; > R;H. Let j + 1 be the first
index where R;j 1 # R’ . Since each flip maintains
e-density (Corollary 6), the dihedral angles between
adjacent triangles remain at most 14e by Corollary 3.
This angle is less than 7 for ¢ < 0.1. One can ap-
ply Lemma 5 to each intermediate triangulation. By
this lemma, the maximum of the two radii before a
flip decreases after the flip. It means that the trian-
gle corresponding to the radius ;41 has been flipped
and its place has been taken by a triangle whose cir-
cumradius is smaller than R;;;. So the new radii
sequence is smaller lexicographically. It follows that
the same triangulation cannot appear twice during
the flip sequence. As there are finitely many possible
triangulations, MeshFlip must terminate. O

4 Uniform dense triangulation

We prove that MeshFlip can turn an (e, §)-dense trian-
gulation to a Gabriel triangulation where no diametric
ball of any triangle is stabbed.

Lemma 8 Assume that a vertex v stabs a triangle
pqr in an e-dense triangulation for some € < 0.1. Let
v be the point in pqr closest to v. The angle between
v and the support line of n,g, is at least § — 26¢.

Proof. Let T be an e-dense triangulation of a surface
Y with reach 7. Since v stabs Dpg,, we have |p —
v|| < 2ev which implies that ||v — 9] < 2ey. Walk
from v towards v and let abc be the first triangle in
T that we hit. Let y be the point in abc that we
hit. (The triangle abc could possibly be pgr.) We
have [[v — y| < |lv — ©]] < 2ev. By the e-density
assumption, we have [|a — y|| < 2ey. It follows that
la=v| < [la—yll+ [[v—y| <4evy. Then, Zn,,n, <
8¢ by Lemma 1, and Zngp.,n, < 7¢ by Corollary 2.
Therefore, Zn,,ngp. < 8 + 7¢ = 15¢.

Let £ be an oriented line through v and v such that
¢ enters the polyhedron bounded by T" at y € abc and
then exits at v. Assume to the contrary that ¢ makes
an angle less than § —26¢ with ny,,.. Since ||p—v]| <
2¢7, Lemma 1 and Corollary 2 imply that Zn,,, nye, <
4e+7e = 11e. Thus, £ makes an angle less than 5 —15¢
with n,. Since Zn,,ng,. < 15¢, £ must make an angle
less than 5 with ngp.. Because { enters at y and then
exits at v, Zn,, Ny is greater than m — (5 — 15¢) —
5 = 1b¢, contradicting the previous deduction that
1y, ngp. < 15¢. O

Lemma 9 Assume that a vertex v stabs a triangle
pqr in an e-dense triangulation for some ¢ < 0.1.
There exists an edge, say pq, such that r and v are
separated by the plane H,, that contains pq and is
perpendicular to pqr.

Proof. By Lemma 8, v makes a positive angle with
the line of np,,. It follows that v does not project
orthogonally onto a point inside pgr. Hence, there
exists an edge pq such that H,, separates r and v. [

Figure 1: (left) : triangle pgr is stabbed by v. Both v
and s lie on the same side of Hp, and Cp,. The case
of v being in the thin wedge between H,, and Cp,
is eliminated if pgr has bounded radius-edge ratio.
(middle) : the worst case for angle Zupg. (right): the
planes of Hp, and vpg make large angle ensuring v
and s are on the same side of Cp,.

Lemma 10 Assume that a vertex v stabs a tri-
angle pgr in an e-dense triangulation with radius-
edge ratio a < m If e < &5, pqr is locally
stabbed or v stabs a triangle t such that pow (v, D;) <
pow (v, Dpgr).

Proof. By Lemma 9, there is a plane H,, through
the edge pg and perpendicular to pgr such that Hp,
separates r and v. Let pgs be the other triangle inci-
dent to pq. If s lies inside Dygr, pgr is locally stabbed
and we are done. So assume that s does not lie inside
Dpgr. By Corollary 3, Zn,qr, s < 14, which is less
than 7 for e < 7;. Therefore, Hy, separates r and
s too. It means that v and s lie on the same side of
Hpg; see Figure 1.

Let Cpq denote the bisector C(Dpgr, Dpgs). Let Cf,
be the half-space bound by C),, containing s. It fol-
lows that Dpgr N Cjl. C Dpgs NGl as s lies outside
Dyqr- Suppose that Cf, contains v. Then, v lies inside
D,gs as v lies inside Dyq,. This immediately implies
that v stabs pgs and pow(v, Dpgs) < pow (v, Dpgr).
Therefore, the lemma holds if we can show that C;J
contains v. This is exactly where we need bounded
aspect ratios for triangles.

Let 5 and v be the orthogonal projections of s and v
respectively onto the line of pg. Consider the following
facts.

(i) The acute angle between s5 and npg is equal
to § — Znygr, Nygs, which is at least 5 — 14e by

2
Corollary 3.

(ii) The angle between Hp, and C), cannot be larger
than Znyq., npes which is at most 14e.

24th European Workshop on Computational Geometry

(i) We prove that Znpg,v0 > Zhpg,Dyes >
LHpq, Cpq.

These facts imply that v and s on the same side of
Cpq as Hpq. Therefore, it suffices to prove (iii).

First, observe that if ¥ is the closest point of v in
pq, we have by Lemma 8

T
Mpgr, VU 2> 5~ 26e > 14e > Inpgr, Npys.

So, assume the contrary. In that case, the closest
point of v in pq is either p or ¢. Assume it to be p.
Since v lies outside pq, the angle Zvpq is obtuse. We
claim that this angle cannot be arbitrarily close to
7. In fact, this angle cannot be more than the max-
imum obtuse angle pg makes with the tangent plane
of D,qr at p. Simple calculation (Figure 1(middle))
shows that this angle is 5 + arccos ||p — ql|/2p(pgr)
giving
m 1
/vpq < — + arccos —.
2 2a

Since Dpgr contains v, ||v — p|| < 2ey. By Lemma 1,
Zny,,vp > arccose. Applying Corollary 2, we get

Mpgr, VP 2> LNy, 0P — LNpgr, Ny > ArCCOS € — TE.

Let zp || vt (Figure 1(right)). Then, Zvv,vp =

Zopz = Zvpq — § < arccos % One has Zn, g, v0 >

LNpgr, VP — L0V, Up = LNpgr, VP — LUPZ > AICCOSE —
s

1 ™ 1
Te — arccos 5o > 5 — 10e — arccos 5 for ¢ < 7

We are now left to show that § — 10¢ — arccos %ia >
anqr,ripqs which requires 7 — 24e > arccos 5. or
a < 55552+ This is precisely the condition required

by the lemma. |

We are ready to prove the main results of this sec-
tion.

Theorem 11 For any ¢ < 7; and § = 2sin24¢, an

(¢, 6)-dense triangulation has a stabbed triangle if and
only if it has a locally stabbed triangle.

Proof. The ‘if’ part is obvious. Consider the ‘only
if’ part. Let pgr be stabbed by v. As § = 2sin 24¢,
the radius-edge ratio is at most 1/(2sin24e). By
Lemma 10, pgr is locally stabbed or v stabs a triangle
t where pow (v, Dy) < pow(v, Dpgr). In the latter case,
repeat the argument with t. We must reach a locally
stabbed triangle since the power distance of v from
the diametric balls cannot decrease indefinitely. O

Theorem 12 For any ¢ < 75 and § = 2sin24e, an
(¢, 6)-dense triangulation can be flipped to a Gabriel
triangulation.

Proof. The maximum circumradius decreases after
each flip and the nearest neighbor distance cannot be
decreased by flips. So MeshFlip maintains the (g, d)-
dense conditions after each flip. By Theorem 11, all
triangles are Gabriel upon termination. O

5 Dense triangulations

We also study the effect of MeshFlip on an e-dense
triangulation T without the uniformity condition.

Take a triangle t € T'. Let ¢ be its circumcenter. A
(B-ball of t is a circumscribing ball centered at ¢+ On;.
The triangle t is B-stabbed if a vertex stabs the 3-ball
and (—f)-ball of t. We call ¢ locally (-stabbed if the
stabbing vertex is one of the three neighbor vertices
of t.

If we decrease the radius of D; by (3, we get a
smaller concentric ball which we denote by Dt'@ . We
call T B-Gabriel if for each triangle ¢t € T, Dtﬁ is not
stabbed by any vertex of T.

Theorem 13 For any € < 0.1, an e-dense triangula-
tion of a surface with reach v contains a -stabbed tri-
angle only if it contains a locally (3 — 88&2~y)-stabbed
triangle.

By choosing 3 = 8827, Theorem 13 implies that no
triangle is 88¢2+-stabbed at the termination of Mesh-
Flip. So the output triangulation is 88¢2~-Gabriel.

Theorem 14 For any € < 0.1, an e-dense triangu-
lation of a surface with reach v can be flipped to a
88c2y-Gabriel triangulation.

The omitted details can be found in the full version
available at the authors’ webpages.

References

[1] N. Amenta and M. Bern. Surface reconstruction by
Voronoi filtering. Discr. Comput. Geom., 22 (1999),
481-504.

[2] N. Amenta and T. K. Dey. Normal variation
for adaptive feature size. http://www.cse.ohio-
state.edu/~tamaldey/paper/norvar/norvar.pdf.

[3] D. Bandyopadhyay and J. Snoeyink. Almost-Delaunay
simplices : nearest neighbor relations for imprecise
points. Proc. 15th ACM-SIAM Sympos. Disc. Alg.,
2004, 410-419.

[4] H.-L. Cheng, T. K. Dey, H. Edelsbrunner and J.
Sullivan. Dynamic skin triangulation. Discr. Comput.
Geom. , 25 (2001), 525-568.

[6] S.-W. Cheng and T. K. Dey. Maintaining deforming
surface meshes. Proc. 19th ACM-SIAM Sympos. Discr.
Alg., 2008, 112-121.

[6] S-W. Cheng, T. K. Dey, E. A. Ramos, and T.
Ray. Sampling and meshing a surface with guaran-
teed topology and geometry. SIAM J. Computing, 37
(2007), 1199-1227.

[7] T. K. Dey. Curve and surface reconstruction : Algo-
rithms with mathematical analysis. Cambridge Uni-
versity Press, New York, 2006.

[8] H. Edelsbrunner and N. R. Shah. Incremental topo-

logical flipping works for regular triangulations. Algo-
rithmica, 15 (1996), 223-241.

EuroCG’'08, Nancy — March 18-20, 2008

Decomposing Non-Convex Fat Polyhedra

Mark de Berg*

Abstract

We show that any locally-fat polyhedron with n ver-
tices and convex fat faces can be decomposed into
O(n) tetrahedra. We also show that the additional
restriction that the faces are fat is necessary: there
are fat polyhedra without fat faces that require (n?)
pieces in any convex decomposition. Finally, we show
that if we want the tetrahedra in the decomposition
to be fat themselves, then the number of tetrahedra
cannot be bounded as a function of n.

1 Introduction

Polyhedra and their planar equivalent, polygons, play
an important role in many geometric problems. From
an algorithmic point of view, however, general poly-
hedra are unwieldy to handle directly: several algo-
rithms can only handle convex polyhedra, preferably
of constant complexity. Hence, there has been exten-
sive research into decomposing polyhedra into tetra-
hedra or other constant-complexity convex pieces.
The two main issues in developing decomposition al-
gorithms are (i) to keep the number of pieces in the
decomposition small, and (ii) to compute the decom-
position quickly.

In the planar setting the number of pieces is, in
fact, not an issue if the pieces should be triangles:
any polygon admits a triangulation, and any triangu-
lation of a polygon with n vertices has n — 2 triangles.
Hence, research focused on developing fast triangula-
tion algorithms, culminating in Chazelle’s linear-time
triangulation algorithm [7]. An extensive survey of
algorithms for decomposing polygons and their appli-
cations is given by Keil [10].

For 3-dimensional polyhedra, however, the situa-
tion is much less rosy. First of all, not every non-
convex polyhedron admits a tetrahedralization: there
are polyhedra that cannot be decomposed into tetra-
hedra without using Steiner points. Moreover, decid-
ing whether a polyhedron admits a tetrahedralization
without Steiner points is NP-complete [12]. Thus we
have to settle for decompositions using Steiner points.
Chazelle [6] has shown that any polyhedron with n
vertices can be decomposed into O(n?) tetrahedra,

*Department of Computing Science, TU Eindhoven.
P.O. Box 513, 5600 MB Eindhoven, the Netherlands. Email:
{mdberg,cgray }@win.tue.nl. This research was supported by
the Netherlands’ Organisation for Scientific Research (NWO)
under project no. 639.023.301.

Chris Gray™*

and that this is tight in the worst case: there are
polyhedra with n vertices for which any decomposi-
tion uses 2(n?) tetrahedra. (In fact, the result is even
stronger: any convex decomposition—a convex de-
composition is a decomposition into convex pieces—
uses 2(n?) pieces, even if one allows pieces of non-
constant complexity.) Since the complexity of algo-
rithms that need a decomposition depends on the
number of tetrahedra in the decomposition, this is
rather disappointing. Chazelle’s polyhedron is quite
special, however, and one may hope that polyhedra
arising in practical applications are easier to handle.
This is the topic of our paper: are there types of
polyhedra that can be decomposed into fewer than
a quadratic number of pieces? Erickson [9] has an-
swered this question affirmatively for so-called local
polyhedra by showing that any such 3-dimensional
polyhedron can be decomposed into O(nlogn) tetra-
hedra. We consider fat polyhedra.

Types of fatness. Before we can state our results,
we first need to give the definition of fatness that we
use. In the study of realistic input models [5], many
definitions for fatness have been proposed. When the
input is convex many of these definitions are basically
equivalent. When the input is non-convex, however,
this is not the case: polyhedra that are fat under one
definition may not be fat under a different definition.
Therefore we study two different definitions.

The first is a generalization of the («, 3)-covered ob-
jects introduced by Efrat [8] to 3-dimensional objects.
A simply-connected object P in R3 is (a, 3)-covered
if the following condition is satisfied: for each point
p € OP there is a simplex T' with one vertex at p that
is fully inside P such that T is a-fat and has diameter
B - diam(P). Here a tetrahedron is called a-fat if all
its solid angles are at least «, and diam(P) denotes
the diameter of P.

The second definition that we use was introduced
by De Berg [2]. For an object o and a ball B whose
center lies inside o, we define B M o to be the con-
nected component of B N o that contains the center
of B. An object o is locally-y-fat if for every ball B
that has its center inside o and which does not com-
pletely contain o, we have vol(B M o) > v - vol(B),
where vol(-) denotes the volume of an object. Note
that if we replace M with N—that is, we do not restrict
the intersection to the component containing the cen-
ter of B—then we get the definition of fat polyhedra

24th European Workshop on Computational Geometry

proposed by Van der Stappen [13]. Also note that
for convex objects the two definitions are equivalent.
Hence, for convex objects we can omit the adjective
“locally” from the terminology.

As observed by De Berg [2] the class of locally-v-fat
objects is strictly more general than the class of («a, 3)-
covered objects: any object that is (a, 3)-covered for
some constants «, § is also locally-y-fat for some con-
stant v (depending on «,), but the reverse is not
true.

Our results. First of all we study the decomposition
of (a, B)-covered polyhedra and locally-y-fat polyhe-
dra into tetrahedra. By modifying Chazelle’s polyhe-
dron so that it becomes («, 3)-covered, we obtain the
following negative result.

e There are («, §)-covered (and, hence, locally fat)
polyhedra with n vertices such that any decom-
position into convex pieces uses £2(n?) pieces.

Next we restrict the class of fat polyhedra further
by requiring that their faces should be convex and
fat,when considered as planar polygons in the plane
containing them. For this class of polyhedra we ob-
tain a positive result.

e Any locally-fat polyhedron (and, hence, any
(a, B)-covered polyhedron) with n vertices whose
faces are convex and fat can be decomposed into
O(n) tetrahedra in O(nlogn) time.

Several applications that need a decomposition or cov-
ering of a polyhedron into tetrahedra would profit if
the tetrahedra were fat. For instance, it would make
results on ray shooting in fat convex polyhedra [1, 4]
directly applicable. In the plane any fat polygon can
be covered by O(n) fat triangles, as shown by Van
Kreveld [11] (for a slightly different definition of fat-
ness). We show that a similar result is, unfortunately,
not possible in 3-dimensional space.

e There are («, 8)-covered (and, hence, locally-fat)
polyhedra with n vertices and convex fat faces
such that the number of tetrahedra in any cov-
ering that only uses fat tetrahedra cannot be
bounded as a function of n.

2 Decomposition into tetrahedra

In this section we discuss decomposing fat non-convex
objects into tetrahedra that need not be fat them-
selves.

The upper bound. Let P be a locally-vy-fat poly-
hedron in R® whose faces, when viewed as polygons
in the plane containing the face, are convex and (-
fat. We will prove that P can be decomposed into
O(n/v33) tetrahedra in O(nlogn) time.

In our proof, we will need the concept of density.
The density of a set S of objects in R? is defined as
the smallest number A such that the following holds:
any ball B C R? is intersected by at most A objects
o € S such that diam(o) > diam(B).

We also need the following technical lemma. Its
proof is standard and omitted from this abstract.

Lemma 1 Let P be a convex [3-fat polygon embed-
ded in R® where diam(P) > 1. Let C and C' be
axis-aligned cubes centered at the same point. Let
the side length of C' be 1 and the side length of C' be
2v/3/3. If P intersects C, then P’ := PN C" is B'-fat
for some (' = Q(f).

The following lemma shows that the faces of a
locally-v-fat polyhedron have low density if they are
fat themselves.

Lemma 2 Let Fp be the set of faces of a locally-v-
fat polyhedron P. If the faces of P are themselves
B-fat and convex, then Fp has density O(1/v(3%).

Proof. Let S be a sphere with unit radius. We
wish to show that the number of faces f € Fp with
diam(f) > 1 that intersect S is O(1/73%).

Partition S into eight equal-sized cubes by bisecting
S along each dimension. Consider one of the cubes:
call it C. Also construct an axis-aligned cube C that
has side length 2v/3 /3 which has its center at the cen-
ter of C. For all faces f intersecting C' that have
diam(f) > 1, we define f' := fNC’. By Lemma 1,
we know that f’ is #'-fat for some ' = Q(3).

Since f’ is a fat convex polygon with a diameter of
at least 2¢/3/3 — 1, it must contain a circle ¢ of radius
p=3(2v3/3—1)/8 [13]. For any such circle ¢, there
is a face f of C' such that the projection of ¢ onto f is
an ellipse which has a minor axis with length at least

p/V2.

- e o o o
14

<26 o o o © ¢ o o

e o o o o o o o 9

e o o o o -0 | A LS
2V3
3 e o o .6

e o. 0 o

e o o o box

Figure 1: A box.

We make a grid on each face of C’ where every grid
cell has side length p/2. We call the rectangular prism

EuroCG’'08, Nancy — March 18-20, 2008

between two grid cells on opposite faces of C’ a boz—
see Figure 1. Each face f’ has an intersection with
a box that is the entire cross-section of the box. We
assign each face to such a box.

We now consider the number of faces that can be
assigned to any one box b. There are two types of face
in b. For example, if b has its long edges parallel to
the z axis, there are the faces that have the interior of
P in the positive x direction and the faces that have
the interior in the negative x direction. We consider
one type of face at a time. For each face f;, we place
sphere s; with radius p/2 so that its center is on f;
and in the center of b (meaning exactly between the
long faces of b). Since P is locally-v-fat, vol(PNs;) >
4ymp®/6. Since we only consider one type of face,
(PMs;)N(PMs;) =0 for any s; # s;. Therefore the
number of faces of one type that can cross one box is
(2v/3/(y7p)). The number of faces that can cross one
box is thus 2(2v/3/(y7mp)). The number of boxes is
(1/p?). Hence, the number of faces that can intersect
S is at most 16(2v/3/(ymp))(1/p?). Since p = O(f),
this is O(1/v5%). O

Since the set Fip of faces of the polyhedron P has den-
sity O(1/v3%), there is a BSP for Fp of size O(n/v3°),
which can be computed in O(nlogn) time [3]. The
cells of a BSP are convex and contain at most one
facet, so we can easily decompose all cells further into
O(n/~*) tetrahedra in total.

Theorem 3 Any locally-y-fat polyhedron with (-fat
convex faces can be partitioned into O(n/v33) tetra-
hedra in O(nlogn) time.

The lower bound. Next we show that the restriction
that the faces of the polyhedron are fat is necessary,
because there are fat polyhedra without fat faces that
need a quadratic number of tetrahedra to be covered.

The polyhedron known as Chazelle’s polyhe-
dron [6]—see Figure 3—is an important polyhedron
used to construct lower-bound examples. We de-
scribe a slight modification of that polyhedron which
makes it (o, #)-covered and which retain the proper-
ties needed for the lower bound.

The essential property of Chazelle’s polyhedron is
that it contains a region sandwiched between a set L
of lines defined as follows:

L={y=i,z=ix—e:i<nandie€N}
U{z=1,z=1iy and i € N},

where € is a small positive real number. The region
Y:={(z,y,2):0<z,y<mand zy — e < z < ay}

between these lines has volume ©(en?). Chazelle
showed that for any convex object o that does not in-
tersect any of the lines in L we have vol(oNX) = O(e).
These two facts are enough to show that Q(n?) con-
vex objects are required to cover any polyhedron that

Figure 2: The lines used in the lower-bound construc-
tion.

contains ¥ but whose interior does not intersect the
lines in L.

With the aim of making the lines in L into edges
of a fat polyhedron, we first turn the lines into line
segments of length n starting either at x = 0 or y = 0.
We then make each line segment into an equilateral
triangular prism where the long edges have length n
and the short edges have length ¢’. For the lines on
z = xy, the prism goes above the line and for the lines
on z = xy — ¢, the prism goes below the line. In this
way, we ensure Y will be contained in our polyhedron.

We then subtract the prisms that we created from a
cube of appropriate size. This means that the prisms
are completely contained in the cube and that the
boundary of the cube contains the x = 0 and y = 0
planes. We call this cube C' and the resulting poly-
hedron P. The polyhedron P is locally-y-fat but not

Figure 3: Chazelle’s polyhedron before and after mod-
ification. The modified version remains topologically
equivalent to a sphere.

(a, B)-covered. This is because the angle between a
prism at = n and the boundary of C' is very small (it
depends on 1/n). Therefore, a fat tetrahedron cannot
fit between such a prism and the boundary of C.

We now move on to a modification of P that is
(a, B)-covered. We begin with the set L of prisms.
We add the set of line segments

B:={y=4,2=-¢,n<z<0:1<i<n,ieN}

U{r=14,2=0,-n<y<0,i e N}

and transform these segments into prisms as above.
The prisms in B are called “bridges”. We again sub-
tract the prisms in L U B from an appropriately-sized

24th European Workshop on Computational Geometry

cube. In this case, that means that the cube’s bound-
ary contains the planes x = —n and y = —n as well as
everything in LU B. We call the new cube C’ and the
new polyhedron P’. The bridges in B give us room to
place a good tetrahedron anywhere on the boundary
of P’. The formal proof of this fact is omitted.

Theorem 4 There are constants «, 3 > 0 such that
for any large enough n there is an («, 3)-covered poly-
hedron with n vertices for which any decomposition
into convex pieces uses 2(n?) pieces.

3 Decomposition into fat tetrahedra

When we attempt to partition non-convex polyhedra
into fat tetrahedra the news is uniformly bad. That is,
no matter which of the realistic input models we use
(of those we are studying), the number of fat tetra-
hedra necessary to partition the polyhedron can be
made arbitrarily high. For polyhedra without fatness
restrictions, there are many examples which require
an arbitrary number of fat tetrahedra for partition-
ing. Perhaps the simplest is a rectangular box of size
1x(8/k) x (8/k). This box requires Q(k) [-fat tetra-
hedra to partition (or cover) it.

(a) (b)
Vv

o

Bk

Figure 4: (a) An («, 3)-covered polyhedron with fat
faces whose interior cannot be covered by a bounded
number of fat tetrahedra. (b) The part of the poly-
hedron seen by a point in the center.

There are also (a, 8)-covered polyhedra with fat
faces that need an arbitrary number of fat tetrahe-
dra to be partitioned or covered. One example is Fig-
ure 4, where the “tube” requires Q(k) §-fat tetrahedra
in any convex decomposition. The essential feature of
the construction in Figure 4 is that every point along
the long axis of the tube can see very little relative to
the amount that points on the boundary can see.

Theorem 5 There are («, 3)-covered polyhedra with
n vertices and convex fat faces such that the number
of tetrahedra in any covering that only uses fat tetra-
hedra cannot be bounded as a function of n.

4 Concluding remarks

We have shown that any locally-fat polyhedron with n
vertices fat convex faces can be decomposed into O(n)

tetrahedra, and that the restriction that the faces be
fat is necessary. We also showed that one cannot ob-
tain a decomposition using a bounded (in terms of n)
number of of fat tetrahedra. In some applications—
ray shooting, for instance—one does not need a de-
composition of the interior of a polyhedron. Instead,
a covering of only the boundary of the polyhedron
suffices. It would be interesting to see if better results
are possible in this case.

Acknowledgments

The second author thanks Herman Haverkort, Elena
Mumford, and Bettina Speckmann for conversations re-
garding this topic.

References

[1] B. Aronov, M. de Berg, and C. Gray. Ray shooting
and intersection searching amidst fat convex polyhe-
dra in 3-space. Proc. 22nd ACM Symp. Computat.
Geom., pages 88-94, 2006.

[2] M. de Berg. Improved bounds on the union complex-
ity of fat objects. In Proc. 25th Conference on Foun-
dations of Software Technology and Theoretical Com-
puter Science, LNCS 3821, pages 116-127, 2005.

[3] M. de Berg. Linear size binary space partitions for
uncluttered scenes. Algorithmica 28:353—-366, 2000.

[4] M. de Berg and C. Gray. Vertical ray shooting and
computing depth orders for fat objects. In Proc. 17th
Annual Symposium on Discrete Algorithms, pages
494-503, 2006.

[5] M. de Berg, A.F. van der Stappen, J. Vleugels, and
M. J. Katz. Realistic input models for geometric al-
gorithms. Algorithmica, 34(1):81-97, 2002.

[6] B. Chazelle. Convex partitions of polyhedra: a lower
bound and worst-case optimal algorithm. SIAM J.
Comput. 13:488-507 (1984).

[7] B. Chazelle. Triangulating a simple polygon in linear
time. Discr. Comput. Geomn. 6:485-524 (1991).

[8] A. Efrat. The complexity of the union of («,[)-
covered objects. SIAM J. Comput. 34:775-787
(2005).

[9] J. Erickson. Local polyhedra and geometric graphs
Comput. Geom. Theory Appl. 31:101-125 (2005).

[10] J.M. Keil. Polygon Decomposition. In: J.-R. Sack and
J. Urrutia (eds.). Handbook of Computational Geom-
etry, pages 491-518, 2000.

[11] M. van Kreveld. On fat partitioning, fat covering, and
the union size of polygons. Comput. Geom. Theory
Appl. 9:197-210 (1998).

[12] J. Rupert and R. Seidel. On the difficulty of triangu-
lating three-dimensional nonconvex polyhedra. Discr.
Comput. Geom. 7:227-253 (1992).

[13] A.F. van der Stappen. Motion planning amidst fat
obstacles. Ph.D. thesis, Utrecht University, Utrecht,
the Netherlands, 1994.

EuroCG’'08, Nancy — March 18-20, 2008

Schnyder Woods for Higher Genus Triangulated Surfaces

Luca Castelli Aleardi*

Abstract

We study a well known characterization of planar
graphs, also called Schnyder wood or Schnyder la-
belling, which yields a decomposition into vertex
spanning trees. The goal is to extend previous al-
gorithms and characterizations designed for planar
graphs (corresponding to combinatorial surfaces with
the topology of the sphere, i.e., of genus 0) to the
more general case of graphs embedded on surfaces
of arbitrary genus. First, we define a new traver-
sal order of the vertices of a triangulated surface of
genus g together with an orientation and coloring of
the edges that extends the one proposed by Schnyder
for the planar case. As a by-product we show how to
characterize our edge coloration in terms of genus g
maps. All the algorithms presented here have linear
time complexity.

1 Introduction

Schnyder woods are a nice and deep combinatorial
structure to finely capture the notion of planarity of
a graph. They are named after W. Schnyder, who
introduced these structures under the name of re-
alizers and derived as main applications a new pla-
narity criterion in terms of poset dimensions [16], as
well as a very elegant and simple straight-line draw-
ing algorithm [17]. There are several equivalent for-
mulations of Schnyder woods, either in term of an-
gle labelling (Schnyder labellings) or edge colouring
and orientation or in terms of orientations with pre-
scribed degrees. The most classical formulation is for
the family of maximal plane graphs, i.e., plane tri-
angulations, yielding the following striking property:
the internal edges of a triangulation can be parti-
tioned into three spanning trees rooted respectively
at each of the three vertices incident to the outer
face. From the combinatorial point of view the set
of Schnyder woods of a fixed triangulation has an
interesting lattice structure [5, 2, 11, 8, 9], and the
nice characterization in term of spanning trees mo-
tivated a large number of applications in several do-
mains as graph drawing [17, 14], graph coding and

*Department of Computer Science, ULB University, Brux-
elles, luca.castelli.aleardi@ulb.ac.be

TLaboratoire d’Informatique, Ecole Polytechnique, France,
fusy@lix.polytechnique.fr

fDepartement of mathematics, PUC University, Rio de
Janeiro, tomlew@mat.puc-rio.br

Eric Fusy'

Thomas Lewinert

sampling [7, 3, 15, 12, 6, 1]. Previous work focused
mainly on the application and extension of the combi-
natorial properties of Schnyder woods to 3-connected
plane graphs [10, 14]. We deal with combinatorial sur-
faces possibly having handles, i.e., oriented surfaces of
arbitrary genus g > 0. We show how to extend the
local properties of Schnyder labelling in a coherent
manner to triangulated surfaces.

Spanning tree decompositions in higher genus

In the area of tree decompositions of graphs there ex-
ist some works dealing with the higher genus case. We
mention one attempt to generalize Schnyder woods to
the case of toroidal graphs [4], based on a special pla-
narizing procedure. In the triangular case it is possi-
ble to obtain a partition of the edges into three edge-
disjoint spanning trees plus at most 3 edges. Unfor-
tunately, the local properties of Schnyder woods are
possibly not satisfied for a large number of vertices,
and it is not clear how to generalize to genus g > 2.

Contributions

Our first result consists in defining new traversal or-
ders of the vertices of a triangulation of genus g, as
extension of the canonical orderings defined for planar
graphs. We are also able to provide a generalization
of the Schnyder labelling to the case of higher genus
surfaces. The major novelty is in the way we show
that the linear time algorithm designed for the pla-
nar case can be extended in a nontrivial way in order
to design a traversal of a genus g surface. This in-
duces a special edge colouring and orientation that is
a natural generalization of the corresponding planar
structure. In particular, the spanning property char-
acterizing Schnyder woods is again verified almost ev-
erywhere in the genus g case.

Finally, we characterize our graph decomposition in
terms of maps of genus g (a natural generalization of
plane trees).

1.1 Schnyder woods: definitions

Schnyder woods for plane triangulations

The definition of Schnyder woods is given in terms of
local conditions, and leads to a partition of the edges
into 3 spanning trees.

24th European Workshop on Computational Geometry

U, w
2/Me
‘U
V),
9 €1 €2
&5 ={e1, e}
w

Figure 1: (above) A planar triangulation endowed
with a Schnyder wood. (below) A triangulated torus
with a g-Schnyder wood, together with the gener-
alized local condition. Both these maps are rooted
(green edge).

Definition 1 ([17]) Let T be a plane triangulation
with outer face (vg,v1,vn—1), and let & be the set of
inner edges of T. A Schnyder wood of T is an orien-
tation and labelling, with label in {0, 1,2} of the edges
in € such that the two following conditions are ver-
ified: (1) (root face condition) the edges incident
to the vertices vy, v1, v,_1 are all ingoing and are
respectively of colour 0, 1, and 2. (2) (local condi-
tion) For each vertex v not incident to the root face,
the edges incident to v in ccw order are: one outgoing
edge coloured 0, zero or more incoming edges coloured
2, one outgoing edge coloured 1, zero or more incom-
ing edges coloured 0, one outgoing edge coloured 2,
and zero or more incoming edges coloured 1, which
we write concisely as

(Seq(In1),Out 0, Seq(In2), Out 1, Seq(In 0), Out 2).

Generalized Schnyder woods

One main contribution is to propose a new generalized
version of Schnyder woods to genus ¢ triangulations.

Definition 2 Let S be a triangulation of genus g,
with n vertices; let £ be the set of edges of S except
those three incident to the root face (vg,v1,vp—1). A
genus-g Schnyder wood is a partition of £ into a set of
normal edges and a set £° = {e1,...,ez4} of 2g spe-
cial edges considered as fat, i.e., made of two parallel
edges. In addition, each edge, a normal edge or one
of the two edges of a special edge, is simply oriented
and has a label in {0,1,2}, such that:

e root face condition: All edges incident to vy, vy,
and v, _1 are ingoing of color 0, 1, and 2.

e local condition for vertices not incident to
special edges: for every vertex v € S\ {vg, v1,vp—1}

10

not incident to any special edge, its edges incident in
ccw order are of the form:

(Seq(In1),Out 0, Seq(In2), Out 1, Seq(In 0), Out 2).

e local condition for vertices incident to special
edges: A vertex v Iincident to k > 1 special edges
has exactly one outgoing edge in colour 2. Consider
the k + 1 sectors around v delimited by the k special
edges and the outgoing edge in colour 2. Then in
each sector, the edges occur as follows in cw order:
Seq(In1), Out 0, Seq(In 2), Out 1, Seq(In 0).

The planar and the genus g definition do coincide in
the planar case (see Figure 1 for an example). More-
over, the local condition is again true almost every-
where (except the few vertices lying in £%): almost all
the vertices have out-degree 3, thus the g-Schnyder
woods are good characterization of the local planarity
of a bounded genus surface.

2 Computing Schnyder woods in higher genus

2.1 Handle operators: notations and definitions

As in the planar case, our strategy consists in
conquering the whole graph incrementally, face by
face, using a vertex-based operator (conquer) and two
new operators (split and merge) designed to repre-
sent the handle attachments. Given a triangulated
surface S having genus g and n vertices, we denote
by S°ut (S") the subgraph of S induced by the faces
already conquered (not yet conquered, respectively).
Sout is a face-connected map of genus g having b > 1
boundaries, each boundary being a simple cycle Cj,
i € 1...b. We define S := U_,C; as the overall
border between S and S°“t.

Definition 3 A chordal edge is an edge of S°“\ 9.S™
whose two extremities are on 9S™. A boundary ver-
tex w € C; is free if w is not incident to a chordal
edge e.

The operator conquer, does not modify the topol-
ogy of S™: the conquest of a free vertex w consists in
transferring from S°% to S all faces incident to w
that were not yet in S, Given S and a collection of
b cycles {C;} delimiting a face-connected map S°“¢,
a chordal edge e for S°“ is said to be nonseparating
if §°4t is not disconnected when cutting along e. A
chordal edge with extremities in the same cycle C; is
a splitting chordal edge. Let C’ and C” be the two cy-
cles formed by C;+e. Then e is said to be contractible
if either C’ or C" is contractible.

Definition 4 (split and merge edges) A split
edge for the area S°“' is a nonseparating splitting
chordal edge. A merge edge for the area S°“
is a nonseparating chordal edge e having its two
extremities on two distinct cycles C; and Cj, i # j.

EuroCG’'08, Nancy — March 18-20, 2008

(planar case)

invariants conquer(w
colororlent

(toroidal case)

s;;lit (u, w) conquer (w)+ conquer(u)+
' colororient(w) colororient(u)
W

!;!- 4
1 —
WA

|

|

=
V|

€m

<
S

Cm vT epTw

Figure 2: (above) The first pictures show the result of
a colorient operation, both in the planar and higher
genus case. (below) An execution of our traversal al-
gorithm for a triangulated surface of genus 1. When
there remain no free vertices to conquer, it is possible
to find split and merge edges. After performing split
and merge operations, new free vertices can be found
in order to continue the traversal.

The split and merge operators defined below are
(the inverse of) handle operators of type 1: they are
designed to identify boundary vertices lying on dis-
tinct cycles. Intuitively, the split operator splits a
boundary curve into two distinct components, thereby
increasing the number of boundaries of S by
1; while a merge operator merges two boundaries,
thereby decreasing the the number of boundaries of
9S™ by 1

Given a split edge ¢ = (u,w) having its extremi-
ties on a cycle C, the operator split(e) produces the
splitting of C' = {wg,v1,...,vx} (with u = v;; and
w = v, for some indices i1 < iz < k) into two new
cycles C’, C”. A merge operation can be performed
in a similar way, on a given merge edge e = (v;, ,vj,)
with extremities on different boundaries C’ and C”,

and produces a new cycle C' containing two copies of
v;, and v;, and all the vertices in C" and C”.

The edges concerned by the merge/split operations
are exactly the special edges involved in the definition
of the genus g Schnyder wood.

2.2 A new traversal algorithm for genus g surfaces

Once defined the conquer operation, we can associate
to it a simple rule for colouring and orienting the edges
incident to a vertex conquered. The colorient(v) is
defined as follows: orient outward of v the two edges
connecting v to its two neighbours on 9S™; assign
color 0 (1) to the edge connected to the left (right,
respectively) neighbour, looking toward S°“!. Ori-
ent toward v and color 2 all edges incident to v in
Sout\ 9§, As in the planar case, we can now formu-
late the algorithm for computing a Schnyder wood as
a sequence of n — 2 conquer and colorient opera-
tions (as suggested by Brehm [5]). Here the important
difference is that the conquer operations are inter-
leaved with 2g merge/split operations so as to make
the genus of the conquered area increase from 0 to g.
At the beginning S is a topological disk delimited
by the simple cycle Cy := {(vg, v1,vn—1)}

COMPUTESCHNYDERANYGENUS(S)
(S a triangulated surface of genus g)
while {C} # {vo,v1}
If there is a free vertex v on some C; € C
conquer (v)+colorient (v);
otherwise, if there exists a split edge e
split(e); add a new cycle C’ to C;
otherwise, find a merge edge ¢
merge(e); remove a cycle from C;
end while

The correctness and termination of the traversal
algorithm above is based on the fundamental property
that either there exists a free vertex, or we can find
split or merge edges.

Lemma 1 For any triangulated surface S of genus g,
COMPUTESCHNYDERANYGENUS(S) terminates, and
can be implemented to run in linear time.

One major advantage of computing a Schnyder
wood in an incremental way is that we are able to
put in evidence some invariants, which remain sat-
isfied at each step of the algorithm. This allows to
provide a characterization in terms of genus g maps,
which is an extension of the fundamental property of
planar Schnyder woods [17], stating that Ty, 71, and
Ts are plane trees.

Theorem 2 Then the coloring and orientation of
edges computed by COMPUTESCHNYDERANYGENUS
is a genus g Schnyder wood. The Schnyder wood thus

11

24th European Workshop on Computational Geometry

Figure 3: A triangulated torus endowed with a Schny-
der wood, together with the maps Ty (a map with 3
faces), T1 (a map with 2 faces) and T, (which is a map
with 1 face, when adding the two special edges).

obtained has the additional property that the graph
T, formed by the edges of color 2 is a tree, and the em-
bedded graph formed by T5 and the 2g special edges is
a one-face map; moreover the embedded graphs Ty, T}
formed by the edges of color 0 and of color 1 are genus
g maps with at most 1 + 2g faces.

3 Conclusion and perspectives

We have presented a general approach for extending
to higher genus a fundamental combinatorial struc-
ture, Schnyder woods, which is by now a standard
tool to handle planar graphs both structurally and
algorithmically. We have been successful in showing
that the definition and several fundamental combina-
torial properties can be extended from the planar to
the genus g case in a natural way. Our work leaves
several interesting questions open. Let us recall that,
in the planar case, the set of Schnyder woods of a
fixed triangulation is a distributive lattice; in addi-
tion the Schnyder wood at the bottom of the lattice
is a key ingredient in a bijective optimal encoder for
plane triangulations [15]. We would like to investi-
gate the extension of these properties in the higher
genus case. More generally, we think that the local
properties of genus g Schnyder woods (Definition 2)
suggest the possibility of further nice applications in
graph encoding and sampling (see [7, 13, 12, 15] for
the planar case).

4 Acknowledgements

We are grateful to N. Bonichon, C. Gavoille and
A. Labourel for enlightening discussions on Schnyder

12

woods. First author would like to thank E. Colin
de Verdiere for pointing out some useful topological
properties of graphs on surfaces. We are extremely
grateful to G. Schaeffer for enlightening discussions
on the combinatorics of maps which motivated this
work.

References

[1] J. Barbay, L. Castelli-Aleardi, M. He, and J. L
Munro. Succinct representation of labeled graphs.
In ISAaC, pages 316-328, 2007.

[2] N. Bonichon. Aspects algorithmiques et combinatoires
des réaliseurs des graphes plans mazimauz. PhD the-
sis, Bordeaux I, 2002.

[3] N. Bonichon, C. Gavoille, and N. Hanusse. An
information-theoretic upper bound of planar graphs
using triangulation. In STACS, pages 499-510.
Springer, 2003.

[4] N. Bonichon, C. Gavoille, and A. Labourel. Edge
partition of toroidal graphs into forests in linear time.
In ICGT, volume 22, pages 421-425, 2005.

[5] E. Brehm. 3-orientations and Schnyder 3-Tree de-
compositions. Master’s thesis, FUB, 2000.

[6] L. Castelli-Aleardi, O. Devillers, and G. Schaeffer.
Optimal succinct representations of planar maps. In
SoCG, pages 309-318, 2006.

[7] R.C.-N. Chuang, A. Garg, X. He, M.-Y. Kao, and H.-
I. Lu. Compact encodings of planar graphs via canon-
ical orderings and multiple parentheses. ICALP,
pages 118-129, 1998.

[8] H. de Fraysseix and P. O. de Mendez. On topological
aspects of orientations. Disc. Math., 229:57-72, 2001.

[9] P.O. de Mendez. Orientations bipolaires. PhD thesis,
Paris, 1994.

[10] S. Felsner. Convex drawings of planar graphs and
the order dimension of 3-polytopes. Order, 18:19-37,
2001.

[11] S. Felsner. Lattice structures from planar graphs.
Electron. J. of Combinatorics, 11(15):24, 2004.

[12] E. Fusy, D. Poulalhon, and G. Schaeffer. Dissections
and trees, with applications to optimal mesh encod-
ing and to random sampling. In SoDA, pages 690
699, 2005.

[13] X. He, M.-Y. Kao, and H.-I. Lu. Linear-time succint
encodings of planar graphs via canonical orderings.
Journal on Discrete Mathematics, 12:317-325, 1999.

[14] G. Kant. Drawing planar graphs using the canonical
ordering. Algorithmica, 16(1):4-32, 1996.

[15] D. Poulalhon and G. Schaeffer. Optimal coding and
sampling of triangulations. Algorithmica, 46:505-527,
2006.

[16] W. Schnyder. Planar graphs and poset dimension.
Order, pages 323-343, 1989.

[17] W. Schnyder. Embedding planar graphs on the grid.
In SoDA, pages 138-148, 1990.

EuroCG’'08, Nancy — March 18-20, 2008

Seed Polytopes for Incremental Approximation *

Franz Aurenhammer?

Giinter Rote!

Oswin Aichholzerf

Simon Plantingal

Abstract

Approximating a given three-dimensional object in
order to simplify its handling is a classical topic in
computational geometry and related fields. A typical
approach is based on incremental approximation al-
gorithms, which start with a small and topologically
correct polytope representation (the seed polytope) of
a given sample point cloud or input mesh. In addition,
a correspondence between the faces of the polytope
and the respective regions of the object boundary is
needed to guarantee correctness.

We construct such a polytope by first computing
a simplified though still homotopy equivalent medial
axis transform of the input object. Then, we inflate
this medial axis to a polytope of small size. Since
our approximation maintains topology, the simplified
medial axis transform is also useful for skin surfaces
and envelope surfaces.

1 Introduction

Object simplification and surface reconstruction are
fundamental tasks in several areas of computer sci-
ence, like geometric modeling, computer graphics, and
computational geometry. We refrain from a general
discussion here and refer the reader e.g. to [3, 8, 9, 11]
and references therein.

In this note we deal with the problem of computing
a simple but topologically correct polytope for a given
input object, which is typically presented as a point
cloud or surface mesh. As this polytope will serve as
a starting point for incremental approximation algo-
rithms, we additionally provide a correspondence be-
tween the faces of the polytope and the regions of the
object surface. Possible incremental algorithms we

*Partially supported by the FWF Joint Research Program
‘Industrial Geometry’ S9205-N12, and by the IST Programme
of the EU as a Shared-cost RTD (FET Open) Project un-
der Contract No IST-006413 (ACS — Algorithms for Complex
Shapes)

Institute for Software Technology, Graz University of Tech-
nology, Austria, {oaich,thackl,bkorn}@ist.tugraz.at

fInstitute for Theoretical Computer Science, Graz Univer-
sity of Technology, Austria, auren@igi.tugraz.at

§University of Groningen, Department of Mathematics and
Computing Science {simon,gert}@cs.rug.nl

YInstitut fiir Informatik, Freie Universitit
{rote,sturm}@inf.fu-berlin.de

Berlin

Thomas Hackl'
Astrid Sturm¥

Bernhard Kornberger!
Gert Vegter?

have in mind use e.g. elliptical and hyperbolic patches
or are based on interpolating subdivision surfaces.

In a previous related approach, point clouds in con-
vex position are approximated by spherical patches,
using an incremental algorithm [7]. Starting with
a very simple structure (a tetrahedron), the convex
polytope is incrementally refined until the associated
surface built from spherical patches approximates the
convex point cloud within a given tolerance bound.
The approximating surface consists of a ‘bulgy’ poly-
tope, where the triangular faces of the polytope are
replaced by spherical patches.

The same approach works for other classes of ap-
proximating surfaces based on polytopes, such as in-
terpolating subdivision surfaces. For a correct ap-
proximation, the underlying polytope needs to have
the same topology as the input object. Furthermore,
one has to be able to find which part of the object is
approximated by a given part of the polytope, as this
is the area where we have to test for epsilon-closeness.

1.1 A new approach

Our construction of a small (in general, nonconvex)
initial polytope for a given, sufficiently dense sample
point cloud is based on a certified simplification of the
medial axis transform (MAT). The goal is to represent
the object with as few elements as possible. To this
end, we use a modification of our previous work [1, 2]
where the input object is approximated by a set of
balls. This set is then pruned based on an approxi-
mation of the minimal set covering problem, thereby
carefully choosing the parameters of the original al-
gorithm in order to preserve topology, see Section 2.
With slight modifications, this approach can also be
used for simplification of skin surfaces [9] and envelope
surfaces [11]. The exact medial axis of the pruned set
of balls is then computed [5].

In a second step we ‘inflate’ the simplified medial
axis (which, as being defined by a union of balls, is
a piecewise-linear object) by replacing it with a com-
binatorial 2-manifold and moving its vertices back to
the input surface, see Section 3.

From experimental results for the medial axis sim-
plification we expect that our approach leads to
incremental approximations with significantly fewer
patches compared to results achievable when starting
directly with the original input set.

13

24th European Workshop on Computational Geometry

2 Medial axis extraction

Let O be a smooth and boundary-connected object in
3D. We allow O to have tunnels, but ‘holes’ (empty
regions within the object, e.g. bubbles in a Swiss
cheese, without connection to the exterior) are ex-
cluded. The medial axis of O is the set of centers
of all maximal inscribed balls. The local feature size
f(z) of a point x on the boundary 9O of O is the min-
imum distance from x to any point on the medial axis
of O. A finite point set S C 9O is an r-sample [3]
of 00 if every point x € 9O has at least one point
of S within distance r - f(x). We are interested in a
simplified version of the medial axis of O which, nev-
ertheless, retains two important properties: inclusion
in the object, and homotopy equivalence. For an ex-
ample see Figure 1 which shows the discrete MAT of
a cow model and its simplified version.

2.1 Ball generation

In a first step we follow well known paths [4] in that
we compute the Voronoi diagram of a given sample S
of 0O and extract all inner polar balls. Each point
s € S defines an inner polar ball b, , whose center c is
a vertex of the Voronoi cell for s farthest away from s
and inside O, and whose radius is p = (¢, s) (the
distance between ¢ and s). Let B be the set of all
inner polar balls. As has been shown in [4], the medial
axis of the union, U(B), of the balls in B is homotopy
equivalent to O as long as S satisfies the sampling
condition, that is, S constitutes an r-sample of 0O
for sufficiently small r.

In certain applications we are given not only an
unorganized point set S but a triangular mesh repre-
senting 0O and having S as its vertices. This form of
input will allow the ball generation algorithm in [1]
to work well even if S does not satisfy any sampling
condition. Guarantees on the topology are then, of
course, lost.

2.2 Pruning

The sampling density of S may cause the set, B, of
balls to be quite large, so the medial axis of U(B)
is likely to contain many detailed and unwanted fea-
tures. Therefore we do not directly compute the me-
dial axis of U(B) but perform a pruning of B first.
Several pruning criteria based on proximity and angles
have been proposed, e.g., in [10, 12]. In the work [1]
a method is described that is capable of discarding
balls belonging to unstable parts of the medial axis
without any geometric criteria. This method can be
adapted to keep control over the topology of the me-
dial axis [2]. Loosely speaking, we enlarge all the balls
in B and treat them together with S as an instance
of the well-known set covering problem, as is briefly
described below.

14

fr'i: 4 il
a) =
Q).
(‘,:}- .\l_ﬁ
SR
\‘ g){}

] ,
I8 &k
c) “\}q & 8 d)

Figure 1: a,b) MAT and its 20108 medial ball centers
¢,d) Pruned MAT with 116 ball centers

2.2.1 Ball enlargement

By construction, each ball b € B contains 4 points
of S on its boundary and has no points of S in
its interior. From B we now generate a set, B’, of
co-centric but enlarged balls, each typically covering
tens or even hundreds of points of S. Thereby, a re-
quirement important for later purposes is that U(B’)
and U(B) are topologically equivalent. We use the
power diagram PD(B) of B (see Figure 2) to control
the proper enlargement of the ball radii. For each
ball b € B, its power cell C'(b) contains exactly those
parts of b’s boundary which contribute to OU (B), see
e.g. [6]. So, if we choose maximal radii such that
(1) PD(B’) = PD(B) holds, and (2) each ¥/ € B’ in-
tersects the same facets, edges, and vertices of C(b)
as does its original b, then the topology of the union
of balls does not change. Such radii exist and can be
found in time linear in the size of PD(B), by exploit-
ing the well-known polytope lifting of PD(B) in 4D.

2.2.2 Set covering

Now we want to keep an (ideally) minimal subset of
the set B’ of enlarged balls, such that all points of S
are still covered by at least one ball in this subset.
This is an instance of the NP-hard set covering prob-
lem. In [1] we use a combination of exact and heuris-
tic methods in order to get an almost minimal sub-
set B, C B'.

Concerning the topology of the union U(B,), the
set covering step only removes balls from the set B’
and thus it will never close tunnels that are present
in U(B'). (Holes do not exist in U(B’) by construc-
tion.) However, this step might create holes and tun-

EuroCG’'08, Nancy — March 18-20, 2008

Figure 2: Power diagram and its external graph

nels in U(B,), and may even make it break apart. We
therefore apply a postprocessing where such events are
detected and repaired. Again, we make use of a power
diagram, PD(B,), in this case. Note that disconnect-
edness of U(B,) can be checked from the dual graph
of PD(B,) right away.

Define the external power graph, G(B,), of B, as the
set of all edges and vertices of PD(B,) that are com-
pletely avoided by U(B,). (All objects are considered
to be topologically closed.) Consult Figure 2, where
G(B,) is drawn with bold lines. Each hole in U(B,)
can be detected by recognizing that G(B,) contains a
respective connected component that is bounded.

To deal with tunnels, two strategies can be applied.
One is to avoid tunnels altogether, by a modifica-
tion of the pruning strategy for the set B’ of enlarged
balls: Exploiting that the input point cloud S is an
r-sample, we (conceptually) shrink each ball b € B’
by r - f, where f = max,ecsnp f(2), and execute the
set covering as if such balls were present. This may
lead to a (moderate) increase of the size of the pruned
set B,. On the other hand, if a mesh on S is present,
then we can check for tunnels with its aid, because for
each tunnel of U(B,) there exists at least one edge
in G(B,) that intersects some triangle of the mesh.
Starting from each such triangle, we trace G(B,) in-
side the mesh until we run out of edges or intersect the
mesh again, in which case a tunnel has been detected.
Note that most mesh triangles can be excluded from
consideration; e.g. all those being covered by a single
ball.

3 Construction of the polytope

The main use of a simplified polytope is to supply
a good starting configuration for incremental sur-
face approximation algorithms. To this end, we
base the construction of this polytope on the pruned,
piecewise-linear medial axis, M (B,), obtained in the

Figure 3: Constructing a pyramid from a vertex

.

Figure 4: Constructing a tube from a segment

Figure 5: Constructing a polytope from a facet

previous section. The basic idea is to blow up M (B,)
to a polytope, Pps, which uses only vertices of the
original point cloud S. A main advantage of our con-
struction is that the power cells of B, give a decom-
position of the space into cells, which define for each
facet of Pj; the neighborhood in which points from S
have to be checked for epsilon-closeness to the approx-
imating surface. This is especially important for point
clouds not in convex position, since points can be very
close to a surface patch then, but lie on the ‘opposite’
side of the medial axis, so they have to be handled by
a different part of the polytope.

Note that a main condition for the constructed
polytope is that M (B,) lies inside it. Therefore no
polytope facet intersects the medial axis and no bound
on the distance of the original vertices to the facets of
the new polytope exists.

To start with, we wrap M (B,) with a combinatorial
2-manifold mesh. This wrapping will result in a mesh
that is topologically equivalent to the boundary of the
original input object. As M(B,) is a piece-wise linear
structure, it consist of vertices, segments, and facets
with boundary-segments. For each of these features,
we construct a polytope feature:

e For a verter we construct a pyramid (Figure 3).
e For a segment we construct a tube (Figure 4).

e We double a facet and connect it using the fea-

15

24th European Workshop on Computational Geometry

tures of the boundary segments (Figure 5).

We obtain a combinatorial 2-manifold mesh with
its vertices still coinciding with the vertices of M (B,).
The next step is to select a point of S for every ver-
tex of the inflated medial axis P,; to be constructed.
We build a cone of size v which depends on the local
feature size of the r-sampling S. Each vertex of Py,
is an apex of a cone pointing in the direction of the
normal in this vertex. This cone gives the direction
in which we move the vertex of the wrapped medial
axis towards the object boundary. The cones are cho-
sen in such a way that they do not intersect M (B,).
Moreover, the way we define the cone size (namely,
depending on the local feature size) assures that each
cone includes at least one point of S. If more than
one point of S is included, we choose an arbitrary
one. This results in a polytope containing M (B,)
and with vertices chosen from the set S. The facets
of this polytope are similar to the supertriangles as
defined in [7], which can be used as starting facets for
any incremental approximation algorithm.

Figure 6 summarizes our polytope construction for
a (two-dimensional) point sample.

4 Future work

For convex objects, the spherical patch algorithm de-
scribed in [7] can be used together with our setting.
For the more general case of non-convex inputs we
plan to extend [7] to use a combination of e.g. ellip-
tical and hyperbolic patches, based on the presented
framework. Adapting the growing strategy, the first
part of our algorithm can also be useful for the skin
surface algorithm as well as envelope surfaces.

References

[1] O. Aichholzer, F. Aurenhammer, T. Hackl, B.
Kornberger, M. Peternell, H. Pottmann. Approz-
imating boundary-triangulated objects with balls.
Proc. 23rd European Workshop on Computa-
tional Geometry, EuroCG’07, 2007, 130-133.

[2] O. Aichholzer, F. Aurenhammer, T. Hackl, B.
Kornberger. Scaleable piecewise linear approxi-
mations of 8D medial axes. Manuscript.

[3] N. Amenta, M. Bern. Surface reconstruction by
Voronoi filtering. Discrete & Computational Ge-
ometry 22 (1999), 481-504.

[4] N. Amenta, R. Kolluri Accurate and efficient
unions of balls. Proc. 16th Ann. ACM Symp.
Computational Geometry, 2000, 119-128.

[5] D. Attali, A. Montanvert. Computing and simpli-
fying 2D and 3D continuous skeletons. Computer

16

b)

c) d)

Figure 6: a) Medial axis transform, b) Pruned MAT,
¢) wrapped MA with cones, d) inflated MA

Vision and Image Understanding 67 (1997), 261-
273.

[6] F. Aurenhammer. Improved algorithms for discs
and balls using power diagrams. Journal of Algo-
rithms 9 (1988), 151-161.

[7] K. Buchin, S. Plantinga, G. Rote, A. Sturm,
G. Vegter. Convez approximation by spherical
patches. Proc. 23rd European Workshop on Com-
putational Geometry, EuroCG’07, 2007, 26-29.

[8] T.K. Dey. Curve and surface reconstruction. In:
Handbook of Discrete and Computational Geom-
etry, (J.E. Goodman and J.O’Rourke, eds.), CRC
Press, Vol. 2, 2004.

[9] H. Edelsbrunner. Deformable smooth surface de-

sign. Discrete and Computational Geometry 21
(1999), 87-115.

[10] M. Foskey, M.C. Lin, D. Manocha. Efficient com-
putation of a simplified medial axis. Proc. 8th
ACM Symp. Solid Modeling and Applications,
2003, 96-107.

[11] N. Kruithof, G. Vegter. Envelope surfaces Proc.
22nd Ann. ACM Symp. Computational Geome-
try, 2006, 411-420.

[12] M. Samozino, M. Alexa, P. Alliez, M. Yvinec.
Reconstruction with Voronoti centered radial ba-
sis functions. Proc. 4th Eurographics Symp. on
Geometry Processing, 2006, 51-60.

EuroCG’'08, Nancy — March 18-20, 2008

On the Reliability of Practical Point-in-Polygon Strategies*

Stefan Schirraf

Abstract

We experimentally study the reliability of geometric
software for point location in simple polygons. The
code we tested works very well for random query
points, but it often fails for degenerate and also nearly
degenerate queries. We also suggest a reliable alter-
native approach.

1 Introduction

Assume you would like to test points for inclusion
in a simple closed polygon. Most likely, you will
end up using one of the so-called practical point-
in-polygon strategies instead of implementing one of
the more sophisticated theoretically optimal point lo-
cation data structures developed in computational
geometry. Code for such practical point-in-polygon
strategies is available on the www. This software is
based on floating-point arithmetic, is very efficient,
and works well for query points chosen uniformly at
random inside the bounding box of the polygon. Or
you might decide to use components from CGAL [2],
LEDA [9] or some other software library providing code
for point-in-polygon testing or more general point lo-
cation queries.

As we will see in Section 3, most of the existent code
produces wrong results for query points near or on the
polygon edges, see also Fig. 1 where queries answered
correctly are marked by a grey box =, false positives
by a red disk e, and false negatives by a green disk
If you know that the coordinates of query points and
polygon vertices are inaccurate anyway, you might be
willing to accept this. Unfortunately, sometimes there
are errors not only for such problem-specific degener-
ate queries, but also for algorithm-specific degenera-
cies, cf. Fig. 4 in more or less rare cases. Are you still
willing to accept this? What if your data is not sub-
ject to uncertainty at all? This is the case that we are
most interested in. In this paper, we consider simple
closed polygons and the corresponding binary point-
inclusion predicate. This is the most important case
and it can also be used for point location in polygons
with holes. Furthermore, point-in-polygon testing is
a subtask in landmarks algorithms for point location
in arrangements of straight lines [7].

*Partially supported by DFG grant SCHI 858/1-1
TOtto von Guericke University, Department of Computer
Science, Magdeburg, Germany, stschirr at ovgu.de

" ‘. e 5
4 . §
1 , !

Y 3 ’
Y . 0
" !
.". s“ ‘
\ \
\ \
-\ P .\
.‘. “
[] .. \
\ \
. \
~ \

Figure 1: Results for query points near or on the edges
of a random polygon with 30 edges.

After a very brief look at related work in the next
section, we will report on experimental studies regard-
ing the reliability of practical point-in-polygon test-
ing software. The studies include code from [6], code
available on the www, and code provided by com-
putational geometry software libraries. Finally, we
briefly discuss how to achieve full reliability without
paying too much for this benefit in Section 5 .

2 Related work

Testing a query point for inclusion in a polygon is
a fundamental problem in computational geometry
with many applications, e.g. in computer graphics
and geographic information systems, and thus has
been the subject of many research papers in com-
puter science and related application disciplines. For
an overview we refer to Snoeyink’s survey paper [12].

Maybe the most common algorithm for point-in-
polygon testing without preprocessing is the crossing
number algorithm. Interestingly, already the first de-
scription of the algorithm by Shimrat [11] contained
a flaw fixed later by Hacker [5]. It is well known that
handling degenerate cases in a crossing number algo-
rithm is not obvious. Forrest [3] nicely illustrates the
problems involved.

17

24th European Workshop on Computational Geometry

3 Non-reliability of existent code

Experimental studies on point-in-polygon testing usu-
ally focus on efficiency. In contrast, we are most inter-
ested in correctness and reliability. We concentrate on
practical point-in-polygon algorithms with no or little
preprocessing without sophisticated data structures.
Our selection of existent code includes the fastest al-
gorithms from the beautiful graphic gems collection
of Haines [6], namely crossings, a “macmartinized”
crossing number algorithm, see also [1], the triangle-
fan algorithms halfplane (with sorting), barycentric,
and spackman, and finally grid, the name says it all.
Barycentric and spackman compute barycentric co-
ordinates in addition to point location. Grid uses a
20 x 20 grid. Furthermore, we consider Franklin’s PN-
POLY code [4], which is another crossing number based
algorithm, and point location code for polygons from
CGAL and LEDA, where we use the latter two both
with an exact and an inexact geometry kernel.

We first challenge the code with problem-dependent
(near) degeneracies. We use CGAL’s point genera-
tor for generating points “on” a line segment. Since
we use double precision coordinates, usually not all
points are exactly on the line segment, but only very
close to it. Fig. 2 shows results for a real-world poly-
gon. Besides the library codes with exact kernels
all selected software produces false results. However,
even with an inexact kernel based on double precision
floating-point numbers, the CGAL code produces only
very few false positives. Interestingly, Shimrat [11]
already clearly states that his crossing number algo-
rithm does not apply to query points on the boundary
of the polygon. Haines [6] writes “when dealing with
floating-point operations on these polygons we do not
care if a test point exactly on an edge is classified as
being inside or outside, since these cases are extremely
rare. However, our experiments show that we get
false results not only for points exactly on the bound-
ary. Second, for polygons with axis-parallel edges like
the H-shaped polygon in Fig. 4, points exactly on the
edges are not unlikely.

Next we turn to algorithm-dependent degeneracies.
We create points on the vertical and horizontal lines
through the polygon vertices. These are potential
degenerate cases for the crossing number algorithms.
Fig. 3 shows the result for crossings and PNPOLY. Be-
cause of a conceptual perturbation, namely consider-
ing vertices on the ray as being infinitesimally above
the ray, both work very well for the query points.
Unfortunately, both do not produce consistent results
for the vertices, in contrast to the CGAL code with an
inexact kernel.

Fig. 4 shows the result for a H-shaped polygon for
query points which cause algorithm-dependent degen-
eracies for the triangle-fan algorithms. Query points
are generated “on” the non-polygon edges bounding

18

Jp—

P
p—

\\’ T —— \\, T—
(c) (d)
\ -]
| |
o , 1
//‘: / II
N)

() (h)

Figure 2: Results for query points on segments on
a real-world polygon (simplified boundary of the vil-
lage Saarwellingen in Germany): (a) crossings (b)
Franklin’s PNPOLY (c¢) halfplane (d) barycentric (e)
spackman (f) grid (g) cgal with inexact kernel (h)
cgal and leda with exact kernel.

the triangles considered by these algorithms. As we
have suspected, the triangle-fan algorithms err for
points near these edges. We have both false positive
as well as false negative results, see (c), (d), and (e).
Crossings (a) has false negatives on the axis-parallel
edges, whereas the second crossing number algorithm

EuroCG’'08, Nancy — March 18-20, 2008

/

>

o /\/ \

i /\/
(a) (b)

Figure 3: Results for query points on verticals and
horizontals through the vertices of the polygon from
Fig. 2: (a) crossings (b) Franklin’s PNPOLY.

has false negatives at some vertices only. Haines [6]
admits that his code “does not fully address this prob-
lem”. Again, the problems occur not only for points
exactly on the triangle edges. Surprisingly, even the
grid method has false negatives on axis-parallel edges
as well.

4 Reliable implementation

The straightforward approach to implement geomet-
ric algorithms like those above reliably is to use ex-
act rational arithmetic instead of inherently imprecise
floating-point arithmetic. Unfortunately, this slows
down the code significantly. As suggested by the ex-
act geometric computation paradigm [14] a better ap-
proach is to combine exact rational arithmetic with
floating-point filters, e.g. interval arithmetic, in order
to save most of the efficiency of floating-point arith-
metic for non-degenerate cases. This approach is im-
plemented in the exact geometry kernels of CGAL [2]
and LEDA [9]. The use of adaptive predicates & la
Shewchuck [10] is highly recommended.

Interestingly, exact rational arithmetic does not suf-
fice to let crossings always produce correct results,
because some degeneracies are still not handled cor-
rectly. Due to the conceptual perturbation of vertices,
for some query points coincident with vertices incor-
rect results are still produced.

5 A reliable and efficient alternative

In terms of efficiency, algorithms with low arithmetic
demand are better suited for exact geometric compu-
tation, because low demand leads to both more ef-
fective filters and less expensive rational arithmetic.
With an 1EEE 754 compliant floating-point arithmetic,
a comparison of floating-point numbers is always ex-
act. Thus, in terms of the cost of exact geometric
computation, it pays off to replace calculations by
comparisons whenever possible.

() (f)

Figure 4: Results for query points on segments con-
necting the first vertex to the remaining ones for a
H-shaped polygon: (a) crossings (b) Franklin’s PN-
POLY (c) halfplane (d) barycentric (e) spackman (f)
grid.

Let us illustrate this for the crossing number al-
gorithm where we have to test whether a horizontal
leftward ray r starting at ¢ = (¢, qy) intersects a seg-
ment s. This is often implemented by computing the
intersection point p of the supporting line of r and
the supporting line of s and then testing whether p
lies on both r and s. MacMartin et al. [8] observe
that s cannot intersect r if the y-coordinates of both
endpoints of s are smaller or larger than ¢,. Thus, we
can save some calculations by additional comparisons
in fortunate cases. Note that we can use comparison
of z-coordinates to save further calculations as well,
assuming that we did the comparison of y-coordinates
already. Then, if the z-coordinates of both endpoints
of s are smaller than ¢, there is no intersection, and
if both are larger, there is one. If these comparisons
do not suffice to decide the test, we use an exact ori-
entation test to check whether ¢ is to the left of s.

19

24th European Workshop on Computational Geometry

Next we briefly describe an alternative reliable im-
plementation of the crossing number algorithm. We
suggest to add some preprocessing to compensate for
more expensive arithmetic. We use an interval skip
list (or interval tree) to store the y-ranges of all non-
horizontal polygon edges. In order to handle degen-
eracies correctly, we store half-open intervals: Only
the y-coordinate of the first endpoint is included, the
y-coordinate of the second endpoint is not. Here we
assume that polygon edges are consistently oriented
along the polygon boundary. We use another interval
skip list to store the y-ranges of all vertices and all
horizontal edges. Since these intervals are point in-
tervals, we could use a multiset dictionary data struc-
ture as well. The cGAL library provides a flexible and
adaptable implementation of interval skip lists which
we use in our implementation. Note that all opera-
tions on the interval skip lists are exact, because we
only need comparisons of floats (besides arithmetic on
small integers).

To answer a query for ¢ = (gz,¢qy), we use the sec-
ond interval skip list (or alternatively the dictionary
data structure) to check exactly whether ¢ lies on a
horizontal ray or coincides with a polygon vertex: For
all intervals containing g, we check whether the corre-
sponding vertex or horizontal edge contains ¢. If not,
we use the first skip list to get candidate edges for
intersection with the leftward horizontal ray starting
at ¢ and use the comparison-based strategy described
above for testing for intersection. Thanks to the half-
openness of the intervals, we count intersections at
vertices only once.

In pathological cases we still have to consider a lin-
ear number of edges and vertices. In practice, how-
ever, we only get a few, leading to good performance
for random and real-world polygons. Thanks to the
preprocessing that creates the interval skip lists, we
get an efficient query algorithm, where the savings
due to the preprocessing compensate for the addi-
tional cost caused by applying the exact geometric
computation paradigm.

6 Future work

Of course, our selection of algorithms is somewhat
random. It remains to include further algorithms into
this case study, especially the approach by Walker and
Snoeyink, which is based on CSG-representations of
polygons [13]. Furthermore, another case study will
compare the efficiency of the exact counterparts of the
floating-point-based practical point-in-polygon strate-
gies we considered here and compare it to alternative
approaches. Grid-based methods seem to be good
candidates for achieving reliability without paying too
much in terms of efficiency as well.

20

References

1]

2]

[10]

[13]

[14]

T. Akenine-Moller and E. Haines. Real-Time
Rendering (2nd Ed.). AK Peters, Ltd., 2002.

CGAL, Computational Geometry Algorithms Li-
brary. http://www.cgal.org.

A. R. Forrest. Computational geometry in prac-
tice. In R. A. Earnshaw, editor, Fundamental
Algorithms for Computer Graphics, volume F17
of NATO ASI, pages 707-724. Springer-Verlag,
1985.

W. R. Franklin. PNPOLY-point inclusion in
polygon test. http://www.ecse.rpi.edu/
Homepages/wrf/Research/Short_Notes/
pnpoly.html.

R. Hacker. Certification of algorithm 112: po-
sition of point relative to polygon. Commun.
ACM, 5:606, 1962.

E. Haines. Point in polygon strategies.
In P. Heckbert, editor, Graphics Gems IV,
pages 24-46. Academic Press, Boston, MA,
1994. http://tog.acm.org/editors/erich/
ptinpoly/.

I. Haran and D. Halperin. An experimental study
of point location in general planar arrangements.
In Proc. of ALENEX 06, pages 16-25. 2006.

S. MacMartin et al. Fastest point in polygon test.
Ray Tracing News, 5(3), 1992.

K. Mehlhorn and S. Naher. LEDA: A Plat-
form for Combinatorial and Geometric Comput-
ing. Cambridge University Press, Cambridge,
UK, 2000.

J. R. Shewchuk. Adaptive precision floating-point
arithmetic and fast robust geometric predicates.
Discrete & Computational Geometry, 18(3):305—
368, 1997.

M. Shimrat. Algorithm 112: position of point
relative to polygon. Commun. ACM, 5:434, 1962.

J. Snoeyink. Point location. In J. E. Goodman
and J. O’Rourke, editors, Handbook of Discrete
and Computational Geometry (2nd Ed.), chap-
ter 34, pages 767-786. CRC Press LLC, Boca
Raton, FL, 2004.

R. Walker and J. Snoeyink. Practical point-in-
polygon tests using CSG representations of poly-
gons. In Proc. of ALENEX 99, pages 114-123.
1999.

C.-K. Yap. Towards exact geometric computa-
tion. Comput. Geom.—Theory and Appl., 7:3-23,
1997.

EuroCG’'08, Nancy — March 18-20, 2008

Minimizing the Symmetric Difference Distance
in Conic Spline Approximation

Sunayana Ghosh*

Abstract

We show that the complexity (number of elements) of
an optimal parabolic or conic spline approximating a
smooth curve with non vanishing curvature to within
symmetric difference distance ¢ is c;e= /4 + O(1), if
the spline consists of parabolic arcs, and coe™ /% +
O(1), if it is composed of general conic arcs of vary-
ing type. The constants c¢; and ¢y are expressed in
the affine curvature of the curve. We define an egq-
uisymmetric bitangent conic arc to be the (unique)
conic that is tangent to a curve at its endpoints, such
that the areas of the two moons formed by this conic
and the given curve are equal, and show that its com-
plexity is asymptotically equal to the complexity of
an optimal conic spline. We show that the symmetric
difference distance between a curve and an equisym-
metric conic arc tangent at its endpoints is increasing
with affine arc length, provided the affine curvature
along the arc is monotone. This property yields a
simple bisection algorithm for computing an optimal
parabolic or equisymmetric conic spline.

1 Introduction

Complexity of conic approximants. In Ghosh, Pe-
titjean and Vegter [2] we determined the complex-
ity, i.e., the number of elements, of parabolic and
conic splines approximating a smooth planar curve to
within a given Hausdorff distance. In this paper we
extend this work by focusing on the symmetric dif-
ference distance. The symmetric difference distance
of two curves that are not closed, but have common
endpoints, is the total area of the regions enclosed by
the two curves. See Figure 1. We show that the com-
plexity of an optimal parabolic spline approximating
a smooth curve to within symmetric difference dis-
tance ¢, is of the form c;e=/* 4+ O(1). Ludwig [3]
considers optimal parabolic spline approximation of
strictly convex curves having monotone affine curva-
ture with respect to the symmetric difference met-
ric. Our method for computing the asymptotic error
bound of an optimal parabolic spline is different from
those of [3], and allows us to determine the optimal

*Institute of Mathematics and Computing Science, Univer-
sity of Groningen, S.Ghosh@cs.rug.nl

TInstitute of Mathematics and Computing Science, Univer-
sity of Groningen, G.Vegter@cs.rug.nl

Gert Vegter'

Figure 1: The symmetric difference of the two curves is
the total area of the (shaded regions) two moons.

asymptotic error bound in case of general conic splines
as well. Obviously, our result for parabolic splines
matches those of Ludwig [3]. We also show that the
complexity of approximation of a smooth curve with
an optimal conic spline or equisymmetric conic spline
to within symmetric difference distance ¢, is of the
form coe™1/® 4 O(1). Here both ¢; and ¢y are ex-
pressed in terms of the affine curvature. Furthermore,
for deriving the asymptotic error bounds, we use the
relation between affine curvatures of the given curve
and its bitangent offset curve as proved in [2, Lemma
4.1].

Algorithmic issues. For curves with monotone affine
curvature, called affine spirals, we conjecture that
there is a unique bitangent conic which minimizes the
symmetric difference distance to a smooth affine spi-
ral. However, there is another conic spline achieving
the same asymptotic bound on the symmetric differ-
ence metric. More precisely, we introduce the equi-
symmetric bitangent conic of an affine spiral, which is
uniquely determined by the fact that the two moons it
forms with the affine spiral have equal area. An equi-
symmetric conic spline is a tangent continuous conic
spline all elements of which are equisymmetric bitan-
gent conics of the affine spiral. The equisymmetric
conic spline has the property that all moons formed
by this spline and the affine spiral have equal area,
and we denote by C¢s the spline that minimizes the
symmetric difference distance to the spiral among all
equisymmetric conic splines. Moreover, the complex-
ity of this equisymmetric conic spline as a function of
the symmetric difference distance to the affine spiral

21

24th European Workshop on Computational Geometry

is asymptotically equal to the complexity of the op-
timal conic spline with respect to this error metric.
Therefore, we call the computation of the optimal eq-
uisymmetric conic spline a near-optimal approxima-
tion scheme. We implement this scheme for affine
spirals. The symmetric difference distance between
an affine spiral arc and its equisymmetric bitangent
conic arc is a monotone function of the arc length of
the spiral section. This useful property gives rise to
an efficient bisection based algorithm computing the
equisymmetric conic spline. The theoretical and ex-
perimental results for complexity for several curves
match exactly.

Related work. McClure and Vitale [4] consider the
problem of approximating a convex C?-curve C in
the plane by an inscribed m-gon with respect to
the symmetric difference metric ég. They prove
that, with regard to the symmetric difference dis-
tance, the optimal n-gon P,, satisfies 0g(C, P,) =
1—12(f0l Kk1/3(s)ds)3 2 +O(-k), where & is the Euclidean
curvature of the curve C' and s is the arc length pa-
rameter. Ludwig [3] shows that the symmetric differ-
ence distance of an optimal parabolic spline with n
knots and a convex C*-curve C in the plane satisfies
35(C,Qn) = 5h5 (Jo [k(w)[/3du)® L + O(-k), where u
is the affine arc length parameter and k is the affine
curvature of the curve C. Ghosh, Petitjean and Veg-
ter [2] present the first sharp asymptotic bounds for an
optimal parabolic and conic spline approximation for
a sufficiently smooth curve with non-vanishing curva-
ture, with respect to the Hausdorff distance. Further-
more, bitangent conic arcs of affine spirals have some
useful global properties which gives rise to a simple
bisection algorithm for computation of optimal conic
splines.

Overview. Section 2 reviews some notions from
affine differential geometry that we use in this pa-
per. Section 3 introduces affine spirals, a class of
curves which have a unique equisymmetric bitangent
conic. The complexity analysis of optimal parabolic
and conic splines and equisymmetric conic splines is
discussed in Section 4. Section 5 presents the output
of the algorithm for a specific example.

2 Mathematical preliminaries

Circular arcs and straight line segments are the only
regular smooth curves in the plane with constant Eu-
clidean curvature. Conic arcs are the only smooth
curves in the plane with constant affine curvature.
The latter property is crucial for our approach, so
we briefly review some concepts and properties from
affine differential geometry of planar curves. See also
Blaschke [1].

22

Affine curvature. Recall that a regular curve « :
J — R? defined on a closed real interval J, i.e., a curve
with non-vanishing tangent vector T'(s) := o/(s), is
parametrized according to Euclidean arc length if
its tangent vector T has unit length. For a curve
parametrized by arc length, the derivative of the tan-
gent vector N(s), and the Euclidean curvature is a
differential invariant of regular curves under the group
of rigid motions of the plane, i.e., a regular curve is
uniquely determined by its Euclidean curvature, upto
a rigid motion.

The larger group of equi-affine transformations of
the plane, i.e., linear transformations with determi-
nant one (in other words, area preserving linear trans-
formations), also gives rise to a differential invariant,
called the affine curvature of the curve. To intro-
duce this invariant, let I C R be an interval, and let
~v : I — R? be a smooth, regular plane curve. The
curve -y is parametrized according to affine arc length

if
[(r),~"(r)] = 1. (1)

Here [v,w] denotes the determinant of the pair of
vectors {v,w}. It follows from (1) that v has non-
zero Fuclidean curvature. Conversely, every curve
a:J C R — R? with non-zero Euclidean curvature
satisfies [o/(s),a”(s)] # 0, for u € J, so it can be
reparametrized according to affine arc length.

Note that the property of being parametrized ac-
cording to affine arc length is an invariant of the
curve under equi-affine transformations. If v is
parametrized according to affine arc length, then dif-
ferentiation of (1) yields [y/(r),~"'(r)] = 0, so there
is a scalar function k such that

V"(r) + k(r)y'(r) = 0. (2)

The quantity k(r) is called the affine curvature of the
curve v at y(r). A regular curve is uniquely deter-
mined by its affine curvature, up to an equi-affine
transformation of the plane.

The affine curvature can be expressed in terms of
the derivatives of v up to and including order four.
We refer to [2] for details.

At a point of non-vanishing Euclidean curvature
there is a unique conic, called the osculating conic,
having fourth order contact with the curve at that
point(or, in other words, having five coinciding points
of intersection with the curve). The affine curvature
of this conic is equal to the affine curvature of the
curve at the point of contact. Moreover, the contact
is of order five if the affine curvature has vanishing
derivative at the point of contact. (The curve has to
be C®.) In that case the point of contact is a sextactic
point. See [1] for further details.

Conics have constant affine curvature. Solving the
differential equation (2) shows that a curve of constant

EuroCG’'08, Nancy — March 18-20, 2008

affine curvature is a conic arc. More precisely, a curve
is a hyperbolic, parabolic or elliptic arc iff its affine
curvature is negative, zero, or positive, respectively.

3 Near optimal approximation of affine spirals

We conjecture that there is a unique optimal bitan-
gent conic minimizing the symmetric difference dis-
tance. Since we do not have a proof of this property
yet, we introduce the equisymmetric bitangent conic,
yielding splines that are near-optimal approximants
with respect to the symmetric difference distance, and
having the same asymptotic complexity as optimal
conic splines.

Area function. The symmetric difference distance
between a convex curve a and a chord a(o)a(r) is
given by Ay(0,7) = 3| [T[a(u) — a(o), o (u)]dul. A
bitangent conic of a regular curve v : [0,0] — R2?,
which is tangent to v at v(0) and ~(¢) and intersects
it at (o) has a parametrization 3 : [0, o] — R? of the
form

B(r) = 1(r) +1r2(r = 0)*(P(r, 0)t(r) + Q(r, 0)n(r)),

3)

where t(r) := 4/(r) is the affine tangent and n(r) :=

~"(r) is the affine normal to 7 at v(r). The symmetric

difference distance between « and the bitangent conic
0 is equal to

55’(’7aﬁ) = |A"/(O7U) _Aﬂ(oa U)| + |A"/(Ua Q) _Aﬁ(aa Q)‘

There is a one-parameter family of bitangent conics,
and the goal is to determine an equisymmetric bitan-
gent conic, i.e., a conic in this family for which the
area of the two moons (see Figure 1) formed by v and
0 are equal. The symmetric difference distance in
this case is defined to be the equisymmetric distance
between ~y and (.

Monotonicity of equisymmetric distance. If one
endpoint of the affine spiral moves along the curve -,
the symmetric difference distance between the affine
spiral and its equisymmetric bitangent conic arc is
monotone in the arc length of the affine spiral. More
precisely, let 7 : [ug, u1] — R? be an affine spiral arc.
For ug < u < uq, let v, be the sub-arc between ~(ug)
and vy(u), and let £, be the (unique) equisymmetric
bitangent conic arc of ~,. Then the equisymmetric
distance between ~, and 3, is a monotonically in-
creasing function of u.

This property gives rise to a bisection based method
for the computation of an equisymmetric conic spline
approximating a spiral arc to within a given symmet-
ric difference distance. Section 5 presents the output
of this algorithm for Cayley’s sextic.

4 Complexity of conic splines

In this section our goal is to determine the symmet-
ric difference distance of a conic arc of best approx-
imation to an arc of v of affine arc length o > 0,
that is tangent to v at its endpoints. If the conic
is a parabola, these conditions uniquely determine a
parabolic arc. If we approximate by a general conic,
there is one degree of freedom left, which we use to
minimize the symmetric difference distance between
the arc of v and the approximating conic arc 3.

The main result of this section gives an asymptotic
bound on this symmetric difference distance .

Theorem 1 (Optimal symmetric difference)
Let v : [0,0] — R? be a sufficiently smooth, regular
curve with non-vanishing Fuclidean curvature.

1. Let 3 be the parabolic arc tangent to ~ at the

endpoints, the symmetric difference between the two
arcs has the following asymptotic expansion

ds(v,8) = g151kol0” + O(°), (4)
where kg is the affine curvature of «y at v(0).

2. Let 8 be a bitangent conic arc, minimizing the
symmetric difference, then the symmetric difference
between the two arcs has the following asymptotic
expansion

8s(7, B) = =gs51kole® + O(e"), (5)

where k{ is the derivative of the affine curvature of v
at v(0).

3. Let B be the equisymmetric bitangent conic arc of
v, then the asymptotic expansion of the symmetric
difference between the two curves is given by (5)

Here we just outline the main idea of the proof. Let
v : [0, 0] — R2, be a curve parametrized by affine arc
length. In particular ¢ is the affine arc length. Using
the parametrization of 3 as given by (3) we have

3s(v,) = 551Q(0,0)[¢” + O(c°). (6)

In [2], we show that the affine curvature of a curve of
the form (3) is given by

ks = ko +8Q(0,0) + O(o). (7)

Since 3 is a parabolic arc, its affine curvature is zero,
ie., kg = 0. Combining (3), (6), and (7) yields the
asymptotic expression for the symmetric difference
distance given by (4). The proof of the second and
third part follows the same line of reasoning.

Corollary 2 (Complexity of conic spline) Let

v : [0, 0] — R? be a smooth curve with non-vanishing
Euclidean curvature, parametrized by affine arc

23

24th European Workshop on Computational Geometry

length, and let k(r) be its affine curvature at ~y(r).
1. The minimal number of arcs in a tangent con-

tinuous parabolic spline approximating v to within
symmetric difference distance € is

0

N(e) = (240)—1/4(/ k()| odr)e A1+ O(E/1)).
0

2. The minimal number of arcs in a tangent continu-

ous conic spline approximating -y, to within symmetric
difference distance € is

N(e) = (7680)~1/° (/OQ |k'(r)\I/GdT)6_1/5(1+O(61/5)).

The expression for complexity of an equisymmetric
conic spline is of the same form as the expression for
complexity of an optimal conic spline as given in 2.
The expressions match in the most significant terms.
For all practical cases this difference turned out to be
negligible.

Remark. The basic idea behind proving the preced-
ing corollary is to define the functions called parabolic
content and conic content. These functions are use-
ful in distributing the knots over the curve +, in such
a way, that the symmetric difference distance of all
the segments are equal. The aim for this kind of ap-
proximation is to distribute the knots uniformly over
the curve with respect to the parabolic or conic con-
tent. In fact the methods used by McClure and Vitale
in [4] and Ludwig in [3] use this notion of content to
show that there exists an optimal spline minimizing
the symmetric difference distance for a curve with a
given number of knots.

Note that N(e) is expressed in terms of equi-affine in-
variants, affine curvature and affine arc length, since
the symmetric difference metric is invariant under
equi-affine transformations.

5 Implementation

We implemented an algorithm in C++ using the sym-
bolic computing library GiNaC!, for the computation
of an optimal parabolic or an equisymmetric conic
spline, based on the monotonicity property. For com-
puting the optimal parabolic spline, the curve is di-
vided into affine spirals at the sextactic points. Then
for a local stopping condition ¢;, the algorithm iter-
atively computes the optimal parabolic arcs starting
at one endpoint. Given symmetric difference distance
€ we compute g;, by first computing the complexity n
from our theoretical result, where ¢; = =. Infact our
algorithm gives an exact match between the theoret-
ical complexity and the experimental complexity, for
sufficiently small values of €.

Thttp://www.ginac.de

24

R

Figure 2: Row 1 shows the conic spline and row 2 shows

parabolic spline approximation for Cayley’s sextic for € =
1071,1072 and 1073

Cayley’s sextic. We present the results of our al-
gorithm applied to Cayley’s sextic, parametrized by
a(t) = (4cos(%)? cos(t), 4 cos(£)? sin(t), with —27 <
t < %7‘(‘. This curve has a sextactic point at t = 0,
therefore for all values of ¢ we divide the parameter
interval into two parts [—2m,0] and [0, 3n].

Table 1 gives the number of arcs computed by the
algorithm, and the theoretical bounds on the number
of arcs for varying values of ¢, both for the parabolic
and for the conic spline.

¢ || Parabolic Conic
Exp.| Th. || Exp.| Th.

1071 6 4
102 12 4
10-3 20 6
1077 34 10
107° 60 16
1076 108 24

Table 1: Theoretical and experimental complexity match
exactly for parabolic and conic spline approximation of
Cayley’s sextic for various values of symmetric difference
distance ¢

References

[1] W. Blaschke. Vorlesungen tber Differentialgeome-
trie II. Affine Differential Geometrie, volume VII of
Die Grundlehre der mathematischen Wissenschaften
in Einzeldarstellungen. Springer-Verlag, 1923.

[2] S. Ghosh, S. Petitjean, and G. Vegter. Approxima-
tion by conic splines. Mathematics in Computer Sci-
ence, 1:36—69, 2007.

[3] M. Ludwig. Asymptotic approximation by quadratic
spline curves. Annales Universitatis Scientiarum Bu-
dapestinensis. Sectio Mathematica, 42:133-139, 1999.

[4] D.E. McClure and R. A. Vitale. Polygonal approx-
imation of plane convex bodies. Journal of Mathe-
matical Analysis and Applications, 51:326-358, 1975.

[5] L. Fejes Téth. Approximations by polygons and poly-
hedra. Bull. Amer. Math. Soc., 54:431-438, 1948.

EuroCG’'08, Nancy — March 18-20, 2008

Mixed Volume Techniques for Embeddings of Laman Graphs

Reinhard Steffens*

Abstract

We use Bernstein’s Theorem [1] to obtain combinato-
rial bounds for the number of embeddings of Laman
graph frameworks modulo rigid motions. For this, we
study the mixed volume of suitable systems of poly-
nomial equations obtained from the edge length con-
straints. The bounds can easily be computed and for
some classes of graphs, the bounds are tight.

1 Introduction

Let G = (V, E) be a graph with |E| = 2|V| — 3 edges.
If each subset of k vertices spans at most 2k — 3 edges,
we say that G has the Laman property and call it
a Laman graph (see [7]). For generic edge lengths,
Laman graphs are minimally rigid (see [3]), i.e. they
become flexible if any edge is removed.

A Henneberg sequence for a graph G is a sequence
(G;)3<i<n of Laman graphs such that Gs is a triangle,
G, = G and each G; is obtained by G;_1 via one of the
following two types of steps: A Henneberg I step adds
one new vertex v;+1 and two new edges, connecting
vi+1 to two arbitrary vertices of G;. A Henneberg I1
step adds one new vertex v;4; and three new edges,
connecting v;41 to three vertices of G; such that at
least two of these vertices are connected via an edge
e of G; and this certain edge e is removed (see Figure
1). Any Laman graph G can be constructed via a

Figure 1: A Henneberg I and a Henneberg II step.
New edges are dashed and the deleted edge is pointed.

Henneberg sequence and any graph constructed via a
Henneberg sequence has the Laman property (see [9]).
We call G a Henneberg I graph if it is constructable
using only Henneberg I steps. Otherwise we call it
Henneberg I1.

In the following we look at frameworks which are
tuples (G,L) where G = (V,E) is a graph and

*FB 12 — Institut fiir Mathematik, Postfach 111932, D—
60054 Frankfurt am Main, Germany

Thorsten Theobald™*

L={l; : [vi,v;] € E} is a set of |E| positive num-
bers interpreted as edge lengths. Given a framework
we want to know how many embeddings, i.e. maps
a :V — R2?, exist such that the Euclidean distance
between two points in the image is exactly I; ; for all
[vi,v;] € E. Since every rotation or translation of
an embedding gives another one, we ask how many
embeddings exist modulo rigid motions.

Due to the minimal rigidity property, questions
about embeddings of Laman graphs arise naturally
in rigidity and linkage problems (see [2] and the ref-
erences therein). Graphs with fewer edges will have
zero or infinitely many embeddings modulo rigid mo-
tions, and graphs with more edges do not have any
embeddings for a generic choice of edge lengths.

Determining the maximal number of embeddings
(modulo rigid motions) for a given Laman graph is
an open problem. The best upper bounds are due to
Borcea and Streinu [2] who show that the number of
embeddings is bounded by (2|“Y||__24). Their bounds are
based on degree results of determinantal varieties, but
do not seem to fully exploit the specific combinatorial
structure of Laman graphs.

Here, we present an alternative, combinatorial ap-
proach to bound the number of embeddings of a
Laman graph based on Bernstein’s theorem for sparse
polynomial systems. Since the systems of polyno-
mial equations describing the Laman embeddings are
sparse, the mixed volume of the Newton polytopes
provides a simple combinatorial upper bound on the
number of solutions. It is particularly interesting that
for some classes of graphs, the mixed volume bound is
tight (and in these cases improves the general bound
in [2]).

To use algebraic tools for this problem we formu-
late the embedding problem as a system of polynomial
equations. Each prescribed edge length translates into
a polynomial equation. Le. if [v;,v;] € E with length
lij, we require (z; — x;)® + (y; — y;)? = I3, where
a(vi) = (x;,v:) and a(v;) = (x;,y;). Thus we ob-
tain a system of |E| quadratic equations whose solu-
tions represent the embeddings of our framework. To
get rid of translations and rotations we fix one point
a(v1) = (z1,y1) = (c1,c2) and the direction of the
edge [a(v1), a(vs)] by setting yo = c3. (Here we as-
sume without loss of generality that there is an edge
between vy and vy.) For practical reasons we choose
¢; # 0 and as well ¢; # 1 2. Hence we want to study

25

24th European Workshop on Computational Geometry

the solutions to the following system.

1‘1—0120

y1 —c2 =0
zgf(llﬁgfcl):() (1)
y2 —c3 =0

(@i — ;)% + (i —y;)* =17, =0
V[U,‘,’Uj] e F— {[Ul,’Ug]}

We will give bounds on the number of solutions in
C* := C\ {0} to this system where we assume that
the edge lengths [; ; are generically chosen such that
no solutions with zero components occur. To do this
we will study the mixed volume of the Newton poly-
topes (i.e. the convex hulls of the monomial exponent
vectors, see for example [8]) of the system (1).

2 Bernstein’s Theorem and technical tools

Let Py, ..., P, ben polytopes in R". For non-negative
parameters Aq, ..., A,, the volume vol,(\ Py + ...+
A Py) is a homogeneous polynomial of degree n in
AL, ..., An with non-negative coefficients (see [10]).
The coefficient of the monomial A\;---\, is called
the mized volume of Pi,..., P, and is denoted by
MV, (P,...,P,). We have two explicit formulas for
this quantity (see [8] and [5]):

MV, (Py,...,P,)

SIS

(al,“.,an)e{o,l}"

- ¥

Q@ mixed cell of a

mixed subdivision
of P:=3" P;

(—1)%:% vol, (Zal)

(2)
vol,, (Q) (3)

For further background on mixed subdivisions, see
also [5] and [4].

The core theorem that gives a connection between
solutions to systems of polynomial equations and dis-
crete geometry is the following.

Theorem 1 (Bernstein [1]) Given polynomials
fi,.-., fn over C with finitely many common zeroes
n (C*)", let P; denote the Newton polytope of f;
in R™. Then the number of common zeroes of the
fi in (C*)™ is bounded above by the mixed volume
MV, (P,...,P,). Moreover for generic choices of
the coefficients in the f;, the number of common
solutions is exactly MV, (Py,..., Pp).

Bernstein also gives an explicit condition when a
choice of coefficients is generic. We can show that
the system (1) is never generic in that sense. Then
the mixed volume of it will always be a strict upper
bound on the number of common solutions.

26

In the special case of Henneberg I graphs our system
(1) will be in a shape that allows to separate the mixed
volume calculation into smaller pieces. Our main tool
to do this is the following Lemma.

Lemma 2 Let Py,..., P, be polytopes in R™** and
Q1,...,Qm be polytopes in R™ c R™t* | Then

MVm+k(Q1a"'7Qm7P1)"'7P]€) =
MV (@1, .-, Qm) * MV (7 (P1),...,7(Py))

where 7 : R™T* — RF denotes the projection on the
last k coordinates.

Proof. Using the explicit formula (2) we have:

MVm+k(Q1a---7Qm7P15"' Pk)

LD DR DR

B€{0,1}F ac{0,1}™

m k
V01m+k Z OéiQi + Z ﬂjPJ
i=1 j=1

)Z Bj

Since any polytopes P C R™* and Q C R™ satisfy

Vol 1(Q + P) = vol,,,(Q) volg(7(P)) + volyix(P),
this equals

MDD DI DR

Be{0,1}* ac{0,1}m

m k
* [volm (Z «o Q1> volg W(Z BiPj)
i=1 Jj=1

E @i >, B

k
+volmik | D8P

j=1

Using that 7(P; + P2) = w(Py) + w(P,) for any poly-
topes Py, P, C R™** we obtain

C D DN CE

ae{0,1}™

POCIE

pe{0,1}*

k
% VOl 1k ZﬂjP]

j=1

+ (=)™ Z (=1)%: % vol,, (Z ole)

ae{0,1}m
k
w [(=DF Y (=)= Pivol | 7(D> B Py)
B€{0,1}k Jj=1

Now the first two lines equal 0 because we just add
and substract 2! times the term in square brackets,
the third line is MV ,,,(Q1, . .., @) and finally the last
line equals MV (7(Py),...,n(Pg)) according to our
alternating formula for the mixed volume (2). O

EuroCG’'08, Nancy — March 18-20, 2008

Another technical tool which will be needed in a sub-
sequent proof is the following Lemma. This goes back
to an idea of Emiris and Verschelde [4] to use lin-
ear programming and the formula (3) to compute the
mixed volume. The proof (which we do not give here)
is based on the duality theorem for linear program-
ming.

Lemma 3 Given polytopes Py, ..., P, C R™ and lift-
ing vectors piq, ..., pn € RY,. Denote the vertices of
P; by vy), . ,v%)i and choose one edge e; = | ,(C?, vl(l)}
from each P;. Then Z?:l e; Is a mixed cell of the
mixed subdivision induced by the liftings p; if and
only if

i) The edge matrix E :=
singular (where V, := (v,(cll), e ,v,g:)) and Vj, :=
(vl(ll), e ,vl(:))) and

Vo — Vp is non-

ii) For all polytopes P; and all vertices vgi) of P
which are not in e; we have:

(diag (MTE)T E~1— u?) . (vl(z) — vgi)) >0 (4)

where p = (p1,...,un) and where diag(V') de-
notes the vector of the diagonal entries of V.

Note that (4) is linear in the p;. Hence given a choice
of edges we can explicitly calculate >, m; normal
vectors defining a cone in R™. The interior of this
cone consists of all liftings (u},. .., u!) which induce
a mixed subdivision that contains our chosen cell as
a mixed cell.

3 Henneberg | graphs

For this simple class of Laman graphs the mixed vol-
ume bound is tight as we will demonstrate below. Our
proof exploits the inductive structure of Henneberg I
graphs which is why it cannot be used for Henneberg
IT graphs.

Theorem 4 A Henneberg I step at most doubles the
number of embeddings of the framework and there is
always a choice of edge lengths such that the number
of embeddings is doubled.

Proof. In a Henneberg I step we add one ver-
tex vjy |41 and two edges [vy, Vv |41, [Vs, V) |+1] With
lengths I, |41 and [|y|41. So our system of equa-
tions (1) gets two new equations, namely

(@r — 2y i+1)+ Wr — Y141~ v =0 (5)
(s — 2140+ (Ws — Yvi+1)* =12 v =0. (6)

In our new system of equations these two are the only
polynomials involving x|y |41 and yjy |41, so we can

use Lemma 2 to calculate the mixed volume sepa-
rately. Unfortunately, the mixed volume of the projec-
tion of the Newton polytopes of these equations equals
4 which would imply that the number of embeddings
is at most quadrupled. But the following simple trick
(which we will refer to as the truncation trick) solves
this problem immediately. The set of solutions of a
system of polynomial equations is not changed when
we substract one equation from another. So instead
of adding equation (6) we add the equation (6)-(5)
which equals

a — a4 2z (T — 25) + 43— yit)

2911 (Yr — Ys) = v H v =0

Now the projections of the two new Newton polytopes
corresponding to (5) and (7) to their last two coordi-
nates have mixed volume 2 which proves the first part
of our theorem. To get two new embeddings for each
previous one we choose our new edge lengths to be
almost equal to each other and much larger then all
previous edges lengths (larger then the sum of all pre-
vious is certainly enough). This leads to the desired
new embeddings. d

Each Henneberg sequence starts with a triangle which
has obviously at most 2 embeddings up to rigid mo-
tions (we count reflections separately). Hence using
our Theorem inductively we get the following corol-
lary.

Corollary 5 The number of embeddings of Hen-
neberg I graphs is less than or equal 21V1=2 and this
bound is sharp.

4 Laman graphs on 6 vertices

For Laman graphs on 6 vertices, the general bound
in [2] on the number of embeddings is 70. From
the Henneberg constructions and simple combinato-
rial considerations, it follows that the only Henneberg
IT Laman graphs on 6 vertices are the Desargues graph
and K3 3 (see figure 2). For the Desargues graph, an

Figure 2: Left: Desargues graph. Right: K3 3.
explicit analysis is given in [2] which shows that the

correct number is only 24, and that there is a choice
of edge lengths giving 24 different embeddings. For

27

24th European Workshop on Computational Geometry

the K33, Manfred Husty found a construction with
32 embeddings [6].

When we set up the system (1) and use the trunca-
tion trick like in the proof of Theorem 4 several times,
our mixed volume approach yields a bound of 32 for
both graph classes on 6 vertices. So in the case of 6
vertices our bound is tight. By glueing several copies
of K3 3 together and using Lemma 2 to calculate the
mixed volume we get an infinite class of graphs where
our bound is tight as well.

5 General case

For the classes discussed above (Henneberg I, graphs
on six vertices) as well as some other special cases,
our bound on the number of embeddings improves
the known general bounds. We were not able to gen-
eralize the truncation trick to arbitrary Henneberg
IT graphs. For the general case, our mixed volume
approach for the untruncated system (1) provides a
simple, but very weak bound. However, it may be of
independent interest, that for this class of problems,
it is possible to determine the mixed volume exactly.

Theorem 6 The mixed volume of our initial system
(1) is exactly 4!V1-2,

Proof. The mixed volume of (1) is at most the prod-
uct of the degrees of the polynomial equations because
it is less than or equal to the Bézout bound (see [8]).
To show that the mixed volume is at least this num-
ber we will use Lemma 3 to give a lifting that induces
a mixed cell of volume 4/V1-2,

The first 4 equations of (1) give rise to a single edge
as a Newton polytope which is part of any mixed
cell. Now we claim that we can order the Newton
polytopes P; in such a way that, for ¢ > 5, P; con-
tains the edge [0,2¢;] where & denotes the " unit
vector. To see this, note first that every equation
in (1) has a non vanishing constant term and there-
fore its Newton polytope contains the point 0. To
see that P; contains 2¢; it is enough to show there
is a labeling of the edges of our graph with a direc-
tion such that each vertex has exactly two incoming
edges. Figure 3 sketches how to choose the edge di-

Figure 3: A Henneberg I and a Henneberg II step
with directed edges.

rections in the Henneberg steps to satisfy this. Now

28

using Lemma 3 we describe a lifting that induces a
subdivision that has)",[0,2¢;] as a mixed cell. In the
notation of Lemma 3 our chosen edges give rise to

the edge matrix E = <E4 0) Substituting
0 2E3y|_4

this into the second condition (4) we get that for each
Newton polytope P; all vertices v of P; which are
not 0 or 2¢; have to satisfy

(S =) 0 <0,

where we denote by p?) € Q?V! the lifting vector for
P;. Since all the entries of each ng) are non-negative
this can easily be done by choosing the vectors p(7)
such that their j** entry is relatively small and all

other entries are relatively large. O

Corollary 7 The number of embeddings of a Laman
graph framework with generic edge lengths is strictly
less then 41V1-2,

References

[1] D.N. Bernstein. The number of roots of a system
of equations. Funkcional. Anal. i PriloZen.,9(3):1-4,
1975.

[2] C. Borcea and I. Streinu. The number of embed-
dings of minimally rigid graphs, Discrete Comput.
Geom., 31(2):287-303, 2004.

[3] R. Conelly. Rigidity. In Handbook of Convex Ge-
ometry, Vol. A, pages 223-271. North Holland, Am-
sterdam, 1993.

[4] 1.Z. Emiris and J. Verschelde. How to count effi-
ciently all affine roots of a polynomial system. Dis-
crete Appl. Math., 93(1):21-32, 1999.

[5] B. Huber and B. Sturmfels. A polyhedral method
for solving sparse polynomial systems. Math.
Comp., 64(212):1541-1555, 1995.

[6] M. Husty. Talk given at the IMA workshop ’Appli-
cations in Biology, Dynamics and Statistics’, May
2007.

[7] G.Laman. On graphs and rigidity of plane skeletal
structures. J. Engrg. Math., 4:331-340, 1970.

[8] B. Sturmfels. Solving systems of polynomial equa-
tions, volume 97 of CBMS Regional Conference Se-
ries in Mathematics, 2002.

[9] T.-S. Tay and Walter Whiteley. Generating iso-
static graphs. Structural Topology, (11):21-69, 1985.

[10] R. Webster. Convezity, Oxford University Press,
New York, 1994.

EuroCG’'08, Nancy — March 18-20, 2008

Geometric Analysis of Algebraic Surfaces Based on Planar Arrangements

Eric Berberich*

Abstract

We present a method to compute the exact topol-
ogy of a real algebraic surface S, implicitly given by a
polynomial f € Q[x,y, 2] of arbitrary degree N. Addi-
tionally, our analysis provides geometric information
as it supports the computation of arbitrary precise
samples of S including critical points. We use a pro-
jection approach, similar to Collins’ cylindrical alge-
braic decomposition (cad). In comparison we reduce
the number of output cells to O(N®) by construct-
ing a special planar arrangement instead of a full cad
in the projection plane. Furthermore, our approach
applies numerical and combinatorial methods to min-
imize costly symbolic computations. The algorithm
handles all sorts of degeneracies without transform-
ing the surface into a generic position. We provide a
complete C++-implementation of the algorithm that
shows good performance for many well-known exam-
ples from algebraic geometry.

1 Introduction

Problem and results: The topological analysis of
algebraic curves and surfaces has received a lot of at-
tention in algebraic geometry, computer graphics and
CAGD. Beside the theoretical interest of the problem,
accurate topological and geometric information of al-
gebraic objects is crucial for a good visualization and
for a meaningful approximation by simpler objects,
such as splines or polygons.

We present an algorithm that provides topological
information about an arbitrary algebraic surface S,
given by an implicit equation in Qz,y, z] of degree
N. We compute a cell decomposition, where each
cell is a smooth subvariety of S of dimension 0, 1, or
2, and determine how these cells are connected. Our
cell decomposition has the boundary property, i.e., the
boundary of a cell is given by a union of other cells
(compare the similar notion of a CW-complex from al-
gebraic topology). The result is similar to a cylindri-
cal algebraic decomposition of R?, but our decompo-
sition represents the topology using only O(N?®) cells
whereas the worst case complexity of a cad is Q(N7).

Our algorithm consists of three steps: First, we
project the z-critical points of S to compute an ar-
rangement Ag, see Section 2. Second, we [ift the

*Max-Planck-Institut fiir Informatik, 66123 Saarbriicken,
Germany, email: {eric,mkerber,msagralo}@mpi-inf.mpg.de

Michael Kerber*

Michael Sagraloff*

components of Ag to R3, obtaining the cell decom-
position Qg. It suffices to lift over one sample point
of each component. Details are in Section 3. Third,
we compute the adjacencies between the cells of Qg,
as explained in Section 4.

We describe new methods for all three steps with
the goal to replace costly symbolic computations by
certified approximation methods as much as possible.
Our toolbox for approximate methods contains, for
instance, a numerical method for univariate root iso-
lation (Bitstream Descartes [8]), an extension for the
non-square-free case (m-k-Bitstream Descartes [7]),
and interval arithmetic. Still, we guarantee to reflect
the mathematical correct topology of the surface in
all cases, as expected from the exact geometric com-
putation (EGC) paradigm.

Our approach does not make any assumptions
about the input surface and does never transform the
coordinate system to prevent degeneracies. This al-
lows to accurately sample the surface in arbitrary res-
olution by lifting points of a fine granulation of the
zy-plane. On the other hand, we have to deal with
degenerate situations, in particular with vertical lines
that are part of the surface. Such lines are decom-
posed into vertical segments, and vertices in-between,
to satisfy the boundary property.

We also provide an exact and complete implementa-
tion of the presented algorithm in C++. To our knowl-
edge, this is the first EGC-implementation for the
topological analysis of algebraic surfaces, including
singular ones. It relies on an EGC-algorithm to pro-
duce arrangements of arbitrary algebraic plane curves,
which has been presented recently in [6]. Our exper-
iments show good performance for reference surfaces
from algebraic geometry. Essentially needed in the
projection step of our approach is the analysis of pla-
nar curves of degree up to N(N — 1) which limits its
practical applicability for high-degree surfaces.

Related work: The problem of topology compu-
tation for algebraic plane curves has been extensively
studied (see [7], [5] and the references therein). Re-
cently, also exact methods for the case of space curves
and surfaces came under consideration. Mourrain and
Técourt [10] compute the topology of a surface by an
isotopic piecewise linear mesh, using a plane-sweep
approach. Cheng et al. [4] use a projection approach
to produce a curvilinear wireframe that represents the
surface topology. Both methods require a generic po-
sition of the surface and apply a linear change of coor-

29

24th European Workshop on Computational Geometry

dinates otherwise. None of them reports on practical
performance of their techniques.

Arnon et al. [1] compute cads in R™. In [2], they
also compute the adjacencies between cells in a three-
dimensional cad. Similar to us, they do not switch
to generic position, and partition vertical lines into
several cells to satisfy the boundary property. Our
algorithm uses a more suitable cell decomposition for
topology information, and applies approximate meth-
ods in the adjacency computation.

A more detailed version of this work appears in [3].

2 (n,k)-Arrangements

Throughout the article, the surface S is implicitly
given by the polynomial f € Q[z,y, 2] of degree N.
We require f to be square-free and primitive, i.e.,
S contains no component twice, and has no two-
dimensional vertical component. For simplicity, we
first assume that S contains no vertical line. The end
of Section 4 sketches how to handle vertical lines.
For a fixed (algebraic) point p = (ps,p,) € R? we
consider the local polynomial f, = f(pz,py, 2) € Rz].

Definition 1 The local degree n, is the degree of f,
in z and ky, := deg ged(fy, f,) the local gcd degree.

We partition the (z,y)-plane into connected regions
where the local degree and the local gcd degree remain
invariant. To represent this partition, we use a planar
arrangement. Thus we define:

Definition 2 A connected set C C R? s called (n,k)-
invariant with respect to S if the local degree n = n¢
and the local ged degree k = ko of f are invariant
for all p € C. An (n,k)-arrangement Ag for S is a
planar arrangement whose vertices, edges, and faces
are (n,k)-invariant with respect to S.

Theorem 1 There exists an (n,k)-arrangement Ag.

Proof. We give a constructive proof. Let p be an
arbitrary point in the plane, and f = Zf-V:O a;(z,y)z".
Then n, depends on the coefficients ay, ..., ap by

np =deg fy = max {i|ai(p)# 0}

The same way, the local degree depends on the
principal Sturm-Habicht coefficients stha;(fy,) (com-
pare [9]) by

ky = degged(fp, f,) = Z:IgHHN{Z | stha;(f5,)(p) # 0}.

The coefficients a;’s and stha;(f,,,) define plane curves
a; = V(a;) and 0, ; = V(stha;(fy,)), respectively, of
degree at most N(N —1). Then n, and k, are deter-
mined by the curves p is part of. Thus, the arrange-
ment Ag induced by «a; and, for all n = 1,..., N,
00(fn)s---,0n(fn), has only (n,k)-invariant cells. O

30

The constructed arrangement has (n,k)-invariant
cells, but it contains far too many cells. To reduce
the number of cells, consider the silhouette I's of S,

)
defined by sthag(f) = res.(f, 8—];)

Lemma 2 For any point, (np,k,) = (N,0) if and
only if p is not on I's. As a consequence, all edges and
vertices of an (n,k)-arrangement Ag away from T'g
can be merged with their adjacent faces to an (n,k)-
invariant face.

Proof. We have that res, (,%) = ayDisc(f) where
Disc(f) denotes the discriminant of f. Clearly, n, =
N for a point p if and only if ay(p) # 0. From the
definition of the discriminant, k, = 0 for a point p if
and only if Disc(f)(p) # 0. O

Consequently, any (nk)-arrangement Ag can be
turned into the minimal (n,k)-arrangement by a post-
processing step (each feature C' € Ag stores (n¢, k)
as data): Remove all edges and vertices away from
I's, and remove vertices on I'g that have exactly two
adjacent edges, and both edges have the same local
degree and local ged degree as the vertex (and merge
the adjacent edges). In our implementation, we in-
tegrated this post-processing step in the arrangement
computation of the curves defined in the proof of The-
orem 1, i.e., we add the curves into the arrangement
one by one, and throw away unnecessary features im-
mediately. This lowers the size of the intermediate
values in the algorithm. One can prove that the size
of the computed minimal Ag is O(N?), i.e., of same
magnitude as the size of the silhouette arrangement.

3 The cell decomposition

We now fix an (n,k)-invariant cell C, and consider the
surface lifted over C. We define the local real degree
m,, to be the number of distinct real roots of the local
polynomial f,.

Theorem 3 Each p € C has the same local real de-

gree me. Moreover, for eachi € {1,...,m¢}, thei-th
lift C® over C' is connected, where
O(l) = {(p;cvpyazi) S Rg | (vapy) eC

and z; is the i-th root of f,}.

Proof idea. Over an (nk)-invariant set, the num-
ber of complex roots is constantly n — k. The roots
of f(p,z) continuously depend on p, thus in an open
neighborhood of any point on C' the imaginary roots
stay imaginary. As the number of roots is preserved
and imaginary roots only appear with their complex
conjugate, the real roots also remain real. 0

Theorem 3 shows that over ', the surface simply
consists of m¢ covertical copies of C'. We can define:

EuroCG’'08, Nancy — March 18-20, 2008

Definition 3 Let Ag be the minimal (nk)-
arrangement for S and m¢ the local real degree of a
cell C € Ag. The cell decomposition is defined as

o= U [U

CeA; i=1,...,m¢c

(e

Theorem 4 Qg consists of O(N®) cells.

By computing the adjacencies between these cells as
presented in Section 4, we thus can compute the topol-
ogy of the surface using O(N®) many sample points
which improves the O(N%) bound from [10]. A cylin-
drical algebraic decomposition consists of Q(N7) cells
in the worst case, due to its vertical decomposition
strategy in the plane.

The question remains how we compute the number
m¢ for each feature of Ag. As we need also geometric
information over C for the adjacency computation, we
consider a more general problem: given p € C, isolate
the real roots of the local polynomial f,. The number
of isolating intervals for a sample point immediately
reveals mc.

For the isolation, we first consider the local ged
degree k, = k¢ (Definition 1): if it is zero, the local
polynomial is square-free, and we apply the Bitstream
Descartes method [8], an exact root solver with adap-
tive precision, on f,. Otherwise, we compute m,,,
the number of real roots, using the Sturm-Habicht
sequence of f, [9], and apply the m-k-Bitstream
Descartes method [7], an extension of the Bitstream
Descartes for multiple roots, on f,,. If this steps fails
(in this case, the m-k-Bitstream Descartes quits with
a failure), the square-free part of f, is computed,
again using the Sturm-Habicht sequence, and the real
roots of the square-free part are computed using the
Bistream Descartes method.

4 Adjacency

The last step is to compute how the cells of Qg are
connected. We first state without proof:

Theorem 5 Qg has the boundary property, i.e., the
boundary of each cell is the union of other cells.

Equivalently, for any two cells M7, My with dim M; <
dim Mo, either M; does not intersect the boundary of
My, or it is completely contained in the boundary.
In the latter case we call My and M, adjacent. The
adjacency relation of such a pair can be checked at an
arbitrary point p € My, i.e., the two cells are adjacent
if and only if p € M.

Our strategy to compute the adjacencies is to con-
sider all pairs of adjacent features Cy, Cy of Ag in the
(x,y)-plane, and to find the adjacencies between the
lifts Cy) and C’éj). Assume dim C; < dim Cy. There
are two cases to consider:

C4 has dimension 1: This means that E := C is an
edge, and F := (5 is a face. As a filter, if F has at
most one multiple real root, we adopt the combinato-
rial adjacency algorithm for plane curves from [7].

If the filter does not apply, the treatment is the
same as in [2]. We choose sample points p for E and
q for F with ¢, = p, € Q (for vertical segments, we
choose p, = gy € Q), and consider the planar curve
flo=p, = f(Peyy,2) € Qly,2]. The i-th lift FO) of
F is adjacent to the j-th lift EU) of E if and only if
there is an arc of the curve V(f|y=p,) connecting the
i-th point over g, with the j-th point over p,. In our
implementation, we use the algorithm presented in [7]
to compute the adjacency information for V(f|,=p,).

C1 has dimension 0: Then, C; is a vertex at point
p, and Cy is either an edge or a face. As above, we
can filter the case that f, has at most one multiple
real root.

For the general method, let z1,..., 2z, denote the
real roots of f,. We choose (rational) intermediate
values qq, - . ., gm such that ¢;_1 < z; < g; for all i =
1,...,m. The planes z = ¢; divide the real space in
m + 2 buckets that separate the stack points z;.

Definition 4 Let C' € Ag (edge or face) be adjacent
top. A point p’ on C is bucket-faithful if there exists
a path from p’ to p on C such that on that path, each
lift CD € Qg over C remains in the same bucket.

With a bucket-faithful point p’ on C, the adjacencies
of cells over C with cells over p follows by consider-
ing the real roots of fy/: if the i-th root of f, lies in
the bucket of z;, then the cells C() and p\¥) are adja-
cent. Furthermore, points over p’ that lie in either the
bottom- or the top-most bucket belong to asymptotic
components, i.e., they are unbounded in z-direction.

To compute a bucket-faithful point for C, we first
compute a box B containing p such that no intersec-
tion with any plane z = ¢; takes place over B. In
other words, each continuous path on S over B re-
mains in the same bucket. We shrink B further until
all features of Ag adjacent to p intersect the bound-
ary of B. To find a bucket-faithful point of an edge
adjacent to p, we start at p, and follow the edge until
it crosses B for the first time. This intersection point
is bucket faithful. For a bucket-faithful point of a face
F, consider the edge F € Ag that precedes F' in coun-
terclockwise order around p. Let gg be the first inter-
section of F with the box boundary. Choose a point
qr on the box boundary between ¢ and the next in-
tersection of the box boundary with I'g in clockwise
order. g is bucket-faithful for F'.

Vertical lines In case where S contains a vertical
line ¢, at a point p € R?, the lift p® and thus the
cell decomposition (g as defined in Definition 3, is

31

24th European Workshop on Computational Geometry

Instance deg, , . | FV.#E#F) [[Qs] [t (ins) |
steiner-roman 2,2,2 (5,12,8) 28 0.73
cayley-cubic 2,2,2 (3,10,8) 31 0.74
tangle-cube 4,44 (0,6,7) 28 0.61
bohemian-dome 4,44 (7,20,14) 61 0.75
chair 4,44 (4,9,7) 31 3.05
hunt 6,6,6 (3,2,3) 15 1.21
spiky 6,9,6 (1,8.8) 13 1.43
c8 8,8,8 (40,48,26) | 496 | 30.95
random-3 3,3,3 (2,3,3) 15 0.17
random-4 4,44 (7,14,8) 64 4.50
random-5 5,5,5 (16,24,10) | 154 | 236.40
interpolated-3 3,3,3 (4,6,3) 23 0.34
interpolated-4 4,4,4 (12,18,9) 82 31.41
projection-4d 4,4,4 (4,12,9) 34 10.33

no longer well-defined. At such points, ¢, is added
to the cell decomposition. However, in order to fulfill
the boundary property, ¢, is decomposed into vertical
segments, and separating points in-between, accord-
ing to the following theorem.

Theorem 6 Let S contain the vertical line ¢, and
F € Ag be a face, which is adjacent to p. Then for any
surface patch F() (the j-th lift of F) there exists an

interval [(F)) C R, such that px [(F®) = F N,

The separating points are given by algebraic equa-
tions. The adjacency for cells over p is computed sim-
ilarly to the case of non-vertical vertices, as described
above. Because of space limitations, details are omit-
ted here but are discussed in [3].

5 Implementation, conclusions, and outlook

We implemented the analysis in C++, taking from
Exacus the surface representation and the analy-
ses of algebraic curves [6, 7] and combined them
with CGAL’s Arrangement_2 package to construct the
(n,k)-arrangement. The possibility to attach data
to DCEL-features allows to efficiently access (n,k)-
relevant data for the lifting step. All computations
follow the lazy-evaluation scheme, i.e., they are only
triggered on demand and cached, e.g., the lifting. Fol-
lowing the generic programming paradigm, we decou-
pled combinatorial tasks from surface-specific ones.

We run experiments on well-known examples from
algebraic geometry, interpolated instances, and also
a generic projection of two quadrics in 4D; exe-
cuted on a AMD Opteron(tm) 8218 (1 GHz) multi-
processor (1 MB cache) platform (32 GB RAM) run-
ning Debian Etch, compiled with g++-4.1.2 using
flags -02 -DNDEBUG and the exact number types of
CoORE. The table presents example surfaces along
with their structural data and the obtained running
times. About 90% of the time is spent to construct
Ag. Some surfaces do not show any (n,k)-vertex (e.g.,
tangle-cube) or -edge (e.g., xy-functional surfaces)
at all. Due to our approximative and combinatorial
methods, not more than the remaining 10% are spent
to compute liftings and adjacencies.

32

Our work demonstrates that surface analysis is
practically feasible for moderate degrees without
switching to a generic position. The experiments show
promising results thanks to our minimalistic cell de-
composition and the consequent application of ap-
proximate methods. We are currently investigating
how to enhance the cell decomposition to produce ex-
act triangulations of arbitrary surfaces. An extension
to multiple surfaces enables to analyze space curves
and to realize boolean operations for surfaces.

References

[1] D. S. Arnon, G. E. Collins, and S. McCallum. Cylin-
drical algebraic decomposition I: The basic algorithm.
SIAM Journal on Computing, 13:865-877, 1984.

[2] D.S. Arnon, G. E. Collins, and S. McCallum. An ad-
jacency algorithm for cylindrical algebraic decomposi-
tions of three-dimensional space. Journal of Symbolic
Computation, 5:163-187, 1988.

[3] E. Berberich, M. Kerber, M. Sagraloff. Exact
Geometric-Topological Analysis of Algebraic Surfaces.
In Proc. of the 24th Ann. Symp. on Computational
Geometry (SCG’08), 2008. To appear.

[4] J.-S. Cheng, X.-S. Gao, and M. Li. Determining the
topology of real algebraic surfaces. In R. Martin,
H. Bez, and M. Sabin, editors, 11. IMA Conference
on the Mathematics of Surfaces, volume 3604 of LNCS,
pages 121-146, 2005.

[5] D. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On
the complexity of real solving bivariate systems. In
C. W. Brown, editor, Proc. of the 2007 International
Symp. on Symbolic and Algebraic Computation (IS-
SAC 2007), pages 127-134, 2007.

[6] A. Eigenwillig and M. Kerber. Exact and efficient 2d-
arrangements of arbitrary algebraic curves. In Proc. of
the Nineteenth Ann. ACM-SIAM Symp. on Discrete
Algorithms (SODA08), pages 122-131, 2008.

[7] A. Eigenwillig, M. Kerber, and N. Wolpert. Fast and
exact geometric analysis of real algebraic plane curves.
In C. W. Brown, editor, Proc. of the 2007 Interna-
tional Symp. on Symbolic and Algebraic Computation
(ISSAC 2007), pages 151-158, 2007.

[8] A.Eigenwillig, L. Kettner, W. Krandick, K. Mehlhorn,
S. Schmitt, and N. Wolpert. A Descartes algorithm for
polynomials with bit-stream coefficients. In 8th In-
ternational Workshop on Computer Algebra in Scien-
tific Computing (CASC 2005), volume 3718 of LNCS,
pages 138-149, 2005.

[9] L. Gonzalez-Vega, T. Recio, H. Lombardi, and M.-
F. Roy. Sturm-Habicht sequences, determinants and
real roots of univariate polynomials. In B. Cavi-
ness and J. Johnson, editors, Quantifier Elimination
and Cylindrical Algebraic Decomposition, Texts and
Monographs in Symbolic Computation, pages 300—
316. Springer, 1998.

[10] B. Mourrain and J.-P. Técourt. Isotopic meshing of a
real algebraic surface. Technical Report 5508, INRIA
Sophia-Antipolis, 2005.

EuroCG’'08, Nancy — March 18-20, 2008

The Challenge of 3D Photo/Cinematography to Computational Geometry
Jean Ponce

WILLOW project-team
DI - Ecole Normale Supérieure
45, rue d’Ulm
75230 Paris cedex 05, France

e-mail: Jean.Ponce@ens.fr
URL: http://www.di.ens.fr/ ponce/

Abstract

I will present in this talk some recent results on the automated acquisition of 3D object and scene
models from multiple photographs (a process known as 3D photography) and the recovery of both
deformable shapes and dense velocity fields from video sequences (3D cinematography). I will also
discuss a number of challenges and issues raised by this work that may be of interest to computational
geometry researchers, for example: What is an effective formulation for the surface reconstruction
problem with visibility constraints? How can internal contour information be exploited in “visual-hull-
like” models? Are there effective representations of aspect graphs of polyhedral objects?

This is joint work with Yasutaka Furukawa.

33

24th European Workshop on Computational Geometry

34

EuroCG’'08, Nancy — March 18-20, 2008

Improved Upper Bounds on the Number of Vertices of Weight < k
in Particular Arrangements of Pseudocircles

Ronald Ortner*

Abstract

In arrangements of pseudocircles (Jordan curves) the
weight of a vertex (intersection point) is the number
of pseudocircles that contain the vertex in its inte-
rior. We give improved upper bounds on the number
of vertices of weight < k in certain arrangements of
pseudocircles in the plane.

1 Introduction

A pseudocircle is a simple closed (Jordan) curve in
the plane. An arrangement of pseudocircles is a finite
set I' = {71,...,7} of simple closed curves in the
plane such that (i) no three curves meet each other
at the same point, (ii) each two curves ~;,v; have at
most two points in common, and (iii) these intersec-
tion points in -y; N y; are always points where v;,;
cross each other. An arrangement is complete if each
two pseudocircles intersect.

Any arrangement can be interpreted as a planar
embedding of a graph whose vertices are the intersec-
tion points between the pseudocircles and whose edges
are the curves between these intersections. In the fol-
lowing we will often refer to this graph when talking
about vertices, edges, and faces of the arrangement.

Definition 1 Let I' = {v1,...,7,} be an arrange-
ment of pseudocircles. The weight of a vertex V is
the number of pseudocircles v; such that V is con-
tained in int(+;), the interior of ;. Weights of edges
and faces are defined accordingly.

We will consider the number vy, = vy (I") of vertices
of given weight k, the number v<y = v<i(I") of ver-
tices of weight < k, and the number vsy = v>(T') of
vertices of weight > k. Further, f = fi(T') denotes
the number of faces of weight k.

Concerning the characterization of the weight vec-
tors (vg,v1,..., vp—2) of arrangements of pseudocir-
cles little is known. So far, sharp upper bounds on vy
exist only for k£ = 0.

Theorem 1 (Kedem et al. [2]) For all arrange-
ments T with n := || > 3,

vy < 6n—12.

*Department Mathematik und Informationstechnologie,
Montanuniversitiat Leoben, rortner@unileoben.ac.at

Moreover, for each n > 3 there is an arrangement of
n (proper) circles in the plane such that vy = 6n —12.

Theorem 1 can be used to obtain general upper
bounds on v<j, by some clever probabilistic methods.

Theorem 2 (Sharir [5]) For all arrangements of n
pseudocircles and all k > 0,

U<k § 26kn.

On the other hand, J. Linhart and Y. Yang estab-
lished the following sharp upper bound on v>.

Theorem 3 (Linhart, Yang [4]) For all arrange-
ments of n > 2 pseudocircles and all k with 0 < k <
n— 2,

vsp < (n+k)(n—k—1).

In this paper we are going to improve the up-
per bounds of Theorems 1 and 2 for some particular
classes of arrangements.

2 Preparations and first results

2.1 Improved bounds from Theorem 3

We start with a bound due to J. Linhart, which holds
if there is a face of large weight in the arrangement. It
is based upon the following result of Y. Yang (which
can be shown by turning the arrangement in question
inside out).

Proposition 4 (Yang [6]) Let I' be an arrange-
ment of n pseudocircles in the plane with weight vec-
tor (vo,v1,...,Vn_2) and f, > 0. Then there is an
arrangement of pseudocircles T' with weight vector
(Vo V],V _9) = (Vn—2,Vn—1,...,0p).

J. Linhart [3] pointed out that Proposition 4 to-
gether with Theorem 3 yields the following improve-
ment of the upper bound on v<j for arrangements
with f,, > 0.

Theorem 5 (Linhart [3]) For all arrangements T’
of n pseudocircles with f,, > 0,

ver < 2k + D — (k+ 1)k +2).

35

24th European Workshop on Computational Geometry

Proof. Let I' be an arrangement with weight vector
(vo,V1,...,Un—2) and f, > 0. Then by Proposition
4, there exists an arrangement I with v}, = v,_p_o
vertices of weight k for 0 < k < n — 2. Therefore, by
Theorem 3,

k k n—2
_ E : _ E : / _ ’
V< = v; = 'Un7J72 = v
j=0 j=0 j=n—k—2
_ I
= Usp—k-2

IN

(n+n—k=2)(n—(n-k-2)-1) =
= 2(k+1n— (k+1)(k+2). 0

Theorem 5 may be used to obtain bounds of
v<p < 2n(n—w+k+1)—(k+1)(k+2),

if there is a face of large weight w. Of course, in
general this bound is worse than that of Theorem 2
as it is quadratic in n.

2.2 Improved bounds from Theorem 1
2.2.1 Faces with many participating pseudocircles

Bounds on vy can also be improved if there is a face
of weight 0 with many pseudocircles participating in
its boundary.

Proposition 6 Let I' be an arrangement of n pseu-
docircles with a face F' of weight 0 such that for each
~v € T there is an edge of v on OF, the boundary of
F. Then

vg < 4n — 6.

Proof. Let us assume that there exists an arrange-
ment I' as described in the proposition such that
vg > 4n — 6. As shown in Fig. 1 we can add a pseu-
docircle 7’ to T" such that +' cuts each v € T" on OF
in two vertices of weight 0. Note that we may add ~/
such that it does not contain any vertices of I' in its
interior. Hence, in the arrangement I'' := T U {~'} we
have

vo(I') > 4n—6+2n = 6(n+1) — 12,

which contradicts Theorem 1. O

Figure 1: Adding a pseudocircle 4" cutting each v € T
in two vertices of weight 0.

36

This proof method can be generalized to obtain a
bound of vy < 6n—2m—6 for arrangements of n pseu-
docircles with a face of weight 0 in whose boundary
m pseudocircles participate.

As shown in Fig. 2, the bound of Proposition 6 is
sharp.

Figure 2: Arrangement of n pseudocircles with vy =
4n — 6. Note that each pseudocircle participates in
the unbounded face of weight 0.

2.2.2 A bound depending on f;

Theorem 1 can also be used to obtain an upper bound
on vy that depends on the number fj of faces of weight
0.

Theorem 7 Let I' be an arrangement of n pseudo-
circles. Then

vy < 2n+2fy —4.

Theorem 7 can be proved from Theorem 1 with
the aid of the upper bound on fy given in Proposi-
tion 8 below, which is also a direct consequence of
Theorem 1. As Theorem 7 together with Proposition
8 entails Theorem 1, this can be considered as self-
strengthening of Theorem 1.

Proposition 8 Let I' be an arrangement of n > 3
pseudocircles. Then

fo < 2n—4.

Proof. First note that the boundary of each face
of weight 0 consists of at least three edges (and hence
vertices) of weight 0. For if there were a face with only
two edges belonging to some pseudocircles v; and 7,
then «; N «y; would have more than the two allowed
intersection points. On the other hand, each vertex
of weight 0 is on the boundary of only a single face of
weight 0. Therefore by Theorem 1,

Vo < 6n — 12

- 0
3= 3 "

fo £

Proof of Theorem 7. If f; equals the maximal
value 2n — 4 of Proposition 8, the theorem holds by
Theorem 1. We proceed by induction on fj, assum-
ing that the theorem holds for all arrangements with

EuroCG’'08, Nancy — March 18-20, 2008

fo + 1 faces of weight 0. Given an arbitrary arrange-
ment with fy faces of weight 0, one can easily add a
pseudocircle v that separates a face of weight 0 into
two faces of weight 0 without covering any vertices of
I (cf. also the construction in the proof of Proposition
6). The arising arrangement I'V := T'U {7} consists of
n + 1 pseudocircles and has fo + 1 faces of weight 0.
Applying the induction assumption, we have

w(T) = wo(T) =4 < 2n+1)+2(fo+1)—8
= 2’)’L+2f0—4.]

3 Improved bounds for complete arrangements
with forbidden subarrangements

In this section we consider bounds for complete ar-
rangements. First, we’d like to remark that the bound
of Theorem 1 is sharp for complete arrangements, too.
That is, for each n > 3 there is a complete arrange-
ment with vg = 6n — 12 (see Fig. 3).

Figure 3: A complete arrangement of pseudocircles
with vg = 6n — 12.

Thus, in order to obtain improved bounds on vy,
one has to put some additional restrictions on the
arrangement, e.g. by forbidding certain subarrange-
ments, which will be considered in the following.

3.1 Forbidding a-subarrangements

Evidently, arrangements of three pseudocircles are the
smallest subarrangements of interest in this respect.
Figure 4 shows the four different types one has to take
into account.

D@ DE

Figure 4: Complete arrangements of three pseudocir-
cles in the plane.

Subarrangements of type « play a special role here.
Not only are they the only arrangements of three pseu-
docircles which meet the bound of Theorem 1. They
are also the only complete arrangements of three pseu-
docircles without any face of weight 3, which is of
importance in the light of the following Helly type
theorem.

Theorem 9 (Helly [1]; Kerékjarté) Let I’ =
{71,-..,7a} be an arrangement of pseudocircles such
that for all pairwise distinct v;, v, Y,

int(7;) Nint(y;) Nint(y) # 2.
Then .
ﬂ int(;) # 2.
i=1

Corollary 10 Let I' be a complete arrangement of
n > 2 pseudocircles that has no subarrangement of
type . Then

vep < 2(k4+Dn—(k+1)(k+2).

Proof. Since I' has no a-subarrangement, the condi-
tion in Theorem 9 holds, and we may conclude that
there is a face of weight n in I'. Applying Theorem 5
yields the claimed bound. O

3.2 Forbidding o*-subarrangements

It is a natural question whether there are alternative
bounds for other forbidden subarrangements as well.
The unique complete arrangement of four pseudocir-
cles that meets the bound of Theorem 1 seems to be a
good candidate. In such an a*-arrangement each sub-
arrangement of three pseudocircles is of type a. a?-
arrangements prominently appear in the arrangement
of Fig. 3, where the three outer pseudocircles together
with any other pseudocircle form an a*-arrangement.
Indeed, for a*-free arrangements in which there is also
no f-subarrangement (cf. Fig. 4) we can show the fol-
lowing improved upper bound on vyg.

Theorem 11 In complete arrangements of n > 2
pseudocircles that are a*-free and [-free,

vo < 4n — 6.

Theorem 11 follows immediately from the following
bound on fy together with Theorem 7.

Theorem 12 In complete arrangements of n > 2
pseudocircles that are a*-free and [3-free,

fo < n—1

For the proof of Theorem 12 the following lemma
is useful. We skip a proof.

37

24th European Workshop on Computational Geometry

Lemma 13 Let I be a complete, (-free arrangement.
Then for each face F' of weight 0 in I there is a unique
a-arrangement I'y, C I' such that F is the bounded
face of weight 0 in I'y,. In particular, each face of
weight 0 has only three edges.

Proof of Theorem 12. We give a proof by induction
on n := |I'|. The case n = 2 is trivial, while for n = 3
one may consult Fig. 4. If n > 3, choose an arbitrary
pseudocircle v in I'. By induction assumption the
theorem holds for IV := '\ {7}. We claim that adding
~v to IV will increase fp by at most 1. Indeed, fo
could be increased by more than 1 only in one of the
following two cases:

First, v may separate a single face F' of weight
0 in IV into more than two new faces of weight 0.
By Lemma 13 such a face F' has only three edges
which belong to three pseudocircles that form an a-
arrangement I',. Thus, in order to separate F' as
described above, v has to intersect each pseudocircle
of Ty, in two vertices of weight 0, so that 'y U {7}
would be a forbidden a*-arrangement.

On the other hand, there might be two distinct
faces F1, F5 in IV, such that « separates each F; into
two new faces of weight 0. By Lemma 13, there is a
unique a-arrangement I',, enclosing F}, so that Fj
will be outside T',, (i.e. contained in the unbounded
face of weight 0 of T'y). Hence, v would have to
intersect the bounded as well as the unbounded face
of weight 0 in I',,. But it is easy to see that this can
only happen if v together with two pseudocircles in
Iy, forms a forbidden (-subarrangement. O

The bounds of Theorems 11 and 12 are sharp. Take
(n—1) pseudocircles such that any subarrangement of
three pseudocircles is of type 0. In this arrangement
fo =1, and each pseudocircle has an edge (and hence
two vertices) on the single face of weight 0. Adding
another pseudocircle just as indicated in the proof of
Proposition 6 (cf. Fig. 1) yields an arrangement with
fo=n—1and vy = 4n — 6.

The improved upper bound on vy of Theorem 11
can in turn be used to improve the upper bound on
v<y, for complete, a’-free arrangements.

Theorem 14 For complete, o*-free and [(-free ar-
rangements of n > 2 pseudocircles and k > 0,

V<k S 18kn.

Proof. The proof is basically identical to the proof
of Theorem 2 in [5], only with the application of The-
orem 1 replaced by an application of Theorem 11 and
the constants adapted accordingly. (Il

The bounds of Theorems 11 and 14 can easily be
generalized to (not necessarily complete) (-free ar-
rangements that do not contain certain subarrange-
ments that are generalizations of a*-arrangements.

38

4 Conclusion

We conjecture that Theorems 11, 12, and 14 also
hold if we drop the condition that the arrangement
is (-free, i.e., for the improved bounds to hold it
is sufficient that a complete arrangement is o*-free.
However, the topology of these arrangements quickly
becomes rather involved so that we haven’t yet suc-
ceeded in proving this. As an a*-arrangement cannot
be realized with unit circles, a proof of our conjecture
would also imply that Theorems 11 and 14 hold in
particular for complete arrangements of unit circles.
As shown in Fig. 5, in this case the improved bound
on vy would also be sharp.

Figure 5: Complete arrangement of six unit circles
with v9 = 4n — 6. Points that look like touching
points should be two intersection points between the
respective circles. Further circles can easily be added
to meet the bound for arbitrary n.

References

[1] E. Helly, Uber Systeme von abgeschlossenen Men-
gen mit gemeinschaftlichen Punkten. Monatsh.
Math. 37 (1930), 281-302.

[2] K. Kedem, R. Livne, J. Pach, and M. Sharir,
On the Union of Jordan Regions and Collision-
Free Translational Motion Amidst Polygonal Ob-
stacles. Discrete Comput. Geom. 1 (1986), 59-71.

[3] J. Linhart, private communication.

[4] J. Linhart, Y. Yang, Arrangements of Arcs
and Pseudocircles, Beitrige Algebra Geom. 37/2
(1996), 391-398 .

[5] M. Sharir, On k-Sets in Arrangements of Curves
and Surfaces, Discrete Comput. Geom. 6 (1991),
593-613.

[6] Y. Yang, Arrangements of Circles on E?, unpub-
lished typescript.

EuroCG’'08, Nancy — March 18-20, 2008

Helly-Type Theorems for Approximate Covering

Julien Demouth*

Abstract

Let ZU{U} be a collection of convex sets in R? such
that F covers U. We show that if the elements of F
and U have comparable size, in the sense that each
contains a ball of radius r and is contained in a ball
of radius R for some fixed r and R, then for any € > 0
there exists H. C F, whose size |H.| is polynomial
in 1/e and independent of |F|, that covers U except
for a volume of at most €. The size of the smallest
such subset depends on the geometry of the elements
of F; specifically, we prove that it is O(%) when F
consists of axis-parallel unit squares in the plane and
5(61;7(1) when F consists of unit balls in R¢ (recall
that O(n) means O(nlog”n) for some constant 3),
and that these bounds are, in the worst-case, tight up
to the logarithmic factor .

We extend these results to surface-to-surface vis-
ibility in 3 dimensions: if a collection F of disjoint
unit balls occludes visibility between two balls then a
subset of F of size O(e~ %) blocks visibility along all
but a set of lines of measure e.

Finally, for each of the above situations we give an
algorithm that takes F and U as input and outputs
in time O (|F| * |H.|) either a point in U not covered
by F or a subset H. covering U up to a measure e,
with |H.| satisfying the previous bound.

1 Introduction

A family F of sets covers a set U if the union of the
elements of F contains U. The classical SETCOVER
problem asks, given a covering JF of a finite set U, for
the smallest subset of F that covers U. In the geomet-
ric setting, both U and the elements of F are subsets
of a geometric space, for example points, hyperplanes
or balls in RZ. The original problem is NP-hard [8]
and so are many of its geometric analogues. There-
fore, approximation algorithms have been largely in-
vestigated, and in general, one looks for a subset of
F that completely covers U and whose size is near-
optimal; approximation factors better than log |U| are
provably difficult to achieve in the finite case [7, 9]
and constant factor approximations were obtained for

*LORIA - INRIA Grand Est, Univ. Nancy 2, Projet VE-
GAS, France. {demouth,goaoc}@loria.fr.

TINRIA Sophia-Antipolis, France.
olivier.devillers@sophia.inria.fr.

t@ipsa-Lab, CNRS UMR 5216, Grenoble, France.
marc.glisse@normalesup.org

Olivier Devillers®

Marc Glissef Xavier Goaoc*

only a few geometric versions [4] (see also [3]). In this
paper, we relax the problem in a different direction:
given a covering F of a set U, we look for a small
subset of F that covers most of U. Specifically, in
the geometric setting we define an e-covering of U as
a collection H of sets whose union covers U except
for a volume of at most e. Although this is a natural
question, we are not aware of previous results in this
direction.

Results. Let F be a covering of a convex set U
by convex sets in R, Let H,. denote a ~smallest -
covering of U contained in F. Recall that O(n) means
O(nlog? n) for some 3. Our main results are the fol-
lowing:

o If the elements in F have similar size, i.e. each
can be sandwiched between two spheres of fixed
radii, then |H| is bounded polynomially in 1/e
and independently of |F| (Theorem 3).

o |H.|is O (%) when F consists of axis-parallel unit

squares in the plane (Theorem 4) and 6(6%)
if F consists of unit balls in R? (Theorem 5) or
smooth convex sets of bounded curvature (Corol-
lary 7). These bounds are tight in the worst-case
(up to the logarithmic factor).

e These results extend to visibility occlusion among
disjoint unit balls in R?, where the notion of vol-
ume used relates to the form factor (Theorem 8).

e For covering by squares or balls and visibility in
3D, we give algorithms that take F and U as
input and output in O (|F| * |H|)-time either a
point in U not covered by F or an e-cover of U
contained in F; |H.| denotes our bound on the
size of the smallest e-covering for that situation
(Section 6).

Our results imply that there do not exist arbitrarily
large minimal e-cover of a convex set by similar-sized
convex sets, which is in sharp contrast with exact cov-
ering. The order /¢ gap between our bounds in the
case of squares and smooth convex sets with bounded
curvature in the plane shows that the asymptotic be-
havior of |H| when ¢ — 0 depends not only on the
size but also on the shape of the covering objects.

Geometric problems such as guarding or visibility
can be rephrased as covering problems where, given a

39

24th European Workshop on Computational Geometry

collection F and a set U one has to decide if F covers
U. Such tests can be expensive, e.g. no algorithm
with complexity o(n?) is known for reporting visible
pairs among n triangles in R? [10, Problem 7.7.1(f)],
so approximation algorithms are often used in prac-
tice. Our algorithms are interesting in that they are
simple, have complexity linear in |F| and allow to
control the error a priori.

Helly-type theorems. Helly’s theorem asserts that n
convex sets in R? have non-empty intersection if any
d + 1 of them have non-empty intersection. Results
of similar flavor — that some property on a set F can
be checked by examining its subsets of bounded size —
are known as Helly-type theorems and are the object
of active research [5, 6, 14]. A collection F covers U

if and only if the intersection of the complement of its
elements and U is empty; thus, if F consists of com-
plement of convex sets in R? and covers a convex set
U, then d+ 1 elements in F suffice to cover U. Cases
where such statements are known are, however, rather
exceptional as for most classes of objects there exists
arbitrarily large minimal covering families (the figure
above illustrates the principle of such a construction
for unit disks). Our Theorems 3, 4, 5 and 8 show that
the situation is different when approrimate covering
is considered.

Due to the lack of space this article does not contain
all the proofs. They are available in the full version
[11].

2 The general case

We start with a simple observation on approximation
of a convex set by a grid.

Lemma 1 Let O C R? be a convex set of diameter
at most R and I' a regular grid of step . The cells
of T' contained in O cover O except for a volume of

0 (0).

Note that the constant hidden in the O() notation
depends on R, which is fixed for a given collection of
sets.

A collection F of sets has scale (r, R) if each element
in F contains a ball of radius r and is contained in

40

one of radius R. We define x = /(16 Rv/d) and prove
the following technical lemmas:

Lemma 2 If U is a cube of side length ¢ in R? and
O is a convex set of scale (r,R), such that ¢ < 2r,
containing the center of U, then O N U contains at
least one cell of any regular grid of step at most kf.

We can now state the main result of this section:

Theorem 3 For any d, r and R, there exists a poly-
nomial function H(e) = Hgy, r(€) such that the fol-
lowing holds. Any covering F of a convex set U C R¢
of diameter at most R by a collection of convex sets
of scale (r,R) contains an e-covering of U of size at
most H (e).

Proof. Let Ry be an §-covering of U by O(e~?) cells
of a regular grid; Lemma 1 guarantees its existence.
We then proceed recursively. At step i, we have a
subset C; of F and a set R; of congruent cubes, each
of side length ¢; = k'ly, that together form an ¢/2-
cover of U. For each cube Y € R;, we select an object
in F that covers its center and add it to C;4.1; we then
subdivide Y using a grid of step x¢; and collect the
cubes not covered by C;y1 into R;y1. We initialize
the recursion with Rg and Cy = §). Lemma 2 implies
that in the subdivision of any cube, at least one of the
smaller cubes is covered, and thus

IRiv1] < |Ril(k74=1) and [Ciy1] < |Ci| + [Ral.

After some computations we get that |C;| =
@) (e_o(dz“fdlog 9), which concludes the proof. [

This result is optimal in the sense that it becomes
false if one of the scale or convexity conditions is
dropped. While a more careful analysis might im-
prove the bound obtained, and in particular the de-
pendency of the exponent of 1/¢ on d, the next sec-
tions show that pinning down the precise asymptotic
behavior of H(e) requires taking into account the
shape of the objects in F.

3 Covering by squares

For axis parallel boxes in R?, the analysis of the pre-
vious section holds for x = 1/2; if, moreover, U
is a cube, then |Rg| is 1 and this bound becomes

0] (e_o(de)>. We improve this bound in the planar
case:

Theorem 4 Let U C R? be an axis-parallel square
of side r covered by a finite collection F of larger
axis-aligned squares. For e > 0 sufficiently small, the
smallest e-covering of U contained in F has size O (%),
this bound is tight in the worst-case.

EuroCG’'08, Nancy — March 18-20, 2008

4 Covering by balls

When the objects of F are balls in R?, we can prove
the following, almost tight, bound:

Theorem 5 Let F be a covering of a convex U C R?
of diameter at most R by finitely many balls, each
of radius at least r. For any € > 0, the smallest

e-covering of U contained in F has size 0] (el;zd)

This bound is tight up to the logarithmic factor in
the worst-case.

The proof of this theorem relies on a technical
lemma, presented here in the planar case (d = 2).
The general case is similar.

For two disks X and Y, we denote by XY the
half-plane containing X and bounded by the tangent
to X at the projection! of the center of ¥ on the
boundary of X. We denote by FY the collection
{X¥ | X eF}.

Lemma 6 Let Y be a disk of radius r < 1 and F a
covering of a unit disk U by larger disks. Then, UNY
can be covered by a triple C(Y') C F and a collection
R(Y), of at most 2 disks of radius 4r2.

Proof. Since the collection FY covers U, it also cov-
ers U NY and, by Helly’s theorem, three of these
half-planes must cover U N'Y. We denote by C(Y)
the corresponding disks in F. For any disk X € F,
the area (XY NY)\ (X NY) is inscribed in a rectan-
gle (figure below, on the left) with sides respectively
smaller than 2r and 4r2. This rectangle can thus be

covered by overlapping disks of radius 4r2 centered
on its larger axis (figure above, on the right). By
choosing the disks so that the height covered at the
intersection between two disks is, at least, 412, we
need only % disks. ([l

4.1 Smooth convex sets

The d-dimensional case of Lemma 6 requires that (i)
given a ball Y, the set UNY be convex and that (ii)
the difference between X¥ NY and X NY can be cov-
ered by O(%) balls of radius O(r?). If an object is

LIf the two disks have the same center, we can choose any
tangent to X.

convex and its boundary has a curvature of bounded
norm, then for any point M on this boundary the ob-
ject contains a ball (of radius bounded away from 0)
and is contained in a half-space delimited by a hy-
perplane tangent to both the object and the ball in
M; this means that covering the region between the
ball and the hyperplane is enough to cover the region
between the object and the hyperplane. Theorem 5
thus extends to:

Corollary 7 Let U C R? be a convex set of diameter
at most R and F a covering of U by smooth convex
sets whose curvatures have a norm at most . For any
e > 0, the smallest subset of F that is an e-covering

of U has size O (el;zd)

5 Visibility among 3D unit balls

Two among n objects are wvisible if they support the
endpoint of a segment that intersects no other ob-
ject, and such a segment is called a wvisibility segment.
Visibility between objects can be recast as a covering
problem by observing that two objects are mutually
visible if and only if the set of segments they support
is not covered by the set of segments supported by
these two objects and intersecting some other object.
Yet, it is not clear whether Theorem 3 applies in this
setting. In this section we show that Theorem 5 yields
a similar result for visibility among balls.

A natural “volume” to quantify approximate vis-
ibility between two objects — similarly to the e-
coverings discussed so far — is given by the measure
of the set of lines supporting visibility segments be-
tween these two objects. In fact, this corresponds, up
to normalization, to the form factor used in computer
graphics (when constant basis functions are used) to
quantify visibility for simulating illumination. We call
this measure the amount of visibility between the two
objects. Building on Theorem 5, we prove:

Theorem 8 Let F U {A, B} be a collection of dis-
joint unit balls in R3 such that A and B are mutually
invisible. For any € > 0, there exists a subset G¢ C F,

of size O (e’%>, such that the amount of visibility
between A and B in G. U {A, B} is O(e).

6 Algorithms

The proofs of Theorems 4, 5 and 8 are constructive
provided that C'(Y) and R(Y') can be effectively com-
puted. As in previous sections, we consider here d as
a constant.

Covering by squares. In the case of covering by
squares, the sets C(Y) and R(Y) can be computed

41

24th European Workshop on Computational Geometry

trivially in O (]F|) time. We thus have the following
consequence:

Corollary 9 Given a covering F of a unit square U
by unit squares, we can compute in O (@)—time a

point in U not covered by F or an e-cover of U of size
(0] (%) contained in F.

Covering by balls. In the case of covering by balls,
the main difficulty is to compute C(Y"), R(Y") follow-
ing immediately. Helly’s theorem yields that given a
collection FY of n halfspaces and a ball Y C R?, ei-
ther there are d + 1 halfspaces in FY that cover Y or
there is a point in Y not covered by any half-space in
FY. In the case of covering of a ball Y by balls F,
finding C(Y') reduces in O (|F]) time into solving the
associated computational problem: finding such d+ 1
half-spaces or such a point.

Recall that LP-type problems are a special class of
optimization problems [13]. Using a technique intro-
duced by Amenta [1, 2], we can formulate the above
problem as a LP-type problem. As a consequence, we
obtain:

Corollary 10 Let F be a covering of a unit ball
U c R? by unit balls. We can compute a point in U

not covered by F or an e-cover of U of size 9] (e%)

contained in F in time O (|f\e%d>

Visibility among unit balls. Corollary 10 makes the
proof of Theorem 8 constructive and we get:

Corollary 11 Let F be a collection of disjoint unit
balls in R® and let A and B be two unit balls. We
can compute in O (|f|e_%)—time a visibility segment

between A and B or a subset G, C F, of size 0 (e_%>,

such that the amount of visibility between A and B
in G. U{A, B} is O(e).

7 Conclusion

We showed that the size of the smallest e-covering
contained in a covering F of a set U can be bounded
polynomially in 1/e¢ and independently of |F| when
all sets are convex and the size of the sets in F are
comparable with that of U. The order /e gap between
our bounds for smooth sets and squares indicate that
the asymptotic behavior of the size of the smallest
e-covering depends on the shape of the objects. Do
other simple shapes lead to different bounds?

These bounds yield simple and efficient algorithms
for, given a family F and a set U, certifying either that
F does not cover U or that F misses at most a volume
e of U. We gave an application to approximate 3D
visibility, with an algorithm to decide in linear time if

42

two balls are visible or if their form factor is at most
€. A natural continuation would be to compare these
results to the provable bounds on the error provided
by methods for approximating visibility queries used
in application areas, e.g. sampling and point-to-point
visibility in computer graphics.

References

[1] N. Amenta. Helly theorems and generalized linear
programming. Ph.D. thesis, U.C. Berkeley, 1993.

[2] N. Amenta. Helly-type theorems and generalized lin-
ear programming. Discrete and Computational Ge-
ometry, 12:241-261, 1994.

[3] H. Bronnimann and M.T. Goodrich. Almost opti-
mal set covers in finite VC-dimension. Discrete and
Computational Geometry, 14:463-479, 1995.

[4] K.L. Clarkson and K. Varadarajan. Improved ap-
proximation algorithms for geometric set cover. Dis-
crete and Computational Geometry, 37:43-58, 2007.

[5] L. Danzer, B. Grinbaum and V. Klee. Helly’s the-
orem and its relatives. V. Klee editor, Convexity,
Proc. of Symposia in Pure Math, 101-180, 1963.

[6] J. Eckhoff. Helly, Radon and Caratheodory type the-
orems. In J.E. Goodman and J. O’Rourke, editors,
Handbook of Convexr Geometry, 389—448, 1993.

[7] U. Feige. A threshold of Inn for approximating set
cover. Journal of the ACM, 45(4):634-652, 1998.

[8] R. Karp. Reducibility among combinatorial prob-
lems. Complezity of Computer Computations, Proc.
Sympos. IBM Thomas J. Watson Res. Center, 85—
103, 1972.

[9] C. Lund and M. Yannakakis. On the hardness of
approximating minimization problems. Journal of
the ACM, 41(5):960-981, 1994.

[10] J. Pach and M. Sharir. Combinatorial Geometry with
Algorithmic Applications — The Alcala Lectures. Al-
cala (Spain), August 31 - September 5, 2006.

[11] J. Demouth, O. Devillers, M. Glisse and X. Goaoc.
Helly-type theorems for approximate covering. Re-
search Report n® 6342, INRIA, Oct. 2007. Available
on http://hal.inria.fr/inria-00179277 /fr/.

[12] R. Seidel. Small-dimensional linear programming and
convex hulls made easy. Discrete and Computational
Geometry, 6(5):423-424, 1991.

[13] M. Sharir and E. Welzl. A combinatorial bound for
linear programming and related problems. In STACS
’92: Proceedings of the 9th Annual Symposium on
Theoretical Aspects of Computer Science, 569-579,
1992.

[14] R. Wenger. Helly-type theorems and geometric
transversals. In J.E. Goodman and J. O’Rourke, ed-
itors, Handbook of Discrete & Computation Geome-
try, 2nd edition, 73-96, 2004.

EuroCG’'08, Nancy — March 18-20, 2008

Dynamic Free-Space Detection for Packing Algorithms

Tobias Baumann* Magnus Jans'

Abstract

We present easy-to-implement incremental algorithms
for computing the union of axis-aligned boxes. These
algorithms can effectively be used for the implementa-
tion of packing algorithms which try to fit differently
sized axis aligned boxes into a container modelled as
a fixed point cloud.

1 Introduction

Many industries have to find arrangements of objects
within a restricted amount of space. In car manufac-
turing, the luggage capacity of a trunk has to be deter-
mined early in the production process. The goal is to
cover as much volume as possible within the given ge-
ometry of the trunk, using boxes of given sizes. To ob-
tain good starting solutions for further optimization,
e.g. using Simulated Annealing, it is useful to restrict
the orientations of the boxes to be axes aligned.

In our application, the packing problem consists of
an irregularly shaped container (the luggage compart-
ment of a car). The geometry of the container is given
by its CAD-data. As the geometry usually is quite
difficult, we discretize the problem by approximating
the shape of the container by a point cloud P. We
focus on the US standard SAE J1100 where boxes of
seven different sizes have to be packed [4].

In this work we provide solutions for the following
basic operations needed by a trunk packing algorithm:
Check whether a given box would fit into the remain-
ing free space created by the container geometry and
boxes already inserted, insert boxes into the trunk,
delete boxes from the trunk, and compute the volume
of the free space. Previous work already described
a trunk packing algorithm on a uniform grid with a
large cell size [1]. The big cell size was inevitable
because the algorithm relied on the complete repre-
sentation of a conflict graph. Due to changes in the
packing algorithm it is now possible to work with a
finer grid. This necessitates new data structures and
algorithms for the basic operations described above.
In our application a grid size of 1/10 mm is sufficient.
So we assume the points to have integer coordinates.

We have developed and implemented two ap-
proaches providing data structures and algorithms for

*Institut fir Informatik, Johannes Gutenberg-Universitat
Mainz
TInstitut fiir Informatik, Hochschule fiir Technik Stuttgart

Elmar Schomer*

Christian Schweikert* Nicola Wolpert?

performing these operations. They both work in con-
figuration space as proposed in [2]. The suitcase S to
be inserted next is represented by its reference point
Rg. Accordingly, the container P and also each suit-
case Sj, 1 < j < m, already inserted into the trunk is
enlarged by computing the corresponding Minkowski
difference P © S and S; © 5, respectively. For testing
whether the new box still fits into the trunk, we have
to query whether Rg lies outside each Minkowski dif-
ference and lies inside the remaining freespace. In a
preprocessing step we compute the Minkowski differ-
ence P © S for of all possible boxes S to be inserted
and store them in a data structure.

We have developed two different strategies to rep-
resent freespace with the following requirements in
mind:

Efficient construction of the data structure in the
preprocessing step,

fast access to the freespaces within the container,

e volume computation for branch-and-bound ap-
plication,

e and efficient addition and deletion of boxes.

The first approach always maintains the boundary
of the freespace as a union of rectangles during in-
sertions and deletions. The second one is volumetric.
The freespace is stored as the union of disjoint boxes.
Our runtime experiments suggest that the first ap-
proach behaves better in practice.

2 The first approach - Union of rectangles

For every possible suitcase S the Minkowski differ-
ence P © S provides the possible placements of S
in the configuration space. With n points in P this
gives n axis aligned boxes By, ..., B, in 3-space. We
want to compute the union U,, = |J;'_; B; and repre-
sent its boundary 0U,, by a set of oriented rectangles
R.. The problem of computing volume(U,) € R is
known as Klee’s measure problem [3]. Yap et al. [5]
developed an efficient algorithm for the d-dimenisonal
problem running in O(nd/ 2logn) time. In contrast to
their solution we do not want to compute volume(U,,)
alone but also an explicit representation of U,. If
we are able to find a set of rectangles R,, character-
izing the boundary OU, then it is easy to compute

43

24th European Workshop on Computational Geometry

volume(U,,) in time O(|R,|) (by summing up the vol-
umes of all signed rectangular parallelepipeds induced
by the rectangles parallel to the zy-plane).

2.1 An incremental algorithm

Suppose we have computed R,_; as the boundary
0U,,_1 for the first n — 1 boxes. We now consider the
last box B, and want to update R,_1 to R,. We
distinguish two cases:

1. B, NOU,_1 = 0: In this case B,, either lies com-
pletely in the interior of U, _; and thus R, = R,_1,
or B, lies completely in the exterior of U,,_1 and thus
Ryp =Rn_1UIB,.

2. B,NAoU,_; # (0: In this case all rectangles
R € R,—1 which lie completely in the interior (or
on the boundary) of B,, can be deleted. We denote
this set of rectangles D = {R € R,_1|R C B,}.
Let S = {R € R,—1|RN B,, # 0} be the set of all
those rectangles in R, _1, which partially lie within
B,,. Each rectangle R € S has to be trimmed and
decomposed into (up to four) new rectangles. These
new rectangles represent R\ B,,. These new rectan-
gles resulting from the trimming process will be de-
noted 7. Since parts of the rectangular boundary
facets of the box B,, also contribute to the boundary
0U,,, we examine the six arrangements of line seg-
ments which arise on the six facets of B,, when in-
tersecting them with the rectangles from R,,_;. Each
rectangular facet F; is decomposed in regions, which
lie inside U,,_; and regions outside of U,,_1 . A verti-
cal decomposition of the regions outside of U,,_1 yields
a set A; of new rectangles, which have to be added to
Rn_1 in order to get R,,.

6
Ro=Rn1\ (DUS)UTU[J A

=1

2.2 Algorithmic details

After this overview of our incremental algorithm for
computing the union U, of the n axis aligned boxes
we want to discuss some details which are important
for an efficient and robust implementation of this al-
gorithm. The assumption of integer coordinates for
all boxes avoids robustness problems due to floating
point arithmetic. All steps of the algorithm above
can be performed with integer arithmetic, such that
all decisions can be safely made. The next question
we want to address is that of a suitable data structure
for the set of rectangles R. This data structure must
support the following operations: insertion and dele-
tion of rectangles, orthogonal range queries for finding
those rectangles R which intersect a new box B,,. We
have evaluated two different structures: a kd-tree and

44

a uniform grid for space-partitioning. In our applica-
tion context, the uniform grid (with an adequate grid
length) showed a better performance. Profiling of the
code revealed that 70 percent of the overall runtime is
spent for the range queries using the kd-tree, and 50
percent if the uniform grid is used. The data structure
for the rectangles has to support a further operation:
Does a given rectangle R lie completely in the inte-
rior of the union U calculated so far? This can also
be solved with an orthogonal range query by shooting
aray (starting on R) in direction of an axis to infinity
and analyzing the orientation of the rectangle from R
which is first hit.

2.3 Running time

Although the theoretical running time of the incre-
mental algorithm is quadratic in n, its experimental
performance is far better at least in our application of
computing the Minkowski difference between a point
set and a box. The running time strongly depends
on the relation between the density of the point cloud
and the size of the boxes.

A
120 S€C

w100 == {1000 V nlogn "4 nsqgrtn

a0

o 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

Figure 1: Runtimes of the incremental algorithm for
n boxes with varying density

Figure 1 shows the runtimes on randomly generated
points on a sphere with differing density. The black
line indicates the runtimes for a dense point cloud in
relation to the box size. The dark grey line shows
a less dense point cloud. For comparison, the lines
indicating nlogn and n®/? are shown as light grey
lines. The runtimes for these benchmark data sets
are in general higher than for real trunk geometries.
The complete preprocessing for a real trunk (= 20000
points) takes around 45 seconds for 7 different suit-
cases in 6 possible orientations. This improved run-
time was possible due to the following observation:
When computing the free space for stepwise increas-
ing suitcases, we started with the smallest box S; and
checked which container points P’ C P actually con-
tributed to the boundary of the freespace for S;. For

EuroCG’'08, Nancy — March 18-20, 2008

the freespace of a larger suitcase containing S; only
the relevant points P’ need to be considered.

3 The volumetric approach

3.1 The idea

In our second approach, the setting is again that the
trunk is represented by a point cloud and the suitcases
are axis-aligned 3d-boxes. Again all points lie on an
integer grid and all side-lengths of a box are integers.
For a new suitcase we want to check whether it still
fits into the trunk and, if it does so, we want to insert
it.

We now make a volumetric approach. The suit-
case to be inserted next, we will call it insert-box in
the following, is represented by its reference-point Rg.
As in the previous approach, building Minkowski dif-
ferences, each point of the point-cloud representing
the trunk and also each box already inserted into the
trunk leads to a set of boxes Bi,...,B,. We name
By, ..., B, offset-boxes. The offset-boxes are stored in
an octree. For testing whether the insert-box still fits
into the trunk, we have to query the octree whether
Rg lies outside each offset-box B;. In other words,
we have to test whether Rg lies inside the remaining
freespace.

The shape of the offset-boxes B; stored in the oc-
tree strongly depends on the shape of the insert-box.
In the SAE standard we have seven different types of
suitcases. Each suitcase has six different axis-aligned
orientations. This leads to 7-6 = 42 different kinds of
insert-boxes. For each kind we build an octree stor-
ing the respective offset-boxes. We test whether a
given insert-box still fits into the trunk by checking
its octree. For packing the box into the trunk we
have to update each octree by inserting the respec-
tive Minkowski difference into each tree.

3.2 Preprocessing step

In a preprocessing step we build each of the 42 leaf-
oriented octrees storing the offset-boxes of the point
cloud representing the trunk. As usual, a node of an
octree represents an axis-aligned part of the configura-
tion space. We will call this part a node-boz. In a leaf
we store all offset-boxes B; which have a non-empty
intersection with its node-box.

We first determine an axis aligned bounding box
(AABB) containing all Bj,...,B,. For robustness
reasons we extend the AABB such that the length of
each edge equals the same power of two. The root-
node of the octree gets the AABB as its node-box. We
keep on making every node an inner-node by adding
its eight child-nodes until for a node one of the fol-
lowing conditions hold:

1) The edge length of the node-box is equal to one.

2) The node-box contains no freespace.

3) The number of offset-boxes intersecting the node-
box is smaller than a constant & and the freespace
in the node-box consists of only one connected
component.

In these cases the node becomes a leaf-node. In
the first case a further splitting is useless because we
have already reached grid-size. Also in the second
case a splitting is superfluous because no insert-box
with a reference-point lying in the node-box can be
inserted into the trunk. The first condition in the last
case is for controlling the depth of the octree. The
smaller the k the deeper the tree. The second con-
dition, namely that the freespace inside a node-box
has to be connected, is needed for the preprocessing
step we will explain in the following. But first we
describe how to check the criterion: We consider all
offset-boxes intersecting the node-box. We partition
the node-box in disjoint boxes such that each box is ei-
ther completely covered by offset-boxes or completely
belongs to the freespace. We call this step comput-
ing freespace-boxes and it is realized by cutting out
the offset-boxes one by one. Now we start with one
freespace-box and do a depth-first search on all adja-
cent freespace-boxes. If all freespace-boxes are visited,
we only have one connected freespace component in
the node-box, consider fig. 2.

I:l freespace . offset—box

Figure 2: In the left figure the freespace is connected,
in the right one it is not.

3.3 Forbidden freespace

Why do we need the last criterion for the preprocess-
ing step? In the preprocessing step we first compute
the AABB containing the trunk and insert each box
from the set P © S into the octree. Now we have
the following problem: There are points inside the
AABB lying inside the trunk and some lying outside
the trunk. More precisely, we have points inside the
AABB not contained in any offset-box B € PSS (i.e.
points in the freespace of the AABB) which are inside
the trunk and some which are outside. In order to be
able to use the octree for our queries and insertions of
suitcases later on we have to mark the freespace out-
side the trunk as forbidden freespace. Here we assume

45

24th European Workshop on Computational Geometry

that the freespace inside the trunk consists of one con-
nected component and has no connection with points
outside the trunk which makes sense for real trunks.

In order to find out and mark the forbidden
freespace in the octree we start with a leaf of the oc-
tree which surely contains freespace inside the trunk
and mark it. We omit the details on how to find this
leaf. Condition 3) now ensures that if a leaf contains
freespace inside the trunk, its whole freespace is in-
side. Using a depth-first search we consider all neigh-
boring leafs. Only in case the new leaf has freespace
connected with the freespace of the old leaf-node, the
new leaf is also marked and processed further on. At
the end all leafs which are not marked only contain
forbidden freespace and are not considered any more.

The preprocessing step is finished and we describe
how to perform the different queries using the octrees.

3.4 Computing the volume of the freespace

As mentioned before, an interesting question is to de-
termine how much freespace we still have. In general,
the freespace is different for every octree. For com-
puting the volume of the freespace for one octree we
consider all its leafs. For each leaf we compute its
freespace-boxes and sum up over all volumes of the
freespace-boxes:

volume (F) = Z Z volume (b).
leaves [freespace-
In octree hoxes b of [

3.5 Checking a reference point

To check whether an insert-box can be inserted into
the trunk we consider its octree. We make a range
query of its reference point in order to determine the
leaf of the octree containing the reference point. If
the leaf is marked as containing no freespace we are
done, the insert-box is not admissible. Otherwise we
test the reference point against all offset-boxes stored
in the leaf which are less than k. If it is contained in
none of the boxes the insert-box is admissible.

3.6 Inserting a box

For inserting a box into the data structure we have
to insert its respective Minkowski difference into each
octree. Therefore we first search in each octree the
leafs intersecting the new offset-box. For each leaf we
store the new offset-box in its list of intersecting offset-
boxes. We have to check whether the leaf still contains
freespace (this is done by computing freespace-boxes)
and if not we have to mark it. It also can happen
that now the number of offset-boxes stored exceeds
the number k& — 1. If additionally the node-box is
bigger than unit-size, the leaf becomes an inner node
and the eight child-nodes have to be computed.

46

3.7 Removing a box

For removing a box we search in each octree all leaves
containing the box. The box is deleted from the list
of intersecting offset-boxes. If the leaf was marked
containing no freespace, we have to check whether the
removal causes freespace in the leaf. If the deletion
has the effect that the number of different offset-boxes
stored in the leafs of an inner node becomes less than
k, the leafs are deleted and the inner node becomes a
leaf.

4 Summary

We have presented two different algorithms to cal-
culate the union of axis-aligned boxes and to deter-
mine available free space between these boxes. Both
approaches are implemented. The first one shows a
significantly better running time behaviour. This is
why this approach is integrated into an actual pack-
ing algorithm. In the second algorithm the most
time-consuming procedure is the computation of the
freespace boxes which is called several times in every
insertion and deletion step. One idea for further im-
provement is to relax condition 2) in order to reduce
the number of times the procedure is called.

References

[1] Ernst Althaus, Tobias Baumann, Elmar Schomer,
and Kai Werth. Trunk packing revisited. In Camil
Demetrescu, editor, WEA, volume 4525 of Lec-
ture Notes in Computer Science, pages 420-432.
Springer, 2007.

[2] Karen Daniels and Victor Milenkovic. Multi-
ple translational containment: Approximate and
exact algorithms. In SODA °95: Proceedings
of the sixzth annual ACM-SIAM symposium on
Discrete algorithms, pages 205-214, Philadelphia,
PA, USA, 1995. Society for Industrial and Applied
Mathematics.

[3] Victor Klee. Can the measure of Ula;, b;] be com-
puted in less than o(nlogn) steps? American
Mathematical Monthly, 84:284-285, 1977.

[4] Society of Automotive Engineers. SAE J1100, Mo-
tor Vehicle Dimensions, February 2001.

[5] Mark H. Overmars and Chee-Keng Yap. New up-
per bounds in klee’s measure problem (extended
abstract). In TEEE Symposium on Foundations of
Computer Science, pages 550-556, 1988.

EuroCG’'08, Nancy — March 18-20, 2008

On Computing the Vertex Centroid of a Polytope*

Hans Raj Tiwary'

Abstract

Let P be an H-polytope in R? with vertex set V. The
vertex centroid is defined as the average of the ver-
tices. We prove that computing the vertex centroid
of an H-polytope is #P-hard. Moreover, we show
that checking whether the vertex centroid lies in a
given halfspace is also #P-hard for H-polytopes. We
also consider the problem of approximating the ver-
tex centroid by finding a point within an e distance
from it and prove it to be #P-easy by showing that
given an oracle for counting the number of vertices
of an H-polytope, one can approximate the vertex
centroid in polynomial time. Finally, we show that
any algorithm approximating the vertex centroid to
any “sufficiently” non-trivial (for example constant)
distance, can be used to construct a fully polynomial
approximation scheme for approximating the centroid
and also an output-sensitive polynomial algorithm for
the Vertex Enumeration problem.

1 Introduction

Let P be an H-polytope in R¢ with vertex set V. Var-
ious notions try to capture the essence of a “center” of
a polytope. Perhaps the most popular notion is that
of the center of gravity of P. Recently Rademacher
proved that computing the center of gravity of a poly-
tope is #P-hard [6]. The proof essentially rests on the
fact that the center of gravity captures the volume of
a polytope perfectly and that computing the volume
of a polytope is #P-hard [3]. Also, polynomial algo-
rithms exist that approximate the volume of a poly-
tope within any arbitrary factor [4]. It is also easy
to see that approximating the center of gravity can
be done by simply sampling random points from the
polytope, the number of samples depending polyno-
mially on the desired approximation (See Algorithm
5.8 of [4]).

In this paper we study a variant of the notion of
“center” defined as the centroid (average) of the ver-
tices of P. Despite being quite a natural property of
polytopes, this variant seems to have received very
little attention both from theoretical and computa-
tional perspectives. Throughout this paper we will re-

*This work was done when the author was supported
by Graduiertenkolleg fellowship for PhD studies provided by
Deutsche Forschungsgemeinschaft.

TFR Informatik, Universitit des Saarlandes, D-66123,
Saarbriicken, Germany, hansraj@cs.uni-sb.de

fer to the vertex centroid just as centroid. The reader
should note that in popular literature the word cen-
troid refers more commonly to the center of gravity.
We nevertheless use the same terminology for sim-
plicity of language. Our motivation for studying the
centroid stems from the fact that the centroid encodes
the number of vertices of a polytope. As we will see,
this also makes computing the centroid hard.

The parallels between centroid and the center of
gravity of a polytope mimic the parallels between the
volume and the number of vertices of a polytope.
Computing the volume and the number of vertices are
both #P-complete (]2, 3, 5]) and so are the problems
of computing the corresponding vertices ([6], Theo-
rem 1). The volume can be approximated quite well
but approximating the number of vertices of a poly-
tope is an interesting open problem. Similarly, the
center of gravity can be approximated quite well but
(as we will see in this paper) obtaining a polynomial
algorithm for approximating the centroid would be a
very interesting achievement.

The problem of enumerating vertices of an H-
polytope has been studied for a long time. However,
in spite of years of research it is neither known to be
hard nor is there an output sensitive polynomial al-
gorithm for it. A problem that is polynomially equiv-
alent to the Vertex Enumeration problem is to decide
if a given list of vertices of an H-polytope is complete
[1]. In this paper we show that any algorithm that
approximates the centroid of an arbitrary polytope to
any “sufficiently” non-trivial distance can be used to
obtain and output sensitive polynomial algorithm for
the Vertex Enumeration problem.

The main results of this paper are the following:

e Computing the centroid of an H-polytope is #P-
hard.

e Deciding whether the centroid of an H-polytope
lies in a halfspace remains #P-hard.

e Approximating the centroid of an H-polytope is
#P-easy.

e Any algorithm approximating the centroid within
a distance dz—° can be used to obtain a fully
polynomial approximation scheme for the cen-
troid approximation problem and also an out-
put sensitive polynomial algorithm for the Vertex
Enumeration problem.

47

24th European Workshop on Computational Geometry

2 Results

The most natural computational question regarding
the centroid of a polytope is whether we can com-
pute the centroid efficiently. The problem is trivial
if the input polytope is presented by its vertices. So
we will assume that the polytope is presented by its
facets. Perhaps not surprisingly, computing the cen-
troid of an H-polytope turns out be #P-hard. We
prove this by showing that computing the centroid of
an H-polytope amounts to counting the vertices of the
same polytope, a problem known to be #P-hard.

Theorem 1 Given an H-polytope P C RY, it is #P-
hard to compute its centroid ¢(P).

Proof. We embed P in R4*! by putting a copy of P
in the hyperplane z44+; = 1 and making a pyramid
with the base P and apex at origin. Call this new
polytope Q. Treating the direction of the positive
T441-axis as up, it is easy to see that the centroid
of the new polytope lies at a height 1 — n%rl iff the
number of vertices of P is n. Thus any algorithm
for computing the centroid can be run on Q and the
number of vertices of P can be read off the (d 4 1)-st
coordinate. O

Suppose, instead, that one does not want to com-
pute the centroid exactly but is just interested in
knowing whether the centroid lies to the left or to
the right of a given arbitrary hyperplane. This prob-
lem turns out to be hard too, and it is not difficult to
see why.

Theorem 2 Given an H-polytope P C R? and a hy-
perplane h = {a - x = b}, it is #P-hard to decide
whether a - ¢(P) < b.

Proof. Consider the embedding and the direction
pointing upwards as used in the proof of Theorem
1. Given an oracle answering sidedness queries for
the centroid and any arbitrary hyperplane, one can
perform a binary search on the height of the centroid
and locate the exact height. The number of queries
needed is only logarithmic in the number of vertices
of P. O

As stated before, even though computing the grav-
itational centroid of a polytope exactly is #P-hard,
it can be approximated to any precision by random
sampling. Now we consider the problem of similarly
approximating the vertex centroid of an H-polytope.
Let dist(z,y) denote the Euclidean distance between
two points z,y € R?. We are interested in the follow-
ing problem:

Input: H-polytope P C R? and a real number € > 0.
Output: p € R? such that dist(c(P),p) < e.

48

We would like an algorithm for this problem that
runs in time polynomial in the number of facets of P,
the dimension d and % Clearly, such an algorithm
would be very useful because if such an algorithm is
found then it can be used to test whether a polytope
described by m facets has more than n vertices, in
time polynomial in m,n and the dimension d of the
polytope by setting € < Wlﬂ) This in turn would
yield an algorithm that computes the number of ver-
tices n of a d-dimensional polytope with m facets, in
time polynomial in m,n and d. As stated before, a
problem that is polynomially equivalent to the Vertex
Enumeration problem is to decide if a given list of ver-
tices of an H-polytope is complete [1]. Clearly then,
a polynomial approximation scheme for the centroid
problem would yield an output-sensitive polynomial
algorithm for the Vertex Enumeration problem.

Also, the problem of approximating the centroid is
not so interesting if we allow polytopes that contain
an arbitrarily large ball, since this would allow one
to use an algorithm for approximating the centroid
with any guarantee to obtain another algorithm with
an arbitrary guarantee by simply scaling the input
polytope appropriately, running the given algorithm
and scale back. So we will assume that the polytope
is contained in the unit hypercube in R%.

Now we prove that the problem of approximating
the centroid is #P-easy. We do this by showing that
given an algorithm that computes the number of ver-
tices of an arbitrary polytope (a #P-complete prob-
lem), one can compute the centroid to any desired
precision by making a polynomial (in %7 the number
of facets and the dimension of the polytope) number
of calls to this oracle. Notice that in the approxima-
tion problem at hand, we are required to find a point
within a d-ball centered at the centroid of the poly-
tope and radius €. We first modify the problem a bit
by requiring to report a point that lies inside a hyper-
cube, of side length 2¢, centered at the centroid of the
polytope. (The hypercube has a clearly defined cen-
ter of symmetry, namely its own vertex centroid.) To
see why this does not essentially change the problem,
note that the unit hypercube fits completely inside a
d-ball with the same center and radius @. We will
call any point that is a valid output to this approx-
imation problem, an e-approximation of the centroid
c(P).

Given an H-polytope P and a hyperplane {a-z = b}
that intersects P in the relative interior and does not
contain any vertex of P, define P; and P; as follows:

P = Pn{zla-x<b}
P, = Pn{zla-z>0b}
Let Vi be the common vertices of P; and P, and

V5 be common vertices of P, and P. The following
lemma gives a way to obtain the e-approximation of

EuroCG’'08, Nancy — March 18-20, 2008

the centroid of P from the e-approximations of the
centroids of V7 and V5.

Lemma 3 Given P, Vi, V5 defined as above, let ny
and ny be the number of vertices in V, and V5 respec-
tively. If ¢c; and co are e-approximations of the cen-
troids of V, and V5, respectively, then ¢ = % is
an e-approximation of the centroid c¢* of P.

Proof. Let c;; be the j-th coordinate of ¢; for i €
{1,2}. Also, let ¢} be the actual centroid of V; with
¢f; denoting the j-th coordinate of ¢}. Since ¢; ap-
proximates ¢ within a hypercube of side-length 2e,
for each j € {1,--- ,d} we have

*
cij — € S Cij

< C:j +e
Also, since ¢* is the centroid of P,

nici + nacs
ni + no

¢ =

Hence, for each coordinate ¢} of ¢* we have

ni(cij + €) + na(cz; + €)

nl(Cu—e)inQ(Czj—G) < c; <
2 ni + na

nicii+ngca; nicij +’I’L2C2'
= 11]+22J_E SC;S J J

mn2 ni1 + ne
«
= cj— € <cj<cjte
* *

= c; —€ <c¢j<cj+e

O

Now to obtain an approximation of the centroid, we
first slice the input polytope P from left to right into
% slices each of thickness at most e. Using standard
perturbation techniques we can ensure that any vertex
of the input polytope does not lie on the left or right
boundary of any slice. For each slice any point in the
interior gives us an e-approximation of the vertices of
P that are contained in that slice. We can compute
the number of vertices of P lying in this slice by us-
ing the oracle for vertex computation and then using
the previous Lemma we can obtain the centroid of P.
Thus we have the following theorem:

Theorem 4 Given a polytope P contained in the
unit hypercube, the e-approximation of the centroid
of P can be computed by making a polynomial num-
ber of calls to an oracle for computing the number of
vertices of a polytope.

Now we present a bootstrapping theorem indicat-
ing that any “sufficiently” non-trivial approximation
of the centroid can be used to obtain arbitrary ap-
proximations. For the notion of approximation let us
revert back to the Euclidean distance function. Thus,
any point x approximating the centroid ¢ within a pa-
rameter € satisfies dist(x,c) < e. As before we assume

that the polytope P is contained in the unit hyper-
cube. Since the polytope is thus contained in a hyper-
ball with origin as its center and radius at most @,
any point inside P approximates the centroid within a
factor v/d. Before we make precise our notion of “suf-
ficiently” non-trivial and present the bootstrapping
theorem, some preliminaries are in order.
Lemma 5 Suppose (z,%),(u,u) € R?*¢ where
z,y,u € RY, then

THY) o [1(u, w) = (2, y)l|

-3

where || - || is the Euclidean norm.

The proof of the above lemma is easy and elemen-
tary, and hence we omit it here. Next, consider the
product of two polytopes. Given d-dimensional poly-
topes P, Q the product P x Q is defined as the set
{(z,y)|z € P,y € Q}. Tt is easy to see that the num-
ber of vertices of P x Q is the product of the number
of vertices of P and that of Q, and the number of
facets of P x Q is the sum of the number of facets of
P and that of Q. Moreover, the dimension of P x Q
is the sum of the dimensions of P and that of Q.

Observation 1 If ¢ is the centroid of a polytope P
then (c,c) is the centroid of P x P.

Suppose we are given an algorithm for finding e-
approximation of an arbitrary polytope contained in
the unit hypercube. For example, for the simple algo-
rithm that returns any point inside the polytope, the
approximation guarantee is @. We consider similar
algorithms whose approximation guarantee is a func-
tion of the ambient dimension of the polytope. Now
suppose that for the given algorithm the approxima-
tion guarantee is f(d). For some parameter k consider

k times
the k-fold product of P with itself P x --- x P, de-
noted by P*. Using the given algorithm one can find
the f(2*d) approximation of P* and using Lemma 5

k
one can then find the %—approximation of P. This

gives us the following bootstrapping theorem:

Theorem 6 Suppose we are given an algorithm that
computes an T‘/g)—approximation for any polytope
contained in the unit hypercube in polynomial time,
where ¢g(.) is an unbounded monotonically increasing
function. Then, one can compute an e-approximation
in time polynomial in the size of the polytope and
97'(5)

In particular, if we have an algorithm with any fixed
constant approximation guarantee for finding the cen-
troid of any polytope, then this algorithm can be used
to construct a fully polynomial approximation scheme

49

24th European Workshop on Computational Geometry

for the general problem. In fact any algorithm with
. 1

an approximation guarantee better than dz —¢ for any

fixed & > 0 serves the purpose.

3 Concluding remarks

In this paper we studied the problem of computing the
vertex centroid exactly and approximately. Although
computing the centroid exactly turns out to be a hard
problem, the problem of approximating the centroid
remains open. We also showed via a bootstrapping
theorem that any algorithm for approximating the
centroid that has sufficiently non-trivial guarantee can
be used to obtain a fully polynomial approximation
scheme for this problem. Also, such an algorithm will
give an output sensitive polynomial algorithm for the
Vertex Enumeration problem for which no such algo-
rithm is known.

50

References

[1] D. Avis, D. Bremner, and R. Seidel. How good are
convex hull algorithms? Comput. Geom., 7:265-301,
1997.

[2] M. E. Dyer. The complexity of vertex enumera-
tion methods. Mathematics of Operations Research,
8(3):381-402, 1983.

[3] M. E. Dyer and A. M. Frieze. On the complexity of
computing the volume of a polyhedron. SIAM J. Com-
put., 17(5):967-974, 1988.

[4] R. Kannan, L. Lovész, and M. Simonovits. Random
walks and an O* (n”) volume algorithm for convex bod-
ies. Random Structures and Algorithms, 11(1):1-50,
December 1998.

[5] N.Linial. Hard enumeration problems in geometry and
combinatorics. SIAM J. Algebraic Discrete Methods,
7(2):331-335, 1986.

[6] L. Rademacher. Approximating the centroid is hard.
In Symposium on Computational Geometry, pages
302-305, 2007.

EuroCG’'08, Nancy — March 18-20, 2008

Space-Filling Curve Properties for Efficient Spatial Index Structures

Herman Haverkort™*

Abstract

For the application of space-filling curves to the cre-
ation of efficient indexes on spatial objects, we develop
methods for assessing their effectiveness and provide
new curves that lead to better query efficiency of cre-
ated indexes.

By improving and completing earlier assessments of
the quality of orderings based on space-filling curves,
we try to give better theoretical background for choos-
ing the right curve for the right application.

1 Introduction

A space-filling curve is a continuous, surjective map-
ping from R to R%. It was not always clear that such
a mapping would exist for d > 1, but in the late 19th
century Peano showed that it is possible for d = 2 and
d = 3 [16]. Since then, quite a number of space-filling
curves have appeared in the literature, but during the
early days they were primarily seen as a mathematical
curiosity.

Today however, space-filling curves are applied in
areas as diverse as load balancing for grid computing,
colour space dimension reduction, small antenna de-
sign, and the creation of spatial data indexes [10]. In
the remainder of this paper, we will mainly focus on
the application of space-filling curves to the creation
of query-efficient spatial data indexes and in particu-
lar R-trees.

R-trees An R-tree is a data structure designed for
storing spatial objects, or more specifically their
bounding boxes, in external memory. The primary
goal of an R-tree is to quickly answer spatial queries
on large sets of objects. For the purposes of this pa-
per, the structure of the tree itself is not very im-
portant. In practice, the query time of an R-tree is
dominated by the number of leaves retrieved. We will
therefore only look at the leaf level of the tree. Each
leaf stores the bounding boxes of a number of objects,
references to those objects, and the bounding box of
all objects in this leaf, used for querying. Note that
an R-tree is not uniquely defined by a set of input ob-
jects. Any distribution of the objects over the leaves
may be used as basis for an R-tree, as long as each

*Department of Mathematics and Computer Science, Eind-
hoven University of Technology, cs.herman@haverkort.net,
freek@vanwal.nl

Freek van Walderveen™*

object
‘ r\/ leaf

| \ “__—space-filling curve

object-to-curve
mapping

Figure 1: Leaves of an R-tree with B = 3

object is present in exactly one leaf, and each leaf fits
in one page of the external memory. We denote the
number of objects that fit in a page by B. Generally,
B is also referred to as the fan-out of the tree nodes.
One way of making the distribution is by somehow
ordering the input objects along a space-filling curve
(more details later) and then putting each next group
of B items together in a leaf (see for example Fig-
ure 1).

When querying these R-trees, we report all objects
that intersect a given query window by checking each
leaf whose bounding box intersects this query window.
Thus, leaves with smaller bounding boxes have less
chance of needing to be retrieved from slow external
memory (for example a hard disk needing 10 ms for
each seek). Using good space-filling curves that make
us fill each leaf with objects that lie close to each other
and thus have a small bounding box, will therefore
result in better query performance. The question thus
arising is: what makes a good space-filling curve?

Curves All space-filling curves considered in this pa-
per can be constructed using a geometrical recur-
sion scheme. See for example GP order in Figure 2,
which gives a representation of the original curve by
Giuseppe Peano. For convenience, we only describe
the behaviour of the curves within a unit region (in
this case the unit square). The first order approxima-
tion of the curve is given by the ordering of the nine
subsquares, indicated by sequence numbers. Second
and higher order approximations are obtained by ap-
propriately rotating and mirroring copies of the lower
order curve as indicated by the R shapes. We will call
this curve GP instead of Peano to avoid confusion
with other curves that have also been referred to as
the Peano curve by other authors.

51

24th European Workshop on Computational Geometry

GP order [16]
With first, second and third order approximation.

R "¢ 'R

Meurthe order
[18, Serpentine 110 110 110]

H order [14]

dering squares using this curves.

Balanced GP order Hilbert order [9]

The bottom-right figure shows one way of or-

R:l 2 3 RZR SR

1

—
e

e
K
J
K

(2 order
An Q-shaped section from [17].
J is J in reverse order.

R: 'S ' R I'r |’R

Z order [11,13]

RJR 4;0 9R R ;034R

1 Unit square:
R 1

e R

1 4 3 4

1

1
20
20

Figure 2: Space-filling curve definitions.

Although a real space-filling curve is the limit of
such a recursive process, for the purposes of this paper
we will only consider the process of approximating
these curves by polylines and more specifically the
ordering of the subsquares imposed by the curves.

A selection of the curves considered in our study is
shown in Figure 2, together with their usual reference.
The quality measures that we will consider for these
curves will be detailed later.

Our results We propose new measures for assessing
the quality of space-filling curves in their application
to R-tree index creation. Bounds on these and other
measures are presented for a number of well- and new
or less-well-known space-filling curves. A number of
these bounds improve upon results found earlier in lit-
erature. Moreover, we show that our balanced version
of the GP order gives better results than the original
GP order in most measures considered (and in some
cases even the best).

We show that in the case of R-tree indexes on
rectangles—indexed using four coordinates such as x
and y coordinate of the centre, width and height—
new four-dimensional Hilbert-like space-filling curves
lead to better query efficiency. For these curves, we
show that they exhibit a certain nice property, namely
that they reduce to the well-known two-dimensional
Hilbert curve if the width and height of the rectangles
is zero.

52

2 Quality measures for curves ordering point data

We start with a simple case: ordering spatial objects
that are in fact points in two dimensions. As dis-
cussed in the introduction, we are looking for space-
filling curves that ensure that objects lying close to
each other on the curves have small joint bounding
boxes. In the literature, quite some work can be found
on measures related to the proximity of points on a
curve. For example, notable results were found for
the following measure [7] of so called curve-to-plane

locality
dp(C(i),C(4))”

(j—i)/n
where ¢ and j are integers, C(i) is the position of
the ith subregion along the curve in a subdivision
of the unit region into n subregions, and d,(P, Q) is
the L, distance between P and @, thus dp(P,Q) =
((Pe—Qu)P+(Py—Q,)P)'/P. We will call this measure
WD,,, for Worst-case Dilation as it indicates for points
that lie close on the curve how far from each other
they might get in the plane. Niedermeier et al. [14]
show that for any plane-filling curve, WD; > 61/,
WDy > 315 and WD,, > 31k, Furthermore, sev-
eral results are known for these measures regarding
Hilbert order [1, 3, 7, 15, 5], GP order [12] and H
order [14] (see Table 1).

Curve-to-plane locality may however not give the
best prediction for bounding box areas. Therefore we
propose the Worst-case Bounding-box Area measure.

area(bbox(C(1,)))
area(C'(i, 7))

lim max
n—oo 1<i<j<n

WBA = lim max

n—oo 1<i<j<n

EuroCG’'08, Nancy — March 18-20, 2008

Order WDs WD2 WD, | WBA || RBA
GP 8 8 102/5 2.00 1.42
Bal. GP 4.62 4.62 8.62 2.00 1.42
Meurthe 5.33 5.67 10.67 2.50 1.39

Hilbert 6 6 9 2.40 1.41
1619) 5.00 5.00 9.00 2.22 1.40
H 4 4 8 3.00 1.69
Z 00 00 0o 00 2.86

Table 1: Bounds for different measures and curves.
New bounds in bold computed to the indicated preci-
sion.

where C(3,j) is the union of all subregions between
i and j (inclusive), bbox(r) is the bounding box of
region r and area(r) is the area of region r. Thus,
for an approximation of curve C filling a grid of n
squares, area(C(i,7)) = (j — i+ 1)/n.

We have the following

Lemma 1 Any recursively defined curve filling trian-
gles or a regular grid of axis-parallel rectangles satis-
fies WBA > 2.

(Proof omitted from this extended abstract.)

To assess the predictive value of the WD and WBA
measures for the size of bounding boxes in practice,
we generated 50 sets of points uniformly distributed
in the unit region. The size of each set was chosen
randomly between 150,000 and 5,400,000. The points
were packed into groups of 1000 along the curves, and
we measured the total area of the bounding boxes of
the groups. Table 1 lists the results of this Random
Bounding-box Area (RBA) experiment, as well as re-
sults for the other measures. The latter were obtained
using an algorithm that approximates the values of
the measures for the curves by iteratively finding bet-
ter upper and lower bounds (details omitted from this
abstract).

We can see that although H order performs best on
the classical measures, it performs worst (when ignor-
ing the obviously incompetitive Z order) on RBA, well
predicted by WBA. Meurthe order on the other hand,
having the best value for the RBA measure is not
among the best regarding WBA. Thus, it would be
interesting to see whether we can either find a better
averaging metric instead of the current random one,
or a theoretical (worst-case or other) measure that
has better predictive value. Furthermore, it might
be interesting to investigate if other ways of taking
bounding boxes, such as using rotated axes, lead to
better performance of particular curves.

Finally, we see that the Balanced GP order, which
is really a horizontal stretching of GP order by /3,
achieves much better results for the WD measures
(note that such a scaling is not interesting for the
other curves as they have more symmetric behaviour).

8
7

2 3 14 13
L

Figure 3: Second order approximation of the four-
dimensional Hilbert-like curve by Alber and Nieder-
meier [1] when restricted to points with zm, = Tmx
and Ymn = Ymx-

3 Four-dimensional curves ordering rectangle data

Because R-trees are built using rectangular bound-
ing boxes (or even n-dimensional ones), it is also—
and perhaps even more—interesting to investigate or-
derings on four (or more) dimensions. Kamel and
Faloutsos [10] consider the use of a four-dimensional
version of the Hilbert space filling curve for or-
dering rectangles. They consider two variants of
this approach, which map an object’s bounding box
[Tmns Tmx] X [Ymn, Ymx] to either a four-dimensional
point (Zmn, Ymn, Tmx, Ymx), dubbed the 4D-zy map-
ping, or a four-dimensional point (cs,cy,ds,dy),
where ¢, = %(mmn + xmx)7 Cy = %(ymn + ymx)v
dy = Tmx — Tmn, a0d dy = Ymx — Ymn, dubbed the
4D-cd mapping.

Kamel and Faloutsos compare the performance of
R-trees based on these approaches to the 2D Hilbert
order based only on the centre point of each rectangle.
Surprisingly, this last method performs best in their
experiments. Later experiments [2] agree on this when
the data is relatively close to point data. However on
more extreme, artificial data sets it was shown that
the 4D-xy approach easily outperforms 2D Hilbert or-
der. Apparently the 4D orders do not closely resemble
the 2D order when near-point data is supplied.

As shown by Alber and Niedermeier [1], there is
no one true four-dimensional version of the Hilbert
order. In fact there are very many 4D orders that
one could classify as having the “Hilbert property”.
Alber and Niedermeier also propose a formalism for
writing down higher dimensional Hilbert-like curves,
based on permutations of hyperquadrants and, as an
example of this generalization, give the constructing
elements for a four-dimensional curve. Another four-
dimensional curve that appears in the literature is
based on work by Butz [4] and implemented by Doug
Moore.

Both of these curves do not follow the original two-
dimensional Hilbert curve when we use them to order
objects for which z, = Tmx and Ymn = Ymx, see Fig-
ure 3 for an example. Moreover, the resulting orders
make jumps in the grid, eventually resulting in worse
query performance of R-trees based on them.

A natural question is thus, are there any four-

93

24th European Workshop on Computational Geometry

3 —o— New 4D-cd
—— Hil2D

- PR

- TGS

relative performance
—
oo

Figure 4: Number of leaves accessed by different R-
trees on data with only small (left) to larger (right)
rectangles, normalized by dividing by the performance
of the newly proposed curve.

2
- —o— New 4D-cd
1.8 1 —e— Hil2D
g —4 PR
g 16 = TGS
£
S 14
g
2 1.3
12
o
1.1
1
0.9
28 125 439 1642 9848 38850

average output per query

Figure 5: Relative number of leaves accessed by dif-
ferent R-trees on a data set taken from VLSI design
for different query sizes.

dimensional Hilbert-like space-filling curves that do
follow the original Hilbert curve when “projected”
down to two dimensions? Using an automated search
procedure, we have found 218 such curves for the 4D-
cd case in a representative part of the search space
(which is much too large to be scanned completely).
From these curves, we picked the one that performed
best on some small experiments. Then we ran ex-
periments on large artificial and real-life data sets
and compared the query performance of R-trees based
on this curve to the some of the best performing R-
trees currently known [2, 6, 10]. Some results can be
found in Figures 4 and 5. For a more detailed dis-
cussion of these and other experiments, we refer to
our manuscript [8]. There, we conclude that our new
4D-cd based ordering matches the performance of the
2D Hilbert curve for data sets with only small rectan-
gles. For data sets with larger rectangles however, the
new ordering matches or outperforms any previously
known R-tree.

4 Conclusion

Space-filling curves are (still) both theoretically in-
teresting and useful in practice. We have shown that

o4

the efficiency of R-tree indexes can be improved by
carefully picking the space-filling curve to be used. A
number of theoretical results regarding quality mea-
sures were given, but there is still a lot to explore.

References

[1] J. Alber and R. Niedermeier. On multidimensional
curves with Hilbert property. Theory of Computing
Systems, 33(4):295-312, 2000.

[2] L. Arge, M. de Berg, H. J. Haverkort, and K. Yi.
The Priority R-tree: a practically efficient and worst-
case optimal R-tree. In ACM SIGMOD conference on
Management of Data, pp 347-358, New York, 2004.

[3] K. E. Bauman. The dilation factor of the Peano-
Hilbert curve. Math. Notes, 80(5):609-620, 2006.

[4] A.R.Butz. Alternative algorithm for Hilbert’s space-
filling curve. IEEE Transactions on Computers, pp
424-426, 1971.

[5] G. Chochia, M. Cole, and T. Heywood. Implement-
ing the hierarchical PRAM on the 2D mesh: Analy-
ses and experiments. In Symp. on Parallel and Dis-
tributed Processing, pp 587-595, 1995.

[6] Y. J. Garcia, M. A. Lépez, and S. T. Leutenegger. A
greedy algorithm for bulk loading R-trees. In ACM
Symp. on Advances in GIS, pp 163-164, 1998.

[7] C. Gotsman and M. Lindenbaum. On the met-
ric properties of discrete space-filling curves. IEEE
Trans. Image Processing, 5(5):794-797, 1996.

[8] H. Haverkort and F. van Walderveen. Bulk load-
ing R-trees with four-dimensional space-filling curves.
Manuscript, 2008.

[9] D. Hilbert. Uber die stetige Abbildung einer Linie auf
ein Flachenstiick. Math. Ann., 38(3):459-460, 1891.

[10] I. Kamel and C. Faloutsos. On packing R-trees. In
Conf. on Inf. and Knowl. Man., pp 490-499, 1993.

[11] H. L. Lebesgue. Legons sur lintégration et
la recherche des fonctions primitives, pp 44—45.
Gauthier-Villars, 1904.

[12] U. von Luxburg. LokalitdtsmaBe von Peanokurven.
Stud. project report, Universitat Tiibingen, 1998.

[13] G. M. Morton. A computer oriented geodetic data
base and a new technique in file sequencing. Technical
report, IBM, Ottawa, 1966.

[14] R. Niedermeier, K. Reinhardt, and P. Sanders. To-
wards optimal locality in mesh-indexings. Discrete
Applied Mathematics, 117:211-237, 2002.

[15] R. Niedermeier and P. Sanders. On the Manhattan-
distance between points on space-filling mesh-
indexings. Technical Report IB 18/96, Karlsruhe Uni-
versity, Dept. of Computer Science, 1996.

[16] G. Peano. Sur une courbe, qui remplit toute une aire
plane. Math. Ann., 36(1):157-160, 1890.

[17] J.-M. Wierum. Definition of a new circular space-
filling curve: [Q-indexing. TR-001-02, Paderborn
Center for Parallel Computing (PC?), 2002.

[18] W. Wunderlich. Uber Peano-Kurven. Elemente der
Mathematik, 28(1):1-10, 1973.

EuroCG’'08, Nancy — March 18-20, 2008

Optimizing Active Ranges for Consistent Dynamic Map Labeling

Ken Been* Martin Nollenburg?

Abstract

Map labeling encounters unique issues in the con-
text of dynamic maps with continuous zooming and
panning—an application with increasing practical im-
portance. In consistent dynamic map labeling, dis-
tracting behavior such as popping and jumping is
avoided. In our model a dynamic label placement is
a continuous function that assigns a 2d-label to each
scale. This defines a 3d-solid, with scale as the third
dimension. To avoid popping, we truncate each solid
to a single scale range, called its active range. This
range corresponds to the interval of scales at which the
label is visible. The active range optimization (ARO)
problem is to select active ranges so that no two trun-
cated solids overlap and the sum of the active ranges
is maximized. We show that the ARO problem is NP-
complete, even for quite simple solid shapes, and we
present constant-factor approximations for different
variants of the problem.

1 Introduction

Recent years have seen tremendous improvements
in Internet-based, geographic visualization systems
that provide continuous zooming and panning (e.g.,
Google Earth), but relatively little attention has been
paid to special issues faced by map labeling in such
contexts. In addition to the need for interactive speed,
several desiderata for a consistent dynamic labeling
were identified in [1]: labels do not pop in and out or
jump (suddenly change position or size) during pan-
ning and zooming, and the labeling is a function of
scale and view area—it does not depend on the user’s
navigation history.

Model. We adapt the following labeling model
from [1], with slight changes. In static labeling, the
key operations are selection and placement—select a
subset of the labels that can be placed without over-
lap. A static placement of a label L is a transforma-
tion 7%, composed of translation, rotation, and dila-

*Computer Science Department, Yeshiva University, New
York, NY, U.S.A. kbeen@yu.edu

TFakultit fiir Informatik, Universitit Karlsruhe, Germany.
noellenburg@iti.uka.de

fDepartment of Computer Science, National Tsing Hua Uni-
versity, Hsin-Chu, Taiwan. spoon@cs.nthu.edu.tw

§Faculteit Wiskunde en Informatica, Technische Universiteit
Eindhoven, The Netherlands. http://www.win.tue.nl/~awolff

Sheung-Hung Poon?

Alexander Wolff$

tion, that takes L’s canonical shape into world coordi-
nates. Once all labels are placed, a viewing transfor-
mation takes world coordinates to map coordinates.

In dynamic labeling we take scale as an additional
dimension. As with [1, 4], we define scale as the in-
verse of cartographic scale, so that it increases when
zooming out. A dynamic placement of L is a function
that assigns a static placement 7~ to each scale s > 0.
The translation, rotation and dilation components of
the dynamic placement must each be continuous func-
tions of scale. This eliminates jumping and popping
during panning, and dependence on navigation his-
tory. Dynamic selection is similarly a Boolean func-
tion of scale. To eliminate popping during zooming
we require that each label L;, 1 <17 < n, is selected
precisely on a single interval of scales, [a;, A;], which
is called the active range of L;. Thus all consistency
desiderata can be satisfied by adhering to this model.

Let Smax be a universal
maximum scale for all la-
bels. We define the available S
range of L; to be an interval
of scales, [s;,Si] C [0, Smax)s
in which label L; “wants” Y
to be selected. We require
[a;, A;] C [si,S;i]. Since the €3
dynamic placement is con-
tinuous with scale, F; =
Usesi,si] nli(L;) is a solid
defined by sweeping the la-
bel shape along a continu-
ous curve that is monotonic
in scale, see Fig. 1. We call E; the extrusion of L;
and T; = Use[%m] wli(L;) its truncated extrusion.

Figure 1: A dyna-
mic label placement
is a solid in world
coordinates.

The extrusion shapes are determined by the la-
bel shape and the translation, rotation and dila-
tion functions that compose the dynamic placement.
We restrict our attention to certain classes of extru-
sions. Our labels are rectangular. For translation,
we consider only invariant point placements, in which
a particular point on the label always maps to the
same location in world coordinates, so the label never
“slides”. Our rotation functions are constant, and
yield axis-aligned labels. We consider two classes of
dilation functions DY. If D¥(s) = bs for a constant
b > 0, then label size is fixed on screen and propor-
tional to scale in world coordinates. The solid is then
a label-shaped cone with apex at s = 0 as in Fig. 1.
With invariant point placements, the cone contains

95

24th European Workshop on Computational Geometry

extrusion shape \ ARO \ dilation \ approx. \ running time \ reference

congruent square cones bs 1/4 O((k +n)log®n) | Theorem 4
congruent square cones simple bs 1/8 O(nlog®n) Corollary 8
arbitrary square cones bs 1/24 O(nlog®n) Theorem 7
segments of congruent square cones gencral bs 1/4 O((k 4 n)log®n) | Theorem 4
congruent frusta bs+c | 1/(4W) | O(n*) Theorem 3

Table 1: Results attained in this paper, where k is the number of pairwise intersections between extrusions and

W is the width ratio of top over bottom side.

the vertical line through its apex. The cone might
be symmetric to that line (e.g., for labeling a region)
or might have a vertical side incident to it (e.g., for
labeling a point). Secondly, we consider, in a more
general setting, functions of the form D¥(s) = bs + ¢
for constants b > 0 and ¢ # 0. The solid in this case
is a portion of a cone with apex at —c/b.

Objective. Let £ denote the set of all extrusions,
and assume we are given an available range for each.
For a set 7 of truncated extrusions, define H(7) =
> (A;—a;) to be the total active range height. This
is the same as integrating over all scales the func-
tion f(s) that counts the number of labels selected
at scale s. The (general) active range optimization
(ARO) problem is to choose the active ranges so as
to maximize H, subject to the constraint that no two
truncated extrusions overlap. This is the dynamic
analogue of placing the maximum number of labels
without overlap in the static case. We call any set
of active ranges that correspond to non-overlapping
truncated extrusions a solution. It is of both theoret-
ical and practical interest to also consider a version of
the problem in which [s;,S;] = [0, Smax] and a; = 0
for all i. We call this variant of ARO simple. In this
version all labels want to be selected at all scales, and
a label is never deselected when zooming in.

Already the simple ARO problem is NP-complete.
Table 1 summarizes the approximation results ob-
tained in this paper. In the full version we also con-
sider 1d-labels, which are segments on the z-axis. The
1d-problem can be seen as a scheduling problem with
geometric constraints and is closely related to geomet-
ric maximum independent set problems.

Previous work. Map labeling has been the focus
of extensive algorithmic investigation, see the map-
labeling bibliography [5]. However, the majority of
the research efforts cover static labeling. For dynamic
labeling, Petzold et al. [2, 3] use a preprocessing phase
to generate a data structure that is searched during
interaction to produce a labeling for the current scale
and view area. Poon and Shin [4] build a hierarchy
of precomputed solutions, and interpolation between
these produces a solution for any scale. Neither of

56

these approaches satisfies the consistency desiderata.
In addition to introducing consistency for dynamic
map labeling, Been et al. [1] show that simple ARO is
NP-complete for star-shaped labels, and implement a
simple heuristic solution in a working system.

2 Complexity

Already the simple ARO problem for congruent
square cones as extrusion shape is NP-complete. The
proof is by reduction from PLANAR3SAT using 3d-
gadgets. We omit it here due to space constraints.

Theorem 1 Simple ARO with proportional dilation
is NP-complete, i.e., given a real K > 0 and a set
{E\1,...,E,} of congruent square cones, it is NP-
complete to decide whether there is a set of truncated
extrusions T = {Ty,...,T,} with Ty C Ey,...,T, C
E,and H7T) > K.

3 Approximation algorithms

In this section we give two algorithms that yield
constant-factor approximations for a number of dif-
ferent variants of the ARO problem. The first algo-
rithm in Sect. 3.1 is based on sweeping the extrusions
from top to bottom and the second one in Sect. 3.2
is a level-based greedy algorithm. Due to space con-
straints we omit the proofs of the running times.

3.1 Top-to-bottom fill-down sweep

Algorithm 1 below is based on the idea to sweep down
over the extrusions in &, and if F; € & is selected
at some height s, we “fill” E; from s down to its
bottom—i.e., we set [a;, A;] = [s;,$]. Thus we have
a; = s; for every E; that contributes to the objective
function H at all.

Say that E; is available if its available range in-
cludes the current sweep scale s, and active if its ac-
tive range has already been set and covers s. We are
interested in event points at which the conflict graph
over the available extrusions changes. This happens
at each S; and s;, and with some extrusion shapes it
also happens at additional heights. If E; and E; are
both available at s and at s’ > s, and they intersect

EuroCG’'08, Nancy — March 18-20, 2008

at s’ but not at s, then let s;; refer to the lowest scale
at which they intersect. Let k be the number of s;;
events over £. We make use of a subroutine, “try to
pick” E;, which means, “if FE; does not intersect the
interior of any extrusion already chosen to be active
at the current sweep height s, then make FE; active
and set [a;, 4;] = [s4,5]”.

Algorithm 1 Top-to-bottom sweep algorithm.
Sweep a plane from top to bottom. At each event
point of type Sj, s, or s;;, try to pick each avail-
able but inactive extrusion E;, in non-increasing
order of S;.

The following lemma will help proving approxima-
tion factors. Let A = {(a;, A;)} be the solution com-
puted by Algorithm 1. Say that E; blocks E; at scale s
under a given solution if E; and E; overlap (i.e., their
interiors intersect) at s and s € [aj, A;]. Note that
this implies that s ¢ [a;, 4;]. Say that two extru-
sions are independent at s if their restrictions to the
horizontal plane at height s are non-overlapping.

Lemma 2 If, for any E € £ and s > 0, E can block
no more than c pairwise independent extrusions at s,
then A is a (1/c)-approximation for the maximum
total active range height of £.

Proof. Suppose that E € & is inactive at scale s
under A. Then E must be blocked at the nearest
event point above (or at) s, since otherwise it would
be picked by Algorithm 1. Since the extrusion conflict
graph only changes at event points, E is blocked at s.
Thus, in A, if F is inactive at any scale s then E is
blocked at s.

If at any scale no extrusion can block more than ¢
pairwise independent extrusions, and in A every inac-
tive extrusion is blocked, then at any scale the number
of active extrusions in an optimal solution can be no
more than ¢ times the number in A. Integrating over
all scales proves the lemma. (Il

Congruent frusta. The top-to-bottom nature of Al-
gorithm 1 ensures that if a frustum FE; blocks another
frustum FE; at scale s then FE; intersects a side face
of E;. The number of independent frusta that can
intersect a single face depends on W, the ratio of the
side length of the top face of each frustum to that of
the bottom face.

Theorem 3 Algorithm 1 computes a 1/(4W)-ap-
proximation for the maximum total active range
height of a set of n congruent frusta in O(n*) time.

Frustal segments of congruent square cones. For
congruent underlying square cones the size of all
squares is the same at each scale. Thus any extrusion
blocked by an extrusion E at scale s must intersect

one of the four corner edges of E at s, so at most four
such extrusions can be independent. The approxima-
tion factor in Theorem 4 follows from Lemma 2.

Theorem 4 Given a set of n frustal segments of axis-
aligned unit square cones, Algorithm 1 computes a
(1/4)-approximation for the maximum total active
range height in O((n + k)log® n) time.

Note that simple ARO with congruent square cones
is a special case of the above where each [s;,S;] =
[0, Smax], s0 that Theorem 4 still holds in this case.

3.2 Level-based small-to-large greedy algorithm

In this section we give an algorithm for simple ARO
with square cones. It computes a 1/8-approxima-
tion when the cones are congruent, and a (1/24)-
approximation otherwise. The algorithm intersects
the given cones with O(log n) horizontal planes, start-
ing at Spax and proceeding downward.

Algorithm 2 Level-based algorithm for 3d-cones
Initially no extrusion is active. In phase i, i =
0,...,[logn], let m; be the horizontal plane at
scale s = Spax/2". Let E; be the intersection of
extrusion F; with m; and call EJZ active if Ej is
already active. As long as there is an inactive ob-
ject E; that does not intersect any active object,
choose the smallest such object £7. and make E
(and E%.) active by setting A;» = s.

We first consider arbitrary square cones that are
symmetric to the vertical axes passing through their
apexes. When the algorithm terminates, all squares
at level ¢ that are not active must intersect an active
square—they are blocked. We associate each blocked
square E; to one of the active squares in the follow-
ing way: (i) If EJZ was not blocked at the beginning
of phase ¢ but became blocked by a newly activated
square E}, then associate E} to Ej. (i) If E; was
blocked in the beginning of phase 7 then associate E;
to any of its blocking squares that were active at the
beginning of phase 7. Next, we show that the squares
associated to an active square cannot be arbitrarily
small.

Lemma 5 Let EJ’ be an active square at level i with
side length (;. Then any square associated to E} has
side length at least E;- /3 and intersects the boundary
of E%.

Proof. Let Ej} be associated to E} with £} < £%. By
the greedy choice of the algorithm, all squares associ-
ated to a newly active square are larger than it. This
implies that F; must have been activated at a higher
level, and that Ej must have been reassigned to E;
at some level h <. Thus, at level h — 1 square E,}g_l

o7

24th European Workshop on Computational Geometry

(a) Squares at level h — 1.

Figure 2: Intersection behavior of £}, Ey, E; at two consecutive levels.

was associated to another square Elh_l. Note that
for this reassignment to take place at level h, E;kl
must have been active. Thus we know that EJ’-I_1 and

E"! do not intersect, but they both intersect E'*;
see Fig. 2a. At level h the reassignment takes place
because E,’; no longer intersects Elh but still intersects
EJh7 see Fig. 2b. Now suppose EZ < E?/ZB. Then by
going from level h to h — 1 the side lengths of the
squares are doubled and it is easy to verify that E,’; -1
would be contained in E;‘_l, a contradiction to the
fact that Ep~' N E}™" # 0. As ¢} > (/3 this also
holds for level 7, and since E,i“l intersects the bound-
ary of EJh_1 this is also still true for level i. O

Let 7ogn74+1 be the plane s = 0, and denote the
active segments of the extrusions in the optimal solu-
tion & and our algorithm’s solution A between planes
mi—1 and 7; by S; and A;, respectively. We charge
the active range height H(S;) to that of H(A;41).

Lemma 6 For i € 1,...,[logn] —1 it holds that
H(A;+1) > 1/24 H(S)).

Proof. Let square EJZ be active in A and consider
the set D(EY) of squares in 7; associated to it. The
squares in D(EY) that correspond to active extrusions
in S; cannot intersect each other.

By Lemma 5, all squares in D(E;) have side length
at least £} /3 and intersect the boundary of Ef. Thus,
at most 12 of those squares can be independent in 7;
and hence active in S; like in Fig. 3. Now the height
between levels ¢ and ¢ — 1 is twice the height between
levels ¢ + 1 and i. Hence the active height of F; in
A1 is at least 1/24 times the sum of heights of active
extrusions in S; whose squares at level i are associated
to E}. It follows that H (A1) > 1/24 H(S;). O

Theorem 7 Algorithm 2 computes a (1/24)-approx-
imation to the maximum total active range height of
a set of arbitrary square cones in O(nlog®n) time.

Proof. From Lemma 6, it remains to compare
H(Sﬂogvﬂ) +H(S[log n]Jrl) to H(-A[logn]+1) +H(-A1)'

58

,,,,,,,,, ‘ N

(b) Squares at level h.

EE
| . B
| [

(e

Figure 3: At most 12 indepen-
dent squares intersect E;

The height of 710 n1—1 is at most 2Syax/n and obvi-
ously there are at most n active cone segments in S
below mogn1—1, SO their total active range height is
at most 2S.x. On the other hand, there is at least
one active cone segment in A; of height Spax /2. Thus
the approximation factor is indeed 1/24. O

With congruent square cones, all squares at each
level are the same size, so at most four rather than 12
independent squares can intersect a given square. A
similar argument gives the following corollary.

Corollary 8 Algorithm 2 computes a (1/8)-approx-
imation to the maximum total active range height of
a set of congruent square cones in O(n log3 n) time.

4 Conclusions

ARO is an exciting new problem inspired by inter-
active web-based mapping applications and we have
given approximation algorithms for some variants. It
remains open whether any of the problems admits a
PTAS. Also, mapping applications in practice often
require more complex extrusion shapes.

References

[1] K. Been, E. Daiches, and C. Yap. Dynamic map la-
beling. IEEFE Transactions on Visualization and Com-
puter Graphics, 12(5):773-780, 2006.

[2] 1. Petzold, G. Groger, and L. Pliimer. Fast screen map
labeling—data-structures and algorithms. In Proc.
28rd Internat. Cartographic Conf. (ICC’03), pages
288-298, Durban, South Africa, 2003.

[3] I. Petzold, L. Pliimer, and M. Heber. Label placement
for dynamically generated screen maps. In Proc. 19th
Internat. Cartographic Conf. (ICC’99), pages 893-903,
1999.

[4] S.-H. Poon and C.-S. Shin. Adaptive zooming in point
set labeling. In M. Liskiewicz and R. Reischuk, editors,
Proc. 15th Internat. Sympos. Fundam. Comput. The-
ory (FCT’05), volume 3623 of Lecture Notes Comput.
Sci., pages 233-244. Springer-Verlag, 2005.

[5] A. Wolff and T. Strijk. The Map-Labeling Bibli-
ography. http://illwww.ira.uka.de/map-labeling/
bibliography, 1996.

EuroCG’'08, Nancy — March 18-20, 2008

Order-k Triangulations of Convex Inclusion Chains in the Plane

Wael El Oraiby*

Abstract

Given a set V' of n points in the plane, we show that
there is a strong connexion between the k-sets of a
convex inclusion chain of V introduced in [5] and
the centroid triangulations of V' defined in [8]. We
also show that one of these triangulations can be con-
structed in O(nlogn + k(n — k) log® k) time.

1 Introduction

Given a finite set V' of n points in the Euclidean plane
(no three of them being collinear) and an integer k
(0 < k < n), the k-sets of V are the subsets of k
points of V' that can be strictly separated from the rest
by a straight line. The numbers of k-sets have been
studied in various ways in computational and combi-
natorial geometry (see [4], [12], and [10] for some best
bounds known in the plane). In [5], we have given
a new invariant of the number of k-sets, in connex-
ion with convex inclusion chains of V. Such a chain
is an ordering V = (v1,va,...,v,) of the points of V
such that, for every i € {2,...,n}, v; does not belong
to the convex hull conv(S;—1) (with S; = {v1,...,v; },
for all i € {1,...,n}). The set of k-sets of the convex
inclusion chain V is then the set of distinct k-sets of
Sky Sk+1y -y Sn. We have shown that the number of
these k-sets does not depend on the chosen chain and,
surprisingly, it is equal to the number of re