



Abstract—This paper deals with the preprocessing needed for

the optimal camera placement problem, which is stated as a

unicost set covering problem (USCP). Distributed and

massively parallel computations with graphics processing unit

(GPU) are proposed in order to perform the reduction and

visibility preprocessing respectively. An experimental study

reports that a significant speedup can be achieved, and we give

a general heterogeneous parallel approach that brings together

these parallel computations. In addition to that, a set-based

differential evolution (DE) method is applied to solve 10

instances of the considered problem, and promising results are

reported.

Index Terms—Distributed computing, graphics processing

unit (GPU), optimal camera placement problem, preprocessing,

set-based differential evolution (DE) algorithm, unicost set

covering problem (USCP).

I. INTRODUCTION

Intelligent video surveillance systems aim at monitoring

areas of interest by using appropriate networks of cameras:

the placement of these cameras is thus of great importance

because of the requested quality of service and the

deployment costs. Such an optimal camera placement

problem can be stated as a decision problem in a discrete

search space [1]: given the set of possible camera locations,

find the optimal subset that can meet the operational

requirements. In this work, the problem is modelled as a

unicost set covering problem (USCP) together with a

three-dimensional discretization of the monitored area.

Firstly, the optimization process needs the following input

data: the list of points to be covered, the list of possible

camera locations, and the lists of points covered by each

possible camera location. This so-called visibility

preprocessing is performed according to the practical context,

where the 3D setting avoids blind spot (with regard to a 2D

model), but at the cost of a much larger computational effort

[2]. For this reason, it is of high interest to design parallel

approaches that can compute these input data within a

reasonable time, so that larger problems can be optimized.

Secondly, these input data can be reduced in order to speed

up the optimizing process. The main reduction strategy is a

variant of the so-called column domination test for

non-unicost set covering problems [3] (sets that cover fewer

points at the same cost can be removed, instead of those that

cover the same points at a higher cost). It consists in

Manuscript received October 27, 2017; revised December 12, 2017. This

work was supported by the French Agence Nationale de la Recherche (ANR)
as part of the OPMoPS project (ANR-16-SEBM-0004).

The authors are with the LMIA Research Laboratory, Université de

Haute-Alsace, Mulhouse, France (e-mail: mathieu.brevilliers@uha.fr,
julien.lepagnot@uha.fr, julien.kritter@uha.fr, lhassane.idoumghar@uha.fr).

discarding the so-called dominated camera locations: for

each possible camera location , if another one can cover

the same points as and some additional points, then is

said to be dominated by and it can be removed from the set

of available camera locations [4]. When the size of the input

problem is increasing, this reduction preprocessing becomes

quickly time-consuming and it would be interesting to

perform it in a parallel way.

Thirdly, the result of the reduction preprocessing is given

as input data for the optimization process. Optimal camera

placement is a topic of active research, and various

approaches have been proposed to solve this problem [2],

such as binary integer programming (BIP), particle swarm

optimization algorithms (PSO), genetic algorithms (GA), and

simulated annealing algorithms (SA).

The main contribution of this paper is the design of a

general heterogeneous parallel approach combining

distributed and massively parallel computations on graphics

processing units (GPU) in order to perform all the

preprocessings needed to solve the optimal camera placement

problem stated as a USCP. An experimental study shows that

significant speedup can be achieved for the two afore

mentioned preprocessings. The second contribution is the use

of the set-based differential evolution (DE) approach defined

in [5] for the optimization of the optimal camera placement

problem. Two hybrid set-based DE algorithms are proposed

and the relevance of this approach is experimentally

demonstrated with promising results on 10 instances.

The remainder of this article is organized as follows.

Section II introduces the problem modelling and 10 problem

instances. Section III presents in detail the visibility

preprocessing and investigates to what extent it can be

accelerated by a GPU implementation. Section IV explains

how the reduction preprocessing can be performed in a

distributed way and reports the resulting speedup according

to the size of the cluster. Section V gives the general

heterogeneous parallel approach for preprocessing an

instance of the optimal camera placement problem.

Section VI presents the set-based DE approach together with

an experimental study for solving the 10 instances previously

defined. Finally, concluding remarks and perspectives are

given in Section VII.

II. PROBLEM DESCRIPTION

A. Problem Modelling

In this paper, the optimal camera placement problem is

stated as follows: given the camera specifications and a

three-dimensional area to monitor, find a minimum set of

camera locations (i.e. position and orientation angles) that

ensures a full coverage of this area.

Parallel Preprocessing for the Optimal Camera Placement

Problem

Mathieu Brévilliers, Julien Lepagnot, Julien Kritter, and Lhassane Idoumghar

International Journal of Modeling and Optimization, Vol. 8, No. 1, February 2018

33DOI: 10.7763/IJMO.2018.V8.621

The monitored area is discretized by using a regular grid of

points: the distance between two consecutive points in the

grid is thus equal to 1 unit of length . The technical

specifications of the camera are its horizontal field of view

(in degrees) and its maximal depth of view (in units of

length). The camera has a pyramid of vision (see Fig. 1): the

height from the base to the apex is , and the rectangular base

has width (

) and height

, where

 is the aspect ratio of a standard full HD camera.

A point of the grid is said to be covered by a given camera,

if it is inside the pyramid of vision of this camera. Then, a full

coverage of this area means that each point of the grid is

covered by at least one camera.

A camera location is defined by a point in the grid that is

above or at least on the top of the monitored area, and by two

discrete angles (pan and tilt angles) that characterize the

orientation of the camera. The pan angle is the rotation

angle along the axis, and the tilt angle is the rotation

angle along the axis (see Fig. 2).

Fig. 1. Pyramid of vision with horizontal field of view and height .

 Fig. 2. Camera location at point () with pan angle and tilt angle

 .

The pan and tilt angles are discretized by using a

user-defined parameter , so that the step size is fixed to the

value

. It follows that the pan angle can take

different values that range in , ,. Moreover, given that the

cameras are placed above the points to be covered and are

oriented downward, the values in - , are not needed for

the tilt angle . Finally, any camera location with pan angle

and tilt angle

 will be identical to the camera location

with pan angle and tilt angle . As a

consequence, the tilt angle can be limited to ⌊ ⁄ ⌋

 different values.

The afore mentioned optimal camera placement problem

can be easily stated as a unicost set covering problem (USCP)

in the following way. The points of the monitored area are the

set of elements to be covered. Each camera location covers

a subset of , and we consider here the collection of

subsets of that correspond to all possible camera locations.

Thus, optimizing the camera placement comes down to find

the minimum subset of that covers .

At first, we define the decision variables:

 {
 if is used

 otherwise
 (1)

Then, the optimization problem can be written as follows:

 ∑ (2)

subject to

 ∑ (3)

 * +. (4)

The objective function (2) minimizes the total number of

cameras. The set of constraints (3) ensures that each point is

covered by at least one camera. Equation (4) gives the binary

constraints for the decision variables (1).

B. Problem Instances

All experimentations reported in this article are conducted

on the problem instances defined in Table I, where , ,

and refer to the size of the monitored area (in units of

length), and refers to the height (in units of length) where

the cameras can be placed in the grid.

TABLE I: LIST OF INSTANCES

Instance

1 10 10 4 5 65 10 4

2 20 20 4 5 65 10 4

3 30 30 4 5 65 10 4

4 40 40 4 5 65 10 4

5 50 50 4 5 65 10 4

6 10 10 4 5 65 20 4
7 20 20 4 5 65 20 4

8 30 30 4 5 65 20 4

9 40 40 4 5 65 20 4
10 50 50 4 5 65 20 4

III. VISIBILITY PREPROCESSING

Once the size of the monitored area and the camera

specifications are known, the set of points visible from each

possible camera location has to be computed, since it is the

input data needed for solving the USCP defined in Section II.

A. Visibility Test

For each point of the monitored area and for each possible

camera location, it has to be checked if this point lies or not

inside the pyramid of vision of this camera. This visibility test

is performed according to the method proposed in [6]. For

each tested point , - , new coordinates
, - are computed by using the following geometric

transformations:

 (5)

𝐷

𝐻

𝑂 𝑥

𝑦

𝑧

𝛼
𝛽

𝑥𝑐

𝑦𝑐

𝑧𝑐

International Journal of Modeling and Optimization, Vol. 8, No. 1, February 2018

34

where [

] (6)

 [

] (7)

 [

] (8)

where is a translation such that , - are the

coordinates of the considered camera , and and are a

rotation about the axis by angle , and a rotation about the

 axis by angle , respectively.

Thus is now in the coordinate system centered on the

pyramid of vision of the considered camera (see Fig. 3), and

 is visible from this camera if all the conditions given

below are satisfied:

 (9)

 | |

 (10)

 | |

 (11)

Fig. 3. Coordinate system centered on the pyramid of vision of the camera.

B. Sequential Implementation

The simple sequential algorithm that performs the

visibility preprocessing is given in Table II. This algorithm

has been implemented on a computer with an Intel Core

processor i5-3330 (3.00GHz) and with 4 GB of RAM.

Table VI reports the run times (in seconds) observed for the

instances defined in Table I.

The first drawback of this sequential algorithm is that the

geometric computations needed for the visibility test are

costly and the number of visibility tests (given by | | | |)
grows quickly when the size of the instance is increasing. The

second drawback is that, even without the geometric

computations of the visibility test, the two nested loops

needed to build are time-consuming.

On the one hand, all the visibility tests are independent,

and on the other hand, GPU devices can execute

computations in parallel on multiple data (thanks to their

SIMD architecture). In the next section, we propose two GPU

implementations of the visibility preprocessing in order to

overcome the drawbacks listed above.

TABLE II: SEQUENTIAL VERSION OF VISIBILITY PREPROCESSING

 Input: The set of possible camera locations.

The set of points to be covered.

 Output: The collection of subsets of covered by the camera

locations of , i.e. * () +, where

 () * covers +.

1 For each do

2 For each do

3 Compute new coordinates of according to (5), (6), (7) and (8).

4 If conditions (9), (10), and (11) are satisfied

5 Add in ().

6 End if

7 End for

8 End for

C. GPU Implementations

GPU devices have a highly parallel SIMD architecture,

and dedicated parallel computing platforms (like CUDA for

NVIDIA GPU devices) allow to easily program general

purpose computations with high-level languages. By using

the CUDA platform, it is possible to perform heterogeneous

parallel computations, where the CPU executes the main

program from which parallel subprograms (so-called kernels)

can be launched on the GPU. When called from the main

program, the code of a kernel is duplicated on the GPU in

order to be executed in parallel on multiple data. All these

kernel duplicates are executed by CUDA threads, which are

organized in groups (called blocks) that contain the same

number of threads.

Now, getting back to the optimal camera placement

problem, the USCP input data provided by the visibility

preprocessing can be presented as a zero-one matrix, where

the rows are the elements of , and the columns are the sets

of : a one in row and column indicates that the -th set of

 covers the -th element of . Two methods are proposed

below in order to fill this matrix with parallel computations

performed by threads on a GPU device.

The first idea is to ask a kernel to generate a boolean

matrix in the global memory of the GPU so that each

CUDA thread computes one visibility test. Then, is copied

to the RAM, and is built sequentially by iterating through

the matrix (see Table III). It is worth noting that, if the full

boolean matrix can not be stored in the GPU global memory

or in the RAM, then (and thus) can be computed

gradually in several iterations according to the available

memory space. This method overcomes the first drawback of

the sequential implementation and it allows an almost 5-time

speedup, as shown by column GPUv1 of Table VI, which

reports the run times (in seconds) and the speedup (within

brackets). These experimentations have been performed on a

computer with an Intel Core processor i5-3330 (3.00GHz),

with 4 GB of RAM, and with a NVIDIA GeForce GTX680

GPU device.

TABLE III: FIRST GPU (GPU V1)

 Input: The set of possible camera locations.

The set of points to be covered.

 Output: The collection of subsets of covered by the camera

locations of , i.e. * () +, where

 () * covers +.

1 Call the kernel that performs the visibility preprocessing

and store the results in a boolean matrix .

𝑂 𝑥

𝑦

𝑧

International Journal of Modeling and Optimization, Vol. 8, No. 1, February 2018

35

 VERSION OF VISIBILITY PREPROCESSING

2 Copy from GPU global memory to CPU main memory.

3 For each do

4 For each do

5 If indicates that covers

6 Add in ().

7 End if

8 End for

9 End for

As we can see in Table III, geometric data about the points

and the camera locations are not transferred from CPU main

memory to GPU global memory before calling the GPU

kernel. Actually, each point of (with integer coordinates

, - in the discrete grid) is labelled with an integer by

following the rule below:

 () ()

 ()

 (12)

In this way, all points of the monitored area have

consecutive identification numbers that are directly related to

their geometric positions in the space. Thus the -th line of

corresponds the point such that .

Then, the same method is used to label each possible

camera location :

 () ()

 ()

 ()

 (13)

where and refer respectively to the minimal

height and the maximal height (in units of length) allowed in

the grid for any camera location, where is placed at a point

with integer coordinates , - in the discrete grid, and is

oriented with pan angle

 and tilt angle

, with

 * + and { }. It means that

the -th column of corresponds the camera location such

that .
In addition to that, matrices can only be transferred in

linear form between CPU main memory and GPU global

memory. It means that the 2D matrix is stored as a 1D

matrix. Thus, the result of the visibility test regarding point

and camera location is stored in the -th element of this

1D matrix, where:

 | | (14)

Now, when the kernel is executed, each thread knows the

index of its block, and its own thread index in this block. It

can thus easily compute the of the visibility test it has to

perform. Then, from (14), it can determine the corresponding

 and . Finally, it can retrieve all geometric information

of and from (12) and (13). This allows to perform the

visibility preprocessing without transferring to the GPU the

geometric data of all points and camera locations. According

to these explanations, the outline of the visibility

preprocessing kernel is given in Table IV.

TABLE IV: OUTLINE OF THE VISIBILITY PREPROCESSING KERNEL

 Input: | |, | |, , , , , , , , , .

 Output: The boolean matrix , in linear form.

1 Compute from thread index and block index.

2 Compute and according to (14).

3 Compute coordinates of according to (12).

4 Compute coordinates and orientation angles of according to (13).

5 Compute new coordinates of according to (5), (6), (7), and (8).

6 If conditions (9), (10), and (11) are satisfied

7 Set element of to True.

8 Else

9 Set element of to False.

10 End if

The second idea is to save time when is built by iterating

through . Actually, is sparse and there is no need to

iterate through the whole matrix in order to build the sets of .

To this aim, an integer matrix is used instead of the

boolean matrix . Now, if a camera location covers a point

 , then the element of is set to (instead of True),

and to otherwise (instead of False). Once the visibility

preprocessing kernel terminates, another kernel is called in

order to reduce in parallel each line of to a list of camera

location identification numbers. Each thread of this so-called

reduction kernel deals with exactly 1 line of , and it iterates

through the line in order to make all encountered adjacent,

so that it forms a list starting at the beginning of the

considered line and ending with a value. Afterwards,
is copied to the RAM, and the sets of are built by iterating

through the resulting lists contained in the lines of , instead

of iterating through the sparse lines of . The outline of this

second GPU version of the visibility preprocessing is given in

Table V. This method overcomes the second drawback of the

sequential implementation and it allows to achieve a 15-time

speedup when compared to the sequential version (see

column GPUv2 of Table VI).

TABLE V: SECOND GPU VERSION OF VISIBILITY PREPROCESSING (GPUV2)

 Input: The set of possible camera locations.

The set of points to be covered.

 Output: The collection of subsets of covered by the camera

locations of , i.e. * () +, where

 () * covers +.

1 Call the kernel that performs the visibility preprocessing

and store the results in an integer matrix .
2 Call the reduction kernel that transforms the lines of into lists.

3 Copy from GPU global memory to CPU main memory.

4 For each do

5 For each in line of do

6 Add in ().

7 End for

8 End for

TABLE VI: RUN TIMES OF VISIBILITY PREPROCESSINGS

Instance | | | | CPU GPUv1 GPUv2

1 605 2 904 0.236 0.078 (3.03) 0.037 (6.38)

2 2 205 10 584 2.912 0.623 (4.67) 0.250 (11.65)

3 4 805 23 064 13.701 2.825 (4.85) 0.988 (13.87)

4 8 405 40 344 41.742 8.568 (4.87) 2.725 (15.32)

5 13 005 62 424 99.780 20.377 (4.90) 6.287 (15.87)

6 605 2 904 0.228 0.051 (4.47) 0.035 (6.51)

7 2 205 10 584 2.920 0.637 (4.58) 0.271 (10.78)

8 4 805 23 064 13.765 2.892 (4.76) 1.057 (13.02)

9 8 405 40 344 41.952 8.762 (4.79) 2.902 (14.46)

International Journal of Modeling and Optimization, Vol. 8, No. 1, February 2018

36

10 13 005 62 424 100.268 20.687 (4.85) 6.583 (15.23)

IV. REDUCTION PREPROCESSING

A. Description

The visibility preprocessing of Section III provides the

input data needed for solving the optimal camera placement

problem as a standard USCP. However, before the

optimization process, the size of can be reduced by

removing dominated sets of . Actually, any possible camera

location corresponds to a set () of : if there exists

another camera location such that () (), then

 and () are said to be dominated by and ()

respectively. In practice, it means that camera location is

not interesting since camera location covers the same

points as , and even more. Thus should not be considered

as a possible camera location, and () can be removed

from before the optimization process.

B. Sequential and Parallel Implementations

The proposed sequential algorithm of the reduction

preprocessing is given in Table VII. Firstly, each set ()

of is marked as dominated if we can find a larger set

 () of S such that () () , as depicted by

lines 1 to 9 in Table VII. Then, we iterate through in order

to build the collection of non-dominated sets of (see

lines 10 to 14 in Table VII). The most time-consuming part

of this algorithm is obviously the two nested loops of lines 2

and 3, since there can be (| |) iterations in the worst case.

TABLE VII: SEQUENTIAL VERSION OF THE REDUCTION PREPROCESSING

 Input: .

 Output: The collection of non-dominated sets of .

1 Compute the list of all sets of sorted by increasing order

of their cardinality.

2 For each element () in do

3 For each element () after () in do

4 If () ()

5 Mark () as dominated.

6 Break for loop

7 End if

8 End for

9 End for

10 For each element () in do

11 If () is not dominated

12 Add () in
13 End if

14 End for

For this reason, a distributed version of this algorithm has

been implemented, where the iterations of the first for loop

(line 2 in Table VII) are distributed to computers of a

cluster by using the standard message passing interface

(MPI). Since this loop iterates though the list of all sets of

sorted by increasing order of their cardinality, it is worth

noting that the work load will be significantly different from

iteration to another. That is why each iteration of this loop is

executed by the ()-th computer of the cluster: it is a

simple way to regularly distribute the work load to the nodes

of the cluster.

Table VIII shows the size of the resulting for all

instances, the run times (in seconds) and the speedups (within

brackets) for * +. Firstly, these experimentations

confirm the high importance of the reduction preprocessing

for the optimal camera placement problem, since Table VIII

shows that between 25 % and 80 % of the possible camera

locations are dominated (for instances 5 and 7 respectively),

and can thus be discarded. Secondly, the run times reported

here correspond to the time spent in the two nested loops of

lines 2 to 9 in Table VII, so that it clearly shows the benefit

due to the parallel implementation: for , a speedup

greater than 6 times (in average, depending on the instance)

can be achieved by the proposed distributed approach.

V. GENERAL PARALLEL APPROACH FOR THE

PREPROCESSINGS

This section aims at combining some additional sequential

preprocessings with the two parallel methods presented in

Section III and Section IV, in order to provide a general

parallel approach for the preprocessing of optimal camera

placement problems.

Firstly, before removing the dominated camera locations

as proposed in Section IV, it can be interesting to discard the

so-called blind camera locations, i.e. camera locations that

can not cover any point of the monitored area. It means that

all the empty sets of have to be removed, and it can be done

sequentially in linear time by iterating through .

Secondly, if a point of is covered by only one set

 () of (i.e. a so-called mandatory set), then and

 () can be removed from and respectively, since

 () is necessarily part of the final solution: the problem

can thus be optimized without and () , and and

 () will be added in the solution at the end of the

optimization process. This preprocessing can also be

performed sequentially in a time linear with the coverage data,

and we can note that there is no mandatory set for the

problem instances provided in Table I.

Finally, a general heterogeneous parallel approach can be

designed for accelerating the preprocessing computations by

using a cluster of computers with GPU devices. Table IX

presents the outline of this general method. To the best of our

knowledge, it is the first parallel approach combining

distributed and GPU computing that is proposed for the

preprocessing of optimal camera placement problems.

VI. OPTIMIZATION WITH A SET-BASED DIFFERENTIAL

EVOLUTION ALGORITHM

This section first presents the original differential

evolution algorithm. Then, it introduces a set-based version

of this algorithm from the literature, which is designed to

solve general combinatorial optimization problems. Finally,

it investigates the efficiency of this approach in order to solve

the optimal camera placement problems from Table I.

A. DE for Continuous Optimization

Differential evolution (DE) is an evolutionary algorithm

designed for solving continuous optimization problems [7].

According to [8], it is able to provide high-quality solutions

for various theoretical and real-world optimization problems.

DE aims at converging on the global best solution by using a

population of individuals (i.e. candidate solutions), which are

International Journal of Modeling and Optimization, Vol. 8, No. 1, February 2018

37

TABLE VIII: RUN TIMES OF REDUCTION PREPROCESSINGS

Instance | | | |

1 2 904 1 401 0.078 0.045 (1.73) 0.023 (3.39) 0.016 (4.88) 0.012 (6.50)

2 10 584 6 778 0.989 0.540 (1.83) 0.315 (3.14) 0.185 (5.35) 0.153 (6.46)

3 23 064 16 180 5.313 2.813 (1.89) 1.712 (3.10) 0.969 (5.48) 0.913 (5.82)

4 40 344 29 549 19.989 10.591 (1.89) 6.718 (2.98) 3.595 (5.56) 3.400 (5.88)

5 62 424 46 907 54.332 27.996 (1.94) 18.020 (3.02) 9.379 (5.79) 9.056 (6.00)

6 2 904 1 292 0.080 0.046 (1.74) 0.023 (3.48) 0.016 (5.00) 0.012 (6.67)

7 10 584 2 179 1.823 0.947 (1.93) 0.531 (3.43) 0.325 (5.61) 0.267 (6.83)

8 23 064 7 889 10.656 5.507 (1.93) 3.172 (3.36) 1.951 (5.46) 1.581 (6.74)

9 40 344 16 864 35.199 18.213 (1.93) 10.688 (3.29) 6.169 (5.71) 5.586 (6.30)

10 62 424 29 071 87.244 44.647 (1.95) 26.937 (3.24) 14.941 (5.84) 13.457 (6.48)

Evolving from generation to generation with the help of

three evolutionary operators. A mutation operator is firstly

applied: it generates a mutant individual by adding weighted

differences to a reference individual. The basic DE mutation

strategy, so-called DE/rand/1, is given hereafter. For each

variable of each individual of the population :

 () (15)

where refers to the mutant population, , and to

three randomly chosen integers such that ,
and , - to the DE scaling factor. Then, the classical

so-called binomial crossover operator is applied to each

current individual and its corresponding mutant individual in

order to generate a new trial individual. Finally, the selection

operator compares each current individual with its

corresponding trial individual, and it keeps the best of both

(according to the considered continuous objective function).

TABLE IX: GENERAL PARALLEL PREPROCESSING APPROACH

 Input: Problem instance number.

 Output: The collection of non-blind, non-dominated, and

non-mandatory sets of .

The subset of that contains the points covered by the

sets of .

 On each node of the cluster:

1 Set the instance problem to be processed.

2 Perform the GPUv2 visibility preprocessing, so that each node has

his own copy of .

3 Remove all the empty sets from , i.e. those corresponding to

blind camera locations.

4 Compute the list of all sets of sorted by increasing order

of their cardinality.

5 Decide if the sets of are dominated or not, by using the

distributed approach described in Section VIII.

6 Send the results of step 5 to the master node.

 On the master node of the cluster:

7 Aggregate the results of step 5 sent by the other nodes.

8 Build according to lines 10 to 14 of Table VII.

9 Remove all mandatory sets from .
10 Build from .

B. Set-Based DE for Combinatorial Optimization

Several adaptations of DE to combinatorial optimization

have already been proposed, but most of them can only solve

permutation-based combinatorial optimization problems.

Only a few works are able to deal with general combinatorial

optimization problems and, among them, the set-based

approach from [5] seems to be the most interesting to tackle

the optimal camera placement problem formulated as a

USCP. Furthermore, this approach has been already applied

on the traveling salesman problem [5] and the capacitated

centered clustering problem [9] with promising results.

By applying this approach to the optimal camera

placement problem, a solution is defined as a subset of all the

possible camera locations, and the mutation operator is

adapted as follows. Arithmetic operations in (15) are replaced

with operations on sets, so that for each individual of the

population :

 () (16)

where is a randomly generated feasible solution,

 and are randomly chosen such that , and

is the XOR operator on sets. In [5], it is suggested to set the

value of in order to control the size of by using one of

the strategies proposed in [10]. However, in the

experimentations reported in the next section, is set to ,

which means that it has no impact on the size of ,

whatever the strategy chosen.

Then, the crossover operator consists in picking some sets

from in order to get a new trial solution. Thus,

the crossover operator comes down to solve a subproblem

with a lot fewer possible camera locations, and the authors

suggest using exact algorithms to get good trial solutions.

C. Experimentations

In the experimental study, the problem instances from

Table I are used to compare the CPLEX optimizer, the greedy

algorithm from [11] (Greedy, for short), and the set-based DE

approach hybridized with CPLEX and Greedy as crossover

operators (called DEset-CPLEX and DEset-Greedy

respectively).

CPLEX 12.7.0 is used together with ILOG Concert

Technology, and the CPLEX optimizer is set up so as to use

only one thread: the algorithm is thus deterministic and runs

sequentially [12]. Since Greedy is also deterministic, CPLEX

and Greedy only need one run for each instance.

For hybridization with the set-based DE approach, CPLEX

has a time limit of 10 seconds: thus, either it solves the

subproblem, or it provides a feasible solution. On the

contrary, there is no time limit for Greedy because it cannot

provide a feasible solution before it terminates. Actually, it

starts from an empty solution and then, it iteratively adds the

best camera location (i.e. the one which covers the maximum

number of so far uncovered points) until all points are

covered. The parameters of the set-based DE are the

following: the population size is set to 20 individuals, and

 . Moreover, since set-based DE algorithms are not

deterministic, 30 runs per instance are performed to get

significant statistics.

International Journal of Modeling and Optimization, Vol. 8, No. 1, February 2018

38

All algorithms are executed on a computer with an Intel

Core i5-3330 processor (3.00GHz) and 4 GB of RAM, with a

time limit of 1 000 seconds. Table X shows the results: best

values are depicted in bold font, and columns Solution, Mean,

and Best report the size of the solutions, i.e. the number of

cameras needed to cover the monitored area.

CPLEX is able to find the optimal solution of instances 1, 6,

7, and 8 within the time limit. For instances 2, 3, 9, and 10, it

can provide reasonable feasible solutions, but for instances 4

and 5, it gives no better solution than the number of possible

camera locations available after the reduction preprocessing:

unsurprisingly CPLEX can not be used for large problem

instances. Greedy gets quickly a solution for each instance,

but they are of poor quality in comparison with the other

algorithms. DEset-Greedy is neither competitive with

CPLEX on small instances, nor with Greedy on the largest

ones. DEset-CPLEX, conversely, gets the better results: it

beats the other algorithms for all instances, except for

instances 2 and 9 where it is still competitive with CPLEX.

VII. CONCLUSION

In this paper, the optimal camera placement problem is

stated as a USCP. The visibility preprocessing is presented in

detail in order to propose an effective parallel version by

using massively parallel computations on GPU and a

significant 15-time speedup is achieved. It is also shown how

TABLE X: RESULTS AND STATISTICS FOR CPLEX, GREEDY, DESET-CPLEX, AND DESET-GREEDY

 CPLEX Greedy DEset-CPLEX DEset-Greedy

Instance Solution Lower bound Time Solution Time Mean Best Std Mean Best Std

1 7 7.00 0.40 10 0.01 7.00 7 0.00 7.87 7 0.35

2 21 17.52 1 000.00 32 0.12 21.53 21 0.57 29.10 28 0.71

3 56 35.30 1 000.03 63 0.56 48.07 45 1.76 71.60 70 0.77

4 29 549 0.00 1 002.24 109 1.82 92.80 90 1.37 131.13 126 1.91

5 46 907 0.00 1 002.32 164 4.46 155.80 150 2.57 202.73 197 3.19

6 7 7.00 1.10 9 0.01 7.00 7 0.00 7.00 7 0.00

7 5 5.00 1.29 5 0.05 5.00 5 0.00 5.00 5 0.00

8 9 9.00 26.85 12 0.38 9.00 9 0.00 9.37 9 0.49

9 14 12.64 1 000.03 19 1.29 14.97 14 0.49 18.90 18 0.61

10 26 18.86 1 000.11 30 3.39 23.43 23 0.50 32.97 32 0.76

to perform the reduction preprocessing with distributed

computations and the proposed method leads to a 6-time

speedup with a cluster of 8 nodes. A general heterogeneous

approach is then given in order to bring together this

preprocessings in an efficient way. Afterwards, 10 instances

of the optimal camera placement problem are solved by two

hybrid set-based DE algorithms, and this method gets

promising results in comparison with CPLEX and a greedy

algorithm.

For the USCP preprocessing, a first perspective would be

to perform less visibility tests by first detecting (and

discarding) blind cameras according to their geometric

coordinates and orientation angles. It can also be considered

to improve the reduction preprocessing by identifying

dominated camera locations in a smaller neighborhood

related to the considered camera location. Regarding the

proposed optimization method, a deeper experimental study

should be conducted in order to see the impact of the

user-defined parameters (especially). It will be interesting

as well to compare this set-based approach with other

efficient state-of-the art algorithms dealing with the optimal

camera placement problem or the USCP.

REFERENCES

[1] Horster and R Lienhart “Optimal Placement of Multiple Visual
Sensors,” in H Aghajan and A. Cavallaro, Multi-Camera Networks:

Principles and Applications, Elsevier, 2009, ch. 5, pp. 117-138.

[2] J. Liu, S. Sridharan, and C Fookes “Recent advances in camera
planning for large area surveillance: A comprehensive review,” ACM

Computing Surveys (CSUR), vol. 49 no. 1, 2016.

[3] J E Beasley “An algorithm for set covering problem,” European
Journal of Operational Research, vol. 31 no. 1, pp. 85-93, 1987.

[4] Z. Naji-Azimi, P. Toth, and L Galli “An electromagnetism

metaheuristic for the unicost set covering problem,” European Journal
of Operational Research, vol. 205, no. 2, pp. 290-300, 2010.

[5] A. L. Maravilha, J. A. Ramirez, and F. Campelo, “A new algorithm

based on differential evolution for combinatorial optimization,” in

Proc. 2013 BRICS Congress on Computational Intelligence and 11th

Brazilian Congress on Computational Intelligence (BRICS-CCI &
CBIC), Ipojuca, Brazil, 2013.

[6] H. Zhang, L. Xia, P. Wang, J. Cui, C. Tang, N. Deng, and N. Ma “ n

optimized placement algorithm for collaborative information
processing at a wireless camera network,” in Proc. 2013 IEEE

International Conference on Multimedia and Expo (ICME), pp. 1-6,

San Jose, CA, USA, 2013.
[7] R. Storn and K Price “Differential evolution – A simple and efficient

heuristic for global optimization over continuous spaces,” Journal of

Global Optimization, vol. 11 no. 4, pp. 341-359, 1997.

[8] S Das S S Mullick and P N Suganthan “Recent advances in

differential evolution – An updated survey,” Swarm and Evolutionary

Computation, vol. 27, pp. 1-30, 2016.
[9] A. L. Maravilha, J. A. Ramirez, and F. Campelo, “Combinatorial

optimization with differential evolution: A set-based approach,” in

Proc. the Companion Publication of the 2014 Annual Conference on
Genetic and Evolutionary Computation (GECCO

Comp’14),Vancouver, BC, Canada, 2014.

[10] R. S. Prado, R. C. P. Silva, F. G. Guimarães and O M Neto “Using
differential evolution for combinatorial optimization: A general

approach,” in Proc. 2010 IEEE International Conference on Systems

Man and Cybernetics (SMC), Istanbul, Turkey, 2010.
[11] V Chvatal “A greedy heuristic for the set-covering problem,”

Mathematics of Operations Research, vol. 4 no. 3, pp. 233-235, 1979.

[12] IBM. IBM Knowledge Center - global thread count. [Online].
Available:

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.7.0/ilog.

odms.cplex.help/CPLEX/Parameters/topics/Threads.html

Mathieu Brévilliers received in 2008 his PhD

degree in computer science from the University of

Haute-Alsace (UHA), Mulhouse, France. He spent

one year at the Grenoble Intitute of Technology
(Grenoble INP, France) as temporary lecturer and

researcher, and then has been hired by the UHA in

2009 as associate professor. Since 2014, he is
member of the “Metaheuristic and Combinatorial

Optimization” research team at LMIA Laboratory.

His main research interests include massively parallel and distributed hybrid
metaheuristics and their applications.

International Journal of Modeling and Optimization, Vol. 8, No. 1, February 2018

39

Julien Lepagnot received his PhD in computer

science in 2011 from University Paris 12, France. He

is an associate professor in computer science at
University of Haute-Alsace, Mulhouse, France, in

which he belongs to the “Metaheuristic and

Combinatorial Optimization” research team at
LMIA Laboratory. His main research interests

include massively parallel and distributed hybrid

metaheuristics, dynamic optimization, and machine
learning.

Julien Kritter obtained both his BSc. (2015) and his
MSc. (2017) in computer science and applied

mathematics from the University of Le Havre,

France. His research interests include several
branches of artificial intelligence and operational

research, in which he is now working towards a PhD.

His work in the “Metaheuristic and Combinatorial
Optimization” research team at LMIA Laboratory

revolves around the application of metaheuristic

methods for large-scale optimization.

Lhassane Idoumghar received in 2012 his
accreditation to supervise research from University

of Haute-Alsace, Mulhouse, France. Since 2015, he

is Full Professor with University of Haute-Alsace

and he is head of “Metaheuristic and Combinatorial

Optimization” research team at LMIA Laboratory.
His research activities include dynamic optimization,

single/multiobjective optimization, uncertain

optimization by hybrid metaheuristics, distributed
and massively parallel algorithms.

International Journal of Modeling and Optimization, Vol. 8, No. 1, February 2018

40

