
GECCO 2020 Competition
on the Optimal Camera Placement Problem (OCP)

and the Unicost Set Covering Problem (USCP)

Mathieu Brévilliers∗, Julien Kritter, Julien Lepagnot, and Lhassane
Idoumghar

Université de Haute-Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France

First published on December 17, 2019
Last update on July 10, 2020†

∗Corresponding Author: mathieu.brevilliers@uha.fr
†Modifications are in red.

1

Contents
1 Introduction 3

2 Description of the adressed problems 4
2.1 Academic instances . 4

2.1.1 Problem modelling . 4
2.1.2 Problem instances . 6
2.1.3 Instance file format . 7

2.2 Real world instances . 8
2.2.1 Problem modelling . 8
2.2.2 Problem instances . 8
2.2.3 Instance file format . 9

3 Competition rules 11
3.1 Registration . 11
3.2 Competition tracks . 11
3.3 Experimental setting . 12
3.4 Submission instructions . 12
3.5 Important Dates . 13

4 Evaluation procedure 14
4.1 Full coverage check . 14
4.2 Ranking . 14
4.3 Results . 14

5 Dissemination 16

2

1 Introduction
The use of camera networks is now common to perform various surveillance tasks.

These networks can be implemented together with intelligent systems that analyze video
footage, for instance, to detect events of interest, or to identify and track objects or
persons. According to [9], whatever the operational needs are, the quality of service
depends on the way in which the cameras are deployed in the area to be monitored (in
terms of position and orientation angles). Moreover, due to the prohibitive cost of setting
or modifying such a camera network, it is required to provide a priori a configuration that
minimizes the number of cameras in addition to meeting the operational needs. In this
context, the optimal camera placement problem (OCP) is of critical importance, and can
be generically formulated as follows. Given various constraints, usually related to coverage
or image quality, and an objective to optimise (typically, the cost), how can the set of
positions and orientations which best (optimally) meets the requirements be determined?

More specifically, in this competition, the objective will be to determine camera lo-
cations and orientations which ensure complete coverage of the area while minimizing
the cost of the infrastructure. To this aim, a discrete approach is considered here: the
surveillance area is reduced to a set of three-dimensional sample points to be covered,
and camera configurations are sampled into so-called candidates each with a given set of
position and orientation coordinates. A candidate can have several samples within range,
and a sample can be seen by several candidates. Now, the OCP comes down to select the
smallest subset of candidates which covers all the samples.

According to [7], the OCP is structurally identical to the unicost set covering problem
(USCP), which is one of Karp’s well-known NP -hard problems [6]. The USCP can be
stated as follows: given a set of elements I (rows) to be covered, and a collection of sets
J (columns) such that the union of all sets in J is I, find the smallest subset C ⊂ J such
that ⋃e∈C e = I. In other words, identify the smallest subset of J which covers I. As
pointed out in [7], many papers dealing with the OCP use this relationship implicitly, but
few works done on the USCP have been applied or adapted to the OCP, and vice versa.
In very recent years however, approaches from the USCP literature have been successfully
applied in the OCP context on both academic [4, 3] and real-world [8] problem instances.
These works suggest that bridges can be built between these two bodies of literature to
improve the results obtained so far on both USCP and OCP problems.

Firstly, the main goal of this competition is to encourage innovative research works in
this direction, by proposing to solve OCP problem instances stated as USCP. Secondly,
to this day, no benchmark has been established for the OCP, which makes difficult to
provide a fair comparison of all various propositions from the OCP literature [7]: this
competition is thus an opportunity to propose a benchmark testbed for the OCP. Thirdly,
this competition is a way of attracting the interest of the scientific community in new
challenging USCP problem instances, given that, to the best of our knowledge, the last
challenge on set covering problems was a competition called FASTER (Ferrovie Airo Set
covering TendER), jointly organized by the Italian railway company (Ferrovie dello Stato
SpA)and the Italian Operational Research Society (AIRO) in 1994 [5], and whose problem
instances are now part of Beasley’s standard OR library [2].

3

2 Description of the adressed problems
The contest gathers 69 OCP problem instances: 32 of them are academic problems

similar to those tackled in [3] (various sizes and discretizations of an empty room modeled
by a rectangular cuboid with cameras on the ceiling), and 37 of them are real-world
problems similar to those tackled in [8] (various sizes and discretizations of urban areas
with cameras on the walls of the buildings).

All the data files are available for download on the competition website1.

2.1 Academic instances
A first set of 32 artificially generated instances are provided for this competition: given
the technical specifications of a camera, given a three-dimensional area to monitor, and
given the operational need to meet, the objective is to find a minimum set of locations
(i.e. position and angular orientation) of this type of camera that ensures a total coverage
of this area according to the requested operational need. The next subsection explains in
detail the model used for these academic instances (which is similar to the model defined
in [3]).

2.1.1 Problem modelling

The monitored area is defined as a rectangular box whose point coordinates (in meters)
range from (0, 0, 0) to (Xmax, Ymax, Zmax) in a Cartesian coordinate system of the three-
dimensional Euclidean space R3. This area is discretized and approximated by a regular
grid of sample points with a step size U (in meters) between two adjacent samples.

A camera is defined by the following technical specifications: its horizontal resolution
Hres, its vertical resolution Vres, and its horizontal field of view Hfov (angle in degrees). It
has a pyramid of vision, whose base is a rectangle with length Hres

OpNeed
and width Vres

OpNeed
(in

meters), where OpNeed is the operational need to be met (in pixels per meter). The height
of this right pyramid corresponds to the maximal depth of view Dmax of the camera (in
meters), which depends on the operational need. Figure 1 clearly illustrates the horizontal
field of view Hfov and the height Dmax of the pyramid of vision. Dmax is computed with
the following equation:

Dmax =
1
2 ×

Hres

OpNeed

tan
(
Hfov

2 × π
180

) (1)

A candidate (i.e. a camera location) is characterized by a point in the considered
discrete grid together with discrete pan and tilt angles. Candidate coordinates (in meters)
can range from (0, 0, Zcam) to (Xmax, Ymax, Zcam) with step size U (in meters). The angular
orientation of a candidate is then given by two angles: α is the pan angle, that is the
rotation angle of the candidate along the Z axis, and β is the tilt angle, that is the rotation
angle along the Y axis (see Figure 2). Values of α and β are discretized with the help of a
parameter A, which fixes the step size to the value π

A
. It means that α can take Nα = 2A

different values that range in [0, 2π[. Regarding β, we only consider Nβ = bA/2c + 1
1http://www.mage.fst.uha.fr/brevilliers/gecco-2020-ocp-uscp-competition/

4

http://www.mage.fst.uha.fr/brevilliers/gecco-2020-ocp-uscp-competition/

Figure 1: Example of a camera C with horizontal field of view Hfov, and whose pyramid
of vision has height Dmax.

different values that range in [0, bA/2c × π
A

], given that candidates are above the samples
(and thus have to be oriented downward), and given that any candidate with pan angle
α and tilt angle β = k × π

A
such that β < π

2 , will be identical to the candidate with same
coordinates and pan angle α′ = α + π and tilt angle β′ = π − k × π

A
.

Figure 2: Example of candidate with coordinates (xc, yc, zc), pan angle α, and tilt angle β.

If the samples are labelled with integers (representing the set of elements to be cov-
ered), then any candidate can be modelled as a set of integers (corresponding to the labels
of the samples it covers), and the OCP can be formulated as a USCP in a straightfor-
ward manner: given the set I of elements (i.e. samples) and a collection J of sets (i.e.
candidates), solving the OCP comes down to find the minimum subset of J that covers I.

Now, the following decision variables can be defined:

∀c ∈ J , xc =
1 if candidate c is used,

0 otherwise.
(2)

Then, the corresponding binary integer linear programming model can be written as
follows:

5

Min
∑
c∈J

xc (3)

subject to

∀s ∈ I,
∑

c∈J :s∈c
xc ≥ 1 (4)

∀c ∈ J , xc ∈ {0, 1} . (5)
The objective function (see Equation 3) minimizes the total number of used candidates.

Equation 4 indicates that each sample has to be covered by at least one candidate (full
coverage constraint). Equation 5 gives the set of binary constraints needed for the decision
variables defined in Equation 2.

2.1.2 Problem instances

Table 1 shows the specifications of the 32 academic instances: instance name, Xmax,
Ymax, Zmax, Zcam, OpNeed, Hres, Vres, Hfov, U , A, number of samples (rows), number of
candidates (columns). It is worth noting that these instances can be significantly
reduced before optimization by using classical procedures, i.e. domination and
inclusion checks [1].

Table 1: Specifications of the 32 academic instances.
Name Xmax Ymax Zmax Zcam OpNeed Hres Vres Hfov U A Samples Candidates
AC_01 5 5 2 2.5 100 1920 1080 65 0.5 4 605 2904
AC_02 10 10 2 2.5 100 1920 1080 65 0.5 4 2205 10584
AC_03 15 15 2 2.5 100 1920 1080 65 0.5 4 4805 23064
AC_04 20 20 2 2.5 100 1920 1080 65 0.5 4 8405 40344
AC_05 25 25 2 2.5 100 1920 1080 65 0.5 4 13005 62424
AC_06 30 30 2 2.5 100 1920 1080 65 0.5 4 18605 89304
AC_07 40 40 2 2.5 100 1920 1080 65 0.5 4 32805 157464
AC_08 50 50 2 2.5 100 1920 1080 65 0.5 4 51005 244824
AC_09 60 60 2 2.5 100 1920 1080 65 0.5 4 73205 351384
AC_10 5 5 2 2.5 500 1920 1080 65 0.5 4 605 2904
AC_11 10 10 2 2.5 500 1920 1080 65 0.5 4 2205 10584
AC_12 15 15 2 2.5 500 1920 1080 65 0.5 4 4805 23064
AC_13 20 20 2 2.5 500 1920 1080 65 0.5 4 8405 40344
AC_14 25 25 2 2.5 500 1920 1080 65 0.5 4 13005 62424
AC_15 30 30 2 2.5 500 1920 1080 65 0.5 4 18605 89304
AC_16 40 40 2 2.5 500 1920 1080 65 0.5 4 32805 157464
AC_17 50 50 2 2.5 500 1920 1080 65 0.5 4 51005 244824
AC_18 60 60 2 2.5 500 1920 1080 65 0.5 4 73205 351384
AC_19 70 70 2 2.5 500 1920 1080 65 0.5 4 99405 477144
AC_20 80 80 2 2.5 500 1920 1080 65 0.5 4 129605 622104
AC_21 90 90 2 2.5 500 1920 1080 65 0.5 4 163805 786264
AC_22 100 100 2 2.5 500 1920 1080 65 0.5 4 202005 969624
AC_23 110 110 2 2.5 500 1920 1080 65 0.5 4 244205 1172184
AC_24 120 120 2 2.5 500 1920 1080 65 0.5 4 290405 1393944
AC_25 130 130 2 2.5 500 1920 1080 65 0.5 4 340605 1634904
AC_26 140 140 2 2.5 500 1920 1080 65 0.5 4 394805 1895064
AC_27 150 150 2 2.5 500 1920 1080 65 0.5 4 453005 2174424
AC_28 160 160 2 2.5 500 1920 1080 65 0.5 4 515205 2472984
AC_29 170 170 2 2.5 500 1920 1080 65 0.5 4 581405 2790744
AC_30 180 180 2 2.5 500 1920 1080 65 0.5 4 651605 3127704
AC_31 190 190 2 2.5 500 1920 1080 65 0.5 4 725805 3483864
AC_32 200 200 2 2.5 500 1920 1080 65 0.5 4 804005 3859224

6

2.1.3 Instance file format

AC_XX_cover.txt This file contains all the needed information to solve the problem
instance AC_XX as a strict USCP (for track 1, see Section 3):

• number of samples and number of candidates,

• then, for each sample s: its integer label s, the number of candidates which cover
sample s, and a list of the candidates which cover sample s.

In addition to these cover information, geometric information regarding the problem
instances are provided for those who aim at competing in track 2 (see Section 3).

AC_specs.txt This file contains the geometric specifications of each instance, one in-
stance per line, in the following order: instance name, OpNeed, Hres, Vres, Hfov, U ,
and A.

AC_XX_samples.txt This file contains the discrete coordinates (in the regular grid,
see Section 2.1.1) of each sample point of problem instance AC_XX, with the following
format:

• number of samples,

• then, for each sample s: its integer label, and the integer coordinates (xs, ys, zs) of
s in the regular grid which approximate the monitored area.

For convenience, this file stores the coordinates of each sample s in the regular grid, but
the real coordinates of s can be easily retrieved with the help of the step size U :

(xs × U, ys × U, zs × U). (6)

AC_XX_candidates.txt This file contains the discrete coordinates (see Section 2.1.1)
of each candidate camera of problem instance AC_XX, with the following format:

• number of candidates,

• then, for each candidate c: its integer label, and the integer coordinates
(xc, yc, zc, βc, αc) of c.

For convenience, this file stores the discrete coordinates of each candidate c, but the
real coordinates of c can be easily retrieved with the help of the step size U and the
parameter A:

(xc × U, yc × U, zc × U, βc ×
π

A
, αc ×

π

A
). (7)

7

2.2 Real world instances
A second set of 37 real world instances can also be found alongside the academic ones.
The main difference lies in the fact that these instances have been generated using map
and elevation data from actual urban areas. The objective remains the same: to find the
minimum set of camera configurations (position and orientation) which ensures full cov-
erage. The following sections introduce these instances and the method used to generate
and model them.

2.2.1 Problem modelling

For these instances, the area to be covered is no longer described by a regular shape. The
points to be covered are still represented in a 3D Cartesian coordinate system using the
meter as the unit. A point is therefore a simple (x, y, z) triple. The sampling procedure
is based on map and elevation data and follows the area’s local infrastructure, meaning
no regular position pattern should be expected as far as the points are concerned.

Cameras are modelled using the same method as for the academic instances: their cov-
erage is defined by their resolution, their field of view and an operational need parameter
set in pixels-per-meter. The range and frustum computations are roughly identical. The
final representation of a configuration is however different, as it is impossible to work on a
regular grid when placing cameras on existing city infrastructure. For this reason, in these
instances, a camera configuration is defined by two triples: one for position (xp, yp, zp) and
one for orientation (xo, yo, zo). The former follows the same semantics as for points, while
the latter is a unit vector oriented to point towards the centre of the frustum pyramid’s
base when attached at the camera’s position (see the red line in Figure 1).

While samples are not generated uniformly, participants will most likely notice some
patterns in both positions and orientations which can be attributed to the inner-workings
of the sampling procedure. The latter uses maps to determine where points should be
placed and does so at regular intervals along elements such as roads, alleyways, parking
lots, open areas and so on. This procedure requires various parameters, most of which are
sampling frequencies which answer questions such as “how often along a road (polyline)
should a point be created?” The same applies to the sampling of camera configurations,
which follows existing buildings, walls, poles and other such elements. Orientation angles
are sampled at regular intervals of π5 or π

6 for panning and π
10 or π

12 for tilting. The bounds
are similar to those of the academic instances. Points and camera positions were generated
every 3 or 5 meters (depending on the instance) along the lines of the city’s geometry.
For more detailed information about the sampling procedure, participants are referred to
[8].

Aside from the sampling procedure and the resulting model, the real world instance
should be solved for the same objective and under the same constraints as the academic
ones. The unicost set covering problem model given by Equations (3), (4) and (5) is
therefore applicable here and the visibility matrices follow the exact same format in the
instance files.

2.2.2 Problem instances

Table 2 gives basic statistics on the 37 real world instances. The instances have been
reduced by applying work reported in [1]. The description is identical to that of

8

the academic instances, save for the grid parameters which do not apply here.

Table 2: Specifications of the 37 real world instances.
Name OpNeed Hres Vres Hfov Samples Candidates Candidates Samples
RW_01 25 1920 1080 65 32430 153368
RW_02 25 1920 1080 65 56132 285698
RW_03 25 1920 1080 65 32040 161099
RW_04 25 1920 1080 65 59137 304655
RW_05 25 1920 1080 65 34568 206900
RW_06 25 1920 1080 65 65691 380420
RW_07 25 1920 1080 65 42046 214889
RW_08 25 1920 1080 65 77986 382651
RW_09 25 1920 1080 65 39003 206816
RW_10 25 1920 1080 65 71323 368114
RW_11 25 1920 1080 65 15632 82437
RW_12 25 1920 1080 65 28109 136555
RW_13 25 1920 1080 65 61741 293138
RW_14 25 1920 1080 65 14916 81062
RW_15 25 1920 1080 65 27008 141309
RW_16 25 1920 1080 65 21063 105829
RW_17 25 1920 1080 65 35635 180453
RW_18 25 1920 1080 65 14423 79947
RW_19 25 1920 1080 65 26483 141114
RW_20 25 1920 1080 65 50284 332300
RW_21 25 1920 1080 65 90050 654068
RW_22 25 1920 1080 65 17203 83835
RW_23 25 1920 1080 65 31038 142326
RW_24 25 1920 1080 65 33880 201967
RW_25 25 1920 1080 65 59851 375680
RW_26 25 1920 1080 65 18043 105566
RW_27 25 1920 1080 65 32669 181090
RW_28 25 1920 1080 65 27838 136755
RW_29 25 1920 1080 65 49267 273964
RW_30 25 1920 1080 65 49354 263518
RW_31 25 1920 1080 65 87248 472660
RW_32 25 1920 1080 65 30189 124289
RW_33 25 1920 1080 65 55000 229231
RW_34 25 1920 1080 65 27329 134479
RW_35 25 1920 1080 65 47590 238546
RW_36 25 1920 1080 65 28162 135043
RW_37 25 1920 1080 65 50702 238492

2.2.3 Instance file format

RW_XX_cover.txt This file follows the same format as academic instances (see Sec-
tion 2.1.3).

RW_specs.txt This file contains the operational parameters of each instance, that is,
the first five columns in Table 2.

RW_XX_samples.txt This file contains the real coordinates of each sample point of
problem instance RW_XX, with the following format:

• number of samples,

• then, for each sample: its integer label and its real coordinates (x, y, z) in a 3D
Cartesian coordinate system (see Section 2.2.1).

9

RW_XX_candidates.txt This file contains the real coordinates of each candidate
camera configuration of problem instance RW_XX, with the following format:

• number of candidates,

• then, for each candidate configuration: its integer label, its position vector (xp, yp, zp)
and its orientation unit vector (xo, yo, zo) (see Section 2.2.1).

10

3 Competition rules

3.1 Registration
Registration is mandatory. Each entrant has to declare his intention to compete

as soon as possible by contacting the corresponding author2 and providing the following
information:

• Name of the team,

• List of the team members,

• Name of the algorithm used to compete,

• Track in which this team will compete with this algorithm (track 1 or 2, see Sec-
tion 3.2),

• Intention (or no intention) to submit a short description of this algorithm for pub-
lication in the GECCO Companion (see Section 5). To be allowed to submit a
contribution, please note that registration has to be done before a strict
deadline (see Section 3.5).

Early registration is strongly encouraged, so that the organizing committee is aware
of all entrant teams, and can then keep them informed of any update regarding the
organization of the competition (e.g. deadline extension).

Remarks:

• Only 1 algorithm per registration is allowed: for a given registration, the team has
to solve all problem instances with the same algorithm.

• The same team can register several times with different algorithms.

• One can be member of several teams.

3.2 Competition tracks
The competition is divided into two tracks.

Track 1: USCP In this first track, the participants are asked to solve the prob-
lem instances by only using the visibility matrix provided in AC_XX_cover.txt or
RW_XX_cover.txt files (it thus comes down to pure USCP problems). This track is
designed for algorithms that are general USCP solvers, i.e. algorithms that don’t use any
context dependent information (e.g. geometric information of the candidate cameras).

Track 2: OCP In this second track, the participants are allowed to use any available
geometric information in addition to the visibility matrix. This track is designed for
more OCP specific algorithms that take advantage of context dependent information (e.g.
geometric information of the candidate cameras).

2mathieu.brevilliers@uha.fr
11

3.3 Experimental setting
There is no restriction on the type of algorithm to be used: exact methods, approxi-

mation algorithms, hybridizations, new propositions or algorithms from the literature,...
Any algorithm is welcome, but note that the aim of this competition is to
promote and highlight new and innovative research works on OCP and/or
USCP.

There is no restriction on the hardware used to solve the problem instances, nor the
runtime allowed to solve them.

3.4 Submission instructions
In order to complete their participation and to appear in the competition ranking, the

entrants have to follow the submission instructions detailed just below. Please note that
all submissions (except GECCO Companion abstracts) have to be sent by email to the
corresponding author3.

Solution files The participants will submit to the organizers one solution file for each
problem instance. The filename must include the team name, the algorithm name, the
track number, and the instance name (in that order). The expected format of a solution
file is as follows:

• number of selected candidates,

• a list of the integer labels corresponding to the selected candidates.

An example of solution file is available for download on the competition website4.

Remark for participants that will submit an abstract for publication in the
GECCO Companion (see Section 5): at the time when they submit their abstract
to GECCO, they also have to submit to the organizers the results obtained so far (i.e.
the solution files). This first result submission will be used in the review process for the
GECCO Companion, but a second result submission will be allowed by the end of the
competition (so that all participants will have the same time window to improve their
results).

Algorithm description and experimental setting The participants will submit to
the organizers an abstract (no more than 2 pages including references) that briefly de-
scribes the algorithm used (i.e. the main ideas and/or components of the proposed algo-
rithm), and provides all relevant information regarding the experimental setting used for
their submission, e.g.:

• runtime allowed, or runtime needed to reach the submitted solution,

• technical specifications of the computer (CPU, available RAM,...),
3mathieu.brevilliers@uha.fr
4http://www.mage.fst.uha.fr/brevilliers/gecco-2020-ocp-uscp-competition/

12

http://www.mage.fst.uha.fr/brevilliers/gecco-2020-ocp-uscp-competition/

• in case of a non deterministic algorithm, number of runs for each instance,

• in case of a parallel or distributed algorithm, information regarding the hardware,
the number of nodes, or any other relevant specification,

• ...

3.5 Important Dates
Table 3 shows all important dates regarding this competition.

Table 3: Important dates
Deadline to register for this competition, to be allowed to submit
an abstract for publication in the GECCO Companion March 20, 2020
Submission deadline for the GECCO Companion abstracts and
the corresponding solution files April 3, 2020

April 17, 2020
Notification of acceptance for GECCO Companion abstracts April 17, 2020

May 1, 2020
Deadline to submit camera-ready abstracts
for the GECCO Companion April 24, 2020

May 8, 2020
General deadline to register for this competition May 22, 2020

June 5, 2020
End of the competition, and submission deadline for: solution files,
algorithm description, and experimental setting June 5, 2020

June 19, 2020
GECCO 2020 Conference,
and announcement of the competition results July 8-12, 2020

13

4 Evaluation procedure

4.1 Full coverage check
All the submitted solutions will be checked to ensure the full coverage constraint (and

if this constraint is not satisfied, then the solution will be discarded). If a participant does
not provide a solution to a problem instance (or provides a solution that does not ensure
a full coverage), the organizers will consider that he provides the worst solution (which
uses all candidates).

4.2 Ranking
When the competition will be over, the organizers will provide a ranking for each

track, and an overall ranking. The method used here is similar to that of the Black Box
Optimization Competition (BBComp) 5.

For a given track, all participants will be ranked on each problem instance according
to the number of candidates needed to cover the samples. A problem instance score will
then be associated with each rank as follows: if n denotes the number of different solution
sizes (and not the number of participants, given that it is likely that some participants
gets the same solution size, i.e. the same number of needed cameras), then all the rank
k participants will receive score(k) = max {0, log((n+ 1)/2)− log(k)}. For each partic-
ipant, all his problem instance scores are added up to get his track score, and the final
track ranking will be computed according to these track scores.

The overall ranking will be computed in the same way (regardless of the competition
track).

4.3 Results
The results will be announced during GECCO 2020 conference.

The winners will share a total of 1 200 e prize sponsored by the UHA6 and the IRIMAS7:

• 1st place: 600 e,

• 2nd place: 400 e,

• 3rd place: 200 e.

A certificate will be provided to all entrant teams (stating the team name, the member
list, the algorithm name, the competition track, and the achieved rank).

5https://bbcomp.ini.rub.de/faq.html
6http://www.uha.fr/
7https://www.irimas.uha.fr/

14

https://bbcomp.ini.rub.de/faq.html
http://www.uha.fr/
https://www.irimas.uha.fr/

Moreover, all teams are invited to submit a short description of their algorithm for
publication in the GECCO Companion (see Section 5). To be allowed to submit
a contribution, please note that registration has to be done before a strict
deadline (see Section 3).

15

5 Dissemination
The organizing committee would like to offer to the participants the opportunity to

publish their algorithm descriptions as GECCO Companion abstracts (2-page contribu-
tions).

Any submission has to follow GECCO 2020 submission guidelines 8 and will be done ac-
cording to the competition rules (especially regarding registration and submission specific
instructions and deadlines, see Section 3).

The organizing committee will review the submissions and then select the top con-
tributing papers (with respect to the obtained results and the innovation of the proposed
method).

8https://gecco-2020.sigevo.org/index.html/Papers+Submission+Instructions
16

https://gecco-2020.sigevo.org/index.html/Papers+Submission+Instructions

References
[1] J. E. Beasley. An algorithm for set covering problem. European Journal of Operational

Research, 31(1):85 – 93, 1987. doi:https://doi.org/10.1016/0377-2217(87)
90141-X.

[2] J. E. Beasley. Or-library: Distributing test problems by electronic mail. Journal of
the Operational Research Society, 41(11):1069–1072, 1990. doi:10.2307/2582903.

[3] M. Brévilliers, J. Lepagnot, L. Idoumghar, M. Rebai, and J. Kritter. Hybrid differential
evolution algorithms for the optimal camera placement problem. Journal of Systems
and Information Technology, 20(4):446 – 467, 2018. doi:https://doi.org/10.1108/
JSIT-09-2017-0081.

[4] M. Brévilliers, J. Lepagnot, J. Kritter, and L. Idoumghar. Parallel preprocessing
for the optimal camera placement problem. International Journal of Modeling and
Optimization, 8(1):33 – 40, 2018. doi:10.7763/IJMO.2018.V8.621.

[5] A. Caprara, M. Fischetti, and P. Toth. A heuristic method for the set covering problem.
Operations Research, 47(5):730–743, 1999. doi:https://doi.org/10.1287/opre.
47.5.730.

[6] R. M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer
US, Boston, MA, 1972. doi:10.1007/978-1-4684-2001-2_9.

[7] J. Kritter, M. Brévilliers, J. Lepagnot, and L. Idoumghar. On the optimal place-
ment of cameras for surveillance and the underlying set cover problem. Applied Soft
Computing, 74:133 – 153, 2019. doi:https://doi.org/10.1016/j.asoc.2018.10.
025.

[8] J. Kritter, M. Brévilliers, J. Lepagnot, and L. Idoumghar. On the real-world appli-
cability of state-of-the-art algorithms for the optimal camera placement problem. In
2019 6th International Conference on Control, Decision and Information Technologies
(CoDIT), pages 1103–1108, April 2019. doi:10.1109/CoDIT.2019.8820295.

[9] J. Liu, S. Sridharan, and C. Fookes. Recent advances in camera planning for large
area surveillance: A comprehensive review. ACM Comput. Surv., 49(1):6:1–6:37, May
2016. doi:10.1145/2906148.

17

https://doi.org/https://doi.org/10.1016/0377-2217(87)90141-X
https://doi.org/https://doi.org/10.1016/0377-2217(87)90141-X
https://doi.org/10.2307/2582903
https://doi.org/https://doi.org/10.1108/JSIT-09-2017-0081
https://doi.org/https://doi.org/10.1108/JSIT-09-2017-0081
https://doi.org/10.7763/IJMO.2018.V8.621
https://doi.org/https://doi.org/10.1287/opre.47.5.730
https://doi.org/https://doi.org/10.1287/opre.47.5.730
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/https://doi.org/10.1016/j.asoc.2018.10.025
https://doi.org/https://doi.org/10.1016/j.asoc.2018.10.025
https://doi.org/10.1109/CoDIT.2019.8820295
https://doi.org/10.1145/2906148

	Introduction
	Description of the adressed problems
	Academic instances
	Problem modelling
	Problem instances
	Instance file format

	Real world instances
	Problem modelling
	Problem instances
	Instance file format

	Competition rules
	Registration
	Competition tracks
	Experimental setting
	Submission instructions
	Important Dates

	Evaluation procedure
	Full coverage check
	Ranking
	Results

	Dissemination

