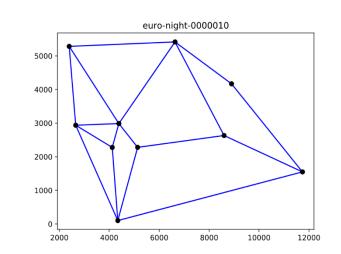
GECCO 2021 Competition on the Optimal Camera placement Problem (OCP) and the Unicost Set Covering Problem (USCP)

Mathieu Brévilliers, Julien Lepagnot, and Lhassane Idoumghar

Université de Haute-Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France

Outline

- Introduction
- Competition description
- Feedback
- Conclusion


INTRODUCTION

Why organize a competition?

Our team has some experience in competitions...

...as participants:

- Black Box Optimization Competition (CEC 2015), GECCO 2016)
- Bi-Objective Traveling Thief Competition (EMO 2019)
- Computational Geometry: Solving Hard Optimization Problems (SoCG 2019 , SoCG 2020)

Why organize a competition?

Our team has some experience in competitions...

...and also as organizers:

• GECCO 2020 Competition on the Optimal Camera placement Problem (OCP) and the Unicost Set Covering Problem (USCP)

...Competitions are stimulating, we always enjoyed getting involved!

Why a competition on OCP and USCP?

• Our team was involved in the « OPMoPS » French-German project:

Organized Pedestrian Movement in Public Spaces: Preparation and Crisis Management of Urban Parades and Demonstration Marches with High Conflict Potential

- From 2017 to 2021
- Including a work package about OCP

Organized Pedestrian Movement in Public Spaces

Bundesministerium für Bildung und Forschung

Why a competition on OCP and USCP?

- OCP and USCP structuraly *identical* [1]
- Only few works on the USCP applied to the OCP, and vice versa [1]
- No benchmark testbed for the OCP [1]
- USCP approaches <u>successfully applied</u> on OCP [2-7]

[1] Kritter J., Brévilliers M., Lepagnot J., and Idoumghar L., On the optimal placement of cameras for surveillance and the underlying set cover problem, Applied Soft Computing, 74:133 – 153, 2019. <u>https://doi.org/10.1016/j.asoc.2018.10.025</u>

[2] Brévilliers M., Lepagnot J., Kritter J., and Idoumghar L., Parallel preprocessing for the optimal camera placement problem, International Journal of Modeling and Optimization, 8(1):33 – 40, 2018. <u>https://doi.org/10.7763/IJMO.2018.V8.621</u>

[3] Brévilliers M., Lepagnot J., Idoumghar L., Rebai M., and Kritter J., Hybrid differential evolution algorithms for the optimal camera placement problem, Journal of Systems and Information Technology, 20(4):446 – 467, 2018. <u>https://doi.org/10.1108/JSIT-09-2017-0081</u>

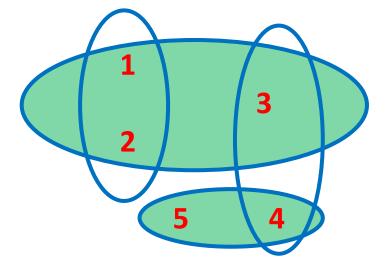
[4] Kritter J., Brévilliers M., Lepagnot J., and Idoumghar L., On the real-world applicability of state-of-the-art algorithms for the optimal camera placement problem, in 2019 6th IEEE International Conference on Control, Decision and Information Technologies (CoDIT), pages 1103–1108, April 2019. https://doi.org/10.1109/CoDIT.2019.8820295

[5] Lin W., Ma F., Su Z., Zhang Q., Li C., and Lü Z., Weighting-Based Parallel Local Search for Optimal Camera Placement and Unicost Set Covering, in Genetic and Evolutionary Computation Conference Companion (GECCO'20 Companion), July 8–12, 2020, Cancún, Mexico, ACM. <u>https://doi.org/10.1145/3377929.3398184</u>

[6] Wang Y., Pan S., Al-Shihabi S., Zhou J., Yang N. and Yin M., An improved configuration checking-based algorithm for the unicost set covering problem, European Journal of Operational Research, Vol.294 No.2, pp.476-491, Elsevier, 2021. https://doi.org/10.1016/j.ejor.2021.02.015

[7] Su Z., Zhang Q., Lü Z., Li C.-M., Lin W. and Ma F., Weighting-based Variable Neighborhood Search for Optimal Camera Placement, Proceedings of the AAAI Conference on Artificial Intelligence, Vol.35 No.14, pp.12400-12408, 2021. <u>https://ojs.aaai.org/index.php/AAAI/article/view/17471</u>

Why a competition on OCP and USCP?


- 1. To encourage innovative research works that build bridges between OCP and USCP
- 2. To promote a common and challenging benchmark testbed
- 3. To attract the interest of the scientific community in this direction

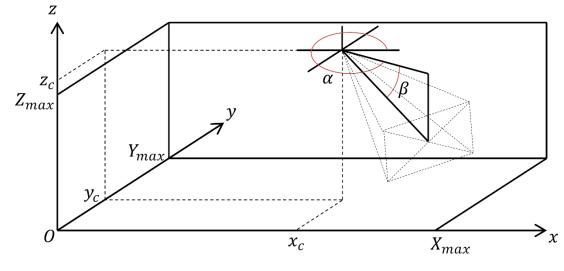
COMPETITION DESCRIPTION

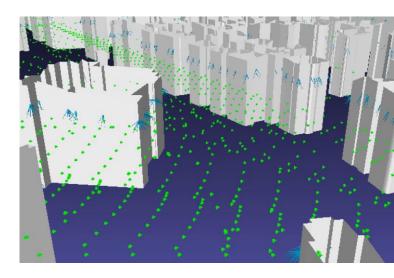
The problem: OCP stated as USCP

• USCP:

- Given a set of elements I to be covered,
- Given a collection of sets *J* such that the union of all sets in *J* is *I*,
- Find the smallest subset of J which covers I.
- OCP = USCP so that :
 - Elements of *I* are sample points to be covered,
 - Sets of *J* are camera candidates.

 $I = \{ 1, 2, 3, 4, 5 \}$ $J = \{ \{1,2\}, \{3,4\}, \{4,5\}, \{1,2,3\} \}$ Best solution = $\{ \{1,2,3\}, \{4,5\} \}$

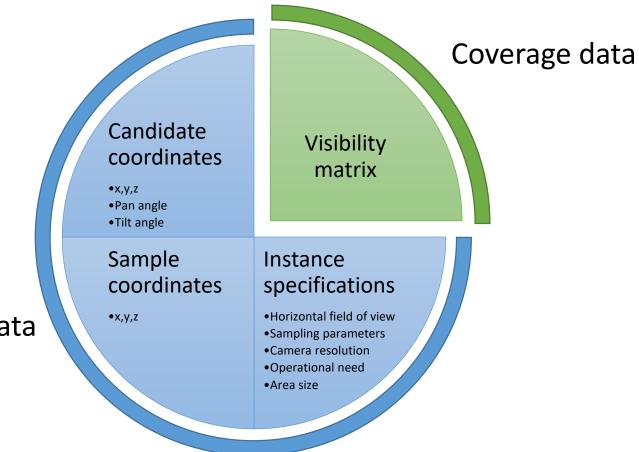

69 problem instances


• <u>32 academic instances</u>

- Empty rooms with cameras on the ceiling
- Artificially generated with various sizes and discretizations
- From 605 samples and 2 904 candidates
- To 804 005 samples and 3 859 224 candidates

• <u>37 real-world instances</u>

- Generated using map and elevation data from actual urban areas
- With various sizes and discretizations
- From 14 423 samples and 79 947 candidates
- To 90 050 samples and 654 068 candidates



Data

- ≈18 Gb
- 4 files for each instance:

Geometric data

Organization

- Almost 6 months of competition
- Opportunity to publish in the GECCO Companion
- 2 types of solver allowed:
 - USCP : algorithms that only use the visibility matrix
 - OCP : algorithms that also benefit from geometric data
- Expected submission:
 - 69 solution files (1 for each instance)
 - A 2-page description of the algorithm

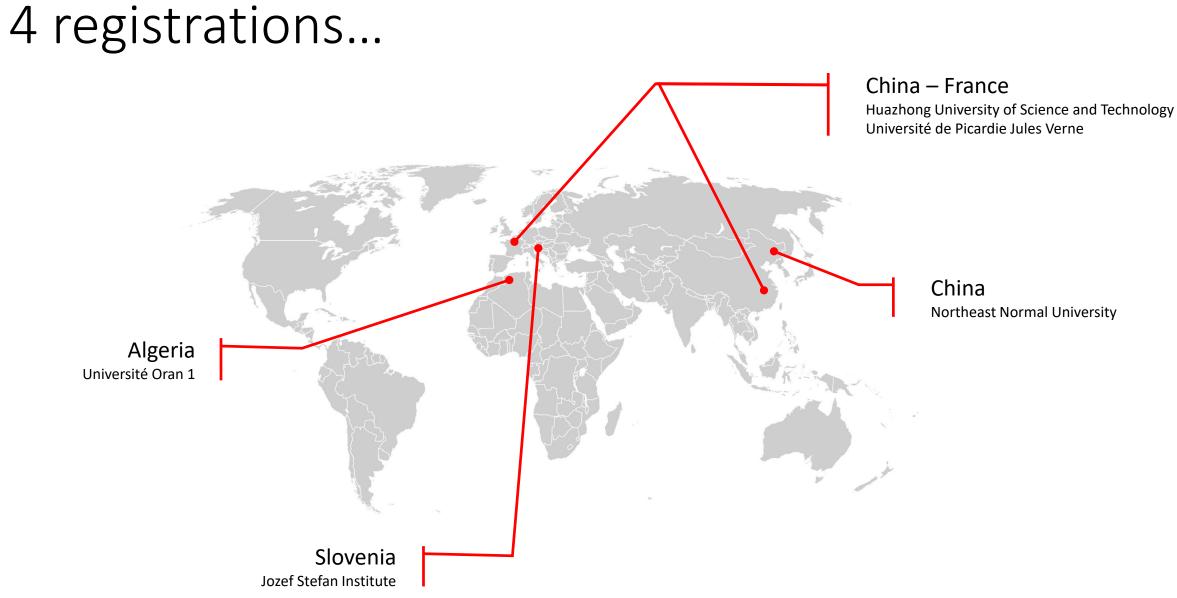
Main rules

- 1 team = 1 or more submission(s)
- 1 submission = 1 algorithm
- No restriction on the type of algorithm
- No restriction on the hardware
- No restriction on the runtime

Evaluation procedure

- 1. Solution available ?
 - No solution submitted ⇒ worst solution is considered (all candidates)
- 2. Full coverage ?
 - Partial coverage ⇒ worst solution is considered (all candidates)
- 3. Ranking

Ranking method


- 1. Rank for each instance.
- 2. Ranks are converted into scores.

Rank k participants get $score(k) = \max\{0, \log(\frac{n+1}{2}) - \log(k)\}$

where n is the number of different results for the considered instance.

- 3. Scores are added up.
- 4. Final ranking according to the total scores.

FEEDBACK

...and finally 5 contributions (159 solutions submitted)...

Team	Affiliation	Algorithm	Туре
lastMinute	Jozef Stefan Institute, Slovenia	Branch-And-Bound USCP Parallel solver (BAB_USCPP)	USCP
midouLITIO	Université Oran 1, Algeria	cpxPure: CPLEX MIP	USCP
midouLITIO	Université Oran 1, Algeria	cpxRedRows: CPLEX MIP with row dominant elimination technique	USCP
midouLITIO	Université Oran 1, Algeria	cpxRedRowsCols: CPLEX MIP with row dominant elimination technique, and a column elimination strategy	USCP
SmartOCP	Huazhong University of Science and Technology, China Université de Picardie Jules Verne, France	Weighting-based Variable Neighborhood Search with the use of the geometric information (WVNS-g)	ОСР

...1 of which is published in the GECCO Companion...

Exact and Approximate USCP With Branch and Bound

Janez Radešček Matjaž Depolli* janez.radescek@gmail.com matjaz.depolli@ijs.si Jožef Stefan Institute Ljubljana, Slovenia

...15 problem instances solved to optimality...

Instance name	Best solution
AC_01	7
AC_02	4
AC_03	3
AC_04	5
AC_05	7
AC_06	10 🗩

Instance name	Best solution
RW_05	934
RW_14	337
RW_15	341
RW_18	338
RW_19	347 🔆
RW_22	398
RW_26	464
RW_27	489 🗩
RW_36	609

...improvement of 5 best known solutions...

Instance name	New BKS	Old BKS – 2020 Team (type)
AC_26	10 038	10 039 – Alkaid-X (OCP)
AC_27	11 519	11 520 – Alkaid-X (OCP)
AC_28	13 093	13 096 – Alkaid-X (OCP)
AC_30	16 523	16 524 – Alkaid-X (OCP)
AC_32	20 341	20 342 – Alkaid-X (OCP)

...and the winner is...

...the team SmartOCP, with the algorithm WVNS-g!

Rank	Team	Affiliation	Algorithm	Туре
1	SmartOCP	Huazhong University of Science and Technology, China Université de Picardie Jules Verne, France	Weighting-based Variable Neighborhood Search with the use of the geometric information (WVNS-g)	ОСР
2	midouLITIO	Université Oran 1, Algeria	cpxPure: CPLEX MIP	USCP
3	midouLITIO	Université Oran 1, Algeria	cpxRedRows: CPLEX MIP with row dominant elimination technique	USCP
3	midouLITIO	Université Oran 1, Algeria	cpxRedRowsCols: CPLEX MIP with row dominant elimination technique, and a column elimination strategy	USCP
5	lastMinute	Jozef Stefan Institute, Slovenia	Branch-And-Bound USCP Parallel solver (BAB_USCPP)	USCP

CONCLUSION

Concluding remarks

- Modest success in terms of registration (4) and submission (5)
- But interesting contibutions with good results
- Successful advertisement for this OCP and USCP benchmark testbed
 - 2 GECCO competitions (2020 and 2021)
 - 1 survey [8]
 - 2 journal papers [3,6]
 - 4 conference papers [4,5,7,9]
- Scientific monitoring
 - <u>http://www.mage.fst.uha.fr/brevilliers/ocp-uscp-benchmark/</u>

Thank you!

- GECCO 2021 organizers
- Competition chairs: Markus Wagner and Marcella Scoczynski
- UHA and IRIMAS

I'm here 😳

• All the participants

References

[1] Kritter J., Brévilliers M., Lepagnot J., and Idoumghar L., On the optimal placement of cameras for surveillance and the underlying set cover problem, Applied Soft Computing, 74:133 – 153, 2019. <u>https://doi.org/10.1016/j.asoc.2018.10.025</u>

[2] Brévilliers M., Lepagnot J., Kritter J., and Idoumghar L., Parallel preprocessing for the optimal camera placement problem, International Journal of Modeling and Optimization, 8(1):33 – 40, 2018. <u>https://doi.org/10.7763/IJMO.2018.V8.621</u>

[3] Brévilliers M., Lepagnot J., Idoumghar L., Rebai M., and Kritter J., Hybrid differential evolution algorithms for the optimal camera placement problem, Journal of Systems and Information Technology, 20(4):446 – 467, 2018. <u>https://doi.org/10.1108/JSIT-09-2017-0081</u>

[4] Kritter J., Brévilliers M., Lepagnot J., and Idoumghar L., On the real-world applicability of state-of-the-art algorithms for the optimal camera placement problem, in 2019 6th IEEE International Conference on Control, Decision and Information Technologies (CoDIT), pages 1103–1108, April 2019. <u>https://doi.org/10.1109/CoDIT.2019.8820295</u>

[5] Lin W., Ma F., Su Z., Zhang Q., Li C., and Lü Z., Weighting-Based Parallel Local Search for Optimal Camera Placement and Unicost Set Covering, in Genetic and Evolutionary Computation Conference Companion (GECCO'20 Companion), July 8–12, 2020, Cancún, Mexico, ACM. https://doi.org/10.1145/3377929.3398184

[6] Wang Y., Pan S., Al-Shihabi S., Zhou J., Yang N. and Yin M., An improved configuration checking-based algorithm for the unicost set covering problem, European Journal of Operational Research, Vol.294 No.2, pp.476-491, Elsevier, 2021. <u>https://doi.org/10.1016/j.ejor.2021.02.015</u>

[7] Su Z., Zhang Q., Lü Z., Li C.-M., Lin W. and Ma F., Weighting-based Variable Neighborhood Search for Optimal Camera Placement, Proceedings of the AAAI Conference on Artificial Intelligence, Vol.35 No.14, pp.12400-12408, 2021. <u>https://ojs.aaai.org/index.php/AAAI/article/view/17471</u>

[8] Bartz-Beielstein T., Doerr C., Van den Berg D., Bossek J., Chandrasekaran S., Eftimov T., Fischbach A., Kerschke P., La Cava W., Lopez-Ibanez M., Malan K. M., Moore J. H., Naujoks B., Orzechowski P., Volz V., Wagner M., and Weise T., Benchmarking in Optimization: Best Practice and Open Issues, 2020. <u>https://arxiv.org/abs/2007.03488</u>

[9] Radescek J. and Depolli M., Exact and Approximate USCP With Branch and Bound, in Genetic and Evolutionary Computation Conference Companion (GECCO'21 Companion), July 10–14, 2021, Lille, France. <u>https://doi.org/10.1145/3449726.3463298</u>