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Abstract
A data-driven approach for the real-time processing of clothes, particularly suitable for simulating dresses worn
by virtual characters, is proposed. It starts, prior to real-time simulation, by analyzing cloth behavior in relation
to the underlying skeleton movement from a presimulated sequence of the cloth obtained using any high-quality
off-line simulators. The idea is to use this analysis to find an optimal combination of physics-based simulation and
geometric approximation of the simulator; potentially colliding regions are defined on the cloth such that they will
hold true for the skeleton movement that closely matches that of presimulated sequence. At runtime, using these
analyses, our simulation process provides both visually pleasing results and performance, as long as the motion
of the character remains sufficiently close to the original sequence used for the precomputation.

The key contributions of this paper are (1) efficient collision handling that prunes out potentially colliding objects by
using the off-line simulation sequence as examples; (2) data-driven fix-up process for the coarse mesh simulation
that deduces the gross behavior of the cloth; and (3) geometric approximation of the fine mesh deformation,
responsible for details in the shape of the cloth such as wrinkles.

Keywords: cloth simulation, collision detection, cloth wrinkles, data–driven approach, geometric deformation,
linear interpolation
ACM CCS: I.3.5 Computer Graphics: Physically based modeling

1. Introduction

Cloth plays a dominant role in almost every process important
to humanoid digital creatures. The problem of simulating the
behavior of clothes is one subject the graphics community has
been grappling with since almost two decades ago.[1,2,3]

Relatively, little emphasis has been placed on the separate
problem of how to achieve real-time performance in simu-
lating the cloth. A number of strategies have been suggested,
such as using simplifying assumptions for the physics model
and/or collision detection [4,5]. A recent work by James and
Fatahalian [6] suggests a different approach by adopting a
data-driven method. These techniques do not suffice; how-
ever, when simulating fully dressed virtual characters in real-
time, leaving the topic unexplored.

†This work was done when at MIRALab.

We present a data-driven method for simulating clothes
worn by 3D characters in real-time. To effectively optimize
the physics-based deformation, which is the bottleneck of
the simulation, we use a coarse representation of the cloth
mesh to drive the gross behavior in simulation. We consider
that the gross cloth behavior is driven mainly by two sep-
arable contributions: the skeleton-driven movement of the
character and the mechanical properties of the cloth. This
consideration was partly inspired by the hybrid real-time sim-
ulation method proposed in Cordier and Magnenat-Talmann
[7], where a hybrid deformation method is used to combine
dynamic surfaces with skeleton-driven deformation (SDD).
Unlike that method, however, our method exhibits signif-
icantly more efficient and realistic behavior. This effect is
achieved by focusing on the analysis of cloth movements in
relation to its associated skin surface, and adopting a learning
strategy. The idea is to use the analysis of the presimulated
sequence to identify the region largely explained by joint
movement and to replace the physics-based simulation with
geometric methods wherever possible.
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In our approach, the key ingredients of the new tech-
nique are associated with different facets of cloth simulation:
first, our novel collision detection prunes out unnecessary
collision tests by tightly localizing potentially colliding re-
gions through the analysis of the cloth movement in relation
to the skeleton. Second, we use the presimulated sequence
to approximate the dynamic behavior of the coarse mesh ge-
ometrically wherever possible. Finally, fine details such as
wrinkles are also simulated in a data-driven manner, by using
the presimulated cloth sequence as examples. Subsequently,
real-time animation of fully dressed human could be gener-
ated, which would be suitable for applications such as games
where visual plausibility is more important than accuracy.

The remainder of this paper is organized as follows. We
begin by reviewing previous approaches in Section 2. Sec-
tion 3 gives an overview, followed by the description of our
method for SDD in Section 4. The next two sections are
dedicated to the simulation of gross behavior and the gener-
ation of wrinkles, respectively. After demonstrating results
and performance in Section 7, we conclude with discussion
and future work in Section 8.

2. Previous Work

The history of research on real-time cloth is relatively recent.
Researchers have concentrated mainly on two aspects of real-
time cloth animation: simulating the physical properties of
garments and collision handling.

2.1. Numerical Solvers

Probably the most common technique for simulating the
physical properties of clothes is the particle system. Sim-
ulation process is broken down into calculating the internal
forces and solving the system of partial differential equations
(PDE). The latter point has attracted much interest in the field
of real-time applications, since it requires high computation
power.

The explicit Euler method [8] has been one of the first nu-
merical solvers. Unfortunately, this method is notorious for
its instability when using large time steps and stiff equations.
Several improvements have been proposed to reduce insta-
bility, such as the Verlet integration [9] and the explicit Euler
combined with inverse dynamics [10,11]. Unfortunately, the
simulation quality is sacrificed in favor of computation speed
due to the approximations employed in these models.

The implicit Euler method presented by Baraff and Witkin
[8] performs the computation not by using the derivative at the
current time, but the predicted derivative at the next time step.
Unlike explicit Euler integration, the implicit Euler method
offers higher stability while using large time steps and clothes
with stiff mechanical properties. A major drawback of this

numerical solver, however, is the computation of a large linear
system.

More recently, researchers worked on saving the compu-
tation time of the linear system solver. Desbrun et al. [6] pro-
posed solving the linear system with a precomputed inverse
matrix. Kang and Cho [5] proposed further optimization with
a direct update formula for the positions and velocities of the
cloth vertices. As indicated by the authors, these methods are
not intended to provide a physically correct cloth animation.
Our approach to that problem is a data-driven mass-spring
system: the simulation is corrected with a set of functions
built from the presimulated animation. By doing so, we bring
the deformation of the mass-spring system closer to the orig-
inal cloth behavior.

Another approach to fast garment deformations is the hy-
brid approach. They aim for a neat combination of physically
based deformation and geometric deformation. Cordier and
Magnenat-Talmann [6] proposed to segment the cloth into
pieces and simulate these by different algorithms, depending
on how they lie on the body surface and whether they adhere
to it or flow over it. Others have noted that wrinkle defor-
mation is geometric in nature and therefore can be computed
with a geometric method. Wrinkles can be generated either by
tessellating the cloth mesh [5] or rendering details on texture
using bump mapping [12]. The main difficulty is defining a
fold function that can simulate all kinds of wrinkle patterns.
Moreover, determining the location and shape of wrinkles is
left to artists. One of our contributions is a geometric wrin-
kling method that is ‘trained’ by using a presimulated cloth
sequence rather than relying on users.

2.2. Collision Handling

Collision detection is usually one of the bottlenecks in real-
time animation. The problem is particularly acute in the case
of clothes because these objects are highly deformable. Sev-
eral algorithms have been proposed to process robustly col-
lisions in cloth simulation [3,13] without reaching real-time
performance. Some other methods exploit graphics hardware
to compute collisions on bump maps [11]; others use voxel
trees that partition the space hierarchically [14]. Using frame
coherency to reduce computation cost has been explored by
Zhang et al. [15]. In this work, we propose a data-driven col-
lision detection method; we use the presimulated sequence
to localize the collision checks to neighboring cloth regions
that have high probability to collide.

2.3. Data-Driven Approaches

The idea of building an interpolator from examples or pres-
imulated data has proven to be a valuable tool in a variety of
areas of CG, for example, for modeling a variety of human
body shapes and for motion synthesis. The basic idea is to
build an interpolation space filled with a set of pairs of input
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Table 1: The chosen strategies to save computation time.

parameters and the targeted graphical objects. Cloth anima-
tion depends on a high number of parameters and therefore
a data-driven approach is difficult to adapt. Very recently,
James and Fatahalian [6] resented such an approach, where
physics-based deformation and collision detection are both
handled in a unified framework. By blending of precomputed
orbits rather than using a mass-spring system, previous un-
seen results could be achieved, such as garments with stiff
mechanical properties in real-time. However, they show little
degrees of freedom (DoF) to the clothes under simulation;
Instead of resorting to a data-driven approach for the entire
simulation, we seek a neat combination of a data-driven ap-
proach with the mass-spring system. Unlike previous works,
our simulator allows a much higher degree of interaction, as it
is often needed in animating clothes on moving characters.

3. Overview of Our Approach

The primary focus of this paper is the development of a fast
cloth simulator for real-time applications. Dynamic simu-
lation of complex deformable models, however, can easily
involve thousands of DoF. For example, a physics-based sim-
ulator would require several minutes to compute one frame of
a cloth model worn by a character. Simulating large models
directly would therefore be computationally impractical. In
what follows, we present the chosen optimization strategies
as well as the workflow of the method.

3.1. Optimization Strategies

Table 1 summarizes our strategies for optimizing the cloth
simulation. Our simulator is based on two levels of deforma-
tion: the first deduces the gross cloth behavior by working
on a coarse mesh with a physics-based approach whereas
the second generates wrinkles on a fine mesh with a geo-
metric method. The coarse mesh is generated by simplifying
the original cloth mesh through segmentation. The reason
for this choice is to lower the computation time; geometric

Figure 1: The workflow of our approach.

methods are in general much faster than physically based
ones [12].

Next, our simulator assumes that the clothes are worn on
3D characters, and that the character movement is the only
external force acting upon the cloth. When observing the be-
havior of garment worn by a character, there are considerable
correlations between the body motion and the movement of
the garment. These correlations are especially clear for some
clothes such as tight shirts and trousers. In our method we
take advantage of these relationships to reduce the computa-
tion load on the mass-spring system and collision detection.
We first construct the cloth-to-joint relation by analyzing a
presimulated sequence of the cloth to be animated. We then
reduce the number of vertices to be physically simulated by
identifying the garment regions in which the shape follows
that of the underlying skin. The cloth-to-joint relation en-
ables us also to optimize collision detection by restricting
the collision check to a small area around each vertex of the
coarse mesh. Finally, we use the cloth shape of a presimulated
cloth sequence to correct the physics-based simulation of the
coarse mesh in order to match the original cloth behavior
more closely.

3.2. Workflow

An overview of the workflow is given in Figure 1. The prepro-
cessing stage involves generating the coarse mesh, computing
the cloth-to-joint relation, and constructing the collision hulls
and the interpolation functions for data-driven coarse mesh
deformation and wrinkle animation.

The runtime simulator includes deformation of the coarse
mesh using the simplified mass-spring system; a post-
correction on the position and velocity of the mass points
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Figure 2: Twisting of 2
3 π radians: (a) the classical SDD, (b)

the modified SDD in our approach, and (c) its corresponding
coordinate systems.

is processed in order to approach the presimulated cloth be-
havior. Collisions are handled by collision hulls the position
of which is computed by our SDD. The final mesh is then ob-
tained using the winkle shape interpolator and the computed
geometry of the coarse mesh.

4. Improving the Skeleton-Driven Deformation
Approach

The SDD, a classical method for the basic skin deformation
is perhaps the most widely used technique in 3D character
animation. This method works first by assigning a set of joints
with weights to each vertex in the character. The location of
a vertex is then calculated by a weighted combination of the
transformation of the influencing joints. Although develop-
ing a new SDD method is not our main goal, the way the skin
deforms is important in our framework since natural looking
cloth shape also requires natural skin shape. There are two
requirements which the method should fulfill for this par-
ticular use: first, it must overcome the undesirable effect of
vertex collapse as shown in Figure 2(a). Second, the method
must provide an easy way to compute the local coordinate
system for each skin vertex. This is necessary as we want
to compute the deformation of the cloth surface in relation
to the skin surface. We found that the classical SDD can be
greatly improved by replacing the linear combination of the
matrices by the matrix operator defined by Alexa [16]. The
combination of i matrices Mi with their blending weight w i

is given by

MSSD = ⊕
i

wi · Mi = e
∑
i

wi log(Mi )
.

In the remainder of this paper, we denote the function that
returns the SDD matrix of the vertex P by SDDP(), SDDP()
taking the joint angles of the skeleton as input. The SDD
position of P is simply given by MSDD.XP,Dress, XP,Dress being
the position of P at initial character pose (see Ref. [17] for
further details on SDD).

Note that the operator is not continuous. It is not defined for
a rotation of 2π radians between the matrices to be blended.

Figure 3: Two examples of segmentation with (a) patches
of large (260 cm2), and (b) small surface area (95 cm2).
(c) is the coarse mesh corresponding to the segmentation (b).
Different colors are randomly assigned to the patches.

In practice, such case is rare; in general, the largest angle
range does not exceed π radians.

5. Simulation of the Gross Behavior

Due to the computational expenses of solving the full numer-
ical system of the physics-based deformation, we seek sim-
plifications by constructing a coarse mesh representation of
the garment. The coarse mesh is used to deduce the gross be-
havior of the cloth in a data-driven manner, based on the input
presimulated sequence. A number of optimization strategies
are adopted: the two following sections describe a preprocess-
ing that constructs and segments a coarse mesh representation
into different region types. We then describe in the next two
sections the spring-mass system and collision handling of the
coarse mesh at each frame of the simulation. Also described
is the runtime process.

5.1. Construction of the Coarse Mesh

We begin by constructing a coarse representation of the given
cloth model that will drive the gross behavior of the simu-
lated garment. It consists of two following steps: (1) the cloth
surface is partitioned into a set of patches as shown in Fig-
ure 3(a) and (b). (2) A coarse mesh representation is obtained
by combining a set of vertices in a patch into a single mass
point located at the center.

The generation of a patch starts by finding a vertex that has
not yet been attributed to a patch that is already generated.
The patch is then grown by adding neighboring vertices one
after the other. To select a new vertex into the current patch,
we evaluate each neighboring vertex that has not been already
assigned to a patch, using a penalty function. To enforce
the regularity of coarse mesh, which is one condition for
obtaining efficient deformation with the mass-spring system
[3], we consider two following components.

c© IEEE Proceedings of Pacific Graphics 2004



F. Cordier and N. Magnenat-Thalmann/Data-Driven Approach for Real-Time Clothes Simulation 177

� Minimizing the ‘shape factor’: Square Root (Surface
Area)/Contour Length. The objective is to obtain ‘well-
shaped patches’, patches that have a circular shape.

� Obtaining patches of equivalent surface area. This com-
ponent gives a cost that increases with the surface area
of the patch. By modifying the significance of this com-
ponent, we can easily control the number of vertices to
be simulated with the physically based deformation (see
Figure 3).

The vertex with the lowest cost is selected. When the low-
est cost exceeds a threshold, the construction of the patch
is completed. We proceed until no vertices can be found to
start a new patch. Deciding a good granularity in the coarse
mesh is hand-tuned, so that a neat compromise between the
simulation quality and the computation load is found. We
have found that best simulations are obtained when patch
area covers one or two cloth wrinkles.

Note that each patch is associated with a vertex on the
coarse mesh. We denote the vector position of a vertex P as
XP, and the vector position of its neighbors as XN∈R3n (n:
the number of neighbors of P).

5.2. Identifying Cloth-to-Joint Relations
and Region Types

Next we carry out cloth-to-skin (or body) attachment through
skin fitting, by which the skinning data on the cloth mesh are
approximated in such a way that the skinning-driven cloth
shape best fits the simulated cloth shape throughout the whole
presimulated sequence. The basic idea is to use the presimu-
lated results as examples and find the error-minimizing skin
data through optimization. An optimization approach, such
as the one presented by Mohr and Gleicher [17], could be
adopted here. In our case, however, our SDD method is non-
linear and therefore the linear regression as adopted by Mohr
and Gleicher is not beneficial. Function minimization tech-
niques such as Powell’s method [18] can deal with nonlinear
functions. Performance is slightly slower, but only prepro-
cessing performance is affected and not runtime performance.
The fitting results for a dress model are shown in Figure 4.
Notably, the floating regions (colored in red in Figure 4(d))
are attached to the root of the character, as shown in Fig-
ure 4(b); this is contributable to the fact that these regions are
large in volume and they rarely collide with limbs during the
walk motion.

The residual values of the fitting provide useful informa-
tion on how the garments behave in relation to the body. In-
tuitively, floating garments such as a skirt, cloth patches may
collide with several joints; collisions need to be computed
on these regions. On the other hand, the local movements of
some cloth patches (such as underwear) are negligible and
these patches can be considered as being attached rigidly to
the skeleton. In our approach, three regions are identified from

Figure 4: (a,b) Influence of the joints on the dress shown in
color, (c) quality of the fitting of the SDD data, and (d) the
three regions computed on an analysis of the residual values.

Figure 5: The coarse mesh is computed with both the mass-
spring and SDD systems.

the residual values of the skin fitting process (Figure 4(d)):
those that potentially interact with several joints, those that
are loosely attached to the skeleton, and those that are rigidly
attached to the skeleton. The threshold values are chosen in
a way that the coarse mesh deformation remains sufficiently
close to the presimulated sequence. For example, a false as-
signment of loose region into tight region would produce
elongated deformations instead of slipping garment over the
skin, and therefore generate an overly deformed coarse mesh,
which is beyond the training data of the wrinkle generator.
Similarly, a false assignment of region 3 into region 2 would
result in the garment crossing the legs. In practice, values of
0.5 and 4.0 cm are used to identify tight regions and floating
regions, respectively.

The deformation of tight regions is directly computed with
the SDD (lines 2 and 6 on Figure 5). The use of SDD for these
regions makes it possible to reduce the number of mass points
even further. The pseudocode of the simulation loop is given
in Figure 5.
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Figure 6: Post-correction of the mass-spring system.

High residual values indicate much less dependency on a
specific body region of the cloth movement. Therefore, an ad-
ditional collision check is required to handle the interaction
of the clothes with the whole body skeleton. A list of po-
tentially colliding body patches is defined by selecting those
that approach within a certain distance of the floating regions
during the presimulated cloth sequence.

Apart from the position, our SDD computes the local trans-
formation matrix of the vertices, the simulator to be optimized
at least for the two following points: limiting collision checks
to a small area around the vertices, and the geometric wrin-
kling which is processed in the SDD local coordinate system.

5.3. Data-Driven Post-Correction of the Coarse Mesh

At each frame of the simulation, we compute the coarse mesh
by a mass-spring system with the implicit Euler numerical
solver [2]. The simulation run on the coarse mesh hardly re-
produces the gross movement of the original cloth because
the initial mesh has been significantly simplified (from 4000
to a few dozen vertices) and the topology has been modi-
fied. Moreover, unlike the simulator used for the presimu-
lated cloth sequence, the simplified mass-spring model does
not accurately simulate the bending and shearing properties
of the fabrics [3].

We approach the problem by modifying the behavior of the
mass-spring system through a fix-up process (similar to [14])
where the position and velocity of the coarse mesh vertices
are modified in order to maintain the cloth shape as close as
possible to the original one (Figure 6).

Ideally, the local shape (e.g. position of the vertices in re-
lation to their neighbors) should be a blend of those of the
presimulated animation. This is achieved by constructing a
set of functions of local shape deformation. Post-correction is
accomplished with a function that evaluates the ‘ideal’ posi-
tion of the vertex given the position of its neighbors connected
by the edges. For each vertex, we construct an interpolating
function FPost by using a set of (XN,Presimulated, XP,Presimulated)
pairs extracted from each frame of the presimulated sequence,

Figure 7: Construction of the lookup table for the data-
driven post-correction.

Figure 8: Post-correction of the mass-spring system.

where XN∈R3 (n: number of neighbors of P) denotes the po-
sition of the neighbors and XN∈R3n the position of the vertex
in question. All these positions are described in the SDD co-
ordinate system of P. The evaluation of the ‘ideal’ position
is made with the inverse distance weighting on the presim-
ulated frames. Given a position of neighbors XN,Input as in-
put, the interpolation computes the corresponding XP by a
weighted summation of the XP,Presimulated values, each weight
being computed from the Euclidian distance between XN,Input

and all the XN,Presimulated values.

The computation cost of this interpolator grows as the num-
ber of presimulated frames increases. We wish to keep the
computation cost constant regardless of the duration of the
presimulated sequence. A common solution is to construct a
lookup table filled with values presimulated by the interpola-
tor on grid sampling (Figure 7). In order to reduce the mem-
ory usage of the lookup table, the dimension of XN,Presimulated

was reduced prior to the construction of the interpolator, by
principal component analysis [18]. The first three principal
components, which describe 95% of the average variability
of the data, are used.

The positions of the vertices are corrected after every sim-
ulation loop. The velocity is updated as well. Its new value is
set to the sum of the original velocity and the velocity due to
the modification of the vertex position (line 11 on Figure 8).
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Figure 9: Computation of the collision hull for each cloth
patch: (a) residual values of SDD attachment fitting, (b) com-
putation of local cloth displacement, (c) convex hulls cover-
ing all displacements, and (d) resulting collision hulls.

5.4. Collision Hulls

To prune unnecessary collision tests, we precompute what
we term ‘collision hulls’ that exploit the skin-to-cloth rela-
tion obtained from the presimulated sequence. These are built
once at the beginning of the simulation (prior to the runtime
simulation) after the SDD has been computed on the coarse
mesh, using the presimulated sequence. At each presimulated
frame, we calculate the difference between the SDD motion
model and the presimulated cloth model in the local coordi-
nate system of the SDD. After a sweep, we get a set of points
that cover the path a patch takes during the simulation. The
smallest convex hull that contains all these points is generated
for every patch using the ‘Quickhull’ algorithm presented by
Barber et al. [19].

Given enough variation and range of character motion, we
expect these hulls to cover the allowable positions of cor-
responding cloth patches during the runtime simulation. By
using collision hulls, collision tests are restricted to a small
area around the patch; the overall computation can be signif-
icantly reduced in comparison to classical collision detection
methods in which collisions are computed between the whole
skin and cloth surface. Note that the collision hulls are gener-
ated for loose and floating garment regions only. The collision
hulls of tight regions are small enough to be approximated by
a single point. Figure 9(d) shows the convex hulls computed
for the dress model.

Collision handling at runtime consists of correcting the
position of coarse mesh vertices after every simulation step
so that they remain inside their respective hulls. The algorithm
is summarized as follows.

Thus, collision detection returns to computing if the par-
ticle is in its associated collision hull (line 14 on Figure 10);
the Gilbert–Johnson–Keerthi algorithm [20] is ideally suited
to this task. We used constrained dynamics [13] to handle the

Figure 10: Collision handling using collision hulls (loose
and floating regions).

Figure 11: Collision handling on floating regions.

collision response (i.e. modification of position and velocity
in response to collision detection) at line 15. Collision detec-
tion is also computed between floating regions and skeleton
joints as shown on Figure 11.

5.5. Runtime Computations

The real-time computation of global cloth movements is ob-
tained with a mass-spring system together with the collision
response and post-correction described above. The runtime
computation of the coarse mesh is obtained in the following
order:

� Mass-spring computation (Figure 5).
� Post-correction (Figure 8).
� Collision response on hulls (Figure 10).
� Collision response on floating garments (Figure 11).

Note that the collision response on floating garments comes
last to ensure collision avoidance between cloth and body.

6. Generating Garment Details

So far we have shown the first part of our simulation, that
is, the coarse-level simulation. We continue now to describe
the second part of the simulation, by which detailed cloth
shape such as wrinkles or folds are depicted. Again, the main
challenge here is obtaining the highest possible realism while
maintaining acceptable computation load in order to meet the
real-time requirements.

As recognized in earlier works [12,21], wrinkles can be
efficiently animated with a geometric method as they are ge-
ometric in nature. Unlike previous methods, however, our
wrinkling function is not hand-drawn, nor geometrically ap-
proximated, but rather trained from on the analysis of the
presimulated sequence.

In this work, we choose to represent the wrinkle displace-
ment in the local coordinate system used for SDD. This makes
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Figure 12: Shape of the patch with respect to the positions
of the control point P and its neighbors N1, N2, and N3.

our wrinkle parameterization invariant of all joints of higher
hierarchy than the currently influencing joint.

Several techniques exist for shape interpolation using ex-
amples, such as radial basis functions or parametric inter-
polation. We have used linear interpolation in which coeffi-
cients are defined by multilinear regression on the presim-
ulated animation, since it provides satisfactory results at a
very low computation cost. For every vertex x in a patch,
the interpolator function takes the associated mass point in
the coarse mesh, and its neighbors as input. To calculate the
position of x from the input, the wrinkle interpolator inter-
polates the positions of the coarse mesh points, weighted by
coefficients determined the regression model of the following
form:

Fx (XP, XN) = α + αP XP +
∑

n∈Neighbors(P)

αn Xn .

The values α, αP, and αN are the interpolation coeffi-
cients. They are defined by multilinear regression on a set of
pairs (positions of coarse mesh vertices, fine mesh vertices)
extracted from the presimulated cloth sequence. XP and XN

are, respectively, the position of the vertex x and its neigh-
bors; they are all expressed in the SDD coordinate system of
x (Figure 12).

Despite its simplicity, linear interpolation works fairly well
provided a sufficient number of presimulated frames for the
multilinear regression. A condition of a good working in-
terpolator is that the input (i.e. position of the coarse mesh
vertices) should be within the range of the presimulated data.
In other words, the wrinkle interpolator can only work for the
input range for which it has been trained. This condition is
maintained thank to the data-driven post-correction (see Sec-
tion 5.3). This also keeps the smoothness of the boundaries
between patches. Figure 13 illustrates the deformation of the
wrinkles.

Figure 13: The wrinkling interpolator in action: wrinkles in
(b) and (d) are generated geometrically with (a) and (c) as
input.

7. Results and Discussion

We measure and validate the proposed real-time cloth sim-
ulation method along three criteria: the variety of clothes to
be simulated, the computation speed, and the range of body
motion in the presimulated cloth sequence. Presimulated se-
quences obtained by the cloth simulator of Baraff et al. [3]
were used in our preprocessing.

7.1. Variety of Clothes

We used our framework to different types of clothes, as shown
on the demonstration video.

� The ‘evening’ dress (Figure 13) is chosen to demonstrate
our wrinkle interpolator on large garment regions.

� The ‘cocktail’ dress (Figure 16) is a relatively complex
model; the bottom is composed of two layers of tissues
and has folds made of large number of vertices, inducing
many self-collisions.

� The ‘jeans’ outfit is a good example of a model where
the SDD-based geometric approximation can reduce the
number of mass points substantially by simulating only
a few regions that contribute significantly to the dynamic
behavior.

Our simulator behaves fairly well on a wide variety
of clothes, including those with highly stiff mechanical
properties. Figure 16 show the preprocessing and runtime
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Table 2: Computation speed.

simulation results for the cocktail dress. Moreover, perfor-
mance will increase due to the fact that the smallest number
of triangles will be processed for the real-time rendering.

However, the method may introduce flaws in simulation
for some tight clothes due to the approximate handling of
collision detection. For some body movements, the skin sur-
face may slightly intersect the cloth surface. Similarly, the
same problem may arise for self-collisions on clothes. The
deletion of the skin triangles covered by the garment surface
can partially correct this drawback.

Note that the cloth simulation is also restricted to clothes
worn on bodies. While offering high computation speed, the
cloth simulator cannot handle some cloth movements such
as those appearing during dressing or undressing. More gen-
erally, the clothes are unable to interact with objects other
than those that have been taken into consideration during the
preprocessing phase. The list of objects that can potentially
interact with clothes and the way these objects interact are
defined at the preprocessing stage and cannot be changed
during the real-time simulation. Finding a method to update
the list of possible interacting objects automatically could be
a subject for future research.

7.2. Computation speed

Table 2 summarizes the performance of our simulator on a 1
GHz Windows PC. The preprocessing of all the cloth models
took less than 10 minutes. All examples run in real-time at
approximately 25–50 frames/second (fps), with the coarse
mesh deformation process taking about 75% of the total CPU
time. As expected, the duration of the presimulated sequence
is not a factor of the runtime computation speed. In practice,
the performance lowers down at a low rate as the complexity
of the collision hulls increases, which tends to be governed
by the number of presimulated frames (see Section 5.3).

7.3. Range of body motion

As expected, the quality of the simulation depends on the
number and variety of examples—the presimulated sequence
in our case. To show that the simulator faithfully recre-
ates the cloth movement used for training, we compared the
real-time simulation with the presimulated one in the first

Figure 14: Estimation of the error when reducing the range
of body motion in the pre-simulated sequence.

Figure 15: Estimation of the error when reducing the num-
ber pre-simulated frames.

video. The character walks at a normal pace without any fast
movements.

In the second video, different body movements from those
of the training were supplied as input to our real-time sim-
ulator and the results are compared with the ones generated
with a high-quality simulator.

To measure the simulation quality, we compared our sim-
ulation results with the presimulated sequence, using a de-
formation metric. It measures the still shape and movement
by the sum of edge length difference and the mass velocity
difference over the cloth mesh. Figure 14 shows the impor-
tance of the variability of the body motion in the presimulated
sequence. The best quality is achieved when the range of the
body motion in the presimulated sequence is approximately
30% larger than the one used in the real-time simulation.

Our simulator works well for interpolation (i.e. joint angles
within the range of those of the presimulated sequence) but
often fails for extrapolation. The main reason for this limita-
tion is collision detection, which does not allow the clothes
to have different locations on the body from those calculated
in the presimulated sequence; this makes the clothes being
attached rigidly to the skeleton.

Figure 15 shows the effect of using motion of different
durations (expressed in number of frames) with same joint
angle ranges. With less than 70 presimulated frames, the real-
time simulation loses its quality.
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Figure 16: Simulation of cocktail dress and jean outfit: (a) segmentation, (b) analysis of vertex movements, (c) identification of
the three regions, (d) the resulting coarse mesh with collision hulls, and (e) samples of real-time animation.

8. Conclusion

The recent advent of cloth simulation techniques has matured
enough to produce highly realistic cloth movements on an-
imated characters. However, real-time simulation has been
largely unexplored until now.

This paper presents the first report of a practical and effi-
cient method for handling real-time simulation almost auto-
matically. We used our framework to produce visually pleas-
ing motion of a wide range of clothes. Both the mass-spring
system and collision detection have been rewritten to take
advantage of the presimulated sequence of the clothes to be

animated. Consequently, our cloth simulator is able to con-
struct a model for real-time animation without user interven-
tion and can deal with different types of clothes from tight to
floating with low computation consumption.

There are many interesting avenues for future work. First,
the approach could be extended to simulating other physics-
based models such as hair and fluid. We also believe that
the work on collision hulls is promising. The current mesh
model of collision hulls could be replaced by implicit sur-
faces or voxel maps. Therefore, for a cloth vertex, it could be
possible to compute several collisions hulls in relation to dif-
ferent objects in the scene and to compute their intersection
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for real-time collision detection. By doing so, it may be possi-
ble to process collisions on a higher number of objects while
maintaining low computation cost. We also believe that the
precision of the collision detection could be improved by re-
placing the convex shape by a surface to follows more closely
the trajectories of the vertices.
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Luible for their design work to the garment models illustrat-
ing this paper.

References

1. K.-J. Choi and H.-S. Ko. Stable but responsive cloth. In
ACM Transactions on Graphics, Proceedings of ACM
SIGGRAPH 2002, ACM Press, vol. 21(3), pp. 604–611,
2002.

2. D. Terzopoulos and K. Fleischer. Deformable models.
In The Visual Computer, Springler-Verlag, vol. 4(6),
pp. 306–331, 1988.

3. D. Baraff, A. P. Witkin and M. Kass. Untangling cloth.
In ACM Transaction on Graphics, ACM Press,
vol. 22(3), pp. 862–870, 2003.

4. M. Desbrun, P. Schroder and A. H. Barr. Interactive
animation of structured deformable objects. In Graph-
ics Interface’99 Proceedings, Morgan Kaufmann, San
Mateo, CA, pp. 1–8, 1999.

5. Y.-M. Kang and H.-G. Cho. Bilayered approximate inte-
gration for rapid and plausible animation of virtual cloth
with realistic wrinkles. In Computer Animation 2002,
Switzerland. IEEE Press, pp. 203–214, 2002.

6. D. L. James and K. Fatahalian. Precomputing interactive
dynamic deformable scenes. In ACM Transactions on
Graphics, ACM Press, vol. 22(3), pp. 165–172, 2003.

7. F. Cordier and N. Magnenat-Talmann. Real-time anima-
tion of dressed virtual humans. In Eurographics, Black-
well publishers, vol. 21(3), pp. 327–336, 2002.

8. D. Baraff and A. Witkin. Large steps in cloth simulation.
In ACM Transactions on Graphics,Proceedings of ACM
SIGGRAPH, ACM Press, pp. 43–54, 1998.

9. Z. Kacic-Alesic, M. Nordenstam and D. Bul-
lock. A practical dynamics system. In ACM SIG-
GRAPH/Eurographics Symposium on Computer Anima-
tion, ACM Press, pp. 7–16, 2003.

10. X. Provot. Deformation constraints in a mass-spring
model to describe rigid cloth behavior. In Graphics In-
terface’95 Proceedings, AK Peters, pp. 147–154, 1995.

11. T. Vassilev and B. Spanlang. Fast cloth animation on
walking avatars. In Eurographics, Blackwell Publishers,
Oxford, United Kingdom vol. 20(3), pp. 260–267, 2001.

12. S. Hadap, E. Bangarter, P. Volino and N. Magnenat-
Talmann. Animating wrinkles on clothes. In IEEE
Visualization ’99, San Francisco, USA. IEEE Press,
pp. 175–182, 1999.

13. R. Bridson, R. Fedkiw and J. Anderson. Robust treatment
of collisions, contact and friction for cloth animation.
In ACM Transactions on Graphics, ACM Press, vol.
21(3), pp. 594–603, 2003.

14. M. Meyer, G. Debuune, M. Desbrun and A. H. Barr.
Interactive animation of cloth-like objects in virtual re-
ality. Journal of Visualization and Computer Animation
12(1):1–12, John Wiley & Sons, 2001.

15. D. Zhang and M. Yuen. “A Coherence-based Colli-
sion Detection Method for Dressed Human Simulation”.
Computer Graphics Forum, Blackwell Publishers, Vol.
21(1), pp. 33–42, 2002.

16. M. Alexa. Linear combination of transformations.
In SIGGRAPH 2002 Conference Proceedings, Annual
Conference Series, ACM Press, vol. 21(3), pp. 380–387,
2002.

17. A. Mohr and M. Gleicher. Building efficient, accu-
rate character skins from examples. In ACM Transac-
tions on Graphics, ACM Press, vol. 22(3), pp. 165–172,
2003.

18. W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T.
Vetterling. Numerical recipes in C. In The Art of Scien-
tific Computing, Cambridge University Press, pp. 412–
420, 1988.

19. C. B. Barber, D. P. Dobkin and H. T. Huhdanpaa. The
Quickhull algorithm for convex hulls. In ACM Transac-
tions on Mathematical Software, ACM Press, vol. 22(4),
pp. 469–483, 1996.

20. E. G. Gilbert, D. W. Johnson and S. S. Keerthi. A fast
procedure for computing the distance between com-
plex objects in three-dimensional space. IEEE Journal
of Robotics and Automation 4(2):193–203, IEEE Press,
1988.

21. Y.-M. Kang, J.-H. Choi, H.-G. Cho and D.-H. Lee.
An efficient animation of wrinkled cloth with approx-
imate implicit integration. The Visual Computer Journal
17(3):147–157, Spinger-Verlag, 2001.

22. P. Volino and N. Magnenat-Thalmann. “Virtual
Clothing-Theory and practice”, Springer Verlag, ISBN:
3-54067-600-7, 2000.

c© IEEE Proceedings of Pacific Graphics 2004


