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Abstract: Though the Visible Human Dataset provides a complete volumic coverage of the human body, it
does not give information about its structure. An important task is to identify the spatial extents of the
organs of interest, and to provide their surface models. In this paper, we will present two methods for the
reconstruction of organs from the Visible Human Dataset. The first method is the segmentation of organ on
each slice with the snake technique. The second method uses the Shape Constrained Deformable Model.
For these two methods, we present testing results of the extraction of different types of organ from the
Visible Human Data.

1. Introduction

A tissue of the human body can be shown in three dimensions, using sequences of two-dimensional
slices obtained by medical diagnostic equipment such as Computed Tomography (CT) and Magnetic
Resonance Imagery (MRI). The Visible Human Dataset provides such data in very high quality. These
images make it possible to simulate a complicated surgical procedure, educate medical students, and
visualize the condition of a patient. As the data of CT or MRI forms volumetric data from a sequence of
cross-sections, it is necessary for the effectiveness of the simulated medical procedure to create a 3D model
for each object using the volumetric data, thus allowing it to be manipulated [16][17][18][19][20].

Many researchers have extracted 3D models for surgical simulation, using image-processing software
[21]. Techniques such as Marching Cubes and Region Growing have been tested. J. Montagnat and H
Delinguette [6] use deformable models to extract shape organs from medical images. Their method
combines the deformable model approach with the registration approach. This hybrid model of
deformations consists of an additional external force acting on a 3D model. This force is derived from the
best geometric transformation between the actual model shape and the closest data points. Similarly,
researchers have improved the robustness of deformable models by applying more global constraints.
Terzopoulos and Metaxas have considered in [9][11] the superposition of a rigid component with a finite
element mesh. A similar approach on deformable contours is proposed in [8]. Modal analysis [10][12] and
Fourier representation [13][14] aim similarly at controlling the amount of deformation.

In this paper, we present two techniques for organ reconstruction. In the first part of this paper, we
describe a method which is a semi-automatic reconstruction by defining organ contour on each slice. On
these slices, the user defines the organ contour with the snake technique. Once all contours have been
defined, these contours are joined to create the surface of the organ. In the second part of this paper, we
present another method that uses Shape Constrained Deformable Model. The idea of this method is that,
among patients, shapes of organs are most of the time, similar. The reconstruction process is defined in two
steps. First, the user has to place an initial shape of the organ to the position of the organ to be
reconstructed. Then, this initial shape is deformed using the image information and the shape memory. The
shape memory of a model is its ability to come back to its original form once deformed. The image
information is used to move vertices of the model to image contours. For these two methods, we present in
the third part results and problems we have encountered for reconstruction of organs from the Visible
Human Dataset.
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2. Reconstruction with Snake technique

With this technique, the reconstruction process is defined in two steps described as follow:

§ At the first step, the user defines the organ contour on each slice. For that, he/she has to put a set of
points around the organ on the slice. The snake technique allows the polygon to fit exactly to the
contour on the slice. This operation has to be done for every slice containing the organ.

§ Once the elements have been interpreted and labeled on the different cross-sections as contours, the 3D
reconstruction is performed by joining the contours of all the pertinent slices [5]. This gives a 3D
surface of the anatomical object of interest.

In following paragraphs, we give a short description for the snake technique, the program which
implements this technique and in finally, the results for the reconstruction of different types of organ.

2.1. Snake model

For exact fitting of the contour of the organ on a slice we use discrete snakes [22][23]. This allows the
fitting of the contour to points of maximum contrast close to the already-defined rough contour. Though
snakes are quite useful when anatomical information is visible, manual intervention is sometimes necessary
due to the difficulties in interpretation.

Snakes are characterized by a few parameters (such as elasticity, rigidity, and speed,). Because
manipulation of all parameters may burden users, they are provided with predefined settings dedicated to a
particular contouring problem (skin, bones… ). Thus, only a single command is necessary to achieve
contour fitting. As our contours are modeled as closed polygons, we use a discrete snake model. In addition
to elastic and rigid forces, an image force acts on each vertex and tends to move it to pixels of interest. To
adjust the snake on points of strong contrast, we consider:

Fext , i = ni ·  ∇E(v i)

where ni  is the normal to the curve at the node i, whose position is vi. E is a measure of the contrast of
the image at point vi and is given by:

E(v i) = ∇ I(v i)
2

where I(v) represents the image itself. To estimate the gradient of the image, we use a 3D generalization
of the Sobel operator [24]. We consider all 26 neighbors to the current voxel. This combines edge detection
and low-pass filtering, and therefore snake vertices are less subject to be stuck by a slight feature. Using
neighboring slices re-enforces structures present in successive slices. Nonetheless this may confuse the user
by fitting the contour to structures not visible in the current slice. To avoid this the weight of the gradient
component transverse to the slice is tunable and may even be neglected.

Blending of the different color channels is changed to alter the snake’s color channel sensitivity. For
instance, we can make snakes sensitive to the excess of blue color, which is useful with our blue
background. Skin can then be easily contoured.

Snakes are useful in many circumstances, particularly in the presence of high contrast such as bones on
CT images. It helps users, but does not replace them, since the user validation of labeling is an important
task.
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2.2. Implementation

A program “Label” has been written to implement the technique described earlier. Label is composed of
two windows. The first window shows a 3D view of the voxel map with organs under reconstruction. The
voxmap is represented by its bounding box and a plan inside this bounding box. This plan corresponds to a
slice inside the voxmap. A scrollbar allows the user to move this plan. The second window shows a 2D
view of the current slice with the cross-sectional contour of the object corresponding to this slice. With this
window, the user can add, delete or move points of the cross-sectional contour on the current slice.

The Label program has been written using the MFC library from Microsoft [26] and the OpenInventor
library from TGS [25]. The following picture shows the user interface of Label.

Figure 1: user interface of Label.

3. Shape Constrained Deformable Model

As described early, the reconstruction process with snakes can be slow because the user has to define
the cross-sectional contour on each slice. As organ boundaries do not appear clearly in some cases,
reconstruction with snake also requires anatomical knowledge. Therefore another technique has been



Page 4 of 11

developed. This technique uses Shape Constrained Deformable Model. In the next section, we will give a
description of our method, its implementation and the results. Our method has been tested to reconstruct
organs of the Visible Female with organs from the Visible Male.

3.1. Description of the Shape Constrained Deformable Model.

In this method, we use an initial model that is placed approximately to the position of the organ we
want to reconstruct. This model is modified using a generic model and the information from the medical
images of the patient. The segmentation process is formulated as the minimization of a cost functions
associated to each point of the shape:

♦  A shape memory force that keeps the shape of the generic model.
♦  Image interest force that tends towards vertices to move into high edge density.

In the next sections, we first present the generic model, then describe different types of forces, and
finally, the energy minimization process followed by the results.

3.1.1. Initial shape and generic shape

As described earlier, our method uses two shapes: the initial shape and the generic shape. The initial
shape is the shape at the first iteration in the computing process. We can use an initial shape which is
different from the generic shape. The only restriction is that initial shape and generic shape must have the
same topology. Most of cases, initial shape is identical to generic shape. Sometimes for specific images as
CT images, it’s very helpful to define an initial shape. On these images, bones appear with two contours
very close to each other. During the reconstruction process, some vertices move to the internal contour and
some other to the external contour. In that case, we define an initial shape big enough to contain the entire
organ to be reconstructed. In this way, vertices only move to the external contour. A generic shape is used
to compute the shape memory force which will be described later.

3.1.2. The deformable model

Our model is represented by points that define the object contours. The surface of the object is defined
by a triangular mesh where each vertex knows its neighboring vertices. Thus, reconstruction algorithms
such as the labeling tool described earlier can directly be used in a first step to build the generic model. The
vertices of the mesh triangles correspond with voxels in the volume being segmented.

3.1.3. Cost functions

These cost functions can be defined as a set of forces applied to each vertex. As described earlier, there
are two types of force, shape memory force and image interest force. All these forces are explained in next
two sections.

3.1.3.1. Shape memory force

The elastic properties of an object can be defined as its ability to come back in its original shape once
deformed. It corresponds to a force, called shape memory force that is deduced from the generic shape and
the current shape. It is different from the elastic model that uses spring to link each neighboring point and it
offers better convergence. A triangular mesh defines the surface of the object and each vertex knows its
neighborhoods. For each vertex, we use an approximate coordinate system calculated with neighboring
vertices. The computing of the shape memory force is made into two steps described as follow:
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♦  During initialization, we calculate for each vertex the local coordinate system with the generic model.
In this local coordinate system, we compute the coordinates of the vertex. This is the position of the
local null deformation of the vertex relative to its neighbors.

♦  For each iteration, we calculate for each vertex the local coordinate system relative to its neighbors.
This local coordinate system changes at each iteration because the shape is modified during the fitting
process. In this local coordinate system, we know the current position of the vertex and position of the
local null deformation. This position has been computed in the initialization step. Between these two
positions, we apply a force that will move the current position to the position of the local null
deformation. The local shape tends towards to be similar of the local shape of the generic model.

In the following figure:

♦  G is the isobarycenter of the neighbors of point P.
♦  Z is the unit vector normal to the approximate neighbors plane. X and Y are two vectors normal to Z.

(X,Y,Z) is an orthonormal coordinate system.
♦  Pcurrent is the current position of the vertex. This position is defined by three values xc, yc and zc.
♦  Pideal is the position of the local null deformation.

G yx

z

 Pideal
 Pcurrent

Figure 2: The local coordinate system.

With these two positions, the value of the shape memory force applied to each vertex P is:

idealcurrentPPKF ⋅=
r

K is the coefficient of the internal force. By increasing this coefficient, the elasticity of the deformable
model will be lower.

The length of the vector Pideal is proportional to the size of the generic model. It means that if we apply
a global scaling on the generic model, the direction of Pideal for all vertices will be invariant and the
variation of the length will be equal to the variation of the model size. In that way, a coefficient can be
added to Pideal in the previous equation. With this coefficient, we can add a force that inflates or deflates
the deformable model during the fitting process. This force can be used on a closed contour to force the
contour to expand in the absence of external influences.

3.1.3.2. Image interest force

External forces attract the deformable contour to interesting features, such as object boundaries, in an
image. Any force expression that accomplishes this attraction can be considered for use. In our case, the
computation of external forces is defined in two steps:
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♦  At the initialization, we apply a 3D Sobel operator on the entire voxmap. The gradient map is then
stored in a cache. Using a memory cache is a good strategy because we intensively use the value of the
gradient for each vertex in the next process. The input voxmap can be represented as gray level data as
well as color.

♦  During the process, we find the closest position of the gradient value which is greater or equal to the
threshold parameter. This position is considered as ideal position. The threshold parameter is
controlled by the user. In order to limit time, the research for the ideal position is restricted along the
normal of the surface around the vertex. This normal of the surface has already been computed during
the computation of the internal force. This normal is the Z vector in the local coordinate system
described earlier. A parameter defines the size of the neighbor. This parameter can be edited by the
user. We put a force to move the vertex to this ideal position.

On the following figure:

♦  Pi1Pi2 is the segment on which the search of the ideal position is done.
♦  Ni is the normal to the surface
♦  Si is the vertex and Mi is the position of the ideal position.

1iP

iS

2iP
3D Model

Contour

iN

iM

Figure 3: Computation of ideal position.

The expression of the external force is similar to internal force. The value of this force applied to a
vertex Si is:

iii MSKF ⋅=
r

The parameter K is the coefficient of the external energy. This parameter can be modified by the user.
Since we are considering noisy data, we may perform a smoothing of external forces by taking the average
over a neighborhood. The expression of the smoothed force applied on Pi is:
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Nt(Pi) is the neighbor vertices of the vertex Pi. It can be defined as the set of points connected to Pi by
a topological path of length lesser than or equal to t. The parameter t can be modified by the user. If this
parameter is equal to zero, the smoothing is not used in the external force computation.
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3.1.4. Energy minimization

For each vertex, we can compute the total energy which is the sum of internal and external energy. We
then use minimization of the total energy using variable metric methods in multidimensions [15]. The
minimization process is made in several iterations. Between each iteration, the user can intervene to modify
the deformable model.

3.2. Implementation

The software which implements this method has been developed on SGI machines. The user interface is
composed of a main window and a dialog to set the parameters of the fitting process. The main window
shows the voxmap with the deformable model. The user can modify the model in two ways. He can make
some global transformation as translation, rotation or scaling. He can also modify a part of the model by
moving a set of vertices at the surface. This modification can be done on the initial shape but also during
the fitting process. The following figure shows a snap shot of the user interface.

Figure 4: User interface.

4. Results

In the following sub-sections, we provide a comparison of the reconstruction from the two techniques
described early. There are primarily three types of anatomical elements (organs) that can be reconstructed:
bones, muscles and skin with deep fascia. For these three elements, we describe the advantages and
disadvantages for each reconstruction method.

4.1. Bones

For the reconstruction of bones, CT images and anatomical images have been used. Reconstruction of
the bones on anatomical cross-sections is easy when they are surrounded by musculature, the white color of
the compact bone contrasts well with the red one of the skeletal muscular tissues. In this case,
reconstruction with Label, the first method presented in this paper, is almost automatic. Also the method
that uses Shape Constrained Deformable Model gives good results and is faster than Label.
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In the case where tendons and fibrous articular capsules cross or attach to bones, delineation of the
osseous surface may become difficult. With Label, the user has to define the arbitrary boundary on each
slice. Segmentation with Label becomes very slow. The second tool can interpolate missing boundaries as
described early. In some case, the interpolation is not precise enough; the user can modify the surface by
moving a set of vertices to the contour defined arbitrary. Generally speaking, the second tool is faster than
Label for the reconstruction of bones on anatomical images. The first image below shows the segmentation
of the humerus with Label. For the next two images we can see the result of reconstruction from anatomical
female images with shape constrained deformable model. The generic model used for this reconstruction
has been created with Label from anatomical male data.

Figure 5: Reconstruction of the humerus with Label from anatomical male images.

Figure 6: Reconstruction of the Humerus from anatomical images.

On CT images, distinction between calcified tissue and non-calcified fibrous structures is easier.
Comments on reconstruction from these data are the same than comments on reconstruction from
anatomical data. The only difficulty we have encountered is that on these images, bones appear with two
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contours. These contours are very close to each other. During the reconstruction process with the second
tool, some vertices of the deformable model move to the internal contour and others to the external contour.
To solve this problem, we need to define an initial model enough bigger to contain the entire organ in the
voxmap. In that way, vertices only detect the external contour. The figure below shows an example of a 3D
reconstruction of a muscle. The first image represents the 3D model before the fitting and the second image
shows the result of the fitting process.

Figure 7: Reconstruction of the Humerus with the second tool from CT images.

4.2. Muscles

Segmentation of muscles is more difficult than bones. In most cases, muscles are surrounded by other
muscles. The distinction between individual muscles is often impossible. Thus, it would be illusory to
believe that the contour of every muscle can be clearly and easily identified.

Reconstruction of muscles with Label is very slow. The user has to use the different fiber orientation
on anatomical images. In the case where delineation is impossible, the user has to arbitrarily trace a border
between muscles where it is expected based on anatomical experience. The user then reconstructs the
supposed muscles and judges the correctness of the segmentation with the aid of 3D rendering. When not
satisfied, he/she returns to the slices and improves the segmentation until 3D rendering corresponds to the
usual muscle size and shape. This segmentation process is very slow.

Reconstruction with shape constrained deformable model is easier. As described early, this method
uses a generic model to interpolate missing boundaries. The reconstruction gives good results if the initial
shape is closed to the shape of the muscle be reconstructed. In that case, extrapolation works fine and the
segmentation can be done in a few minutes. The two following images illustrate a reconstruction of the
Brachialis with the second tool.

Figure 8: Reconstruction of the Brachialis from anatomical data.
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4.2.1. Skin

The segmentation of the skin surface does not impose problems due to the fact that the embedding
medium (blue) is in clear contrast to the white color of the skin. With the automatic contouring feature of
Label, the reconstruction of skin on anatomical images is very fast. The second tool is not adapted to the
segmentation of the skin. The shape of the skin surface depends on the posture of the body. It is impossible
to define a generic model of the skin surface. The surface skin can be easily segmented with a technique
such as Marching Cubes or Region Growing.

5. Conclusion

The two tools presented in this paper are complementary. The Label tool allows the user to create all
generic models needed. Then, these generic models are used by the second tool to reconstruct organs for
specific patient. The second advantage of these reconstruction tools is that they can employ different type
of images as input. They can reconstruct organs from CT images or MRI images. The reconstruction can be
adapted to all other types of data; the user just needs to adapt parameters used in the fitting process. The
reconstruction can also be done on every other part of the human body.
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