
Sketch-Based Interaction

50 January/February 2007 Published by the IEEE Computer Society 0272-1716/07/$20.00 © 2007 IEEE

S ketching interfaces to 3D object model-
ing facilitate 3D object reconstruction

from a 2D drawing provided by a designer. Igarashi
presented the Teddy silhouette-based sketching sys-
tem, which has a simple, intuitive interface.1 Follow-
up research has mainly focused on the representation
issue for the resulting 3D objects, as given in recent
work: variational implicit surfaces2 and other forms of
implicit surfaces.3

In this article, we address a different issue, the exten-
sion of the modeling domain. In par-
ticular, we consider the modeling of
self-occluding objects (or multiple
objects possibly occluding each
other), as Figure 1 shows. The cre-
ation of such objects with an existing
tool such as Teddy1 is rather awk-
ward: the 2D closed curves would
result in their corresponding 3D
pieces that should be combined by
detecting the hidden portions. We
propose an integrated approach to
this problem.

Our approach first extracts the 2D
skeleton on the sketching plane,

given a set of contours self-intersecting or intersecting
each other. Then, we derive the 3D skeleton from its 2D
counterpart. Finally, we construct the 3D objects(s). Our
main contribution is the second step, which derives the
3D skeleton by computing the depth at each (self-)inter-
secting point on the 2D skeleton, while guaranteeing
the intersection-free condition and C1-continuity at the
corresponding points in the 3D space. We formulate the

3D skeleton construction as a sequence of constrained
optimization problems to iteratively refine the shape of
the skeleton off the sketching plane.

2D contour analysis
The input data for 3D reconstruction are a set of hand-

drawn strokes that represent the visible parts of the
model’s 2D silhouette (see Figure 2a). The contour com-
pletion algorithm reconstructs the entire silhouette by
finding the occluded parts of the silhouette curves as
shown in Figure 2b. This algorithm involves two steps: 

1. finding a set of spline segments that correspond to
the occluded part of the silhouette, and 

2. checking the validity of the topology of the recon-
structed silhouette curves composed of the hand-
drawn strokes and the spline segments.

The algorithm first enumerates the sets of spline seg-
ment, corresponding to all the possible ways of connect-
ing free endpoints in a one-to-one manner. If there are
more than two free endpoints, the completion problem
might have several solutions. In this case, the algorithm
sorts the sets of spline segments according to a cost func-
tion that reflects the splines’ curvature and length. The
computation time of the cost function is negligible; our
algorithm can process a large number of free endpoints
without significant increase in computation time.

The algorithm then examines the topology of each set
in increasing order of their cost value; the aim is to find
the set that solves the completion problem and that has
the least distorted and shortest spline segments. A set’s
topology is valid if the corresponding silhouette curves
are physically realizable in the 3D space. To achieve this,
we implement the method proposed by Williams.4,5

With this approach, we write an integer linear program
based on the topological characteristics of the contour
set, such as the numbers of segments and segment junc-
tions. The topological validity is guaranteed when the
integer linear program has a solution. In addition to
ascertaining the validity of the topology, the method
computes each segment’s depth index. This value, which
denotes the number of surfaces lying between the seg-
ment and the camera viewpoint, defines the occlusion
order (that is, which segment is coming behind which
other segment) of the spline segments (see Figure 2c).

When 3D objects occlude each
other or self-occlude, their
drawings typically consist of a
set of contours that might
partially overlap or self-overlap.
The authors’ method infers the
hidden parts of contours and
creates a smooth 3D shape
matching those contours by
solving a set of optimization
problems.

Frederic Cordier 
Korea Advanced Institute of Science and Technology

Hyewon Seo
Chungnam National University

Free-Form
Sketching of Self-
Occluding Objects

1 Drawing of a
torus knot.



William’s method also computes the orientation of each
silhouette curve, which indicates whether the object is
on the left or right side of the curve. The Williams’
papers4,5 provide a detailed description of the comple-
tion algorithm.

Reconstructing the 3D skeleton
Our algorithm is suited for reconstructing 3D objects.

From the graph labeling algorithm discussed in the “2D
contour analysis” section, we have computed a set of
closed curves. Each curve is segmented into a number of
noncrossing curve segments at their (self-)intersection
points. Each curve segment is labeled with its depth
index—that is, the number of surfaces that lie between
the viewpoint and the curve itself. Our goal here is to
recover the coordinates of the nonintersecting 3D
objects in a way that their corresponding 2D silhouette
matches the input drawing. In the remainder of this arti-
cle, we assume that the sketching plane is z � 0 (see Fig-
ure 3a). Also, we assume the orthogonal projection of
the 3D objects onto the sketching plane (z � 0).

To simplify the problem, we first compute the z-coor-
dinates of the 2D silhouette’s skeleton rather than of
the silhouette itself (see Figure 3b). The z-coordinates
of the silhouette can then be easily inferred from the z-
coordinates of its skeleton (see Figure 3c). Finally, we
generate the 3D volume around the skeleton in a way
that its silhouette matches the given 2D contours (see
Figure 3d).

Extraction of the skeletons 
Similarly to Teddy, our program uses the skeleton

computed with the chordal axis transformation of the
silhouette polygon. The chordal axis is a curve that con-
nects the center of the internal edges of the Delaunay-
triangulated silhouette polygons (see Figure 3b).
Igarashi et al. use the chordal axis to construct the 3D
volume by inflating the region surrounded by the sil-
houette, using the chordal axis as the inflation’s center.1

In our case, however, we can’t use constrained Delau-
nay triangulation because the 2D silhouette curves
might contain (self-)intersections. In this article, we
have implemented the method described by Cordier and
Cheong, which is essentially a modified version of the
plane-sweep algorithm.6

Criteria for estimating reconstructed object
quality 

An infinite number of 3D objects exist that do not
intersect and whose silhouette matches the input curves.
We have defined three criteria to evaluate the shape
quality of the 3D objects (see Figure 4):

■ smoothness of their skeleton; we consider straight
objects as having a more natural shape than twisted
ones, and hence we evaluate them as better shapes; 

■ orientation; and 
■ distance of the reconstructed objects with respect to

the sketching plane.

We make the two last criteria to place the reconstruct-
ed objects as close as possible to the sketching plane.

IEEE Computer Graphics and Applications 51

2  Building the sketch’s topology: (a) initial sketch, 
(b) possible solution for occluded contours, and (c)
depth index of each segment of the silhouette curve.

(a) (c)(b)

Depth index 0 
Depth index 1 

Occluded contours 
Original contours 

3  Overview of the reconstruction process: (a) the
input curve is originally located on the sketching plane
(z � 0); (b) the occluded segments are reconstructed
and the skeleton of the silhouette curve is extracted
using the constrained Delaunay triangulation; (c) the
skeleton vertices are moved perpendicularly to the
sketching plane (that is, parallel to the z-axis) such
that the reconstructed shape (d) does not self-
intersect.

 

(a)

(c) (d)

(b)

y

xz

z

y

x

y

xz

z

y

x

 

Sketching plane 

Sketching plane 

Sketching plane 

(a)

z
y

x

Sketching plane

z
y

x

z
y

x

(b)

(c)

(d)

z

y

x

4  The three criteria to estimate the quality of (a) the
reconstructed shape: (b) smoothness of its skeleton, (c) its
orientation, and (d) distance with respect to the sketching
plane.



Representing the skeleton
As we assign z-coordinates to the skeleton, we evalu-

ate the skeleton curve’s smoothness, which we can mea-
sure by its curvature and torsion energies. Intuitively
speaking, the curvature energy measures the degree to
which the curve is bent, and the torsion is a measure for
the curve’s nonplanarity. Unfortunately, these two ener-
gy terms are nonlinear7 and can complicate the prob-
lem of optimization. Our solution is to represent the
skeleton curves with a piecewise quadratic surface; by
using the approximation of the quadratic surface’s bend-
ing energy,7 the energy terms become linear. 

As Figure 5 shows, each edge vi, vj is associated with
a quadratic surface of the form Sk(x, y) � ak.x2 � bk.x �
ck.y2 � dk.y � ek.x.y � fk. This surface passes through the
two vertices vi and vj, and is perpendicular to ni and nj

at the vertices vi and vj respectively. For each vertex vi,
the variables (xi, yi) are the position coordinates on the
sketching plane; the z-coordinates (zi) and normal coor-
dinates (xN,i, yN,i) are the unknown variables of our recon-
struction problem. Roughly speaking, the z-coordinates
and normal coordinates are related, respectively, to the
bending and torsion deformations of the skeleton curve.
Two quadratic surfaces connected to the same vertex vi

are C1-continuous at the point (xi, yi)—that is, they have
the same z-coordinate zi and normal ni vector at that
point.

By choosing the piecewise quadratic surface repre-
sentation (see Figure 6), we obtain the curvature ener-

gy as a convex quadratic function of its coefficients,
assuming the slight bending within the surface. The
minimization of such a function can be solved linearly.
In addition, the curvature energy of the piecewise qua-
dratic surface provides an estimation of both the torsion
and bending energies of the skeleton curve.

A C1-continuity constraint is required to have smooth
deformation at the quadratic surfaces’ junction, as the
skeleton bends. Intuitively speaking, the C1-continuity
propagates the bending and the torsion deformation
along the skeleton curves. As a vertex moves away from
the sketching plane, the two surfaces adjacent to this
vertex will bend smoothly with the C1-continuity con-
straint. Computing the curvature energy of these sur-
faces provides us with a simple way to estimate the
skeleton curve’s smoothness.

Formulating the shape reconstruction as a least
squares problem

To compute the 2D skeleton’s position in the 3D space,
we find the z-location zi and the normal coordinates (xN,i,
yN,i) at the skeleton vertices vi � (xi, yi) that are the solu-
tion of a least squares problem defined by an objective
function and a set of constraints. The objective function’s
purpose is to estimate the quality of the reconstructed
objects, the inequality constraints prevent the objects
whose silhouettes overlap in 2D from intersecting each
other, and the equality constraints maintain the C1-con-
tinuity between adjacent surfaces. Thus, we solve for an
optimization problem of the following form:

(1)

where X � (z0, xN, 0, yn, 0, … zm�1, xN, m�1, yn, m�1)T, with m
being the number of skeleton vertices. Utotal denotes the
matrix of the objective function for evaluating the qual-
ity of the reconstructed models; MC1 is the matrix of
equality constraints for the C1-continuity, and Mcoll is
the matrix of the inequality constraints for preventing
self-intersections.

Linear inequality constraints for the colli-
sions. Since we don’t want the reconstructed shapes
intersecting in 3D, special care must be taken to keep
some minimal distance between shapes whose 2D pro-
jected images on the sketching plane overlap. We do so
by placing a set of inequality constraints on the z-coordi-
nates of skeleton vertices. First, we identify all pairs of
skeleton vertices for which the constraint must be
defined. Our approach makes use of the paneling con-
struction by Williams.4 The paneling consists of creating
a set of 2D panels (or regions) on the sketching plane.
Each panel is the projected image on the sketching plane
of a region of the 3D shape, and is delimited by a set of
connected segments of the close curves obtained from
the contour completion step, as discussed previously. Fig-
ure 7 shows an example of such paneling construction.

The paneling construction of a set of shapes whose
projected images overlap on the sketching plane makes
a stack of panels, each panel being assigned a depth

min
X

z

X
X

X d
U

M

Mtotal
coll

subject to C1
0⋅ =

≥

⎧
⎨
⎪

⎩⎪

Sketch-Based Interaction

52 January/February 2007

5  A skeleton edge connecting vi to vj is associated with
a quadratic surface Sk passing through vi and vj and
whose normal vectors are ni at vi and Nj at vj.

Sk 

vj

vi

n

z
y

x

i

n j

–xN,j
–yN,j

1

–xN,i
–yN,i

1

xi
yi
zi

xj
yj
zj

6  The piecewise polynomial surface associated with
the skeleton: a polynomial surface Sk is associated with
each pair of connected vertices vi and vi � 1; two polyno-
mial surfaces Sk and Sk � 1 are C1-continuous at their
common vertex vi.

v0 

v1 v2 v3 

S0 

S 1

S2 

Sketching plane 

0n

1n 2n
3n

z

y
x



index—that is, the number of panels that lie between
the viewpoint and the panel itself. In Figure 7, for exam-
ple, the largest stack is the one composed of the panels
(e0, e1, e2) whose depth indices are 0, 1, and 2. With such
panels, it’s simple to find all skeleton vertice pairs to
place the collision constraint: we first compute for every
panel the list of skeleton vertices whose corresponding
Delaunay edge is connected to the panel. Given a stack
of panels, we then find for each panel, the immediate
above panel in the stack. As these two panels overlap,
we write a collision constraint for all skeleton vertice
pairs that belong to the two different panels. We con-
sider the collision constraints only on the skeleton ver-
tices, and not on the skeleton edges. This approximation
is acceptable only if the skeleton edges’ length is small
enough so that the distance to the skeleton is approxi-
mated as the distance to one of its vertices. 

Second, we compute the minimum distance for each
constraint and write them in matrix form. Given a con-
straint l between two vertices vi � (xi, yi, zi) and vj � (xj,
yj, zj) on the skeleton as shown in Figure 8, the minimum
distance between these two is

(2)

where ri and rj are respectively the radius of the shape at
the vertices vi and vj, ll the distance along the sketching
plane between vi and vj, and dMinSurf the minimum dis-
tance between the boundaries of the reconstructed
shapes; the user provides the last value. From Equation 2,
we then compute the minimum distance along the 
z-axis for vertices vi and vj:

Finally, we define the linear inequality constraint for the
two vertices zi � zj � dz,l. The order of occlusion between
the two overlapping skeletons determines the sign of
dz,l. The inequality constraints for all q collisions are writ-
ten in the matrix form: McollX � dz. Mcoll is a matrix [a3.i,l]
of dimension 3m by q, such that a3.i,l � 1 and a3.i,l � �1 if
a collision constraint l exists between the vertices vi and
vj and 0 otherwise. The column vector dz is defined by
(dz,0, …, dz,q�1)T.

In some cases, however, the linear inequalities sys-
tem does not have any solution. Such cases happen
when the reconstructed shapes are so tightly interlaced
that nonpenetrating surfaces cannot be reconstructed. 

C1-continuity. The C1-continuity constraint
between a quadratic surface Sk(x, y) � ak.x2 � bk.x � ck.y2 �
dk.y � ek.x.y � fk and its adjacent quadratic surfaces at the
vertices vi � (xi, yi, zi) and vj � (xj, yj, zj), see Figure 9,
constitutes the following linear system: 

The matrix form of this linear system is
MC�X,k � Ck � Xi,j (3)

where

and Xi,j � [zi xN,i yN,i zj xN,j yN,j]T and Ck � [ak bk ck dk ek fk]T.
The linear system is rank deficient, and it can be eas-

ily shown that the last row R5 of the matrix MC�X,k is a

M
C X k→ =

,

x x y y x y

x y

y x

x

i i i i i i

i i

i i

j

2 2

2

1

2 1 0 0 0

0 0 2 1 0

xx y y x y

x y

y x

j j j j j

j j

j j

2 1

2 1 0 0 0

0 0 2 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥S x y z

S x y

x
x

S x y

yk i i i
k i i

N i
k i i, ,

,
,

,
,( ) =

∂ ( )
∂

=
∂ ( )

∂
==

( ) =
∂ ( )

∂
=

∂

y

S x y z
S x y

x
x

S x

N i

k j j j

k j j

N j

k j

,

,
, ,

,
,

, yy

y
y

j

N j

( )
∂

=
,

d r r d l
z l i j MinSurf i.

= + +( ) −
2

2

r r d l d
i j MinSurf l z l
+ +( ) = +

2
2 2

,

IEEE Computer Graphics and Applications 53

7  Paneling construction (b) corresponding to the
drawing (a).

a0

d0

1
1

2

1 1

1

c0

g 0

f 0

i 0

j 0

b0 e0 h0 k0

b

f

e

e

g h

a b

c 

d 

e 

f

g 

i 

j

h k

(b)

(a)

z

y

x

z

y

x

8  The collision constraint l between vertices vi(xi, yi, zi)
and vj(xj, yj, zj).

x 

z

z i

dz,l

ri

z j

(xi ,yi) (xj ,yj) 

dMinSurf 

y  

rj

9  The C1-continuity constraints for Sk(x, y) at the 
vertices (xi, yi) and (xj, yj). 

(xN,i ,yN,i ) (xN,j ,yN,j)

Sk(x,y)

x

z

z j

z i

(xi ,yi) (xj ,yj)y



linear combination of the other five rows, R0, …,R4, as
in R5 � mk,0R0 � mk,1R1 � mk,2R2 � mk,3R3 � mk,4R4, 
where 

As Xi,j is linearly related to MC�X,k as shown in Equation
3, it follows that the similar linear dependency exists
among the elements of Xi,j: mk,0zi � mk,1xN,i � mk,2yN,i �
mk,3zj � mk,4xN,j � yN,j � 0. Combining this linear constraint
for every surface, we write: MC1 � X � 0 where 

with mk,0 � (mk,0, mk,1, mk,2) and mk,1 � (mk,3, mk,4, �1).

Curvature energy. A common approximation of
the curvature energy of a thin plate s(x, y) under slight
bending7 is

The constant D is the Young’s modulus (elasticity
coefficient of the plate) and v the Poisson’s ratio. In prac-
tice, the Poisson’s ratio varies from 0 to 1/2. In this arti-
cle, we use D � 2 and v � 1/2, and the approximated
curvature energy of a quadratic polynomial surface 
Sk(x, y) associated with an edge (vi, vj), vi � (xi, yi), vj �
(xj, yj), is

(4)

where

Equation 4 can be rewritten in the matrix form 

where 

Since Ecurv,k has a convex quadratic polynomial 
form, the coefficients ak, ck, and ek, minimizing this 
objective can be computed by solving the least squares
problem:8

(5)

where the matrix

is computed by the Cholesky factorization of H. Clearly,
working with the approximated curvature energy is less
expensive than working with that of exact form, which
involves nonlinear terms.7

Now that we have found the curvature-energy objec-
tive function using the quadratic coefficients Ck, we
rewrite it as a function of skeleton variables Xi,j so that
the curvature energy term is seamlessly integrated into
the global optimization problem as in Equation 1. Ck

and Xi,j are linearly related from Equation 3; unfortu-
nately, the matrix MC�X,k is rank deficient and cannot
be directly inverted. We therefore compute a matrix
MX�C,k such that Ck � MX�C,kXi,j is a solution to the cur-
vature minimizing problem of Equation 5 and a solu-
tion to the linear system as in Equation 3. The
“Computing the Matrix MX�C,k” sidebar describes the
computation of this matrix. The objective function of
curvature energy as a function of Xi,j is given by

(6)

where

Combining the objective function in Equation 6 for
every surface, we write:

(7)

where Ucurv is filled with lkU'MX�C,k for k � 0,…n � 1,
n being the number of edges.

Orientation of the skeleton. The second criteri-
on to evaluate the quality of the reconstructed shape is
the minimization of the orientation angle of its skeleton
with respect to the sketching plane (z � 0). 

min
X

XU
curv

U ' =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

2 0 1 0 0 0

0 0 3 0 0 0
0 0 0 0 1 0

min '
,

,X i j
i,j

XU M
X C k→

U =

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

2 1 0

0 3 0
0 0 1

min ( )
, ,a c e k k k

T

k k k

a c eU ⋅

H =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

4 2 0
2 4 0
0 0 1

E l a c e a c e
curv k k k k k k k k

T

,
= ( ) ( )2 H

l x x y y
k j i j i
2

2 2
= −( ) + −( )

E l a c e a c
curv k k k k k k k,

= + + +( )2 2 2 24 4 4

E

D s

x

s

y

v

s

curv
=

∂
∂

+ ∂
∂

⎛

⎝
⎜

⎞

⎠
⎟ −

⎛

⎝
⎜
⎜

−( ) ∂

∫∫2

2 1

2

2

2

2

2ss

x

s

y

s
x y

dxdy
∂

∂
∂

− ∂
∂ ∂

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎞

⎠

⎟
⎟
⎟

2

2

2

2
2

M
C

0,0 0,1

1,0 1,1

0 0 0 0 0

0 0 0 0 0

0 0 0
0

1
=

m m

m m

�

�

� � � � �
� � mm m

m m

j j

n n

,0 ,1

,0

0 0

0 0 0
0 0 0 0

�

� � � � �
� �

,1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

m
y y

m
x x

y y
m

m

k
i j

k

i j

i j
k

k

, , ,

,

, ,
0 1 2

2
1=

−
= −

−( )
−

= −,

33 4

2= −
−

= −
−( )
−y y

m
x x

y y
i j

k

i j

i j

, and
,

Sketch-Based Interaction

54 January/February 2007



The normal vector (see Figure 10) to a surface defined
by the function Sk(x, y) is:

Previously, we defined the variables (xN,i, yN,i) of the
vertex vi by

Sk(x, y) being a quadratic surface connected to the ver-
tex vi. Therefore, the objective function to minimize the
skeletons’ orientation angle 

This objective function is written in the matrix form

(8)

where

U
orient

=

0 1 0
0 0 1

0 1 0
0 0 1

0

0

0

���
1 0

0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

min
X

U
orient

X

x y
N i N i

i

m

, ,
2 2

0

1

+( )
=

−

∑

x
S x y

x
y

S x y

yN i
k

N i
k

, ,

, ,
=

∂ ( )
∂

=
∂ ( )

∂
and

n = −
∂ ( )

∂
−

∂ ( )
∂

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

S x y

x

S x y

y
k k

,
,

,
,1

IEEE Computer Graphics and Applications 55

10  The normal
vector at the
vertex vi. 

 

n = (–xN,i, –yN,i, 1)
Sk + 1(x,y)

Sk(x,y)

x

z

z i

(xi ,yi)y

Computing the Matrix MX�C,k

We compute the matrix MX�C,k such that Ck � MX�C,k Xi,j is
the solution to the linear equality-constrained least squares
problem:

(A)

subject to 

M�Ck � Xi,j (B)

where 

and

Here, M’ contains five of the six rows of MC�X,k, and is not
rank deficient. One way to solve least squares problems
with equality constraints is to use the method of direct
elimination.1 We introduce first the partitioning:

Ck,1 can be formulated as a function of Ck,2 using the
equality constraint Equation B:

(C)

Therefore 

Substituting this expression for Ck in Equation A gives 

where . The solution of the previous
least squares problem is given by

Substituting this expression of Ck,2 in Equation C gives

Finally, we can write the matrix MX�C,k with which we can
compute Ck as a function of Xi,j:

The matrix MX�C,k is used in the objective function of the
curvature energy (see Equation 7 in the main text). 

Reference
1. C. Lawson and R. Hanson, Solving Least Squares Problems, 

Prentice Hall, 1974.

Ck =
′M1
−1 I + ′M2

� ′U2
T � ′U2( )−1 � ′U2

T ′U1 ′M1
−1⎛

⎝⎜
⎞
⎠⎟

− � ′U2
T � ′U2( )−1 � ′U2

T ′U1 ′M1
−1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⋅Xi,j

= Mx→C,k

Ck ,1 = ′M1
−1 I + ′M2

� ′U2
T � ′U2( )−1 � ′U2

T ′U1 ′M1
−1⎛

⎝⎜
⎞
⎠⎟

Xi,j

Ck ,2 = − �U2
'T �U2

'( )−1 �U2
'T ′U1 ′M1

−1Xi,j

� ′U2 = ′U2 − ′U1 ′M1
−1 ′U2

min
Ck

′U ⋅Ck = min
Ck ,2

� ′U2 ⋅Ck ,2 + ′U1 ′M1
−1Xi,j

Ck =
Ck ,1

Ck ,2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
′M1
−1 Xi ,j − ′M2 Ck ,2( )

Ck ,2

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

Ck ,1 = ′M1
−1 Xi,j − ′M2 Ck ,2( )

   

′M

′U

⎡

⎣
⎢

⎤

⎦
⎥ =

′M1

′U1

⎡

⎣
⎢

5
�

′M2

′U2

⎤

⎦
⎥

1
�

}5

}3
 and Ck =

Ck ,1

Ck ,2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

}5

}1

M ' =

xi
2 xi yi

2 yi xiyi 1

2xi 1 0 0 yi 0

0 0 2yi 1 xi 0

xj
2 xj y j

2 y j x jy j 1

2xj 1 0 0 y j 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

U ' =

2 0 1 0 0 0

0 0 3 0 0 0

0 0 0 0 1 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

min
Ck

U 'Ck



Distance to the sketching plane. The purpose of
the last objective function is to minimize the distance of
the reconstructed shapes to the sketching plane. For
each vertex vj(xj, yj) of the skeleton, the objective func-
tion is ; the objective function for all the vertices is
written 

The matrix form of the objective function is

(9)

where

Solving the optimization problem
The overall objective is determined by the weighted

combination of the three objectives, as in Equations 8,
9, and 10:

Typically, users can modulate the influence of each
initial objective (curvature, orientation, and distance
with respect to the sketching plane) by choosing these
weight values (wcurv, worient, wdist) as Figure 11 shows.
Weight values can be defined either for all the recon-
structed shapes or for each shape individually.

In this article, we limit the range of these weights so
that Utotal does not become ill-conditioned. Otherwise,
the minimization might fail because of large numerical
errors. In practice, we found that the ratio of the largest
to the smallest weights should be no greater than 103.
Figure 11 shows the reconstructed models with differ-
ent weight values. We found that most aesthetically
pleasing results are obtained with high weight value for
the curvature objective function as shown in Figure 11.

We compute the solution of Equation 1’s least squares
problem by using the least squares with linear inequal-
ity and equality constraints package;8 we have rewrit-
ten this package in a way that its linear algebra routines
are replaced by those of the Intel Math Kernel Library.

Finding the least squares solution is computationally
the most expensive process in the shape-reconstruction
algorithm. Still, the computation maintains arguably
fast speed; most of the models shown in Figure 12 have
been reconstructed in less than 5 seconds, once the input
drawing has been provided.

Generating the 3D mesh volume from
the skeleton 

So far, we have focused on the optimization problem
to locate the extracted skeleton from a 2D drawing in
3D space. The solution to the optimization problem is a
skeleton that is both consistent with the silhouette in
the sketching plane and collision-free. It also minimizes
the three objective functions—that is, curvature, orien-
tation, and distance to the sketching plane. We now
describe how we compute the 3D mesh volume sur-
rounding the given skeletons. 

Briefly, the 3D shape can be obtained by inflating the
region surrounded by the silhouette, using the skeleton
as the center of inflation. A large number of methods
exist that accomplish this task; most of them are based
on implicit surfaces.2

In this article, we have adopted the surface modeling
method described by Alexe et al. because of its imple-
mentation simplicity.3 In that method, a surface is gen-
erated by the blend of spherical implicit surfaces whose
centers are located along the skeletons. The scalar value
of the implicit surfaces at some point p is calculated as
follows: 

where ftotal(p) is the value of the field at point p, fi is the
field function of the ith spherical implicit surface, ri is
the distance from p to the center of the ith implicit sur-
face, and ci is the influence coefficient of the ith implic-
it surface. The parameters ci are calculated using the
nonnegative least squares optimization8 such that the
resulting implicit surface matches the contours.

Results and limitations
We implemented both the 2D drawing tool and the

model reconstruction software as an AutoDesk Maya
plug-in, a commercially available 3D computer graphics
package. Users draw the strokes on the front orthogonal
view and the results are shown on the perspective view.

f p c f r
total i i

i

i n

i( ) = ( )
=

=

∑
1

min
X

U U

U

total total

curv

X with =

⋅

⋅

w

w
curv

orient
UU

U

orient

dist
w

dist
⋅

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

U
dist

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥

1 0 0
1 0 0

1 0 0

0

0
��� ⎥⎥

⎥
⎥

min
X

U
dist

⋅ X

z
i

i

m
2

0

1

( )
=

−

∑

z
i
2

Sketch-Based Interaction

56 January/February 2007

11  The results of the sketch reconstruction (a) using
low weight value for the (b) curvature, (c) distance, and
(d) orientation objective functions.

(a)

(b) (c) (d)



IEEE Computer Graphics and Applications 57

12 Sketch examples.



We implemented the optimization algorithm with the
Intel Math Kernel Library. This numerical package is used
as a library in Maya and includes efficient methods to solve
linear systems involved in the least squares problem.

We have tested our method on different drawings
using tablet input and evaluated the quality of the recon-
structed models. The results are illustrated in Figure 12.
Other examples and a demonstration video of our recon-
struction algorithm are available at http://vml.kaist.
ac.kr/projects.html. All these examples have been calcu-

lated with a high weight value for the curvature objec-
tive function. Given an appropriate input drawing, a 3D
mesh is generated in 5 to 10 seconds. Results are com-
parable in quality to those obtained from Karpenko,
Hughes, and Raskar;2 however, users can now draw
objects that might occlude each other or be self-occlud-
ing.

Our algorithm can only reconstruct 3D objects with a
circular cross-section. Because of this limitation, most
of the objects created with our tool have a tubular shape.

Sketch-Based Interaction

58 January/February 2007

Previous Work
A drawing of self-occluding objects cannot be processed

in a stroke-based manner, because it typically consists of
many unclosed curve segments. Thus, we cannot process
each newly drawn curve segment individually, but the
reasoning about the drawing can be commenced only
when these segments are collectively taken. On the other
hand, there are many technical issues common to our
approach and previous works on sketching interfaces. Both
require analyzing 2D curves provided by the user, and
reconstructing corresponding 3D objects from the curves.

Here, we review previous works on sketching interfaces
for 3D graphical modeling, which are clustered according
to the class of shapes they model. The most common
approach to 3D modeling with a sketching interface is to
require its user to draw the visible and hidden contours of
the rectilinear object to be modeled.1 Based on the
geometric correlation hypothesis, such a reconstruction
technique is particularly suitable for the design of CAD-like
geometric objects. However, the hypothesis these
researchers use allow modeling of rectilinear objects only. 

Some other sketching tools use a purely gesture-based
interface. For instance, Sketch, proposed by Zeleznik et al
identifies gestures from the input strokes and interprets
them according to a set of predetermined rules.2 Those
rules define the way the user-supplied gestural symbols are
mapped to the creation of primitive objects, or to applying
operations on existing objects.

Other researchers have presented sketching interfaces for
free-form modeling.3-5 In their systems, users create a shape
by drawing its 2D silhouette; the 3D mesh is generated by
inflating the region surrounded by the silhouette, making
wide areas fat and narrow areas thin. The created model
can then be modified interactively with a set of tools such as
cutting, extruding, bending, or drawing on the mesh.

Cohen et al. propose a sketching interface for 3D curve
modeling—the user can model a nonplanar curve by
drawing it from a single viewpoint and its shadow on the
floor plane.6 Other researchers have worked on sketching
interfaces for modifying existing 3D shapes. In the system
described by Nealen et al., a 3D shape is deformed by
fitting its silhouette to a curve given by the user.7

Karpenko and Hughes have published, almost
simultaneously to us, a paper describing a similar system—
the modeling of free-form objects with (self-)occlusions.8

While our method only processes 2D contours connected
with T-junctions, Karpenko’s method can handle a wider
range of contour drawings with cusps (see Figure A).
Another difference between the two approaches concerns

the computation of the 3D position of the reconstructed
objects. We reformulate the 3D reconstruction problem as a
linear optimization problem, whereas Karpenko and
Hughes use a mass-spring system. Unlike linear
optimization problems, mass-spring systems have several
disadvantages such as slow convergence, numerical
instability, and the need to fine-tune the system parameters
by trial and error. Finally, our approach has another
advantage: it ensures that the reconstructed surfaces don’t
intersect each other, whereas Karpenko’s approach doesn’t
have any mechanism to prevent these self-intersections.

A  Contour drawing with T-junctions (T1 and T2) where two
contours cross, and cusps (C1 and C2) where contours reverse
direction.

References
1. H. Lipson and M. Shpitalni, “Correlation-Based Reconstruction of

a 3D Object from a Single Freehand Sketch,” Proc. 2002 AAAI
Spring Symp. Sketch Understanding, AAAI Press, 2002, pp. 99-104.

2. R.C. Zeleznik, K.P. Herndon, and J.F. Hughes, “Sketch: An Inter-
face for Sketching 3D Scenes,” Proc. ACM Siggraph, Addison-Wes-
ley, 1996, pp. 163-170.

3. T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: A Sketching Inter-
face for 3D Freeform Design,” Proc. Siggraph, 1999, ACM Press,
pp. 409-416.

4. O. Karpenko, J.F. Hughes, and R. Raskar, “Free-Form Sketching
with Variational Implicit Surfaces,” Computer Graphics Forum, vol.
21, no. 3, 2002, pp. 585-594.

5. I.A. Alexe, V. Gaildrat, L. Barthe, “Interactive Modelling from
Sketches Using Spherical Implicit Functions,” Proc. Afrigraph, ACM
Press, 2004, pp. 25-34.

6. J. Cohen et al., “An Interface for Sketching 3D Curves,” ACM I3DG
Symp. Interactive 3D Graphics, ACM Press, 1999, pp. 17-21.

7. A. Nealen et al., “A Sketch-Based Interface for Detail-Preserving
Mesh Editing,” ACM Trans. Graphics, vol. 24, no. 3, 2005, pp.
1142-1147.

8. O.A. Karpenko and J.F. Hughes, “SmoothSketch: 3D Free-Form
Shapes from Complex Sketches,” ACM Trans. Graphics, vol. 25,
no. 3, 2006, pp. 589-598.

 
C 1 C 2

T 1 T 2



One way to tackle this limitation would be to extend our
system to handle interactive shape modification simi-
larly to Teddy.1 For instance, users could apply a set of
modifications such as cut, extrude, or modify the cross-
section, on previously created models.

Conclusion
We have presented a method for reconstructing 3D

objects from a 2D drawing, which allows modeling of
objects with self-occluded parts. The power of our
approach is best illustrated with the knot example
shown in Figure 12. To the best of our knowledge, mod-
eling of this class of objects is not possible with other
previously developed silhouette-based modeling tools.

Another contribution of this work is the formulation
of the optimization problem to compute the depth posi-
tion of the reconstructed objects. Our mathematical
model is simple and its implementation only requires
computing the elements of the matrices of the objective
functions and constraints. In spite of its simplicity, the
algorithm can handle a wide range of cases such as the
sketching of groups of flat objects occluding each other,
or self-occluding objects that are curved in the z-direc-
tion. Our modeler does not place any limitation on the
number of objects and can handle (self-)occlusions. In
addition, all input drawings are processed in a uniform
manner. ■

Acknowledgments
We thank Sung-Yong Shin, Young-Sang Cho, and

Otfried Cheong (Korea Advanced Institute of Science
and Technology) for their invaluable advice and use-
ful comments. This work was supported by the Korea
Research Foundation Grant funded by the Korean
Government (KRF-2006-531-D00033), and author
Cordier was supported by the Graduate School of Cul-
ture Technology (Ministry of Culture and Tourism of
Korea).

References
1. T. Igarashi, S. Matsuoka, and H. Tanaka, “Teddy: A Sketch-

ing Interface for 3D Freeform Design,” Proc. Siggraph,
1999, ACM Press, pp. 409-416.

2. O. Karpenko, J.F. Hughes, and R. Raskar, “Free-Form
Sketching with Variational Implicit Surfaces,” Computer
Graphics Forum, vol. 21, no. 3, 2002, pp. 585-594.

3. I.A. Alexe, V. Gaildrat, and L. Barthe, “Interactive Model-
ling from Sketches Using Spherical Implicit Functions,”
Proc. Afrigraph, ACM Press, 2004, pp. 25-34.

4. L.R. Williams, Perceptual Completion of Occluded Surfaces,
doctoral dissertation, Dept. Computer Science, Univ. of
Massachusetts at Amherst, 1994.

5. L.R. Williams, “Topological Reconstruction of a Smooth
Manifold-Solid from Its Occluding Contour,” Int’l J. Com-
puter Vision, vol. 23, no. 1, 1997, pp. 93-108.

6. F. Cordier and O. Cheong, “Constrained Delaunay Triangu-
lation of Self-Intersecting Polygons,” tech. report, Com-
puter Science Dept., KAIST, 2005.

7. W. Wesselink, Variational Modeling of Curves and Surfaces,
doctoral dissertation, Dept. Computing Science, Univ. of
Technology, Eindhoven, 1996.

8. C. Lawson and R. Hanson, Solving Least Squares Problems,
Prentice Hall, 1974.

Frederic Cordier is a visiting profes-
sor at the Graduate School of Culture
Technology at KAIST. His research
interests include 3D modeling and tex-
turing, human–computer interaction
and physics-based simulation. Cordier
has a PhD in computer science from the
University of Geneva, Switzerland. 

Hyewon Seo is an assistant profes-
sor and supervisor of the Computer
Graphics Laboratory in the Depart-
ment of Computer Science and Engi-
neering at the Chungnam National
University, Korea. Her research inter-
ests include imaging, visual simula-
tion, human–computer interaction,

and VR. Seo has graduate degrees in computer science from
the University of Geneva and KAIST. Contact her at
hseo@cnu.ac.kr.

IEEE Computer Graphics and Applications 59

The IEEE
Computer 
Society

publishes over 150 
conference publications a year. 

For a preview of the 
latest papers in your field, visit

The IEEE
Computer 
Society

publishes over 150 
conference publications a year. 

For a preview of the 
latest papers in your field, visit

www.computer.org/publications/


