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Abstract—This paper presents a system to create mirror-symmetric surfaces from free-form sketches. The system takes as input a

hand-drawn sketch and generates a surface whose silhouette approximately matches the input sketch. The input sketch typically

consists of a set of curves connected at their endpoints, forming T-junctions and cusps. Our system is able to identify the skewed-

mirror and translational symmetry between the hand-drawn curves and uses this information to reconstruct the occluded parts of the

surface and its 3D shape.

Index Terms—Sketching interface, 3D modeling, and mirror-symmetric shape.

Ç

1 INTRODUCTION

FREEHAND sketching is a familiar, efficient, and natural way
to visualize an idea in conceptual design. Sketches can be

created quickly, and most people have a natural facility that
permits basic drawing. In addition, drawing comprehension
appears to be an inherent part of human perception.

Ideally, a software for sketched-based modeling of free-
form shapes should take as input any freehand drawing
and create a shape whose silhouette matches the input
sketch and satisfies certain shape quality criteria, such as
the maximum compactness constraint and the minimum
surface constraint [15]. However, inferring a free-form
shape from its drawing has proved to be very difficult.
The most important problems are the interpretation of the
sketch, the reconstruction of the occluded parts, and the
computation of the 3D shape using the 2D data. Igarashi
et al. [8] have presented the system Teddy, which can be
considered as the seminal paper in the area of sketch-based
modeling of free-form shapes. Although this work has been
recognized as an important contribution, Teddy cannot
process a sketch composed of several curves at once. Other
researchers [11], [4] proposed approaches that can recon-
struct shapes from drawings of higher complexity. The
contribution of these works is mostly related to the
reconstruction of the occluded parts of the shape.

The same problem of free-form modeling from sketches
is addressed here. However, our work is dedicated to the
reconstruction of mirror-symmetric shapes with a circular
cross section (Fig. 1). Mirror-symmetric shapes are

symmetric with respect to a central plane (also known
as a symmetry plane). Symmetric shapes are invariant
under reflection with respect to their symmetry plane.
Many, if not most shapes in the real world are symmetric.
Thus, we believe that a sketching interface for symmetric
shapes would be useful.

In this paper, we show that the symmetry assumption
can be used to simplify the 3D reconstruction considerably.
In particular, we use it to compute the occluded parts of the
shape and to estimate the 3D shape. Compared to previous
work, our system is able to process much more complex
sketches, as shown in Fig. 26. With this work, we make the
following technical contributions:

. A method to identify the symmetry relationships
between the input 2D curves and compute the
orientation of the symmetry plane.

. A method to compute the occluded part of the input
sketch using the symmetry assumption.

. A method to reconstruct the surface of the 3D shape
using the symmetry relationship such that its 2D
silhouette matches the input sketch.

2 RELATED WORK

In what follows, we review previous works concerning
sketching interfaces for 3D graphical modeling. The most
common approach to 3D modeling with a sketching
interface is to require the user to draw the visible and
hidden contours of the rectilinear shape to be modeled. The
reconstruction is usually formulated as an optimization
problem. The variables of the objective functions are the
missing depth of the vertices of the drawing (and possibly
other parameters). Different objective functions have been
proposed, such as minimizing the standard deviation of the
angles (MSDA) in the reconstructed shape [18], minimizing
the standard deviation of the segment magnitudes
(MSDSM) [1], or minimizing the entropy of the angle
distribution (MEAD) [20]. Leclerc and Fischler [14] also
considered the planarity constraint of the faces of the
reconstructed shape together with the MSDA. Lipson and
Shpitalni [17] extended the work of Leclerc and Fischler [14]
by taking into account the additional constraints of line
parallelism, line verticality, isometry, corner orthogonality,

1650 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 11, NOVEMBER 2011

. F. Cordier is with the LMIA Laboratory (EA 3993), University of Haute
Alsace, 4-6 rue des Frères Lumière, Mulhouse 68093, France.
E-mail: frederic.cordier@uha.fr.

. H. Seo is with the LSIIT Laboratory (UMR 7005), University of
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skewed facial orthogonality, and skewed facial symmetry.
Later, Liu et al. [16] proposed a method in which the
objective function is linear in the space RN, with N being
the number of variables of the objective function. Compared
to previous methods, this method can reconstruct more
complex 3D objects from 2D line drawings and is
computationally more efficient. All of these reconstruction
techniques are particularly suitable for the design of CAD-
like geometric shapes. However, the hypothesis they use
allows modeling of rectilinear shapes only and is not
suitable for free-form modeling.

Some other sketching tools use a purely gesture-based
interface. For instance, “SKETCH,” proposed by Zeleznik
et al. [26], identifies gestures from the input strokes and
interprets them according to a set of predetermined rules.
The rules define the manner in which the user-supplied
gestural symbols are mapped to the creation of primitive
shapes or how operations are applied to existing shapes.

Another group [8] presented a sketching interface for
free-form modeling. In their system, the user creates a shape
by drawing its 2D silhouette; a 3D mesh is generated by
inflating the region surrounded by the silhouette, making
wide areas fat and narrow areas thin. The created model
can be then modified interactively with a set of tools that
cuts, extrudes, bends, or draws on the mesh.

Others [11], [4] have also proposed methods to create 3D
models from 2D silhouette curves. Unlike the system
proposed by Igarashi et al. [8], the user can create self-
occluding objects (or multiple objects that possibly occlude
each other). Another difference is that the curves of the 2D
drawing are processed in conjunction, and no modification
is allowed after the creation of 3D model. The aim of our
approach is similar. However, our work is dedicated to the
modeling of mirror-symmetric shapes. We use the symme-
try assumption to reconstruct the occluded parts. Moreover,
our system is able to create complex models with large
occlusions, which is not possible with previous work.

One fundamental step in the 3D modeling from sketches
is the completion of the hidden contours of the input sketch
and its labeling. One of the seminal papers in this area is
more than 30 years old [7]. In it, Huffman et al. proposed a
labeling scheme for smooth objects, showing that the visible
and invisible parts of the contours of a smooth object must
have the corresponding sorts of labeling. Williams [24], [25]
used Huffman labeling for figural completion. They
computed the invisible parts of a drawing containing T-
junctions and provided Huffman labeling for it. The result
was a labeled knot diagram, which is a set of closed curves

complying with the Huffman labeling. They also presented
a method known as paneling construction to construct an
abstract manifold that can be embedded in R3 so that its
projection has contours matching the label-knot diagram.
Karpenko and Hughes [11] extended the Williams’ work to
handle drawings with cusps. They proposed a method to
formulate topological embedding from a labeled knot
diagram, which is then used to create a smooth solid shape.

Nealen et al. [20] proposed an interactive design tool
with which the user creates curves on the surface of the
shape and uses them as handles to control the geometry.
Schmidt et al. [22] proposed another interactive design tool
to create 3D models. Using this tool, the user can define 3D
constraints and to use these constraints to create complex
curve networks. Gingold et al. [6] also proposed a system
for the 3D modeling of free-form surfaces from 2D sketches.
The 3D models are created by placing primitives and
annotations on the 2D sketches. These three works are
mostly based on a multiview incremental construction of
complex surfaces, whereas our technique aims at the
creation of surfaces from a single sketch.

Several researchers have worked on the 3D reconstruc-
tion of mirror-symmetric models from sketches. One recent
reconstruction method [2] uses a predefined template. It
assumes that the input sketch is topologically identical to
the predefined template. Li et al. [15] proposed a computa-
tional model that uses planarity and compactness con-
straints to recover 3D symmetric objects from 2D images.
They assume known correspondence of symmetric points.
Jiang et al. [9] proposed an interactive method to create
symmetric architecture. Their method is mostly dedicated
to the modeling of buildings. In addition, it requires user
interaction to specify the camera calibration and the
geometric features of the buildings. Francois et al. [5] also
worked on the 3D reconstruction of mirror-symmetric
objects. Their work assumes that the calibration of the
camera is known and that manually specified correspon-
dences between symmetric points are required.

Other sketching tools have been developed for 3D curves
modeling. Tolba et al. [23] describe a tool with which user
can draw a scene with 2D strokes and then visualize it from
different points of views. The 3D reconstruction is achieved
by aligning the 2D curves on a “perspective grid.” Cohen
et al. [3] proposed another sketching interface for 3D curve
modeling with which the user can model a nonplanar curve
by drawing it from a single viewpoint and its shadow on
the floor plane.
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Fig. 1. Sketching of a symmetric shape. The sketch input by the user (a) and the corresponding model generated by our system (b), (c), and (d).



Other researchers have worked on sketching interfaces to
modify existing 3D shapes. In the system described by
Kerautret et al. [12], user modifies a 3D surface by drawing
its shading under different lighting directions. Similarly,
with the tools proposed by Nealen et al. [19] and Kho and
Garland [13], a 3D shape is deformed by fitting its silhouette
to a curve given by the user.

3 OVERVIEW

Our system takes a user’s sketch composed of a set of
connected curves that represent the visible parts of the 2D
silhouette and determines a 3D shape whose 2D silhouette
matches the input sketch.

3.1 Assumptions

The user draws the 2D silhouette curves on the plane (z ¼ 0)
that we call the sketching plane. These curves are the
orthogonal projection of the 3D silhouette curves of a shape
onto the sketching plane (z ¼ 0) (Fig. 2). This implies that
the x- and y-coordinates of the shape are known. The z-
coordinates have to be computed.

We assume the view of the sketch to be generic. The
“generic view” assumption states that the view is not
accidental (such as two 3D silhouette curves projecting onto
the same 2D silhouette curve). This implies that the symmetry
plane cannot be parallel to the sketching plane (z ¼ 0).

Another assumption here is that the shape reconstructed
from the input sketch is mirror symmetric. To simplify the
reconstruction, we also assume that the 2D silhouette
curves of the input sketch can be decomposed into a set
of simple closed curves. In addition, we assume that the
reconstructed 3D silhouettes curves are planar. These last
two assumptions impose a number of important limitations
on the type of shapes that are created using our approach.
These limitations will be discussed in detail in Section 9.

3.2 Overview of the Approach

The driving idea is to use the symmetry assumption to
compute the 3D shape. As shown in Section 6, the
computation of the 3D position of a point and its mirror
image is possible if we know the 2D position of their
orthogonal projection onto the sketching plane (z ¼ 0).

Therefore, we decompose the n 2D silhouette curves �I ¼
fCI;1; . . . ; CI;ng into a set of m pairs of symmetric curves
�S ¼ fCS;1; C0S;1; . . . ; CS;mC

0
S;mg such that C0C;m is the mirror

image of CC;m and a set of p curves �N ¼ fCN;1; . . . ; CN;pg
with no symmetry (Fig. 3b). To simplify the reconstruction
further, we find these curves such that they are nonself-
intersecting closed curves (Jordan curves). This step
involves the detection of the symmetry relationship among
the 2D silhouette curves and the computation of the hidden
part of the curves. This will be explained in Section 5.

Once the two sets of symmetric and nonsymmetric
curves have been constructed, we compute their relative
depth order by analyzing the T-junctions and cusp of the
input sketch. This information is then used to compute their
3D position. This will be explained in Section 7.

Finally, a closed surface homeomorphics to a sphere is
generated for each curve of the two sets (Fig. 3c). �S is the
set of surfaces corresponding to the curve set �S and �N is
the set of surfaces corresponding to the set of curves �N .
The reconstructed surface � is obtained as the union of all
the surfaces of the sets �S and �N (Fig. 3d). This will be
explained in Section 8.

4 DECOMPOSING THE 2D SILHOUETTE CURVES

INTO SIMPLE CLOSED CURVES

The input sketch is composed of a set �I ¼ fCI;0; . . . ; CI;ng of
curves that represent the visible part of a 2D silhouette of the
3D shape. The first step is to compute the completion of the
hidden curves of the drawing such that the completed
drawing satisfies the Huffman’s labeling scheme. The
second step is to decompose the labeled drawing into a set
of simple closed curves �C;i ¼ fCC;i;0; . . . ; CC;i;mg by gluing
together the hand-drawn curves and completion curves. The
last step is to compute the intersections of these simple
closed curves and the corresponding occlusion order.

At this point, it is important to note the two types of
junctions that an input sketch may contain: a T-junction and
a cusp. For a smooth manifold solid, these are the only
types of singularities that can occur in the projection of their
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Fig. 2. The 2D silhouette curves are drawn by the user on the sketching
plane (z ¼ 0). These 2D silhouette curves are the orthogonal projection
of the 3D silhouette curves of the shape.

Fig. 3. Overview of the 3D reconstruction algorithm.

Fig. 4. Contour drawing with T-junctions (JT;1 and JT;2) where two
contours cross and cusps (J1;C and JC;2) where contours “reverse”
direction. Occluded contours are dashes.



3D contours, assuming a generic view. As shown in Fig. 4,
T-junctions are the points where the curves form a “T-like”
shape, one curve C1 ending abruptly in the middle of
another one C2. Such points indicate that C1 is partially
occluded by C2. Note that the T-junctions are where two
points of the 3D silhouette curves project onto the same
point in the sketching plane. A cusp is a point JC on the
surface S where the projector through JC is tangent to C at
JC . The projection of a cusp appears as a point where the
contour drawing “reverses direction” (see Fig. 4).

For the figural completion, we use an algorithm similar
to that of Karpenko and Hughes [11]. This algorithm aims to
reconstruct the entire 2D silhouette by finding its occluded
parts such that the complete drawing complies with the
Huffman labeling. This algorithm processes the input
sketch in two steps: completion of the hidden silhouette
curves and assignment of the Huffman labels.

4.1 Completion of the Hidden Silhouette Curves

Similarly to Karpenko and Hughes [11], we find a set of
completion curves that connect pairs of endpoints of the
input curves. These completion curves correspond to the
occluded part of the silhouette. To compute the completion
curve between two T-junctions, we first compute the
direction of the tangent vectors at the endpoint. Subse-
quently, we compute the Bezier spline that joins the two
endpoints with the specified direction (Fig. 5a). As we want
this spline to approximate an elastica curve, we compute the
length of the tangent vectors so that the curvature energy of
the spline is minimized [25]. Finding the completion curve
between two cusps is done in a manner similar to that used
with the T-junctions, except that we use the opposite
direction of the tangent vectors to compute the Bezier spline
(Fig. 5b). Unlike Karpenko’s method [11], we do not
compute completion curves joining T-junctions and cusps.

4.2 Assignment of the Huffman Labels

Once we have found a set of completion curves, we
compute the Huffman labels [7] for all curves and check
the validity of this labeling. We assign an orientation to each
curve such that the surface is located on the left as one
follows the orientation of the curve. We also compute a
depth index for all curves. The depth index of a curve is the
number of curves that lie between the camera pinhole and
the curve itself. All visible curves receive the index 0. The
Huffman labeling of other curves is computed with the

Huffman rules, which indicate how the depth index
changes at T-junctions and cusps. Once the labeling is
complete, we check if the curve completion is valid or not,
that is, if any of the labels of the complete drawing violates
Huffman’s rules.

For a given set of curves �I , there may be more than one
means of computing the completion curves which satisfy
the Huffman labeling scheme. In this case, we compute all
of the solutions of the contour completion. Each solution i is
the set of completion curves �O;i ¼ fCO;i;0; . . . ; CO;i;mg.

4.3 Computing the Simple Closed Curves and Their
Occlusion Order Using the Labeled Drawing

At this point, we have a completed labeled drawing which is
composed of the hand-drawn curves from set �I and the
completion curves from set �O;i. The drawing partitions the
plane into panels; a panel is bounded by a closed loop of
consecutive hand-drawn and completion curves. Williams
provided an algorithm known as paneling construction
which computes the neighborhood of the panels and
produces abstract manifolds corresponding to the anterior
surfaces of the drawing. An anterior surface is defined as the
locus of points on a 3D surface where the surface normal is
defined with a positive component in the viewing direction.

Decomposition into simple closed curves is similar to
finding anterior surfaces, although the regions bounded by
the simple closed curves do not precisely correspond to the
anterior surfaces. The difference is that we consider the
completion curves connecting two cusps as curves having a
depth identical to that of the two neighboring curves. The
algorithm to compute the set of simple closed curves �C;i ¼
fCC;i;0; . . . ; CC;i;mg works as follows: Using the labeled
drawing, we first construct a directional graph where the
nodes are T-junctions and cusps and where the edges
correspond to the curves connecting them; the orientation of
the curves determines the direction of the corresponding
edge. Then, we take an edge which has not been processed
and find the “next outgoing” edge. If the node joining the
next outgoing edge is a cusp, there is only one edge to
choose (Fig. 6a). If the node is a T-junction, we sort the three
outgoing edges in a clockwise order and choose the middle
one (edge e2 in Fig. 6b). This process is repeated until we
find a cycle. Each cycle forms a closed curve CC;i;j which we
put into set �C;i.

Once all cycles have been found (i.e., all edges have been
visited), we check if any curve of the set �C;i ¼
fCC;i;0; . . . ; CC;i;mg self-intersects or is oriented clockwise.
If so, the set �C;i is removed from the system. We only keep
the sets �C;i whose curves are simple (Fig. 7) and oriented in
a counterclockwise direction.

Using the labeled drawing, we also compute the location
of the intersection regions (i.e., contiguous set of points
located inside the two curves) of the curves of set �C;i and
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Fig. 5. Completion curves connecting two T-junctions (a) and two cusps
(b). The dashed lines denote the completion curves and the red lines
denote the tangent vectors.

Fig. 6. The incoming edge is shown in red and the outgoing edges are
shown in blue.



build an array. Each entry of this array contains the set of
hand-drawn and completion curves that forms the inter-
section region and the occlusion order at the intersection
(i.e., which curve is located behind the other). Note that a
pair of curves may have more than one intersection region;
all of these intersection regions are saved in the array. The
occlusion order is computed by examining the change of the
depth indices at the T-junctions. The array of intersections
will be used in Section 7.1 to check the consistency of the 3D
reconstruction.

Note that the method of processing the labeled drawing
is completely different from that used by Karpenko.
Karpenko’s approach consists of gluing the panels together
to form a topological manifold homeomorphic to the shape
drawn by the user. In our case, the labeled drawing is
decomposed into separate regions bounded by simple
closed curves. The set of simple closed curves is not
necessarily homeomorphic to the drawn shape (Fig. 8c).
These simple closed curves are processed separately
(Fig. 8d) and the union of the surfaces created from these
closed curves is computed at the last stage of our system to
create the final shape.

Another particularity of our approach is that the
completion curves joining two cusps are assigned the same
depth index used for the adjacent curves. In Fig. 8c,
the front leg is composed of the hand-drawn curve whose
depth index is 0 and the completion curve whose depth
index is 1. According the Huffman labeling scheme, the
completion curve should be located behind the hand-drawn
curve; thus, the leg curve is not planar. In our system, this
curve is considered as planar.

It is important to note that the decomposition into simple
closed curves implies that several important limitations
exist regarding the type of shapes generated with our
system. In addition, we also assume that these simple
closed curves are planar in the 3D space. This will be
explained in Section 9.

Note that the completion is done without taking into
account the symmetry relationship among the 2D silhouette
curves. The shape of the completion curves, as computed
with the Bezier spline, may not match what the user
wanted. These completion curves can be modified later

once the symmetry relationship has been found in the
sketch. This process will be explained in detail in Section 5.

Depending on the complexity of the input ketch, there
may be a large number of sets which can be a solution to the
completion. However, only one or a few among them will
lead to a valid reconstruction, i.e., 3D shapes whose
silhouette matches the user’s drawing. The sets which do
not correspond to a valid 3D shape will be removed as we
attempt to detect the symmetry relationship and compute
the 3D positions of the shape. If there are several valid
reconstructions, we choose the one that has the smallest
number of nonsymmetric curves. The detail description on
finding a valid reconstruction is given in Section 7.1.

5 DETECTION OF SYMMETRIC CURVES

The next step is to identify the parts of the 2D silhouette
curves that are symmetric to each other. As we assume that
the shape S to reconstruct is mirror symmetric, there exists a
symmetry relationship among the 2D silhouette curves of the
shape that we must find. Our goal is to find the symmetry
among the curves of the 2D silhouette and use this
information to compute the occluded parts of the silhouette.

5.1 Skewed-Mirror and Translational Symmetries

To the best of our knowledge, the reconstruction of
nonplanar 3D symmetric curves from their orthogonal
projection remains an open problem. We restrain the search
to the two following cases of symmetry: skewed-mirror
symmetry and translational symmetry.

Skewed-mirror symmetry (Figs. 9a and 9b), as defined by
Kanade [10], depicts a mirror-symmetric planar curve
viewed from some (unknown) viewing direction. This
implies that the detection of skewed-mirror symmetry
between two 2D silhouettes is possible only if the
corresponding 3D silhouette curves are planar and lie on
the same plane. We use the method proposed by Posch [21]
to detect skewed-mirror symmetry under orthogonal
projection between the two curves Ci and Cj. In addition,
to detect skewed-mirror symmetry, this method also
provides the pointwise correspondence between the ver-
tices of the curve Ci and the vertices of its mirror image Cj.
In this case, the lines of symmetry (lines that connect the
vertices to their mirror image) are parallel to each other.

Translational symmetry (Fig. 9c) results from the moving
of a shape a certain distance in a certain direction. It is also
known as translating by a vector. Translational symmetry is
used to find pairs of 3D silhouette curves Ci and Cj lying in
two different planes Pi and Pj such that Pi and Pj are
parallel to each other. As with skewed-mirror symmetry,
we also compute the pointwise correspondence between the
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Fig. 8. Input drawing (a), labeled drawing with completion curves (b),
simple closed curves corresponding to the leg and the body (c), the 3D
shapes reconstructed from the closed curves (d).

Fig. 9. Skewed-mirror symmetry (a) and (b) and translational symmetry
(c). The dashes lines denote the lines of symmetry.

Fig. 7. Contour completion of the set �I ¼ fCI;1; CI;2; CI;3g (a) results in
two solutions: �C;I ¼ fCC;1;1; CC;1;2g (b) and �C;2 ¼ fCC;2;1; CC;2;2; CC;2;3g
(c). Only one solution, the one with nonintersecting curves (c), is kept in
the system.



two symmetric curves. Akin to skewed-mirror symmetry,
all of the lines of symmetry are parallel to each other.

There are two limitations of our approach. First, our
algorithm only works for 3D silhouette curves which are
planar. Thus, we only detect the symmetry relationship of a
certain class of 3D shapes, which are those that lie on a
plane (i.e., whose skeleton is planar). Fig. 10a shows a pair
of symmetric shapes whose 3D silhouette curve is not
planar. This restriction does not appear to affect the
performance of our sketching interface greatly. We leave
this as future work.

Second, even for 3D shapes whose skeleton is planar, the
2D silhouette is not necessarily translational symmetric or
skewed-mirror symmetric. This is shown in Figs. 10b and 10c.

5.2 Finding Pairs of Symmetric Curves

The detection of the symmetry from the 2D silhouette mostly
consists of finding pairs of symmetric curves: a simple closed
curve Ci is symmetric to another simple closed curve Cj.

The set of closed curves �C;i ¼ fCC;i;0; . . . ; CC;i;mg, which
are a solution to the completion problem (Section 4), are
composed of the hand-drawn curves and completion curves
which have been computed for the occluded parts of the 2D
silhouette. Given that these completion curves were
generated using minimum energy curves, their shape may
not match what the user wanted and we may not determine
the symmetry between the curves correctly (Fig. 11a). Thus,
our strategy is to compute symmetry matching only for the
parts of the curves drawn by the user (Fig. 11b).

Our algorithm is composed of three steps: First, we find
all pairs of symmetric closed curves (Fig. 12c). If all of the

hand-drawn parts of a closed curve CC;i;j are symmetric to
the hand-drawn parts of another closed curve CC;i;k and that
correspondence is injective, these two curves form a pair of
symmetric curves. Second, for each pair of curves whose
hand-drawn parts are symmetric, we modify the shape of
the completion parts such that these two curves are entirely
symmetric (Fig. 12d). In the last step, we find the closed
curves that are self-symmetric; these curves are divided into
two simple closed curves such that they are symmetric to
each other (Fig. 12e).

5.3 Output of the Algorithm

For each set of curves �C;i ¼ fCC;i;0; . . . ; CC;i;mg that are
solution of the completion problem, we obtain two sets:

- �S;i ¼ fCS;i;0; C0S;i;0; . . . ; CC;i;m; C
0
C;i;mg: the set of all

possible pairs of symmetric closed curves (skewed-
mirror or translational symmetry). For each pair of
symmetric curves C0S;i;j and C0S;i;j, we compute the
pointwise correspondence between them and the
direction of the lines of symmetry.

- �N;i ¼ fCN;i;0; . . . ; CC;i;pg: the set of closed curves for
which no symmetry has been found.
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Fig. 10. A symmetric shape whose silhouette is not translational
symmetric not or skewed-mirror symmetric (a). The 2D silhouette of a
shape, whose skeleton is planar, is not always skewed-mirror symmetric
(b), (c).

Fig. 11. Detection of translational symmetry fails if the occluded part of
the curve (dashed line) is taken into account. (a) The detection of
symmetry is possible only if the hand-drawn parts are taken into account
(b); after the detection of the translational symmetry, we compute a new
completion curve (c).

Fig. 12. Finding all pairs of symmetric curves and curves symmetric to
themselves. (a) Input sketch. (b) Decomposition into a set of simple
closed curves (see Section 4). (c) Finding the symmetric parts (bold lines)
of the hand-drawn curves �I . (d) Computation of the occluded parts using
the symmetry relationship. (e) Output: a set of symmetric curves with
symmetry lines (dashed lines) and a set of non-symmetric curves.



Note that a curve CC;i;j of �C;i may be part of several
pairs of symmetric curves of �S;i. This case arises when the
curve CC;i;j is symmetric to several other curves of �C;i.

An example of the determination of pairs of symmetric
curves is shown in Fig. 12.

One may consider that the detection of the symmetry
relationship can be computed before the completion step.
Indeed, the order in which the two processes are performed
does not affect the reconstruction result. However, in
practice, the computation time can be reduced significantly
if we compute the completion prior to the symmetry
detection, as the completion process can drastically reduce
the number of curves in the 2D silhouette drawing,
repetitively transforming several hand-drawn curves into
a closed curve. Therefore, finding pairs of symmetric curves
would require less time after the completion than before,
whereas the completion process requires the same amount
of time regardless of whether it is performed before or after
the symmetry detection.

6 MIRROR SYMMETRY

Now that we have computed the symmetry relationship
among the closed curves of the sets, the next step is to
compute the 3D surface using the symmetry relationship. In
this section, we first analyze several properties of mirror-
symmetric surfaces. In particular, we show how to compute
the 3D position of pairs of symmetric points. In the next
section, we show how to use these properties to compute
the 3D surface.

6.1 Properties of 3D Mirror Symmetry

Mirror-symmetric surfaces are defined with a symmetry
plane M. This plane is the set of all points v such that
N
!� ðO� vÞ ¼ 0, where N

!
is a nonzero normal vector of

coordinates ðxn; yn; znÞ and O is a point in the plane.
Without a loss of generality, we set the point O to the origin
of the coordinate system.

Let V ¼ fv0; . . . ; vi; . . . ; vn�1g be a set of n points of
coordinates ðxi; yi; ziÞ and V 0 ¼ fv00; . . . ; v0i; . . . ; v0n�1g be a set
of n points of coordinates ðx0i; y0i; z0iÞ. Each point v0i is the
mirror image of vi with respect to plane M. We assume that
vi and v0i do not have same coordinates. The symmetry
relationship between vi and v0i implies that the midpoint
ðvi þ v0iÞ=2 is located in plane M and that the vector ðv0i � viÞ
is perpendicular to M. This gives us the following equations
for all pairs of symmetric points vi and v0i:

N
!� vi þ v0i

� �
¼ 0; ð1Þ

N
!� v0i � vi

� �
¼~0: ð2Þ

Using (1) and (2), we express the z-coordinates of vi and
v0i as a function of other coordinates and N

!
. Equation (1)

gives the following result:

xn x
0
i þ xi

� �
þ yn y0i þ yi

� �
þ zn z0i � zi

� �
¼ 0: ð3Þ

Equation (2) gives these two equalities:

yn z
0
i � zi

� �
� zn y0i � yi

� �
¼ 0; ð4Þ

zn x
0
i � xi

� �
� xn z0i � zi

� �
¼ 0: ð5Þ

By combining (3) and (4), the equations to compute zi
and z0i are

zi ¼ �
1

2

xn x
0
i þ xi

� �
zn

þ
yn y

0
i þ yi

� �
zn

þ
zn y

0
i � yi

� �
yn

� �
; ð6Þ

z0i ¼ �
1

2

xn x
0
i þ xi

� �
zn

þ
yn y

0
i þ yi

� �
zn

�
zn y

0
i � yi

� �
yn

� �
: ð7Þ

Similarly, by combining (3) and (5), zi and z0i are given as

follows:

zi ¼ �
1

2

xn x
0
i þ xi

� �
zn

þ
yn y

0
i þ yi

� �
zn

þ
zn x

0
i � xi

� �
xn

� �
; ð8Þ

z0i ¼ �
1

2

xn x
0
i þ xi

� �
zn

þ
yn y

0
i þ yi

� �
zn

�
zn x

0
i � xi

� �
xn

� �
: ð9Þ

If a point vi has no mirror image (vi and v0i have the same

location), it is located on the symmetry plane. Its z-

coordinate is given as follows:

zi ¼ �
xnxi
zn
þ ynyi

zn

� �
: ð10Þ

6.2 3D Reconstruction Using Mirror Symmetry

We now consider the orthogonal projection of V and V 0 to the

plane (z ¼ 0) . We define the set of points Vp ¼
fvp;0; . . . ; vp;i; . . . ; vp;n�1g and V 0p ¼ fv0p;0; . . . ; v0p;i; . . . ; v0p;n�1g.
vp;i and v0p;i are the orthogonal projection to the plane

(z ¼ 0) of points vi and v0i, respectively (Fig. 13). The

coordinates of vp;i and v0p;i are ðxi; yi; 0Þ and ðx0i; y0i; 0Þ,
respectively. We also define Np

�!
of coordinates ðxn; yn; 0Þ,

which is the orthogonal projection of N
!

. Our goal is to

compute the z-coordinates of the sets of points V and V 0

using their projections Vp and V 0p . We do this with (6), (7), (8),

(9), and (10). In these equations, all of the variables are

known using Vp, V
0
p , and Np

�!
, except zn. It follows that there is

only one unknown parameter zn to define the symmetry

planeM completely. Once the value of zn is set, we are able to

compute the z-coordinates of the sets of points V and V 0.

How the value of zn is chosen is explained in Section 7.
Given that the value of zi is given by (6) and (8), the

computation of these values is possible if and only if zn

1656 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 11, NOVEMBER 2011

Fig. 13. Pairs of symmetric points (v1; v
0
1) and (v2; v

0
2) and their

orthogonal projection (vp;1; v
0
p;1) and (vp;2; v

0
p;2), respectively, to the plane

(z ¼ 0).



differs from 0 and is the coordinates of Vp;i and v0p;i
satisfying the following equality:

x0i � xi
� �

xn
¼

y0i � yi
� �

yn
:

This equality simply implies that the vector Np
�!

must be

parallel to all lines that connect point vi to their mirror

image v0i. These lines are termed the lines of symmetry

here. This gives us the following proposition:

Proposition 1. Let be two sets of 2D points Vp ¼ fvp;0; . . . ;

vp;i; . . . ; vp;n�1g and V 0p ¼ fv0p;0; . . . ; v0p;i; . . . ; v0p;n�1g, each

point v0p;i being the mirror image of vp;i. These two sets are

the orthogonal projection of the two sets of points V and V 0,

which are mirror symmetric to each other if and only if all the

lines of symmetry (lines that join vp;i and their mirror image

v0p;i) are parallel to each other.

Fig. 14 illustrates the effect of choosing different values

of zn. A small value makes the symmetry plane nearly

parallel to the plane (z ¼ 0), and the distance between

symmetric points becomes large. Here, (6), (7), (8), (9), and

(10) are not defined for zn ¼ 0; this is the case when the

symmetry plane is the plane (z ¼ 0). A large value of zn
increases the slope of the symmetry plane with respect to

the plane (z ¼ 0), and the distance between symmetric

points becomes smaller (Fig. 14). It is also important to note

that changing the sign of zn modifies the depth order of the

3D points.

7 COMPUTATION OF THE SKELETON

We assume that the surfaces of the sets SS and SN have a

circular cross section. We represent these surfaces with a

skeleton curve defined by a set of vertices; each vertex vi is

associated with a radius ri which is the thickness of the
cross section at that vertex (Fig. 15d).

Using this surface representation greatly simplifies the
computation of the 3D shape. It is not actually necessary to
compute the 3D position of the silhouette curve; it is
sufficient to compute the 3D position of the skeleton curves
and generate the surface using the skeleton vertices and
their associated radii. The surface reconstruction from the
skeleton curves is explained in Section 8.

We compute the skeleton of a closed curve using the
chordal axis. The chordal axis is the curve that connects
the center of the “internal edges” of the Delaunay-
triangulated closed curve (Fig. 15b). The skeleton curves
are computed for all curves of �S;i and �N;i. As there is a
pointwise correspondence between symmetric curves,
pointwise correspondence also exists for their correspond-
ing skeleton curves.

7.1 Computation of the 3D Positions of the Skeleton

In Section 6, a method to compute the 3D positions of a set
of pairs of symmetric points was presented. The method
to compute the 3D position of the skeleton vertices appears
to be straightforward. We select a set of pairs of symmetric
curves such that the lines of symmetry are all parallel to
each other. Given the value zn provided by the user, we use
(6), (7), (8), and (9) to compute the z-coordinates. We also
use (10) for the curves that do not have any symmetry.
However, by doing so, we define the depth ordering of
these skeleton curves that may not be identical to the depth
ordering computed using the T-junctions and cusps (see
Section 4). We give several examples to explain the
problems that may occur during the reconstruction process.

The sketch given by the user may not represent a mirror-
symmetric shape. Such a case is illustrated in Fig. 16.
Although the input sketch is composed of pairs of
symmetric curves that satisfy Prop 1 (lines of symmetry
are all parallel to each other), the 3D shape is not symmetric.
Regardless of the value of zn, the silhouette of the
reconstructed surface does not match the 2D silhouette
drawn by the user.

In other cases, reconstruction of the symmetric surface is
possible only for certain values of zn. Fig. 17 shows an
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Fig. 14. Three possible solutions (b), (c), and (d) of the reconstruction of
a pair of 3D points from their orthogonal projection (a).

Fig. 15. Closed curve (a); computation of the medial axis (b); surface
obtained by the union of the spheres located along the skeleton
curve (c).

Fig. 16. A sketch that shows a depth ordering violation: the input sketch
(a), pairs of symmetric curves (b), and the reconstructed shape (c).

Fig. 17. Reconstruction with zn¼ 0:5 (a) and zn¼ �0:5 (b).



example for which the reconstructed surface does not match
the input silhouette for zn < 0.

Another problem may arise when the reconstructed
shape has several symmetry planes. Fig. 18 shows such an
example. The 3D shape is composed of two surfaces that are
self-symmetric with respect to different symmetry planes.
The 2D silhouette is composed of two curves that are both
self-symmetric with the lines of symmetry all parallel to
each other. Here, reconstruction is not possible if the shapes
are computed such that they are symmetric with respect to
the same symmetry plane. The solution is to consider one
curve as self-symmetric with the other curve assumed to be
lying on the symmetry plane.

To compute a mirror-symmetric surface whose silhouette
matches the input sketch, we use the following algorithm.
This algorithm takes as input a set of symmetric curves �S;i
and a set of nonsymmetric curves �N;i.

Step 1. We construct �SR;i, a set of pairs of symmetric
curves and �NR;i, a set of nonsymmetric curves such that:

. The two sets �SR;i and �NR;i represent the entire
input sketch.

. The lines of symmetry of all of the symmetric curves
of �SR;i are parallel to each other. The set �SR;i
should satisfy Prop 1.

. �NR;i contains the curves which are considered as
being not symmetric. In particular, it includes the
pairs of symmetric curves whose lines of symmetry
are not parallel to those of �SR;i.

Note that there may exist several means to constructing the
sets �SR;i and �NR;i for the given sets �S;i and �N;i. This
arises when the shape S has several axes of symmetry.

Step 2. We write a set of inequalities for the z-coordinates
of the skeleton vertices corresponding to the relative
occlusion order at the intersections of the closed curves
(see Section 4). There are three different cases for two closed
curves intersecting each other: in the first case, the curves
intersect each other at four points or more with T-junctions
only (Figs. 19a and 19b); the corresponding surface should
not intersect in the 3D space. In the second case, the
intersecting region of the two curves contains cusps; the two
surfaces intersect each other (Fig. 19c). Concerning the third
case for which the curves intersect at two points with T-
junctions only (Fig. 19d), we interpret this drawing as two
surfaces that may intersect each other. This type of drawing
is usually used for the drawing of legs (see the caterpillar
legs in Fig. 26).

For the case of nonintersecting surfaces (Figs. 19a and
19b), we write a set of inequalities for the z-coordinates of the
skeleton vertices to define the minimum distance between

the skeleton vertices so that the two surfaces do not intersect.

For two intersecting closed curves Ci and Cj that belong to

�SR;i and/or �NR;i, we compute the region R which is the

intersection of Ci and Cj and find all the skeleton vertices

connected to this region (the red dot in Fig. 20a).
Given the skeleton vertices vi ¼ ðxi; yi; ziÞ of curve Ci and

adjacent toR and vj ¼ ðxj; yj; jjÞ of the curve Cj and adjacent

to Cj, the minimum distance along the z-axis (Fig. 20b) is

given as follows:

dz;l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ri þ rj þ dMinSurf

� �2 � l2l
q

:

Here, ri and rj are, respectively, the radius of the cross

section at the vertices vi and vj, ll is the distance along the

sketching plane between vi and vj, and dMinSurf is the

minimum distance between the boundaries of the recon-

structed shapes. The final value is provided by the user.

Finally, we define the linear inequality constraint for the

two skeleton vertices:

zi � zj � dz;l: ð11Þ

Note that the sign of dz;l is determined by the relative

depth order of the two overlapping skeletons.
For pairs of curves whose surfaces intersect in 3D (Figs. 19c

and 19d), we use a linear inequality of the same form used in

(11). For all pairs of skeleton vertices vi ¼ ðxi; yi; ziÞ and vj ¼
ðxj; yj; zjÞ such that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2

q
� ri þ rj;

we define the inequality constraint:
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Fig. 18. A figure that shows a depth ordering violation. The gray
rectangle is the symmetry plane.

Fig. 19. The surfaces corresponding to C1 and C2 do not intersect in 3D
(a); the surfaces intersect each other at the locus of the cusp (b).

Fig. 20. The minimum distance between two vertices viðxi; yi; ziÞ and
vjðxj; yj; zjÞ.



zi � zj > 0: ð12Þ

ri and rj are, respectively, the cross-section radii at the
vertices vi and vj. The z-coordinate of the skeleton vertex vi
of the front curve should be larger than the z-coordinate of
the skeleton vertex vj of the other curve.

The variables zi and zj in (11) and (12) are written as
function of zn using either (6) to (9) or (10). These
inequalities are written for all intersections of the curves
of �SR;i and �NR;i. If the set of inequalities has a solution,
reconstruction of the symmetric shape is possible with the
sets of symmetric curves �SR;i and nonsymmetric curves
�NR;i. Here, the variable zn is not uniquely defined. It can be
any value within the interval ½zn;min; zn;max� which is a
solution to the set of inequalities. A reconstruction with a
small value of zn increases the size of the reconstructed
shape along the z-axis; in contrast, with a large value, its
size decreases. By default, the smallest value of zn is chosen.
If this solution is not satisfactory, the user may directly
modify the value (see Fig. 21). Using the zn value, we then
compute the z-coordinates of the skeleton curves of the two
sets �SR;i and �NR;i.

If the set of inequalities has no solution, we move to Step 3.
Step 3. The set of inequalities has no solution. This

indicates that reconstruction of the symmetric shape S is not
possible. There are two reasons. One is that the shape drawn
by the user is not mirror symmetric (Fig. 16a). The other
reason is that the symmetry relationship among the simple
closed curves was not correctly computed. One example is
shown in Fig. 23. The algorithm described in Section 5
would decompose the two simple closed curves (Fig. 23a)
into two pairs of symmetric curves (Fig. 23b); this is because
the symmetry lines of the two simple closed curves are
parallel to each other. The reconstruction of these two pairs
of symmetric curves would give the shape in Fig. 23c.

As described in Step 2, we construct the set of inequal-
ities using (11) and (12) for the relative occlusion order of
the skeleton vertices and (6) to (10) to express the z-
coordinates of the skeleton vertices as a function of zn. The
z-coordinates of the skeleton vertices are different whether
the corresponding curve is symmetric or not. As shown in

Fig. 22, we can compute the z-coordinates of a pair of

symmetric curves CS;i;j and C0S;i;j either with (6) to (9) or

with (10). In the first case, the reconstructed surface is

symmetric with respect to the symmetry plane (Fig. 22b). In

the second case, the reconstructed surface is located in the

symmetry plane (Fig. 22c).
The idea is to compute the sets of inequalities correspond-

ing to all the possible combinations of symmetric and

nonsymmetric curves until we find one that has a solution:

each pair of symmetric curves of �S;i is alternately considered

to be symmetric by using (6) to (9) and nonsymmetric by

using (10). This is illustrated in Figs. 23c, 23d, 23e, and 23f.
We compute two new sets �SR;i and �NR;i corresponding

to a different combination of symmetric and nonsymmetric

curves and move to Step 2.
Note that our system uses only a single symmetry plane

for the reconstruction and does not consider any additional

symmetry planes that may be contained in the object. In

Section 5, we demonstrated that one symmetry plane

suffices to reconstruct the 3D shape.

8 GENERATING THE 3D SHAPE FROM THE

SKELETON

Thus far, we have described an algorithm to compute the z-
coordinates of the skeleton curves of the two sets �SR;i and
�NR;i. The output of the algorithm is a set of skeleton curves
with 3D coordinates. The final step of the 3D reconstruction

is the computation of the surfaces surrounding the skeleton
curves. To do this, we use the surface modeling method
described by Cordier and Seo [4] due to the simplicity of its
implementation. Briefly, the surface is generated by a blend
of spherical implicit surfaces whose centers are located
along the skeleton curves. The radii of these spherical
implicit surfaces are computed such that the silhouette of
the resulting surface matches the curves drawn by the user.

�S is the set of pairs of symmetric shapes computed for
�SR;i and �N is the set of shapes computed for �NR;i. The
reconstructed shape is obtained as the union of the shapes
of the two sets �S and �N (See Figs. 3c and 3d).
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Fig. 21. Reconstruction with different values of Zn.

Fig. 22. A pair of symmetric curves (a) can be considered either as being
symmetric (b) or nonsymmetric (c).

Fig. 23. Given the set of symmetric curves (b), we compute all possible
solutions (c), (d), (e), and (f). The gray rectangle is the symmetry plane.
The reconstructed shape (f) is the only one whose silhouette matches
the input sketch (a).



9 RESULTS, LIMITATIONS, AND CONCLUSION

Our sketch-based modeling tool has been implemented as a
plug-in to Maya. The user can draw the silhouette of the
shape, request our plug-in to compute the free-form shape,
and visualize the reconstructed shape.

Our method is demonstrated with several examples
corresponding to different cases of sketching, showing its
versatility. The number of curves that constitute these
sketches varies from 3 to 179, as summarized in Table 1.
Two caterpillar models are used to demonstrate the
reconstruction of the same shape, but with a sketch drawn
from different viewpoints. These two models were created
from a sketch of naı̈ve users without any assistance. The
octopus and the basket examples show the reconstruction of
curved shapes.

The model with highest complexity is the tree model, as
shown in Fig. 26. The visible and invisible parts of the
silhouette were created from an orthogonal projection of an
existing 3D model. For a silhouette of such a high level of
complexity, enforcing the symmetry constraint is difficult
from the user’s perspective. In our current system,
reconstruction of models of high complexity is facilitated
by referring to the silhouette from 2D photos of symmetric
objects. Assisting the user to draw the symmetric shape
remains as future work.

One of the main advantages of our system is that it can
reconstruct occluded contours with less information. In
previous methods, the completion is achieved by connect-
ing free endpoints with curves of minimum energy. In our
system, we use the symmetry relationship between the
curves in the foreground and background to compute their
completion. As shown in Fig. 24b, even a partial view of the
leg in the background is sufficient to compute its entire
silhouette. This is not possible with previous methods.

9.1 Computation Time

The computation time required to generate the 3D shapes
ranges from a few seconds to several minutes depending on
the number of the curves that compose the hand-drawn
sketch (see Table 1). This slow computation time results
from the large number of solutions that are computed with
the contour completion algorithm (see Section 4). Let n be
the number of hand-drawn curves, with each solution of the
contour completion approximately an ordered arrangement
of the hand-drawn curves. Thus, the maximum number of
completion solutions is n!. For example, the number of
completion solutions of the bug model, which is composed
of 18 curves, is 382. Each completion solution must then be
processed to find the one that can be used for the 3D
reconstruction.

9.2 Limitations

One requirement of our reconstruction method is that the
viewpoint has to be chosen specifically such that both the
features and their mirror images are visible or partially
visible. Fig. 24a shows a sketch for which the reconstruction
of the back legs is not possible because the left back leg is
not visible. Another requirement is that the drawing should
not contain any hidden cusps (Fig. 25b) or self-intersecting
curves (Fig. 25d). We also assume that the silhouette curves
of the reconstructed shape are planar in the 3D space.

Another limitation is that the silhouette of the final shape
may differ slightly from the input sketch, as the final shape
is obtained as the union of the shapes of the two sets �S and
�N . Differences between the actual silhouette and the input
sketch may appear at the location of the cusps in the sketch,
which are the junctions between the shapes of �S and �N .
Another source of mismatch between the silhouette and the
hand-drawn curves is our inflation algorithm which we use
to compute the surface from the skeleton curves. The
system does not guarantee that the partial depth order
implied by the T-s and cusps in the sketch is preserved.

Future work would be to extend our system to include
the sketching of shapes that are approximately mirror
symmetric. Such system would be very useful to reconstruct
shapes of animals or humans with different leg and arm
postures.
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TABLE 1
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Fig. 26. Several models created using our system. The input sketches are shown in the first row. The reconstructed models seen from two different

viewpoints are shown in the two other rows.
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