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Abstract 
Based on an existing modeller that can generate realistic and controllable whole-body models, we intro-
duce our modifier synthesizer for obtaining higher level of manipulations of body models by using pa-
rameters such as fat percentage and hip-to-waist ratio. Users are assisted in automatically modifying an 
existing model by controlling the parameters provided. On any synthesized model, the underlying bone 
and skin structure is properly adjusted, so that the model remains completely animatable using the under-
lying skeleton. Based on statistical analysis of data models, we demonstrate the use of body attributes as 
parameters in controlling the shape modification of the body models while maintaining the distinctiveness 
of the individual as much as possible. 
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1. Introduction 
In Computer Graphics, it is essential to be able to 

generate and control realistic human models at an 
interactive time. Human modeling has thus attracted a 
good deal of attention in the past few decades. In 
particular, a variety of methodologies that have been 
specially developed for human body modeling are 
available nowadays, with which one can capture and 
digitize shapes and sizes of human bodies that exist in 
the real world. In addition, 3D range scanners are 
becoming increasingly available. Unfortunately, they are 
restricted to recoding shapes that can be observed - there 
is no simple means of automatically modifying the 
shapes once they have been created. 

An automatic, example based modelling technique 
was recently introduced by Seo and Magnenat-
Thalmann [10], for synthesizing body models from a 
number of anthropometric size parameters. Using doz-
ens of 3D scanned data as examples, realistic, immedi-
ately controllable, whole body models were generated. 
One limitation of that modelling synthesizer is that a 
unique, identical model is produced given the same set 
of parameters. Often, we want to start with a particular 
individual to apply modifications according to certain 
attributes while keeping identifiable characteristics of 
the physique. A typical example could be: how a person 
looks like when someone loses his/her weight. This 
challenging problem has recently been addressed in 
computer graphics, specifically in the domain of facial 

modelling. Blanz and Vetter [2] use example database 
models from scanners and a linear function that maps 
facial attributes (gender, weight, and expression) onto 
the 3D model. Kähler et al [7] make use of anthropomet-
ric data to calculate the landmark-based facial deforma-
tion according to changes in growth and age. Our goal 
here is to introduce body shape control for obtaining 
variation of the body geometry according to certain body 
attributes, whilst keeping the distinctiveness of the 
individual as much as possible. 

Our approach is to construct regression models, 
from captured body geometry data of real people that are 
in correspondence. After calibrating and annotating the 
data with corresponding shape measure, linear regres-
sion models are constructed for each component of the 
geometry. Then the shape modification on a given 
model is obtained by the deformation, guided by the 
regression model.  

We begin by briefly describing our model represen-
tation and shape parameters. We then present our 
method for parameterized shape modifications. Finally, 
we discuss results of our approach. 

2. Representation 
The system maintains a template model, which is 

composed of skin and skeleton, without intermediate 
layers representing the fat tissue and/or muscles. The
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Figure 1: Synthesis of human bodies by our synthesizer. (a) scan data; (b) template model with animation structure is 
fitted to the scan data; (c) the fitted template mesh (d) modification of the physique (fat percent 38%) and modified 
posture; (e) modification of the physique (fat percent 22%) and modified posture. 

skin is attached to the skeleton through skinning [8], in 
order to obtain smooth skin deformation whilst the joints 
are transformed. All our data models, which are acquired 
mostly from Tecmath 3D range scanner [11], are as-
sumed to be in correspondence (i.e. they share the same 
topology), which we obtain by conforming the template 
model onto each scanned models. An assumption made 
here is that any body geometry can be obtained by 
deforming the template model. A number of existing 
methods such as [4] and [10] could be successfully used. 
In this work, we adopt a feature-based method presented 
by Seo and Magnenat-Thalmann [10]. In Figure 
1(a)~(c), a scan data along with the conformed template 
model is illustrated. 

The deformation of the template model to acquire a 
new one has two distinct entities, namely the skeleton 
and displacement components of the deformation. The 
skeleton component is the linear approximation of the 
physique, which is primarily determined by the joint 
transformations through the skinning. The displacement 
component is essentially vertex displacements, which, 
when added to the skin surface resulting from the 
skeletal deformation, depicts the detailed shape of the 
body. Thus, we denote the skeleton component as  
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where j
xt and j

xs  are the translation and scale of joint j (j 
=1,…,m) along the x-axis, with the rotation excluded. 
Similarly, the displacement component is represented by 

,),,...,,,,( 32111 nTn
z

n
yxzyx RddddddD ∈=  

where v
xd is the displacement of vertex v (v =1,…,n) 

along x-axis on the skin mesh.  We therefore represent 

the geometry by a body vector B = (J, D). 

Although the transformations computed 
independently for each bone may be used as above, 
significant redundancy exists in the bone 
transformations, exhibiting similar transformations 
among neighboring bones. A similar redundancy exists 
as regards the skin displacement. Thus we seek 
simplifications that allow the synthesizer to operate on 
compact vector space. In both cases, we adopt PCA [9], 
one of the common techniques to reduce data dimen-
sionality. Upon finding the orthogonal basis called eigen 
vectors, the original data vector x of dimension n can be 
represented by the projection of itself onto the first M 
(<< n) eigen vectors that corresponds to the M largest 
eigen values. In our case, the first 25 bases were enough 
to describe 99% of variations among the data so a 25-
dimensional space was formed. Thus, the final 
representation of the body vector is composed of six sets 
of 25 coefficients that are obtained by projecting the 
initial body vector onto each set of eigenvectors. In this 
work, we use i

txι , i
sxι and i

xδ  to denote the i-th (i=1,…,25) 
coefficient of joint translation, scale, and vertex 
displacement, along the x-axis. 

3. Shape control parameters 
A prerequisite of parameterized modeling is a choice of 
control parameters. Body attributes such as hourglass, 
pear/apple shape are typically those that provide a global 
description and dramatically reduce the number of 
parameters. The closest metric that maps these attributes 
to numerals is hip-to-waist ratio (HWR; hip girth 
divided by the waist girth). Another metric that 
describes the global change of the physique is fat 
percentage. It however requires information that is not 
typically available from the scanned data. For example, 
in the ‘anthropometric somatotyping’ [3], skinfolds of 
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four selected parts of the body are required to give a 
rating of approximate fat percentage. Fortunately, there 
are a number of empirical results that allow us to 
estimate the fat percentage from several anthropometric 
measurements [6]∗. Here, we adopt HWR and fat 
percentage, and height as shape control parameters of 
the modifier synthesizer. 

4. Modifier synthesizer 
Our modifier synthesizer is built upon regression 

models, using shape parameters as estimators and each 
component of the body vector as response variables. Our 
example models are however, relatively small (n=60) 
and skewed. We therefore perform the sample 
calibration, as described in Section 3.2, prior to the 
regression modeling. 

 Sample calibration 
We observed that tall-slim and short-overweight 

bodies are overrepresented in our database, exhibiting a 
high correlation between the height and the fat 
percentage (r=-2.6155, p<0.0001). Directly using such 
data that contains unequal distribution may result in 
false estimation by the modifier synthesizer. We use 
sample calibration [5] to avoid such erroneous 
estimation. It improves the representativeness of the 
sample in terms of the size, distribution and 
characteristics of the population by assigning a weight to 
each element of the sample. Here, we wish to determine 
the weights for each sample so that the linear function 
that maps the height to the fat percentage has the slope 
0. 

Consider the sample consisting of n elements. 
Associated with each element k are a target variable yk 
and a vector kx  of p auxiliary variables. Consider also 
that kx ’s are correlated with yk by the regression 

XBY = , where (X)kj= j
kx denotes the jth variable of 

element k, Y denotes the vector of n target variables, and 
the correlation vector B=[b1,.. bn]T is known for the 
population.  

The calibration method aims to compute a weight wk 
for each element so that the sample distribution of the 
variables X agrees with the population distribution. The 
calibration problem can be formulated as follows: 

Problem 1: Minimize the distance  

∑
=

n

k
kwG

1

)(                                 (1) 

                                                                  
∗ The regression equation used to estimate the fat percentage of 
a Caucasian woman’s body is: 

.... 38778)(log68497)(log205163 1010 −×−−+× heightneckhipabdomen  

subject to a calibration constraint defined by the 
weighted least square equation: 

YWXXBWX m
T

m
T =                           (2) 

where Wm = diag(w1, …, wn). 

The so-called distance function G measures the 
difference between the original weight values (uniform 
weighting of 1.0 in our case) and the values wk. The 
objective is to derive new weights that are as close as 
possible to the original weights. In our case, the 
regression model is linear (p =1), j

ix  and iy  are the fat 
percentages raised to the power of j-1 and the height of 
element i, respectively. The coefficient vector Β is 
[b1,0]T. Taking this value, the development of the 
Equation (2) yields: 
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The linear system in (3) is an underdetermined, with 
n > p. These weights have to be computed in a way that 
the equation (1) is minimized. To find a solution to (3) 
with (1) minimized, we replace kw  with 1+′kw  and 
rewrite (3) as: 

LWL v −=′⋅ ,                     (4) 

where [ ]T
nv wwW ′′=′ ,...1

. In addition, we add one more 
equation  

0
1

=′∑
=

n

k
kw  

to (4), since we want the mean of the weights wk to be 
equal to 1. The distance function G used in our approach 
is the quadratic function ( ) ( )2121 −= kk wwG  [5]. The 
underdetermined linear system is solved using Cholesky 
decomposition [9] that finds the least norm solution. 

 Parameterized shape modification of individual 
models 

Similarly with the problem of the parameter-driven 
individual modeling synthesizer, we wish to obtain the 
modification of the body geometry as a function 
evaluation of the chosen parameter, in our case fat 
percentage. Clearly, we can make use of the examples to 
derive such function. Unlike the modeling synthesizer, 
however, we would like some of the attributes, i.e. those 
which characterize a particular individual model to 
remain unchanged as much as possible during the 
modification, whilst other attributes are expected to be 
changed according to the control parameter. In general, 
it is difficult to identify what is invariant in an individual 
through changes from various factors (sport, diet, aging, 
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etc.). In addition, 3D body examples of an individual 
under various changes in his/her appearance are rare. 
(Although one can relatively easily obtain such 
examples when the aim is to build pose parameter space, 
as used in Allen et al [1].) Therefore, the problem of 
identifying (i) characterizing geometric elements of an 
individual and (ii) controllable elements from the given 
examples needs to be solved.  

We approach the problem by first computing the 
linear regression model between a shape parameter and 
each element of the body vector, as partly shown in 
Figure 2. The formulation of the regression model based 
on the weighted least square method is: 

)()( YWXXWX m
T

m
T 1−=α , 

where 

Wm: the sampling weight matrix defined in Section 6.1,  

X: the shape parameter values of every element in the 
sample, 

Y: the ith element of the body vector, bi of every element 
in the sample, 

α: the coefficients of the regression function Ei(x). 

 
Fat percent vs body vector
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Figure 2: Fat percentage and 6 principal compo-
nents of joints 'scaleX' body vector. 

For a given shape parameter x, the regression 
function Ei(x) gives the average value ib̂  of bi’s (see 

Figure 3). The difference 
iii bbe ˆ−=  is called the 

residual of the regression. we consider this residual 
value as the distinctiveness of the body, i.e. the deviation 
of the body vector component from its average value. 
Similarly to Kähler et al [7], we assume that the body 
component keeps its variance from the statistical mean 
over the changes: a shoulder that is relatively large will 
remain large. By computing the regression functions 
Ei(x) for every bi, it is possible to compute the average 
body for a given a shape parameter. Therefore, for a 
given body vector for which we know the shape 
parameter, we can compute the residual value of all the 
components of the body vector. Given xsrc the shape 
parameter of the input body and xtrg the shape parameter 
for which we want to generate the body, the new value 
of bi’ is given by:  

( ))()( srciitrgii xEbxEb −+=′ . 

Residual 
Distribution over 
the regression line

Regression line Ei(x)

xsrc xtrg 

bi

Ei(xsrc)

X 

Y

Ei(xtrg) 
+ 

bi-Ei(xsrc)

Ei(x) 

 
Figure 3. Shape variation with the regression line 

and the residual. 

5. Results and discussion 
Figure 4 shows some of results obtained by shape 

modification. It is clear that the bodies remain 
identifiable during the modification. All our models are 
animatable using motion sequence, through the update 
of the vertex-to-bone weight that is initially assigned to 
the template model. (See Appendix A for the skin 
attachment recalculation). In Figure 5, a captured, key 
frame based motion data sequence is used for the 
animation of our models. 

While there exists a good deal of consistency be-
tween our model and real bodies, our regression models 
on the body vector should be differentiated from those 
on anthropometric body measurements. The regression 
model of ‘scale_x’ of the bone, for instance, shows that 
the physical fat of subjects is partly captured by, and 
interpreted as, the linearity in the model. The regression 
models for the skeleton components and displacements 
are shown in Table 1 and Table 2, respectively. 
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 Hip-Waist Ratio : 1.249, 1.049 Fat % : 30%, 45% Height : 160cm, 178cm 

Hip-Waist Ratio : 1.200, 1.028 Fat % : 27%, 40% Height : 169cm, 160cm 

Original model 

Original model 

 

Figure 4: Modification of two individuals controlled by fat percent,hip-waist ratio and height. 

Table 1. Linear regression model on the skeleton 
component. 

Explanary 
variable 

regression 
coefficient 

standard 
error F-ratio p-value 

1
xδ  -2.9363 0.039295 8.621829 0.004872 
5
xδ  -0.06207 0.029464 4.438548 0.039797 
6
xδ  0.121447 0.024977 23.64189 1.04e-05 
1
yδ  0.214258 0.04131 26.90133 3.3e-06 
4
yδ  -0.07232 0.03268 4.897688 0.031139 
5
yδ  0.107049 0.033195 10.39955 0.002141 
2
zδ  -0.08119 0.028622 8.046944 0.006405 
3
zδ  -0.06428 0.025047 6.58599 0.013085 
10
zδ  -0.064 0.012807 24.97014 6.48e-06 

Table 2. Linear regression model on the displace-
ment component. 

Explanary 
variable 

regression 
coefficient 

standard 
error F-ratio p-value 

2
sxι  - 0 . 0 2 8 4 9 0.003272 75.82538 7.23e-12 
5
sxι  0 . 0 0 3 3 2 8 0.001485 5.024998 0.029115

7
sxι  - 0 . 0 0 2 6 1 0.001122 5.420798 0.023673
9
sxι  - 0 . 0 0 1 8 4 0.000738 6.186507 0.015994
1
syι  0 . 0 4 3 1 2 5 0.004694 84.39235 1.26e-12 
1
szι  - 0 . 0 0 9 7 5 0.003704 6.926509 0.011048
2
txι  0 . 0 2 5 4 5 4 0.012929 3.876025 0.054122
3
txι  0 . 0 2 3 5 7 0.01203 3.838827 0.05525 
6
txι  0 . 0 2 2 4 4 1 0.007838 8.196972 0.005961
3
tyι  - 0 . 0 6 0 4 9 0.018584 10.59697 0.001958
5
tzι  0 . 0 7 1 7 2 0.025202 8.098249 0.00625 
8
tzι  0 . 0 3 0 0 9 0.014531 4.287934 0.043178

 

Body vectors and their distribution also depend on 
the initial skinning. When there is a strong weight on the 
upper arm, a small-scale value will be sufficient to result 
in a large arm while a large scale is required to have the 
same effect when the attachment is loose. An automatic 
refinement of the skin attachment to obtain an optimal 
skinning could be found, so that the variation of body 
vectors for all examples is minimized, for instance.  
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Although in this work we have experimented mainly 
with size and shape parameters, there are other types of 
criteria that we believe are worth exploring. Some 
examples are sports, aging, and ethnicity. Combining 
these parameters with the sizing parameters is certainly 
one possibility to extend our system. 

 

 
Figure 5. Motion captured animation applied to four of 
our models. 
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Appendix A: Skin attachment recalculation 
Once the body shape has been modified through the 

displacement, the skin attachment data needs to be 
adapted accordingly so that the model retains smooth 
skin deformation capability. Generally, the deformed 
vertex location p is computed as 

∑
=

−=
n

i
diii pDMwp

1

1  

where Mi and wi are the transformation matrix and 
influence weight of the i-th influencing bone, Di is the 
transformation matrix of i-th influencing bone at the 
time of skin attachment (in most cases Di’s are chosen to 
be so called dress-pose, with open arms and moderately 
open legs) and pd is the location of p at the dress-pose, 
described in global coordinate system.  

Recomputing the skin attachment data involves 
updating the location pd for each of its influencing bone. 
Note that the model has to be back into the dress-pose 
when the recalculation takes place.  


