
Proceedings of the
International Conference on Swarm Intelligence

Based Optimization
(ICSIBO’2016)

June 13-14, 2016
Mulhouse, France

Sponsored by:

Foreword

These proceedings include the papers presented at the International Confer-
ence on Swarm Intelligence Based Optimization, ICSIBO’2016, held in Mulhouse
(France). ICSIBO’2016 is a continuation of the conferences OEP’2003 (Paris),
OEP’2007 (Paris), ICSI’2011 (Cergy-Pontoise) and ICSIBO’2014 (Mulhouse).

The aim of ICSIBO’2016 is to highlight the theoretical progress of swarm
intelligence metaheuristics and their applications. Swarm intelligence is a com-
putational intelligence technique involving the study of collective behavior in
decentralized systems. Such systems are made up of a population of simple
individuals interacting locally with one another and with their environment.
Although there is generally no centralized control on the behavior of individu-
als, local interactions among individuals often cause a global pattern to emerge.
Examples of such systems can be found in nature, including ant colonies, ani-
mal herding, bacteria foraging, bee swarms, and many more. However, swarm
intelligence computation and algorithms are not necessarily nature-inspired.

Authors had been invited to present original work relevant to Swarm Intel-
ligence, including, but not limited to: theoretical advances of swarm intelligence
metaheuristics ; combinatorial, discrete, binary, constrained, multi-objective,
multi-modal, dynamic, noisy, and large-scale optimization ; artificial immune
systems, particle swarms, ant colony, bacterial foraging, artificial bees, fireflies
algorithm ; hybridization of algorithms ; parallel/distributed computing, ma-
chine learning, data mining, data clustering, decision making and multi-agent
systems based on swarm intelligence principles ; adaptation and applications of
swarm intelligence principles to real world problems in various domains.

Each submitted paper has been reviewed by three members of the inter-
national Program Committee. A selection of the best papers presented at the
conference and further revised will be published as a volume of Springer’s LNCS
series.

We would like to express our sincere gratitude to our invited speakers: Brigitte
Wolf and Maurice Clerc. The success of the conference resulted from the input of
many people to whom we would like to express our appreciation: the members of
Program Committee and the secondary reviewers for their careful reviews that
ensure the quality of the selected papers and of the conference. We take this op-
portunity to thank the different partners whose financial and material support
contributed to the organization of the conference: Université de Haute Alsace,
Faculté des Sciences et Techniques et Institut Universitaire de Technologie de
Mulhouse. Last but not least, we thank all the authors who have submitted
their research papers to the conference, and the authors of accepted papers who
attended the conference to present their work. Thank you all.

June 2016 P. Siarry, L. Idoumghar and J. Lepagnot
Organizing Committee Chairs of ICSIBO’2016

Organization

Organizing Committee Chairs: P. Siarry, L. Idoumghar and J. Lepagnot
Program Chair: M. Clerc
Website/Proceedings/Administration: MAGE Team, LMIA Laboratory

Program Committee

Omar Abdelkafi Université de Haute-Alsace, France
Ajith Abraham Norwegian University of Science and Technology, Norway
Antônio Pádua Braga Federal University of Minas Gerais, Brazil
Mathieu Brévilliers Université de Haute-Alsace, France
Bülent Catay Sabanci University, Istanbul, Turkey
Amitava Chatterjee University of Jadavpur, Kolkata, India
Rachid Chelouah EISTI, Cergy-Pontoise, France
Raymond Chiong University of Newcastle, Australia
Maurice Clerc Independant Consultant, France
Carlos A. Coello Coello CINVESTAV-IPN, Depto. de Computacion México
Jean-Charles Créput University of Technologie Belfort-Montbéliard, France
Rachid Ellaia Mohammadia School of Engineering, Morocco
Frederic Guinand Université du Havre, France
Jin-Kao Hao Université d’Angers, France
Vincent Hilaire Université de Technologie de Belfort-Montbéliard, France
Lhassane Idoumghar Université de Haute-Alsace, France
Imed Kacem Université de Lorraine, France
Jim Kennedy Bureau of Labor Statistics, Washington, USA
Peter Korosec University of Primorska, Koper, Slovenia
Abderafiaâ Koukam University of Technologie Belfort-Montbéliard, France
Nurul M. Abdul Latiff Universiti Teknologi, Johor, Malaysia
Fabrice Lauri Université de Technologie de Belfort-Montbéliard, France
Stephane Le Menec RGNC at EADS / MBDA, France
Julien Lepagnot Université de Haute-Alsace, France
Evelyne Lutton INRA-AgroParisTech UMR GMPA, France
Vladimiro Miranda University of Porto, Portugal
Nicolas Monmarché Université François Rabelais Tours, France
René Natowicz ESIEE, France
Ammar Oulamara Université de Lorraine, France
Yifei Pu Sichuan University, China
Maher Rebai Université de Haute-Alsace, France
Said Salhi University of Kent, UK
René Schott University of Lorraine, France
Patrick Siarry Université de Paris-Est Créteil, France
Ponnuthurai N. Suganthan Science and Technology University, Singapore
Eric Taillard University of Applied Sciences of Western Switzerland
El Ghazali Talbi Polytech’Lille, Université de Lille 1, France
Antonios Tsourdos Defence Academy of the United Kingtom, UK
Mohamed Wakrim University of Ibou Zohr, Agadir, Morocco
Rolf Wanka University of Erlangen-Nuremberg, Germany

ICSIBO’2016 Scientific program

Monday, June 13, 2016 – Morning Monday, June 13, 2016 – Afternoon

08:00 13:50-16:50 – Social event

Visit of the famous national automobile museum

“Cité de l'Automobile”

Built around the Schlumpf Collection of classic automobiles

14:00

08:30-09:05 – Welcome

09:00
09:05-10:20 – Plenary 1

Chair: Brigitte Wolf

“Total Memory Optimiser: A Proof of Concept”
Presented by Maurice CLERC

15:00

10:00

16:00

10:20-10:50 – Coffee break

10:50-12:20 – Session 1: Particle Swarm Optimization

Chair: Patrick Siarry

Paper 10: Benoît Beroule, Olivier Grunder, Oussama Barakat,

Olivier Aujoulat and Helene Lustig. Particle Swarm Optimization for

Operating Theater Scheduling

Paper 11: Rita De Cassia Costa Dias, Hacène Ouzia and Ralf

Schledjewskl. Optimization of die-temperature in pultrusion of

thermosetting composites for improved cure

Paper 15: Yongqing Zhang, Puyi Fei and Jiliu Zhou. Inference of

Large-Scale Gene Regulatory networks using Improved Particle

Swarm Optimization

11:00 16:50-17:50 – Session 2: Distributed Algorithms

Chair: Mathieu Brévilliers

Paper 4: Omar Abdelkafi, Lhassane Idoumghar, Julien Lepagnot

and Mathieu Brévilliers. Data exchange topologies for the DISCO-

HITS algorithm to solve the QAP

Paper 9: Hongjian Wang, Abdelkhalek Mansouri, Jean-Charles

Créput and Yassine Ruichek. Distributed Local Search for Elastic

Image Matching

17:00

12:00 17:50-18:20 – Coffee break

 18:00

12:20-13:50 – Lunch break

18:20-19:20 – Session 3: Parallel Algorithms

Chair: Julien Lepagnot

Paper 13: Mathieu Brevilliers, Omar Abdelkafi, Julien Lepagnot and

Lhassane Idoumghar. Fast Hybrid BSA-DE-SA Algorithm on GPU

Paper 19: Dahmri Oualid and Baba-Ali Ahmed Riadh. A New

Parallel Memetic Algorithm to Knowledge Discovery in Data Mining

13:00

19:00

ϟ ϟ ϟ

21:00 20:30-22:30 – Gala dinner at “Chez Henriette”

Tuesday, June 14, 2016 – Morning

08:00

09:00
09:05-10:20 – Plenary 2

Chair: Maurice Clerc

“Inspiration by Swarms”
Presented by Brigitte WOLF

10:00

10:20-10:50 – Coffee break

10:50-12:20 – Session 4: Applications

Chair: Lhassane Idoumghar

Paper 7: Charaf Eddine Khamoudj, Karima Benatchba and Tahar

Kechadi. Classical Mechanics Optimization for image segmentation

Paper 14: Halil Alper Tokel, Gholamreza Alirezaei and Rudolf

Mathar. Modern Heuristical Optimization Techniques for Power

System State Estimation

Paper 17: Youcef Abdelsadek, Kamel Chelghoum, Francine

Herrmann, Imed Kacem and Benoît Otjacques. On the community

identification in weighted time-varying networks

11:00

12:00

12:20-13:50 – Lunch and conference end

13:00

Guest speakers

Maurice CLERC

Maurice CLERC was working with France Telecom
R&D as research engineer (optimization of telecommu-
nications networks). In 2005 he has been awarded with
James Kennedy by IEEE Transactions on Evolutionary
Computation for their 2002 paper on Particle Swarm
Optimization (PSO). He is now retired but still active
in this field: a book about PSO in 2005 (translated into
English in 2006), a book in 2015 about guided random-
ness in optimization (translated into English), several
papers in international journals and conference pro-
ceedings, external examiner for PhD theses, reviewer
and member of editorial board and program committee
for conferences and journals (IEEE TEC Best Reviewer
Award 2007), co-webmaster of the Particle Swarm Cen-
tral.

Abstract of the plenary talk entitled ”Total Memory Optimiser: A
Proof of Concept”

For most usual optimisation problems, the Nearer is Better assumption is true
(in probability), This property is taken into account by the classical iterative al-
gorithms, either explicitly or implicitly, by forgetting some information collected
during the process, assuming it is not useful any more. However, when the prop-
erty is not globally true, i.e. for deceptive problems, it may be necessary to keep
all the sampled points and their values, and to exploit this increasing amount
of information. Such a basic Total Memory Optimiser is presented. We show on
an example that it can outperform classical methods on deceptive problems. As
it is very computing time consuming as soon as the dimension of the problem
increases, a few compromises are suggested to speed it up.

Brigitte WOLF

After studying industrial Design and Psychology,
Brigitte Wolf has had a varied international career as
project manager, consultant, researcher and lecturer.
In 1991 she was awarded the first professorship for
design management in Germany at the University of
Applied Sciences Cologne. Since october 2006 Brigitte
Wolf has led the Centre for Applied research in Brand,
reputation and Design management (CBrD) at iNHol-
lAND University of Applied Sciences in Rotterdam. In
2007 she became professor of design theory at the Uni-
versity of Wuppertal, with a focus on the planning,
methodology and strategy of design management.

Abstract of the plenary talk entitled ”Inspiration by Swarms”

The hypothesis of the lecture is, that swarm intelligence will enable companies
to operate successful in the future by integrating design strategy into their busi-
ness strategy. Characteristics of swarm behavior and characteristics of human
behavior will be discussed to find out, how principles of swarm behavior can be
used to improve design strategies in corporate businesses. Some examples that
adapted principles of swarm intelligence will be presented. Finally an example
of the swarm inspired strategic approach for a company we will work with in the
winter term will be given.

Accepted
papers and

abstracts

Table of Contents

Particle Swarm Optimization for Operating Theater Scheduling 11
Benôıt Beroule, Olivier Grunder, Oussama Barakat, Olivier
Aujoulat, Helene Lustig

Optimization of die-temperature in pultrusion of thermosetting
composites for improved cure . 19

Rita De Cassia Costa Dias, Hacène Ouzia, Ralf Schledjewskl

Inference of Large-Scale Gene Regulatory networks using Improved
Particle Swarm Optimization . 21

Yongqing Zhang, Puyi Fei, Jiliu Zhou

Data exchange topologies for the DISCO-HITS algorithm to solve the
QAP . 30

Omar Abdelkafi, Lhassane Idoumghar, Julien Lepagnot, Mathieu
Brévilliers

Distributed Local Search for Elastic Image Matching 38
HongjianWang, Abdelkhalek Mansouri, Jean-Charles Créput,
Yassine Ruichek

Fast Hybrid BSA-DE-SA Algorithm on GPU . 46
Mathieu Brevilliers, Omar Abdelkafi, Julien Lepagnot, Lhassane
Idoumghar

A New Parallel Memetic Algorithm to KnowledgeDiscovery in Data
Mining . 54

Dahmri Oualid, Baba-Ali Ahmed Riadh

Classical Mechanics Optimization for image segmentation 70
Charaf Eddine Khamoudj, Karima Benatchba, Tahar Kechadi

Modern Heuristical Optimization Techniques for Power System State
Estimation . 78

Halil Alper Tokel, Gholamreza Alirezaei, Rudolf Mathar

On the community identification in weighted time-varying networks 86
Youcef Abdelsadek, Kamel Chelghoum, Francine Herrmann, Imed
Kacem, Benôıt Otjacques

Particle Swarm Optimization for Operating
Theater Scheduling

Benoit Beroule1, Olivier Grunder1, Oussama Barakat2, Olivier Aujoulat3, and
Helene Lustig3

1 Univ. Bourgogne Franche Comté , UTBM, IRTES-SET, 90010 Belfort, France.
{benoit.beroule,olivier.grunder}@utbm.fr

http://www.utbm.fr
2 Nanomedecine Lab, University of Franche Comté , 25000 Besançon, France.

oussama.barakat@univ-fcomte.fr

http://www.univ-fcomte.fr
3 GHRMSA, Mulhouse hospital center 68000 Mulhouse, France.

{aujoulato,lustigh}@ch-mulhouse.fr

http://www.ch-mulhouse.fr

Abstract. The hospital surgical procedures scheduling problem is a
well-known operational research issue. In this paper, we propose a parti-
cle swarm optimization (PSO) based algorithm to solve this problem for
the purpose of reducing surgical devices utilization and thus improve the
sterilization service efficiency in a hospital context. we define a computa-
tion space to simplify calculation steps. Moreover, we detail the modeling
and provide a study on the PSO factors and their impact on the final
results then finally determine the best value for each factor to solve this
particular problem.

Keywords: optimization; health care ; particle swarm optimization; op-
erating theater scheduling

1 Introduction

The constant progresses made in the health care sector keep improving people’s
life expectancy. In the other hand, the average time spent in hospital centers
for a person is inexorably rising. To be able to meet this increasing demand, the
hospital sector looks towards the operational research sector. Actually, numerous
hospital aspects could be improved by using appropriate management methods
such as nurses assignment [5], materials transportation, patients routing and
much more. This paper focuses on the surgical procedures scheduling problem
which is a major issue of hospital management and a widely studied problem [11].
Eight main performance criteria are commonly used in the literature to evaluate
operating room scheduling procedures [2] : waiting time, throughput, utiliza-
tion, leveling, makespan, patient deferrals, financial measures and preferences.
A method was developed to maximize operating room utilization considering al-
locating block time and thus, correctly manage elective (non urgent) patients [6].

11

2 Particle Swarm Optimization for Operating Theater Scheduling

The non-elective surgery must also be taken into account, this is why a stochas-
tic dynamic programming model was implemented to schedule elective surgery
under uncertain demand for emergency surgery [7]. Moreover, some industrial
management methods may be adapted to the hospital sector. The scheduling
problem may be identified to a hybrid flow shop to determine a o(n2) complexity
dedicated heuristic [12]. When applying to an important hospital center, exact
methods may require prohibitive computation times. Therefore, some studies
deal with approximate methods as a tabu search to establish a surgical pro-
cedures schedule according to different planning policies [8]. It is against this
background that we propose in this paper, a particle swarm optimization based
scheduling method. The particle swarm optimization (PSO) is a parallel evolu-
tionary computation meta heuristics invented by Kennedy and Eberhart [10, 13,
9] which is based on insects social behavior. Particles are created in the solutions
space and share information to move and converge towards best solutions. Nu-
merous papers deal with PSO improvements or practical applications. A PSO
parameters choice method was defined to improve convergence rate and discuss
on each parameter utility [3]. Indeed, the parameters greatly affect the solutions
consistency. Consequently, some papers studied their impact in a mathematical
[15] or empirical [14] way. In this paper, we propose a detailed PSO method to
solve the operating block scheduling problem taking into account medical devices
utilization as well as an empirical selection and a discussion on the parameters.

2 Studied problem

When considering the operating theater scheduling problem, numerous aspects of
the hospital sector may be taken into account (nurses availability, patient types,
material flows...). In this study, we focus on the medical devices utilization cycle.
Medical devices are packaged into ”boxes” which are opened and prepared by
a nurse before each surgical procedure. After being used, the devices are pre-
desinfected in a dedicated place of the operating theater before being repackaged
in their respective box then resent to the sterilization service which is commonly
a part of the hospital pharmacy. The sterilization service receive the boxes and
perform several operations. First, the material is separately cleaned thanks to
washing machines. Then, the human agents repack the medical devices into the
boxes according to a precise protocol depending on the surgical operation type.
Finally, the boxes are sterilized thanks to autoclaves and resent to the operating
theater when their temperature drops enough (or stored in the service if they
are not immediately needed).
By working on the surgical procedures scheduling, we hope to improve two dis-
tinct aspects of the sterilization service. In one hand, the quantity of needed
boxes could be reduced which implies a better reaction when facing an urgency
case. In the other hand, the working activity of the sterilization service may be
more heterogeneously distributed to avoid any burst in activity.

12

PSO for Operating Theater Scheduling 3

3 Particle Swarm Optimization modeling

In this section, we present a PSO based algorithm the purpose of which is to
solve the surgical procedures scheduling problem by minimizing surgical devices
utilization. To be efficient, this algorithm must provide solutions as near as
possible to those provided by the MILP model [1].

3.1 Modeling

Implementing a PSO algorithm implies determining the modeling of the parti-
cles which will explore the solutions space. Our purpose is to determine a one
week surgical procedures planning by determining the starting date of each op-
eration. Furthermore, the duration time of a procedure is not a decision variable
and may mainly depends on the patient physical characteristics, the pathology
type or the surgeon habits. In these conditions, the starting dates are sufficient
to establish a complete planning with approximate duration times.
We first define the modeling parameters divided into two sections: MILP rel-
ative parameters and PSO relative parameters (some of them will be detailed
afterward).
MILP relative parameters:
– n : The amount of surgical procedures waiting to be scheduled.
– di : The starting date of the surgical procedure i (1 ≤ i ≤ n).
– T o : The operating theater opening date (0 ≤ T o ≤ T c).
– T c : The operating theater closing date (T o ≤ T c ≤ T).
– T = 24h : The duration of a day.

PSO relative parameters:
– m : The amount of particles generated for the PSO algorithm.
– p : The amount of steps performed by the PSO algorithm.
– Xk

j : The position vector of the particle j at step k.

– V kj : The velocity vector of the particle j at step k.
– Lj : The best solution founded by the particle j.
– G : The best solution founded by the particles.
– ω : The inertia factor.
– φ1 : The personal memory factor.
– φ2 : The common knowledge factor.
– S1 : The solutions space.
– S2 : The computation space.
– rk1 , r

k
2 : Vectors of random generated float from 0 to 1.

Hence, each particle is represented by its position and velocity. The position is
a n-tuple as shown in equation (1).

Xk
j = (d1, d2, ..., dn) (1)

With this modeling, the particles progress in a n dimensional space. A movement
along a dimension i represents a modification of the corresponding starting date

13

4 Particle Swarm Optimization for Operating Theater Scheduling

di. To initialize the PSO, m particles will be generated with random starting
dates distributed during the concerning week and random initial velocities V 0

j .
m must be big enough to create a set of particles covering the entire solution
space. At each step k, a particle represents a particular solution according to its
position in the solution space.
During each step of the PSO algorithm, the particles will communicate to share
information and update their own positions according to their own knowledges
and the common knowledge of the best solution. The details of the new position
computation is given in equation (2) and (3) [10].

V k+1
j = ωV kj + φ1r

k
1 (Lj −Xk

j) + φ2r
k
2 (G−Xk

j) (2)

Xk+1
j = Xk

j + V k+1
j (3)

Lj and G represent the position vectors of the best solutions founded by the
particle j and by the entire set of particles respectively. They are updated at each
step if needed. ω represents the system global inertia. A high inertia value implies
a better solution space exploration at the expense of the convergence speed. φ1
and φ2 represent the personal memory factor and the common knowledge factor
respectively. If φ1 is set to a high value, each particle will be more attracted by
its own best already visited position Lj . If φ2 is set to a high value, each particle
will be more attracted by the best already visited position among every visited
positions of every particles G.
After p steps, the solution corresponding to the best visited position among every
particles is considered as the PSO algorithm output . p must be big enough to
allow the particles to converge toward one or several extrema, but not too big
to prevent the machine from prohibitive computation time.

3.2 Computation space

Among other factors, the PSO efficiency depends on the solution space topology
and the fitness function behavior. Here we define the solution space S1 as all
possible dates combinations in a week (equation (4)).

S1 = {(d1, d2, ..., dn)|∀i ∈ [[1, n]], 0 ≤ di ≤ 5× T , To ≤ dimod(T) < Tc} (4)

In this scheduling problem, the fitness function evaluates the number of needed
boxes to respect a given schedule. The problem is that S1 is a discrete subset of
Rn, this topology particularity prevents the particles from moving in a continu-
ous way. To improve the PSO efficiency, we consider a new space, S2 (continuous
subset of Rn), which will be called the ”computational space” (equation (5)).

S2 = {(d1, d2, ..., dn)|∀i ∈ [[1, n]], 0 ≤ di < 5× (Tc − To)} (5)

S2 and S1 are homeomorphic, therefore there is a bijective continuous function
(equations 6 and 7) to translate the straight forward readable solution from S1 to

14

PSO for Operating Theater Scheduling 5

S2 where the computation is easier. When the computation is over, the solutions
may be translated back from S2 to S1 (equations 8 and 9).

f : S1 → S2

(d1, d2, ..., dn) 7→ f((d1, d2, ..., dn)) = (d′1, d
′
2, ..., d

′
n)

(6)

d′i = (di − T o)−
di
T
× (T + T o − T c) (

a

b
is the euclidian division) (7)

f−1 : S2 → S1

(d′1, d
′
2, ..., d

′
n) 7→ f−1((d′1, d

′
2, ..., d

′
n)) = (d1, d2, ..., dn)

(8)

di = (d′i + T o) + (T + T o − Tc)× (d′imod[T c − To]) (9)

4 Experimentation

To ensure the reliability of the results obtained by the PSO, each parameter must
be calibrated according to the current scheduling problem. Hence the purpose
of this section is to determine each parameter best value to improve the PSO
algorithm error ratio.

4.1 Determining best parameters

In order to improve the PSO efficiency, we study the impact of the ω, φ1 and φ2
factors on the solution provided by the PSO algorithm. Therefore, we implement
a parameters evaluation algorithm (Fig 1). After performing this algorithm for
a scenario S, we obtain a 3-dimensional data structure Fs containing an average
on NbIter iterations of the best solutions fitness obtained by the PSO for any
triplet (ω, φ1, φ2) ∈ P (define in equation (10)).

P = Pω × Pφ1 × Pφ2 (10)

Pω = {ω ∈ R|∃i ∈ N, ω = ωstart + i× ωstep , ω ≤ ωend} (11)

Pφ1
= {φ1 ∈ R|∃i ∈ N, φ1 = φ1 start + i× φ1 step , φ1 ≤ φ1 end} (12)

Pφ2
= {φ2 ∈ R|∃i ∈ N, φ2 = φ2 start + i× φ2 step , φ2 ≤ φ2 end} (13)

Therefore, we define a set of representative scenarios S = {s1, s2, ..., sl}, and
obtain the best parameters according to equation (14).

(ωbest, φ1 best, φ2 best) = argmin(
∑

s∈S
Fs(i, j, k)) (14)

Here we define the ranges of value for each parameter with:
ωsart = φ1 start = φ2 start = 0.2,
ωstep = φ1 step = φ2 step = 0.2,
ωend = φ1 end = φ2 end = 2.0,
to obtain equation (15).

(ωbest, φ1 best, φ2 best) = (0.2, 1.2, 1.0) (15)

15

6 Particle Swarm Optimization for Operating Theater Scheduling

Fig. 1. PSO best parameters evaluation algorithm

const

NbIter: Integer; S: Scenario;

omegaStart, omegaStep, omegaEnd: Real

phi1Start, phi1Step, phi1End: Real

phi2Start, phi2Step, phi2End: Real

var

i := omegaStart; j := phi1Start; k := phi2Start;

it: integer;

Fs: Real 3 dimensional data structure;

begin

repeat

repeat

repeat

it := 1;

Fs(i,j,k) := 0;

repeat

Fs(i,j,k) := Fs(i,j,k) + PSOBestSolutionFitness(i,j,k,S);

it := it + 1;

until it > NbIter

Fs(i,j,k) := F(i,j,k) / NbIter;

k := k + phi2Step

until k > phi2End

j := j + phi1Step

until j > phi1End

i := i + omegaStep;

until i > omegaEnd

end

We do not assure that the previously determined parameters are the best choice
to converge toward the best solution but we assume they are an interesting al-
ternative considering the fact that only 2 hours (with NbIter = 50) was needed
to compute them. Let us consider the consistency of our results. A theoretical
approach leads to define the PSO factors by the equations φ1 = φ2 = φ and
φ = ω × (2/0.97725) or φ ≈ 2 × ω [4], this is why we first decoded to use the
parameters (ω, φ1, φ2) = (1.0, 2.0, 2.0). From the empirical results of testing,
two observations can be made. First φ1 best ≈ φ2 best (indeed φ1 best = 1.0 and
φ2 best = 1.2). However the inertia factor ωbest = 0.2 is smaller than the expected
value (about 1.0). To understand this result, let us remind the impact of this
parameter on the global system. The inertia factor represents the particles capac-
ity of ”quickly” change their directions, therefore, the bigger inertia factor, the
more the solution space is explored (but the convergence rate may decreased).
Nevertheless, the solution space of the current problem contains several non-
neighboring optimal solutions (for instance, inverting two surgical procedures of
same duration provide an other solution with identical fitness). Consequently,
the exploration of the entire solution space is not crucial, hence the inertia factor
does not need to be set to a high value in this context.

16

PSO for Operating Theater Scheduling 7

4.2 Results

Table 1. Number of boxes needed to respect each scenario depending parameters value
and MILP model

scenario procedures PSO1 PSO2 MILP

1 6 2.00 2.00 2
2 7 2.00 2.00 2
3 8 2.00 2.00 2
4 9 2.04 2.00 2
5 10 2.66 2.37 2
6 11 3.00 3.00 3
7 12 3.00 3.00 3
8 13 3.00 3.00 3
9 14 3.21 3.05 3
10 15 3.75 3.61 3
11 16 4.00 4.00 4
12 17 4.00 4.00 4
13 18 4.02 4.00 4
14 19 4.28 4.11 4
15 20 4.98 4.93 4
16 21 5.00 5.00 5

scenario procedures PSO1 PSO2 MILP

17 22 5.01 5.00 -
18 23 5.44 5.15 -
19 24 5.75 5.63 -
20 25 6.00 5.97 -
21 26 6.02 6.00 -
22 27 6.11 6.05 -
23 28 6.66 6.24 -
24 29 6.98 6.90 -
25 30 7.01 7.00 -
26 31 7.16 7.01 -
27 32 7.54 7.20 -
28 33 7.83 7.73 -
29 34 7.96 7.95 -
30 35 8.05 7.99 -
31 36 8.19 8.01 -
32 37 8.62 8.24 -

We evaluate the schedules provided by two different PSO algorithms. PSO1

uses the classical parameters (ω, φ1, φ2) = (1.0, 2.0, 2.0) while PSO2 uses the pa-
rameters (ω, φ1, φ2) = (0.2, 1.2, 1.0). The table 4.2 summarizes the performances
of each algorithm by displaying the minimum average number of boxes needed
to respect the best schedule obtained. We compare it to the exact solution ob-
tained with a MILP model (when the computation time is under 1 hour) on 32
scenarios containing from 6 to 37 surgical procedures.
Note that each instance of scenarios from 1 to 16 (left table) is solved with
n = 100 particles and m = 10 cycles. By increasing the amount of particles or
the number of cycles, the solutions quality will be improved but the algorithm
could not be easily compared. The scenarios from 17 to 32 (right table) are
solved with n = 1000 and m = 100 for a computation time of few seconds for
each of them.

5 conclusion

The PSO based algorithm details in this paper provides interesting results to
solve the surgical procedures scheduling problem. It may be used as a replace-
ment for the MILP model when the amount of concerned procedures is to high
to be computed in a reasonable amount of time. An improvement of this method
might be to applied an effect zone to each particle and then only consider the
neighborhood of each of them to compute its next step position. As said before,
we are dealing with a multi nodal problem, there is therefore every chance that

17

8 Particle Swarm Optimization for Operating Theater Scheduling

using a neighborhood based method allows to determine several best solutions.
The next step of the study is now to implement a real time algorithm to update
a schedule according to the new prescribe procedures of each day and test it in
a real hospital context.

References

1. Benoit Beroule, Olivier Grunder, Oussama Barakat, Olivier Aujoulat, and Helene
Lustig. Ordonnancement des interventions chirurgicales dun hopital avec prise en
compte de létape de stérilisation dans un contexte multi-sites.

2. Brecht Cardoen, Erik Demeulemeester, and Jeroen Beliën. Operating room plan-
ning and scheduling: A literature review. European Journal of Operational Re-
search, 201(3):921–932, 2010.

3. Maurice Clerc and James Kennedy. The particle swarm-explosion, stability, and
convergence in a multidimensional complex space. Evolutionary Computation,
IEEE Transactions on, 6(1):58–73, 2002.

4. Maurice Clerc and Patrick Siarry. Une nouvelle métaheuristique pour
l’optimisation difficile: la méthode des essaims particulaires. J3eA, 3:007, 2004.

5. Jérémy Decerle, Olivier Grunder, Amir Hajjam El Hassani, and Oussama Barakat.
Optimisation de la planification du personnel dun service de soins infirmiers à
domicile.

6. Franklin Dexter, Alex Macario, Rodney D Traub, Margaret Hopwood, and David A
Lubarsky. An operating room scheduling strategy to maximize the use of operating
room block time: computer simulation of patient scheduling and survey of patients’
preferences for surgical waiting time. Anesthesia & Analgesia, 89(1):7–20, 1999.

7. Yigal Gerchak, Diwakar Gupta, and Mordechai Henig. Reservation planning for
elective surgery under uncertain demand for emergency surgery. Management Sci-
ence, 42(3):321–334, 1996.

8. Arnauld Hanset, Hongying Fei, Olivier Roux, David Duvivier, and Nadine
Meskens. Ordonnancement des interventions chirurgicales par une recherche tabou:
Exécutions courtes vs longues. Logistique et Transport LT07, 2007.

9. James Kenndy and RC Eberhart. Particle swarm optimization. In Proceedings of
IEEE International Conference on Neural Networks, volume 4, pages 1942–1948,
1995.

10. James Kennedy. Particle swarm optimization. In Encyclopedia of machine learning,
pages 760–766. Springer, 2011.

11. Nathalie Klement. Planification et affectation de ressources dans les réseaux de
soin: analogie avec le problème du bin packing, proposition de méthodes approchées.
PhD thesis, Université Blaise Pascal-Clermont-Ferrand II, 2014.

12. NH Saadani, A Guinet, and S Chaabane. Ordonnancement des blocs operatoires.
In MOSIM: Conference francophone de MOdélisation et SIMulation, volume 6,
2006.

13. Yuhui Shi and Russell Eberhart. A modified particle swarm optimizer. In Evolu-
tionary Computation Proceedings, 1998. IEEE World Congress on Computational
Intelligence., The 1998 IEEE International Conference on, pages 69–73. IEEE,
1998.

14. Yuhui Shi and Russell C Eberhart. Parameter selection in particle swarm opti-
mization. In Evolutionary programming VII, pages 591–600. Springer, 1998.

15. Ioan Cristian Trelea. The particle swarm optimization algorithm: convergence
analysis and parameter selection. Information processing letters, 85(6):317–325,
2003.

18

Optimization of die-temperature in pultrusion of thermosetting composites

for improved cure

RITA DE CASSIA COSTA DIAS1 *, HACENE OUZIA2 and RALF SCHLEDJEWSKI1

1Chair of Processing of Composites, Department Polymer Engineering and Science,

Montanuniversität Leoben, Otto Glöckel-Straße 2, 8700 Leoben, Austria

2Université Pierre et Marie Curie, 4 place Jussieu, 75252 Paris, France

* Corresponding author (RitadeCassia.CostaDias@unileoben.ac.at)

Keywords: Nodal control volume, Pultrusion, Thermal analysis, Degree of cure

Abstract

In this work, we will present a swram optimization based approach to optimize die-
temperature and pull-speed in pultrusion of thermosetting composite. Pultrusion is a
composite manufacturing technique for processing continuous composite profiles with a
constant cross section. The materials which are used for pultrusion in the industry are
continuous glass fibers with polyester or epoxy resins. During composite processing, the
reinforcing fibers are impregnated with a liquid resin in an injection box or resin bath,
fibers and resin are preheated in a mold in which the curing process takes place. High
productivity and low operating costs are the main advantages of this processing method.
During processing, the heat flux provided by the mold must be sufficient to promote the
polymerization reaction of the thermosetting matrix (curing). Furthermore, curing of a
composite should be uniform and sufficient in order to provide a good quality of the end
product. The exothermic character of the curing reaction induces, inside the composite,
exceed temperatures. This temperature rise can cause degradation of the final product.
Also, in pultrusion process, transport phenomena are involved and mathematical models
are necessary to predict the physico-chemical behavior of the process. For such studies, the
region enclosed by the mold is usually considered the main part of the process in which the
curing reaction occurs and heat is transfered. Thus, the optimization process is quite
important for the prediction of die-heating temperature and pull-speed.

To compute the die-heating temperatures and pull speed that give the best degree of cure
of the composite we will use the function, given in [1], relating die-heating temperatures
and pull speed to the degree of cure of the composite. A particle swarm based approach
(see [2]) will be used to optimize this function. The best die-heating temperatures and pull
speed found will be used again (as initial boundary condition) to compute the degree-of-
cure profiles in the composite (at the exit section of the mold). This optimization step will

19

be executed several times until a measure of uniformity attains a certain threshold (the
same measure as in [1] will be used).

As computational results, the die-heating environment will be optimized for few cases
(different geometries) with different initial temperatures for a glass/epoxy. A general-
purpose finite element software, ANSYS-16.2, is used in order to perform three
dimensional conductive heat transfer analysis and the MATLAB PSO solver will be used to
compute the die-heating temperatures and pull-speed. The solutions obtained using the
PSO solver will be compared (when it is possible) to the exact solution of the optimization
problem.

References

[1] Li J, Joshi SCJ, Lam YC, Curing optimization for pultruded composite sections.
Composites Science and Technology 2002;62: 457-467.

[2] Kennedy, J., Eberhart, R., Particle Swarm Optimization. In: Proc. IEEE International
Conference on Neural Networks 1995.

Acknowledgement

Research stay of RITA DE CASSIA COSTA DIAS at the Montanuniversität Leoben is funded
by (CAPES) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil

20

Inference	 of	 Large-‐Scale	 Gene	 Regulatory	 networks	 using	 Improved	 Particle	

Swarm	 Optimization	
Yongqing	 Zhang1,	 2,	 Yifei	 Pu1,	 Jiliu	 Zhou3,	 1,	 ‡	

1	 College	 of	 Computer	 Science,	 Sichuan	 University,	 Chengdu,	 610065,	 PR	 China	 	
2	 Department	 of	 Bioengineering,	 University	 of	 California,	 San	 Diego,	 La	 Jolla,	 CA	 92093,	 USA	
3	 Department	 of	 Computer	 Science,	 Chengdu	 University	 of	 Information	 Technology,	 P.R.	 China,	
610225	
‡	 Corresponding	 author:	 zhoujl@scu.edu.cn	
	
Abstract:	 Gene	 regulatory	 networks	 provide	 a	 systematic	 view	 of	 molecular	 interactions	 in	 a	
complex	 system.	 One	 of	 the	 most	 challenging	 problems	 in	 systems	 biology	 is	 the	 process	 of	
inferring	 large-‐scale	 gene	 regulatory	 networks.	 Here	 we	 adopted	 a	 differential	 equation	 model	 to	
represent	 gene	 networks	 and	 used	 Improved	 Particle	 Swarm	 Optimization	 to	 infer	 the	
appropriate	 network	 parameters.	 Our	 method	 attempted	 to	 generate	 a	 higher	 diversity	 of	
particles	 during	 the	 evaluation.	 The	 swarm	 was	 first	 divided	 into	 several	 groups,	 then	 each	
particle	 learned	 from	 other	 better	 particles	 in	 their	 current	 group.	 Finally,	 the	 crossover	
operator	 was	 used	 to	 randomly	 select	 two	 particles	 in	 the	 current	 group.	 To	 validate	 the	
proposed	 methods,	 three	 low-‐dimensional	 tests	 and	 three	 high-‐dimensional	 tests	 have	 been	
conducted;	 the	 searching	 dimensionality	 is	 25,	 64,	 100,	 and	 225,	 400,	 900	 respectively.	 The	
results	 show	 that	 the	 proposed	 methods	 can	 be	 used	 to	 infer	 differential	 equation	 models	 of	
gene	 regulatory	 networks	 efficiently	 and	 with	 high	 stability.	
Keywords:	 large-‐scale	 gene	 regulatory	 network,	 particle	 swarm	 optimization,	 time-‐series.	

1	 Introduction	

Gene	 expression	 is	 the	 process	 of	 generating	 functional	 gene	 products,	 such	 as	 mRNA	 and	
protein.	 The	 level	 of	 gene	 functionality	 can	 be	 measured	 from	 gene	 expression	 data	 produced	
using	 microarrays	 or	 gene	 chips[1,	 2].	 Measuring	 the	 levels	 of	 gene	 expression	 under	 different	
conditions	 is	 vital	 for	 medical	 diagnosis,	 treatment,	 and	 drug	 design	 applications[3].	 Many	 gene	
expression	 experiments	 produce	 time-‐series	 data	 with	 only	 a	 few	 time	 points	 due	 to	 high	
measurement	 costs.	 Therefore,	 it	 becomes	 significant	 to	 predict	 the	 behavior	 of	 gene	 regulatory	
networks	 (GRNs)	 through	 modern	 computing	 technology.	 Recently,	 many	 algorithms	 and	
mathematical	 models	 have	 been	 proposed	 to	 predict	 gene	 regulatory	 networks	 from	 time-‐series	
data,	 such	 as	 Boolean	 networks[4],	 Dynamic	 Bayesian	 networks[5],	 neural	 networks[6],	 different	
equations	 models[7,	 8]	 and	 so	 on.	 In	 the	 above-‐mentioned	 GRNs	 inference,	 the	 most	 important	
steps	 are	 choosing	 a	 network	 model	 and	 determining	 the	 best	 parameters	 of	 the	 network	 model	
using	 the	 gene	 expression	 time-‐series	 data.	 Several	 evolutional	 algorithms	 have	 been	 proposed	
to	 deduce	 the	 GRNs[9,	 10].	
	 	 Among	 the	 many	 evolutionary	 algorithms,	 Particle	 swarm	 optimization	 (PSO)	 is	 one	 of	 the	
most	 powerfully	 used	 swarm	 intelligence	 algorithms,	 originally	 attributed	 to	 Eberhart	 and	
Kennedy[11].	 The	 algorithm	 is	 based	 on	 a	 simple	 mechanism	 that	 mimics	 swarm	 behaviors	 of	
social	 animals,	 such	 as	 bird	 flocking.	 The	 PSO	 comprises	 of	 many	 particles,	 and	 each	 of	 the	
particles	 has	 a	 position.	 This	 position	 can	 be	 compared	 to	 the	 particle’s	 best	 position	 and	 the	
swarm’s	 best	 position.	 Each	 particle	 also	 has	 a	 velocity,	 which	 can	 adjust	 the	 particle’s	 relative	

21

position	 closer	 to	 the	 best	 position	 in	 the	 swarm.	 	
	 	 Each	 particle’s	 velocity	 and	 position	 will	 be	 changed	 according	 to	 the	 following	 equations:	

𝑉!,! 𝑡 + 1 = 𝜔! ∙ 𝑉!,! 𝑡 + 𝑐! ∙ 𝜑! 𝑡 ∙ 𝑃𝑏𝑒𝑠𝑡!,𝑗 𝑡 − 𝑋!,! 𝑡 	

+𝑐! ∙ 𝜑!(𝑡) ∙ (𝐺𝑏𝑒𝑠𝑡(𝑡)− 𝑋!,!(𝑡)) (1)
𝑋!,!(𝑡 + 1) = 𝑋!,!(𝑡) + 𝑉!,! 𝑡 + 1 (2)

where	 𝑡	 is	 the	 iteration	 number,	 𝑉!,! 𝑡 	 and	 𝑋!,! 𝑡 	 represent	 the	 velocity	 and	 position	 of	 the	
𝑖th	 particle	 in	 the	 𝑗th	 dimension,	 respectively.	 𝜔!	 is	 termed	 the	 inertia	 weight,	 𝑐!	 and	 𝑐!	 are	
the	 acceleration	 coefficients,	 𝜑! 𝑡 	 and	 𝜑! 𝑡 	 are	 two	 randomly	 generated	 numbers	 with	 [0,1],	
𝑃𝑏𝑒𝑠𝑡!,𝑗 𝑡 	 is	 the	 best	 position	 for	 particle	 𝑖	 and	 𝐺𝑏𝑒𝑠𝑡(𝑡)	 is	 the	 best	 position	 the	 swarm	 has	
obtained.
	 	 Due	 to	 its	 conceptual	 simplicity	 and	 high	 search	 efficiency,	 PSO	 has	 been	 widely	 used	 in	 many	
applications,	 such	 as	 optimization[12,	 13],	 classification[14],	 complex	 network	 clustering[15,	 16]	
and	 so	 on.	 However,	 it	 has	 been	 found	 that	 PSO	 performs	 poorly	 when	 the	 optimization	 problem	
has	 a	 large	 number	 of	 local	 optima	 or	 is	 high	 dimensional[17].	 Classic	 PSO	 will	 often	 reach	 a	 local	
minimum	 as	 its	 final	 solution.	
	 	 Because	 of	 the	 strong	 influence	 of	 the	 global	 best	 position,	 𝐺𝑏𝑒𝑠𝑡,	 on	 the	 convergence	
speed[18],	 𝑃𝑏𝑒𝑠𝑡! 	 is	 very	 likely	 to	 have	 a	 value	 similar	 to	 or	 even	 the	 same	 as	 𝐺𝑏𝑒𝑠𝑡,	 and	 this	
will	 reduce	 the	 swarm	 diversity.	 In	 order	 to	 increase	 the	 diversity	 of	 swarm,	 we	 propose	 three	
aspects	 to	 improve	 PSO	 in	 our	 paper.	
1) In	 each	 interaction,	 all	 particles	 will	 divide	 into	 several	 groups	 after	 being	 ordered	 by	

fitness.	 The	 velocity	 and	 position	 of	 each	 particle	 will	 be	 updated	 in	 each	 group,	 not	 in	 the	
swarm.	 In	 this	 way,	 we	 have	 many	 small	 swarms	 to	 search	 the	 best	 result.	

2) In	 our	 paper,	 the	 update	 of	 velocity	 does	 not	 depend	 on	 𝐺𝑏𝑒𝑠𝑡	 and	 𝑃𝑏𝑒𝑠𝑡! .	 Each	 particle	
can	 choose	 any	 better	 particle	 as	 𝐺𝑏𝑒𝑠𝑡,	 and	 choose	 the	 average	 of	 each	 group	 instead	 of	
𝑃𝑏𝑒𝑠𝑡! .	

3) After	 the	 above	 step,	 two	 particles	 are	 randomly	 chosen	 as	 a	 pair,	 and	 the	 crossover	
operator	 is	 applied	 on	 these	 two	 particles	 with	 probability	 𝑃!"#$$#%&" 	 in	 each	 group.	

2	 Materials	 and	 methods	

2.1	 Model	

As	 mentioned	 earlier,	 time	 series	 data	 is	 an	 important	 tool	 to	 model	 gene	 expression.	 Due	 to	 the	
complexity	 of	 GRNs,	 differential	 equations	 are	 a	 popular	 choice	 to	 be	 used	 in	 models	 used	 to	
infer	 dynamic	 system	 gene	 regulation.	 	
	 	 The	 gene	 regulatory	 network	 containing	 𝑛	 genes	 is	 described	 by	 the	 following	 discrete	 time	
non-‐linear	 stochastic	 dynamical	 system[19]:	

𝑥! 𝑘 = 𝑎!"!
!!! 𝑓! 𝑥! 𝑘 − 1 , 𝑖 = 1,2,… ,𝑛, 𝑘 = 1,2,… ,𝑚	 	 	 	 	 	 	 	 	 	 	 (3)	

where	 𝑥!(𝑘)	 is	 the	 𝑖𝑡ℎ	 actual	 gene	 expression	 level	 at	 time	 𝑘,	 𝑛	 is	 the	 number	 of	 genes	 and	
𝑚	 is	 the	 number	 of	 measured	 time	 points.	 𝐴 = (𝑎!")!×!	 represents	 the	 non-‐linear	 regulatory	
relationship	 among	 genes,	 and	 the	 nonlinear	 function	 𝑓!(𝑥!)	 is	 given	 by	

𝑓!(𝑥!) =
!

!!!!!!
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (4)	

	 	 So	 in	 our	 model,	 𝐴	 are	 the	 parameters	 to	 be	 identified.	

22

2.2	 Fitness	 functions	

Since	 our	 goal	 is	 to	 find	 the	 best	 parameters	 𝐴	 for	 the	 GRNs,	 it	 is	 necessary	 to	 formulate	 this	 as	
an	 optimization	 problem.	 The	 fitness	 function	 that	 is	 used	 to	 measure	 the	 deviation	 of	 the	 GRNs	
prediction	 value	 from	 the	 real	 measurement	 is	 defined	 as	

𝑚𝑖𝑛 𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = !
!"

(𝑥!,!"#(𝑘)− 𝑥!,!"#$(𝑘))!!
!!!

!
!!! 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 (5)	

where	 𝑥!,!"#(𝑘)	 represents	 the	 prediction	 value	 of	 𝑥! 	 at	 the	 time	 point	 𝑘	 and	 the	 𝑥!,!"#$(𝑘)	
represents	 the	 real	 value	 of	 𝑥! 	 at	 the	 time	 point	 𝑘.	

2.3	 Improved	 PSO	 (IPSO)	

2.3.1	 The	 overall	 framework	
Like	 the	 PSO	 algorithm,	 a	 swarm	 𝑃 (𝑡)	 has	 𝑁	 particles	 that	 represent	 candidate	 solutions,	
where	 𝑁	 is	 the	 swarm	 size	 and	 𝑡	 is	 the	 generation	 index.	 Each	 particle	 has	 a	 𝑀-‐dimensional	

position,	 𝑋!(𝑡) = 𝑥!,! 𝑡 , 𝑥!,! 𝑡 … , 𝑥!,! 𝑡 , 𝑖 = 1,2…𝑁,	 and	 a	 𝑀-‐dimensional	 velocity	 vector	

𝑉!(𝑡) = (𝑣!,!(𝑡), 𝑣!,!(𝑡)… , 𝑣!,!(𝑡))	 where	 𝑀	 is	 the	 number	 of	 optimized	 parameters.	 	
	 	 Because	 of	 the	 strong	 influence	 of	 the	 global	 best	 position,	 𝐺𝑏𝑒𝑠𝑡,	 we	 don’t	 use	 𝐺𝑏𝑒𝑠𝑡	 to	
update	 particles.	 In	 each	 generation,	 there	 are	 three	 steps	 to	 update	 particles.	 Firstly,	 the	
particles	 in	 𝑃 (𝑡)	 are	 sorted	 according	 to	 an	 increasing	 order	 of	 the	 fitness	 value	 of	 the	 particles.	
Secondly,	 all	 the	 particles	 𝑁 	 are	 mode	 𝐾 	 to	 𝑁/𝐾 	 groups.	 Consequently,	 we	 can	 update	
particles	 in	 𝑁/𝐾	 groups.	 In	 each	 group,	 the	 best	 particle	 will	 be	 passed	 directly	 to	 the	 next	
generation	 and	 the	 other	 particles	 will	 update	 their	 position	 and	 velocity	 by	 learning	 from	 a	
particle	 which	 has	 better	 fitness	 and	 average	 position	 values	 for	 their	 current	 group,	 mentioned	
later	 in	 Section	 2.3.2.	 Thirdly,	 all	 the	 particles	 will	 update	 their	 position	 again	 when	 the	
crossover	 operator	 is	 applied	 to	 the	 current	 group.	 The	 IPSO	 technique	 can	 be	 described	 in	 the	
following	 steps	 in	 Figure	 .1.	

23

Start

Set the IPSO parameters

Initialize a swarm of GRNs

Meet the
termination

condition

Fitness evaluation
No

Sorted fitness ascending

Divide all particles mode K
into K groups

Update all
groups

Update velocity and position
in each group

NO

Output the optimum solution

YES

Stop

Crossover operator
in each group

YES

	
Fig.	 1.	 The	 flowchart	 of	 the	 IPSO	 algorithm.	
2.3.2	 Update	 of	 velocity	 and	 position	
It	 is	 known	 that	 in	 a	 group,	 a	 particle	 trying	 to	 learn	 from	 any	 better	 individuals	 will	 also	 be	
influenced	 by	 other	 individuals	 in	 the	 current	 group.	 So	 we	 propose	 a	 new	 learning	 method;	 that	
each	 particle	 in	 a	 group	 will	 learn	 from	 better	 individuals	 and	 be	 influenced	 by	 the	 average	
position	 of	 the	 current	 group.	 Let	 us	 denote	 the	 velocity	 and	 position	 of	 the 𝑖th	 particle	 in	 the	 𝑗th	
dimension	 in	 generation	 𝑡	 in	 each	 group	 in	 the	 following	 manner:	

𝑉!,! 𝑡 + 1 = 𝜔! ∙ 𝑉!,! 𝑡 + 𝑐! ∙ 𝜑! 𝑡 ∙ 𝑋!,𝑗 𝑡 − 𝑋!,! 𝑡 	

+𝛼 ∙ 𝑐! ∙ 𝜑!(𝑡) ∙ (𝑋!(𝑡)− 𝑋!,!(𝑡)) (6)	

𝑋!,!(𝑡 + 1) = 𝑋!,!(𝑡) + 𝑉!,! 𝑡 + 1 (7)
	 	 In	 the	 above	 updating	 mechanisms,	 𝑉!,! 𝑡 + 1 	 consists	 of	 three	 parts.	 The	 first	 part	 is	 the	
same	 as	 Classic	 PSO,	 while	 the	 other	 two	 parts	 are	 different.	 In	 the	 second	 part,	 instead	 of	
learning	 from	 personal	 best,	 𝑃𝑏𝑒𝑠𝑡,	 as	 done	 in	 Classic	 PSO,	 the	 particle	 𝑖	 learns	 from	 any	 better	
particle	 𝑋!,! 𝑡 	 in	 the	 current	 group	 (except	 the	 best	 particle	 in	 the	 group).	 Therefore,	 the	 𝑖	
satisfies	 1 < 𝑖 ≤ 𝑁/𝐾	 and	 𝑘	 satisfies	 1 ≤ 𝑘 < 𝑖.	 In	 the	 third	 part,	 since	 the	 individual	 will	 be	
influenced	 by	 other	 individuals	 in	 a	 group.	 This	 does	 not	 only	 include	 better	 ones,	 but	 also	 worse	
ones,	 i.e.	 the	 average	 influence	 of	 all	 particles	 in	 the	 current	 group	 instead	 of	 global	 best,	 𝐺𝑏𝑒𝑠𝑡,	

denoted	 as	 𝑋!(𝑡) =
!!"

!/!
!!!
!/!

.	 𝛼	 is	 the	 group	 influence	 factor.	 It	 has	 been	 found	 that	 neighbor	

control	 is	 able	 to	 increase	 the	 swarm	 diversity,	 which	 causes	 an	 improvement	 in	 the	
performance	 of	 PSO[20].	
2.3.3	 Computational	 complexity	
According	 to	 the	 descriptions	 and	 definitions	 above,	 the	 pseudo	 code	 of	 the	 IPSO	 algorithm	 can	

24

be	 summarized	 in	 Algorithm	 1.	 We	 can	 see	 that	 the	 IPSO	 is	 as	 simple	 as	 the	 Classic	 PSO.	 In	
Algorithm	 1,	 the	 largest	 computational	 cost	 is	 the	 update	 of	 velocity	 and	 position	 of	 each	 particle.	
Therefore,	 the	 computational	 complexity	 is	 𝑂(2𝑁𝑀),	 where	 𝑁	 is	 the	 number	 of	 particles	 in	 the	
swarm	 and	 𝑀	 is	 the	 searching	 dimensionality.	
Algorithm	 1:	 The	 pseudo	 code	 of	 the	 Improved	 PSO.	
𝑁	 is	 the	 number	 of	 particles	 in	 a	 swarm,	 and	 each	 particle	 has	 𝑀	 dimensions.	 𝐾	 is	 the	 number	
of	 groups	 and	 the	 size	 of	 each	 group	 is	 𝑁/𝐾.	 𝑋!,! 	 denotes	 the	 𝑗th	 particle	 in	 𝑖th	 group,	 and	 𝑡	 is	
the	 number	 of	 generations.	
t=0;	
Create	 and	 initialize	 a	 swarm	 𝑃(𝑡);	
repeat	

Fitness	 evaluation	 and	 sorted	 according	 to	 an	 increasing	 order;	
	 All	 particles	 mode	 𝐾	 to	 𝐾	 groups;	
	 for	 each	 group	 𝑖 ∈ [1,2,… ,𝐾]	 do	
	 	 𝑈 = ∅	
	 	 The	 best	 particle	 𝑋!,!	 into	 𝑈;	
	 	 for	 each	 particle	 𝑗 ∈ [1,2,… ,𝑔𝑟𝑜𝑢𝑝 𝑠𝑖𝑧𝑒]	 do	
	 	 	 Perform	 velocity	 and	 position	 update	 according	 to	 (6)	 and	 (7)	 for	 𝑋!,!;	
	 	 	 Add	 update	 𝑋!,! 	 into	 𝑈;	
	 	 end	
	 	 while	 𝑼 ≠ ∅	 do	
	 	 	 Randomly	 choose	 two	 particles	 𝑋!,!(𝑡),	 𝑋!,!(𝑡)	 from	 𝑈;	
	 	 	 Crossover	 operator	 on	 𝑋!,!(𝑡),	 𝑋!,!(𝑡)	 and	 generate	 𝑋!,!(𝑡 + 1),	 	
	 	 	 𝑋!,!(𝑡 + 1)	 to	 𝑃(𝑡 + 1);
	 	 	 Remove	 𝑋!,!(𝑡),	 𝑋!,!(𝑡)	 from	 𝑈;	
	 	 end	 while	
	 end	

t=t+1;	
until	 termination	 condition	 is	 met;	

3	 Results	 and	 discussions	

In	 order	 to	 investigate	 the	 feasibility	 of	 our	 method,	 we	 performed	 a	 set	 of	 tests	 of	 increasing	
scale	 using	 real	 gene	 expression	 time	 series	 data[21].	 The	 data	 are	 5080	 genes	 expression	
profiles	 across	 48	 individual	 1-‐hour	 timepoints	 from	 the	 intraerythrocytic	 developmental	 cycle	
of	 plasmodium	 falciparum	 using	 the	 DNA	 microarray,	 which	 illustrated	 an	 intimate	 relationship	
between	 transcriptional	 regulation	 and	 the	 developmental	 progression	 of	 this	 highly	 specialized	
parasitic	 organism.	
	 	 Usually,	 the	 first	 step	 to	 analyze	 gene	 expression	 data	 requires	 the	 use	 of	 clustering	 techniques,	
which	 is	 essential	 in	 the	 data	 mining	 process	 to	 reveal	 natural	 structures	 and	 identify	 interesting	
patterns	 in	 the	 underlying	 data[22,	 23].	 So	 the	 K-‐mean	 was	 used	 to	 divide	 all	 the	 genes	 into	 200	
clusters.	 We	 tested	 six	 clusters	 with	 the	 size	 of	 5,	 8,	 10,	 15,	 20	 and	 30	 genes	 per	 network	 and	
their	 searching	 dimensionalities	 were	 25,	 64,	 100,	 225,	 400	 and	 900	 respectively.	 The	 first	 three	
tests	 can	 be	 thought	 of	 as	 low-‐dimensional	 problems	 and	 final	 three	 tests	 as	 high-‐dimensional	
problems.	

25

	 	 All	 the	 experiments	 were	 done	 using	 a	 computer	 with	 an	 Intel	 i5	 2.6GHz	 processor	 and	 8GB	 of	
memory.	 The	 operating	 system	 used	 was	 OS	 X	 10.9.5.	 The	 algorithm	 was	 implemented	 in	 Java.	
All	 experimental	 results	 were	 obtained	 from	 20	 independent	 runs.	
	 	 The	 performance	 of	 IPSO	 is	 dependent	 of	 the	 parameter	 selection.	 The	 inertia	 weight	

𝜔! =
!!"#!!/!"#_!"#$%"!&'

!!"#!!!"#
	 will	 become	 smaller	 with	 an	 increase	 in	 the	 number	 of	 iterations,	

where	 𝜔!"# = 1	 and	 𝜔!"# = 0.	 Large	 values	 of	 𝜔!	 facilitate	 global	 exploration	 while	 smaller	
values	 encourage	 a	 local	 search.	 𝑐!	 and	 𝑐!	 are	 known	 as	 the	 cognitive	 and	 social	 components	
and	 are	 usually	 fixed.	 In	 the	 paper,	 𝑐! = 0.5	 and	 𝑐! = 0.5.	 𝜑! 𝑡 	 and	 𝜑! 𝑡 	 are	 two	 randomly	
generated	 numbers	 with	 [0,1],	 and	 𝛼	 is	 the	 group	 influence	 factor,	 so	 the	 value	 is	 small;	
𝛼 = 0.01.	 Also,	 the	 maximum	 number	 of	 iterations	 is	 100	 and	 the	 swarm	 size	 is	 1000.	 A	 large	
swarm	 is	 good	 for	 improving	 the	 performance	 in	 high-‐dimensional	 problems.	 The	
dimensionality	 of	 the	 particle	 depends	 on	 the	 number	 of	 genes	 per	 network.	 Finally,	 𝑃!"#$$#%&" =
0.2.	

3.1	 Tests	 on	 a	 different	 number	 of	 groups	

Firstly,	 we	 tested	 the	 influence	 of	 a	 different	 number	 of	 groups.	 The	 number	 of	 15	 genes	 per	
network	 was	 chosen	 as	 an	 example,	 because	 this	 is	 almost	 the	 median	 in	 these	 six	 experiments.	
Figure	 2	 shows	 the	 result	 of	 the	 different	 number	 of	 groups	 in	 15	 genes	 per	 network.	 From	 the	
Figure	 2,	 we	 can	 see	 that	 the	 best	 result	 is	 100	 groups	 in	 a	 swarm.	 So	 we	 chose	 the	 group	 number	
equal	 to	 100	 in	 this	 paper.	

	
Fig.	 2	 The	 fitness	 value	 of	 the	 different	 number	 of	 groups	 in	 15	 genes	 per	 network.	

3.2	 Performance	 on	 low-‐dimensional	 GRNs	

Firstly,	 we	 tested	 the	 performance	 of	 IPSO	 on	 low-‐dimensional	 GRNs.	 There	 are	 three	 different	
gene	 networks;	 those	 having	 5,	 8	 and	 10	 genes.	 The	 dimensionality	 of	 the	 particle	 is	 25,	 64	 and	
100.	 In	 the	 past,	 researchers	 tested	 GRNs	 on	 a	 small	 size	 network.	 Table	 1	 shows	 the	 IPSO	 and	
PSO	 results	 on	 small	 size	 GRNs.	 We	 can	 see	 that	 IPSO	 and	 PSO	 both	 have	 good	 results	 on	 small	
size	 GRNs	 and	 IPSO	 has	 better	 results	 than	 PSO,	 however	 IPSO	 spends	 a	 little	 more	
computational	 time	 than	 PSO.	
	
	

0	
0.002	
0.004	
0.006	
0.008	
0.01	

10	 20	 50	 100	 200	 500	 1000	

Mit
ne
ss
	 v
al
ue

the	 number	 of	 groups	 in	 a	 swarm

The	 Mitness	 value	 in	 different	
group

26

Table	 1.	 The	 result	 of	 IPSO	 and	 PSO	 on	 low-‐dimensional	 GRNs.	

dimensionality of particle 25 64 100

IPSO

fitness value of training 0.0025 0.0037 0.0051

fitness value of testing 0.0039 0.0052 0.0055

running time (seconds) 3.5 5.1 6.6

PSO

fitness value of training 0.0041 0.0051 0.0057

fitness value of testing 0.0055 0.0058 0.0061

running time (seconds) 2.3 3.1 3.5

3.3	 Performance	 on	 high-‐dimensional	 GRNs	

In	 the	 optimization	 of	 low-‐dimensional	 GRNs,	 IPSO	 has	 shown	 good	 performance.	 However,	 we	
are	 keen	 to	 further	 test	 its	 performance	 on	 high-‐dimensional	 (large-‐scale)	 GRNs,	 which	 usually	
have	 higher	 than	 100	 searching	 dimensionality.	 Table	 2	 demonstrates	 the	 result	 of	 IPSO	 and	 PSO	
on	 high-‐dimensional	 GRNs.	 From	 Table	 2,	 we	 can	 see	 that	 IPSO	 has	 decent	 results	 for	
high-‐dimensional	 GRNs.	 Even	 with	 the	 increase	 in	 dimensionality,	 IPSO	 also	 has	 a	 good	 and	
stable	 result.	 However,	 with	 the	 increase	 of	 dimensionality,	 the	 fitness	 value	 of	 PSO	 increases	
very	 fast.	 For	 high-‐dimensional	 GRNs,	 the	 running	 time	 of	 IPSO	 and	 PSO	 is	 almost	 the	 same.	

dimensionality of particle 225 400 900

IPSO

fitness value of training 0.0041 0.0047 0.0071

fitness value of testing 0.0053 0.0061 0.0092

running time (seconds) 64 118 260

PSO

fitness value of training 0.0061 0.0083 0.037

fitness value of testing 0.0072 0.013 0.052

running time (seconds) 60 107 245

4	 Conclusions	

In	 this	 paper,	 we	 have	 introduced	 an	 improved	 PSO	 approach	 to	 solve	 the	 inference	 problem	 in	
large-‐scale	 gene	 regulatory	 networks	 using	 differential	 equations.	 Three	 aspects	 were	 used	 to	
increase	 the	 diversity	 of	 swarm.	 Our	 method	 has	 been	 shown	 to	 work	 consistently	 well	 on	 six	
test	 examples	 with	 the	 search	 dimensional	 varying	 from	 25	 to	 900.	 We	 obtained	 satisfactory	
results	 that	 converge	 in	 a	 reasonable	 time.	 In	 the	 future,	 we	 would	 like	 to	 investigate	 other	
real-‐world	 problems	 using	 our	 method	 and	 how	 to	 infer	 more	 large-‐scale	 gene	 regulatory	
networks.	

Acknowledgements	

The	 work	 was	 supported	 by	 Foundation	 Franco-‐Chinoise	 Pour	 La	 Science	 Et	 Ses	 Applications	
(FFCSA),	 the	 National	 Natural	 Science	 Foundation	 of	 China	 under	 Grants	 61571312	 and	
61201438,	 the	 Returned	 Overseas	 Chinese	 Scholars	 Project	 of	 Education	 Ministry	 of	 China	
(20111139),	 the	 Science	 and	 Technology	 Support	 Project	 of	 Sichuan	 Province	 of	 China	
(2011GZ0201,	 and	 2013SZ0071).	 Yongqing	 Zhang	 was	 supported	 by	 China	 Scholarship	 Council	
(201306240048).	

27

References	

[1]	 M.	 Bansal,	 V.	 Belcastro,	 A.	 Ambesi‐Impiombato,	 and	 D.	 Di	 Bernardo,	 "How	 to	 infer	 gene	
networks	 from	 expression	 profiles,"	 Molecular	 systems	 biology,	 vol.	 3,	 p.	 78,	 2007.	

[2]	 Y.	 F.	 Leung	 and	 D.	 Cavalieri,	 "Fundamentals	 of	 cDNA	 microarray	 data	 analysis,"	 TRENDS	 in	
Genetics,	 vol.	 19,	 pp.	 649-‐659,	 2003.	

[3]	 H.	 Huang,	 C.-‐C.	 Liu,	 and	 X.	 J.	 Zhou,	 "Bayesian	 approach	 to	 transforming	 public	 gene	
expression	 repositories	 into	 disease	 diagnosis	 databases,"	 Proceedings	 of	 the	 National	
Academy	 of	 Sciences,	 vol.	 107,	 pp.	 6823-‐6828,	 2010.	

[4]	 R.	 Pinho,	 V.	 Garcia,	 M.	 Irimia,	 and	 M.	 W.	 Feldman,	 "Stability	 depends	 on	 positive	
autoregulation	 in	 Boolean	 gene	 regulatory	 networks,"	 PLoS	 Comput	 Biol,	 vol.	 10,	 p.	
e1003916,	 2014.	

[5]	 F.	 Dondelinger,	 S.	 Lèbre,	 and	 D.	 Husmeier,	 "Non-‐homogeneous	 dynamic	 Bayesian	
networks	 with	 Bayesian	 regularization	 for	 inferring	 gene	 regulatory	 networks	 with	
gradually	 time-‐varying	 structure,"	 Machine	 Learning,	 vol.	 90,	 pp.	 191-‐230,	 2013.	

[6]	 N.	 Noman,	 L.	 Palafox,	 and	 H.	 Iba,	 "Reconstruction	 of	 gene	 regulatory	 networks	 from	 gene	
expression	 data	 using	 decoupled	 recurrent	 neural	 network	 model,"	 in	 Natural	 Computing	
and	 Beyond,	 ed:	 Springer,	 2013,	 pp.	 93-‐103.	

[7]	 L.	 Palafox,	 N.	 Noman,	 and	 H.	 Iba,	 "Reverse	 engineering	 of	 gene	 regulatory	 networks	 using	
dissipative	 particle	 swarm	 optimization,"	 Evolutionary	 Computation,	 IEEE	 Transactions	 on,	
vol.	 17,	 pp.	 577-‐587,	 2013.	

[8]	 X.	 Cai,	 J.	 A.	 Bazerque,	 and	 G.	 B.	 Giannakis,	 "Inference	 of	 gene	 regulatory	 networks	 with	
sparse	 structural	 equation	 models	 exploiting	 genetic	 perturbations,"	 PLoS	 Comput	 Biol,	
vol.	 9,	 p.	 e1003068,	 2013.	

[9]	 G.	 A.	 Ruz	 and	 E.	 Goles,	 "Learning	 gene	 regulatory	 networks	 using	 the	 bees	 algorithm,"	
Neural	 Computing	 and	 Applications,	 vol.	 22,	 pp.	 63-‐70,	 2013.	

[10]	 R.	 Xu,	 G.	 K.	 Venayagamoorthy,	 and	 D.	 C.	 Wunsch,	 "Modeling	 of	 gene	 regulatory	 networks	
with	 hybrid	 differential	 evolution	 and	 particle	 swarm	 optimization,"	 Neural	 Networks,	 vol.	
20,	 pp.	 917-‐927,	 2007.	

[11]	 R.	 C.	 Eberhart	 and	 Y.	 Shi,	 "Particle	 swarm	 optimization:	 developments,	 applications	 and	
resources,"	 in	 evolutionary	 computation,	 2001.	 Proceedings	 of	 the	 2001	 Congress	 on,	 2001,	
pp.	 81-‐86.	

[12]	 R.	 Cheng	 and	 Y.	 Jin,	 "A	 social	 learning	 particle	 swarm	 optimization	 algorithm	 for	 scalable	
optimization,"	 Information	 Sciences,	 vol.	 291,	 pp.	 43-‐60,	 2015.	

[13]	 W.	 Xian,	 B.	 Long,	 M.	 Li,	 and	 H.	 Wang,	 "Prognostics	 of	 lithium-‐ion	 batteries	 based	 on	 the	
verhulst	 model,	 particle	 swarm	 optimization	 and	 particle	 filter,"	 Instrumentation	 and	
Measurement,	 IEEE	 Transactions	 on,	 vol.	 63,	 pp.	 2-‐17,	 2014.	

[14]	 B.	 Xue,	 M.	 Zhang,	 and	 W.	 N.	 Browne,	 "Particle	 swarm	 optimization	 for	 feature	 selection	 in	
classification:	 A	 multi-‐objective	 approach,"	 Cybernetics,	 IEEE	 Transactions	 on,	 vol.	 43,	 pp.	
1656-‐1671,	 2013.	

[15]	 M.	 Gong,	 Q.	 Cai,	 X.	 Chen,	 and	 L.	 Ma,	 "Complex	 network	 clustering	 by	 multiobjective	
discrete	 particle	 swarm	 optimization	 based	 on	 decomposition,"	 Evolutionary	 Computation,	
IEEE	 Transactions	 on,	 vol.	 18,	 pp.	 82-‐97,	 2014.	

[16]	 A.	 A.	 Esmin,	 R.	 A.	 Coelho,	 and	 S.	 Matwin,	 "A	 review	 on	 particle	 swarm	 optimization	
algorithm	 and	 its	 variants	 to	 clustering	 high-‐dimensional	 data,"	 Artificial	 Intelligence	

28

Review,	 vol.	 44,	 pp.	 23-‐45,	 2015.	
[17]	 Y.	 Yang	 and	 J.	 O.	 Pedersen,	 "A	 comparative	 study	 on	 feature	 selection	 in	 text	

categorization,"	 in	 ICML,	 1997,	 pp.	 412-‐420.	
[18]	 F.	 Van	 den	 Bergh	 and	 A.	 P.	 Engelbrecht,	 "A	 cooperative	 approach	 to	 particle	 swarm	

optimization,"	 Evolutionary	 Computation,	 IEEE	 Transactions	 on,	 vol.	 8,	 pp.	 225-‐239,	 2004.	
[19]	 A.	 Noor,	 E.	 Serpedin,	 M.	 Nounou,	 and	 H.	 Nounou,	 "Inferring	 gene	 regulatory	 networks	 via	

nonlinear	 state-‐space	 models	 and	 exploiting	 sparsity,"	 IEEE/ACM	 Transactions	 on	
Computational	 Biology	 and	 Bioinformatics	 (TCBB),	 vol.	 9,	 pp.	 1203-‐1211,	 2012.	

[20]	 J.	 J.	 Liang,	 A.	 K.	 Qin,	 P.	 N.	 Suganthan,	 and	 S.	 Baskar,	 "Comprehensive	 learning	 particle	
swarm	 optimizer	 for	 global	 optimization	 of	 multimodal	 functions,"	 Evolutionary	
Computation,	 IEEE	 Transactions	 on,	 vol.	 10,	 pp.	 281-‐295,	 2006.	

[21]	 Z.	 Bozdech,	 M.	 Llinás,	 B.	 L.	 Pulliam,	 E.	 D.	 Wong,	 J.	 Zhu,	 and	 J.	 L.	 DeRisi,	 "The	 transcriptome	
of	 the	 intraerythrocytic	 developmental	 cycle	 of	 Plasmodium	 falciparum,"	 PLoS	 Biol,	 vol.	 1,	
p.	 e5,	 2003.	

[22]	 D.	 Jiang,	 C.	 Tang,	 and	 A.	 Zhang,	 "Cluster	 analysis	 for	 gene	 expression	 data:	 a	 survey,"	
Knowledge	 and	 Data	 Engineering,	 IEEE	 Transactions	 on,	 vol.	 16,	 pp.	 1370-‐1386,	 2004.	

[23]	 M.	 F.	 Ramoni,	 P.	 Sebastiani,	 and	 I.	 S.	 Kohane,	 "Cluster	 analysis	 of	 gene	 expression	
dynamics,"	 Proceedings	 of	 the	 National	 Academy	 of	 Sciences,	 vol.	 99,	 pp.	 9121-‐9126,	 2002.	

	
	

29

Data exchange topologies for the DISCO-HITS
algorithm to solve the QAP

Omar Abdelkafi, Lhassane Idoumghar, Julien Lepagnot, and Mathieu
Brévilliers

Université de Haute-Alsace (UHA)
LMIA (E.A. 3993)

4 rue des frères lumière, 68093 Mulhouse, France
{omar.abdelkafi, lhassane.idoumghar, julien.lepagnot,

mathieu.Brevilliers}@uha.fr

Abstract. Exchanging information between processes in a distributed
environment can be a powerful mechanism to improve results for com-
binatorial problem. In this study, we propose three exchange topologies
for the distance cooperation hybrid iterative tabu search algorithm called
DISCO-HITS. These topologies are experimented on the quadratic as-
signment problem. A comparison between the three topologies is per-
formed using 21 well known instances of size between 40 and 150. Our
algorithm produces competitive results and can outperform algorithms
from the literature for many benchmark instances.

Keywords: Metaheuristics, DISCO-HITS, Quadratic assignment prob-
lem, Topologies.

1 Introduction

The Quadratic assignment problem (QAP) is an NP-hard problem. It is well
known for its multiple applications. Many practical problems in electronic, chem-
istry, transport, industry and many others can be formulated as QAP. This
problem was first introduced by Koopmans and Beckmann [1] to model a facil-
ity location problem. It can be described as the problem of assigning a set of
facilities to a set of locations with given distance and flow between locations and
facilities, respectively. The objective is to place the facilities on locations in such
a way that the sum of the products between flows and distances is minimized.
The problem can be formulated as follows:

min
p∈P

z(p) =

n∑

i=1

n∑

j=1

fijdp(i)p(j) (1)

where f and d are the flow and distance matrices respectively, p ∈ P represents
a solution where pi is the location assigned to facility i and P is the set of all n

30

vector permutations. The objective is to minimize z(p), which is the total cost
assignment for the permutation p.

In this work, we propose an experimental analysis of different exchanging
topologies to solve the QAP. The aim of this work is to explore the influence of
these topologies. The parallel level used is the algorithmic level [2].

The rest of the paper is organized as follows. In section 2, we review some
of the best-known distributed approaches to solve the QAP. In section 3, we
describe the different topologies used in this work. Section 4 shows the experi-
mental results for a set of QAPLIB instances. Finally, in section 5, we conclude
the paper and we propose some perspectives.

2 Background

Since its introduction in 1957 [1], the QAP became an important problem in
theory and practice. It can be considered as one of the hardest combinatorial
problems due to its computational complexity. Different metaheuristics have
been proposed to provide competitive results [3][4][5][6][7].

The parallel and distributed design of metaheuristic approaches has the ca-
pacity to improve the solution quality and to reduce the execution time. The
computational cost of the QAP and its difficult search space make this problem
suitable for parallelization. The parallel and distributed design of metaheuristics
to solve the QAP is underexploited. Very few works propose it, such as the Ro-
bust Tabu search (Ro-Ts) [3] which is a parallelization of neighborhood between
different processors.

In 2001, a parallel model of ant colonies is proposed [8]. A central memory to
manage all communications of the search information is implemented in the mas-
ter process. The search information is composed of the pheromone matrix and
the best solution found. At each iteration, the master broadcasts the pheromone
matrix to all the ants. Each process represents one ant and each ant constructs
a complete solution and applies a Tabu Search (TS) in parallel. The process
sends the solution found and the local pheromone matrix to the master. The
master updates the search information. In 2005, a parallel path-relinking algo-
rithm is proposed [9]. This proposition generates different solutions by applying
path-relinking to a set of trial solutions. To improve the solutions created by the
path-relinking procedure, the Ro-Ts algorithm is run in parallel starting with
different trial solutions. It allows the reduction of the execution time but it does
not change the behavior of the sequential algorithm and the solution quality. In
2009, a cooperative parallel TS algorithm for the QAP is introduced [6]. This
approach initializes as many starting solutions as there are available processors.
Each processor executes one independent TS in parallel. The initialization phase
provides good starting solutions while maintaining some level of diversity. After
the initialization, at each iteration, all the processors execute a TS in parallel.
At the end of the generation, the current processor compares its solution with its
neighbor process. If the neighbor process gets better results, the current process
replaces its current solution with a mutated copy of the neighbor solution. In

31

2015, a parallel hybrid algorithm is proposed [10]. This proposition is composed
of three steps. The first step is the seed generation which consists in using a
parallel Genetic Algorithm (GA) based on the island model. Each process rep-
resents an island and at each generation, the master broadcasts the global best
solution to all islands. All nodes execute a GA in parallel. The second step is the
TS diversification. This method is applied to all the parallel nodes. Finally, the
global best solution obtained with the first two steps is used as an initial seed
for the Ro-Ts.

3 Topologies to exchange information between processes

Algorithm 1 Distance Cooperation Between Hybrid Iterative Tabu Search
1: Input: perturb: % perturbation; n: size of solution; cost: cost of the current solution; Fcost:

best cost found; Scurrent: current solution; Sbest: best solution found; SEX : solution exchanged;
2: Initialization of the solution for the current process;
3: repeat
4: TS algorithm; [3]
5: if cost < Fcost then
6: Fcost = cost;
7: Update the Sbest with Scurrent;
8: end if
9: level = 0; counter = 0;
10: Exchange Scurrent between processes;
11: for i = 0 to n /* Compute distances */ do
12: if Scurrent[i] == SEX [i] then
13: counter ++;
14: end if
15: end for
16: if counter < n

4 then

17: level = 0; /* Big distance between the two processes */
18: else
19: if counter < 3×n

4 then

20: level = 1; /* Processes are relatively close */
21: else
22: level = 2; /* Processes are very close */
23: end if
24: end if
25: if level == 0 then
26: Update Scurrent with the UX of Sbest;
27: else
28: if level == 1 then
29: Perturbation of Scurrent with the perturb parameter;
30: else
31: Re-localization of Scurrent;
32: end if
33: end if
34: until (Stop condition)

In 2015, a cooperative Iterative Tabu Search (ITS) called DIStance COop-
eration between Hybrid Iterative Tabu Search (DISCO-HITS) is proposed [11].
Each process performs an ITS in which a Ro-Ts is executed at each genera-
tion. After each iteration, each process sends its current solution to the neighbor
process. Then, a distance is computed between the current solution and the
solution received from the neighbor process. According to this distance, the al-

32

gorithm takes the decision to apply the uniform crossover (UX), to perturb the
solution or to make a re-localization of this solution. Algorithm 1 presents the
DISCO-HITS version used in this paper.

Exchanging information between processes (Algorithm 1 line 10) is performed
according to a topology. Algorithm 1 sends its current solution to one process
and receives the current solution of another process. We propose three topologies
in this paper. All the topologies are defined with a sequence. Process with index
i sends to process with index i+1 and receives from index i-1. The last index
sends its information for the first index to close the circle of exchange. This
method ensures the sending and receipt of only one solution.

The first topology is the classical ring architecture implemented in the variant
called DISCO-RING-UX. Each process sends its current solution to the next
process and receives from the previous process. For example, if we use four
processes, the sequence of exchange is {0; 1; 2; 3}. with this sequence, process 2
sends to process 3 and process 3 sends to process 0. This sequence is constant
from the beginning of the execution to the end. The aim of this topology is to
experiment a constant impact between two processes.

The second topology is the random architecture implemented in the variant
called DISCO-RANDOM-UX. Each process sends its current solution to a ran-
dom process and receives from a random process. For example if we use four
processes the sequence of exchange can be {1; 2; 0; 3}. This sequence is randomly
perturbed before each exchange. The aim of this topology is to experiment a
dynamic impact between two processes. The random exchange allows a better
diversification.

The last topology is a learning sequence architecture based on the fast ant al-
gorithm implemented in the variant called DISCO-LEARNING-UX. In this case,
our ant is the sequence of exchange. If the previous sequence allows the algo-
rithm to improve, a quantity of pheromone is deposited for the pair of processes
which exchange the current solution. Otherwise, the quantity of pheromone de-
posited is significantly reduced. Before the exchanging step, the pheromone ma-
trix is updated and the ant is reconstructed. After the reconstruction, a step
of evaporation is performed. The aim is to learn the best topology to exchange
information by converging to the best sequence.

4 Experimental results

4.1 Platform and tests

In our experimentation, the algorithm is written in C/C++. It runs on a clus-
ter of 8 machines Intel Core processor i5-3330 CPU (3.00GHz) with 4 GB of
RAM and an NVIDIA GeForce GTX680 GPU. The proposed algorithm is ex-
perimented on benchmark instances from the QAPLIB [13]. The size of the
instances varies between 40 and 150. Every instance is executed 10 times and
the average results of these executions are given in the experiments. All the
results are expressed as a percentage deviation from the best known solutions
(BKS) (eq 2).

33

deviation =
(solution−BKS)× 100

BKS
(2)

The QAPLIB archive comprises 136 instances that can be classified into four
types: real life instances (type 1); unstructured randomly generated instances
based on a uniform distribution (type 2); randomly generated instances similar
to real life instances (type 3); instances in which distances are based on the
Manhattan distance on a grid (type 4).

Table 1. parameter of DISCO-HITS

Parameters Value
TSiteration 1000× n

global iteration 200
aspiration criteria n× n× 5

percentage of perturbation 25%

Table 2. Comparison of different topologies

Instance(21) BKS
DISCO-RING-UX DISCO-RANDOM-UX DISCO-LEARNING-UX
deviation time deviation time deviation time

tai40a 3139370 0.067(1) 3.59 0.059(2) 3.4 0.067(1) 3.6
tai50a 4938796 0.317(0) 6.65 0.344(0) 6.6 0.308(0) 6.7
tai60a 7205962 0.401(0) 11.6 0.400(0) 11.4 0.317(0) 11.4
tai80a 13515450 0.605(0) 27.2 0.613(0) 27.1 0.590(0) 27.2
tai100a 21052466 0.493(0) 53.9 0.478(0) 53.8 0.462(0) 53.8

tai50b 458821517 0.000(10) 6.5 0.000(10) 6.5 0.000(10) 6.6
tai60b 608215054 0.000(10) 11.3 0.000(10) 11.2 0.000(10) 11.3
tai80b 818415043 0.000(10) 27 0.000(10) 26.9 0.000(10) 27
tai100b 1185996137 0.000(10) 53.2 0.000(10) 53 0.000(10) 53.2
tai150b 498896643 0.151(0) 190 0.129(0) 189 0.139(0) 196.1

sko72 66256 0.001(8) 19.6 0.000(10) 19.5 0.001(9) 19.7
sko81 90998 0.004(6) 28 0.004(6) 28 0.002(8) 28.1
sko90 115534 0.001(8) 38.5 0.000(10) 38.6 0.001(8) 38.6

sko100a 152002 0.005(6) 53.5 0.004(8) 53.5 0.005(8) 53.5
sko100b 153890 0.002(8) 53.5 0.001(9) 53.3 0.002(8) 53.5
sko100c 147862 0.002(1) 53.5 0.001(6) 53.3 0.001(2) 53.5
sko100d 149576 0.004(4) 53.5 0.002(5) 53.4 0.005(4) 53.5
sko100e 149150 0.002(6) 53.7 0.002(8) 53.3 0.002(7) 53.4
sko100f 149036 0.004(3) 53.6 0.006(3) 53.8 0.003(4) 53.4
wil100 273038 0.003(1) 53.6 0.003(2) 53.5 0.002(3) 53.6
tho150 8133398 0.016(0) 198.1 0.030(0) 189.3 0.021(0) 191.4

Average type 2 0.3766(1) 20.6 0.3788(2) 20.5 0.3488(1) 20.5
Average type 3 0.0302(40) 57.6 0.0258(40) 57.3 0.0278(40) 58.8
Average type 4 0.0040(51) 59.9 0.0048(67) 59 0.0041(61) 59.3

Average 0.099(92) 50 0.099(109) 49.5 0.092(102) 49.9

34

T
a
b
le

3
.

C
o
m

p
a
ri

so
n

w
it

h
th

e
li

te
ra

tu
re

In
s
t
a
n
c
e
(
1
9
)

B
K

S
D
IS

C
O
-R

IN
G

-U
X

D
IS

C
O
-R

A
N

D
O
M

-U
X

D
IS

C
O
-L

E
A
R
N

IN
G

-U
X

T
L
B
O
-R

T
S

C
P
T
S

d
e
v
ia
ti
o
n

ti
m
e

d
e
v
ia
ti
o
n

ti
m
e

d
e
v
ia
ti
o
n

ti
m
e

d
e
v
ia
ti
o
n

ti
m
e

d
e
v
ia
ti
o
n

ti
m
e

ta
i4
0
a

3
1
3
9
3
7
0

0
.0
6
7
(1

)
3
.5
9

0
.0
5
9
(2

)
3
.4

0
.0
6
7
(1

)
3
.6

0
.0

0
0

2
9

0
.1
4
8
(1

)
3
.5

ta
i5
0
a

4
9
3
8
7
9
6

0
.3
1
7
(0

)
6
.6
5

0
.3
4
4
(0

)
6
.6

0
.3

0
8
(
0
)

6
.7

0
.3
6
0

5
5

0
.4
4
0
(0

)
1
0
.3

ta
i6
0
a

7
2
0
5
9
6
2

0
.4
0
1
(0

)
1
1
.6

0
.4
0
0
(0

)
1
1
.4

0
.3

1
7
(
0
)

1
1
.4

0
.4
1
0

9
5
.3

0
.4
7
6
(0

)
2
6
.4

ta
i8
0
a

1
3
5
1
5
4
5
0

0
.6
0
5
(0

)
2
7
.2

0
.6
1
3
(0

)
2
7
.1

0
.5

9
0
(
0
)

2
7
.2

0
.8
7
0

2
3
9
.5

0
.6
9
1
(0

)
9
4
.8

ta
i1
0
0
a

2
1
0
5
2
4
6
6

0
.4
9
3
(0

)
5
3
.9

0
.4
7
8
(0

)
5
3
.8

0
.4

6
2
(
0
)

5
3
.8

0
.5
9
6

4
8
3
.3

0
.5
8
9
(0

)
2
6
1
.2

ta
i8
0
b

8
1
8
4
1
5
0
4
3

0
.0
0
0
(1

0
)

2
7

0
.0
0
0
(1

0
)

2
6
.9

0
.0
0
0
(1

0
)

2
7

0
.0
0
0

2
3
9

0
.0
0
0
(1

0
)

1
1
0
.9

ta
i1
0
0
b

1
1
8
5
9
9
6
1
3
7

0
.0
0
0
(1

0
)

5
3
.2

0
.0
0
0
(1

0
)

5
3

0
.0
0
0
(1

0
)

5
3
.2

0
.0
0
0

5
0
8
.2

0
.0
0
1
(8

)
2
4
1

ta
i1
5
0
b

4
9
8
8
9
6
6
4
3

0
.1
5
1
(0

)
1
9
0

0
.1
2
9
(0

)
1
8
9

0
.1
3
9
(0

)
1
9
6
.1

0
.0

1
5

4
2
8
.5

0
.0
7
6
(0

)
7
3
7
7
.8

sk
o
7
2

6
6
2
5
6

0
.0
0
1
(8

)
1
9
.6

0
.0
0
0
(1

0
)

1
9
.5

0
.0
0
1
(9

)
1
9
.7

0
.0
0
0

1
7
2
.8

0
.0
0
0
(1

0
)

6
9
.6

sk
o
8
1

9
0
9
9
8

0
.0
0
4
(6

)
2
8

0
.0
0
4
(6

)
2
8

0
.0
0
2
(8

)
2
8
.1

0
.0
0
0

3
4
8
.2

0
.0
0
0
(1

0
)

1
2
1
.4

sk
o
9
0

1
1
5
5
3
4

0
.0
0
1
(8

)
3
8
.5

0
.0
0
0
(1

0
)

3
8
.6

0
.0
0
1
(8

)
3
8
.6

0
.0
0
0

3
4
2
.8

0
.0
0
0
(1

0
)

1
9
3
.7

sk
o
1
0
0
a

1
5
2
0
0
2

0
.0
0
5
(6

)
5
3
.5

0
.0
0
4
(8

)
5
3
.5

0
.0
0
5
(8

)
5
3
.5

0
.0
0
3

5
9
4
.3

0
.0

0
0
(
1
0
)

3
0
4
.8

sk
o
1
0
0
b

1
5
3
8
9
0

0
.0
0
2
(8

)
5
3
.5

0
.0
0
1
(9

)
5
3
.3

0
.0
0
2
(8

)
5
3
.5

0
.0
0
5

4
8
2
.6

0
.0

0
0
(
1
0
)

3
0
9
.6

sk
o
1
0
0
c

1
4
7
8
6
2

0
.0
0
2
(1

)
5
3
.5

0
.0
0
1
(6

)
5
3
.3

0
.0
0
1
(2

)
5
3
.5

0
.0
0
0

5
0
8
.5

0
.0
0
0
(1

0
)

3
1
6
.1

sk
o
1
0
0
d

1
4
9
5
7
6

0
.0
0
4
(4

)
5
3
.5

0
.0
0
2
(5

)
5
3
.4

0
.0
0
5
(4

)
5
3
.5

0
.0
0
9

5
0
9
.4

0
.0

0
0
(
1
0
)

3
0
9
.8

sk
o
1
0
0
e

1
4
9
1
5
0

0
.0
0
2
(6

)
5
3
.7

0
.0
0
2
(8

)
5
3
.3

0
.0
0
2
(7

)
5
3
.4

0
.0
0
5

6
1
4
.5

0
.0

0
0
(
1
0
)

3
0
9
.1

sk
o
1
0
0
f

1
4
9
0
3
6

0
.0
0
4
(3

)
5
3
.6

0
.0
0
6
(3

)
5
3
.8

0
.0
0
3
(4

)
5
3
.4

0
.0
0
5

4
8
2
.6

0
.0
0
3
(4

)
3
1
0
.3

w
il
1
0
0

2
7
3
0
3
8

0
.0
0
3
(1

)
5
3
.7

0
.0
0
3
(2

)
5
3
.5

0
.0
0
2
(3

)
5
3
.6

0
.0
0
0

4
8
2
.6

0
.0
0
0
(1

0
)

3
1
6
.6

th
o
1
5
0

8
1
3
3
3
9
8

0
.0
1
6
(0

)
1
9
8
.1

0
.0
3
0
(0

)
1
8
9
.3

0
.0
2
1
(0

)
1
9
1
.4

0
.0
3
0

5
5
6
.6

0
.0

1
3
(
0
)

1
9
9
1
.7

A
v
e
ra

g
e
ty

p
e
2

0
.3
7
6
6
(1

)
2
0
.6

0
.3
7
8
8
(2

)
2
0
.5

0
.3

4
8
8
(
1
)

2
0
.5

0
.4
4
7
2

1
8
0
.4
2

0
.4
6
8
8
(1

)
7
9
.2

A
v
e
ra

g
e
ty

p
e
3

0
.0
5
0
3
(2

0
)

9
0

0
.0
4
3
0
(2

0
)

8
9
.6

0
.0
4
6
3
(2

0
)

9
2
.1

0
.0

0
5
0

3
9
1
.9

0
.0
2
5
7
(1

8
)

2
5
7
6
.6

A
v
e
ra

g
e
ty

p
e
4

0
.0
0
4
0
(5

1
)

5
9
.9

0
.0
0
4
8
(6

7
)

5
9

0
.0
0
4
1
(6

1
)

5
9
.3

0
.0
0
5
2

4
6
3
.2

0
.0

0
1
4
(
9
4
)

4
1
3
.9

A
v
e
ra

g
e

0
.1
0
9
(7

2
)

5
4
.3

0
.1
0
9
(8

9
)

5
3
.7

0
.1

0
1
(
8
2
)

5
4
.3

0
.1
2
1

3
7
7
.5

0
.1
2
8
(1

1
3
)

6
6
7
.3

A
v
e
ra

g
e
N
O
F
E

1
.4
8
e
+
0
8

1
.4
8
e
+
0
8

1
.4
8
e
+
0
8

7
.5
5
e
+
1
0

9
.2
3
e
+
0
8

35

4.2 Parameters

DISCO-HITS contains a set of parameters. A set of experimentation is executed
to fix all the parameters. Table 1 shows the parameters used in the experimen-
tation, where n is the size of the problem and rank is the index of the current
process.

4.3 Experimentation of the three topologies

Table 2 contains the results for the three variants proposed in this work. The
same number of objective function evaluations and the same machines are used
(equivalent computing power). The time is expressed in minutes. The number
within brackets is the number of times each algorithm gets the BKS among the
10 trials.

Through the 21 benchmark instances presented in this work, DISCO-RING-
UX outperforms all the variants for only one instance (tho150 in type 2). DISCO-
RANDOM-UX outperforms all the variants for 9 instances especially from type
4. Finally, DISCO-LERNING-UX outperforms all the variants for 7 instances
especially from type 3. DISCO-LERNING-UX gets the best global average of
0.092%. This variant shows the most stable results for the 3 types.

4.4 Literature Comparison

Table 3 presents several comparisons with two distributed algorithms from the
literature. Cooperative parallel tabu search (CPTS) [6] (2009) and Teaching-
Learning-Based Optimization (TLBO) [12] (2015).

The average number of objective function evaluation (NOFE in Table 3)
used in our 3 variants is much lower than for the literature algorithms. CPTS
algorithm uses 5.8 times more objective function evaluations and TLBO uses
523.5 times more evaluations. We use 19 well-known benchmark instances from
the QAPLIB which are difficult to solve. DISCO-LERNING-UX outperforms all
the algorithms on 4 instances from type 3. TLBO outperforms all the algorithms
on 2 instances (tai40a and tai150b). CPTS outperforms all the algorithms on
5 instances from type 4. DISCO-LERNING-UX gets the best global average
of 0.101% against 0.128% for CPTS and 0.121% for TLBO. Considering the
difference of NOFE, the results obtained by our 3 variants are very competitive.

5 Conclusion and perspectives

In this work, we have presented and experimented three variants of the DISCO-
HITS algorithm with different topologies to solve the QAP. The results show
that the proposed variants perform efficiently. We evaluated our variants on 19
benchmark instances from the QAPLIB and they get the best average results
compared to two leading distributed algorithms from the literature.

36

In summary, the main contributions of this work are the proposition of these
variants and the experimentation of three different topologies to exchange infor-
mation in a distributed environment. The automatically learnt topology, used in
the DISCO-LERNING-UX variant, shows the best average results.

In future works, there are several possible ways to extend this work. One pos-
sibility is to experiment other parameters to get better results on large neighbor-
hood instances. An experimental analysis can also be made using some instances
which are not explored in literature, such as tai729eyy. Finally, this approach
can be experimented for other combinatorial problems to analyze its behavior
with other kinds of problems.

References

1. T. Koopmans, M. Beckmann, Assignment problems and the location of economic
activities, Econometrica, vol. 25, no. 1, pp. 53-76, 1957.

2. E.G. Talbi, Metaheuristics: from Design to Implementation, University of Lille -
CNRS - INRIA, John wiley and sons Inc, 2009.

3. E. Taillard, Robust taboo search for the quadratic assignement problem, Parallel
computing 17, pp. 443-455 ,1991.

4. T. James, C. Rego, F. Glover, Multistart Tabu Search and Diversification Strategies
for the Quadratic Assignment Problem, IEEE TRANSACTIONS ON SYSTEMS,
Man, And Cybernetics-part a: systems and humans, vol. 39, no. 3, May 2009.

5. U. Benlic, J.K. Hao, Breakout local search for the quadratic assignement problem,
Applied Mathematics and Computation 219, pp. 4800-4815, 2013.

6. T. James, C. Rego, F. Glover, A cooperative parallel tabu search algorithm for the
quadratic assignment problem, European Journal of Operational Research 195, pp.
810-826, 2009.

7. M. Czapinski, An effective Parallel Multistart Tabu Search for Quadratic Assign-
ment Problem on CUDA platform, J. Parallel Distrib. Comput. 73, pp. 1461-1468,
2013.

8. E. G. Talbi, O. Roux, C. Fonlupt, D. Robillard, Parallel Ant Colonies for the
quadratic assignment problem, Future Generation Computer Systems 17, pp 441-
449, 2001.

9. T. James, C. Rego, F. Glover, Sequential and parallel path relinking algorithms for
the quadratic assignment problem, IEEE Intelligent Systems 20 (4), pp 58-65, 2005.

10. U. Tosun, On the performance of parallel hybrid algorithms for the solution of the
quadratic assignment problem, Engineering Applications of Artificial Intelligence
39, pp 267-278, 2015.

11. O. Abdelkafi, L. Idoumghar, J. Lepagnot, Comparison of Two Diversification Meth-
ods to Solve the Quadratic Assignment Problem, Procedia Computer Science 51,
pp 2703-2707, 2015.

12. Tansel Dokeroglu, Hybrid teaching-learning-based optimization algorithms for the
Quadratic Assignment Problem, Computers and Industrial Engineering 85, pp 86-
101, 2015.

13. R.E. Burkard, S.E Karisch, F. Rendl, QAPLIB - A quadratic assignment problem
library, journal of global optimization Volume: 10 Issue: 4, pp. 391-403, Jun 1997.

37

Distributed Local Search for Elastic Image
Matching

Hongjian Wang, Abdelkhalek Mansouri, Jean-Charles Créput, Yassine Ruichek

IRTES-SeT, Université de Technologie de Belfort-Montbéliard, 90010 Belfort, France

Abstract. We propose a distributed local search (DLS) algorithm, which
is a parallel formulation of a local search procedure in an attempt to fol-
low the spirit of standard local search metaheuristics. Applications of dif-
ferent operators for solution diversification are possible in a similar way
to variable neighborhood search. We formulate a general energy function
to be equivalent to elastic image matching problems. A specific example
application is stereo matching. Experimental results show that the GPU
implementation of DLS seems to be the only method that provides an
increasing acceleration factor as the instance size augments, among eight
tested energy minimization algorithms.

Key words: Parallel and distributed computing, Variable neighborhood
search, Stereo matching, Graphics processing unit

1 Introduction

Local search, also referred as hill climbing, descent, iterative improvement, gen-
eral single-solution based metaheuristics and so on, is a metaheuristic algo-
rithm [1]. Starting with a given initial solution, at each iteration the heuristic re-
places the current solution by a neighbor solution that improves the fitness func-
tion. The search stops when all candidate neighbors are worse than the current
solution, meaning a local optimum is reached. Existing parallelization strategies
for local search can be divided into three categories. In the first category, the
evaluation of neighborhood is made in parallel [2,3]; in the second category, the
focus is on the parallel evaluation of a single solution, and the function can be
viewed as an aggregation of partial functions [2,4]; in the third category, several
local search metaheuristics are simultaneously launched for computing robust
solutions [5, 6]. In our opinion, an interesting parallel implementation model of
local search should be fully distributed, where each processor carries out its own
neighborhood search based on some parts of the input data, considering only
a local part of the whole solution. Operations on different processors should be
similar, with no centralized selection procedure, except for final evaluation. A
final solution should be obtained with the partial operations from different pro-
cessors. Following this idea, we propose a distributed local search (DLS) algorithm
and implement it on GPU parallel computing platforms.

A natural field of applications with GPU processing is image processing,
which is a domain at the origin of GPU development. A lot of image processing

38

2 Authors Suppressed Due to Excessive Length

and computer vision problems can be viewed as optimization problems in a more
general way, dealing with brute data distributed in some Euclidean space and
system in relation to the data. More often, these NP-hard optimization problems
involve data distributed in the plane and elastic structures represented by graphs
that must match the data. Such optimization problems can be stated in a generic
framework of graph matching [7,8]. In this paper, we are particularly interested in
moving grids in the plane following the idea of visual correspondence problem,
which is to compute the pairs of pixels from two images that result from the
same scene element. A typical example application is stereo matching, which we
formulate as an elastic image matching problem [9]. We apply the proposed DLS
algorithm to stereo matching by minimizing the corresponding energy function.

The DLS can be used for parallel implementation of elastic matching prob-
lems that include not only visual correspondence problems but also neural net-
work topological maps, or elastic nets approaches [10,11], modeling the behavior
of interacting components inspired by biological systems and collective behav-
iors at a low level of granularity. The framework is based on data decomposition,
with the idea of modeling the geometry of objects using some adaptive (elastic)
structures that move in space and continuously interact with the input data
distribution memorized into a cellular matrix [12]. Then spatial metaphors, as
well as biological metaphors should fit well into the cellular matrix framework.

2 Elastic Grid Matching

We define a class of visual correspondence problems as elastic grid matching
problems. Given two input images with same size and same regular topology,
one is a matcher grid G1 = (V1, E1) where a vertex is a pixel with a variable
location in the plane, while the other is a matched grid G2 = (V2, E2) where
vertices are pixels located in a regular grid. The goal of elastic grid matching is
to find the matcher vertex locations in the plane, so that the following energy
function

E(G1) =
∑

p∈V1

Dp(p− p0) + λ ·
∑

{p,q}∈E1

Vp,q(p− p0, q − q0) (1)

is minimized, where p0 and q0 are the default locations of p and q respectively
in a regular grid. Here, Dp is the data energy that measures how much assigning
label fp to pixel p disagrees with the data, and Vp,q is the smoothness energy
that expresses smoothness constraints on the labelings enforcing spatial coher-
ence [13–15]. A label fp in visual correspondence represents a pixel moving from
its regular position into the direction of its homologous pixel, i.e. fp = p−p0. In
the following sections, we will directly use the notations of labels as relative dis-
placements, as usual with such problems. The energy function is commonly used
for visual correspondence problems, and it can be justified in terms of maximum
a posteriori estimation of a Markov random field (MRF) [16,17].

It has been proven that elastic image matching is NP-complete [9], and find-
ing the global minimum for the energy function even with the simplest smooth-

39

Distributed Local Search for Elastic Image Matching 3

ness penalty, the piecewise constant prior, is NP-hard [13, 14]. We choose the
local search metaheuristics to deal with the energy minimization problem.

3 Distributed Local Search

Based on the cellular matrix model proposed in [12], we design a parallel local
search algorithm, called distributed local search (DLS), to implement many lo-
cal search operations on different parts of the data in a distributed way. It is a
parallel formulation of local search procedures in an attempt to follow the spirit
of standard local search metaheuristics. Starting from its location in the cellu-
lar matrix, each processor locally acts on the data located in the corresponding
cell according to the cellular decomposition, in order to achieve local evaluation,
perform neighborhood search, and select local improvement moves to execute.
The many processes locally interact in the plane, making evolve the current solu-
tion into an improved one. The solution results from the many independent local
search operations simultaneously performed on the distributed data in the plane.
Normally, a local search algorithm with single operator obtains local minima. In
order to escape from local minima, we design several operators. Applications of
different operators for diversification are possible in a similar way to the variable
neighborhood search (VNS).

Fig. 1: Basic projection for DLS.

3.1 Data Structures and Basic Operations

The data structures and direction of operations for DLS algorithms are illus-
trated in Figure 1. The input data set is deployed on the low level of both
matcher grid and matched grid, represented as regular images in the figure.
The honeycomb cells represent the cellular matrix level of operations. Each cell
is a basic processor that handles a basic local search processing iteration with
the three following steps: neighborhood generation step (get); neighbor solution
evaluation and selecting the best neighbor (search); then moving the matcher

40

4 Authors Suppressed Due to Excessive Length

grid toward the selected neighbor solution (operate). The nature and size of
specific moves and neighborhoods will depend on the type of operator used and
the level of the cellular matrix. The higher is the level, the larger is the local
cell/neighborhood. In the cellular matrix model, a solution is composed of many
sub-solutions from many cells. Each sub-solution is evolved from an initial sub-
solution based on the distributed data in a cell. By partitioning the data and
solution, the neighborhood structure is also partitioned at the same time.

3.2 Local Evaluation with Mutual Exclusion

During the parallel operation, the coherence of local evaluation with mutual
exclusion is violated by conflict operations. A conflict operation occurs when a
same pixel or two neighboring pixels is/are being evaluated and moved simulta-
neously by two threads. Conflict operations only happen on frontier pixels, which
are the pixels on the cell frontiers according to the cellular matrix partition of
the image. In order to eliminate the conflict operations in DLS, we propose a
strategy, called dynamic change of cell frontiers (DCCF), by which we limit the
move to the internal pixels of a cell only. Cell frontier pixels remain at fixed
locations, and they are not concerned by local moves so that exclusive access of
the thread to its internal region delimited by the cell, is guaranteed. A problem
that arises is how to manage cell frontier pixels and make them participating
in the optimization process. As a solution, the cellular matrix decomposition is
dynamically changeable from the CPU side before the application of a round of
DLS operations. At different moments, the cellular matrix decomposition slightly
shifts on the input image in order to change the cell frontiers and consequently
the fixed pixels. For a given cellular matrix decomposition, cell frontier pixels
are then fixed and not allowed to be moved by current DLS operations.

3.3 Neighborhood Operators

We design different neighborhood operators for the DLS algorithm applied to
the elastic grid matching. We use the notations of labeling problems to present
these operators. Move operations in a given neighborhood structure correspond
to changing labels of pixels in the corresponding labeling space. Operators are
classified between small moves and large moves. In the first category, only a
single pixel from the cell moves at a time, meaning that only one pixel’s label
is changed. We designed two small move operators: local move operator and
propagation operator. In the second category, larger sets of pixels from a cell
can simultaneously move. We designed six large move operators: random pixels
move operator, random pixels jump operator, random pixels expansion operator,
random pixels swap operator, random window move operator and random window
jump operator. Details about these operators can be found in [12].

3.4 GPU Implementation Under VNS Framework

We use Compute Unified Device Architecture (CUDA) to implement the DLS
algorithm on GPU platforms. The CUDA kernel calling sequence from the CPU

41

Distributed Local Search for Elastic Image Matching 5

side enables the application of different operators in the spirit of VNS and man-
ages dynamic changes of cellular matrix frontiers. According to our previous
experiments, the repartition of tasks between host (CPU) and device (GPU) is
actually the best compromise we found to exploit the GPU CUDA platform at
a reasonable level of computation granularity. Data transfer between CPU side
and GPU side only occurs at the beginning and the end of the algorithm. It is
the CPU side that controls DLS kernel calls with different operators executed
within the dynamic change of cell frontiers (DCCF) pattern for frontier cells
management. With several neighborhood operators in hand, we use them under
the VNS framework in order to enhance the solution diversification.

4 Experimental Study

We apply the DLS algorithm to stereo matching, viewing the problem as en-
ergy minimization problem. We follow in the footsteps of Boykov et al. [14],
Tappen and Freeman [18], and Szeliski et al. [15], using a simple energy func-
tion, applied to benchmark images from the widely used Middlebury stereo data
set [19]. The labels are the disparities, and the data costs are the absolute color
differences between corresponding pixels for each disparity. For the smoothness
term in the energy function, we use a truncated linear cost as the piecewise
smooth prior defined in [13]. We focus on the performance of DLS when input
size augments. We experiment on the Middlebury 2005 stereo benchmark [19]
including 18 pairs of images with sizes from the smallest 458×370 to the largest
1374×1110 in average. We uniformly set the disparity range to 64 pixels, for
all the sizes. We denote our DLS GPU implementation as DLS-gpu. We also
test the counterpart CPU sequential version which is denoted by DLS-cpu. We
compare DLS with six other methods1: iterated conditional modes (ICM) [16]
which is an old approach using a deterministic “greedy” strategy to find a local
minimum; sequential tree-reweighted message passing (TRW-S) [15] which is an
improved version of the original tree-reweighted message passing algorithm [20];
BP-S and BP-M [15] which are two updated version of the max-product loopy
belief propagation (LBP) implementation of [18]; GC-swap and GC-expansion
which are two graph cuts based algorithms proposed in [14]. Instead of report-
ing the absolute energy values, we report the percentage deviation from the best
known solution (lowest energy) of the mean solution value over 10 runs, denoted
as %PDM value. We choose the best known solution from the executions of all
tested methods.

The results of different methods are reported in Figure 2. From top to bot-
tom are reported the energy value as %PDM , the execution time, and the
acceleration factor of each method relative to the slowest method (DLS-cpu)
and the method (GC-expansion) that gets the lowest energy, respectively. The
ICM method runs fastest but generates very high energies, while DLS-gpu runs

1 For all the tested energy minimization algorithms, we use the original codes from
http://vision.middlebury.edu/MRF/code/.

42

6 Authors Suppressed Due to Excessive Length

(a) (b)

(c) (d)

Fig. 2: Results of eight tested methods. Left column: results with different input
sizes. Right column: results with different disparity ranges.

a little slower than ICM but generates much lower energies with more accept-
able %PDM values smaller than 5%. An important observation from Figure 2
is that, among all the tested methods, only the DLS-gpu has an acceleration
factor which increases according to the augmentation of input size. This means
that further improvement could be carried on only by the use of multi-processor
platform with more effective cores.

In Figure 3 are displayed the disparity maps for the Art benchmark. Note
that during our experiments, we choose the stereo matching application but only
view it as an energy minimization problem, just focusing on minimizing energies.
The disparity maps obtained from all the tested methods are the raw results after
energy minimization, without any additional post-treatments such as left-right
consistency check, occlusion detection, or disparity smoothing, which are all
treatments specific to stereo matching in order to minimize the errors compared
with ground truth disparity maps. Moreover, as pointed out in [15], the ground
truth solution may not always be strictly related to the lowest energy.

5 Conclusion

We have proposed a parallel formulation of local search procedure, called dis-
tributed local search (DLS) algorithm. We have applied the algorithm to stereo
matching problem. The main encouraging result is that the GPU implementation
of DLS on stereo matching seems to be the only method that provides an in-
creasing acceleration factor as the instance size augments, for a result of quality

43

Distributed Local Search for Elastic Image Matching 7

(a) Ground Truth (b) ICM (c) BP-S (d) BP-M

(e) GC-Swap (f) GC-Expansion (g) TRW-S (h) DLS

Fig. 3: Disparity maps for the Art (463×370) benchmark obtained with different
energy minimization methods. The disparity range is set to 64 pixels.

less than 5% deviation to the best known energy value. For all the other ap-
proaches, the acceleration factor, against the slowest sequential version of DLS,
is decreasing, except for the ICM method, which however only produces poor
result of about 45% deviation to the best known energy. Graph cuts based algo-
rithms and belief propagation based algorithms are well-performing approaches
concerning quality, however the computation time increases quickly along with
the instance size. That is why we hope for further improvements or improved
accelerations of the DLS approach with the availability of new multi-processor
platforms with more independent cores.

It is a well-known fact that the minimum energy level does not necessarily
correlate to the best real-case matching. Here, we only address energy mini-
mization discarding too much complex post-treatments necessary for the “true”
ground truth matching. It should follow that many tricks are certainly not yet
implemented to make energy minimization coincide to ground truth evaluation.
In order to improve the matching quality in terms of minimizing the errors to
ground truth only, specially designed terms for detecting typical situations in
vision, such as occlusion, slanted surfaces, and the aperture problem, need to be
added in the formulation of energy function. Furthermore, more complex post-
treatments for invalid flow value fixing and smoothing should also be considered.

References

1. Talbi, E.G.: Metaheuristics: from design to implementation. Volume 74. John
Wiley & Sons (2009)

2. Van Luong, T., Melab, N., Talbi, E.G.: Gpu computing for parallel local search
metaheuristic algorithms. Computers, IEEE Transactions on 62 (2013) 173–185

3. Delévacq, A., Delisle, P., Krajecki, M.: Parallel gpu implementation of iterated
local search for the travelling salesman problem. In: Learning and Intelligent Op-
timization. Springer (2012) 372–377

44

8 Authors Suppressed Due to Excessive Length

4. Fosin, J., Davidović, D., Carić, T.: A gpu implementation of local search operators
for symmetric travelling salesman problem. PROMET-Traffic&Transportation 25
(2013) 225–234

5. Melab, N., Talbi, E.G., et al.: Gpu-based multi-start local search algorithms. In:
Learning and Intelligent Optimization. Springer (2011) 321–335

6. Sánchez-Oro, J., Sevaux, M., Rossi, A., Mart́ı, R., Duarte, A.: Solving dynamic
memory allocation problems in embedded systems with parallel variable neigh-
borhood search strategies. Electronic Notes in Discrete Mathematics 47 (2015)
85–92

7. Bengoetxea, E.: Inexact Graph Matching Using Estimation of Distribution Algo-
rithms. PhD thesis, Ecole Nationale Supérieure des Télécommunications, Paris,
France (2002)

8. Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J.: Learning graph
matching. Pattern Analysis and Machine Intelligence, IEEE Transactions on 31
(2009) 1048–1058

9. Keysers, D., Unger, W.: Elastic image matching is np-complete. Pattern Recogni-
tion Letters 24 (2003) 445–453

10. Durbin, R., Willshaw, D.: An analogue approach to the travelling salesman problem
using an elastic net method. Nature 326 (1987) 689–691

11. Créput, J.C., Hajjam, A., Koukam, A., Kuhn, O.: Self-organizing maps in pop-
ulation based metaheuristic to the dynamic vehicle routing problem. Journal of
Combinatorial Optimization 24 (2012) 437–458

12. Wang, H.: Cellular matrix for parallel k-means and local search to Euclidean grid
matching. PhD thesis, Université de Technologie de Belfort-Montbeliard (2015)

13. Veksler, O.: Efficient graph-based energy minimization methods in computer vi-
sion. PhD thesis, Cornell University (1999)

14. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via
graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on 23
(2001) 1222–1239

15. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A.,
Tappen, M., Rother, C.: A comparative study of energy minimization methods
for markov random fields with smoothness-based priors. Pattern Analysis and
Machine Intelligence, IEEE Transactions on 30 (2008) 1068–1080

16. Besag, J.: On the statistical analysis of dirty pictures. Journal of the Royal
Statistical Society. Series B (Methodological) (1986) 259–302

17. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on (1984) 721–741

18. Tappen, M.F., Freeman, W.T.: Comparison of graph cuts with belief propagation
for stereo, using identical mrf parameters. In: Computer Vision, 2003 Ninth IEEE
International Conference on, IEEE (2003) 900–906

19. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured
light. In: Computer Vision and Pattern Recognition, 2003 IEEE Conference on.
Volume 1., IEEE (2003) I–195

20. Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: Map estimation via agreement
on trees: message-passing and linear programming. Information Theory, IEEE
Transactions on 51 (2005) 3697–3717

45

Fast Hybrid BSA-DE-SA Algorithm on GPU

Mathieu Brévilliers, Omar Abdelkafi,
Julien Lepagnot, and Lhassane Idoumghar

Université de Haute-Alsace (UHA), LMIA (E.A. 3993)
4 rue des frères Lumière, 68093 Mulhouse, France

{mathieu.brevilliers,omar.abdelkafi,

julien.lepagnot,lhassane.idoumghar}@uha.fr

Abstract. This paper introduces a hybridization of Backtracking Search
Optimization Algorithm (BSA) with Differential Evolution (DE) and
Simulated Annealing (SA). An experimental study, conducted on 13
benchmark problems, shows that this approach outperforms BSA in
terms of solution quality and convergence speed. We also describe our
CUDA implementation of this algorithm for graphics processing unit
(GPU). Experimental results are reported for high-dimension benchmark
problems, and it highlights that significant speedup can be achieved.

Keywords: continuous optimization, hybrid metaheuristic, backtrack-
ing search optimization algorithm, differential evolution, simulated an-
nealing, graphics processing unit, CUDA.

1 Introduction

Evolutionary algorithms are metaheuristics that use evolution mechanisms in
order to approximate the best solution of a given optimization problem. In this
category, several efficient approaches have emerged, such as particle swarm opti-
mization algorithms or differential evolution algorithms. Among all existing evo-
lutionary strategies, the Backtracking Search Optimization Algorithm (BSA) [2]
can also find high-quality solutions for continuous optimization problems, and
several extensions have been proposed to improve either solution quality or con-
vergence speed [1, 3, 7]. As BSA mainly focuses on exploration, it can be quite
slow converging on the global best solution, and it would be challenging to speed
up its convergence without loss of quality.

To this aim, we present a hybrid algorithm that uses differential evolution
(DE) and simulated annealing (SA) techniques together with BSA principles.
We also propose an implementation for graphics processing unit (GPU) to in-
vestigate the benefit in terms of runtime speedup for high-dimension instances.

Section 2 presents BSA and two BSA-DE hybridizations from the literature.
Section 3 introduces our BSA-DE-SA hybrid approach and reports experimental
results. The corresponding GPU design is described in Section 4, and an exper-
imental study shows to what extent the algorithm can be accelerated. Finally,
concluding remarks and perspectives are given in Section 5.

46

2 Fast Hybrid BSA-DE-SA Algorithm on GPU

2 Related work

2.1 Backtracking search optimization algorithm

Backtracking Search Optimization Algorithm (BSA) [2] is an evolutionary al-
gorithm for continuous optimization. BSA is based on a population evolving
with classical operators: mutation, crossover, boundary control, and selection.
However, as a backtracking strategy, BSA has a memory to store a historical
population, that consists of the individuals of a previous generation. Before ap-
plying the mutation operator, this memory is updated with probability 0.5, by
replacing the whole historical population with a random permutation of the cur-
rent population. Then, a new mutant population M is created from the current
population P and from the historical population oldP by using the following
equation:

∀i ∈ {1, ..., N},∀j ∈ {1, ..., D},Mi,j = Pi,j + FBSA × (oldPi,j − Pi,j) (1)

where N is the number of individuals in P , D is the number of dimensions in
the considered optimization problem, FBSA = 3 × randn, and randn is a real
value randomly generated with the standard normal distribution. A new value
of FBSA is generated for each generation.

A first advantage of BSA is that it has few user-defined parameters: the
population size N , and a so-called mixrate parameter that controls how many
dimensions (at most) of a mutant individual will be incorporated in a trial indi-
vidual after the crossover. Moreover, BSA can solve a wide range of optimization
problems, due to its good exploration ability, and it has been shown [2] that it
performs better than SPSO2011, CMAES, ABC, JDE, CLPSO, and SADE.

2.2 Hybrid BSA-DE algorithms

We present here two hybridizations that inspired the algorithm proposed in
Section 3. Firstly, Das et al.[3] replaced Equation 1 of BSA in the following way:

∀i ∈ {1, ..., N},∀j ∈ {1, ..., D},
Mi,j = Pi,j + FBSA × (oldPi,j − Pi,j) + FDE × (Pbest,j − Pi,j) (2)

where FBSA is defined as in Equation 1, FDE is the scaling factor of DE, and
best ∈ {1, ..., N} is the index of the best individual in P . In contrast with BSA,
a new value of FBSA is generated for each individual. It has been shown that
this BSA-DE hybridization generally performs better than BSA, and converges
faster than BSA and DE.

Wang et al.[7] proposed a hybridization where DE follows BSA in the gen-
eration loop: DE is applied to improve only 1 bad individual of the current
population. This bad individual is randomly chosen with respect to its fitness:
the worse the fitness, the higher the probability. Then, the DE/best/1 muta-
tion scheme and a binomial crossover are used to generate a trial individual,
that will replace the current individual if it performs better. Comparing this
so-called HBD algorithm with BSA, it has been shown that HBD outperforms
BSA in terms of solution quality and convergence speed.

47

Fast Hybrid BSA-DE-SA Algorithm on GPU 3

3 Contribution to speed up BSA convergence

The proposed hybrid approach is based on a two-level BSA-DE combination and
on a SA schedule to gradually decrease the range of BSA scaling factor. The aim
is to improve the convergence of the basic BSA algorithm.

Individual-level BSA-DE hybridization. We define 2 new scaling fac-
tors. The first one, called intensification factor, and denoted F I , is defined by the
user in [0, 1]. The second one, called exploration factor, and denoted FE

i , is gen-
erated for each individual i during the mutation process: ∀i ∈ {1, ..., N}, FE

i =
C × randn, where C is a coefficient decreasing with time (see below). Then,
Equation 1 is modified as follows, in a slightly different way from [3], in order to
instill the DE/target-to-best/1 scheme into BSA mutation operator:

∀i ∈ {1, ..., N},∀j ∈ {1, ..., D},
Mi,j = Pi,j + Fi × (oldPi,j − oldPk,j) + FDE × (Pbest,j − Pi,j), (3)

where k is randomly chosen in {1, ..., N} such that k 6= i. The factor Fi replaces
FBSA, and is defined by the equation:

Fi =

{
FE
i if rand > 1

16 ,

F I otherwise,
(4)

where rand is a random value uniformly generated in [0, 1].
SA schedule for C. According to the temperature cooling schedule in SA,

the coefficient C is gradually decreased from 3 to 1 with a geometric law during
the first third of the algorithm (in terms of number of function evaluations).

Generation-level BSA-DE hybridization. The method proposed in [7]
is applied after each iteration of the individual-level BSA-DE hybridization.

Equation 4 together with the range of C and F I show that a few individuals
are used to intensify the search with a low Fi, while the major part explores the
search space with a larger Fi. Furthermore, the SA schedule for decreasing C
allows to use the full exploration ability of the algorithm at the beginning, and
to develop its exploitation ability at a later stage. Finally, the two-level BSA-DE
hybridization allows to combine in the same algorithm the DE/best/1 scheme
(generation-level) with a DE/target-to-best/1-like scheme (individual-level), in
order to speed up the convergence of the algorithm.

We realized an experimental study in order to compare our hybrid BSA-DE-
SA approach with BSA [2], BSA-DE [3], and HBD [7]. Specifically, two versions
of BSA-DE-SA have been implemented: BDS-1 that only uses the individual-
level BSA-DE hybridization with a SA schedule for C, and BDS-2 that uses all
features described above. All these algorithms have been tested on the bench-
mark functions listed in Table 1, and Table 2 shows the values of the control
parameters for each algorithm. Each algorithm has been run 30 times on each
benchmark function. 10 000×D function evaluations per run are allowed, and a
benchmark problem is considered as solved when a fitness lower than fopt +10−8

is reached, where fopt denotes the corresponding optimal fitness.

48

4 Fast Hybrid BSA-DE-SA Algorithm on GPU

Table 1. List of benchmark problems (ID: function identifier; Low, Up: limits of search
space; D: dimension).

ID Name Low Up D

F1 Schwefel 1.2 -100 100 30
F2 Ackley -32 32 30
F3 Rastrigin -5.12 5.12 30
F4 Rosenbrock -30 30 30
F5 Weierstrass -0.5 0.5 10
F6 Shifted Schwefel 1.2 -100 100 10
F7 Shifted rotated high conditioned elliptic function -100 100 10
F8 Shifted Schwefel 1.2 with noise -100 100 10
F9 Schwefel 2.6 -100 100 10
F10 Shifted Rosenbrock -100 100 10
F11 Shifted rotated Griewank 0 600 10
F12 Shifted rotated Ackley -32 32 10
F13 Shifted Rastrigin -5 5 10

Table 2. Control parameter settings for the compared algorithms.

Algorithm Parameters

BSA [2] N = 30, mixrate = 1.

BSA-DE [3] N = 30, mixrate = 1, FDE = 0.5.

HBD [7] N = 30, mixrate = 1, scaling factor F = 0.8, crossover rate Cr = 0.9,
DE applied on N/30 = 1 individual.

BDS-1 N = 30, mixrate = 1, FDE = 0.5,

FI = 0.5 applied for each individual with probability 1/16,
C decreased from 3 to 1 during the first 1/3 of the allowed function evaluations.

BDS-2 BDS-1 settings together with HBD settings.

Table 3 reports basic statistics for the compared algorithms. We can see
that BDS-2 gets 10 times the first place in terms of mean error, whereas BSA-
DE, BDS-1, HBD and BSA make it respectively 9, 8, 6, and 4 times. BDS-2
beats BSA on 9 functions (F1, F3, F4, F6-11), HBD on 6 functions (F1, F3,
F7, F9, F10, F12), and BSA-DE on 4 functions (F7, F10-12). Conversely, BDS-2
loses to HBD on 2 functions (F4, F11), to BSA-DE on 1 function (F4), and to
BSA on 1 functions (F12). We can notice similar results when comparing BDS-1
to BSA, BSA-DE, and HBD, except that BDS-2 performs better on F10 and
F12. From these observations, we can conclude that our BSA-DE-SA approach
clearly outperforms BSA, and gives slightly better results than BSA-DE and
HBD. Figure 1 shows the convergence curves for selected benchmark problems
and it highlights that our hybrid approach leads to faster convergence : we can
see that BDS-2 saves between 45% and 70% of function evaluations compared to
BSA-DE and HBD for F8, about 40% compared to BSA-DE for F9, and between
25% and 45% compared to BSA-DE and HBD for F13. Moreover, BDS-2 is the
only algorithm that solves F10 within the allowed function evaluation budget.

4 Contribution to speed up BSA runtime

The graphics processing unit (GPU) has a highly parallel architecture, and it
can be easily programmed for general purpose computations with high-level
languages, thanks to dedicated parallel computing platforms like CUDA for
NVIDIA GPU devices. The CUDA platform allows to realize heterogeneous par-
allel computations, which means that the program is launched on the CPU, that
delegates parallel subroutines (so-called kernels) to the GPU. In CUDA pro-

49

Fast Hybrid BSA-DE-SA Algorithm on GPU 5

Table 3. Basic statistics of the two versions of BSA-DE-SA, and comparison with BSA
[2], BSA-DE [3], and HBD [7] (Mean: mean error; Std: standard deviation; Best: best
error). Best values are depicted in bold font.

ID Statistics BDS-1 BDS-2 BSA [2] BSA-DE [3] HBD [7]

F1
Mean 0 0 3.45331725e-1 0 4.69223633e-5
Std 0 0 3.56207055e-1 0 4.87788549e-5
Best 0 0 4.65828600e-2 0 1.74837295e-6

F2
Mean 0 0 0 0 0
Std 0 0 0 0 0
Best 0 0 0 0 0

F3
Mean 0 0 3.31653019e-2 0 1.65826509e-1
Std 0 0 1.81653839e-1 0 5.27993560e-1
Best 0 0 0 0 0

F4
Mean 9.30325416e-1 1.32887461 2.35616889e+1 6.64437376e-01 8.01149354e-1
Std 1.71491464 1.91143983 2.90306080e+1 1.51112585 1.62101635
Best 0 0 5.31405876e-7 0 0

F5
Mean 0 0 0 0 0
Std 0 0 0 0 0
Best 0 0 0 0 0

F6
Mean 0 0 8.12184166e-7 0 0
Std 0 0 1.18619825e-6 0 0
Best 0 0 0 0 0

F7
Mean 1.88063034e+3 6.70067111e+2 1.62772681e+4 6.63797991e+3 5.12822952e+3
Std 4.09511408e+3 8.99497851e+2 2.63103587e+4 5.96963034e+3 6.89120964e+3
Best 6.85806410 1.69290665e-1 3.23132561e+2 1.23221979e+2 1.28697388e+1

F8
Mean 0 0 3.52038638e-3 0 0
Std 0 0 1.00832481e-2 0 1.41395434e-8
Best 0 0 1.16021564e-5 0 0

F9
Mean 0 0 1.63586845e-2 0 5.28382701e-5
Std 0 0 3.29592107e-2 0 6.56037241e-5
Best 0 0 1.06714993e-4 0 2.68750955e-6

F10
Mean 1.32885971e-1 0 2.31962945e-1 1.32889360e-1 5.79353282e-4
Std 7.27846435e-1 0 5.86248030e-1 7.27845795e-1 3.01367607e-3
Best 0 0 0 0 0

F11
Mean 5.42895964e-2 4.61309502e-2 6.56037488e-2 1.14081123e-1 3.33610373e-2
Std 4.71316146e-2 2.29246572e-2 3.49897515e-2 5.14108950e-2 2.15975637e-2
Best 7.52199899e-3 9.85728587e-3 3.43988696e-4 3.66388264e-2 0

F12
Mean 2.03415389e+1 2.03230528e+1 2.03225585e+1 2.03462701e+1 2.03325172e+1
Std 7.02011419e-2 8.34903645e-2 8.21386118e-2 7.14983620e-2 7.80534782e-2
Best 2.01888263e+1 2.00865221e+1 2.01202686e+1 2.02124186e+1 2.02032472e+1

F13
Mean 0 0 0 0 0
Std 0 0 0 0 0
Best 0 0 0 0 0

gramming, each kernel is a piece of code called from the CPU and duplicated
on the GPU to be executed in parallel on multiple data (the GPU has a SIMD
architecture, i.e. single-instruction multiple-data). Each kernel duplicate is exe-
cuted by a CUDA thread, and all these threads are organized as follows: each
kernel call creates a grid composed of thread groups, called blocks, that all con-
tain the same number of threads. Thus, in order to take advantage of the GPU
performance, any evolutionary algorithm should be adapted, in terms of data
decomposition, to be processed in parallel by blocks of threads [4–6].

The first feature of our proposed CUDA implementation is that we delegate to
the GPU the most time-consuming part of the algorithm, that is the evaluation
of the population. This can be done with two levels of parallelization as follows.
Firstly, the evaluations of all individuals can be done in parallel. And secondly,
since for the most part of the benchmark functions we need to perform the same
computations on each dimension before aggregating the results (for example,
with a sum), the dimensions can also be processed in parallel. Getting back to
CUDA programming, it means that the evaluation workload can be divided into
N blocks of D threads, that each deals with 1 dimension of 1 individual.

50

6 Fast Hybrid BSA-DE-SA Algorithm on GPU

0 50,000 1 · 105
10−9

10−7

10−5

10−3

10−1

101

103

105

F8 - Sh. Schwefel 1.2 with noise

0 50,000 1 · 105
10−9

10−7

10−5

10−3

10−1

101

103

105

F9 - Schwefel 2.6

0 50,000 1 · 105

10−9

10−6

10−3

100

103

106

109

F10 - Sh. Rosenbrock

0 50,000
10−9

10−7

10−5

10−3

10−1

101

103

F13 - Sh. Rastrigin

Fig. 1. The curves show how many function evaluations (x-axis) are needed to reach
a certain mean error (y-axis in log scale) for selected benchmark problems of Table 1.
BSA is depicted with empty circles, BSA-DE with empty triangles, HBD with filled
diamonds, BDS-1 with crosses, and BDS-2 with empty squares.

However, as already noticed in the literature [6], if the evaluation is the only
task entrusted to the GPU, the algorithm has to transfer the whole population
from CPU memory to GPU in every generation, which is very slow compared to
arithmetic computations on GPU. Therefore, we choose to store the population
in the GPU global memory in order to minimize the time lost in data transfer.
It means that all steps of the algorithm are processed by the GPU, while the
generation loop is done by the CPU, that launches a GPU kernel for each step
with the ad-hoc data decomposition, in terms of CUDA blocks and threads.
As much as possible, we divide the processings into N blocks of D threads: as
seen above, this is particularly suited to evaluate the population, but also, for
example, to generate the initial population, to apply the mutation equation,
or to perform the boundary control. In addition to that, other decompositions
are sometimes needed, depending on the processing to be realized: for example,
1 block of N threads to find the best individual, or 1 block of D threads to
update the global best solution.

51

Fast Hybrid BSA-DE-SA Algorithm on GPU 7

Table 4. Comparison of BSA, BDS-1, and BDS-2 in high dimensions (Mean: mean
solution; Time: mean runtime in seconds). Best values are depicted in bold font.

N=D ID Statistics
BSA [2] BDS-1 BDS-2

CPU CPU GPU Speedup CPU GPU Speedup

128

F1
Mean 3,2531e+3 2,3844e+3 2,6854e+3 1,9063e+3 2,0242e+3
Time 11,13 11,25 2,89 3,90 11,53 19,49 0,59

F2
Mean 4,5019e-2 2,6885 2,7312 2,4161 2,5679
Time 3,41 3,61 2,97 1,22 3,71 19,45 0,19

F3
Mean 1,6949e+2 1,1462e+2 1,1045e+2 1,2092e+2 1,2230e+2
Time 3,80 3,88 2,64 1,47 4,07 19,58 0,21

F4
Mean 5,2074e+2 3,5942e+2 3,2152e+2 2,7981e+2 2,5426e+2
Time 2,87 3,05 3,03 1,01 3,23 19,50 0,17

F5
Mean 1,2849 1,1354e+1 1,1646e+1 1,1436e+1 1,1518e+1
Time 63,67 64,41 3,71 17,37 64,80 20,39 3,18

F14
Mean -9,3241e+1 -9,8617e+1 -9,8456e+1 -9,8065e+1 -9,8098e+1
Time 9,34 9,45 2,74 3,45 9,65 19,65 0,49

256

F1
Mean 7,4732e+3 1,5148e+4 1,5590e+4 1,4160e+4 1,4756e+4
Time 80,87 81,20 6,49 12,51 82,47 73,08 1,13

F2
Mean 1,1330 4,4814 4,6626 4,4919 4,2836
Time 14,96 15,04 6,35 2,37 15,65 72,97 0,21

F3
Mean 6,2993e+2 6,0159e+2 5,9217e+2 6,1518e+2 6,2133e+2
Time 15,23 15,63 5,63 2,78 16,33 73,55 0,22

F4
Mean 2,0790e+3 1,2885e+3 1,3246e+3 8,8510e+2 9,3211e+2
Time 11,38 12,02 6,58 1,83 12,70 73,09 0,17

F5
Mean 1,3822e+1 7,6411e+1 7,6420e+1 7,7453e+1 7,7002e+1
Time 256,59 262,90 8,65 30,40 263,94 75,39 3,50

F14
Mean -1,4556e+2 -1,5584e+2 -1,5502e+2 -1,5358e+2 -1,5336e+2
Time 37,74 37,57 5,97 6,29 38,42 73,97 0,52

512

F1
Mean 1,2895e+4 6,0397e+4 6,6561e+4 5,8543e+4 5,9229e+4
Time 613,77 614,39 20,46 30,02 620,01 289,71 2,14

F2
Mean 2,7341 7,2895 7,0967 6,9065 6,9606
Time 61,69 61,76 18,05 3,42 63,96 286,98 0,22

F3
Mean 1,8488e+3 2,0890e+3 1,9805e+3 2,1301e+3 1,8501e+3
Time 60,65 63,28 15,60 4,06 66,01 286,14 0,23

F4
Mean 8,4335e+3 1,6159e+4 1,3098e+4 5,9431e+3 6,0513e+3
Time 45,65 47,92 18,31 2,62 50,77 287,76 0,18

F5
Mean 6,1091e+1 2,6234e+2 2,6643e+2 2,6058e+2 2,5402e+2
Time 1027,70 1062,34 26,48 40,12 1066,46 295,91 3,60

F14
Mean -2,1917e+2 -2,3382e+2 -2,3394e+2 -2,3102e+2 -2,3067e+2
Time 151,40 151,35 16,87 8,97 155,07 290,21 0,53

We realized an experimental study in order to compare our GPU implemen-
tations of BDS-1 and BDS-2 with sequential BSA [2]. For reasons of dimen-
sional scalability, these algorithms have been tested on the benchmark functions
F1-5 of Table 1 and on Michalewics function (denoted as F14, and defined on
[0, 3.1416], according to [2]). The control parameters of each algorithm have
been set as shown in Table 2, except the population size that now depends on
the problem dimension as follows: N = D. Several experiments have been con-
ducted with D = 128, D = 256, and D = 512. For a given value of D, each
algorithm has been run 15 times on each benchmark problem, and 3 000 × D
function evaluations per run were allowed. For these experimentations, all the
compared algorithms are written in C/C++, and the corresponding programs
are compiled on an Intel Core processor i5-3330 CPU (3.00GHz) with 4 GB of
RAM and a NVIDIA GeForce GTX680 GPU.

Table 4 reports basic statistics for the compared algorithms. First of all,
it seems that BSA finds solutions of better quality than BDS-1 and BDS-2.
However, all compared results almost always have the same order of magnitude.
We can also see that BDS-1 ties with BDS-2 in terms of solution quality: roughly,
BDS-1 is generally better for F3 and F14, whereas BDS-2 tends to win for F1, F2
and F4. Secondly, the resulting mean runtimes show that BDS-1 GPU version can

52

8 Fast Hybrid BSA-DE-SA Algorithm on GPU

lead up to a 40 time speedup with regard to BDS-1 CPU version. It sounds that
the acceleration mainly comes from the evaluation of the population, and that
it directly depends on the computation complexity of the considered benchmark
function. Thirdly, we can notice that BDS-2 speedup is much lower than that
of BDS-1. It is due to the HBD part of BDS-2: one level of parallelization is
lost in this part of the GPU algorithm, since Section 2.2 and Table 2 point
out that all HBD evolutionary operators are applied only for a few individuals
(N/30). So, almost all the speedup gained from BSA iteration is then lost in the
DE iteration needed for the HBD part of BDS-2. In a word, we can conclude
that BDS-1 GPU version seems to be the most suitable for the selected high
dimensional benchmark problems.

5 Conclusion

A hybrid BSA-DE-SA algorithm has been presented and an experimental study
on 13 benchmark problems shows that it performs well in terms of solution
quality and convergence speed. Then, the design of our GPU implementation has
been explained, and experimental results point out that a significant speedup
can be achieved, up to 40 times with regard to sequential program.

In future work, we will consider comparing our approach to other algorithms
(for example, PSO, CMAES, SHADE) with additional benchmark functions.
As we introduce new user-defined parameters, another perspective would be to
improve the proposed algorithm with a self-adaptive technique, in order to be
less user-dependent and to achieve possibly better results. Finally, in the longer
term, it would be interesting to compare this hybridization with existing large-
scale optimization methods.

References

1. M. Brévilliers, O. Abdelkafi, J. Lepagnot, and L. Idoumghar. Idol-guided backtrack-
ing search optimization algorithm. In 12th International Conference on Artificial
Evolution - EA 2015, Lyon, France, October 2015.

2. P. Civicioglu. Backtracking search optimization algorithm for numerical optimiza-
tion problems. Applied Mathematics and Computation, 219(15):8121 – 8144, 2013.

3. S. Das, D. Mandal, R. Kar, and S. Prasad Ghoshal. A new hybridized backtracking
search optimization algorithm with differential evolution for sidelobe suppression of
uniformly excited concentric circular antenna arrays. International Journal of RF
and Microwave Computer-Aided Engineering, 25(3):262–268, 2015.

4. V. Kalivarapu and E. Winer. A study of graphics hardware accelerated particle
swarm optimization with digital pheromones. Structural and Multidisciplinary Op-
timization, 51(6):1281–1304, 2015.

5. G.-H. Luo, S.-K. Huang, Y.-S. Chang, and S.-M. Yuan. A parallel bees algorithm
implementation on GPU. Journal of Systems Architecture, 60(3):271 – 279, 2014.

6. P. Pospichal, J. Jaros, and J. Schwarz. Parallel genetic algorithm on the CUDA
architecture. In Applications of Evolutionary Computation: EvoApplications 2010,
pages 442–451. Springer Berlin Heidelberg, 2010.

7. L. Wang, Y. Zhong, Y. Yin, W. Zhao, B. Wang, and Y. Xu. A hybrid backtracking
search optimization algorithm with differential evolution. Mathematical Problems
in Engineering, 2015.

53

A New Parallel Memetic Algorithm to Knowledge

Discovery in Data Mining

Dahmri Oualid
1,*

, Ahmed Riadh Baba-Ali
2

1 Computer Science Department, FEI, USTHB,

BP 32 El Alia, BabEzzouar Algeria

dahmri_oualid_39@yahoo.fr
2 Research Laboratory LRPE, FEI, USTHB,

BP 32 El Alia, BabEzzouar Algeria

riadhbabaali@yahoo.fr

Abstract. This paper presents a new parallel memetic algorithm (PMA) for

solving the problem of classification in the process of Data Mining. We focus

our interest on accelerating the PMA. In most parallel algorithms, the tasks per-

formed by different processors need access to shared data, this creates a need

for communication, which in turn slows the performance of the PMA. In this

work, we will present the design of our PMA, In which we will use a new re-

placement approach, which is a hybrid approach that uses both Lamarckian and

Baldwinian approaches at the same time, to reduce the quantity of informations

exchanged between processors and consequently to improve the speedup of the

PMA. An extensive experimental study performed on the UCI Benchmarks

proves the efficiency of our PMA. Also, we present the speedup analysis of the

PMA.

Keywords: parallel memetic algorithm, classification, extraction of rules,

Lamarckian approach, Baldwinian approach, hybridization.

1 Introduction

Nowadays there is a huge amount of data being collected and stored in databases

everywhere across the globe, and there are invaluable informations and knowledge

“hidden” in such databases, and without automatic methods for extracting this

informations, it is practically impossible to use them.

Data mining [1], was born for this need. Among the tasks of this process, we find the

supervised classification [2] is one of the most important. It consists of predicting a

certain outcome based on a given input. In order to predict the outcome, the algorithm

processes a training set containing a set of attributes and the respective outcome, usu-

ally called goal or prediction attribute. The algorithm tries to discover relationships

between the attributes that would make it possible to predict the outcome. Next, the

algorithm is given a data set not seen before, called prediction set, which contains the

same set of attributes, except for the prediction attribute – not yet known. The algo-

rithm analyses the input and produces a prediction. The prediction accuracy defines

54

how “good” the algorithm is. This problem is NP-hard [3] and for that reason an ex-

ponential complexity making impossible the use of exact methods when the data size

is large.

Meta-heuristics [4] [5] are algorithms that can provide a satisfactory solution in a

relatively short time on this class of problems. Among these methods, we are particu-

larly interested in the Memetic Algorithms[18] (hybridization of a local search [7] and

genetic algorithm [6]). The genetic algorithm is so widely used to solve data mining

classification problems is the fact that prediction rules are very naturally represented

in GA. Additionally, GA has proven to produce good results with global search prob-

lems like classification. But this kind of algorithms requires considerable computation

time and amount of memory which are closely related to the size of the problem and

to the quality of the solution to obtain.

Therefore, these algorithms become interesting to parallelize. In general, parallelism

is used to solve complex problems requiring expensive algorithms in terms of execu-

tion time. But in most parallel algorithms, the tasks performed by different processors

need access to shared data, this creates a need for communication which in turn slows

the performance of the parallel algorithm. These communications are even more in-

fluential, in the case where processors require data generated by other processors. So

the objective of this work is to minimize communications in terms of data volume and

frequency of exchanges without penalizing the quality of the solution.

2 Related work

Genetic Algorithms are those among which have been the subject of the greatest

number of parallelization work, particularly because of their fundamental parallel

nature [8]. Cantú-Paz [9] presented a review of the main publications related to paral-

lel genetic algorithms. They distinguish three main categories of parallel genetic algo-

rithms :

 Parallelization form master-slave on a single population

 Parallelization Fine-grained on a single population (diffusion model)

 Parallelization Coarse-grained on multiple populations (migration model)

In the first model, there is only one population residing on a single processor called

the master. This one makes the different genetic operators of the algorithm on popula-

tion and then distributes the evaluation of individuals to slave processors.

In the second model, which is suitable for massively parallel computers, the individu-

als in the population are distributed on processors, preferably at a rate of one individ-

ual per processor. Selection and reproduction of individuals operators are limited to

their respective neighborhoods. However, as the neighborhoods overlap (an individual

may be part of the vicinity of several other individuals), a certain degree of interaction

between all individuals is possible.

The third category, more sophisticated and more popular, consists of several popula-

tions that are distributed over processors. These can evolve independently of each

other with only occasional exchanges of individuals. This optional exchange called

the migration phenomenon, is controlled by various parameters and generally pro-

55

vides a better performance of this algorithm type. This category is also called "parallel

genetic algorithms islands".

2.1 Hybrid parallelization of metaheuristics

Each metaheuristic has its own characteristics and its own way to look for solutions.

Therefore, it may be interesting to hybridize several different metaheuristics to create

new research behaviors. In this regard, Bachelet et al. [10] identified three main forms

of hybrid algorithms:

 Sequential hybrid, where two algorithms are executed one after the other, the re-

sults provided by the first being the initial solutions of the second.

 Synchronous parallel hybrid, where a search algorithm is used in place of an opera-

tor. An example of this type is to replace the mutation operator of genetic algo-

rithm with a tabu search.

 Asynchronous parallel hybrid, where several search algorithms work concurrently
and exchange informations.

2.2 Measuring Performance of parallel algorithms

In general, it's hard to make fair comparisons between algorithms such as

metaheuristics. The reason is that we can infer different conclusions from the same

results depending on the metrics we use and how they are applied. This comparison

become more complex when compared parallel metaheuristics, it's way is necessary

to qualify some metrics, or even to adjust them to better compare parallel

metaheuristics between them. Alba et al. [11] indicate that for non-deterministic algo-

rithms, such as meta-heuristics, it is the average time of sequential and parallel ver-

sions which must be taken into account. It offers different definitions of speedup.

Strong speedup which compares the parallel algorithm with the result of the best

known sequential algorithm. This is what is closest to the true definition of speedup

but considering the difficulty of finding each time the best existing algorithm, this

standard is not used much. Speedup is called weak if we compare the parallel algo-

rithm with the sequential version developed by the same researcher. It can then pre-

sent its progress both in terms of quality and in pure speedup. Barr and Hickman [12]

presented a different taxonomy consisting of relative speedup and absolute speedup.

The relative speedup is the ratio between the parallel version running on a single pro-

cessor and that performed on the set of processors. Finally, the absolute speedup,

which is the ratio of the fastest sequential version on any machine and the execution

time of the parallel version.

Speedup. The first and probably most important performance measure of a parallel

algorithm is the speedup [11]. It is the ratio of the execution time of the best algorithm

known on 1 processor and that of the parallel version. Its general formula is:

56

Efficiency. Another popular metric is efficiency. It gives an indication of the rate of

use of the requested processors. Its value is comprised between 0 and 1 and it can be

expressed as a percentage. The more the value of efficiency is close to 1, the better is

the performance. Efficiency equal to 1 matches to a linear speedup. Its general formu-

la is :

(P is the number of processors)

Other measures. Among other metrics used to measure the performance of parallel

algorithms, we find the "scaled speedup" (expandable speedup) [11] which measures

the use of available memory. We also find the "scaleup" (scalability) [11] to measure

the ability of the program to increase its performance when the number of processors

increases.

2.3 Impact of communication on the performance of parallel algorithms

The measure of parallel performance is a complex metric. This is mainly due to the

fact that the parallel performance factors are dynamic and distributed. [13] The com-

munication factor is among the most influential on the performance of the algorithm.

In many parallel programs, the tasks performed by different processors need access to

shared data. This creates a need for communication and slows the performance of the

algorithm. These communications are more important in the case where processors

require data generated by other processors. These communications are minimized in

terms of data volume and frequency of exchanges when we used our new replacement

approach, which is a hybrid approach that uses both Lamarckian and Baldwinian ap-

proaches at the same time, and this is the object of the next section.

2.4 Lamarckianism vs. Baldwinian effect

When integrating local search with genetic algorithm we are faced with the dilemma

of what to do with the improved solution that is produced by the local search. That is,

suppose that individual i belongs to the population P in generation t and that the fit-

ness of i is f(i). Furthermore, suppose that the local search produces a new individual

i' with f(i') < f(i) for a minimisation problem. The designer of the algorithm must now

choose between two alternative options. Either (option 1) he replaces i with i', in

which case P = P −{i}+{i'} and the genetic information in i is lost and replaced with

that of i', or (option 2) the genetic information of i is kept but its fitness altered : f(i)=

f(i'). The first option is commonly known as Lamarckian learning while the second

option is referred to as Baldwinian learning (Baldwin, 1896). The issue of whether

natural evolution was Lamarckian or Baldwinian was hotly debated in the nineteenth

century until Baldwin suggested a very plausible mechanism whereby evolutionary

progress can be guided towards favorable adaptation without the inheritance of life-

time acquired features. Unlike in natural systems, the designer of a Memetic Algo-

rithm may want to use either of these adaptation mechanisms. Hinton and Nowlan

(1987) showed that the Baldwin effect could be used to improve the evolution of arti-

57

ficial neural networks, and a number of researchers have studied the relative benefits

of Baldwinian versus Lamarckian algorithms, e.g., Whitley et.al. (1994), Mayaley

(1996), Turney (1996), Houck et.al. (1997), etc. Most recent work, however, favored

either a fully Lamarckian approach, or a stochastic combination of the two methods. It

is a priori difficult to decide what method is best, and probably no one is better in all

cases. Lamarckianism tends to substantially accelerate the evolutionary process with

the caveat that it often results in premature convergence. On the other hand,

Baldwinian learning is more unlikely to bring a diversity crisis within the population

but it tends to be much slower than Lamarckianism.

In our PMA, in each slave machine, when the Tabu Search algorithm runs on individ-

uals sent by the master machine, and before returning improved individuals, we have

to decide which replacement strategies will be applied. This decision will be taken

according to the fitness value of the improved individual. When this fitness is lower

than predefined threshold, we don't need to the genetic information of the individual,

but we have to send his fitness to the master, in this case, we will send just the fitness

value of the individual without its genetic information to the master to replace it in

population with the Baldwinian approach, otherwise if the fitness value of the im-

proved individual is above then the predefined threshold , in this case, we need to

send the genetic information and the fitness value of the individual to the master to

replace it in population with the Lamarckian approach.

3 Adaptive Memetic Algorithm

We present the adaptation of the Memetic Algorithm (MA) [14],[15] for the Classifi-

cation problem. In the literature, there are two different approaches to extract rules

using a genetic algorithm: the Pittsburgh approach and the Michigan one [15]. In our

work we have chosen the Michigan approach where a classification rule presents the

following form :

A is the premise or antecedent of the rule and C the predicted class. The A part of the

rule is a conjunction of terms that are of the form :

The rule coding involves a sequence of genes arranged in the same order as the attrib-

utes of the studied data except for the last gene of the individual or chromosome

which contains the predicted value of class [16]. Each condition is coded by a genome

and consists of a triplet of the form (Ai op Vij), where Ai is the ith table attribute on

which the algorithm is applied. The term op is one of the operators '=', '<' or '>' and

Vij is the Ai attribute value belonging to its values domain. To each genome is asso-

ciated a boolean field that indicates whether the premise is activated or not, in order

to maintain the chromosome size fixed. Even if individuals have the same length, the

rules associated with them are of variable length. The structure of an individual is

shown in Figure 1, where m is the total number of attributes.

A C

 Attribue Operator Value

58

Fig.1. Structure of an individual

The initial population is randomly generated to give it some diversity. Each individual

(or rule) is a potential solution to the problem to solve. However, these solution do not

all have same relevance degree. The rule coding involves a sequence of genes ar-

ranged in the same order as the attributes of the studied data except for the last gene

of the individual of chromosome which contains the predicted value of the class. This

is why the following criteria have been chosen [16] :

 To maximize the rule converge;

 To maximize the accuracy rate of the rule;

 To minimize the rule size because the comprehensibility of the rule is measured by
the number of premises;

Fitness =

 ʎ1 * Coverage / Total number of instance

 + ʎ2 * TP / Coverage

 - ʎ3 * Rule size / Total number of attributes

where ʎi is a real value that verifies ∑ ʎi = 1

In our Memetic Algorithm, we used hybridization of the tabu search with a genetic

algorithm. we used the tournament selection and the classical genetic crossover and

mutation operators. The individual resulting from crossover and mutation operators is

the initial solution (a rule) for the tabu search, then the best individual found by the

tabu search will replace the worst individual in term of accuracy in the population of

the genetic algorithm and so on.

In the tabu search approach, the neighborhood of the initial solution consists of all

solutions obtained by performing a one-movement operator which is applied to the

current individual as many times as the number of attributes of the considered training

set. So the created neighbors are evaluated by computing the same fitness as in the

genetic algorithm. Then the best solution in the vicinity of the current individual is

added to tabu list. Thus, the worst individual in term of accuracy is destroyed if the

size of tabu list is exceeded and so on.

4 The proposed PMA architecture

We present in this section the design of our synchronous parallel Memetic Algorithm

(PMA). It is a synchronous parallel model based on master-slave form uses a unique

population residing on a single processor called the master. The latter performs the

different genetic operations of the algorithm and then distributes the Tabu Search on

the slave processors.

59

4.1 Replacement strategy used

In our PMA we hybridized the Lamarckian and Baldwinian approaches together to

create a new approach in order to reduce the genetic information exchanged between

the Genetic algorithm and the Tabu Search algorithm without penalizing the accuracy

of the classifier based on our PMA. This hybrid approach is defined as follows:

 If the local search produces an individual i' with f(i')>Threshold, in this case the

Lamarckian approach is used, therefore P = P - (i) + (i') and f(i) = f(i')

 If the local search produces an individual i' with f(i')<=Threshold, in this case, the
Baldwinian approach is used, therefore, P still the same and f(i) = f(i')

The Threshold is a variable parameter, its value determines the number of individuals

which will be replaced with the Lamarckian approach, and the number of individuals

that will be replaced with the Baldwinian approach.

4.2 Our synchronous PMA using Master-Slave Model

In this model, we have a master machine and the others are slave machines. In each

slave machine, the Tabu Search algorithm runs on individuals sent by the master ma-

chine and before returning improved individuals we compare the fitness value of each

individual to a predefined threshold. If the fitness value of the individual is more than

the threshold then the genetic information and the fitness value of the individual are

both sent to the master, otherwise, if the fitness value of the individual is lower than

the threshold, we will send just the fitness value of the individual without its genetic

information.

The memetic algorithm runs in the master processor, and the master is the only ma-

chine that has the overall population in its own memory. The master processor per-

forms the selection, the crossover and the mutation of individuals and then distribute

them to the slaves. Each slave processor receives the individuals, performs the tabu

search and returns the optimized individuals to the master. When the master processor

receives all results from slaves, he performed the replacement operation. If the master

processor receives the fitness value of the an improved individual with his genetic

information, then he replaced it in a population with the Lamarckian approach, else if

he receives the fitness value of the improved individual without his genetic infor-

mation, then he replaced it in a population with the Baldwinian approach.

The learning database is the only common data between the master and slaves.

Consequently, we find the same learning database in all slaves. In order to always

have the same learning database anywhere, the master machine sends the best indi-

vidual selected after each generation of the Memetic Algorithm to all slave machines,

for that they can update their learning database.

Master/Slave communication. The different types of communication can be summa-

rized as follows :

60

From master to slave. The different informations sent from the master to a slave are:

 The individual resulting from the selection, crossover and mutation operators;

 The threshold value after each iteration;

 The best individual of each generation;

 Fig.2. Communication from master to slave

From slave to master. The different informations sent from a slave to the master are :

 The fitness value of the improved individual with its genetic information.

 The fitness value of the improved individual without its genetic information.

 Fig.3. Communication from slave to master

Synchronization. In this model the synchronization is launching of different slave

processors. At first, the master launches them all, then each time the master needs to

perform the Tabu Search on a set of the individuals distributes them on slave proces-

sors and waits for all results, then it replaces them in the population.

Individual

resulting from the se-

lection, crossover and

mutation operators

After each iteration

Threshold value

After each generation

Best individual

Master

(Memetic

Algoritm)

Master

(Memetic

Algoritm)

Slaves
(Tabu

search)

with fitness value and

genetic information

Improved individual

Improved individual

 with fitness value only

Slaves
(Tabu

search)

61

Slaves algorithm.

62

Master algorithm.

63

5 Results

5.1 UCI Benchmarks

The UCI is a very large database library of Benchmarks selected by the University of

California Irvine (UCI)[17]. The latter was made available to the research community

in Data Mining. These benchmarks that are widely used and considered as a reference.

Hence the importance of using them to evaluate algorithms and compare their per-

formance with other algorithms. Table 1 gives a summary of the databases used in our

tests.
Table 1. Databases used

DataBases Instances

number

Attributes

number

Class

number

hepatitis 155 20 2

heart-statlog 270 14 2

segment-challenge 1500 20 7

ionosphere 351 35 2

kdd-train 11419 42 2

diabetes 768 9 2

5.2 Results obtained by our synchronous PMA

The efficiency of our synchronous PMA is determined by the threshold value. In or-

der to find the best threshold value, we conducted a series of experiments with three

different thresholds :

 Threshold1: Is equal to the worst fitness value in the population for each iteration;

 Threshold2: Is equal to the best fitness value in the population for each iteration;

 Threshold3: Is equal to the average of all fitness values of the population for each
iteration;

We run the classifier based on our synchronous PMA 10 times successively on the

UCI benchmarks given above, for each threshold. We give every time the accuracy

obtained, and the percentage of individuals returned without the genetic information

compared to individuals returned with the genetic information.

The parameters PC and PM of Memetic Algorithm are PC = 0.025 and PM = 0.8 and

the parameters λ1, λ2 and λ3 of the objective function of classifier are λ1 = 0.1, λ2 =

0.8 and λ3 = 0.1 and the parameters memory size and the number of iterations of the

Tabu search are 5 and 300.

We have regrouped the average accuracy and the average percentage of individuals

exchanged without their genetic information, obtained from all databases for each

threshold in the following tables:

64

Table 2. Averages accuracies

database Average accuracy (%)
Threshold

1

Threshold

2

Threshold

3

hepatitis 84,57 73,30 84,39

heart-statlog 83,79 72,57 83,62

segment-challenge 94,81 83,39 96,06

ionosphere 90,35 87,24 90,14

kdd-train 99,29 86,62 99,79

diabetes 81,46 70,57 81,31

Table 3. Percentage of individuals returned without their genetic information

database Average percentage of individuals

returned without their genetic in-

formation (%)
Threshold

1
Threshold

2
Threshold

2

hepatitis 0,28 99,84 41,98

heart-statlog 0,16 99,90 40,42

segment-challenge 0.08 99,42 42,36

ionosphere 0,28 99,74 44,58

kdd-train 0,36 99,84 42,48

diabetes 0,06 99,62 43,90

We observe from Tables II and III, that the percentage of individuals returned without

their genetic information for the threshold1 is between 0.08% and 0.36% maximum,

so most individuals are returned with their genetic information and are replaced with

the Lamarckian approach in the population. So with the threshold1, our hybrid ap-

proach converges to the Lamarckian approach and we could not reduce the genetic

information exchanged between master and slaves. On the other hand, the percentage

of individuals returned without their genetic information for the threshold2 is between

99.42% and 99.90%, so most individuals are returned without their genetic infor-

mation and are replaced with the Baldwinian approach in the population. So with the

threshold2, our hybrid approach converges to the Baldwinian approach and we re-

duced by 50% the genetic information exchanged between the master and his slaves,

but on the other hand we obtained bad results in the accuracy of the classifier, for this

threshold. For the threshold3 the percentage of individuals returned without their

genetic information is between 40.42% and 44.58%, so almost half of the individuals

are returned without their genetic information, and also we have obtained very good

results in terms of accuracy of the classifier. So with the PMA based on the

threshold3, we could decrease by 20% the genetic information exchanged between the

master and his slaves without penalizing the accuracy of the classifier.

Furthermore to evaluate the performance of our PMA designed, we have performed a

series of tests on a network of 10 computers. The speedup, defined as the quotient

65

between the time Ts to run the sequential algorithm and the time Tp for the parallel

version, is used as the performance criterion.

To test the speedup of our PMA based on the threshold 3, we'll run it on the two data-

bases hepatitis (20 attributes) and kdd-train (42 attributes) and each time we increase

the number of slave processors, then we will compare it with the results of another

simple PMA(is PMA without the new approach of replacement). The results found

are in the following table:

Table 4. Results obtained with a different number of slaves

Fig.2 Speedup of the two algorithms for hepatitis database

Number of

slave proc-

essors

Speedup

hepatitis kdd-train

Simple

PMA

PMA with

threshold3

Simple

PMA

PMA with

threshold3

1 1,00 1,00 1,00 1,00

2 1,84 1,93 1,65 1,73

3 2,85 2,99 2,56 2,69

4 4,17 4,37 3,75 3,94

5 5,18 5,69 4,14 4,76

6 5,47 6,01 4,37 5,03

7 6,06 6,66 4,52 5,42

8 6,46 7,42 4,68 5,81

9 6,69 7,69 4,80 5,95

10 6,77 7,78 4,84 6,12

66

Fig.3 Speedup of the two algorithms for kdd-train database

From the viewpoint of speedup, we observe from Table IV and both Figures 1 and 2

that the simple PMA and the PMA with threshold3 give both good results, every time

we increase the number of slave processors, the speedup also increases. But if we

compare the speedup of the two algorithms, we observe that they have almost the

same speedup when the number of slaves is between 1 and 4, but once the number of

slaves exceeds 4 the speedup of PMA with threshold3 becomes better than that of

simple PMA for both databases hepatitis and kdd-train, which can be justified by the

increase in the cost of communication between the slaves and the master for the sim-

ple PMA, the fact that the number of slaves increases the size of exchanged messages

also increases, therefore, the communication costs slow the speedup. On the other

hand the speedup of the PMA with threshold3 is better because the size of the mes-

sages exchanged is reduced by 20%, therefore, the cost of communications is reduced

too, and the speedup is increased.

We also observe that the speedup of the two algorithms for hepatitis database is better

than their speedup for kdd-train database, which can be justified by the number of

attributes of the two databases. The fact that the number of attributes of kdd-train

database (42 attributes) is twice the number of attributes of hepatitis database (20

attributes), the size of exchanged messages and the cost of communications is also

double.

6 Conclusion

In this work, we presented the design of our parallel Memetic Algorithm for building

a classifier. In which we used a new replacement approach, which is a hybrid ap-

proach that uses both Lamarckian and Baldwinian approaches at the same time, to

reduce the quantity of information exchanged between the master and his slaves.

In order to see the effectiveness of this new hybrid approach of replacement and their

effect on the quantity of information exchanged and on the accuracy of the classifier,

we performed a series of tests on the UCI Benchmarks, and through the tests, it was

found that we have decreased by 20% the quantity of information exchanged between

the master and his slaves without penalizing the accuracy of the classifier.

67

To show the performance of our parallel Memetic Algorithm, we performed a series

of tests on a network of 10 computers. Then we compared the speedup obtained by

our parallel Memetic Algorithm with the speedup of another simple parallel Memetic

Algorithm. It was observed that once the number of slaves exceeds 4, the speedup of

our parallel algorithm is better than the simple parallel algorithm, because the number

of messages exchanged in our parallel algorithm decreased by 20%, therefore the

communication costs are reduced and the speedup is increased. It was also noted that

if the number of attributes in the database used increases, therefore, the size of ex-

changed messages and the cost of communications also increases, hence the im-

portance of our work in minimizing the quantity of exchanged individuals.

References

1. K. J. Cios, W. Pedryecz, R. W. Swinniarsky et L. A. Kurgan. « Data Mining : A Knowl-

edge Discovery Approach .» Editions Springer Science. (2007).

2. A. K. Jain et R. C. Dubes. « Algorithms for clustering data.» Editions Prentice Hall Ad-

vanced Reference Series. (1988).

3. Johann Dréo, Alain Pétrowski, Patrick Siarry, Eric Taillard. « Métaheuristiques pour

l’optimisation difficile ». Eyrolles, (2005).

4. Christian Blum, Andrea Roli. « Metaheuristics in Combinatorial Optimization: Overview

and Conceptual Comparison » . ACM Computing Survey, Vol. 35 No 3, (Sept. 2003).

5. Jin-Kao Hao, Philippe Galinier, Michel Habib. « Métaheuristiques pour l’optimisat ion

combinatoire et l’affectation sous contraintes ». Revue d’intelligence artificielle, (1999).

6. Goldberg D.E., « Genetic Algorithms in Search, Optimization and Machine Learning ».

Addison Wesley, Massachusetts, (1989).

7. Glover, F. "Tabu Search - Part I," ORSA Journal on Computing, 1(3), 190-206. Glover, F.

(1989).

8. Crainic, T. G. et Toulouse, M. (1998). Parallel Metaheuristics. Fleet Management and Lo-

gistics. T. G. C. a. G. Laporte. Norwell, MA., Kluwer Academic: 205-251.

9. Cantú-Paz, E. (1998). "A survey of parallel genetic algorithms." Calculateurs parallèles,

réseaux et systèmes répartis 10(2): 141-171.

10. Bachelet, V., Hafidi, Z., Preux, P. et Talbi, E.-G. (1998). "Vers la coopération des méta-

heuristiques." Calculateurs parallèles, réseaux et systèmes répartis 10(2).

11. ALBA, E., AND LUQUE, G. IV leasuring the performance of parallel metaheuristics. In

Parallel Metaheuristics : A new Class of Algorithms. Wiley-Interscience, 2005.

12. BARR, R., AND HICKMAN, B. Reporting Computational Experiments with ParaUel Al-

gorithms : Issues, Measures, and Experts' Opinions. Dept. of Computer Science and Engi-

neering, Southern Tvlethodist University, 1992.

13. MALONY, A. Tools for parallel Computing : A Performance Evaluation Perspective.

Springer, 2000, ch. VII, p. 342.

14. Bacardit, J.: Pittsburgh Genetic-Based Machine Learning in the Data Mining era: Repre-

sentations, Generalization, and Run-time. Phd Thesis, Universitat Ramon LIul, Spain

(2004)

15. Witten, I.H.: Data Mining: Practical Machine Learning Tools and Techniques with JAVA

Implementations. Morgan Kaufman Publishers, San Mateo (2003)

16. Tan, K.C., Yu, Q., Ang, J.H.: A Dual-Objective Evolutionary Algorithm for Rules Extrac-

tion in Data Mining. Comput. Optim. Appl. 34, 273–294 (2006)

17. BLAKE, C.L. and C.J. MERZ, UCI repository of machine learning databases, (1998).

68

18. Moscato, Pablo. "On evolution, search, optimization, genetic algorithms and martial arts:

Towards memetic algorithms." Caltech concurrent computation program, C3P Report 826

(1989): 1989

69

Classical Mechanics Optimization for image
segmentation

Charaf eddine Khamoudj1, Karima Benatchba1, and Mohand tahar Kechadi2

1 Laboratoire des Méthodes de Conception de Systèmes,
Ecole nationale Supérieure d’Informatique.

Oued smar, Algiers, Algeria {c_khamouj, k_benatchba}@esi.dz
2 School of Computer Science & Informatics,

Dublin, Ireland {tahar.kechadi}@ucd.ie

Abstract. In this work, we focus on image segmentation by simulating the nat-
ural phenomenon of the bodies moving through space. For this, a subset of im-
age pixels is regularly selected as planets and the rest as satellites. The attrac-
tion force is defined by Newton’s third law (gravitational interaction) according
to the distance and color similarity. In the first phase of the algorithm, we seek
an equilibrium state of the earth-moon system in order to achieve the second
phase, in which we search an equilibrium state of the earth-apple system. As a
result of these two phases, bodies in space are constructed; they represent seg-
ments in the image. The objective of this simulation is to find and then extract
the multiple segments from an image.
Keywords: Image segmentation · Combinatorial Optimization ·Artificial Intel-
ligence · Metaheuristic · Classical Mechanics Optimization.

1 Introduction
Segmentation is an important step in the image processing; it extracts segments from
images. Each segment represents a set of pixels (each pixel is defined by its coordi-
nates and color).

Image segmentation can be seen as a combinatory optimization problem, because
the goal is to find combinations of assigning pixels to segments. To find optimal parti-
tioning in K groups of an n pixels image, all the possible partitions must be browsed.
The number of possible partitions is given by the Stirling numbers of the second kind
[1]:

nk

1i
-ik i)((-1) k!

1=k)S(n, k
i Where: i)!-(ki!

k!=)(k
i (1)

If the optimal number of partitions is unknown, Stirling numbers are calculated for
k=1 to k=n. The number of possible partitions is given by Bell number [1]:

70

n

1k
),(=B(n) knS (2)

The Bell number quickly becomes very big (example: B(10)=115975). The heuris-
tic approaches for solving a combinatorial problem is to find a good solution in a
bounded time among an exponential number of possibilities. So they are based on
finding a good compromise between the calculation time and the quality of the best
solution found so far.

The objective is to use the state of bodies’ equilibrium in the space as a heuristic to
tackle the image segmentation problem. We have proposed and implemented an im-
age segmentation method based on a new metaheuristic inspired by the natural phe-
nomenon of the bodies’ movement in space. The proposed metaheuristic is based on
the impact of the attractive forces between the bodies during their movements.

To simulate this problem as a natural phenomenon of the bodies’ movement in
space, we need to define the planets, the satellites, and what the attraction force. For
this, m pixels of the image are uniformly selected. These pixels represent the planets,
the remaining pixels represent the satellites and the attraction force is defined by the
color similarity and the distance between the planet and the satellite.

The earth-moon system equilibrium is to find a situation, in which every single sat-
ellite is in rotation over the planet that applies on it the strongest attraction force. The
earth-apple system equilibrium is to find a situation, in which all the bodies are far
from colliding on each other, the resulting bodies represent the segments of an image.

2 Metaheuristics inspired from the interaction force
In the universe, attraction forces are divided into two types: Gravity is an attractive
force between the bodies, which depends on their masses. The electromagnetic inter-
action is an attractive force that acts on the elements with electrical charges. Some
researchers have proposed metaheuristics based on the forces of attraction between
bodies. These forces are generated either from the physical mass or the electric
charge. Here are some examples of this type of metaheuristic:

2.1 Gravitational search algorithm (GSA)
The gravitational search algorithm [2] uses Newton's third law to calculate the forces
of attraction and Newton's second law to deduce the speed of a body. The diversifica-
tion of the search in ensured by attraction force; To intensify the search, the gravita-
tional constant is linearly decreased with time. GSA algorithm is combined with Par-
ticle Swarm Optimization (PSO) to solve the image segmentation problem [3]; The
result algorithm is used in the second phase to search for the optimal threshold esti-
mation used as a search procedure in the first phase.

71

2.2 Charge Search System (CSS)
The search system based on the electric charge [4] is inspired by the electrostatic;
attributing electrical charges to the particles. The algorithm is used as a step of local
search to improve the founded solutions in PSO algorithm [5] to solve the image
segmentation problem.

2.3 Gravitational Interactions Optimization (GIO)
Optimization by gravitational interactions [6] called particle swarm optimization with
gravitational interactions. Each body stores its current position and its best position.
The interactions of bodies follow the Newton's third law and move each body to a
new location so that the whole population tends to reach the optimum. This method
uses the Newton's second law to calculate the speed of a body. To intensify the
search, authors use a mass unit placed in space to exert forces on other bodies to move
them. When the bodies are close to each other, the resulting forces are strong, and
there are many displacements..

2.4 Fusion-Fission metaheuristic
The fusion-fission metaheuristic [7] is inspired from nuclear physics. It is applied on
the graph partitioning problem, the clustering of documents and image segmentation.
The atom is formed of electrons with a negative charge and nucleons which form the
atomic core. There are two kinds of Nucleons: protons, positively charged and neu-
trons, neutrally charged. The cohesion of the atomic core is ensured by their strong
interactions. During the fission of an atom, the core divides into two fragments, along
with several ejected neutrons. An atom can split either spontaneously if its core is too
heavy, or because of being hit by a neutron. To merge, atoms must have sufficiently
high speeds. He considers a cloud of nucleons. It is subjected to high temperature and
pressure, so that the nucleons have great chances of collision. It is the fusion of these
nucleons together that forms the resulting atoms, which will help achieve an equilib-
rium state of the system. Fission is used to explode the biggest or non stable atoms.

3 Classical Mechanics Optimization (CMO)
As mentioned earlier, metaheuristics based on the gravitational interaction are hybrid-
ized with other metaheuristics, such as GSA algorithm with simulated annealing, and
GIO algorithm that is hybridized with the particle swarm optimization. The proposed
method is independent; it relies on applying the laws of classical mechanics.

The CMO simulates the natural phenomenon of the bodies’ movement in a space
by considering the pixels as bodies. m of these pixels are selected as planets and the n
remaining are considered satellites, the attraction force is defined by Newton's third
law (gravitational interaction).

72

After the simulation of the problem as a system of bodies in space, we execute the
algorithm in two main phases: The first phase is to find an equilibrium of the rotating
satellites around planets by applying the earth-moon system. The second phase is to
group the segments formed in the first phase by applying the earth-apple system.

3.1 Transformation of the problem into a system of bodies in space
The planets represent a subset S of the set E (E is the global set that contain all pixels
of image), and satellites represent the subset N representing the complement of S in E.
Rules (3) and (4) are to calculate the number of planets and the number of satellites:

brSatelliteNPlanetNbr
PlanetNbrPixelNbrm (3)

mNbrPn - ixel = (4)
The following figure shows the image to segment, the black pixels represent the

planets, the remaining are satellites.

Fig. 1. Planets selection.

The number of pixels of each segment defines their mass:
NbrClassPixelUnitMassC lassMass

Where: PixelNbr
SystemMassUnitMass

(5)

Newton's third law (gravitational interaction) is used to define the attraction force.
2

ab
baab d

mmgF (6)
Where ma, mb represent masses and dab represents distance between pixels a and b.
The distance dab is calculated by Euclidean distance, after the simulation of the

spatial distance from a triangular rule:
GreatestPixelDistance(GPD)GreatestBodiesDistance(GBD)
 PixelDistance(PD) BodiesDistance(BD)
So the distance ratio becomes:

GBD/GPD=Ratio Distance (7)

73

The image is composed by a matrix of pixels; each pixel is defined by its coordi-
nates and its color. After experimentation, the equation of attraction is improved as
follows:

ba cc
ab

baab ed
mmF (8)

Where ca and cb represent the color of the pixel a and the pixel b.
The gravitational fields earth-moon system GFem and earth-apple system GFea are
derived from the mechanic laws in rule (9) and rule (10) respectively:

2110 068.1 massGFem (9)
200/F = emGGFea (10)

3.2 Finding a body equilibrium by applying the earth-moon system
We look in space for an equilibrium of the bodies, to stabilize the movement of satel-
lites around planets. The movement of the satellites is caused by the gravitational
attraction exerted by the planets.

A body a is rotating around the body b with a force Fab. If there is a body c where:
Fac> Fab, then the body a leave its path around b and follows a new path around c.

For each combination, we calculate the attraction force for planets. The gravity
center becomes the center of all satellites around this planet.

We repeat the two previous steps until the system equilibrium is verified. The algo-
rithm of this step is described as follows:
Algorithm 1 Find the system equilibrium {Earth-Moon sys-
tem}
 var E: array [1..z,1..w] of real; {E is the image
 where z and w are the dimensions}
 Planet: array [1..m,1..n] of integer; {Each
 row of this matrix represents the satellites
 turned around the corresponding planet Since
 Planet(j, 1) represents the center of
 gravity of the same line}
 Satellite: array [1..n] of integer; {Each case i
 represents the corresponding planet of
 satellite i}
 m, n : integer; {m is planet number and n is
 satellite number }

 begin
 Calculate(m); Calculate(n);
 Initialize(Planet, Satellite);

74

 repeat
 For i = 1 to n
 For j = 1 to m
 If Earth-Moon gravitational field (Planet(j))
 > Distance (Planet(j),Satellite(i)) then
 If Force (Planet (j,1), Satellite(i)) > Force
 (Planet (Satellite (i),1),Satellite (i))
 then
 Move (Satellite(i), j);{Is to release the
 satellite i from his planet and assign it
 to the planet j}
 end;
 end;
 end;
 end;
 Until system stabilization
end.
The following figure shows a stable distribution of the satellites around the planets.

Fig. 2. System equilibrium for earth-moon system and grouping of bodies.

3.3 Construction of segments by applying the Earth-apple system
After the stabilization of satellites around planets, each planet-moon system is consid-
ered as one body. Then the gravitational fields of bodies (earth-apple system) is calcu-
lated. Each body situated in the gravitational field of another body falls (fusion of two
segments) and the two bodies are considered as a single body. After the fusion, we
repeat the previous two steps until the overall system is stable (all the found segments
are too far to be fused). The algorithm of this phase is as follows:
Algorithm 2 Research earth-apple system equilibrium
 use Result of Algorithm 1
 begin
 repeat
 For i = 1 to n
 For j = 1 to m
 If Gravitational field earth-apple(Planet(i))

75

 > Distance(
 Move (
 body j
 center of gravity
 from the
 m := m
 end;
 end;
 end;
 Until system stabilization
 end.
The following figure shows the
system).

Fig. 3. Bodies

3.4 Tests and results
We applied the CMO approach on real images
number of pixels planets m

m = the number of pixels in the image*8 / (167 + 8)
Because in the solar system there are
eight (08) planets. The results of the segmentation are:

> Distance(Planet(i), Planet(j)) then
(Planet(j), i); {move all pixels of the

body j to the body i, recalculate the new
center of gravity and remove the line j
from the Planet Matrix}

m := m-1;

stabilization

he following figure shows the bodies gravitational fields and fusion (earth-apple

Bodies gravitational fields and fusion (earth-apple system).

applied the CMO approach on real images by simulating the solar system. The

m is calculated as follows:
m = the number of pixels in the image*8 / (167 + 8)

Because in the solar system there are one hundred and sixty seven (167) satellites and
eight (08) planets. The results of the segmentation are:

of the
recalculate the new

apple

. The

and

76

Fig. 4. Image segmentation results by using CMO.
The segmentation of the two images provides three segments that represent the ob-
jects of each image, that the dice coefficient of the approach is 88,65. There are small
segments that are not displayed, it is the influence of light or stains. This is positive
because these pixels or smaller segments can be treated isolated segments which are
used to solve other problems such as the detection of tumors in medical imaging.

4 Conclusion
In this work, we developed an image segmentation method based on the simulation of
the natural phenomenon of bodies’ movement in space, called Classical Mechanics
Optimization. It consisted on two phases. As a first step, we seek an equilibrium of
the bodies in the earth-moon system (satellites assignment to the planets that apply
more attraction force). The second step is to group the most similar segments, apply-
ing an earth-apple system.

The simulation is made by the extraction of a pixels subset as planets and the re-
maining pixels represent the satellites. The attraction force equation is defined by the
rule (8) that represents Newton’s third law according to the pixels’ color, considering
the importance of color in image segmentation.

In CMO, intensification and diversification are provided by the distance ratio that
transforms the distance between pixels in the spatial distance. When it is small, the
algorithm becomes more intensive because the gravitational field increases. However,
if the distance ratio is very small, all the bodies may fall into a black hole which rep-
resents a segment that includes all pixels. Otherwise, if it is very large, grouping ob-
jects is not assured, because of the decrease in the gravitational field.

References
1. Benzaghou, B., Barsky, D.: Nombres de Bell et somme de factorielles. Journal de Théorie

des Nombres de Bordeaux, N° 16, pages 1-17 (2004)
2. Rashedi, E., Nezamabadi, H., Saryazdi, S.: Gsa. A gravitational search algorithm. Infor-

mation Sciences, 179(13): 2232-2248 (2009)
3. Amandeep, K., Charanjit, S., Amandeep, S.B.: SAR image segmentation based on hybrid

PSOGSA optimisation algorithm ISSN: 2248-9622 Vol.4 Issue.9 (2014)
4. Barrera, J., Carlos, A.: A particle swarm optimization method for multimodal optimization

based on electrostatic interaction. The 8th Mexican International Conference on Artificial
Intelligence (MICAI ’09), pages 622–632, Berlin, Heidelberg . Springer-Verlag (2009)

5. Dahiya, A., Dubey, R.B.: Survey of some multilevel thresolding techniques for medical
imaging. ISSN: 2347-3878 Volume 3 Issue 7 (2015)

6. Flores, J.J., Farias, R.L., Barrera, J. : Particle swarm optimization with gravitational inter-
actions for multimodal and unimodal problems. The 9th Mexican International Conference
on Artificial Intelligence (MICAI 2010), pages 361–370. Springer- Verglas (2010)

7. Bichot, C.: Elaboration d’une nouvelle métaheuristique pour le partitionnement de graphe
Doctoral thesis. The Polytechnic National Institute of Toulouse (2007)

77

Modern Heuristical Optimization Techniques for
Power System State Estimation

Halil Alper Tokel, Gholamreza Alirezaei and Rudolf Mathar

Institute for Theoretical Information Technology, RWTH Aachen,
ICT cubes, Kopernikusstrasse 16, 52074 Aachen
{tokel,alirezaei,mathar}@ti.rwth-aachen.de

http://www.ti.rwth-aachen.de/

Abstract. The development of efficient and accurate algorithms for
state estimation has come into the focus in power system research as the
power grid becomes more decentralized. In this work, we apply the heuris-
tical continuous optimization techniques differential evolution, simulated
annealing and particle swarm optimization to power system state esti-
mation problem, and provide a comparison between them in terms of
convergence and optimality. Examining the results, we propose a hybrid
algorithm combining particle swarm optimization and differential evolu-
tion.

Keywords: simulated annealing,particle swarm optimization,differential
evolution,power system,meta-heuristic

1 Introduction

The accurate state estimation has been the most fundamental problem in power
grids, since it delivers the system state as an input to all other applications in an
energy management system. With the integration of renewable resources and the
resulting decentralization of the power grids, an accurate and reliable information
about the state of the system is required not only for the transmission level but
also for the distribution level. This is a prerequisite to introduce new applications
and to ensure a stable operation of the power system.

The traditional state estimation problem is formulated as a nonlinear weighted
least square (WLS) problem, which can be solved iteratively by using gradient-
based methods, e.g., the Gauss-Newton method. However, the success of these
methods is based on a proper selection of a starting point, which is usually
unknown. Thus, they often converge to a local minimum instead of a global
one. On the other hand, the gradient is needed which is in practice replaced by
an approximation, since the used objective functions and constraints are often
discontinuous or very complicated to handle. In scenarios with a high number
of distributed generators and consumers, this problem leads to Jacobian matri-
ces [1], that are ill-conditioned. Considering the drawbacks of the basic state
estimation approach, modern heuristical optimization techniques can provide an

78

2 H. A. Tokel, G. Alirezaei, R. Mathar

alternative to deliver an accurate snapshot of the system state for the decentral-
ized structure of future distribution grids.

Since the seminal work of Schweppe et.al. [2], numerous formulations of the
state estimation problem and different numerical solution techniques have been
proposed. In [3] a comprehensive survey of different state estimation techniques
is given. The authors in [4] have proposed a hybrid particle swarm optimiza-
tion(PSO) algorithm with a natural selection mechanism for evolutionary com-
putation of the system state. For the computation, measurements consisting of
branch voltages and injection values are used. Similarly, Mallick et.al. [5] have
proposed a PSO algorithm with an additional differential evolution(DE) update
step and have shown that the PSO performance can be improved by this method
and it outperforms the Gauss-Newton method while considering ill-conditioned
networks. Basetti et.al. [6, 7] have applied a gravitational search algorithm con-
sidering both traditional measurements and phasor measurement units (PMU),
as well as a Taguchi differential evolution algorithm. Their proposed method de-
livers satisfactory results at the cost of longer computation time. In [8] a genetic
algorithm-based technique is used, and the authors point out that the heuris-
tical algorithm converges prematurely for IEEE 14 bus network without giving
a good estimate. The authors of [9] use a self-adaptive evolutionary approach
and conclude that evolutionary programming provides an accurate estimation
in tests with IEEE test networks for 14 and 30 bus.

This literature review reveals the interest in power system research to find
effective heuristical computational methods with good convergence properties in
order to overcome the drawbacks of traditional numerical methods. It is well-
known that the performance of heuristical techniques is highly dependent on
the structure of the considered optimization problem [10]. Hence, for a specific
optimization problem, one has to try out different heuristical approaches in order
to find the one with the best performance. This is our main goal in the present
work to compare all three methods, namely DE, simulated annealing(SA) and
PSO, and provide meaningful results for the state estimation of energy grids.

We start with a description of the power system model as well as the tradi-
tional state estimation problem. Next, we introduce the optimization techniques
followed by the description of the test cases along with simulation details. Finally,
we present our main results and conclude our achievements.

2 Power System State Estimation

State estimation in power systems tries to obtain a reliable estimate of the volt-
age phasors at all system buses in the network by using a set of measurements.
Although recent PMUs can measure voltage and current values with a high ac-
curacy, the wide deployment of PMUs is costly, especially when considering the
scale of distribution grids. For this reason, the traditional formulation of the
state estimation problem still plays a crucial role.

In the following, we introduce the basic formulation of the state estimation
problem for a power system. We define the system state x of a power grid with

79

Heuristical Optimization Techniques for Power System State Estimation 3

n buses by the vector x = [θ2, . . . , θn, |V1|, . . . , |Vn|], where θi and |Vi| are the
angle and the magnitude of the voltage phasor at node i, respectively. The angle
θ1 of the first bus is set to zero and used as the reference angle. The set of
measurements is denoted by

z =

h1(x)

...
hn(x)

+

e1
...
en

 = h(x) + e, (1)

where hi(x) is a nonlinear function, which describes the relation between the
value of measurement i and the state vector x, while e is the vector of mea-
surement errors. It is assumed that the measurement errors are independent and
zero-mean Gaussian distributed, i.e., e ∼ N (0,R), where R = diag(σ2

1 , . . . , σ
2
n)

is the covariance matrix, with the variances σ2
i of the noise components ei as its

diagonal entries. The standard deviation σi of each measurement is modeled to
take the accuracy of different measurements into account. The nonlinear mea-
surement function hi(x) depends on the measurement type and location, and
is formulated by the Kirchhoff rules for voltage and current. To illustrate the
measurement function Pi for the real power injection at bus i, we may write

Pi = Vi

N∑

j=1

Vj(Gij cos θij +Bij sin θij), (2)

where G and B are the real and imaginary parts of the bus admittance matrix
Y of the power system and θij = θi − θj . The WLS estimator tries to find the
state vector, which minimizes the error in the measurements. The optimization
problem reads as

minimize
x

J(x), (3)

where J(x) is defined by (z−h(x))TR−1(z−h(x)). Note that the optimization
problem (3) is subject to implicit constraints of state variables due to the as-
sumption of a stable operation. Of course, a solution to (3) can be found by the
Gauss-Newton method, however as mentioned in the introduction, the Gauss-
Newton method has its own challenges. For a solid treatment of this approach
please refer to [11].

3 Optimization Techniques

The heuristical techniques, which are considered in this work, are well-known
methods which have been applied to different problems in engineering and other
natural sciences. In this section, we introduce our notation for the power system
state estimation problem and present the parameters adopted in this work. A
good overview of modern heuristical techniques along with their applications in
power systems can be found in [12].

80

4 H. A. Tokel, G. Alirezaei, R. Mathar

3.1 Differential Evolution

In this work, we exploit the key ideas of differential variation, crossover and
mutation in DE, where mutation and crossover operations occur with a certain
probability, which is given by the algorithm parameter CR. The optimization
variable xk

i is encoded as a vector of floating point values.
The generation of a new candidate xk+1

i follows the update equation

xk+1
i = xk

p + (xk
i − xr1)λ+ (xr2 − xr3)F (4)

where xk
i is ith member of the current generation k, xk

p is the population member
to perturb, λ and F are the crossover and mutation coefficients, respectively, and
xri are randomly selected population members. We select the first term xk

p as

the best population member xk
best. This strategy has outperformed other options

in the test problems considered in this work.

3.2 Simulated Annealing

The key concepts in SA are cooling schedule, state generation and state ac-
ceptance. In present work, initial temperature is chosen as 100 and updated
by Tk+1 = 0.95kTk, where k is the iteration number. A new candidate xk+1 is
generated by perturbing the current point xk as in

xk+1 = xk + r
√
Tk, (5)

where r is a random unit vector with |r| = 1. The acceptance of a candidate
with an inferior objective function value occurs with a probability calculated by
the acceptance function faccept as

faccept = exp
(J(xi)− J(xj)

Tk

)
. (6)

Table 1. Summary of algorithm parameters and functions in this work

Algorithm Parameters Functions

DE CR = 0.7 xk+1
i = xk

best + (xk
i − xr1)λ+ (xr1 − xr2)F

F = 0.7 , λ = 0.5

SA T0 = 100 xk+1 = xk + r
√
Tk, |r| = 1

Tk+1 = 0.95kTk , faccept = exp
(

J(xi)−J(xj)

Tk

)

PSO c1,2 = 1.49 vk+1
i = wvk

i + (pbest,i − xk
i)c1r1 + (gbest,i − xk

i)c2r2

w = [0.4, 0.8] xk+1
i = xk

i + vk
i

81

Heuristical Optimization Techniques for Power System State Estimation 5

3.3 Particle Swarm Optimization

In PSO, a population with N members have their positions xk
i and velocities vk

i

where k is the iteration number and i is the member index. Each member knows
its personal best value pbest,i and the best value of its neighborhood gbest,i. The
velocity vi and the position xi are updated by

vk+1
i = wvk

i + (pbest,i − xk
i)c1r1 + (gbest,i − xk

i)c2r2, (7)

xk+1
i = xk

i + vk
i , (8)

where w is called the weight, c1, c2 are cognitive and social acceleration coeffi-
cients, and r1 and r2 are independent and uniformly distributed random num-
bers between 0 and 1. If the new member xk+1

i achieves a smaller value of the
objective function, the member and its personal best are updated.

In Table 1 the chosen parameters for all algorithms are summarized.

4 Test Cases

In this section, we describe the test networks considered in the present work. We
use the IEEE 14 and 30-bus test networks [13] for the comparison of the heuristi-
cal optimization techniques whose details are provided in the previous section. In
this work, we consider only power flow and generation injection measurements.
The power flow measurements are located on the branches of a spanning tree
of the networks. With the injection measurements, this placement ensures full
observability [11]. The exact measurement locations are listed in Table 2.

Table 2. Measurements used for calculations in IEEE 14- and 30-bus test networks

Power Flow on Branches Generation at Buses

14-Bus 1-2,1-5,2-3,2-4,4-7,4-9,5-6,6-11,6-12,6-13,7-8,9-10,9-14 1,2,3,6,8

30-Bus 1-2,1-3,2-4,3-4,2-5,2-6,6-7,6-8,6-9,6-10,23-24,25-26, 1,2,5,8,11,13

6-28,9-11,10-17,10-20,10-21,10-22,12-13,25-27,28-27,

12-15,12-16,14-15,15-18,15-23,18-19,22-24,27-29,27-30

We use the MATLAB package MATPOWER 5.1 to obtain the real (correct)
measurement values and the values of the state variables by solving the optimal
power flow problem [14]. The measurement values are then overlaid with additive
Gaussian noise with the standard deviation σi of 0.02 and 0.015 for power flow
and injection measurements, respectively.

Two different approaches are used for the initialization of the first candidates.
In the first approach, we set the starting candidate in SA and one member of
the first populations of DE and PSO to a candidate obtained by overlaying the
true system state along with a noise which has the same statistics as in the
measurement creation step. In other words, the algorithms start from a point in

82

6 H. A. Tokel, G. Alirezaei, R. Mathar

the search space which is close to the true system state. This approach, which we
call near start in the following, is reasonable since the power system state changes
gradually and the result of the last estimation can be used as the starting point
in the next estimation. For the sake of completeness, in the second approach, we
apply the same procedure with a flat start, where all voltage phasor magnitudes
|Vi| are set to 1 p.u. and all voltage phasor angles θi to 0◦. In both approaches,
other candidates in DE and PSO are randomly generated over the search space.
For each optimization algorithm, we perform Monte Carlo simulations with 30
runs with an iteration limit of 1000 iterations.

100 200 300 400 500 600 700 800 900 1000

Iteration number

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

9

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

 IEEE 14-Bus Network Comparison - Near Start

SA

PSO

DE

PSO-DE

Gauss-Newton

0 200 400 600 800 1000

Iteration number

0

200

400

600

800

1000

1200

1400

1600

1800

2000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

 IEEE 14-Bus Network Comparison - Flat Start

SA

PSO

DE

PSO-DE

Gauss-Newton

Fig. 1. Values of the objective function at certain iteration points for the IEEE 14-
bus network for all three heuristical optimization techniques DE, SA, PSO and hybrid
PSO-DE algorithm. Left: Near Start, Right: Flat Start.

100 200 300 400 500 600 700 800 900 1000

Iteration number

8

10

12

14

16

18

20

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

 IEEE 30-Bus Network Comparison-Near Start

SA

PSO

DE

PSO-DE

Gauss-Newton

100 200 300 400 500 600 700 800 900 1000

Iteration number

0

1000

2000

3000

4000

5000

6000

O
b

je
c
ti
v
e

 F
u

n
c
ti
o

n
 V

a
lu

e

 IEEE 30-Bus Network Comparison-Flat Start

SA

PSO

DE

PSO-DE

Gauss-Newton

Fig. 2. Values of the objective function at certain iteration points for the IEEE 30-
bus network for all three heuristical optimization techniques DE, SA, PSO and hybrid
PSO-DE algorithm. Left: Near Start, Right: Flat Start.

83

Heuristical Optimization Techniques for Power System State Estimation 7

5 Results

The results for IEEE 14-bus and 30-bus test networks are illustrated in Figure 1
and Figure 2, respectively. The graphs on the left provide a comparison of the
expected values of the objective function for near start initializations, whereas
the graphs on the right side show the results with flat start. It is noticeable in
near start case in Figure 1 that PSO performs best in first iterations, but is
overtaken by DE after 300 iterations. This observation has led us to propose an
hybrid solution with PSO and DE to benefit from their superior performances
in search and intensification, respectively. In this algorithm, we observe the rate
of decrease in the best value of PSO until it reaches a threshold value. After
the threshold is reached, the algorithm continues with the update steps of DE.
We set the threshold to 5% of the improvement in the first 5 iterations, where
the decrease in the best function value is compared with the threshold at every
five iterations. As can be seen in Figure 1, the proposed hybrid solution outper-
forms all other algorithms considerably in near start case. On the other hand,
we observe a very slight improvement in flat start initialization. In fact, DE out-
performs PSO in flat start initialization, which can be attributed to the start
from a worse population and the decrease in the search capability of PSO with
increasing iteration number. Another observation is the inferior performance of
SA compared with PSO and DE.

In Figure 2, the results of 30-bus test case enable the evaluation of the scala-
bility of the algorithms in a larger problem size. We observe in near start initial-
ization that the hybrid algorithm improves the performance of PSO marginally.
This is reasonable as DE does not outperform PSO in later iterations as in 14-
bus test case. In flat start case, we see that none of the algorithms can achieve
acceptable objective function values comparable to the result of Gauss-Newton
method, which can be reasoned by the larger problem size and the iteration
limit of the algorithms. Interesting is that the hybrid algorithm improves the
PSO performance only slightly, although the performance of DE is better than
PSO in flat start initialization. Regarding the variation in the achieved results,
PSO, DE and the hybrid algorithm have an average normalized standard devia-
tion of 0.08, 0.1, and 0.09% in 14-bus near start case, and 0.26, 0.41, and 0.23%
in 30-bus near start case, respectively. On the other hand, the variation in the
flat start case is as high as 36 and 89% in 14- and 30-bus networks, respectively.

6 Conclusion

In this work, we have applied the modern heuristical optimization techniques
DE, SA, and PSO to the problem of state estimation in power systems with
traditional measurements. Based on the comparison results in 14-bus network
test case, we have proposed a hybrid algorithm with PSO and DE, which has
improved the convergence noticeably. On the other hand, we have deduced that
a larger problem size poses a challenge for the hybrid algorithm, whereas none
of the algorithms can deliver satisfactory results with flat start initialization.

84

8 H. A. Tokel, G. Alirezaei, R. Mathar

Nevertheless, the decentralized structure of future distribution grids can enable
the use of heuristical techniques in a distributed manner.

References

1. Gu, J. W., Clements, K. A., Krumpholz, G. R., Davis, P. W.: The Solution of Ill-
Conditioned Power System State Estimation Problems Via the Method of Peters
and Wilkinson. IEEE Transactions on Power Apparatus and Systems, vol. PAS-102,
no. 10, pp. 3473-3480 (1983)

2. Schweppe, F. C., Wildes, J.: Power System Static-State Estimation, Part I: Exact
Model. IEEE Transactions on Power Apparatus and Systems, vol. PAS-89, no. 1,
pp. 120-125 (Jan. 1970)

3. Hayes, B., Prodanovic, M.: State Estimation Techniques for Electric Power Distribu-
tion Systems. In Proc. of 2014 European Modelling Symposium(EMS), pp. 303-308
(2014)

4. Naka, S., Fukuyama, Y., Genji, T., Yur, T.: A Practical Distribution State Esti-
mation Using Hybrid Particle Swarm Optimization. In Proc. of IEEE Power En-
gineering Society Winter Meeting, vol. 1, pp. 571-575, Ohio, USA (28 Jan-1 Feb
2001)

5. Mallick, S., Ghoshal, S. P., Acharjee, P., Thakur, S. S.: Optimal Static State Es-
timation Using hybrid Particle Swarm-Differential Evolution Based Optimization.
Journal of Energy and Power Engineering, Vol. 5, No. 4B, pp. 670-676 (2013)

6. Basetti, V., Chandel, A. K.: Power system state estimation using gravitational
search algorithm. In International Conference on Computer and Computational
Sciences (ICCCS), pp. 32-38. Noida (27-29 Jan. 2015)

7. Basetti, V., Chandel, A. K.: Hybrid power system state estimation using Taguchi
differential evolution algorithm. Journal of Science, Measurement & Technology,
IET, vol. 9, no. 4, pp. 449-466 (2015)

8. Hossam-Eldin, A. A., Abdallah, E. N., El-Nozahy, M. S.: A Modified Genetic Based
Technique for Solving the Power System State Estimation Problem. Journal of
World Academy of Science, Engineering & Technology, Issue 31, p. 311 (2009)

9. Contreras-Hernandez, E. J., Cedeno-Maldonado, J. R.: A Self-Adaptive Evolution-
ary Programming Approach for Power System State Estimation. In 49th IEEE
International Midwest Symposium on Circuits and Systems MWSCAS’06, vol. 1,
pp. 571-575 (6-9 Aug. 2006)

10. Navarro, R., Puris, A., Bello, R.: The Performance of Some Meta-heuristics in
Continuous Problems Studied According to the Location of the Optima in the
Search Space. Dyna rev.fac.nac.minas [online]. 2013, vol. 80, n. 180 [cited 2016-02-
09], pp. 60-66 . Available from: http://www.scielo.org.co/scielo.php?script=
sci_arttext&pid=S0012-73532013000400008&lng=en&nrm=iso.

11. Abur, A., Expósito, A. G.: Power System State Estimation: Theory and Imple-
mentation. CRC Press, New York (2004)

12. Lee, K.Y., El-Sharkawi, M.A.: Modern Heuristic Optimization Techniques: Theory
and Applications to Power Systems. Wiley-IEEE Press, Hoboken, New Jersey(2008)

13. Power Systems Test Case Archive, https://www.ee.washington.edu/research/
pstca/

14. Zimmerman, R. D., Murillo-Sánchez, C. E., Thomas, R. J.: MATPOWER: Steady-
State Operations, Planning and Analysis Tools for Power Systems Research and
Education. IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 12-19 (Feb.
2011)

85

On the community identification in weighted
time-varying networks

Youcef Abdelsadek1,2 ?, Kamel Chelghoum1, Francine Herrmann1,
Imed Kacem1, and Benôıt Otjacques2

1 Laboratoire de Conception, Optimisation et Modélisation des Systèmes
Université de Lorraine, Metz, France,

{youcef.abdelsadek,kamel.chelghoum,

francine.herrmann,imed.kacem}@univ-lorraine.fr
2 e-Science Research Unit, Environmental Research and Innovation Luxembourg

Institute of Science and Technology, Belvaux, Luxembourg
{youcef.abdelsadek,benoit.otjacques}@list.lu

Abstract. The community detection play an important role in under-
standing the information underlying to the graph structure. Especially,
when the graph structure or the weights between the linked entities
change over time. In this paper, we propose an algorithm for the commu-
nity identification in weighted and dynamic graphs, called Dyci. The lat-
ter takes advantage from the previously detected communities. Several
changes’ scenarios are considered like, node/edge addition, node/edge
removing and edge weight update. The main idea of Dyci is to track
whether a connected component of the weighted graph becomes weak
over time, in order to merge it with the ”dominant” neighbour commu-
nity. In order to assess the quality of the returned community structure,
we conduct a comparison with a genetic algorithm on real-world data of
the ARN-Info-RSN project. The conducted comparison shows that Dyci
provides a good trade-off between efficiency and consumed time.

Keywords: dynamic networks, community detection, genetic algorithm,
weighted graphs, Twitter’s networks.

1 Introduction

With the popularization of social networks like Twitter, an exponential quantity
of data is generated. These data are increasing each day, and the existing algo-
rithms which are not considering the dynamism nature of data would suffer from
the scalability issue. Furthermore, the community detection in a dynamic net-
work enhances our understanding of the underlying dynamic graph. The changes
that might occur can be, either the structure of the graph, its attributes or also
both of them. Consequently, how to analyse the evolution of the communities
structure over time? To answer this question, one need to devise an algorithm
which takes advantage from the previously identified communities by avoiding

? Corresponding author

86

the community identification from scratch at each instant. As a concrete exam-
ple, an analyst needs to understand how the information is shared in Twitter. To
fulfil this need, one have to detect the communities of the analyst’s time point
of interest and to follow the community’s member evolution with new members
joining/leaving the studied communities. In this context, a trade-off between
efficiency and response time is necessary.

A dynamic graph of an initial graph G0 can be seen as a sequence of static
graphs [5], denoted by Gs = (G0 ,G1 , . . . ,Gf) with f snapshots giving rise to
Css = (Cs0 ,Cs1 , . . . ,Csf) community partitions as results of Us = (U0 ,U1 , . . . ,
Uf−1) updates as illustrated in Figure 1. In [6] the authors introduces the proper-
ties of a dynamic graph. Those can be divided into two categories: the structural
category and the attributes category. We denote by Nt , Et , E

w
t , Ns and Es re-

spectively, the set of nodes at instant t, the set of edges at instant t, the set of
edge weights at instant t of Gt , the set of nodes of the whole Gs and the set of
edges of the whole Gs . Furthermore, the set of updates Ut varies in terms of the
impact they cause to the current set of communities.

1. Structural updates:
(a) Node removing: An old node on is removed, Nt+1 ← Nt \ {on} with

the related edges.
(b) Edge removing: An old edge oe is removed, Et+1 ← Et \ {oe}.
(c) Node addition: A new node nv is added, Nt+1 ← {nv} ∪ Nt with the

related edges.
(d) Edge addition: A new edge ne is added, Et+1 ← {ne} ∪ Et.

2. Attributes updates:
(a) Edge weight updating: An new edge weight new of an old edge weight

oew is updated, Ew
t+1 ← (Ew

t \ {oew}) ∪ {new}.

The outlines of the remaining sections of this paper are as follow: In Section
2 the related work of the addressed topic are presented. Section 3 introduces the
Dyci algorithm for community identification in weighted and dynamic graphs.
Section 4 describes the genetic algorithm. In section 5 the conducted assessments
and the obtained results are discussed. Finally, Section 6 concludes this paper.

Fig. 1: The graph sequence of a dynamic graph

87

2 Related work

This section presents some relevant works for the dynamic community detection.
There are more algorithms for the static version of this problem in the litera-
ture compared to the dynamic case, especially, for those considering weighted
edges. In [13], the dynamic community detection problem was proved to be NP -
complete and APX -hard. For the unweighed dynamic community detection, in
[12] the authors propose a matching algorithm to detect similar communities
over the snapshots, introducing a meta-community which is the sequence of
these identical communities. Agglomerative modularity-based approach are con-
sidered in [4], [2], [9]. The authors of [9] uses a physical metaphor with forces
which retains a node to stay in its community against attracting forces of the
other communities. Furthermore, game-theoretic analogy is used in [3]. In the
latter, each node of the graph is considered as an agent which maximizes its util-
ity function. A set of predefined agent actions is set initially. The system ends
when all agents choose their best community belonging (i.e., which maximizes
the utility). Finally, relying on the colouring problem, a constant-approximation
algorithm was proposed in [14]. Regarding the weighted version of this problem,
label propagation is used [15]. The idea of this algorithm is to allow a specific
node to change its community label taking into account its adjacent nodes labels.

3 Dynamic community detection algorithm

3.1 Notations and definitions

Let us define cni
, IW, INW,WD and WI which, respectively, represent the com-

munity of the node ni, the intra-community weight, the inter-community weight,
the weighted degree of a node and the weighted community-incidence of a node.
These are presented in the following equations:

IWcg =
∑

i<j

ewni,nj
,∀ni,∀nj ∈ cg (1)

INWcg,ch =
∑

i<j

ewni,nj
,∀ni ∈ cg,∀nj ∈ ch (2)

WDni =

v∑

j=1

ewni,nj
(3)

WI(node, cg) =

∑
ewnode,ni

WDnode
such as ni ∈ cg (4)

3.2 Dyci algorithm

An improved version of the algorithm proposed in [1] is applied on G0 as a
starting point Cs0 of Dyci.

88

1. Node removing (oldNode): The main idea of the node removing case is
to check whether the deletion of oldNode either generates several connected
components or reduces the IW (coldNode). To this end, Dyci tests for each
resulting connected component, noted CC, whether it can form a community
by it self or would be merged with an adjacent community, noted com. In
other words, Dyci verifies whether Equation 5 holds or not.

INWcom,CC > IWCC (5)

2. Edge removing (oldEdge): When an inter-community edge is removed,
this reduces the inter-community weight leading to more community-like
structure. However, the other case might lead to intra-community dividing
in two connected components or a significant weight loss. To handle this
case, Dyci compares weights between each resulting connected component
of oldEdge deletion and their adjacent communities by Equation 5.

3. Node addition (newNode): Two subcases can occur for node addition.
The first one is the subcase where newNode has no community edge inci-
dence leading to an isolated community. In the second subcase, newNode
comes with many edges. For the latter, newNode is added to the community
with the greatest WI(newNode, c),∀c ∈ communities adjacent to newNode.

4. Edge addition (newEdge): For this case, if newEdge is inserted inside a
community, this will not affect the community partition in terms of weights.
Unlike, an inter-community edge could increase the inter-community weight,
noted c1 and c2, aggregating them in one community. To handle this case,
Dyci verifies whether Equation 6 holds or not.

INWc1,c2 > IWc1 or INWc1,c2 > IWc2 (6)

5. Edge weight updating (edgeWeightUpdate): The last case be parti-
tioned into two subcases. The first is when the edgeWeightUpdate is an
inter-community edge with weight greater than the old edge weight. For
this scenario Dyci verifies whether Equation 6 holds or not. The second sub-
case rises when edgeWeightUpdate is an intra-community edge with weight
lower than the old edge weight. The algorithm checks whether this weight
loss leads to an adjacent community merging by Equation 5.

4 Genetic algorithm

Genetic algorithms (GA) can provide very good results if they are well set. In
order to evaluate the quality of the obtained communities of Csf , a comparison
is conducted between Dyci and the following GA.

– Chromosome encoding: The Locus-based Adjacency Representation [10]
(LAR) is used to encode the community detection problem, like in [11],
[7]. In the LAR a |Nf | sized array is used, where the couples (gene, allele)
express an associative community membership. Indeed, each gene takes its
allele value from the set of its node neighbours ensuring feasible solutions.
Figure 2 shows an example with the related individual decoding.

89

Fig. 2: An individual example using LAR encoding

(a) Uniform crossover
(b) Mutation

Fig. 3: Reproduction operators

– Fitness function: Modularity ϕ of [8] is used for individual evaluation:

ϕ =
1

2M

∑

ni

∑

nj

(
ewni,nj

− WDni
WDnj

2M

)
δ
(
cni , cnj

)
(7)

Such as, M =
∑

i<j

ewni,nj
and δ

(
cni
, cnj

)
= 1, if cni

= cnj
, 0 otherwise.

– Population initialization: A random population of size 100 is generated
and sorted in a decreasing fitness function order.

– Crossover: Uniform crossover with probability 0.9 is performed, as illus-
trated in Figure 3a.

– Mutation: Random allele flipping with probability 0.1 is performed, as
showed in Figure 3b.

– Parent selection and child insertion: Random selection from the 20%
eliteness individuals. Weakest individuals are excluded from the population.

– Stopping condition: Number of generations reaches 50.

5 Experiments and results discussion

This section discusses the obtained results of the conducted comparison between
the above GA and Dyci. Four datasets from real-world data of the ANR-Info-
RSN project are considered. The ANR-Info-RSN project deals with the com-
munity detection in Twitter’s network. To this end, the dynamic graphs model

90

the re-tweets between Twitter’s users over time. Table 1 presents the dataset
characteristics. The unit of snapshot generation is one day. Figure 4 and Figure
5 show, respectively, the obtained results for the datasets at tf and the averages
values of the results for the datasets for the whole Css.

From Figure 4a, we remark that Dyci and the GA have almost the same re-
sults (GA very slightly better). By taking into account the fact that the obtained
communities Csf of Dyci are highly influenced by the f previous choices made,
one could say that Dyci obtains satisfactory results. Further, from Figure 4c,
we remark that Dyci is relatively fast compared to the GA. Indeed, Dyci takes
advantage from the previous identified community avoiding relaunching process
at each snapshot. From Figure 5, we notice that the averages values are almost
the same comparing to the values of the last snapshot tf , except for DS3 where
Dyci takes more time and provides less modularity for the previous snapshots
but has relatively good result for the last snapshots tf .

Table 1: The ANR-Info-RSN datasets characteristics

Data sets t0 tf |Ns| |Es| |Nf | |Ef |
DS1 July 17,2014 July 31,2014 10569 14121 801 997
DS2 August 3,2014 August 15,2014 6162 8069 390 451
DS3 August 17,2014 August 31,2014 10189 12263 424 508
DS4 September 3,2014 September 30,2014 8224 10371 412 535

(a) Obtained modularity
(b) Identified number of communities

(c) Running time

Fig. 4: The results for the ANR-Info-RSN datasets at tf

91

(a) Obtained modularity (b) Identified number of communities

(c) Running time

Fig. 5: The results for the ANR-Info-RSN datasets for the whole Css

6 Conclusion

To conclude, community identification in time-varying networks enhances our
understanding of the graph structure over time. In this paper, a community
detection algorithm for weighted and dynamic graphs, called Dyci, is proposed.
The main idea of Dyci is to track whether a connected component of the weighted
graph becomes weak (i.e., in terms of weight) over time, in order to merge it
with the ”dominant” neighbour community. In order to assess the quality of the
identified communities by Dyci, a computational comparison is conducted with
GA on real-world datasets of the ANR-Info-RSN project. The latter shows that
Dyci obtains satisfying results with relatively short time.

Acknowledgments. This research has been supported by the Agence Nationale
de la Recherche (ANR, France) during the Info-RSN Project (ANR-13-SOIN-
0008).

References

1. Youcef Abdelsadek, Kamel Chelghoum, Francine Herrmann, Imed Kacem, and
Benôıt Otjacques. Community detection algorithm based on weighted maximum
triangle packing. In Proceedings of International Conference on Computer and
Industrial Engineering CIE45, 2015.

92

2. Riza Aktunc, Ismail Hakki Toroslu, Mert Ozer, and Hasan Davulcu. A dynamic
modularity based community detection algorithm for large-scale networks: Dslm.
In Jian Pei, Fabrizio Silvestri, and Jie Tang, editors, ASONAM, pages 1177–1183.
ACM, 2015.

3. Hamidreza Alvari, Alireza Hajibagheri, and Gita Reese Sukthankar. Community
detection in dynamic social networks: A game-theoretic approach. In Xindong
Wu, Martin Ester, and Guandong Xu, editors, ASONAM, pages 101–107. IEEE
Computer Society, 2014.

4. Shweta Bansal, Sanjukta Bhowmick, and Prashant Paymal. Fast community detec-
tion for dynamic complex networks. In Luciano da F. Costa, Alexandre Evsukoff,
Giuseppe Mangioni, and Ronaldo Menezes, editors, CompleNet, volume 116 of
Communications in Computer and Information Science, pages 196–207. Springer,
2010.

5. Stephan Diehl and Carsten Görg. Graph Drawing: 10th International Symposium,
GD 2002 Irvine, CA, USA, August 26–28, 2002 Revised Papers, chapter Graphs,
They Are Changing, pages 23–31. Springer Berlin Heidelberg, Berlin, Heidelberg,
2002.

6. F. Harary and G. Gupta. Dynamic graph models. Math. Comput. Model., 25(7):79–
87, April 1997.

7. Di Jin, Dongxiao He, Dayou Liu, and Carlos Baquero. Genetic algorithm with local
search for community mining in complex networks. In ICTAI (1), pages 105–112.
IEEE Computer Society, 2010.

8. MEJ Newman. Modularity and community structure in networks. Proceedings of
the National Academy of Sciences, 103(23):8577–8582, 2006.

9. Nam P. Nguyen, Thang N. Dinh, Ying Xuan, and My T. Thai. Adaptive algorithms
for detecting community structure in dynamic social networks. In INFOCOM,
pages 2282–2290. IEEE, 2011.

10. YoungJa Park and ManSuk Song. A genetic algorithm for clustering problems.
In John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb, Marco
Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg, Hitoshi Iba, and
Rick Riolo, editors, Genetic Programming 1998: Proceedings of the Third Annual
Conference, pages 568–575, University of Wisconsin, Madison, Wisconsin, USA,
22-25 July 1998. Morgan Kaufmann.

11. Clara Pizzuti. Ga-net: A genetic algorithm for community detection in social
networks. In PPSN, volume 5199 of Lecture Notes in Computer Science, pages
1081–1090. Springer, 2008.

12. Mansoureh Takaffoli, Farzad Sangi, Justin Fagnan, and Osmar R. Zane. Commu-
nity evolution mining in dynamic social networks. Procedia - Social and Behavioral
Sciences, 22:49 – 58, 2011. Dynamics of Social Networks7th Conference on Appli-
cations of Social Network Analysis - {ASNA} 2010.

13. Chayant Tantipathananandh, Tanya Berger-Wolf, and David Kempe. A framework
for community identification in dynamic social networks. In KDD ’07: Proceedings
of the 13th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 717–726, New York, NY, USA, 2007. ACM.

14. Chayant Tantipathananandh and Tanya Y. Berger-Wolf. Constant-factor approx-
imation algorithms for identifying dynamic communities. In John F. Elder IV,
Franoise Fogelman-Souli, Peter A. Flach, and Mohammed Zaki, editors, KDD,
pages 827–836. ACM, 2009.

15. Jierui Xie, Mingming Chen, and Boleslaw K. Szymanski. Labelrankt: Incremen-
tal community detection in dynamic networks via label propagation. CoRR,
abs/1305.2006, 2013.

93

