
1

Automated Machine Learning for
Information Retrieval in Scientific Articles

Hojjat Rakhshani1, Bastien Latard1,2, Mathieu Brévilliers1, Jonathan Weber1, Julien Lepagnot1

Germain Forestier1, Michel Hassenforder1, Lhassane Idoumghar1
1,2Université de Haute-Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France – firstname.lastname@uha.fr

2MDPI AG, Basel, Switzerland

Abstract—The amount of scientific conferences and journal
articles continues to increase and new approaches are required to
support users in finding relevant publications. This study investi-
gates to what extent a new machine learning (ML) pipeline may
preferentially identify links between similar scientific articles.
The characteristics of intersections and unions of keywords, con-
textualized keywords (i.e., synsets) and neighbors are computed
and used to train a ML model. Automated machine learning
(AutoML) is then applied to ease the search for a new pipeline.
Extensive experiments demonstrated that a newly designed ML
model is able to achieve an accuracy of 0.90 on a dataset of
approximately 120,000 article pairs. These results suggest that
application of ML for proposing new recommendation systems
could have in the long term a positive impact in the literature.

Index Terms—Word sense disambiguation, AutoML, semantic
similarity, information retrieval, evolutionary algorithms.

I. INTRODUCTION

The explosive growth in the number of scientific articles
presents a challenge to the search for relevant literature and
might hinder the access to the right papers [1]. In these
circumstances, most researchers have to commit their time to
search for recent findings which is labor-intensive. Scientific
recommender systems (SRS) benefit the researchers to be well
aware of most recent works in their community with the
crucial aim of saving their precious time [2], [3]. They do so
by considering necessary information extracted from an input
source. This might include profiles of users, keywords, citation
analysis, a single paper, online behaviors, and so on. The main
idea has become very popular since the introduction of the
famous “Customers who bought this item also bought...” from
Amazon, or other Netflix movie recommendation systems.

Co-occurrence-based, collaborative filtering and content-
based approaches are among the main groups of recommenda-
tion algorithms applied to scientific literature. In the first case,
the goal is to find relatedness between articles, sometimes from
textual co-occurrences, often relying on the citations graph—
assuming that two articles having references in common are
somehow related. An illustrative example is described in [4],
where a citations graph is used to identify the similarity
between two articles. The main drawback of this approach is
that a citation might be generic (or even unrelated) or from a
negative sentiment (e.g., “Authors made the wrong assumption
that...”). Alternatively, collaborative filtering approaches have
emerged [5], [6]. In these methods, users are the center of
interest and suggestions are usually based either on their

readings or ratings. Consequently, only accessed or rated
articles can be suggested to a user. Matsatsinis [5] tackled
this problem by forcing the users to set up their profile first
in order to get any related suggestions. Meanwhile, these
approaches suffer from the cold start problem (i.e., a lack of
data when launching the algorithm or when a new article is
added), or from low rating participation. Finally, the last group
incorporates also article metadata such as abstracts, titles, and
keywords. These content-based recommendation systems are
the most used approaches in the community; based on Beel’s
survey [7]. In the case of SRS, the content is represented by
text and information retrieval (IR) methods are applied to find
the most relevant piece of information. Among many tech-
niques, classical retrieval models (e.g., Boolean, TFIDF, vector
models) and enhanced probabilistic models (e.g., BM25) are
widely applied in the literature [8]. Although the general-
purpose probabilistic models have been successfully embedded
in SRS [7], they are often considered as “black boxes” from
which retrieval details or suggestion failures are difficult
or even impossible to understand. Therefore, improving or
correcting recommendations obtained from these approaches
is a tedious task, and recurrent errors tend to happen.

To the best of our knowledge, there is no work on applying
machine learning methods for IR of SRS which is the main
contribution of this paper. The proposed approach resolves
ambiguous keywords, expand those and creates features for
potential use in ML methods. To be effective in practice,
several AutoML algorithms are used to automatically tune and
design a new model for the problem at hand. We propose
to measure the similarity of scientific articles based on two
pre-processing steps, namely categorization and data augmen-
tation. Those respectively disambiguate keywords by finding
common categories among the potential senses, and augment
the data by retrieving every related neighbor. As the features
given to the adopted methods are directly inherited from these
two steps, they can be enhanced, modified, or adapted if
critical errors are detected. This also provides the possibility
of showing to the users how and why articles are suggested
as related articles. Therefore, a user can judge whether or not
a recommendation is correct before accessing it.

II. RELATED WORKS

In the recent years, a number of surveys have been pre-
sented to provide a review of related works on ML based

2

recommendation systems [9], [10], [11], [12]. Accordingly,
we can see that there are very few works which well shape
the application of ML for SRS. In [13], authors introduced a
collaborative filtering method based on deep neural networks.
They trained network using normalized user-rating and nor-
malized item-rating vectors. Ebesu and Fang [14] proposed a
flexible encoder-decoder architecture capable of incorporating
author meta-data for context-aware citation recommendation.
Experimental results on the large-scale CiteSeer dataset show
that the proposed method has a significant improvement over
its competitive baselines. In another work [15], a collaborative
model based on an extension of the stacked denoising autoen-
coder is proposed. The authors show that the new model is
able to jointly learn users and items’ latent factors from both
side information and the rating matrix by conducting some
experiments on two datasets containing ratings from users
on movies and books. Cai et al. [16] put forward a gener-
ative adversarial network based heterogeneous bibliographic
network representation to design a personalized citation rec-
ommendation system. Interestingly, Wang et al. [17] proposed
to use the convolutional neural networks for the editor article
recommendation task. Moreover, Bansal et al. [18] incorpo-
rated recurrent neural networks to represent text items for
collaborative filtering method, considering the task of scientific
article recommendation. Altogether, these success stories of
ML for SRS motivated us to investigate the efficiency of a
new ML pipeline model for IR of scientific articles.

III. MATERIALS AND METHODS

In the context of ML-based IR, the main focus should be
on building a high quality ML pipeline. This is due to the fact
that there is no universal approach and new ML pipelines have
to be constructed for each new data set [19]. The pipeline is
a linear sequence of machine learning process (usually data
cleaning, feature selection, and modeling) that transforms an
input vector x ∈ X into a target value y ∈ Y. This task can
be based on the structure of the pipeline and the choice of the
ML algorithms and their hyperparameters.

Definition 1 (Pipeline Creation Problem): Given a set
of algorithms A and their associated hyperparameters Λ, a
training set Dtrain and a validation set Dvalid such that
Dtrain ∩ Dvalid = ∅, the pipeline creation problem (PCP)
can be defined as a joint algorithm and hyperparameter
selection minimization problem using a loss function L [19]:

g∗, A∗, λ∗ ∈ arg min
g∈G,A∈A+,λ∈Λ

L
(

P
g,A,λ

(Dtrain),Dvalid
)

(1)

Here, g is a directed acyclic graph (DAG) that denotes the
structure of the pipeline P

g,A,λ
. In g, the nodes (consisting of

the selected algorithm A and its associated hyperparameters
λ) represent an arbitrary machine learning process and edges
represent the flow of an input. The performance of the config-
uration (g,A, λ) should be evaluated using the validation set
Dvalid.

In this work, the pipeline structure g is supposed to have
a fixed shape which eliminates the complexity of creating a

DAG graph. Figure 1 introduces the general workflow of our
pipeline. The first node exploits the keywords of the article and
finds common categories among those (Section III-A). This
categorization also validates the context of the keywords. After
this disambiguation phase, data is augmented (Section III-B)
by adding semantic neighbors (i.e., synonyms, hypernyms,
hyponyms, etc.). From these two steps, different types of
variables can be used to connect two scientific articles. Indeed,
common keywords or neighbors can be shared among those,
in different proportions. Thereafter, a set of five state-of-the-
art optimization techniques are used to automatically build a
superior ML model for the problem at hand. Here, different
hyperparameter optimization (HPO), neural architecture search
(NAS), and combined algorithm selection and hyperparameter
optimization (CASH) problem formulations are used. Accord-
ingly, we will have an ensemble of five ML models where
only the best one is allowed to exist among those alternatives.

The computational nodes are fed with connectivity details
obtained from the aforementioned two steps (see Section III-C)
and trained to determine whether a pair of articles is similar
or dissimilar. Given that no ground truth is available, the
similarity is based on the assumption that articles belonging
to journals along the same scope (or from the same journal)
are similar. Figure 2 is a simplified illustration of the proposed
approach. Articles go through the same categorization process
and their degree of connections (see Sec. III-C) are used to
predict their similarity.

A. Categorization

This approach disambiguates article keywords using the
lexical knowledge database BabelNet [20], assuming that the
more keywords within the same article sharing categories in
common, the higher the probability that the category is one
contribution of the article. An enhanced n-gram approach
splits multiple-word keywords when no data is found in the
BabelNet ontology, and sub-keywords are exploited. In other
words, BabelNet indexes are queried for every (sub-)keyword,
and each request may return a list of synsets. 1

Synsets have various metadata attached, such as cate-
gories, domains, neighbors, or translations obtained from
Wikipedia, WordNet, and other knowledge databases, and
these are merged into BabelNet. Domains are the highest
level in the semantic tree, whereas categories (mainly ob-
tained from Wikipedia) are much more specific2. Then, three
co-occurrences matrices—namely, categories per keywords,
sub-keywords, and synsets—are created to avoid categories
being selected when they are over-represented within a non-
significant pool of synsets (e.g., when two synsets from
the same keyword share the same category). Then, the
Hadamard product of these three matrices is computed, and
categories appearing in at least two different synsets from two
distinct keywords are retained as potentially representative for
the article.

1A synset can be seen as a contextualized word with a specific sense or
meaning, which will not have different meanings for homonyms.

2There are only 26 domains, but around 290,000 categories.

3

Fe
a
tu

re
 E

n
g

in
e
e
ri

n
g

Articles

Categorization

Data

Augmentation

DE Hyperband

HPO

BOHB Auto-Sklearn

CASH

Auto-Keras

NAS

ML Model

A
u
to

M
L

D
a
ta

se
t

Fig. 1: Illustration of the adopted ML pipeline. First, the input
data is used for feature extraction task. Then, DE, BOHB,
Hyperband, Auto-Sklearn and Auto-Keras methods are applied
to find a superior ML model. Accordingly, we will have five
output models and the one with highest accuracy will be
selected for the problem at hand.

Finally, articles are categorized and keywords are disam-
biguated, as illustrated in Figure 3. In this example, the
article had three keywords (i.e., “AIDS”, “HIV”, and “Cervical
cancer”). BabelNet returned, respectively, 1, 3, and 1 synset(s)
while searching for these. Given that the synset from “HIV”
shared categories with synsets from both other keywords, the
approach validated their related synsets sharing it and the
article was categorized. A weight of two (i.e., the number of
keywords sharing it) was allocated to these two categories.
This weight will be used for the intersection confidence
(Section III-C).

B. Data Augmentation

After categorizing articles, data is augmented, and, more
precisely, semantic neighbors are retrieved. Neighbors are
obtained from semantic relationships obtained from Wikipedia,
WordNet [21] and other sources merged into BabelNet. Hyper-
nyms, hyponyms, homonyms and other semantically related
words (i.e., other semantic relationships) are embedded into
neighbors in BabelNet. However, synsets are too massively
connected within the ontology tree, and some generic synsets
may have a huge number of neighbors. For instance, the
synset “Artificial Intelligence”3 has 1210 neighbors (from
2212 edges) involving 5483 categories. Retaining only ex-
pected categories (i.e., the article’s categories) helps to focus
on more targeted neighbors and avoid retrieving generic (or
unrelated) neighbors. Considering the previous example, the
“Artificial intelligence” synset has eight categories in BabelNet
(e.g., “Artificial intelligence”, “Computational neuroscience”,
“Cybernetics”, and “Emerging technologies”) obtained from

3https://babelnet.org/synset?word=bn:00002150n

Wikipedia. Then, filtering out all neighbors which do not
belong to any of its eight synset categories removes 1127
unrelated neighbors, and only 83 neighbors are finally selected.

C. Article Connections

After these two steps, article keywords are disambiguated—
at least the ones sharing categories in common—and neighbors
matching categories are retrieved. Several semantic relation-
ships can be obtained from these augmented data. Indeed,
intersections and unions between the different sets may con-
tribute to a new similarity metric, taking into account all of
the following variables. Let Kx be the sets of keywords, Sx
the synsets, and Nx the neighbors of the article Ax.

Keyword (K) relationships: The intersection and union
cardinality of original keywords from both articles A1 and
A2 (respectively, |K1

⋂
K2|, |K1

⋃
K2|). In other words, all

keywords are taken into account, even those without synsets.
Synset (S) relationships: The intersection and union cardi-

nality of disambiguated keywords (i.e., the selected synsets):
|S1

⋂
S2|, |S1

⋃
S2|.

Synset intersection confidence: Given that synsets may
come from highly or poorly represented categories from the
article categorization, the mean weighted category value of
connected synsets can represent the confidence of these in
regard to their best category occurrence.

conf(S1, S2) =
∑

s∈(S1∩S2)

1

2
∗
(
bestCat(A1, s)

|S1|
+
bestCat(A2, s)

|S2|

)
,

(2)
where bestCat(Ai, s) returns the highest category weight for
s in Ai.

Synset–Neighbor (N) relationships: The cardinality of
intersection and union between synsets from the first article
and neighbors of the second article: |S1

⋂
N2|, |S1

⋃
N2|.

Neighbor–Synset relationships: The cardinality of inter-
section and union between neighbors from the first article (N1)
and synsets of the second article (S2): |N1

⋂
S2|, |N1

⋃
S2|.

Neighbor relationships: The cardinality of intersection
and union between neighbors from both articles: |N1

⋂
N2|,

|N1

⋃
N2|.

Number of original keywords: The number of ambiguous
keywords (i.e., authors’ or computed keywords) for each
article. This data might be used to determine whether the
intersection per union ratio is representative of the overall
number of keywords: |K1|, |K2|.

Number of keywords with synsets: The number of dis-
ambiguated keywords for each article. I.e., the number of
keywords from which synsets sharing common categories have
been found in the categorization step: |S1|, |S2|.

All of these variables are the features passed to a neural
network—a multilayer perceptron (MLP) —and the expected
labels will be the journal matching. In other words, the MLP
is expected to learn the prediction of a positive similarity
classification for two articles within the same (or related)
journal(s).

4

Categorization
Data

augmentation Machine Learning

 similar
 /
dissimilar

...
...

...

Article 1

Article 2

Keywords Disambiguated
 Keywords

 Augmented
 Keywords

Data
augmentation

Categorization

Fig. 2: General workflow of our approach. Article keywords are first categorized, augmented and a neural network learns to
predict similarity of article pairs. The validation is finally based on their journal belonging.

 HIV
(3 synsets)

Synset:

AIDS
(1 synset)

Synset:

HIV/AIDS

Synset:

Health_disasters

HIV/AIDS

diseases_and_infections
Sexually_transmitted

Causes_of_death

bn:02916610n

bn:03291444n

bn:00044295n

Populated_places
in_Savojbolagh_County

Pandemics

Synset:
bn:00044294n

(1 synset)
Synset:

bn:03328633n Gynaecological_cancer
Cervical cancer

diseases_and_infections
Sexually_transmitted

Papillomavirus
associated_diseases

Fig. 3: Keywords’ senses are disambiguated by finding common categories shared among them. Here, all three keywords share
categories in common.

D. AutoML

AutoML, the end-to-end process of building ML models,
can be applied to all components of the pipeline [19]. Our in-
troduced pre-processing methods do not need to be configured
and we define the performance of the pipeline as a function
of its classification algorithms A and their hyperparameters
Λ. Accordingly, the main part of our AutoML system has
a significant overlap with HPO, CASH and NAS. These
different problem formulations are characterized based on the
complexity of the search space and search strategy.

HPO is equivalent to find an optimal hyperparameters
configuration λ∗ based on a given ML algorithm A and its
associated hyperparameters λ with domain λ′. The search
space of HPO is composed of continuous, integer, categorical,
and conditional hyperparameters. From Figure 4, we can see
how the values of the hyperparameters in support vector classi-
fier (SVC) would first be treated, before the learning process
begins4 . In HPO, ML model selection and hyperparameter
optimization are independent which divides the whole search
space into subspaces and speeds up the optimization process.

Hyperband [22], BOHB [23] and differential evolution
(DE) [24] are three HPO search strategies used in the AutoML
component. Hyperband5 is an extension of SuccessiveHalving
algorithm [25] which: allocates a partial budget to a set of

4Figure 4 is depicted based on SVC in Sklearn: https://github.com/scikit-
learn/scikit-learn

5https://github.com/zygmuntz/hyperband

SVC

name: kernel
type: categorial
cs: {linear,poly,sigmoid}

name: coef0
type: float
cs: [0,3.2e+1]

name: gamma
type: categorial
cs: {auto,scale}

name: degree
type: integer

cs: [1,2]

name: C
type: float
cs: [1e-2,3.3e+4]

name: shrinking
type: categorial
cs: {true,false}

name: tol
type: float
cs: [1e-5,1e-1]

Fig. 4: An illustration of the associated hyperparameters with
SVC in Sklearn software package. These hyperparameters
must be chosen a priori and cannot be derived via training. The
hyper-parameters in SVC have a hierarchy structure, which
implies that some of them are conditioned on the value of
others (denoted by blue boxes), e.g. degree of the polynomial
kernel function will be ignored by all other kernels.

configurations, evaluates trained model on the full validation
set, discards a set of worst configurations; enhances the budget
and repeats until one configuration remains. The algorithm
allocates resources to more favourable configurations as the
optimization process goes on. This promising search strategy
is embarrassingly parallel, but does not take into account the
useful information about the fitness landscape of the problem
at hand which may lead to slow convergence rate. Hence, we

5

used the BOHB6 to achieve both strong any time performance
and final performance; as outlined in [23]. Moreover, an
evolutionary algorithm called as DE [24], is also used to
enhance our chance on the very complex search spaces of
candidate configurations7.

Alternatively, CASH formulation takes into account a mix-
ture of the ML algorithms and their hyperparameters. Instead
of selecting an algorithm and optimizing its hyperparameters,
both steps are applied simultaneously. Needless to say, the
search space of CASH formulation is larger because the
algorithm selection itself is considered a hyperparameter. We
employed Auto-sklearn [26] as the search strategy for CASH
problem which is already shown to perform favorably against
the state-of-the-art methods in the literature8.

Finally, we embrace Auto-Keras which is an efficient au-
tomating architecture engineering framework for NAS [27],
[28]. This approach provides functions to automatically search
for architecture and hyperparameters of ML models. It em-
ploys a neural network kernel, a tree-structured acquisition
function optimization algorithm, and the concept of the Net-
work morphism to efficiently explore the search space9. It
obtains already superior results over manually designed archi-
tectures on some tasks such as image classification and can
be a potential candidate for the problem at hand.

IV. EXPERIMENTS

1) Experimental data: A total of 3,112 articles from four
journals (Symmetry (725), Religions (684), Viruses (870), and
Toxins (833)) were selected to evaluate our approach. All
journals were distinct (i.e., not in relation) except Toxins and
Viruses, which have related scopes. Therefore, our approach
aims to predict the similarity for pairs of articles from the
same journal or for pairs of articles from similar journals. The
categorization step found connections among 2,668 unique
synsets from 1,389 articles (45%), from which 14,149 unique
synsets were added as neighbors. Finally, the dataset con-
tained 119,874 article pairs having at least one intersection
as described in Section III-C, involving keywords, synsets, or
neighbors.

2) Experimental setup: We use the power of five different
optimization approaches to find a superior model for sci-
entific article recommendation. The configuration space for
HPO search strategies is composed of DecisionTreeClassifier,
KneighborsClassifier, RandomForestClassifier and MLPClas-
sifier classifiers which results in total 31 hyperparameters.
Moreover, the configuration space of Auto-sklearn is com-
posed of 15 classifiers, 14 feature selectors, and 4 data
preprocessors which results in a structured hypothesis space
with 110 hyperparameters. Furthermore, Auto-Keras takes into
account the highly popular computational modules as the basic
components to build a graph-based ML model. These modules
are Dense, Dropout, and activation functions (e.g., ReLU).
The readers are referred to see the detailed principle about

6https://github.com/automl/HpBandSter
7http://www1.icsi.berkeley.edu/~storn/code.html
8https://github.com/automl/auto-sklearn
9https://github.com/keras-team/autokeras

the conducted experiments, the computational resources, the
configuration space, and the reported numerical results within
the supplementary file made available online10.

For HPO-based search strategies, the number of function
evaluations is limited to 550, while for Auto-Sklearn and Auto-
keras it is considered to be 5 days. To tackle the negative
effects of the random initial configurations, each algorithm
were run 15 times. In DE, population size is 50, F is 0.9,
and CR is 0.5. In Auto-Sklearn, we sampled the hyper-
parameters space by using functions provided in its library.
We limited the maximum training time of each model to one
hour and its memory consumption to 3,072 Mb. To evaluate
the performance of these methods, we decomposed our dataset
into a training set containing 60% of the data (i.e., pairs of
articles), a validation set representing 20% of the dataset and
a test set containing the remaining 20%.

3) Classifier selection: The statistical results show that DE
and Hyperband search strategies obtained 90% of accuracy,
followed by BOHB(0.899%), Auto-Sklearn (0.899%), and
Auto-Keras (0.895%). Generally speaking, the HPO search
algorithms has achieved a better performance and so more
analysis are given in Figure 5 to verify this trend. Considering
convergence rate, this figure shows that DE has a better
performance in comparison with the other HPO algorithms.
The numerical results are given in supplementary file10 (see
Appendix II). Generally, these results offer an insight into the
application of different search strategies for designing a new
ML-based IR systems which can be used in the future works.

V. RESULTS

A. Overall

Experiments described in Section IV highlighted
that a random forest classifier is the best classifier
for our dataset. Its optimized hyperparameters are
obtained as follows: n_estimators=163, criterion=gini,
bootstrap=True, max_features=0.96, min_samples_split=2,
min_samples_leaf=1. Hence, it has been trained on the
training set and evaluated on the test set. Table I provides
an overview of the article pairs grouped by their higher
types of intersection found within the dataset, the size of
the test set for each relationships, and the obtained accuracy
for predicted pairs. Elements of K1

⋂
K2 are considered as

semantically higher than S1

⋂
S2 ones, which are higher than

elements of S1

⋂
N2 and N1

⋂
S2, and finally N1

⋂
N2 are

semantically the lowest type of intersections. Intersections
inherited from elements of S1

⋂
N2 and N1

⋂
S2 are grouped

because there is a huge overlap, hence it does not make sense
to differentiate them.

An overall accuracy of 0.90 is obtained for the 29,975
pairwise similarity predictions from the test set. As expected,
the keywords intersections are the safest ones (K1

⋂
K2),

thus the easiest to predict (0.99 of accuracy). The same
observation is obtained with synsets ones (S1

⋂
S2). The

accuracy constantly decreases and predictions on intersec-
tions involving synsets and neighbors obtain an accuracy of

10https://tinyurl.com/rakhshani-wcci2020

6

0 100 200 300 400 500
The number of evaluations

0.8800

0.8825

0.8850

0.8875

0.8900

0.8925

0.8950

0.8975

0.9000
Va

lid
at

io
n

ac
cu

ra
cy

RandomForestClassifier

DE
BOHB
HyperBand

0 100 200 300 400 500
The number of evaluations

0.862

0.864

0.866

0.868

0.870

0.872

Va
lid

at
io

n
ac

cu
ra

cy

KNeighborsClassifier

DE
BOHB
HyperBand

0 100 200 300 400 500
The number of evaluations

0.8425

0.8450

0.8475

0.8500

0.8525

0.8550

0.8575

0.8600

Va
lid

at
io

n
ac

cu
ra

cy

MLPClassifier
DE
BOHB
HyperBand

0 100 200 300 400 500
The number of evaluations

0.850

0.852

0.854

0.856

0.858

Va
lid

at
io

n
ac

cu
ra

cy

DecisionTreeClassifier
DE
BOHB
HyperBand

Fig. 5: The convergence plot of the DE, BOHB and Hyperband HPO search strategies over 15 runs. In this figure, the variance
of the algorithms are also depicted which indicates how sensitive they are to different random seeds.

TABLE I: Distribution of article pairs according to their type of intersection in the dataset, size of the test set, and the
corresponding accuracy.

Number of
pairs / type Total |K1

⋂
K2| |S1

⋂
S2| |(S1

⋂
N2)

⋃
(N1

⋂
S2)| |N1

⋂
N2|

in dataset 119,874 4,424 4,945 29,829 80,676

in test set 23,975 889 981 6,024 16,081

accuracy 0.9002 0.9775 0.9786 0.9429 0.8751

0.94
(

(S1

⋂
N2)

⋃
(N1

⋂
S2)
)

. Finally, the neighbors inter-
sections, which are the furthest semantical relationships obtain
an accuracy of 0.87.

Given that neighbors intersections are the most represented
pairwise elements within the dataset, their low accuracy signif-
icantly affects the overall accuracy. To counter this, we plan to
further investigate on the way to improve the classification of
pairs exclusively connected by neighbors. An interesting lead
would be to use a sigmoid function to return a similarity score
normalized between 0 and 1. Therefore, a threshold might
be heuristically defined in order to fit with the requirements
in terms of precision and number of articles proposed. Then,
only pairs with a similarity score above this threshold will be
considered as relevant.

B. Comparison with baseline
We proposed a baseline to estimate the added value of ML

on this task. Accordingly, it computes the similarity score by

realizing a weighted sum of Jaccard indexes of the sets of
synsets (S1, S2), neighbors (N1, N2) and synset and neighbors
(S1, N2 and N1, S2). Keywords relationships are therefore left
away and do not influence the similarity score. Without ML,
it obtains a general accuracy of 0.82 on the same test set
when no threshold is applied to the similarity score and every
pair having a distance is considered as a prediction11. In other
words, ML improves by 8 points the accuracy of predictions
which is probably inherited by the fact that there might be
other more subtle relationships between the variables which
are hard seen impossible to identify by human.

VI. CONCLUSION

In this paper, we proposed a new architecture to predict
the similarity between pairs of scientific articles. The pre-

11A threshold of 0.002 drops the accuracy to 0.55 given that there are many
small similarity scores and too many correct predictions are skipped.

7

processing steps combining categorization and data augmen-
tation built a promising semantic base, which led to the
creation of a precise classifier reaching an accuracy of 0.9.
In the future, we plan to compare the obtained results with
other distance algorithms such as Word Mover Distance or
Doc2Vec. To do so, a normalized distance might be returned
from the network (i.e., before the activation function). This
would provide further insights about the performance of our
approach compared to other known approaches.

REFERENCES

[1] T. Hey and A. Trefethen, “The Data Deluge: An e-Science Perspective,”
in Communications Networking & Distributed Systems. Wiley, 2003,
pp. 809–824.

[2] X. Bai, M. Wang, I. Lee, Z. Yang, X. Kong, and F. Xia, “Scientific
paper recommendation: A survey,” IEEE Access, vol. 7, pp. 9324–9339,
2019.

[3] R. Sharma, D. Gopalani, and Y. Meena, “Concept-based approach for
research paper recommendation,” in PReMI. Springer, 2017, pp. 687–
692.

[4] M. Reyhani Hamedani, S.-W. Kim, and D.-J. Kim, “SimCC: A novel
method to consider both content and citations for computing similarity
of scientific papers,” Information Sciences, vol. 334-335, pp. 273–292,
2016.

[5] N. F. Matsatsinis, K. Lakiotaki, and P. Delias, “A system based on
multiple criteria analysis for scientific paper recommendation,” in PCI,
2007, pp. 135–149.

[6] S. M. McNee, I. Albert, D. Cosley, P. Gopalkrishnan, S. K. Lam, A. M.
Rashid, J. A. Konstan, and J. Riedl, “On the recommending of citations
for research papers,” in CSCW. ACM, 2002, pp. 116–125.

[7] J. Beel, B. Gipp, S. Langer, and C. Breitinger, “Research-paper recom-
mender systems: a literature survey,” International Journal on Digital
Libraries, vol. 17, no. 4, pp. 305–338, 2016.

[8] C. Manning, P. Raghavan, and H. Schütze, “Introduction to information
retrieval,” Natural Language Engineering, vol. 16, no. 1, pp. 100–103,
2010.

[9] S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based rec-
ommender system: A survey and new perspectives,” ACM Computing
Surveys (CSUR), vol. 52, no. 1, p. 5, 2019.

[10] A. Nawrocka, A. Kot, and M. Nawrocki, “Application of machine
learning in recommendation systems,” in ICCC. IEEE, 2018, pp. 328–
331.

[11] I. Portugal, P. Alencar, and D. Cowan, “The use of machine learning
algorithms in recommender systems: A systematic review,” Expert
Systems with Applications, vol. 97, pp. 205–227, 2018.

[21] G. A. Miller, “WordNet: a lexical database for English,” Communica-
tions of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[12] C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing, “Recurrent
recommender networks,” in WSDM. ACM, 2017, pp. 495–503.

[13] H. Lee and J. Lee, “Scalable deep learning-based recommendation
systems,” ICT Express, 2018.

[14] T. Ebesu and Y. Fang, “Neural citation network for context-aware
citation recommendation,” in SIGIR. ACM, 2017, pp. 1093–1096.

[15] X. Dong, L. Yu, Z. Wu, Y. Sun, L. Yuan, and F. Zhang, “A hybrid collab-
orative filtering model with deep structure for recommender systems,”
in AAAI, 2017.

[16] X. Cai, J. Han, and L. Yang, “Generative adversarial network based
heterogeneous bibliographic network representation for personalized
citation recommendation,” in AAAI, 2018.

[17] X. Wang, L. Yu, K. Ren, G. Tao, W. Zhang, Y. Yu, and J. Wang,
“Dynamic attention deep model for article recommendation by learning
human editors’ demonstration,” in SIGKDD, ser. KDD ’17. ACM,
2017, pp. 2051–2059.

[18] T. Bansal, D. Belanger, and A. McCallum, “Ask the gru: Multi-task
learning for deep text recommendations,” in RecSys, ser. 16. ACM,
2016, pp. 107–114.

[19] M. Zöller and M. F. Huber, “Survey on automated machine learning,”
CoRR, vol. abs/1904.12054, 2019.

[20] R. Navigli and S. P. Ponzetto, “BabelNet: The automatic construction,
evaluation and application of a wide-coverage multilingual semantic
network,” Artificial Intelligence, vol. 193, pp. 217–250, 2012.

[22] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
“Hyperband: A novel bandit-based approach to hyperparameter opti-
mization,” Journal of Machine Learning Research, vol. 18, no. 185, pp.
1–52, 2018.

[23] S. Falkner, A. Klein, and F. Hutter, “BOHB: Robust and efficient
hyperparameter optimization at scale,” in ICML, ser. Proceedings of
Machine Learning Research, vol. 80. PMLR, 10–15 Jul 2018, pp.
1437–1446.

[24] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[25] K. Jamieson and A. Talwalkar, “Non-stochastic best arm identification
and hyperparameter optimization,” in Artificial Intelligence and Statis-
tics, 2016, pp. 240–248.

[26] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and
F. Hutter, “Efficient and robust automated machine learning,” in NIPS,
2015, pp. 2962–2970.

[27] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey,” Journal of Machine Learning Research, vol. 20, no. 55, pp.
1–21, 2019.

[28] H. Jin, Q. Song, and X. Hu, “Auto-keras; an efficient neural architecture
search system,” in SIGKDD, ser. KDD ’19. ACM, 2019, pp. 1946–
1956.

