
Neural Architecture Search for Time Series
Classification

Hojjat Rakhshani, Hassan Ismail Fawaz, Lhassane Idoumghar, Germain Forestier,
Julien Lepagnot, Jonathan Weber, Mathieu Brévilliers, Pierre-Alain Muller

Université de Haute-Alsace, IRIMAS UR 7499, F-68100 Mulhouse, France – firstname.lastname@uha.fr

Abstract—Neural architecture search (NAS) has achieved great
success in different computer vision tasks such as object detection
and image recognition. Moreover, deep learning models have
millions or billions of parameters and applying NAS methods
when considering a small amount of data is not trivial. Unlike
computer vision tasks, labeling time series data for supervised
learning is a laborious and expensive task that often requires
expertise. Therefore, this paper proposes a simple-yet-effective
fine-tuning method based on repeated k-fold cross-validation in
order to train deep residual networks using only a small amount
of time series data. The main idea is that each model fitted
during cross-validation will transfer its weights to the subsequent
folds over the rounds. We conducted extensive experiments on
85 instances from the UCR archive for Time Series Classification
(TSC) to investigate the performance of the proposed approach.
The experimental results reveal that our proposed model called
NAS-T reaches new state-of-the-art TSC accuracy, by designing
a single classifier that is able to beat HIVE-COTE: an ensemble
of 37 individual classifiers.

Index Terms—Neural architecture search, times series classifi-
cation, metaheuristics, deep learning

I. INTRODUCTION

Nowadays, machine learning models have been popularly
used in perceptual tasks by both academic and industrial
researchers. These models are designed to find solutions for
some specific Machine Learning (ML) tasks without being
straightforward to apply an existing ML pipeline to a new
domain and still have superior results [1]. Hence, machine
learning experts have to construct a specialized ML pipeline
for each given supervised learning task. The extra degree
of freedom from the design space could make this process
very time-consuming and has motivated a demand for Neural
Architecture Search (NAS) methods that can be adopted easily
without any expert knowledge [2], [3], [4], [5].

The existing methods usually employ random search [6],
grid search [7], reinforcement learning [3], Bayesian opti-
mization [8], evolutionary algorithms [9] and gradient-based
methods [10] to explore the space of neural architectures.
Although they give rise to a large number of studies for
reporting more accurate classifiers, researchers are still faced
with the challenge of computationally expensive simulations.
This is primarily due to the huge number of parameters,
often in the range of millions, which is associated with deep
learning (e.g. [3] used 800 GPUs concurrently to generate
a computer vision model for Cifar-10). Furthermore, neural
networks mainly require extremely large quantities of data to
be trained for a specific task which are unavailable in many

real-world problems. Consequently, there has been a surge of
interest in minimizing the design complexities of the NAS
methods [11], [12], [13], [2], [14].

Time series classification (TSC) is one of those real-
world problems revolving around small data sets, existing
in cybersecurity [15], health monitoring data [16] and human
mobility [17]. Traditionally, TSC tasks are tackled with non
deep learning approaches such as Support Vector Machines
and Nearest Neighbor classifiers [18]. Nevertheless, a recent
significant amount of research efforts have been spent to
embrace Convolutional Neural Networks (CNNs) for solving
domain agnostic end-to-end TSC problems [19], [20], [21],
[22], [23]. The aforementioned approaches, however, exclude
NAS methods which can be a valuable tool to improve their
empirical performance. Meanwhile, applying NAS methods on
small TSC datasets often result in overfitting [24]; as presented
in Figure 1. The results in the latter figure are obtained using
a hyperparameter optimization of ResNet [22] on 85 data sets
from the UCR archive [25]. We investigated the performance of
the hyperparameter optimization on 85 different configuration
TSC scenarios, which are defined by 11 control parameters.
The details about optimized hyperparameters is presented in
Table I. Our experimental procedure follows training, validation
and test phases. The loss function for the model is categorical
cross entropy. After finishing the automatic configuration, best
configuration based on the validation accuracy is used to
measure the performance of the optimized ResNet on the
unseen test instances. The number of function evaluation is set
to 100 and we repeat the experiment for 10 run using random
search. As presented in the paper, the over-fitting was the main
problem to continue with the aforementioned method.

TABLE I: Details of the optimizing hyperparameters in ResNet
for the TSC task.

Hyperparameter Values Default
Learning rate of Adam {0.0001,0.001,0.01,0.1,0.2,0.3, adaptive

0.4,0.5,0.6,0.7,0.8,0.9}
Batch size {8,16,32,64,128,256} adaptive
Features in 1th Layer {8,16,32,64,128,256} 64
Features in 2th Layer {8,16,32,64,128,256} 64
Features in 3th Layer {8,16,32,64,128,256} 64
Features in 4th Layer {8,16,32,64,128,256} 128
Features in 5th Layer {8,16,32,64,128,256} 128
Features in 6th Layer {8,16,32,64,128,256} 128
Features in 7th Layer {8,16,32,64,128,256} 128
Features in 8th Layer {8,16,32,64,128,256} 128
Features in 9th Layer {8,16,32,64,128,256} 128

0 2000 4000 6000 8000
train size

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ac

cu
ra

cy
 d

iff
er

en
ce

s

0 100 200 300
train size

-0.2

0

0.2

0.4

0.6

0.8

ac
cu

ra
cy

 d
iff

er
en

ce
s

(a) Accuracy gain vs train size

0 20 40 60 80 100
usage of computational resources

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ac
cu

ra
cy

 d
iff

er
en

ce
s excellent results

with few
evaluations

inferior results with
large number of
evaluations

(b) Accuracy gain vs computational budget

Fig. 1: Figure (a) shows the difference in accuracy with respect to the train size, while Figure (b) presents the trade-off between
the computational resource usage and the gain in accuracy.

The current methods to tackle this problem rely on strategies
such as fine-tuning [26]. In the same direction, this paper
proposes a complementary solution, applicable when having
different ML tasks to solve with small time series data sets. The
main idea is to integrate the repeated k-fold cross-validation
into the fine tuning process and transfer the learned weights
across the folds instead of overwriting them. Thus, useful
information already learned is shared across different folds
which will be used to build the final classification model. We
adopted an evolutionary algorithm to optimize the ResNet
architecture. The process includes replacing the last few layers
of a pre-trained network, with some randomly initialized ones.
Then, the weights of the modified model are trained via
backpropagation while freezing the weights of the pre-trained
feature extraction network. This could be applied to all the
layers of the model by using a smaller learning rate (to avoid
losing previous knowledge), or possibly fine-tuning the weights
of some higher-level portion of the model and treat the rest of
the layers as fixed feature extractor components. We investigate
how this policy may be used as an alternative to the traditional
fine-tuning approach for TSC problem. The main contributions
of this paper can be summarized as follows:

• We provide the first NAS-based for solving domain
agnostic TSC problems.

• We reach new state-of-the-art results for TSC, when
evaluating on the UCR archive.

• We show how a simple yet effective fine-tuning technique
allows us to build a very accurate model.

• We provide the first open source framework for automati-
cally building ResNet models for TSC.

II. BACKGROUND

In this section, we will first provide some preliminary
definitions, followed by a brief overview of deep learning
approaches for TSC.

A. Time series classification problem

Assume that time series X = [x1, x2, . . . , xT] is an
ordered set of values xi ∈ R, with T denoting the
length of the time series X . Also consider a dataset D =
{(X1, Y1), . . . , (XN , YN)} to be a collection of pairs (Xi, Yi)
where Xi is a time series with Yi as its corresponding
label. TSC then consists of designing a classifier on D in
order to map from the raw feature space X to a probability
distribution over the set of unique classes in D. For many
decades, the Nearest Neighbor (NN) classifier coupled with the
Dynamic Time Warping (DTW) distance, has been the favorite
classifier in many TSC tasks [18]. A recent empirical evaluation
of TSC algorithms [27] showed that ensembling techniques
such as the Hierarchical Vote Collective of Transformation-
Based Ensembles (HIVE-COTE) significantly outperforms
other individual classifiers such as NN-DTW. Although HIVE-
COTE contained more than 37 classifiers, it is until recently
that deep learning has been considered as a potential domain
agnostic classifier of time series data, therefore, we will
describe in the next subsection the recent achievements of
neural networks for TSC problems.

B. Deep learning for time series classification

Deep learning has revolutionized the field of computer vision
and is currently being adopted in many natural language pro-
cessing tasks as well as reaching state-of-the-art performance in
various speech recognition systems [28]. Inspired by this recent
success of deep learning in these versatile fields, researchers
started adopting these neural network algorithms for TSC. [HR:
A group of authors] [22] proposed the residual architecture
(ResNet) to show how deep learning methods perform on
time series data. In another work proposed by [29], a novel
Fully CNN architecture was designed to reach state of the
art performance for surgical skills evaluation from kinematic
multivariate time series data. In [30], Autonomous Deep

Learning has been proposed for data stream problems. In [31],
deep CNNs were used for human activity recognition from
wearable sensors data. In summary, deep neural networks are
being leveraged to improve current state-of-the-art performance
in many TSC fields [20]. For domain agnostic TSC, ResNet
is considered the state-of-the-art architecture when evaluated
on the 85 datasets from the UCR archive [20]. However, we
should emphasize that currently ResNet’s architecture and its
hyperparameters were not optimized yet for the underlying
task, unlike HIVE-COTE whose hyperparameters were highly
optimized [27]. The latter observation constitutes the main
motivation of this paper: we believe ResNet could benefit from
a hyperparameter optimization regime in order to reach state-
of-the-art performance for TSC, similarly to how the NN-DTW
benefited significantly from a cross-validation scheme to learn
a specific Warping Window (WW) for each TSC dataset [18].

III. RESIDUAL NEURAL NETWORKS

Deep Residual Networks (ResNets) were first proposed
by [32] for image recognition tasks. Since its introduction
in 2016, ResNet became one of the most adopted deep
learning architectures in various domains such as object
recognition [33], speech recognition [34] and many other
natural language processing tasks [35]. In [22], a relatively
deep residual network was proposed for classifying domain
agnostic univariate time series data. More recently, ResNet
is being used in many TSC domains such as in healthcare,
where a deep ResNet was designed to diagnose with expert level
accuracy irregular heart rhythms (arrhythmias) from single-lead
electrocardiography signals [36]. Furthermore, ResNet showed
a great performance when predicting urban building energy
consumption [37], detecting road anomalies from smart-phones
sensors data [38] and recognizing human activity from wearable
sensors time series data [39]. Given the aforementioned success
of ResNet for TSC, we decided to adopt the same architecture
proposed in [22] for our fine-tuning optimization algorithm.
The architecture is comprised of three main residual blocks,
where each block contains three fully convolutional layers of
respectively 8, 5 and 3 as kernel length each. The number of
one-dimensional filters for the first block is fixed to 64, whereas
for the second and third block this hyperparameter is set to 128.
All convolutional layers employ a batch normalization operation
to speed up the training process [40], with the Rectified Linear
Unit (ReLU) as activation function [41]. Finally, we emphasize
that for each residual block the input is fed with a linear
shortcut to the output of the current block. This latter connection
constitutes the main characteristic of a residual network which
allows a direct flow of the gradient thus mitigating the vanishing
gradient problem [32]. In conclusion, the approach described
in this paper will consist of pre-training the already validated
ResNet architecture, then using a meta-learning algorithm to
add up to 15 hybrid layers making the final network’s depth
twice as deep as ResNet’s. See Fig. 2 for an overview of our
proposed framework.

IV. METHODOLOGY

This section presents a fine-tuning method to explore the
possibility of automatically designing an enhanced ResNet
network architecture for the TSC problem. We first propose
a way of representing the network using linear strings with
fixed length as genotype, and nonlinear entities as phenotype.
The introduced NAS for TSC (NAS-T) method applies search
operators directly on the genotype, while decodes a genotype
into a phenotype only for evaluation purpose. The cost of
each architecture is defined as its average loss validation error,
which is obtained via fine-tuning the network using repeated
k-fold cross-validation on the training set. The key point here
is that all of the folds which NAS-T ends up iterating over
will transfer their weights to the subsequent ones. The search
algorithm then minimizes the cost function in order to deliver
new architectures with strong empirical performances.

A. Design space

We provide a fixed length representation for an architecture
which allows us to reduce the size of the search space

[HR: ; as presented in Figure 3]. This chain-structured
method considers a limited number of layers which takes
as inputs, the output tensors of the previous layers. For
flexibility, NAS-T only allows data to flow in one direction:
from a lower-numbered to a higher numbered layer. Note
that even with such a relatively simple representation the
total number of possible architectures will grow exponentially.
Meanwhile, the complexity for building a graph structure is
completely eliminated. We represent the network structure as
a sequence of n computational layers. Each layer contains one
computational node which is transformed from the previous
layer. Given a sequence of layers, the output of the network
is served as the concatenation of the computational nodes,
i.e., O = Ln · Ln−1 · L1. Accordingly, the search space is
parametrized by considering the type of the layer such as
pooling or convolution; maximum number of layers; and the
hyperparameters associated with each layer.

The NAS-T takes into account the highly popular compu-
tational modules as the candidate node functions set. These
nodes are called Convolution, ZeroOp, MaxPooling, Dropout,
Dense and Activation. All of these nodes consider one-
dimensional tensor defined by the number of the input training
data and dimension of TSC problem (i.e. the length T). If
ZeroOp is selected, it means the block is skipped. For the
convolutional layer, the kernel size is set to 3 followed by a
batch normalization layer with a zero padding to maintain the
length of the input time series throughout the convolutions.
Thereafter, we have the Dense node which consists of a
dense layer followed by rectified linear units and a dropout
layer. The hyperparameters for the Convolution, Activation,
Dropout and Dense layers are as follows: Number of filters =
{8,16,32,64,128,256}, activation function = {‘softmax’, ‘elu’,
‘selu’, ‘relu’, ‘sigmoid’, ‘linear’}, number of neurons = {4, 16,
32, 64, 128, 256}, dropout rate [0, 0.5]. Furthermore, we added
the MaxPooling operation with a pooling size equal to 3 and
a zero padding strategy. The final layer consists of a Dense

input time
series output

classes

residual
connections

K

global
average
pooling

fully
connected

convolution

64 64 64 128 128 128 128 128 128

removed
layer

frozen layers

reinitialized
layer

Convolution
ZeroOp

MaxPooling
Dropout
Dense

Activation

cost
function

generate multiple networks
com

pute m
ultiple validation accuracy

update

Fig. 2: Neural architecture search framework of deep residual networks for time series classification

fully-connected layer with softmax as the activation function
and a number of neurons equal to the number of classes in the
dataset. So, the total number of possible architectures in the
design space is equal to 62n.

In NAS-T, solutions are composed of a set of genotypes
each with equal length which should be decoded into ML
architectures (i.e., phenotype). The length of each solution is
proportional to the maximum number of layers. For flexibility,
it is possible that a specific part of each solution won’t be
used (e.g., due to the ZeroOp). We note that in the first round,
we skip all the Dense layers. Figure 3 gives an example of
decoding a genotype representation into a phenotype.

B. Fine-tuning the ResNet

After generating different architectures, NAS-T should
measure their performance in order to maximize the expected
validation accuracy of the models in the later iterations. We
should note that holdout method is not recommended for
model evaluation when small amount of data is available [42].
Consequently, the most common method for model evaluation,
namely cross-validation, is adopted in NAS-T. The main goal
is to testify the model’s generalization ability by dividing
the dataset into k different folds. In each round, k − 1 folds
are merged to form a training set and one fold is used for
validation. The arithmetic mean over the validation accuracy of

p
h
e
n
o
ty
p
e

Fig. 3: An example of the adopted genotype and phenotype
representation in NAS-T with n = 7. Here, some design
parameters are conditional and are not expressed in the
phenotype.

the k different fitted models will be used as the performance
estimates.

NAS-T adopts a fine-tuning strategy to train these k-folds
since it is computationally less expensive, [HR: given in
Figure 4]. Considering the ResNet architecture, we first train
the standard ResNet network using the complete training set.
Next, we remove the global average pooling and the final
fully connected softmax layer. Once this has been done, the
new generated architecture is attached to the model. Here, the
weights of the newly added layers will be fine tuned using
the Adam optimizer [43]. For the first fold, all the weights of

pretrained ResNet

freeze

train

new layers

in
p

u
t

pretrained ResNet

freeze

train

new layers

in
p

u
t sh

a
re

d
 w

e
ig

h
t

pretrained ResNet

freeze

train

new layers

in
p

u
t sh

a
re

d
 w

e
ig

h
t

validation fold training folds

1
st

 f
o
ld

2
n
d

 f
o
ld

3
rd

 f
o
ld

Fig. 4: Illustration of the adopted k-fold cross-validation with
k = 3

the new layers are randomly initialized and the cost function
will be minimized subject to the added weights. After that, the
weights of the first trained fold will be used as a source of
information to initialize the weights for the second fold, and
so on.

C. Search method

The NAS-T uses the standard differential evolution (DE) [44]
algorithm to generate and evolve a population of candidate
architectures. DE finds an optimized architecture by iteratively
improving the candidate solutions with regard to their average
validation loss during the k-fold cross-validation. Different
from traditional evolutionary algorithms, DE uses the scaled
differences of vectors to produce new candidate solutions in the
population. Hence, no separate probability distribution should
be used to perturb the population members [44]. The DE is
also characterized by the advantages of having few parameters
and ease of implementation. Basically, it works through a
particular sequence of steps. First, it creates an initial population
that sampled uniformly at random within the search bounds.
Thereafter, three components namely mutation, crossover and
selection are adopted to evolve the initial population. The
mutation and crossover are used to create new solutions,
while selection determines the solutions that will breed a
new generation. The algorithm remains inside a loop until
stopping criteria are met. More precisely, DE starts with a
randomly initialized population of parameter vectors the so-
called individuals. Each such individual represents a D = 2
× n dimensional vector of fixed length genotypes. The ith
individual of the population at generation G could be denoted
as follows:

−→
XG,i = [xG,i,1, xG,i,2, xG,i,3,, xG,i,D]

j = 1, 2, ..., D
(1)

For each individual, both upper and lower bounds of the
decision variables should be restricted to their minimum and

TABLE II: Accuracy for the introduced fine-tuning approach
with (NAS-T1) and without parameter sharing (NAS-T2) across
the k-fold cross-validations.

Dataset NAS-T1 NAS-T2

50words 83.88 76.04
Adiac 83.38 82.09
ArrowHead 86.29 86.85
Beef 86.67 83.33
BeetleFly 95.00 90.00
BirdChicken 100 95.00
Car 96.67 96.23
CBF 99.44 99.22
ChlorineConcentration 86.22 86.71
CinC_ECG_torso 99.71 98.04

maximum values. Once the initialization search ranges have
been determined, DE assigns (at G = 0) each individual a
value from within the specified range as follows [44]:

x0,i,j = minj − r.(maxj −minj)
j = 1, 2, ..., D

(2)

Where r ∈ [0, 1] represents a uniformly distributed random
number and NP denotes the population size. After initialization,
the mutation operator produces new solutions by forming a
mutant vector (trial vector) with respect to each parent indi-
vidual (target vector). For each target vector, its corresponding
trial vector can be generated by different mutation strategies.
Each strategy employs different approaches to make a balance
between the exploration and exploitation tendencies. We use
the following strategy to do so:

−→
V G,i =

−→
XG,r1 + F.(

−→
XG,r2 −

−→
XG,r3) (3)

Here r1, r2 ∈ NP are different randomly generated integer
numbers. Furthermore, F is a scaling factor ∈ [0, 2] affecting the
difference vector and best ∈ NP is index of the best individual
vector at generation G. Thereafter, DE applies a discrete
crossover approach to each pair of the parent vector and its
corresponding trial vector. The basic version of DE incorporates
the binomial crossover as defined in [44]. Finally, it adopts a
selection mechanism to choose the best individuals according
to their validation loss for producing the next generation of
population. DE compares performance of the trial and target
architectures and copies the better one into next generation.

V. EXPERIMENTS

A. Experimental setup

We evaluate our approach on the publicly available UCR time
series data mining archive [25] [HR: with the corresponding
results in TABLE II]. The latter benchmark is comprised
of 85 datasets from various domains such as ECG, electric
consumption and food spectrography data, and has been
considered a standard evaluation of TSC algorithms [27]. The
number of training instances ranges between 16 and 8000 with
a length that achieves a maximum of 2700 and a minimum of

24. We refer the interested reader to a thorough description of
these datasets in [27]. We trained our models by leveraging
the parallel computation on a cluster of more than 60 Nvidia
GPUs using the Keras and Tensorflow APIs1.

We did a comparative experiment on the obtained results
with and without weight sharing. For this ablation study, the
experiments are computationally expensive and so they are
reported only for first 10 alphabetically ordered datasets. In DE,
population size is 100 and F is set to 0.5 in all experiments.
The value of crossover rate, which controls the change of
diversity in population, is chosen to be 0.9 [45]. For each
dataset, the stopping criteria is when the NAS-T reaches 5000
evaluations, or 48 hours of computations on a single GPU. We
investigated the performance of the NAS-T on 85 different
configuration of TSC scenarios. The loss function for the model
is the categorical cross-entropy.

After finishing the automatic configuration, the best config-
uration based on the validation accuracy is used to measure
the performance of the optimized ResNet on the unseen test
instances. As it can be noticed from the literature [20], the
ResNet model shows a superior performance for the TSC
task but with a high standard deviation. To this fact, we
repeat the experiments using each configuration for 10 times
in order to optimize the mean performance of the model. The
obtained results are compared with stat-of-the-art methods
including: HIVE-COTE, COTE, PF, ST, BOSS, EE and NN-
DTW, which are further detailed in the next subsection. It
is worth mentioning that HIVE-COTE is an ensemble model
which combines the weighted votes of 37 different classifiers.

B. Results

Since NAS-T is the first proposed AutoML approach for
domain agnostic TSC, we have compared the DE optimiza-
tion algorithm to the random search. NAS-T achieved a
Win/Tie/Loss record of 71/6/8 against a ResNet tuned with
random search; as shown in Figure 5.

In order to compare multiple classifiers over several datasets,
we adopted the Friedman test to first reject the null hypothesis
as suggested by [46]. Then following the recommendations
in [47], we performed a post-hoc analysis using the Wilcoxon
signed-rank test with Holm’s alpha correction with α = 0.05 as
initial value. For visualization, we used the critical difference
diagram as proposed in [46], with a thick horizontal line
showing a group of classifiers that are not significantly different.
For example, Figure 6 shows the average rank comparison,
with our proposed NAS-T approach achieving the highest
performance over the 85 datasets from the UCR archive.

Note that the results for the NN-DTW-WW [27], Elastic
Ensemble (EE) [48], Bag-Of-SFA-Symbols (BOSS) [49] and
COTE [50] were taken from the recent review for time series
classification [27]. For Proximity Forest (PF) [51] and HIVE-
COTE [52], the results were taken from their corresponding
papers. Finally, note that over the last couple of years, most

1To foster reproducibility, the code will be made publicly available upon
the acceptance of the paper

0.0 0.2 0.4 0.6 0.8 1.0
ResNet with random search

0.0

0.2

0.4

0.6

0.8

1.0

N
A

S
-T

NAS-T is
better here

ResNet with
random search
is better here

Win / Tie / Loss
71 / 6 / 8

p-value < 10-11

Accuracy

Fig. 5: Accuracy plots showing how NAS-T is setting new
results against the random search

approaches for TSC were focusing on ensembling different
classifiers [53], which is indeed the case for EE, BOSS,
PF, COTE and HIVE-COTE. Whereas with our optimization
technique we are able to reach better performance with a single
well designed deep neural network classifier.

Figure 7a depicts the accuracy plot comparing the original im-
plementation of ResNet against NAS-T. We can clearly see the
superiority and the benefit of optimizing the architecture with
74 wins out of 85 datasets and a p-value < 1e-12. In Figure 7a,
the “DiatomSizeReduction” dataset is a concrete example where
the original ResNet implementation [22] performs extremely
poorly (33% accuracy) than our optimized ResNet architecture
(97% accuracy). In fact, since “DiatomSizeReduction” contains
the smallest train set in the archive, this example is evident that
designing a deep neural network architecture is not trivial on
small datasets. Furthermore, when comparing to the ensemble
HIVE-COTE in Figure 7b, NAS-T is significantly better on 46
out of 85 datasets with a p-value < 0.05 when performing the
Wilcoxon Signed-rank test.

Our results show how a single well designed and optimized
neural network architecture is able to significantly outperform
HIVE-COTE, which is an ensemble of 37 different well
optimized classifiers [52]. These results should convince the
TSC community that single end-to-end deep learning classifiers
are able to reach state-of-the-art results for TSC (currently
achieved only using ensembling techniques), especially when
adopting a meta-learning approach to design the neural network
architecture.

VI. CONCLUSION

ResNet model has been recently explored for domain
agnostic TSC problems. In the same direction, we proposed
a fine-tuning method to enhance the classifier’s imperial
performance for the underlying TSC task. The introduced
algorithm is based on two main components in order to offer
the advantageous and accurate solutions. The first one is a
weight sharing strategy which plays a key role in reducing the

12345678

NN-DTW-WW
EE

BOSS
PF ResNet

COTE
HIVE-COTE
NAS-T

Fig. 6: Critical difference diagram showing the new state-of-the-art with our NAS-T approach.

0.0 0.2 0.4 0.6 0.8 1.0
ResNet

0.0

0.2

0.4

0.6

0.8

1.0

N
A

S
-T

NAS-T is
better here

Win / Tie / Loss
74 / 4 / 7
p-value < 10-12

Accuracy

DiatomSizeReduction
dataset

ResNet is
better here

(a) NAS-T vs the original ResNet

0.0 0.2 0.4 0.6 0.8 1.0
HIVE-COTE

0.0

0.2

0.4

0.6

0.8

1.0

N
A

S
-T

Win / Tie / Loss
46 / 8 / 31
p-value < 0.05

Accuracy

NAS-T is
better here

HIVE-COTE is
better here

(b) NAS-T vs the ensemble HIVE-COTE

Fig. 7: Accuracy plots showing how our classifier NAS-T is setting new state-of-the-art results for TSC.

computational cost during the training process. The second
component is an evolutionary algorithm which is integrated
to find more promising solutions by virtue of its exploration
capability. The experiments show that the obtained per-dataset
classifier outperforms the hand engineered ResNet model.
We believe that NAS-T will help non-expert users to more
effectively apply CNN models to their TSC applications. In the
future, we would like to explore designing neural networks from
scratch for classifying time series data with limited resources
by minimizing the model’s complexity.

ACKNOWLEDGMENTS

The authors would like to thank the providers of the UCR
datasets as well as Nvidia Corporation for the GPU Grant and
the Mésocentre of Strasbourg for providing access to the GPU
cluster.

REFERENCES

[1] M.-A. Zöller and M. F. Huber, “Survey on automated machine learning,”
ArXiv, 2019.

[2] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient neural
architecture search via parameter sharing,” ArXiv, 2018.

[3] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in International Conference on Learning Representations, 2017.

[4] F. Qi, Z. Xia, G. Tang, H. Yang, Y. Song, G. Qian, X. An, C. Lin, and
G. Shi, “Darwinml: A graph-based evolutionary algorithm for automated
machine learning,” ArXiv, 2018.

[5] H. Rakhshani, L. Idoumghar, J. Lepagnot, and M. Brévilliers, “Mac:
Many-objective automatic algorithm configuration,” in International
Conference on Evolutionary Multi-Criterion Optimization. Springer,
2019, pp. 241–253.

[6] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar, “Hy-
perband: A novel bandit-based approach to hyperparameter optimization,”
ArXiv, 2016.

[7] J. Y. Hesterman, L. Caucci, M. A. Kupinski, H. H. Barrett, and L. R.
Furenlid, “Maximum-likelihood estimation with a contracting-grid search
algorithm,” IEEE transactions on nuclear science, vol. 57, no. 3, pp.
1077–1084, 2010.

[8] S. Falkner, A. Klein, and F. Hutter, “BOHB: Robust and efficient
hyperparameter optimization at scale,” in International Conference on
Machine Learning, 2018.

[9] B. Wang, Y. Sun, B. Xue, and M. Zhang, “Evolving deep convolutional
neural networks by variable-length particle swarm optimization for image
classification,” in IEEE Congress on Evolutionary Computation, 2018,
pp. 1–8.

[10] N. Mitschke, M. Heizmann, K.-H. Noffz, and R. Wittmann, “Gradient
based evolution to optimize the structure of convolutional neural
networks,” in IEEE International Conference on Image Processing, 2018,
pp. 3438–3442.

[11] M. Feurer, J. T. Springenberg, and F. Hutter, “Initializing bayesian
hyperparameter optimization via meta-learning,” in Twenty-Ninth AAAI
Conference on Artificial Intelligence, 2015.

[12] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, “Progressive neural architecture
search,” in Proceedings of the European Conference on Computer Vision,
2018, pp. 19–34.

[13] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture
search,” in International Conference on Learning Representations, 2019.

[14] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” in Advances in neural information
processing systems, 2014, pp. 3320–3328.

[15] M. Rahman, M. Rahman, B. Carbunar, and D. H. Chau, “Fairplay: Fraud

and malware detection in google play,” in SIAM International Conference
on Data Mining, 2016, pp. 99–107.

[16] T. Ma, C. Xiao, and F. Wang, “Health-ATM: A deep architecture for
multifaceted patient health record representation and risk prediction,” in
SIAM International Conference on Data Mining, 2018, pp. 261–269.

[17] H. Shi, H. Cao, X. Zhou, Y. Li, C. Zhang, V. Kostakos, F. Sun, and
F. Meng, “Semantics-aware hidden markov model for human mobility,”
in SIAM International Conference on Data Mining, 2019, pp. 774–782.

[18] C. W. Tan, M. Herrmann, G. Forestier, G. I. Webb, and F. Petitjean,
“Efficient search of the best warping window for dynamic time warping,”
in SIAM International Conference on Data Mining, 2018, pp. 225–233.

[19] Z. Cui, W. Chen, and Y. Chen, “Multi-scale convolutional neural networks
for time series classification,” ArXiv, 2016.

[20] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep learning for time series classification: a review,” Data Mining and
Knowledge Discovery, 2019.

[21] A. Borovykh, S. Bohte, and K. Oosterlee, “Conditional time series
forecasting with convolutional neural networks,” in Lecture Notes in
Computer Science/Lecture Notes in Artificial Intelligence, 2017, pp. 729–
730.

[22] Z. Wang, W. Yan, and T. Oates, “Time series classification from scratch
with deep neural networks: A strong baseline,” in Neural Networks, 2017
International Joint Conference on. IEEE, 2017, pp. 1578–1585.

[23] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Adversarial attacks on deep neural networks for time series classification,”
in IEEE International Joint Conference on Neural Networks, 2019.

[24] ——, “Data augmentation using synthetic data for time series classi-
fication with deep residual networks,” in International Workshop on
Advanced Analytics and Learning on Temporal Data, ECML PKDD,
2018.

[25] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,
C. A. Ratanamahatana, and E. Keogh, “The UCR time series archive,”
ArXiv, 2018.

[26] A. Anderson, K. Shaffer, A. Yankov, C. D. Corley, and N. O. Hodas,
“Beyond fine tuning: A modular approach to learning on small data,”
ArXiv, 2016.

[27] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great
time series classification bake off: a review and experimental evaluation
of recent algorithmic advances,” Data Mining and Knowledge Discovery,
vol. 31, no. 3, pp. 606–660, 2017.

[28] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, 2015.

[29] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Accurate and interpretable evaluation of surgical skills from kinematic
data using fully convolutional neural networks,” International Journal of
Computer Assisted Radiology and Surgery, pp. 1–7, 2019.

[30] A. Ashfahani and M. Pratama, “Autonomous deep learning: Continual
learning approach for dynamic environments,” in SIAM International
Conference on Data Mining, 2019, pp. 666–674.

[31] R. Xi, M. Hou, M. Fu, H. Qu, and D. Liu, “Deep dilated convolution on
multimodality time series for human activity recognition,” in International
Joint Conference on Neural Networks, 2018, pp. 1–8.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[38] F. S. Cabral, M. Pinto, F. A. L. N. Mouzinho, H. Fukai, and S. Tamura,
“An automatic survey system for paved and unpaved road classification and
road anomaly detection using smartphone sensor,” in IEEE International
Conference on Service Operations and Logistics, and Informatics, 2018,
pp. 65–70.

[33] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning.” in
AAAI, vol. 4, 2017, p. 12.

[34] Y. Zhang, W. Chan, and N. Jaitly, “Very deep convolutional networks
for end-to-end speech recognition,” in IEEE International Conference
on Acoustics, Speech and Signal Processing, 2017, pp. 4845–4849.

[35] A. Conneau, H. Schwenk, L. Barrault, and Y. Lecun, “Very deep
convolutional networks for natural language processing,” ArXiv, 2016.

[36] A. Y. Hannun, P. Rajpurkar, M. Haghpanahi, G. H. Tison, C. Bourn,
M. P. Turakhia, and A. Y. Ng, “Cardiologist-level arrhythmia detection
and classification in ambulatory electrocardiograms using a deep neural
network,” Nature medicine, vol. 25, no. 1, p. 65, 2019.

[37] R. Aras, A. Nutkiewicz, and M. O’Krepki, “A neural network approach
to predicting urban building energy consumption,” 2018.

[39] H. Abdelkawy, N. Ayari, A. Chibani, Y. Amirat, and F. Attal, “Deep
HMResNet model for human activity-aware robotic systems,” in Artificial
Intelligence for Human-Robot Interaction Symposium at AAAI-FSS, 2018.

[40] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in International Conference
on Machine Learning, 2015, pp. 448–456.

[41] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, 2012, pp. 1097–1105.

[42] S. Raschka, “Model evaluation, model selection, and algorithm selection
in machine learning,” ArXiv, 2018.

[43] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in International Conference on Learning Representations, 2015.

[44] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[45] H. Rakhshani and A. Rahati, “Snap-drift cuckoo search: A novel cuckoo
search optimization algorithm,” Applied Soft Computing, vol. 52, pp.
771 – 794, 2017. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S1568494616305075

[46] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Machine Learning Research, vol. 7, pp. 1–30, 2006.

[47] A. Benavoli, G. Corani, and F. Mangili, “Should we really use post-hoc
tests based on mean-ranks?” Machine Learning Research, vol. 17, no. 1,
pp. 152–161, 2016.

[48] J. Lines and A. Bagnall, “Time series classification with ensembles
of elastic distance measures,” Data Mining and Knowledge Discovery,
vol. 29, no. 3, pp. 565–592, 2015.

[49] P. Schäfer, “The boss is concerned with time series classification in the
presence of noise,” Data Mining and Knowledge Discovery, vol. 29,
no. 6, pp. 1505–1530, 2015.

[50] A. Bagnall, J. Lines, J. Hills, and A. Bostrom, “Time-series classification
with COTE: The collective of transformation-based ensembles,” in
International Conference on Data Engineering, 2016, pp. 1548–1549.

[51] B. Lucas, A. Shifaz, C. Pelletier, L. O’Neill, N. Zaidi, B. Goethals,
F. Petitjean, and G. I. Webb, “Proximity forest: an effective and scalable
distance-based classifier for time series,” Data Mining and Knowledge
Discovery, vol. 33, no. 3, pp. 607–635, 2019.

[52] J. Lines, S. Taylor, and A. Bagnall, “Time series classification with hive-
cote: The hierarchical vote collective of transformation-based ensembles,”
ACM Transactions on Knowledge Discovery from Data, vol. 12, no. 5,
pp. 52:1–52:35, 2018.

[53] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller,
“Deep neural network ensembles for time series classification,” in IEEE
International Joint Conference on Neural Networks, 2019.

http://www.sciencedirect.com/science/article/pii/S1568494616305075
http://www.sciencedirect.com/science/article/pii/S1568494616305075

	Introduction
	Background
	Time series classification problem
	Deep learning for time series classification

	Residual neural networks
	Methodology
	Design space
	Fine-tuning the ResNet
	Search method

	Experiments
	Experimental setup
	Results

	Conclusion
	References

