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Motivation

Certified geometric surface reconstruction

Given an Hausdorff approximation K ′ of a manifold K, can
we estimate the geometric properties of K ? (and in
particular the curvature of K)
→ The answer is of course “No".
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Motivation

K

∂Kr

Let K and K ′ are two compact
sets close for the Hausdorff dis-
tance. Then their offsets K ′

r

and Kr are also close.

Kr = {x, d(x,K) ≤ r}

Are the normals of ∂K ′

r
and ∂Kr also close?

Can we define the curvatures of ∂K ′

r
and ∂Kr?

If yes, are the curvatures of ∂Kr and ∂K ′

r
close?

→ Curvature measures
→ A scale parameter
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Previous results and contribution

Stability results of the topology of the offsets (Grove,
Chazal, Cohen-Steiner, Lieutier’06).

Approximation of the curvatures of a smooth surface by
the curvature measures of approximating triangulations.
(Fu, Cohen-Steiner, Morvan).

Our contribution:

we provide an explicit result of stability for the curvature
measures of the offsets.

Remark A similar result of curvature measures stability has
been obtained (F. Chazal, D. Cohen-Steiner, Q. Mérigot).
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Overview

Background on distance functions

Definition of curvature measures

Result of stability

Curvature measures of 3D point clouds

Sketch of Proof
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The gradient of the distance function

ΓK(x) = {y ∈ K | d(x, y) = RK(x)}

σK(x): smallest ball enclosing
ΓK(x)

θK(x): center of σK(x)

x

‖∇K(x)‖ = cos α

α

K

ΓK(x)

σK(x)

θK(x)

The generalized gradient:

∇K(x) =
x − θK(x)

RK(x)
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Medial axis and reach

Medial axis:
M(K) = {x ∈ R

n \ K : ‖∇K(x)‖ < 1}

Offset:
Kr = {x, d(x,K) ≤ r}

Reach(K) = sup{r ≥ 0 : Kr ∩M(K) = ∅}
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The critical function

50

K

‖∇K‖ = 1√
2
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 1.0 

The critical function of a square in 3D

The critical function χK : (0,+∞) → R+ is the real function
defined by:

χK(d) = inf
R−1

K
(d)

||∇K ||
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The µ-reach

rµ(K) = 25 if µ ≤ 1√
2

rµ(K) = 0 if µ >
1√
2

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0

 1.0 

The µ-reach rµ(K) of a compact set K ⊂ R
n is defined by:

rµ(K) = inf{d | χK(d) < µ}

For µ = 1, r1(K) = reach(K) is the reach of K (Federer).
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Nice properties of reach andµ-reach
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Stability properties of the critical function allows to
evaluate rµ(K) from an approximation of K

(C-Cohen-Steiner-Lieutier’06)

If r < reach(K) then the boundary of Kr is a smooth C1,1

hypersurface (Federer).
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Reach of offsets complements

Let K ⊂ R
n be a compact set.

The offset Kr is given by:

Kr = {x ∈ R
n : RK(x) ≤ r}

r

K

Kc
r

Theorem (Chazal-Cohen-Steiner-Lieutier-T’07)
For r ∈ (0, rµ(K)), one has reach(Kc

r) ≥ µr.
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Smoothness of double offset

Offset:

Kr = {x ∈ R
n : RK(x) ≤ r}

Double offsets:

Kr,d = {x ∈ R
n : d(x,Kc

r) ≤ d}

r

d

K

∂Kr

∂Kr,d

Theorem (Chazal-Cohen-Steiner-Lieutier-T’07)
If r < rµ(K) and d < µr then ∂Kr,d is a smooth
C1,1-hypersurface. Moreover, reach(Kr,d) ≥ min(d, µr − d).
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Overview

Background on distance functions

Definition of curvature measures

Result of stability

Curvature measures of 3D point clouds

Sketch of Proof
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Curvature measures of sets of reach> 0

Let V ⊂ R
3 be with positive

reach.
− t < reach(V );
− f is a Lipschitz function on R

3;
− G and H are the mean and
gaussian curvature of ∂Vt

− pV is the projection onto V .

t

∂Vt

V

Definition
ΦG

V (f) = limt→0

∫

∂Vt
f(pV (p)) G(p)dp

ΦH
V (f) = limt→0

∫

∂Vt
f(pV (p)) H(p)dp,

→ can be generalised to the curvature measures Φi
V (f) in R

d.
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Overview

Background on distance functions

Definition of curvature measures

Result of stability

Curvature measures of 3D point clouds

Sketch of Proof
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What do we compare ?

∂K′
r

∂Kr

f = 1 f = 0

Is |Φi
Kr

(f) − Φi
K′

r
(f)| small ?
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Stability result

Theorem. Let K and K ′ be two compact sets of R
d whose

µ-reaches are greater than r. Let ǫ = dHauss(K,K ′). If

ǫ ≤ rµ (2−
√

2)
2

min(µ, 1
2
), then for every Lipschitz function

f : R
d → R satisfying |f | ≤ 1, one has:

|Φi
Kr

(f) − Φi
K′

r
(f)| ≤ k(r, µ, d, f) sup(Lip(f), 1)

√
ǫ,

where k(r, µ, d, f) only depends on f through the covering
number N (spt(f)O(

√
ǫ), µr/2); Lip(f) is the Lipschitz-constant

of f ; spt(f) = {x ∈ R
d, f(x) 6= 0}.

→ Optimal upper bound.
→ Same result for anisotropic curvature measures.
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Stability result

Theorem. Let K and K ′ be two compact subsets of R
d such

that rµ(K) > r. Assume that the Hausdorff distance
ε = dH(K,K ′) between K and K ′ is such that ε < µ2

60+9µ2 r.
Then the conclusions of the previous theorem also hold.

→ Can be applied to a compact set K with positive µ-reach
that is approximated by a cloud of points K ′.
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Curvature measures of3D point cloud

A point cloud P sampling a non manifold compact set.

Mean curvature Gauss curvature
minimum value → in between → maximum value

Offset value α = 0.1; diameter of the point cloud = 2; support
of f contained in a ball of radius 0.3.
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Curvature measures of3D point cloud

Mean curvature Gauss curvature
minimum value → in between → maximum value

One can also color the faces of the boundary of the α-shape
of P
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Curvature measures of3D point cloud

Another example

Mean curvature Gauss curvature
minimum value → in between → maximum value
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Overview

Background on distance functions

Definition of curvature measures

Result of stability

Curvature measures of 3D point clouds

Sketch of Proof (when we compare globally the offsets)
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Definition

Let V be a set with positive reach r.

S(V ) =

{(p, n) ∈ R
d × Sd−1, p ∈ ∂V n ∈ CN(p)},

where CN(p) is the normal cone of V at p.

p

n

V

The normal cycle N(V ) of V is (d-1)-current on R
d × R

d

(Fu’89):

N(V ) : ω 7→
∫

S(V )

ω.

→ N(V ) contains all the curvature information.
→ Example: in R

3 ΦH
V (f) = N(V )(f̄ωH) with f̄(p, n) = f(p).
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Step 1

Carrying the problem into the double offsets

F−t : R
d × R

d → R
d × R

d

(p, n) 7→ (p − tn, n)

n

n

p

p − tn

∂Vt

V

If t < reach(V ), then F−t : spt(N(Vt)) → spt(N(V ))

is one-to-one.

N(Kr
c) − N(K ′

r
c) = F−t♯(N(Kr,t) − N(Kr,t)),

→ Is N(Kr,t) − N(Kr,t) small ?
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Step 2

Lemma In the condition of the theorem, and if t ∈ (0, µr/2),
one has:

dH(∂Kr,t, ∂K ′
r,t) ≤ ǫ

µ
,

∀x ∈ Kr,t 2 sin
∠

“

∇
Kr

c (x),∇
K′

r
c (x)

”

2
≤ 30

√

ǫ
µt

That allows to show that

N(Kr,t) − N(K ′
r,t) = ∂R,

where ∂R is the boundary of a particular d-rectifiable R

current that satisfies : Hd(spt(R)) ≤ O(
√

ǫ).
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Step 3

One has for the mean curvature measure:

ΦH
Kr

c(f) − ΦH

K′
r

c(f) = N(Kr
c)(f̄ωH) − N(K ′

r
c)(f̄ωH)

= F−t♯∂R(f̄ωH).

|F−t♯∂R(f̄ωH)| ≤ (1 + t2)
d−1

2 |∂R(f̄ωH)|
≤ (1 + t2)

d−1

2

∫

spt(R)
d(f̄ωH) (by Stockes’thm)

≤ 6 (1 + t2)
d−1

2 Hd(spt(R)) sup(Lip(f̄), 1).

ΦH
Kr

(f) − ΦH
K′

r
(f) = −(ΦH

Kr
c(f) − ΦH

K′
r

c(f))

⇒ |ΦH
Kr

(f) − ΦH
K′

r
(f)| ≤ k

√
ǫ
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Conclusion & Future works

Isotropic and anisotropic curvature measures are
Hausdorff stable.

Pushing the normal cycle of Kr closer to K : a kind of
α-normal cycle.
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