Stability of Curvature Measures

Boris Thibert (LJK, Grenoble)

Joint work with Frédéric Chazal (INRIA Saclay), David Cohen-Steiner (INRIA

Sophia-Antipolis) and André Lieutier (Dassault Systèmes),

Motivation

Certified geometric surface reconstruction

Given an Hausdorff approximation K' of a manifold K, can we estimate the geometric properties of K? (and in particular the curvature of K)

 \rightarrow The answer is of course "No".

Motivation

Let K and K' are two compact sets close for the Hausdorff distance. Then their offsets K'_r and K_r are also close.

$$K_r = \{x, d(x, K) \le r\}$$

- Are the normals of $\partial K'_r$ and ∂K_r also close?
- Can we define the curvatures of $\partial K'_r$ and ∂K_r ?
- If yes, are the curvatures of ∂K_r and $\partial K'_r$ close?
- \rightarrow Curvature measures
- \rightarrow A scale parameter

Previous results and contribution

- Stability results of the topology of the offsets (Grove, Chazal, Cohen-Steiner, Lieutier'06).
- Approximation of the curvatures of a smooth surface by the curvature measures of approximating triangulations. (Fu, Cohen-Steiner, Morvan).

Our contribution:

we provide an explicit result of stability for the curvature measures of the offsets.

<u>Remark</u> A similar result of curvature measures stability has been obtained (F. Chazal, D. Cohen-Steiner, Q. Mérigot).

Overview

- Background on distance functions
- Definition of curvature measures
- Result of stability
- Curvature measures of 3D point clouds
- Sketch of Proof

The gradient of the distance function

The generalized gradient:

$$\nabla_K(x) = \frac{x - \theta_K(x)}{R_K(x)}$$

Medial axis and reach

Medial axis: $\mathcal{M}(K) = \{x \in \mathbb{R}^n \setminus K : \|\nabla_K(x)\| < 1\}$ Offset:

$$K_r = \{x, d(x, K) \le r\}$$

 $\mathsf{Reach}(K) = \sup\{r \ge 0 : K_r \cap \mathcal{M}(K) = \emptyset\}$

The critical function

The critical function of a square in 3D

The critical function $\chi_K : (0, +\infty) \to \mathbb{R}_+$ is the real function defined by:

$$\chi_K(d) = \inf_{R_K^{-1}(d)} ||\nabla_K||$$

The μ -reach

The μ -reach $r_{\mu}(K)$ of a compact set $K \subset \mathbb{R}^n$ is defined by:

$$r_{\mu}(K) = \inf\{d \mid \chi_K(d) < \mu\}$$

For $\mu = 1$, $r_1(K) = reach(K)$ is the reach of K (Federer).

Nice properties of reach and μ -reach

- Stability properties of the critical function allows to evaluate r_µ(K) from an approximation of K (C-Cohen-Steiner-Lieutier'06)
- If r < reach(K) then the boundary of K_r is a smooth $C^{1,1}$ hypersurface (Federer).

Reach of offsets complements

Let $K \subset \mathbb{R}^n$ be a compact set. The offset K_r is given by:

$$K_r = \{x \in \mathbb{R}^n : R_K(x) \le r\}$$

<u>Theorem</u> (Chazal-Cohen-Steiner-Lieutier-T'07) For $r \in (0, r_{\mu}(K))$, one has $\operatorname{reach}(\overline{\mathbf{K}_{\mathbf{r}}^{\mathbf{c}}}) \geq \mu \mathbf{r}$.

Smoothness of double offset

<u>Theorem</u> (Chazal-Cohen-Steiner-Lieutier-T'07) If $r < r_{\mu}(K)$ and $d < \mu r$ then $\partial K_{r,d}$ is a smooth $C^{1,1}$ -hypersurface. Moreover, $\operatorname{reach}(K_{r,d}) \ge \min(d, \mu r - d)$.

Overview

- Background on distance functions
- Definition of curvature measures
- Result of stability
- Curvature measures of 3D point clouds
- Sketch of Proof

Curvature measures of sets of reach > 0

- Let $V \subset \mathbb{R}^3$ be with positive reach.
- -t < reach(V);
- -f is a Lipschitz function on \mathbb{R}^3 ; -G and H are the mean and

gaussian curvature of ∂V_t

 $-p_V$ is the projection onto V.

efinition
$$\begin{aligned} \Phi_V^G(f) &= \lim_{t \to 0} \int_{\partial V_t} f(p_V(p)) \ G(p) dp \\ \Phi_V^H(f) &= \lim_{t \to 0} \int_{\partial V_t} f(p_V(p)) \ H(p) dp, \end{aligned}$$

 \rightarrow can be generalised to the curvature measures $\Phi_V^i(f)$ in \mathbb{R}^d .

Overview

- Background on distance functions
- Definition of curvature measures
- Result of stability
- Curvature measures of 3D point clouds
- Sketch of Proof

What do we compare ?

Is
$$|\Phi^i_{K_r}(f) - \Phi^i_{K'_r}(f)|$$
 small?

Stability result

Theorem. Let K and K' be two compact sets of \mathbb{R}^d whose μ -reaches are greater than r. Let $\epsilon = d_{Hauss}(K, K')$. If $\epsilon \leq \frac{r\mu (2-\sqrt{2})}{2} \min(\mu, \frac{1}{2})$, then for every Lipschitz function $f : \mathbb{R}^d \to \mathbb{R}$ satisfying $|f| \leq 1$, one has:

 $|\Phi_{K_r}^i(f) - \Phi_{K'_r}^i(f)| \le k(r, \mu, d, f) \operatorname{sup}(Lip(f), 1) \sqrt{\epsilon},$

where $k(r, \mu, d, f)$ only depends on f through the covering number $\mathcal{N}(spt(f)_{O(\sqrt{\epsilon})}, \mu r/2)$; Lip(f) is the Lipschitz-constant of f; $spt(f) = \{x \in \mathbb{R}^d, f(x) \neq 0\}$.

- \rightarrow Optimal upper bound.
- \rightarrow Same result for anisotropic curvature measures.

Stability result

Theorem. Let *K* and *K'* be two compact subsets of \mathbb{R}^d such that $r_{\mu}(K) > r$. Assume that the Hausdorff distance $\varepsilon = d_H(K, K')$ between *K* and *K'* is such that $\varepsilon < \frac{\mu^2}{60+9\mu^2}r$. Then the conclusions of the previous theorem also hold.

 \rightarrow Can be applied to a compact set K with positive μ -reach that is approximated by a cloud of points K'.

Curvature measures of 3D **point cloud**

A point cloud *P* sampling a non manifold compact set.

Mean curvatureGauss curvatureminimum value \rightarrow in between \rightarrow maximum valueOffset value $\alpha = 0.1$; diameter of the point cloud = 2; supportof f contained in a ball of radius 0.3.

Curvature measures of 3D point cloud

Mean curvatureGauss curvatureminimum value \rightarrow in between \rightarrow maximum valueOne can also color the faces of the boundary of the α -shapeof P

Curvature measures of 3D **point cloud**

Another example

Overview

- Background on distance functions
- Definition of curvature measures
- Result of stability
- Curvature measures of 3D point clouds
- Sketch of Proof (when we compare globally the offsets)

Definition

Let V be a set with positive reach r.

$$\begin{split} S(V) &= \\ \{(p,n) \in \mathbb{R}^d \times \mathcal{S}^{d-1}, p \in \partial V \ n \in CN(p)\}, \\ \text{where } CN(p) \text{ is the normal cone of } V \text{ at } p. \end{split}$$

The normal cycle N(V) of V is (d-1)-current on $\mathbb{R}^d \times \mathbb{R}^d$ (Fu'89):

$$N(V): \omega \mapsto \int_{S(V)} \omega.$$

 $\rightarrow N(V)$ contains all the curvature information. \rightarrow Example: in $\mathbb{R}^3 \Phi_V^H(f) = N(V)(\bar{f}\omega^H)$ with $\bar{f}(p,n) = f(p)$.

Step 1

Carrying the problem into the double offsets

$$F_{-t}: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d \times \mathbb{R}^d$$

$$(p,n) \mapsto (p-tn,n)$$

$$(p-tn,n)$$

If t < reach(V), then $F_{-t} : spt(N(V_t)) \rightarrow spt(N(V))$ is one-to-one.

$$N(\overline{K_r}^c) - N(\overline{K_r'}^c) = F_{-t\sharp}(N(K_{r,t}) - N(K_{r,t})),$$

$$\rightarrow \text{Is } N(K_{r,t}) - N(K_{r,t}) \text{ small }?$$

Step 2

<u>Lemma</u> In the condition of the theorem, and if $t \in (0, \mu r/2)$, one has:

$$d_H(\partial K_{r,t}, \partial K'_{r,t}) \leq \frac{\epsilon}{\mu},$$

$$\forall x \in K_{r,t} \quad 2\sin\frac{\angle\left(\nabla_{\overline{K_r}^c}(x), \nabla_{\overline{K'_r}^c}(x)\right)}{2} \leq 30\sqrt{\frac{\epsilon}{\mu t}}$$

That allows to show that

$$N(K_{r,t}) - N(K'_{r,t}) = \partial R,$$

where ∂R is the boundary of a particular *d*-rectifiable *R* current that satisfies : $\mathcal{H}^d(spt(R)) \leq O(\sqrt{\epsilon})$.

Step 3

One has for the mean curvature measure:

$$\Phi_{\overline{K_r}^c}^H(f) - \Phi_{\overline{K_r'}^c}^H(f) = N(\overline{K_r^c})(\overline{f}\omega^H) - N(\overline{K_r'}^c)(\overline{f}\omega^H)$$
$$= F_{-t\sharp}\partial R(\overline{f}\omega^H).$$

$$\begin{aligned} |F_{-t\sharp}\partial R(\bar{f}\omega^{H})| &\leq (1+t^{2})^{\frac{d-1}{2}} |\partial R(\bar{f}\omega^{H})| \\ &\leq (1+t^{2})^{\frac{d-1}{2}} \int_{spt(R)} d(\bar{f}\omega^{H}) \text{ (by Stockes'thm)} \\ &\leq 6 (1+t^{2})^{\frac{d-1}{2}} \mathcal{H}^{d}(spt(R)) \sup(Lip(\bar{f}),1). \end{aligned}$$

$$\Phi_{K_r}^H(f) - \Phi_{K_r'}^H(f) = -(\Phi_{K_r'}^H(f) - \Phi_{K_r'}^H(f))$$

$$\Rightarrow |\Phi_{K_r}^H(f) - \Phi_{K_r'}^H(f)| \le k \sqrt{\epsilon}$$

Conclusion & Future works

- Isotropic and anisotropic curvature measures are Hausdorff stable.
- Pushing the normal cycle of K_r closer to K: a kind of α -normal cycle.