A geometric (and partial) introduction to Dimensionality Reduction

Frédéric Chazal

GEOMETRICA team

INRIA Saclay - Ile-de-France

Introduction

More and more available data represented by point clouds in high dimensional spaces:

- measurement and data storage capacities are growing very fast,
- e.g. images databases, astronomic data,...
- Data often depends upon a small numbers of "independant" parameters (e.g. number of degrees of freedom of an observed system):
 - data sampled around low dimensional shapes (manifolds).
 - underlying manifolds may be highly non linear.

Introduction

Need to analyze and visualize these data.

- Dimensionality reduction methods intend to embedded the data in low dimensional spaces while preserving as well as possible (some of) their geometric properties. ⇒ many different approaches that gave rise to a huge literature in the last decade...
- In this talk:
 - a very incomplete and partial introduction to dimensionality reduction,
 - a focus on a small set of geometric-motivated methods (trying to avoid as most as possible technical details).

Preliminaries and notations

The following notations and assumptions are used all along the talk.

Data: $X = \{x_1, x_2, \cdots, x_N\} \subset \mathbb{R}^D$ a finite point cloud with mean vector

$$\overline{x} = \sum_{n=1}^{N} x_i \in \mathbb{R}^D$$

$$X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1D} \\ x_{21} & x_{22} & \cdots & x_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{ND} \end{pmatrix}$$

- \square N: number of data points
- \square D: ambient dimension
- **Underlying/latent manifold**: $M \subset \mathbb{R}^D$ is a *d*-dimensional submanifold of \mathbb{R}^D . The points of X are assumed to be sampled on or around M.

Preliminaries and notations

Two "equivalent" points of view:

- 1. $M \subset \mathbb{R}^D$ is a submanifold and one intends to find an embedding *Y* of *X* in some low dimensional space such that the "geometry" of *Y* is as similar as possible as the one of *M* in some sense,
- 2. M = f(N) where N is some d-dimensional manifold (the latent manifold in general N is expected to be an open subset of \mathbb{R}^d) and $f : N \to \mathbb{R}^D$ an embedding with some specified properties (isometry, conformal,...). One then intends to find Y such that X = f(Y). The coordinates of Y are known as the latent variables.
- 3. In some statistical/probabilistic approaches (not considered in this talk): $X = f(Y) + \varepsilon(Y)$ where ε is some noise model.

Find the *d*-dimensional subspace of \mathbb{R}^D that best approximates *X* in a least square sense (and then project *X* on this subspace)

Let V be a d-dimensional subspace of \mathbb{R}^D and let $\mathbf{u}_1, \cdots, \mathbf{u}_D$ be an orthonomal basis such that $\mathbf{u}_1, \cdots, \mathbf{u}_d$ is a basis of \vec{V} .

• Approximate each point x_n by

$$\tilde{x}_n = \sum_{i=1}^d \alpha_{ni} \mathbf{u}_i + \sum_{i=d+1}^D b_i \mathbf{u}_i$$

$$E = \frac{1}{N} \sum_{i=1}^{N} ||x_n - \tilde{x}_n||^2$$

$$\tilde{x}_n = \sum_{i=1}^d \alpha_{ni} \mathbf{u}_i + \sum_{i=d+1}^D b_i \mathbf{u}_i$$
$$E = \frac{1}{N} \sum_{i=1}^N ||x_n - \tilde{x}_n||^2$$

Minimizing E with respect to α_{ni} and b_i leads to

$$x_n - \tilde{x}_n = \sum_{i=d+1}^D \{ (x_n - \overline{x})^T \mathbf{u}_i \} \mathbf{u}_i$$

 \Rightarrow Given \vec{V} the best affine subspace V is the one passing through \overline{x} and \tilde{x}_n is the orthogonal projection on V.

$$E = \frac{1}{N} \sum_{i=1}^{N} ||x_n - \tilde{x}_n||^2$$
$$x_n - \tilde{x}_n = \sum_{i=d+1}^{D} \{(x_n - \overline{x})^T \mathbf{u}_i\} \mathbf{u}_i$$

Now
$$E$$
 only depends on \mathbf{u}_i :

$$E = \frac{1}{N} \sum_{n=1}^{N} \sum_{i=d+1}^{D} (x_n^T \mathbf{u}_i - \overline{x}^T \mathbf{u}_i)^2 = \sum_{i=d+1}^{D} \mathbf{u}_i^T C \mathbf{u}_i$$

where

$$C = \frac{1}{N} \sum_{n=1}^{N} (x_n - \overline{x})(x_n - \overline{x})^T$$
 is the covariance matrix of X

Proposition: The minimum of E is obtained for the space spanned by the d eigenvectors of C corresponding to the d largest eigenvalues.

"**Proof**": For simplicity, assume that d = D - 1.

**Solution Constant Constant
Constant
Constant<**

PCA: remarks

(A) Find the *d*-dimensional subspace of \mathbb{R}^D that best approximates X in a least square sense (and then project X on this subspace)

(B) Find the *d*-dimensional subspace of \mathbb{R}^D onto which the projected data has maximum variance.

There exist other more probabilistic/statistical formulations of the problem that lead to the same solution.

PCA: example

Dimension: 64 * 64 = 4096. N = 698

3 free parameters:

- left-right pose,

- up-down pose,

- light pose.

2D-proj: pose 2

Find a low dimensional "projection" $Y \subset \mathbb{R}^d$ of the data X such as to preserve, as closely as possible, the pairwise distances between data points.

Without loss of gen. we assume that $\overline{x} = 0$ (and $\overline{y} = 0$).

• The $N \times N$ matrix of squared pairwise distance: $D = D_X = (||x_i - x_j||^2)$

• The
$$N \times N$$
 Gram matrix: $G = G_X = (x_i^T x_j) = X X^T$

P Relationship between D and G (exercise):

$$G = -\frac{1}{2}JDJ$$
 where $J = Id_N - \frac{1}{N}\mathbf{1}\mathbf{1}^T = (\delta_{ij} - \frac{1}{N})$

Goal: Find $Y = \{y_1, \cdots y_N\} \subset \mathbb{R}^d$ minimizing

$$\rho(D_X, D_Y) = \|G_X - G_Y\|_2^2 = \|\frac{1}{2}J(D_X - D_Y)J\|_2^2$$

$$\rho(D_X, D_Y) = \|G_X - G_Y\|_2^2 = \|\frac{1}{2}J(D_X - D_Y)J\|_2^2$$

Solution:

- Let $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N \ge 0$ be the eigenvalues of G_X and $\{\mathbf{v}_1, \cdots, \mathbf{v}_N\} \subset \mathbb{R}^N$ an orthonormal eigenbasis.
- $\P Y \subset \mathbb{R}^d$ minimizing $ho(D_X, D_Y)$ is given by the columns of the $d \times N$ matrix

$$Y = \begin{pmatrix} \sqrt{\lambda_1} \mathbf{v}_1^T \\ \sqrt{\lambda_2} \mathbf{v}_2^T \\ \vdots \\ \sqrt{\lambda_d} \mathbf{v}_d^T \end{pmatrix}$$

Justification:

$$\min_{Y} \|G_X - G_Y\|_2^2 = \min_{Y} \|XX^T - YY^T\|^2$$

$$= \min_{Y} \sum_{i=1}^N \sum_{j=1}^N (x_i^T x_j - y_i^T y_j)^2$$

$$= \min_{Y} Tr((XX^T - YY^T)^2)$$

$$\begin{split} XX^T & \text{and } YY^T \text{ are semidefinite positive: } XX^T = V\Lambda V^T \text{ and } YY^T = W\Lambda' W^T \text{ where} \\ \cdot VV^T = WW^T = Id_N, \\ \cdot \Lambda = Diag(\lambda_1, \cdots, \lambda_N) \text{ is diagonal with } \lambda_1 \geq \lambda_2 \cdots \geq \lambda_N, \\ \cdot \Lambda' = Diag(\lambda_1', \cdots \lambda_d', 0, \cdots, 0) \text{ is diagonal with } \lambda_1' \geq \cdots \geq \lambda_d' \geq 0 \text{ because } Y \subset \mathbb{R}^d. \\ \min_Y Tr((XX^T - YY^T)^2) &= \min_{W,\Lambda'} Tr(\Lambda - V^TW\Lambda' W^TV)^2 \quad (\text{use } Tr(AB) = Tr(BA)) \\ &= \min_{Q,\Lambda'} Tr(\Lambda - Q\Lambda' Q^T)^2 \text{ with } Q = V^TW \\ &= \min_{Q,\Lambda'} Tr(\Lambda^2) + Tr(Q\Lambda' Q^TQ\Lambda' Q^T) - 2Tr(\Lambda Q\Lambda' Q^T) \end{split}$$

Justification:

$$\begin{split} \min_{Y} Tr((XX^{T} - YY^{T})^{2}) &= \min_{W,\Lambda'} Tr(\Lambda - V^{T}W\Lambda'W^{T}V)^{2} \quad (\text{use } Tr(AB) = Tr(BA)) \\ &= \min_{Q,\Lambda'} Tr(\Lambda - Q\Lambda'Q^{T})^{2} \quad \text{with} \quad Q = V^{T}W \\ &= \min_{Q,\Lambda'} Tr(\Lambda^{2}) + Tr(Q\Lambda'Q^{T}Q\Lambda'Q^{T}) - 2Tr(\Lambda Q\Lambda'Q^{T}) \\ &= \min_{\Lambda'} Tr(\Lambda^{2} + \Lambda'^{2} - 2\Lambda\Lambda') \\ &= \min_{\Lambda'} Tr(\Lambda - \Lambda')^{2} \end{split}$$

The minimum is thus obtain for $\Lambda' = Diag(\lambda_1, \dots, \lambda_d, 0, \dots, 0)$ and one can choose $Q = V^T W = Id_N \iff W = V$.

Since $YY^T = W\Lambda'W^T$, one has $Y = W\Lambda'^{\frac{1}{2}} = V\Lambda'^{\frac{1}{2}}$.

MDS: example

Dimension: 64 * 64 = 4096. N = 698

3 free parameters:

- left-right pose,

- up-down pose,

- light pose.

2D-proj: pose 2

MDS: remarks

Let $v \in \mathbb{R}^D$ be an eigenvector of C with eigenvalue λ . One has

$$GXv = XX^T Xv = XCv = \lambda Xv$$

so $Xv \in \mathbb{R}^N$ is an eigenvector of G with eigenvalue λ . Equivalently if $w \in \mathbb{R}^N$ is an eigenvector of G with eigenvalue μ , $X^T w \in \mathbb{R}^D$ is an eigenvector of C with eigenvalue μ .

IMPORTANT: MDS does not require the knowledge of the coordinates of the points of *X*. If only the matrix *D* of the pairwise squared distances between the data points is known, one can still apply MDS by first "double centering" $D: G = -\frac{1}{2}JDJ$.

■ IMPORTANT: If *D* is not obtained from a point cloud $X \subset \mathbb{R}^D$, one can still apply MDS but *G* may have negative eigenvalues (indeed negative eigenvalues signify that *D* is non Euclidean). The *d*-dimensional embedding Y_{MDS} given by MDS is the one that have the Gram matrix that best approximates $G = -\frac{1}{2}JDJ$ (Eckart and Young '36): for any $Y \subset \mathbb{R}^d$,

 $\|Y_{MDS}Y_{MDS}^T - G\| \le \|YY^T - G\|$

Turning non linear

- (Classical) PCA and MDS become inefficient when the data is located around highly non linear manifolds.
- From now on we assume that the observed data lie on or are close to a *d*-dimensional submanifold $M \subset \mathbb{R}^D$.

Locally Linear Embedding (L. Saul and S Roweis '00)

- Preservation of the local geometry of the data: LLE intends to find an embedding of the data $X \subset \mathbb{R}^D$ such that
 - nearby points remain nearby in the target low dimensional space,
 - nearby points remain similarly co-located in the target low dimensional space.

LLE: overview of the algorithm

1. Build a neighborhood graph \mathcal{G} with vertex set X (e.g. k-NN or Rips graph). Compute weights w_{ij} that best reconstruct each data point x_i from its neighbors by minimizing the cost function x_i

2.
$$E(W) = \sum_{i} ||x_i - \sum_{j} w_{ij} x_j||^2$$

with the constraints that $w_{ij} = 0$ if x_i and x_j are not connected in \mathcal{G} and that $\sum_j w_{ij} = 1$.

3. Compute the vectors y_i minimizing the quadratic cost

$$\Phi(Y) = \sum_{i} \|y_i - \sum_{j} w_{ij}y_j\|^2$$

- k-NN graph (depends on an interger parameter k): $x_i x_j$ is an edge of \mathcal{G} iff x_j is one of the k nearest neighbours of x_i (and vice-versa).

- Rips graph (depends on a real parameter $\varepsilon > 0$): $x_i x_j$ is an edge of \mathcal{G} iff $d(x_i, x_j) \leq \varepsilon$.

Minimization of

$$E(W) = \sum_{i=1}^{N} \|x_i - \sum_{j \in N_{\mathcal{G}}(x_i)} w_{ij} x_j\|^2$$

with the constraints:

- $w_{ij} = 0$ if x_i and x_j are not connected in \mathcal{G} ,
- $\sum_{j} w_{ij} = 1.$
 - The weights w_{ij} are invariant under rotation, scaling and translation (translation invariance commes from the 2nd constraint).
 - The minimization boils down to N quadratic minimizations under constraints. Let $x \in X$, let x_j be its neighbors in \mathcal{G} and let $w_j = w_{ij}$:

$$\varepsilon = \|x - \sum_{j \in N_{\mathcal{G}}(x)} w_j x_j\|^2 = \|\sum_j w_j (x - x_j)\|^2 = \sum_{j,k} w_j w_k G_{jk}$$

where $G = (G_{jk}) = ((x - x_j)^T (x - x_k))$ is the "local" Gram matrix.

$$\varepsilon = \|x - \sum_{j \in N_{\mathcal{G}}(x)} w_j x_j\|^2 = \|\sum_j w_j (x - x_j)\|^2 = \sum_{j,k} w_j w_k G_{jk}$$

where $G = (G_j k) = ((x - x_j)^T (x - x_k))$ is the "local" Gram matrix.

- G being semipositive definite, the minimization of ε admits a closed form solution:
 - Solve the linear system $G\mathbf{w} = (1, 1, \cdots, 1)^T$
 - Rescale the w_j such that they sum to 1.

Warning: if G is singular or nearly singular (e.g. if the number of neighbors is greater than D), it may need to be regularized by adding a small multiple of the identity matrix (⇒ penalize large weigths).

This step no longer requires the points x_i . Compute vectors y_i minimizing the quadratic cost

$$\Phi(Y) = \sum_{i} \|y_{i} - \sum_{j} w_{ij}y_{j}\|^{2} = \sum_{i} \left(y_{i}^{T}y_{i} - 2\sum_{j} w_{ij}y_{i}^{T}y_{j} + \sum_{k,l} w_{ik}w_{il}y_{k}^{T}y_{l} \right) = \sum_{ij} M_{ij}y_{i}^{T}y_{j}$$

where $M_{ij} = \delta_{ij} - w_{ij} - w_{ji} + \sum_{k} w_{ki} w_{kj}$ (note that $M = (I - W)^T (I - W)$).

Constraints:

- remove translational degree of freedom: $\overline{y} = \sum_{i} y_{i} = 0$ - remove rotational degree of freedom: $\frac{1}{N} \sum_{i} y_{i} y_{i}^{T} = Id_{d}$

Solution:

- compute the (d+1) eigenvectors $\mathbf{v}_0, \cdots \mathbf{v}_d$ of *M* corresponding to the (d+1) smallest eigenvalues $\lambda_0 \leq \cdots \leq \lambda_d$ and discard \mathbf{v}_0 .
 - the y_i are given by the lines of the matrix $(\mathbf{v}_1\mathbf{v}_2\cdots\mathbf{v}_d)$.

S'

k = 5NN

k = 12NN

k = 30NN

Fishbowl

k = 12NN

k = 30NN

k = 80NN

3D-proj: light

2D-proj: pose 1

2D-proj: pose 2

$$k = 6 \; \mathrm{NN}$$

Dimension: 64 * 64 = 4096. N = 698

3 free parameters:

- left-right pose,
- up-down pose,
- light pose.

ISOMAP (de Silva, Tenenbaum, Langford '00)

Variant of MDS where the matrix of Euclidean distances between data points is replaced by the matrix of the geodesic distances between data points.

Algorithm:

- 1. Build a neighborhood graph \mathcal{G} with vertex set X such that the geodesic distances on \mathcal{G} approximates the geodesic distances on M.
- 2. Build the matrix $D_{\mathcal{G}} = (d_{\mathcal{G}}(x_i, x_j))$ of the pairwise squared distances in \mathcal{G} .
- 3. Apply MDS to $D_{\mathcal{G}}$.

Geodesic distance approximation

- k-NN graph (depends on an interger parameter k): $x_i x_j$ is an edge of \mathcal{G} iff x_j is one of the k nearest neighbours of x_i (and vice-versa).

- Rips graph (depends on a real parameter $\varepsilon > 0$): $x_i x_j$ is an edge of \mathcal{G} iff $d(x_i, x_j) \leq \varepsilon$.

- Avoid too long edges in \mathcal{G}
- The edges of *G* are weighted by their length.

Geodesic distance approximation

The geodesic distance between x_i and x_j

$$d_M(x_i, x_j) = \inf\{l(\gamma) | \gamma : [0, 1] \to M, \gamma(0) = x_i, \gamma(1) = x_j\}$$

in the manifold M is approximated by the length $d_{\mathcal{G}}(x_i, x_j)$ of the shortest path between x_i and x_j in \mathcal{G} (that can be computed by Dijkstra's algorithm).

Theorem [Bernstein & al'00]: Let $\lambda > 0$. For some small enough $\delta, \varepsilon > 0$ ($\delta < \varepsilon$), if X is a δ -sample of M and if \mathcal{G} is such that $(d(x_i, x_j) < \varepsilon \Leftrightarrow (x_i x_j)$ is an edge of \mathcal{G}) then for all x_i, x_j

$$1 - \lambda < \frac{d_{\mathcal{G}}(x_i, x_j)}{d_M(x_i, x_j)} < 1 + \lambda$$

Geodesic distance approximation

Sketch of proof:

Let $d_S(x, x') = \min_P \sum_{j=0}^{p-1} d_M(x_j, x_{j+1})$ where $P = (x_{i_0} = x, x_{i_1}, \dots x_{i_p} = x') \subset X$.

From a distance function property (Federer):

$$\frac{R-\varepsilon}{R}d_S \le d_{\mathcal{G}} \le d_S, \ R = reach(M)$$

Solution Using that X is a δ -sample of M one "approximately" gets

$$d_M \le d_S \le \frac{\varepsilon}{\varepsilon - 2\delta} d_M$$

Theoretical guarantees of ISOMAP

ISOMAP intends to map X into $Y \subset \mathbb{R}^d$ in such a way that the pairewise geodesic distances in X are as close as possible to the pairwise euclidean distances in Y

 $\implies M$ has to be isometric to a convex open subset of \mathbb{R}^d , i.e. there exists a convex open Ω domain in \mathbb{R}^d and an embedding $f: \Omega \to \mathbb{R}^d$ s.t. $f(\Omega) = M$ and for all $y, y' \in \Omega$, $d_M(f(y), f(y')) = ||x - x'||.$

ISOMAP: example

2D-proj: pose 2

Dimension: 64 * 64 = 4096. N = 698

3 free parameters:

- left-right pose,
- up-down pose,
- light pose.

Some remarks on ISOMAP

Advantages:

- intend to preserve the "intrinsic metric" of the data.
- come with geometric guarantees

Drawbacks:

- ISOMAP is a global method: as in MDS, if the size of the data is very large, the computations of the eignevalues/eigenvectors of G = -0.5JDJ is an issue. ⇒ Landmark ISOMAP
- Solution Assuming that $M \subset \mathbb{R}^D$ is isometric to a convex open set of \mathbb{R}^d is rather restrictive. \implies Conformal ISOMAP

Conformal ISOMAP (de Silva, Tenenbaum)

Assume that $M = f(\Omega)$ where Ω is a domain in \mathbb{R}^d and $f : \Omega \to \mathbb{R}^D$ is a smooth (\mathcal{C}^2) conformal embedding: f preserve infinitesimal angles i.e. for any $y \in \Omega$ there exists s(y) > 0 s.t. for any $\mathbf{v} \in \mathbb{R}^d$, $||d_y f(\mathbf{v})|| = s(y)\mathbf{v}$.

C-ISOMAP is a simple variant of ISOMAP where the weights of the edges $(x_i x_j)$ is replaced by $\frac{d(x_i, x_j)}{\sqrt{M(i)M(j)}}$ where M(i) is the mean distance between x_i and its k-nearest neighbors (for some user defined k).

• $\sqrt{M(i)M(j)}$ is an approximation of the conformal factor s(y).

Theorem [de Silva et al.]: If f is a smooth conformal embedding of a bounded convex domain Ω in \mathbb{R}^d and if X = f(Y) where Y is a uniformly sampled of Ω then $d_{\mathcal{G}}$ is close to the original distance in Ω : for any $\lambda, \mu > 0$ and for a suitable k,

$$1 - \lambda \leq rac{d_{\mathcal{G}}}{d_{\Omega}} \leq 1 + \lambda$$

with probability at least $1 - \mu$ provided that |X| is large enough.

C-ISOMAP: example

Results from V. de Silva, J.B. Tenenbaum, NIPS 15, 2003

Landmark ISOMAP (de Silva, Tenenbaum)

- Select n > d landmarks among the data points and compute the $n \times N$ matrix $D_{n,N}$ of the squared distances from each data point to the landmarks.
- Replace classical MDS by a Landmark-MDS:
 - Compute the matrix D_n of the squared distances between the landmarks and $G_n = -\frac{1}{2}JD_nJ$.
 - The embedding of the landmarks in \mathbb{R}^d is given by (classical) MDS, i.e. by the $n \times d$ matrix $Y_n^T = (\sqrt{\lambda_1} \mathbf{v}_1 \sqrt{\lambda_2} \mathbf{v}_2 \cdots \sqrt{\lambda_d} \mathbf{v}_d)$ where λ_i and \mathbf{v}_i are the largest eigenvalues/vectors of D_n .
 - Solution Embed the remaining points in the following way: for $x \in X$, let D_x be the vector of the distances between x and the n landmarks and let \overline{D}_n be the vector of the mean of the columns of D_n . Then x is sent to

$$y = \frac{1}{2}L^{\#}(\overline{D}_n - D_x)$$
 where $L^{\#} = \begin{pmatrix} \mathbf{v}_1^T/\sqrt{\lambda_1} \\ \mathbf{v}_2^T/\sqrt{\lambda_2} \\ \vdots \\ \mathbf{v}_d^T/\sqrt{\lambda_d} \end{pmatrix}$

L-ISOMAP: example

Results from V. de Silva, J.B. Tenenbaum, NIPS 15, 2003

Hessian eigenmaps (D. Donoho, C. Grimes '03)

A "proven" method for isometric embeddings of open sets of euclidean spaces:

- \square ... but it involves the estimation of 2^{nd} order differential quantities.

 $\Omega \subset \mathbb{R}^d$ be an open connected set and let $\psi : \Omega \to M$ be a smooth locally isometric embedding.

Let $m \in M$, let (x_1, \dots, x_d) be an orthonormal coordinate system on $T_m M$. The projection $p_{T_m M}$ of M on $T_m M$ is well- defined on a neighborhood of m in M. For any $f \in C^2(M, \mathbb{R})$, the Hessian of f at m in tangent coordinates is defined by

$$(H_f^{tan}(m))_{ij} = \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j} f(p_{T_m M}^{-1}(x))|_{x=0}$$

$$\mathcal{H}(f) = \int_M \|H_f^{tan}(m)\|^2 dm$$

Theorem [Donoho et al. '03]: Assume that $M = \psi(\Omega)$ where $\Omega \subset \mathbb{R}^d$ is an open connected set and ψ is a locally isometric embedding of Ω . Then the null-space of the quadratic form

$$\mathcal{H}(f) = \int_M \|H_f^{tan}(m)\|^2 dm$$

is (d+1)-dimensional and generated by the constant functions and the d original isometric coordinates $pr_i \circ \psi^{-1}$ where $pr_i : \mathbb{R}^d \to \mathbb{R}$ is the linear projection on the i^{th} coordinate in \mathbb{R}^d .

Sketch of the proof:

 \checkmark The null-space of \mathcal{H}^{euc} is the (d+1)-dimensional space of affine functions on \mathbb{R}^d .

$$\begin{aligned} & \quad H_f^{tan}(m) = H_f^{iso}(m): \\ & \quad \text{-let } v \in T_m M \text{ and let } \gamma_v : [0, \varepsilon) \to M \text{ a unit speed geodesic s.t. } \gamma_v(0) = m \text{ and} \\ & \quad \gamma_v'(0) = v. \text{ Then } (f \circ \gamma_v)''(0) = v^T H_f^{iso}(m)v. \\ & \quad \text{-let } \delta_v : [0, \varepsilon) \to M \text{ defined by } \delta_v(t) = p_{T_m M}^{-1}(tv). \text{ Then} \\ & \quad (f \circ \delta_v)''(0) = v^T H_f^{tan}(m)v. \\ & \quad \text{-the accelerations of } \gamma_v \text{ and } \delta_v \text{ at } 0 \text{ are normal to } T_m M \\ & \quad \Rightarrow |\gamma_v(t) - \delta_v(t)| = o(t^2) \Rightarrow (f \circ \gamma_v)''(0) = (f \circ \delta_v)''(0). \end{aligned}$$

Algorithm:

- 1. For each data point x_i identify its k nearest neighbors \mathcal{N}_i (constraint: $\min(k, D) > d$) and for each $i = 1, \dots, N$ build the recentered matrix M_i with rows $x_j - \overline{x}_i$ where $\overline{x}_i = 1/N \sum_{j \in \mathcal{N}_i} x_j$.
- 2. Estimation of tangent coordinates: for each M_i compute (using PCA) the *d*-dim. tangent coordinates of the points in N_i
- 3. Build a tangent Hessian estimator H^i for each \mathcal{N}_i .
- 4. Build the empirical version of the quadratic form \mathcal{H} from H^i , $i = 1, \dots, N$ and find its kernel.

cone

HLLE (k = 12)

ISOMAP (k = 12)

cone

HLLE (k = 12)

ISOMAP (k = 12)

Dimension: 64 * 64 = 4096. N = 698

3 free parameters:

- left-right pose,
- up-down pose,
- light pose.

2D-proj: pose 2

 $k=12\;\mathrm{NN}$

Laplacian eigenmaps (M. Belkin, P. Niyogi '02)

(from Belkin et al, Neural Computation, 2003; 15 (6):1373-1396)

- Laplacian eigenmaps intend to embed the data X in a d-dimensional in such a way that close/similar points in X remain close in the low dimensional space.
 - Analogy with harmonic analysis on the underlying manifold.

Laplacian eigenmaps

Overview of the method:

- 1. Build a neighborhood graph \mathcal{G} (*k*-NN or Rips).
- 2. Assign weights w_{ij} to the edges of \mathcal{G} representing the "similarity" between the nodes:
 - **Heat kernel:** if $(x_i x_j)$ is an edge of \mathcal{G} then

$$w_{ij} = e^{-\frac{\|x_i - x_j\|^2}{t}}$$

 $w_{ij} = 0$ otherwise.

- Simple-minded ($t = +\infty$): $w_{ij} = 1$ if $(x_i x_j)$ is an edge of \mathcal{G} ; $w_{ij} = 0$ otherwise.
- 3. Compute the eigenvalues and eigenvectors for the generalized eigenvector problem

$$Lf = \lambda Df$$

where *D* is diagonal with $D_{ii} = \sum_j w_{ij}$ and L = D - W is the matrix of the Laplacian operator on \mathcal{G} (see *L* as an operator acting on the functions defined on the vertices of \mathcal{G}).

Laplacian eigenmaps

Overview of the method:

3. Compute the eigenvalues and eigenvectors for the generalized eigenvector problem

$$L\mathbf{f} = \lambda D\mathbf{f}$$

where *D* is diagonal with $D_{ii} = \sum_j w_{ij}$ and L = D - W is the matrix of the Laplacian operator on \mathcal{G} (see *L* as an operator acting on the functions defined on the vertices of \mathcal{G}). Let $\mathbf{f}_0, \dots, \mathbf{f}_d$ be the solutions aroder according to increasing eigenvalues:

$$L\mathbf{f}_0 = \lambda_0 D\mathbf{f}_0$$

$$L\mathbf{f}_d = \lambda_d \mathbf{f}_d$$
$$0 = \lambda_0 \le \lambda_1 \le \dots \le \lambda_d$$

The embedding $y_i \in \mathbb{R}^d$ of x_i is given by $y_i = (\mathbf{f}_1(x_i), \cdots, \mathbf{f}_d(x_i))$ (Note that \mathbf{f}_0 corresponding to the eigenvalue 0 is discarded).

Laplacian eigenmaps: justification

Assume that one wants to find an embedding $\mathbf{y}^T = (y_1, \cdots y_N)$ of X in \mathbb{R} that minimize

 $E = \sum_{i,j} (y_i - y_j)^2 w_{ij}$ (with somme additional constraints - see below)

 \longrightarrow heavy penalty if close points x_i and y_i are mapped far apart. One has

$$E = \sum_{i,j} (y_i^2 + y_j^2 - 2y_i y_j) w_{ij} = \sum_i y_i^2 D_{ii} + \sum_j y_j^2 D_{jj} - 2\sum_{i,j} y_i y_j w_{ij} = 2\mathbf{y}^T L \mathbf{y}$$

- \Rightarrow *L* is positive semidefinite.
- ⇒ minimizing *E* reduces to minimizing $y^T Ly$ and one has to add a constraint to remove a scaling factor (and avoid obvious solution): $y^T Dy = 1$ (one uses *D* rather than *Id* because it reflects the respective importance of the vertices in *G*).
- ⇒ y minimizing *E* is given by the smallest non zero eigenvalue solution to the generalized eigenvalue problem $Ly = \lambda Dy$ (note that the eigenfunction corresponding to the eigenvalue 0 is the constant function $(1, \dots, 1)$ mapping all the data points on a single point corresponding constraint: $y^T D(1, \dots, 1)^T = 0$).

Laplacian eigenmaps: justification

General case:

Find $Y = \{y_1, \cdots y_N\} \subset \mathbb{R}^d$ that minimizes

$$E = \sum_{i,j} \|y_i - y_j\|^2 w_{ij} = ?$$

Laplacian eigenmaps: justification

General case:

Find $Y = \{y_1, \cdots y_N\} \subset \mathbb{R}^d$ that minimizes

$$E = \sum_{i,j} \|y_i - y_j\|^2 w_{ij} = Tr(Y^T L Y)$$

Laplacian eigenmaps: example

3D-proj: light

Dimension: 64 * 64 = 4096. N = 698

3 free parameters:

- left-right pose,

- up-down pose,
- light pose.

2D-proj: pose 2

k = 12 NN, t = 1

Laplacian eigenmaps: example

Swiss Roll

k = 12

k = 30

k = 50

k = 12

k = 30

k = 50

Analogy with Laplace-Beltrami operator

Problem: Let *M* be a compact Riemannian *d*-manifold. Find the "best" map $f : M \to \mathbb{R}$ such that the points that are close together on *M* are mapped close together on \mathbb{R} .

Assuming that *f* is smooth, the way how close points are mapped far away by *f* is given by $||\nabla f||$. So the problem can be stated as find

$$argmin_{\{\|f\|_{L^{2}(M)}=1\}}\int_{M}\|\nabla f(m)\|^{2}dm$$

Laplace-Beltrami operator on M: $\mathcal{L}f := -div\nabla(f)$.

Stokes' formula: for any vector field **X** on M, $\int_M \langle \mathbf{X}, \nabla f \rangle = -\int_M div(\mathbf{X}) f$

$$\Rightarrow \quad \int_M \|\nabla f(m)\|^2 = \int_M \mathcal{L}(f)f$$

The solution is then given by the eigenfunction f_1 corresponding to the first non zero eigenvalue of \mathcal{L} .

Belkin, Niyogi'08: the analogy can be turned into a convergence result...

Choice of the weights

- Heat flow: $f: M \subset \mathbb{R}^D \to \mathbb{R}$ initial heat distribution, u(x, t) heat distribution at time t (u(x, 0) = f(x)).
- Heat equation: $(\frac{\partial}{\partial t} + \mathcal{L})u = 0$ has solution given by $u(x,t) = \int_M H_t(x,y)f(y)$, H_t being the heat kernel.

$$\mathcal{L}f(x) = -\mathcal{L}u(x,0) = -\left(\frac{\partial}{\partial t}\int_M H_t(x,y)f(y)\right)_{t=0}$$

for
$$x, y$$
 close and t small,

$$H_t(x,y) \approx \frac{1}{(4\pi t)^{\frac{m}{2}}} e^{-\frac{\|x-y\|^2}{4t}} \text{ and } \lim_{t \to 0} \int_M H_t(x,y) f(y) = f(x)$$

Therefore, for t small,

$$\mathcal{L}f(x) \approx \frac{1}{t} \left(f(x) - \frac{1}{(4\pi t)^{\frac{m}{2}}} \int_M e^{-\frac{\|x-y\|^2}{4t}} f(y) dy \right)$$

Choice of the weights

Therefore, for t small,

$$\mathcal{L}f(x) \approx \frac{1}{t} \left(f(x) - \frac{1}{(4\pi t)^{\frac{m}{2}}} \int_M e^{-\frac{\|x-y\|^2}{4t}} f(y) dy \right)$$

$$\mathcal{L}f(x_i) \approx \frac{1}{t} \left(f(x_i) - \frac{1}{N} (4\pi t)^{\frac{m}{2}} \sum_{j, \|x_i - x_j\| < \varepsilon} e^{-\frac{\|x_i - x_j\|^2}{4t}} f(x_j) \right)$$

• note that $\mathcal{L}c^{te} = 0 \Rightarrow (\frac{1}{N}(4\pi t)^{\frac{m}{2}})^{-1} = \sum_{j,||x_i - x_j|| < \varepsilon} e^{-\frac{||x_i - x_j||^2}{4t}}$ and $\frac{1}{t}$ does not affect the eigen decomposition of the discrete laplacian.

 \Rightarrow Choice of the weights: $w_{ij} = e^{-\frac{\|x_i - x_j\|^2}{4t}}$ if $\|x_i - x_j\| < \varepsilon$; $w_{ij} = 0$ otherwise.

Diffusion maps (R. Coifman, S. Lafon, A. Lee, M. Maggioni,... '05)

Input: $X \subset \mathbb{R}^D$ and a weight function $w(x_i, x_j) = w_{ij}$ such that the matrix $W = (w_{ij})$ is symmetric and semi-definite positive.

Let $d_i = \sum_j w_{ij}$ and let $p_{ij} = p(x_i, x_j) = \frac{w_{ij}}{d_i}$. p_{ij} can be seen as the probability for a random walker on X to make a step from x_i to x_j (note that $\sum_j p_{ij} = 1$). The iterates $P^t = (p_t(x_i, x_j))$ of $P = (p_{ij})$ can be seen as the the probabilities of going from x_i to x_j in t time steps.

Diffusion operator:

$$Pf(x_i) = \sum_{j=1}^{N} p_{ij}f(x_j)$$

It can be seen as an operator acting on the probability distributions $\mu^T = (\mu(x_1), \cdots \mu(x_N))$ on X

$$\mu^T P(x_j) = \sum_{i=1}^N \mu(x_i) p_{ij}$$

with a unique stationary distribution $\mu_0(x_i) = \frac{d_i}{\sum_k d_k}$

Diffusion maps

The unique stationary distribution $\mu_0(x_i) = rac{d_i}{\sum_k d_k}$ satisfies

$$\mu_0(x_i)p_{ij} = \mu_0(x_j)p_{ji}$$

Idea: for a fixed time t, define a metric such that two points x_i , x_j are close if the conditional probability distributions $p_t(x_i, .)$ and $p_t(x_j, .)$ are close.

Diffusion distance:

$$D_t^2(x_i, x_j) = \|p_t(x_i, .) - p_t(x_j, .)\|_{\frac{1}{\mu_0}}^2 = \sum_k \frac{(p_t(x_i, x_k) - p_t(x_j, x_k))^2}{\mu_0(x_k)}$$

 \rightarrow Close connection with the spectral theory of the random walk.

Left and right eigenvectors of P: $1 = |\lambda_0| \ge |\lambda_1| \ge \cdots \ge \lambda_{N-1}$

$$\mu_j^T P = \lambda_j \mu_j^T$$
 and $P f_j = \lambda_j f_j$

with $f_j = \frac{\mu_j}{\mu_0}$.

Diffusion maps

Choose normalized $\mu_j, f_j: \|\mu_j\|_{\frac{1}{\mu_0}}^2 = 1$ and $\|f_j\|_{\mu_0}^2 = \sum_k f_j(x_k)^2 \mu_0(x_k) = 1.$

Biorthogonal decomposition of P^t :

$$p_t(x_i, x_j) = \sum_k \lambda_k^t f_k(x_i) \mu_k(x_j)$$

$$D_t^2(x_i, x_j) = \sum_{k=1}^N \lambda_k^{2t} (f_k(x_i) - f_k(x_j))^2$$

(note that since $f_0 \equiv 1$, it does not enter into the sum).

The diffusion distance is then approximated by

$$D_t^2(x_i, x_j) \approx \sum_{k=1}^d \lambda_k^{2t} (f_k(x_i) - f_k(x_j))^2$$

Diffusion maps

The diffusion distance is then approximated by

$$D_t^2(x_i, x_j) \approx \sum_{k=1}^d \lambda_k^{2t} (f_k(x_i) - f_k(x_j))^2$$

Embedding of the data in
$$\mathbb{R}^d$$
:

$$x_i \mapsto y_i = (\lambda_1^t f_1(x_i), \cdots \lambda_d^t f_d(x_i))$$

The (approximated) diffusion metric becomes the euclidean metric between the data points in \mathbb{R}^d .

A few references 1/2

LLE:

- L. K. Saul, S. T. Roweis, "Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifolds", Journal of Machine Learning Research 4 (2000), 119-155.
- ISOMAP:
 - J.B. Tenenbaum, V. de Silva, J. C. Langford, "A global Geometric Framework for Nonlinear Dimensionality Reduction", Science 290: 2319-2323, 2000.
 - V. de Silva, J. B. Tenenbaum, "Global versus Local Methods in Nonlinear Dimensionality Reduction", Advances in Neural Information Processing Systems 15, MIT Press, 2003.
- HLLE:
 - D. L. Donoho, C. Grimes, "Heissian Eigenmaps: Locally Linear Embedding Techniques for High-dimensional Data", Proceedings of the National Academy of Sciences 100, 10, 5591-5596.

A few references 2/2

Laplacian Eigenmaps:

M. Belkin, P. Niyogi, "Laplacian Eigenmaps for Dimensionality Reduction for Data Representation", Neural Computation 15, 6, 1373–1396, 2003.

Diffusion maps:

R. R. Coifman and S. Lafon and A. Lee and M. Maggioni and B. Nadler and F. Warner and S. Zucker, "Geometric Diffusions as a tool for Harmonic Analysis and structure definition of data: Diffusion maps", Proc. of Nat. Acad. Sci. 102, 7426–7431, 2005.

