
A geometric (and partial)
introduction to Dimensionality

Reduction
Frédéric Chazal

GEOMETRICA team

INRIA Saclay - Ile-de-France

– p. 1

Introduction

50 100 150 200 250 300 350

50

100

150

200

250

300

350

−10 −5 0 5 10 15

−20

0

20

40
−15

−10

−5

0

5

10

15

More and more available data represented by point clouds in high dimensional spaces:

measurement and data storage capacities are growing very fast,

e.g. images databases, astronomic data,...

Data often depends upon a small numbers of “independant” parameters (e.g. number
of degrees of freedom of an observed system):

data sampled around low dimensional shapes (manifolds).

underlying manifolds may be highly non linear.

– p. 2

Introduction

50 100 150 200 250 300 350

50

100

150

200

250

300

350

−10 −5 0 5 10 15

−20

0

20

40
−15

−10

−5

0

5

10

15

Need to analyze and visualize these data.

Dimensionality reduction methods intend to embedded the data in low dimensional
spaces while preserving as well as possible (some of) their geometric properties. ⇒
many different approaches that gave rise to a huge literature in the last decade...

In this talk:

a very incomplete and partial introduction to dimensionality reduction,

a focus on a small set of geometric-motivated methods (trying to avoid as most as
possible technical details).

– p. 3

Preliminaries and notations

The following notations and assumptions are used all along the talk.

Data: X = {x1, x2, · · · , xN} ⊂ R
D a finite point cloud with mean vector

x =
N
∑

n=1

xi ∈ R
D

X =

x11 x12 . . . x1D

x21 x22 · · · x2D

...
...

. . .
...

xN1 xN2 · · · xND

N : number of data points

D: ambient dimension

Underlying/latent manifold: M ⊂ R
D is a d-dimensional submanifold of R

D . The
points of X are assumed to be sampled on or around M .

– p. 4

Preliminaries and notations

Two “equivalent” points of view:

1. M ⊂ R
D is a submanifold and one intends to find an embedding Y of X in some

low dimensional space such that the “geometry” of Y is as similar as possible as
the one of M in some sense,

2. M = f(N) where N is some d-dimensional manifold (the latent manifold - in
general N is expected to be an open subset of R

d) and f : N → R
D an

embedding with some specified properties (isometry, conformal,...). One then
intends to find Y such that X = f(Y). The coordinates of Y are known as the
latent variables.

3. In some statistical/probabilistic approaches (not considered in this talk):
X = f(Y) + ε(Y) where ε is some noise model.

– p. 5

PCA

Find the d-dimensional subspace of R
D that best

approximates X in a least square sense (and then
project X on this subspace)

x1

x2 xN

Let V be a d-dimensional subspace of R
D and let u1, · · ·uD be an orthonomal basis

such that u1, · · ·ud is a basis of ~V .

Approximate each point xn by

x̃n =
d
∑

i=1

αniui +
D
∑

i=d+1

biui

Minimize

E =
1

N

N
∑

i=1

‖xn − x̃n‖2

– p. 6

PCA

x̃n =

d
∑

i=1

αniui +

D
∑

i=d+1

biui

E =
1

N

N
∑

i=1

‖xn − x̃n‖2
x1

x2 xN

Minimizing E with respect to αni and bi leads to

xn − x̃n =
D
∑

i=d+1

{(xn − x)Tui}ui

⇒ Given ~V the best affine subspace V is the one passing through x and x̃n is the
orthogonal projection on V .

– p. 7

PCA

E =
1

N

N
∑

i=1

‖xn − x̃n‖2

xn − x̃n =
D
∑

i=d+1

{(xn − x)Tui}ui
x1

x2 xN

Now E only depends on ui:

E =
1

N

N
∑

n=1

D
∑

i=d+1

(xTnui − xTui)
2 =

D
∑

i=d+1

uTi Cui

where

C =
1

N

N
∑

n=1

(xn − x)(xn − x)T is the covariance matrix of X

– p. 8

PCA

Proposition: The minimum of E is ob-
tained for the space spanned by the d eigen-
vectors of C corresponding to the d largest
eigenvalues.

1

u1, · · ·un

uD
vTCv = cste

“Proof”: For simplicity, assume that d = D − 1.

minimize E = uTDCuD under the constraint uTDuD = 1.

”Lagrange multipliers”:
minimization of uDCuD + λ(1− uTDuD)

derivative with respect to uD : 2CuD − 2λuD is equal to 0 if CuD = λuD .

– p. 9

PCA: remarks

(A) Find the d-dimensional subspace of R
D that best approximates X in a least

square sense (and then project X on this subspace)

⇐⇒

(B) Find the d-dimensional subspace of R
D onto which the projected data has

maximum variance.

There exist other more probabilistic/statistical formulations of the problem that lead to
the same solution.

– p. 10

PCA: example

50 100 150 200 250 300 350

50

100

150

200

250

300

350

Dimension: 64 ∗ 64 = 4096.
N = 698

3 free parameters:
- left-right pose,
- up-down pose,
- light pose.

0

0.02

0.04

0.06 −0.1
−0.05

0
0.05

0.1

−0.1

−0.05

0

0.05

0.1

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

3D-proj: light 2D-proj: pose 1

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

2D-proj: pose 2

– p. 11

Multidimensional Scaling (MDS)

Find a low dimensional “projection” Y ⊂ R
d

of the dataX such as to preserve, as closely
as possible, the pairwise distances between
data points.

Without loss of gen. we assume that x = 0

(and y = 0).

R
D

R
d

X

Y

The N ×N matrix of squared pairwise distance: D = DX = (‖xi − xj‖2)
The N ×N Gram matrix: G = GX = (xTi xj) = XXT

Relationship between D and G (exercise):

G = −1

2
JDJ where J = IdN −

1

N
11T = (δij −

1

N
)

Goal: Find Y = {y1, · · · yN} ⊂ R
d minimizing

ρ(DX , DY) = ‖GX −GY ‖22 = ‖1
2
J(DX −DY)J‖22

– p. 12

Multidimensional Scaling (MDS)

ρ(DX , DY) = ‖GX −GY ‖22 = ‖1
2
J(DX −DY)J‖22

Solution:
Let λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0 be the eigenvalues of GX and {v1, · · ·vN} ⊂ R

N an
orthonormal eigenbasis.

Y ⊂ R
d minimizing ρ(DX , DY) is given by the columns of the d×N matrix

Y =

√
λ1v

T
1√

λ2v
T
2

...
√
λdv

T
d

– p. 13

Multidimensional Scaling (MDS)

Justification:

min
Y
‖GX −GY ‖22 = min

Y
‖XXT − Y Y T ‖2

= min
Y

N
∑

i=1

N
∑

j=1

(xTi xj − yTi yj)2

= min
Y

Tr((XXT − Y Y T)2)

XXT and Y Y T are semidefinite positive: XXT = V ΛV T and Y Y T = WΛ′WT where
- V V T = WWT = IdN ,
- Λ = Diag(λ1, · · · , λN) is diagonal with λ1 ≥ λ2 · · · ≥ λN ,
- Λ′ = Diag(λ′1, · · ·λ′d, 0, · · · , 0) is diagonal with λ′1 ≥ · · · ≥ λ′d ≥ 0 because Y ⊂ R

d.

min
Y

Tr((XXT − Y Y T)2) = min
W,Λ′

Tr(Λ− V TWΛ′WTV)2 (use Tr(AB) = Tr(BA))

= min
Q,Λ′

Tr(Λ−QΛ′QT)2 with Q = V TW

= min
Q,Λ′

Tr(Λ2) + Tr(QΛ′QTQΛ′QT)− 2Tr(ΛQΛ′QT)

– p. 14

Multidimensional Scaling (MDS)

Justification:

min
Y

Tr((XXT − Y Y T)2) = min
W,Λ′

Tr(Λ− V TWΛ′WTV)2 (use Tr(AB) = Tr(BA))

= min
Q,Λ′

Tr(Λ−QΛ′QT)2 with Q = V TW

= min
Q,Λ′

Tr(Λ2) + Tr(QΛ′QTQΛ′QT)− 2Tr(ΛQΛ′QT)

= min
Λ′

Tr(Λ2 + Λ′2 − 2ΛΛ′)

= min
Λ′

Tr(Λ− Λ′)2

The minimum is thus obtain for Λ′ = Diag(λ1, · · · , λd, 0, · · · , 0) and one can choose
Q = V TW = IdN (⇒W = V).

Since Y Y T = WΛ′WT , one has Y = WΛ′ 1
2 = V Λ′ 1

2 .

– p. 15

MDS: example

50 100 150 200 250 300 350

50

100

150

200

250

300

350

Dimension: 64 ∗ 64 = 4096.
N = 698

3 free parameters:
- left-right pose,
- up-down pose,
- light pose.

0

0.05

0.1

−0.1−0.08−0.06−0.04−0.0200.020.040.060.08

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

3D-proj: light 2D-proj: pose 1

−0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

2D-proj: pose 2

– p. 16

MDS: remarks

Let v ∈ R
D be an eigenvector of C with eigenvalue λ. One has

GXv = XXTXv = XCv = λXv

so Xv ∈ R
N is an eigenvector of G with eigenvalue λ. Equivalently if w ∈ R

N is an
eigenvector of G with eigenvalue µ, XTw ∈ R

D is an eigenvector of C with
eigenvalue µ.

IMPORTANT: MDS does not require the knowledge of the coordinates of the points of
X. If only the matrix D of the pairwise squared distances between the data points is
known, one can still apply MDS by first “double centering” D: G = − 1

2
JDJ .

IMPORTANT: If D is not obtained from a point cloud X ⊂ R
D , one can still apply MDS

but G may have negative eigenvalues (indeed negative eigenvalues signify that D is
non Euclidean). The d-dimensional embedding YMDS given by MDS is the one that
have the Gram matrix that best approximates G == − 1

2
JDJ (Eckart and Young ’36):

for any Y ⊂ R
d,

‖YMDSY
T
MDS −G‖ ≤ ‖Y Y T −G‖

– p. 17

Turning non linear

−10 −5 0 5 10 15

−20

0

20

40
−15

−10

−5

0

5

10

15

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

−1.5

−1

−0.5

0

0.5

1

1.5

(Classical) PCA and MDS become inefficient when the data is located around highly
non linear manifolds.

From now on we assume that the observed data lie on or are close to a d-dimensional
submanifold M ⊂ R

D .

– p. 18

Locally Linear Embedding (L. Saul and S Roweis ’00)

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Preservation of the local geometry of the data: LLE intends to find an embedding of
the data X ⊂ R

D such that

nearby points remain nearby in the target low dimensional space,

nearby points remain similarly co-located in the target low dimensional space.

– p. 19

LLE: overview of the algorithm

1. Build a neighborhood graph G with vertex set X (e.g. k-NN or Rips graph).

2.

Compute weights wij that best reconstruct each
data point xi from its neighbors by minimizing
the cost function

E(W) =
∑

i

‖xi −
∑

j

wijxj‖2

with the constraints that wij = 0 if xi and xj are
not connected in G and that

∑

j wij = 1.

xi
xj

xj′ ∑

j wijxj

3. Compute the vectors yi minimizing the quadratic cost

Φ(Y) =
∑

i

‖yi −
∑

j

wijyj‖2

– p. 20

LLE: step 1

- k-NN graph (depends on an interger pa-
rameter k): xixj is an edge of G iff xj is one
of the k nearest neighbours of xi (and vice-
versa).

- Rips graph (depends on a real parameter
ε > 0): xixj is an edge of G iff d(xi, xj) ≤ ε. 3−NN

ε

Rips graph

Take care that choosing the right neighborhood
size may be problematic:

!

!

– p. 21

LLE: step 2

Minimization of

E(W) =
N
∑

i=1

‖xi −
∑

j∈NG(xi)

wijxj‖2

with the constraints:
- wij = 0 if xi and xj are not connected in G,
-
∑

j wij = 1.

The weights wij are invariant under rotation, scaling and translation (translation
invariance commes from the 2nd constraint).

The minimization boils down to N quadratic minimizations under constraints. Let
x ∈ X, let xj be its neighbors in G and let wj = wij :

ε = ‖x−
∑

j∈NG(x)

wjxj‖2 = ‖
∑

j

wj(x− xj)‖2 =
∑

j,k

wjwkGjk

where G = (Gjk) = ((x− xj)T (x− xk)) is the “local” Gram matrix.

– p. 22

LLE: step 2

ε = ‖x−
∑

j∈NG(x)

wjxj‖2 = ‖
∑

j

wj(x− xj)‖2 =
∑

j,k

wjwkGjk

where G = (Gjk) = ((x− xj)T (x− xk)) is the “local” Gram matrix.

G being semipositive definite, the
minimization of ε admits a closed form
solution:

Solve the linear system
Gw = (1, 1, · · · , 1)T

Rescale the wj such that they
sum to 1.

∑

j wj = 1

wGw = Cte

Warning: if G is singular or nearly singular (e.g. if the number of neighbors is greater
than D), it may need to be regularized by adding a small multiple of the identity matrix
(⇒ penalize large weigths).

– p. 23

LLE: step 3

This step no longer requires the points xi. Compute vectors yi minimizing the quadratic cost

Φ(Y) =
∑

i

‖yi−
∑

j

wijyj‖2 =
∑

i

yTi yi − 2
∑

j

wijy
T
i yj +

∑

k,l

wikwily
T
k yl

 =
∑

ij

Mijy
T
i yj

where Mij = δij − wij − wji +
∑

k wkiwkj (note that M = (I −W)T (I −W)).

Constraints:

- remove translational degree of freedom: y =
∑

i yi = 0

- remove rotational degree of freedom: 1
N

∑

i yiy
T
i = Idd

Solution:
compute the (d+ 1) eigenvectors v0, · · ·vd of M corresponding to the (d+ 1)

smallest eigenvalues λ0 ≤ · · · ≤ λd and discard v0.

the yi are given by the lines of the matrix (v1v2 · · ·vd).

– p. 24

LLE: examples

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

2

2.5

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

S k = 5NN k = 12NN k = 30NN

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

0

0.5

1

1.5

2

−5 −4 −3 −2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−4 −3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

S′ k = 5NN k = 12NN k = 30NN

– p. 25

LLE: examples

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fishbowl k = 12NN k = 30NN k = 80NN

– p. 26

LLE: examples

50 100 150 200 250 300 350

50

100

150

200

250

300

350

Dimension: 64 ∗ 64 = 4096.
N = 698

3 free parameters:
- left-right pose,
- up-down pose,
- light pose.

−8 −6 −4 −2 0 2 4

−5
0

5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

3D-proj: light 2D-proj: pose 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2D-proj: pose 2

k = 6 NN

– p. 27

ISOMAP (de Silva, Tenenbaum, Langford ’00)

−20 −15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

MDS←

−10 −5 0 5 10 15

−20

0

20

40
−15

−10

−5

0

5

10

15

ISOMAP→

−40 −20 0 20 40 60
−20

−15

−10

−5

0

5

10

15

20

Variant of MDS where the matrix of Euclidean distances between data points is replaced by
the matrix of the geodesic distances between data points.

Algorithm:
1. Build a neighborhood graph G with vertex set X such that the geodesic distances on G

approximates the geodesic distances on M .

2. Build the matrix DG = (dG(xi, xj)) of the pairwise squared distances in G.

3. Apply MDS to DG .

– p. 28

Geodesic distance approximation

- k-NN graph (depends on an interger pa-
rameter k): xixj is an edge of G iff xj is one
of the k nearest neighbours of xi (and vice-
versa).

- Rips graph (depends on a real parameter
ε > 0): xixj is an edge of G iff d(xi, xj) ≤ ε. 3−NN

ε

Rips graph

Avoid too long edges in G
X has to sample densely M

The edges of G are weighted by their
length.

Bad!

– p. 29

Geodesic distance approximation

The geodesic distance between xi and xj

dM (xi, xj) = inf{l(γ)|γ : [0, 1]→M,γ(0) = xi, γ(1) = xj}

in the manifold M is approximated by the length dG(xi, xj) of the shortest path between xi
and xj in G (that can be computed by Dijkstra’s algorithm).

Theorem [Bernstein & al’00]: Let λ > 0. For some small enough δ, ε > 0 (δ < ε), if
X is a δ-sample of M and if G is such that (d(xi, xj) < ε⇔ (xixj) is an edge of G) then
for all xi, xj

1− λ < dG(xi, xj)

dM (xi, xj)
< 1 + λ

– p. 30

Geodesic distance approximation

Sketch of proof:
Let dS(x, x′) = minP

∑p−1
j=0 dM (xj , xj+1) where P =

(xi0 = x, xi1 , · · ·xip = x′) ⊂ X.

From a distance function property (Federer):

R− ε
R

dS ≤ dG ≤ dS , R = reach(M)

Using that X is a δ-sample of M one
“approximately” gets

dM ≤ dS ≤
ε

ε− 2δ
dM

– p. 31

Theoretical guarantees of ISOMAP

OK NONO

ISOMAP intends to map X into Y ⊂ R
d in such a way that the pairewise geodesic distances

in X are as close as possible to the pairwise euclidean distances in Y

=⇒M has to be isometric to a convex open subset of R
d, i.e. there exists a convex open Ω

domain in R
d and an embedding f : Ω→ R

d s.t. f(Ω) = M and for all y, y′ ∈ Ω,
dM (f(y), f(y′)) = ‖x− x′‖.

– p. 32

ISOMAP: example

50 100 150 200 250 300 350

50

100

150

200

250

300

350

Dimension: 64 ∗ 64 = 4096.
N = 698

3 free parameters:
- left-right pose,
- up-down pose,
- light pose.

−80 −60 −40 −20 0 20 40 60 80

−50

0

50
−40

−30

−20

−10

0

10

20

30

40

−80 −60 −40 −20 0 20 40 60 80
−50

−40

−30

−20

−10

0

10

20

30

40

3D-proj: light 2D-proj: pose 1

−80 −60 −40 −20 0 20 40 60 80
−50

−40

−30

−20

−10

0

10

20

30

40

2D-proj: pose 2

k = 6 NN

– p. 33

−80 −60 −40 −20 0 20 40 60 80
−50

−40

−30

−20

−10

0

10

20

30

40

−80 −60 −40 −20 0 20 40 60 80
−50

−40

−30

−20

−10

0

10

20

30

40

50 100 150 200 250 300 350

−100

−50

0

50

100

150

50 100 150 200 250 300 350 400

−100

−50

0

50

100

150

200

– p. 34

Some remarks on ISOMAP

Advantages:
intend to preserve the “intrinsic metric” of the data.

come with geometric guarantees

Drawbacks:
ISOMAP is a global method: as in MDS, if the size of the data is very large, the
computations of the eignevalues/eigenvectors of G = −0.5JDJ is an issue.

=⇒ Landmark ISOMAP

Assuming that M ⊂ R
D is isometric to a convex open set of R

d is rather restrictive.
=⇒ Conformal ISOMAP

– p. 35

Conformal ISOMAP (de Silva, Tenenbaum)

Assume that M = f(Ω) where Ω is a domain in R
d and f : Ω→ R

D is a smooth (C2)
conformal embedding: f preserve infinitesimal angles i.e. for any y ∈ Ω there exists
s(y) > 0 s.t. for any v ∈ R

d, ‖dyf(v)‖ = s(y)v.

C-ISOMAP is a simple variant of ISOMAP where the weights of the edges (xixj) is

replaced by
d(xi,xj)√
M(i)M(j)

where M(i) is the mean distance between xi and its

k-nearest neighbors (for some user defined k).
√

M(i)M(j) is an approximation of the conformal factor s(y).

Theorem [de Silva et al.]: If f is a smooth conformal embedding of a bounded convex
domain Ω in R

d and if X = f(Y) where Y is a uniformly sampled of Ω then dG is close
to the original distance in Ω: for any λ, µ > 0 and for a suitable k,

1− λ ≤ dG

dΩ
≤ 1 + λ

with probability at least 1− µ provided that |X| is large enough.

– p. 36

C-ISOMAP: example

Results from V. de Silva, J.B. Tenenbaum, NIPS 15, 2003
– p. 37

Landmark ISOMAP (de Silva, Tenenbaum)

Select n > d landmarks among the data points and compute the n×N matrix Dn,N
of the squared distances from each data point to the landmarks.

Replace classical MDS by a Landmark-MDS:

Compute the matrix Dn of the squared distances between the landmarks and
Gn = − 1

2
JDnJ .

The embedding of the landmarks in R
d is given by (classical) MDS, i.e. by the

n× d matrix Y Tn = (
√
λ1v1

√
λ2v2 · · ·

√
λdvd) where λi and vi are the largest

eigenvalues/vectors of Dn.

Embed the remaining points in the following way: for x ∈ X, let Dx be the vector
of the distances between x and the n landmarks and let Dn be the vector of the
mean of the columns of Dn. Then x is sent to

y =
1

2
L#(Dn −Dx) where L# =

vT1 /
√
λ1

vT2 /
√
λ2

...

vTd /
√
λd

– p. 38

L-ISOMAP: example

Results from V. de Silva, J.B. Tenenbaum, NIPS 15, 2003

– p. 39

Hessian eigenmaps(D. Donoho, C. Grimes ’03)

−40 −20 0 20 40 60
−20

−15

−10

−5

0

5

10

15

20

ISOMAP←

−10 −5 0 5 10 15
0

20

40
−15

−10

−5

0

5

10

15

HLLE→

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

A “proven” method for isometric embeddings of open sets of euclidean spaces:

M = ψ(Ω), ψ : Ω ⊂ R
d → R

d isometry and Ω does not need to be convex....

... but it involves the estimation of 2nd order differential quantities.

– p. 40

HLLE

Ω ⊂ R
d be an open connected set and

let ψ : Ω → M be a smooth locally iso-
metric embedding.

m

x1

x2
pTmM

R
f

M

Let m ∈M , let (x1, · · · , xd) be an orthonormal coordinate system on TmM . The
projection pTmM of M on TmM is well- defined on a neighborhood of m in M . For
any f ∈ C2(M,R), the Hessian of f at m in tangent coordinates is defined by

(Htan
f (m))ij =

∂

∂xi

∂

∂xj
f(p−1

TmM (x))|x=0

Consider the quadratic form on C2(M,R) defined by

H(f) =

∫

M

‖Htan
f (m)‖2dm

– p. 41

HLLE

m

x1

x2
pTmM

R

f
M

y1

y2

pr1

pr2

Ω ψ

Theorem [Donoho et al. ’03]: Assume that M = ψ(Ω) where Ω ⊂ R
d is an open

connected set and ψ is a locally isometric embedding of Ω. Then the null-space of the
quadratic form

H(f) =

∫

M

‖Htan
f (m)‖2dm

is (d+ 1)-dimensional and generated by the constant functions and the d original isometric
coordinates pri ◦ ψ−1 where pri : R

d → R is the linear projection on the ith coordinate in
R
d.

– p. 42

HLLE

m
x1

x2
pTmM

R R
f

M

y1

y2

pr1

pr2

Ω ψ

Hiso

Htan

Heuc

Sketch of the proof:

Hiso
f = Heuc

f◦ψ ⇒Hiso(f) = Heuc(f ◦ ψ) , ∀f ∈ C2(M,R).

The null-space of Heuc is the (d+ 1)-dimensional space of affine functions on R
d.

Htan
f (m) = Hiso

f (m):
- let v ∈ TmM and let γv : [0, ε)→M a unit speed geodesic s.t. γv(0) = m and
γ′v(0) = v. Then (f ◦ γv)′′(0) = vTHiso

f (m)v.

- let δv : [0, ε)→M defined by δv(t) = p−1
TmM (tv). Then

(f ◦ δv)′′(0) = vTHtan
f (m)v.

- the accelerations of γv and δv at 0 are normal to TmM
⇒ |γv(t)− δv(t)| = o(t2)⇒ (f ◦ γv)′′(0) = (f ◦ δv)′′(0).

– p. 43

HLLE

Algorithm:
1. For each data point xi identify its k nearest neighborsNi (constraint: min(k,D) > d)

and for each i = 1, · · · , N build the recentered matrix Mi with rows xj − xi where
xi = 1/N

∑

j∈Ni
xj .

2. Estimation of tangent coordinates: for each Mi compute (using PCA) the d-dim.
tangent coordinates of the points in Ni

3. Build a tangent Hessian estimator Hi for each Ni.
4. Build the empirical version of the quadratic form H from Hi, i = 1, · · · , N and find its

kernel.

– p. 44

HLLE: examples

−2

−1

0

1

2

−2

−1

0

1

2

0

1

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

S-shape k = 5NN k = 12NN k = 80NN

−3

−2

−1

0

1

2

3

−3

−2

−1

0

1

2

3

−1

0

1

2

3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

S-shape with small noise k = 18NN k = 19NN k = 30NN

– p. 45

HLLE: examples

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

fishbowl k = 12NN k = 12NN k = 80NN

−2

−1

0

1

2

−2

−1

0

1

2
1

1.2

1.4

1.6

1.8

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1.5

−1

−0.5

0

0.5

1

1.5

−3 −2 −1 0 1 2 3

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

cone HLLE (k = 12) ISOMAP (k = 12)

– p. 46

HLLE: examples

−2−1.5−1−0.500.511.52

−2

−1

0

1

2

1

1.2

1.4

1.6

1.8

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

−3 −2 −1 0 1 2 3

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

cone HLLE (k = 12) ISOMAP (k = 12)

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

0.8

1

1.2

1.4

1.6

1.8

2

2.2

−1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

−3 −2 −1 0 1 2 3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

noisy cone HLLE (k = 12NN) HLLE (k = 20NN) ISOMAP (k = 20)

– p. 47

HLLE: examples

50 100 150 200 250 300 350

50

100

150

200

250

300

350

Dimension: 64 ∗ 64 = 4096.
N = 698

3 free parameters:
- left-right pose,
- up-down pose,
- light pose.

−2 −1.5 −1 −0.5 0 0.5 1 1.5−5

0

5

−3

−2

−1

0

1

2

3

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

3D-proj: light 2D-proj: pose 1

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

2D-proj: pose 2

k = 12 NN

– p. 48

Laplacian eigenmaps(M. Belkin, P. Niyogi ’02)

(from Belkin et al, Neural Computation, 2003; 15 (6):1373-1396)

Laplacian eigenmaps intend to embed the data X in a d-dimensional in such a way
that close/similar points in X remain close in the low dimensional space.

Analogy with harmonic analysis on the underlying manifold.

– p. 49

Laplacian eigenmaps

Overview of the method:
1. Build a neighborhood graph G (k-NN or Rips).

2. Assign weights wij to the edges of G representing the “similarity” between the nodes:

Heat kernel: if (xixj) is an edge of G then

wij = e−
‖xi−xj‖2

t

wij = 0 otherwise.

Simple-minded (t = +∞): wij = 1 if (xixj) is an edge of G; wij = 0 otherwise.

3. Compute the eigenvalues and eigenvectors for the generalized eigenvector problem

Lf = λDf

where D is diagonal with Dii =
∑

j wij and L = D−W is the matrix of the Laplacian
operator on G (see L as an operator acting on the functions defined on the vertices of
G).

– p. 50

Laplacian eigenmaps

Overview of the method:
3. Compute the eigenvalues and eigenvectors for the generalized eigenvector problem

Lf = λDf

where D is diagonal with Dii =
∑

j wij and L = D−W is the matrix of the Laplacian
operator on G (see L as an operator acting on the functions defined on the vertices of
G). Let f0, · · · , fd be the solutions aroder according to increasing eigenvalues:

Lf0 = λ0Df0

· · ·
Lfd = λdfd

0 = λ0 ≤ λ1 ≤ · · · ≤ λd

The embedding yi ∈ R
d of xi is given by yi = (f1(xi), · · · , fd(xi)) (Note that f0

corresponding to the eigenvalue 0 is discarded).

– p. 51

Laplacian eigenmaps: justification

Assume that one wants to find an embedding yT = (y1, · · · yN) of X in R that minimize

E =
∑

i,j

(yi − yj)2wij (with somme additional constraints - see below)

−→ heavy penalty if close points xi and yi are mapped far apart. One has

E =
∑

i,j

(y2i + y2j − 2yiyj)wij =
∑

i

y2iDii +
∑

j

y2jDjj − 2
∑

i,j

yiyjwij = 2yTLy

⇒ L is positive semidefinite.

⇒ minimizing E reduces to minimizing yTLy and one has to add a constraint to remove
a scaling factor (and avoid obvious solution): yTDy = 1 (one uses D rather than Id
because it reflects the respective importance of the vertices in G).

⇒ y minimizing E is given by the smallest non zero eigenvalue solution to the
generalized eigenvalue problem Ly = λDy (note that the eigenfunction
corresponding to the eigenvalue 0 is the constant function (1, · · · , 1) mapping all the
data points on a single point - corresponding constraint: yTD(1, · · · , 1)T = 0).

– p. 52

Laplacian eigenmaps: justification

General case:

Find Y = {y1, · · · yN} ⊂ R
d that minimizes

E =
∑

i,j

‖yi − yj‖2wij =?

– p. 53

Laplacian eigenmaps: justification

General case:

Find Y = {y1, · · · yN} ⊂ R
d that minimizes

E =
∑

i,j

‖yi − yj‖2wij = Tr(Y TLY)

– p. 54

Laplacian eigenmaps: example

50 100 150 200 250 300 350

50

100

150

200

250

300

350

Dimension: 64 ∗ 64 = 4096.
N = 698

3 free parameters:
- left-right pose,
- up-down pose,
- light pose.

−0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
−0.02

0

0.02

0.04
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

−0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

3D-proj: light 2D-proj: pose 1

−0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

0.025

2D-proj: pose 2

k = 12 NN, t = 1

– p. 55

Laplacian eigenmaps: example

−10 −5 0 5 10 150

20

40
−15

−10

−5

0

5

10

15

−10 −8 −6 −4 −2 0 2 4 6 8

x 10
−3

−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01

−6 −4 −2 0 2 4 6

x 10
−3

−8

−6

−4

−2

0

2

4

6

8
x 10

−3

−6 −4 −2 0 2 4 6

x 10
−3

−6

−4

−2

0

2

4

6
x 10

−3

Swiss Roll k = 12 k = 30 k = 50

−0.01

−0.005

0

0.005

0.01

−0.01

−0.005

0

0.005

0.01
−0.02

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

−6

−4

−2

0

2

4

6

x 10
−3

−0.01

−0.005

0

0.005

0.01
−0.01

−0.005

0

0.005

0.01

−6 −4 −2 0 2 4 6

x 10
−3

−10
−5

0
5

x 10
−3

−8

−6

−4

−2

0

2

4

6

x 10
−3

k = 12 k = 30 k = 50

– p. 56

Analogy with Laplace-Beltrami operator

Problem: Let M be a compact Riemannian d-manifold. Find the “best” map f : M → R

such that the points that are close together on M are mapped close together on R.

Assuming that f is smooth, the way how close points are mapped far away by f is given by
‖∇f‖. So the problem can be stated as find

argmin{‖f‖
L2(M)

=1}

∫

M

‖∇f(m)‖2dm

Laplace-Beltrami operator on M : Lf := −div∇(f).

Stokes’ formula: for any vector field X on M ,
∫

M
〈X,∇f〉 = −

∫

M
div(X)f

⇒
∫

M

‖∇f(m)‖2 =

∫

M

L(f)f

The solution is then given by the eigenfunction f1 corresponding to the first non zero
eigenvalue of L.

Belkin, Niyogi’08: the analogy can be turned into a convergence result...

– p. 57

Choice of the weights

Heat flow: f : M ⊂ R
D → R initial heat distribution, u(x, t) heat distribution at time t

(u(x, 0) = f(x)).

Heat equation: (∂
∂t

+ L)u = 0 has solution given by u(x, t) =
∫

M
Ht(x, y)f(y), Ht

being the heat kernel.

Lf(x) = −Lu(x, 0) = −
(

∂

∂t

∫

M

Ht(x, y)f(y)

)

t=0

for x, y close and t small,

Ht(x, y) ≈
1

(4πt)
m
2

e−
‖x−y‖2

4t and lim
t→0

∫

M

Ht(x, y)f(y) = f(x)

Therefore, for t small,

Lf(x) ≈ 1

t

(

f(x)− 1

(4πt)
m
2

∫

M

e−
‖x−y‖2

4t f(y)dy

)

– p. 58

Choice of the weights

Therefore, for t small,

Lf(x) ≈ 1

t

(

f(x)− 1

(4πt)
m
2

∫

M

e−
‖x−y‖2

4t f(y)dy

)

For xi ∈ X,

Lf(xi) ≈
1

t

f(xi)−
1

N
(4πt)

m
2

∑

j,‖xi−xj‖<ε

e−
‖xi−xj‖2

4t f(xj)

note that Lcte = 0⇒ (1
N

(4πt)
m
2)−1 =

∑

j,‖xi−xj‖<ε
e−

‖xi−xj‖2

4t and 1
t

does not

affect the eigen decomposition of the discrete laplacian.

⇒ Choice of the weights: wij = e−
‖xi−xj‖2

4t if ‖xi − xj‖ < ε; wij = 0 otherwise.

– p. 59

Diffusion maps (R. Coifman, S. Lafon, A. Lee, M. Maggioni,... ’05)

Input: X ⊂ R
D and a weight function w(xi, xj) = wij such that the matrix W = (wij) is

symmetric and semi-definite positive.

Let di =
∑

j wij and let pij = p(xi, xj) =
wij

di
.

pij can be seen as the probability for a random walker on X to make a step from xi to
xj (note that

∑

j pij = 1).
The iterates P t = (pt(xi, xj)) of P = (pij) can be seen as the the probabilities of
going from xi to xj in t time steps.

Diffusion operator:

Pf(xi) =

N
∑

j=1

pijf(xj)

It can be seen as an operator acting on the probability distributions
µT = (µ(x1), · · ·µ(xN)) on X

µTP (xj) =
N
∑

i=1

µ(xi)pij

with a unique stationary distribution µ0(xi) = di
∑

k dk

– p. 60

Diffusion maps

The unique stationary distribution µ0(xi) = di
∑

k dk
satisfies

µ0(xi)pij = µ0(xj)pji

Idea: for a fixed time t, define a metric such that two points xi, xj are close if the
conditional probability distributions pt(xi, .) and pt(xj , .) are close.

Diffusion distance:

D2
t (xi, xj) = ‖pt(xi, .)− pt(xj , .)‖21

µ0

=
∑

k

(pt(xi, xk)− pt(xj , xk))2
µ0(xk)

→ Close connection with the spectral theory of the random walk.

Left and right eigenvectors of P : 1 = |λ0| ≥ |λ1| ≥ · · · ≥ λN−1

µTj P = λjµ
T
j and Pfj = λjfj

with fj =
µj

µ0
.

– p. 61

Diffusion maps

Choose normalized µj , fj : ‖µj‖21
µ0

= 1 and ‖fj‖2µ0
=
∑

k fj(xk)
2µ0(xk) = 1.

Biorthogonal decomposition of P t:

pt(xi, xj) =
∑

k

λtkfk(xi)µk(xj)

This implies

D2
t (xi, xj) =

N
∑

k=1

λ2t
k (fk(xi)− fk(xj))2

(note that since f0 ≡ 1, it does not enter into the sum).

The diffusion distance is then approximated by

D2
t (xi, xj) ≈

d
∑

k=1

λ2t
k (fk(xi)− fk(xj))2

– p. 62

Diffusion maps

The diffusion distance is then approximated by

D2
t (xi, xj) ≈

d
∑

k=1

λ2t
k (fk(xi)− fk(xj))2

Embedding of the data in R
d:

xi 7→ yi = (λt1f1(xi), · · ·λtdfd(xi))

The (approximated) diffusion metric becomes the euclidean metric between the data
points in R

d.

– p. 63

A few references 1/2

LLE:

L. K. Saul, S. T. Roweis, “Think Globally, Fit Locally: Unsupervised Learning of
Low Dimensional Manifolds”, Journal of Machine Learning Research 4 (2000),
119-155.

ISOMAP:

J.B. Tenenbaum, V. de Silva, J. C. Langford, “A global Geometric Framework for
Nonlinear Dimensionality Reduction”, Science 290: 2319-2323, 2000.

V. de Silva, J. B. Tenenbaum, “Global versus Local Methods in Nonlinear
Dimensionality Reduction”, Advances in Neural Information Processing Systems
15, MIT Press, 2003.

HLLE:

D. L. Donoho, C. Grimes, “Heissian Eigenmaps: Locally Linear Embedding
Techniques for High-dimensional Data”, Proceedings of the National Academy of
Sciences 100, 10, 5591-5596.

– p. 64

A few references 2/2

Laplacian Eigenmaps:

M. Belkin, P. Niyogi, “Laplacian Eigenmaps for Dimensionality Reduction for Data
Representation”, Neural Computation 15, 6, 1373–1396, 2003.

Diffusion maps:

R. R. Coifman and S. Lafon and A. Lee and M. Maggioni and B. Nadler and F.
Warner and S. Zucker, “Geometric Diffusions as a tool for Harmonic Analysis and
structure definition of data: Diffusion maps”, Proc. of Nat. Acad. Sci. 102,
7426–7431, 2005.

– p. 65

– p. 66

	Introduction
	Introduction
	Preliminaries and notations
	Preliminaries and notations
	PCA
	PCA
	PCA
	PCA
	PCA: remarks
	PCA: example
	Multidimensional Scaling (MDS)
	Multidimensional Scaling (MDS)
	Multidimensional Scaling (MDS)
	Multidimensional Scaling (MDS)
	MDS: example
	MDS: remarks
	Turning non linear
	Locally Linear Embedding 	iny (L. Saul and S Roweis '00)
	LLE: overview of the algorithm
	LLE: step 1
	LLE: step 2
	LLE: step 2
	LLE: step 3
	LLE: examples
	LLE: examples
	LLE: examples
	ISOMAP 	iny (de Silva, Tenenbaum, Langford '00)
	Geodesic distance approximation
	Geodesic distance approximation
	Geodesic distance approximation
	Theoretical guarantees of ISOMAP
	ISOMAP: example
		iny
	Some remarks on ISOMAP
	Conformal ISOMAP 	iny (de Silva, Tenenbaum)
	C-ISOMAP: example
	Landmark ISOMAP 	iny (de Silva, Tenenbaum)
	L-ISOMAP: example
	Hessian eigenmaps 	iny (D. Donoho, C. Grimes '03)
	HLLE
	HLLE
	HLLE
	HLLE
	HLLE: examples
	HLLE: examples
	HLLE: examples
	HLLE: examples
	Laplacian eigenmaps 	iny (M. Belkin, P. Niyogi '02)
	Laplacian eigenmaps
	Laplacian eigenmaps
	Laplacian eigenmaps: justification
	Laplacian eigenmaps: justification
	Laplacian eigenmaps: justification
	Laplacian eigenmaps: example
	Laplacian eigenmaps: example
	Analogy with Laplace-Beltrami operator
	Choice of the weights
	Choice of the weights
	Diffusion maps 	iny (R. Coifman, S. Lafon, A. Lee, M. Maggioni,... '05)
	Diffusion maps
	Diffusion maps
	Diffusion maps
	A few references 1/2
	A few references 2/2

