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Topology and some geometry of real algebraic plane curves

Input curve: f(x, y) = 0 with f ∈ Q[x, y]

Isotopic approximation of the curve by a
straight line graph

give results in the original coordinate system of
the plane

In addition, identify and localize

extreme points,
singular points,
vertical asymptotes.
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Notation

Curve: square free polynomial f ∈ Q[x, y].
A point p = (α,β) ∈ C2 is (x-)critical if f(p) = fy(p) = 0

singular if fx(p) = 0

(x-)extreme if fx(p) 6= 0 (i.e. x-critical and non-singular).
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Previous work

Mainly 2 approaches

Subdivision

only guarantee the drawing up to some precision

need to go up to the theoretical separation bound to be certified

or need to be coupled with an exact 2-D solver.

Cylindrical Algebraic Decomposition-based with sub-resultant and
lifting

Several variants:

use Sturm-Habitch sequences or just principal S-H coefficients

use generic position assumption

use several projections

shear and shear back
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CAD-based method

1 Projection
Compute x-coordinates critical
points: αi

2 Lifting
Compute intersection points
between the curve and the fiber
x = αi

Compute with polynomial with
algebraic coefficients

3 Adjacencies
Count the number of branches
connected to the left and right
May require generic position
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General idea

Replace sub-resultant sequences and
computations with algebraic coefficient
polynomials by
Gröbner basis and Rational Univariate
Representations

Identify local topology at critical points
using multiplicities and refinement

Compute adjacencies with a vertical
rectangular decomposition using
multiplicities
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Our algorithm

Based on

incremental work upon [WS05] and [CFPR08]

Gröbner basis and Rational Univariate Representation of critical points.

[WS05] R. Seidel and N. Wolpert. On the Exact Computation of the Topology of Real Algebraic Curves. SoCG05.

[CFPR08] F. Cazals, J.-C. Faugère, M. Pouget, and F. Rouillier. Ridges and Umbilics of Polynomial Parametric Surfaces, in

Geometric Modeling and Algebraic Geometry, Springer.

Specifications

compute the exact topology (output a straight line graph)

do not require any generic position asumption

give results in the original coordinate system (identifies critical points and
vertical asymptotes)
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Algorithm outline

1 Compute isolating boxes for critical points,
easily refinable with the RUR.

2 Topology at extreme points:

3 Topology at singular points:

4 Topology in non critical cells of the induced vertical rectangular
decomposition of the plane.
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Solving zero-dimensional systems

Polynomial system
pi ∈ K[X]

Ideal I:
f+ g ∈ I if f, g ∈ I
pg ∈ I if g ∈ I and p ∈ K[X]

Finite generating set (Hilbert)

Gröbner basis

Rational Univariate Representation

Univariate real solving

Luis Peñaranda (LORIA) JGA’09 10 / 19



Solving zero-dimensional systems

Polynomial system
pi ∈ K[X]

Ideal I:
f+ g ∈ I if f, g ∈ I
pg ∈ I if g ∈ I and p ∈ K[X]

Finite generating set (Hilbert)
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Algebraic tools

Univariate root isolation for polynomials with rational coefficients:
Descartes algorithm

Solve zero-dimensional systems with Rational Univariate
Representation (RUR) preserves

1 real roots
2 multiplicities

Interval arithmetic
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Topology at extreme points

1 Isolate the extreme system
Ie = I(f, fy, fx 6= 0) = I(f, fy, Tfx − 1) ∩ Q[x, y]

2 Refine boxes to get 2 crossings on the border

3 Store the multiplicities in the system Ie for the connection step . . .
see later
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Luis Peñaranda (LORIA) JGA’09 12 / 19



Topology at extreme points

1 Isolate the extreme system
Ie = I(f, fy, fx 6= 0) = I(f, fy, Tfx − 1) ∩ Q[x, y]

2 Refine boxes to get 2 crossings on the border

3 Store the multiplicities in the system Ie for the connection step . . .
see later
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Topology at singularities

1 Isolate singular points in boxes

2 Compute multiplicities k in fibers

3 Refine the box to avoid the curve fyk = ∂kf
∂yk

4 Refine the box to avoid top/bottom crossings
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Rectangle decomposition of the plane

the topology is known inside
critical boxes

compute a vertical
decomposition of the plane wrt
these boxes

compute intersections of the
curve with the decomposition

Luis Peñaranda (LORIA) JGA’09 14 / 19



Greedy connection algorithm using multiplicities

Overlapping of extreme point boxes: need parity of multiplicity in fiber

Extreme
point

Extreme
point

odd

odd

even

even
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Complexity analysis

Theorem

The algorithm runs in ÕB(Rd4(dτs+ s2)) , where

R: number of real critical points,

d: degree of the polynomial f,

τ: maximum coefficient bitsize of f,

s: maximum bitsize of

the separation bound of Ic, and
the distance between a singular point and its isolating curve (worst
case s = d3τ ).
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Implementation

Isotop: 7638 lines of Maple code using packages:

FGb for Gröbner basis (Faugère)

RS for RUR and isolation (Rouillier)

faster on non generic and high degree curves

robust

exact

http://www.loria.fr/equipes/vegas/isotop/
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Experiments

We ran large-scale tests, comparing to Brown’s Cad2d, MPII’s Alcix,
González Vega’s Top and Wolpert’s Insulate.

example
r = timeCad2d

timeisotopindex
1 . . . 114 1/43 ≤ r < 1/3

115 . . . 382 1/3 ≤ r ≤ 1
383 . . . 479 1 < r ≤ 3
480 . . . 513 3 ≤ r ≤ 160
514 . . . 585 Cad2d timeout

example
r = timeAlcix

timeisotopindex
1 . . . 17 1/5 < r < 1/3

18 . . . 33 1/3 ≤ r ≤ 1
34 . . . 290 1 < r ≤ 3

291 . . . 465 3 ≤ r ≤ 64
466 . . . 585 Alcix timeout
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Conclusion

Summary of our contribution:

deals with non generic case,

gives results in the original coordinate system (identifies vertical
asymptotes),

avoids Sturm Habitch (principal coefficient),

uses RUR,

no restriction on singularities,

enhancement for extreme points and the connection algorithm,

output sensitive complexity analysis.
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