Sur la topologie des courbes algébriques planes

Luis Peñaranda
Travail conjoint avec J. Cheng, S. Lazard, M. Pouget, F. Rouillier and E. Tsigaridas
LORIA, INRIA Nancy - Grand Est

29 janvier 2009

Outline

(1) General algebraic problem
(2) Details of the algorithm
(3) Implementation and experiments

Luis Peñaranda (LORIA)

Topology and some geometry of real algebraic plane curves

Input curve: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$

Topology and some geometry of real algebraic plane curves

Input curve: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$

- Isotopic approximation of the curve by a straight line graph
- give results in the original coordinate system of the plane
- In addition, identify and localize - extreme points,
- singular points,
- vertical asymptotes.

Topology and some geometry of real algebraic plane curves

Input curve: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$

- Isotopic approximation of the curve by a straight line graph
- give results in the original coordinate system of the plane
- In addition, identify and localize
- extreme points,
- singular points.
- vertical asymptotes.

Topology and some geometry of real algebraic plane curves

Input curve: $f(x, y)=0$ with $f \in \mathbb{Q}[x, y]$

- Isotopic approximation of the curve by a straight line graph
- give results in the original coordinate system of the plane
- In addition, identify and localize
- extreme points,
- singular points,
- vertical asymptotes.

Notation

Curve: square free polynomial $f \in \mathbb{Q}[x, y]$.
A point $p=(\alpha, \beta) \in \mathbb{C}^{2}$ is $(x$ - $)$ critical if $f(p)=f_{y}(p)=0$

- singular if $f_{x}(\mathbf{p})=0$
- (x -)extreme if $\mathrm{f}_{\mathrm{x}}(\mathbf{p}) \neq 0$ (i.e. x-critical and non-singular).

Notation

Curve: square free polynomial $f \in \mathbb{Q}[x, y]$.
A point $\mathbf{p}=(\alpha, \beta) \in \mathbb{C}^{2}$ is $(x$ - $)$ critical if $f(\mathbf{p})=f_{y}(\mathbf{p})=0$

- (x-)extreme if $f_{x}(\mathbf{p}) \neq 0$ (i.e. x-critical and non-singular).

Notation

Curve: square free polynomial $f \in \mathbb{Q}[x, y]$.
A point $\mathbf{p}=(\alpha, \beta) \in \mathbb{C}^{2}$ is $(x-)$ critical if $f(\mathbf{p})=f_{y}(\mathbf{p})=0$

- singular if $f_{x}(\mathbf{p})=0$
- (x-)extreme if $f_{x}(\mathbf{p}) \neq 0$ (i.e. x-critical and non-singular).

Previous work

Mainly 2 approaches

Subdivision

- only guarantee the drawing up to some precision
- need to go up to the theoretical separation bound to be certified
- or need to be coupled with an exact 2-D solver.

Previous work

Mainly 2 approaches

Subdivision

- only guarantee the drawing up to some precision
- need to go up to the theoretical separation bound to be certified
- or need to be coupled with an exact 2-D solver.

Cylindrical Algebraic Decomposition-based with sub-resultant and lifting

Several variants:

- use Sturm-Habitch sequences or just principal S-H coefficients
- use generic position assumption
- use several projections
- shear and shear back

CAD-based method

(1) Projection

Compute x-coordinates critical points: α_{i}
(3) Lifting

Compute intersection points between the curve and the fiber $x=\alpha_{i}$
Compute with polynomial with algebraic coefficients
© Adjacencies
Count the number of branches : connected to the left and right

CAD-based method

(1) Projection

Compute x-coordinates critical points: α_{i}
(2) Lifting

Compute intersection points between the curve and the fiber $x=\alpha_{i}$
Compute with polynomial with algebraic coefficients
© Adjacencies
Count the number of branches

connected to the left and right

RINRIA

CAD-based method

(1) Projection

Compute x-coordinates critical points: α_{i}
(2) Lifting

Compute intersection points between the curve and the fiber $x=\alpha_{i}$
Compute with polynomial with algebraic coefficients
(3) Adjacencies

Count the number of branches
 connected to the left and right May require generic position

General idea

- Replace sub-resultant sequences and computations with algebraic coefficient polynomials by
Gröbner basis and Rational Univariate Representations
- Identify local topology at critical points using multiplicities and refinement
- Compute adjacencies with a vertical rectangular decomposition using multiplicities

General idea

- Replace sub-resultant sequences and computations with algebraic coefficient polynomials by
Gröbner basis and Rational Univariate Representations
- Identify local topology at critical points using multiplicities and refinement
- Compute adjacencies with a vertical rectangular decomposition using multiplicities

General idea

- Replace sub-resultant sequences and computations with algebraic coefficient polynomials by
Gröbner basis and Rational Univariate Representations
- Identify local topology at critical points using multiplicities and refinement
- Compute adjacencies with a vertical rectangular decomposition using multiplicities

Our algorithm

Based on

- incremental work upon [WS05] and [CFPR08]
- Gröbner basis and Rational Univariate Representation of critical points.
[WS05] R. Seidel and N. Wolpert. On the Exact Computation of the Topology of Real Algebraic Curves. SoCG05. [CFPR08] F. Cazals, J.-C. Faugère, M. Pouget, and F. Rouillier. Ridges and Umbilics of Polynomial Parametric Surfaces, in Geometric Modeling and Algebraic Geometry, Springer.

Specifications

- compute the exact topology (output a straight line graph)
- do not require any generic position asumption
- give results in the original coordinate system (identifies critical points and vertical asymptotes)

Our algorithm

Based on

- incremental work upon [WS05] and [CFPR08]
- Gröbner basis and Rational Univariate Representation of critical points.
[WS05] R. Seidel and N. Wolpert. On the Exact Computation of the Topology of Real Algebraic Curves. SoCG05.
[CFPR08] F. Cazals, J.-C. Faugère, M. Pouget, and F. Rouillier. Ridges and Umbilics of Polynomial Parametric Surfaces, in Geometric Modeling and Algebraic Geometry, Springer.

Specifications

- compute the exact topology (output a straight line graph)
- do not require any generic position asumption
- give results in the original coordinate system (identifies critical points and vertical asymptotes)

Algorithm outline

(1) Compute isolating boxes for critical points, easily refinable with the RUR.
(2) Topology at extreme points:

(3) Topology at singular points:

(9) Topology in non critical cells of the induced vertical rectangular decomposition of the plane.

Algorithm outline

(1) Compute isolating boxes for critical points, easily refinable with the RUR.
(2) Topology at extreme points:

(3) Topology at singular points:

(9) Topology in non critical cells of the induced vertical rectangular decomposition of the plane.

Algorithm outline

(1) Compute isolating boxes for critical points, easily refinable with the RUR.
(2) Topology at extreme points:

(3) Topology at singular points:

(4) Topology in non critical cells of the induced vertical rectangular decomposition of the plane.

Algorithm outline

(1) Compute isolating boxes for critical points, easily refinable with the RUR.
(2) Topology at extreme points:

(3) Topology at singular points:

(9) Topology in non critical cells of the induced vertical rectangular decomposition of the plane.

Solving zero-dimensional systems

Polynomial system
$p_{i} \in \mathbb{K}[X]$

Solving zero-dimensional systems

Polynomial system
 $p_{i} \in \mathbb{K}[X]$

$$
\begin{aligned}
& \text { Ideal } \mathbb{I}: \\
& f+g \in \mathbb{I} \text { if } f, g \in \mathbb{I} \\
& p g \in \mathbb{I} \text { if } g \in \mathbb{I} \text { and } p \in \mathbb{K}[X]
\end{aligned}
$$

Solving zero-dimensional systems

Polynomial system
 $p_{i} \in \mathbb{K}[X]$

$$
\begin{aligned}
& \text { Ideal } \mathbb{I}: \\
& f+g \in \mathbb{I} \text { if } f, g \in \mathbb{I} \\
& p g \in \mathbb{I} \text { if } g \in \mathbb{I} \text { and } p \in \mathbb{K}[X]
\end{aligned}
$$

Finite generating set (Hilbert)

Solving zero-dimensional systems

Solving zero-dimensional systems

Polynomial system
 $p_{i} \in \mathbb{K}[X]$

$$
\begin{aligned}
& \text { Ideal } \mathbb{I}: \\
& f+g \in \mathbb{I} \text { if } f, g \in \mathbb{I} \\
& p g \in \mathbb{I} \text { if } g \in \mathbb{I} \text { and } p \in \mathbb{K}[X]
\end{aligned}
$$

Finite generating set (Hilbert)

Rational Univariate Representation

Solving zero-dimensional systems

Polynomial system
 $p_{i} \in \mathbb{K}[X]$

$$
\begin{aligned}
& \text { Ideal } \mathbb{I}: \\
& f+g \in \mathbb{I} \text { if } f, g \in \mathbb{I} \\
& p g \in \mathbb{I} \text { if } g \in \mathbb{I} \text { and } p \in \mathbb{K}[X]
\end{aligned}
$$

Finite generating set (Hilbert)

Rational Univariate Representation

Univariate real solving

Algebraic tools

- Univariate root isolation for polynomials with rational coefficients: Descartes algorithm
- Solve zero-dimensional systems with Rational Univariate Representation (RUR) preserves
(1) real roots
(2) multiplicities
- Interval arithmetic

Algebraic tools

- Univariate root isolation for polynomials with rational coefficients: Descartes algorithm
- Solve zero-dimensional systems with Rational Univariate Representation (RUR) preserves
(1) real roots
(2) multiplicities
- Interval arithmetic

Algebraic tools

- Univariate root isolation for polynomials with rational coefficients: Descartes algorithm
- Solve zero-dimensional systems with Rational Univariate Representation (RUR) preserves
(1) real roots
(2) multiplicities
- Interval arithmetic

Topology at extreme points

(1) Isolate the extreme system

$$
I_{e}=\mathbb{I}\left(f, f_{y}, f_{x} \neq 0\right)=\mathbb{I}\left(f, f_{y}, T f_{x}-1\right) \cap \mathbb{Q}[x, y]
$$

(2) Refine boxes to get 2 crossings on the border

© Store the multiplicities in the system I_{e} for the connection step see later

Topology at extreme points

(1) Isolate the extreme system

$$
I_{e}=\mathbb{I}\left(f, f_{y}, f_{x} \neq 0\right)=\mathbb{I}\left(f, f_{y}, T f_{x}-1\right) \cap \mathbb{Q}[x, y]
$$

(2) Refine boxes to get 2 crossings on the border

(3) Store the multiplicities in the system I_{e} for the connection step see later

Topology at extreme points

(1) Isolate the extreme system

$$
I_{e}=\mathbb{I}\left(f, f_{y}, f_{x} \neq 0\right)=\mathbb{I}\left(f, f_{y}, T f_{x}-1\right) \cap \mathbb{Q}[x, y]
$$

(2) Refine boxes to get 2 crossings on the border

(3) Store the multiplicities in the system I_{e} for the connection step ... see later

Topology at singularities

(1) Isolate singular points in boxes
(2) Compute multiplicities k in fibers
(3) Refine the box to avoid the curve $f_{y^{k}}=\frac{\partial^{k} f}{\partial y^{k}}$
(9) Refine the box to avoid top/bottom crossings

Rectangle decomposition of the plane

- the topology is known inside critical boxes
- compute a vertical decomposition of the plane wrt these boxes
- compute intersections of the curve with the decomposition

Greedy connection algorithm using multiplicities

Overlapping of extreme point boxes: need parity of multiplicity in fiber

Complexity analysis

Theorem

The algorithm runs in $\widetilde{\mathcal{O}}_{\mathrm{B}}\left(\mathrm{Rd}^{4}\left(\mathrm{~d} \mathrm{\tau s}+\mathrm{s}^{2}\right)\right)$, where

- R: number of real critical points,
- d : degree of the polynomial f ,
- τ : maximum coefficient bitsize of f ,
- s: maximum bitsize of
- the separation bound of I_{c}, and
- the distance between a singular point and its isolating curve (worst case $s=d^{3} \tau$).

Implementation

Isotop: 7638 lines of Maple code using packages:

- FGb for Gröbner basis (Faugère)
- RS for RUR and isolation (Rouillier)
- faster on non generic and high degree curves
- robust
- exact
http://www.loria.fr/equipes/vegas/isotop/

Experiments

We ran large-scale tests, comparing to Brown's Cad2d, MPII's Alcix, González Vega's Top and Wolpert's Insulate.

example index	$\mathrm{r}=\frac{\mathrm{time}_{\text {cad2d }}}{\text { time }{ }_{\text {Isoror }}}$	example index	$r=\frac{t i m e e_{\text {Alcix }}}{\text { time }{ }_{\text {Isorop }}}$
$1 \ldots 114$	$1 / 43 \leq r<1 / 3$	$1 \ldots 17$	$1 / 5<\mathrm{r}<1 / 3$
115... 382	$1 / 3 \leq r \leq 1$	$18 \ldots 33$	$1 / 3 \leq r \leq 1$
$383 \ldots 479$	$1<\mathrm{r} \leq 3$	$34 \ldots 290$	$1<\mathrm{r} \leq 3$
$480 \ldots 513$	$3 \leq r \leq 160$	291... 465	$3 \leq r \leq 64$
$514 \ldots 585$	Cad2d timeout	$466 \ldots 585$	Alcix timeout

Conclusion

Summary of our contribution:

- deals with non generic case,
- gives results in the original coordinate system (identifies vertical asymptotes),
- avoids Sturm Habitch (principal coefficient),
- uses RUR,
- no restriction on singularities,
- enhancement for extreme points and the connection algorithm,
- output sensitive complexity analysis.

