The distance function to a probability measure

F. Chazal D. Cohen-Steiner Q. Mérigot

2008 January 26

F. Chazal, D. Cohen-Steiner, Q. Mérigot The distance function to a probability measure

Introduction

Distance to a measure Results & Applications

Outline

Distance to a measure

- Measure, Wasserstein distance
- Definition of the distance function
- Properties

3 Results & Applications

- Distance functions to point clouds with outliers
- Non-parametric density estimation

Geometric inference

Question

Given an approximation C of a geometric object K, is it possible to estimate the topological and geometric properties of K, knowing only the approximation C?

- In R³, without noise, and when K is a smooth surface :
 ε-sampling condition guarantees a good approximation of the geometry and topology.
- Recent algorithms allow a small amount of *Hausdorff* noise.
- However, dealing with *outliers* is still an open problem.

Distance functions for geometric estimations

Distance function

Distance function to a compact $K \subseteq \mathbb{R}^d$: $d_K : x \mapsto \inf_{p \in K} ||x - p||.$

Distance functions for geometric estimations

Offset : $K^r = d_K^{-1}(K)$ **1.** If K is smooth, K^r retracts onto K for small r (Grove).

2. The function $r \mapsto \operatorname{vol}_d(K^r)$ is polynomial on [0, R] :

- If K is convex : $R = +\infty$ (Steiner, Minkowski);
- If K is a smooth submanifold : $R \ll 1$ (Weyl)

$$\operatorname{vol}_d(K^r) = \sum_{k=1}^{d-1} \left(\int_K \sum_{i_1 < \ldots < i_k} \kappa_{i_1}(x) \ldots \kappa_{i_k}(x) \mathrm{d}x \right) r^i$$

• If K has positive reach : $R = \operatorname{reach}(K)$ (Federer).

Distance functions for geometric inference

Stability and inference

A stability result for a distance-based geometric estimation method $K \mapsto \mathcal{F}(K)$ bounds the error made in the estimation by replacing the compact set K by a Hausdorff approximation K'.

Exemple of stable properties.

1. Critical function of $K : \chi_K(r) = \inf_{x \in \partial K^r} \|\nabla_x d_K\|$. Measures the criticality of d_K in offsets of K (CCSL '06).

F. Chazal, D. Cohen-Steiner, Q. Mérigot The distance function to a probability measure

Exemple of stable properties (continued).

2. Approximate normal cones (CCSL '08);

3. Boundary measures, curvature measures (CCSM '07), Voronoi covariance measures (GMO '09).

The proofs of stability relies on three important theoretical facts : • the stability of the map $K \mapsto d_K$:

$$\|\mathrm{d}_{\mathsf{K}} - \mathrm{d}_{\mathsf{K}'}\|_{\infty} = \sup_{x \in \mathbb{R}^d} |\mathrm{d}_{\mathsf{K}}(x) - \mathrm{d}_{\mathsf{K}'}(x)| = \mathrm{d}_{\mathrm{H}}(\mathsf{K},\mathsf{K}')$$

- **2** the 1-Lipschitz property for $d_{\mathcal{K}}$;
- the 1-concavity on the function d_K^2 .

If $K' = K \cup \{x\}$ where $d_K(x) > R$, then $\|d_K - d_{K'}\|_{\infty} > R$: the properties become unstable both in theory and in practice.

Measure, Wasserstein distance Definition of the distance function Properties

Outline

2 Distance to a measure

- Measure, Wasserstein distance
- Definition of the distance function
- Properties

3 Results & Applications

- Distance functions to point clouds with outliers
- Non-parametric density estimation

Measure, Wasserstein distance Definition of the distance function Properties

Mathematical background : Measures

A measure μ is a mass distribution on \mathbb{R}^d . Mathematically, it is defined as a map μ that takes a (Borel) subset $B \subset \mathbb{R}^d$ and outputs a nonnegative number $\mu(B)$. Moreover we ask that if (B_i) are disjoint subsets, $\mu(\bigcup_{i\in\mathbb{N}} B_i) = \sum_{i\in\mathbb{N}} \mu(B_i)$

- $\mu(B)$ corresponds to to the mass of μ contained in B
- a point cloud $C = \{p_1, \dots, p_n\}$ defines a measure $\mu_C = \frac{1}{n} \sum_i \delta_{p_i}$
- the volume form on a k-dimensional submanifold M of \mathbb{R}^d defines a measure $\operatorname{vol}_k|_M$.

Measure, Wasserstein distance Definition of the distance function Properties

Distance between measures

The Wasserstein distance $d_W(\mu, \nu)$ between two probability measures μ, ν quantifies the optimal cost of pushing μ onto ν , the cost of moving a small mass dx from x to y being $||x - y||^2 dx$.

- μ and ν are discrete measures : $\mu = \sum_{i} c_i \delta_{x_i}, \ \nu = \sum_{j} d_j \delta_{y_j}$ with $\sum_{j} d_j = \sum_{i} c_i.$
- 2 transport plan : set of coefficients $\pi_{ij} \ge 0$ with $\sum_i p_{ij} = d_j$ and $\sum_j p_{ij} = c_i$.

Oost of a transport plan

$$C(\pi) = \left(\sum_{ij} \|x_i - y_j\|^2 \pi_{ij}\right)^{1/2}$$
$$d_{\mathrm{W}}(\mu, \nu) := \inf_{\pi} C(\pi)$$

Measure, Wasserstein distance Definition of the distance function Properties

Wasserstein distance

Examples :

• If C_1 and C_2 are two point clouds, with $\#C_1 = \#C_2$, then $d_W(\mu_{C_1}, \mu_{C_2})$ is the square root of the cost of a minimal least-square matching between C_1 and C_2 .

• If
$$C = \{p_1, \dots, p_n\}$$
 is a point cloud, and
 $C' = \{p_1, \dots, p_{n-k-1}, o_1, \dots, o_k\}$ with $d(o_i, C) = R$, then
 $d_H(C, C') = R$ but $d_W(\mu_C, \mu_{C'}) \le \frac{k}{n}(R + \operatorname{diam}(C))$

Measure, Wasserstein distance Definition of the distance function Properties

Outline

2 Distance to a measure

- Measure, Wasserstein distance
- Definition of the distance function
- Properties

3 Results & Applications

- Distance functions to point clouds with outliers
- Non-parametric density estimation

Measure, Wasserstein distance Definition of the distance function Properties

The distance to a measure

Distance to a measure, first attempt

Let $m \in]0, 1[$ be a positive mass, and μ a probability measure on \mathbb{R}^d : $\delta_{\mu,m}(x) = \inf \{r > 0; \mu(B(x, r)) > m\}.$

- δ_{μ,m} is the smallest distance needed to attain a mass of at least m;
- Coincides with the distance to the k-th neighbor when m = k/n and $\mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{p_i}$: $\delta_{\mu,k/n}(\mu) = ||x p_C^k(x)||.$

Measure, Wasserstein distance Definition of the distance function Properties

Unstability of $\mu \mapsto \delta_{\mu,m}$

Distance to a measure, first attempt

Let $m \in]0, 1[$ be a positive mass, and μ a probability measure on \mathbb{R}^d : $\delta_{\mu,m}(x) = \inf \{r > 0; \ \mu(B(x,r)) > m\}.$

Unstability under Wasserstein perturbations :

$$\mu_{arepsilon} = (1/2 - arepsilon)\delta_0 + (1/2 + arepsilon)\delta_1$$

for $arepsilon > 0$: $orall x < 0$, $\delta_{\mu_{arepsilon}, 1/2}(x) = |x - 1|$
for $arepsilon = 0$: $orall x < 0$, $\delta_{\mu_0, 1/2}(x) = |x - 0|$

Consequence : the map $\mu \mapsto \delta_{\mu,m} \in \mathcal{C}^0(\mathbb{R}^d)$ is discontinuous whatever the (reasonable) topology on $\mathcal{C}^0(\mathbb{R}^d)$.

Measure, Wasserstein distance Definition of the distance function Properties

The distance function to a measure.

Definition

If μ is a measure on \mathbb{R}^d and $m_0 > 0$, one let :

$$\mathrm{d}_{\mu,m_0}: x \in \mathbb{R}^d \mapsto \left(\frac{1}{m_0} \int_0^{m_0} \delta_{\mu,m}^2(x) \mathrm{d}m\right)^{1/2}$$

Example. Let $C = \{p_1, \ldots, p_n\}$ and $\mu = \frac{1}{n} \sum_{i=1}^n \delta_{p_i}$. Let $p_C^k(x)$ denote the *k*th nearest neighbor to *x* in *C*, and set $m_0 = k_0/n$:

$$d_{\mu,m_0}(x) = \left(\frac{1}{k_0}\sum_{k=1}^{k_0} \left\|x - p_C^k(x)\right\|^2\right)^{1/2}$$

Introduction Measure, Wasserstein distance Distance to a measure Definition of the distance function Results & Applications Properties

The distance function to a discrete measure.

Example (continued) Let $C = \{p_1, \dots, p_n\}$ and $\mu = \frac{1}{n} \sum_{i=1}^n \delta_{p_i}$. Let $p_C^k(x)$ denote the *k*th nearest neighbor to *x* in *C*, and set $m_0 = k_0/n : d_{\mu,m_0}(x) = \left(\frac{1}{k_0} \sum_{k=1}^{k_0} \|x - p_C^k(x)\|^2\right)^{1/2}$.

$$||x||^{2} - d_{\mu,m_{0}}^{2}(x) = \frac{1}{k_{0}} \sum_{k=1}^{k_{0}} \langle 2x | p_{C}^{k}(x) \rangle - \left\| p_{C}^{k}(x) \right\|^{2}$$

Hence, this function is linear inside k_0 th-order Voronoï cells, and :

$$abla(\|x\|^2 - \mathrm{d}^2_{\mu,m_0}(x)) = rac{1}{k_0} \sum_{k=1}^{k_0} \mathrm{p}^k_C(x)$$

Measure, Wasserstein distance Definition of the distance function Properties

1-Concavity of the squared distance function

$$\begin{aligned} d_{\mu,m_0}^2(y) \\ &= \frac{1}{k_0} \sum_{k=1}^{k_0} \left\| y - p_C^k(y) \right\|^2 \le \frac{1}{k_0} \sum_{k=1}^{k_0} \left\| y - p_C^k(x) \right\|^2 \\ &\le \frac{1}{k_0} \sum_{k=1}^{k_0} \left\| y - x + x - p_C^k(x) \right\|^2 \\ &= \left\| y - x \right\|^2 + \frac{1}{k_0} \sum_{k=1}^{k_0} \left\| x - p_C^k(x) \right\|^2 + 2\frac{1}{k_0} \sum_{k=1}^{k_0} \langle y - x | x - p_C^k(x) \rangle \\ &= \left\| y - x \right\|^2 + d_{\mu,m_0}^2(x) + \langle y - x | \nabla d_{\mu,m_0}^2(x) \rangle \end{aligned}$$

Introduction	Measure, Wasserstein distance
Distance to a measure	Definition of the distance function
Results & Applications	Properties

Proposition

The distance function to a discrete measure is 1-concave, ie.

$$(\|y\|^2 - \mathrm{d}^2_{\mu,m_0}(y)) - (\|x\|^2 - \mathrm{d}^2_{\mu,m_0}(x)) \ge \langle \nabla(\|x\|^2 - \mathrm{d}^2_{\mu,m_0})(x)|x-y\rangle$$

This is equivalent to the function $x \mapsto ||x||^2 - d^2_{\mu,m_0}(x)$ being convex.

Measure. Wasserstein distance Introduction Definition of the distance function Distance to a measure Results & Applications **Properties**

Outline

2 Distance to a measure

- Measure, Wasserstein distance
- Definition of the distance function
- Properties

3 Results & Applications

- Distance functions to point clouds with outliers
- Non-parametric density estimation

Measure, Wasserstein distance Definition of the distance function **Properties**

Another expression for d_{μ,m_0}

Projection submeasure

For any $x \in \mathbb{R}^d$, and m > 0, denote by $\mu_{x,m}$ the restriction of μ on the ball $B = B(x, \delta_{\mu,m}(x))$, whose trace on the sphere ∂B has been rescaled so that the total mass of $\mu_{x,m}$ is m.

- The measure μ_{x,m} gives mass to the *multiple* "projections" of x on μ;
- For the point cloud case, when $m_0 = k_0/n + r$ with 0 < r < 1, and x is not on a k-Voronoï face,

$$\mu_{x,m_0} = \sum_{k=1}^{k_0} \frac{1}{n} \delta_{\mathbf{p}_{\mathcal{C}}^k(x)} + r \delta_{\mathbf{p}_{\mathcal{C}}^{k_0+1}(x)}$$

Measure, Wasserstein distance Definition of the distance function **Properties**

Another expression for d_{μ,m_0}

Proposition

Let μ be a probability measure on \mathbb{R}^d and $m_0 > 0$. Then, for almost every point $x \in \mathbb{R}^d d_{\mu,m_0}$ is differentiable at x and :

$$d_{\mu,m_0}^2(x) = \frac{1}{m_0} \int \|x - h\|^2 \, \mathrm{d}\mu_{x,m_0}(h)$$
$$\nabla(\|x\|^2 - \mathrm{d}_{\mu,m_0}^2(x)) = \frac{2}{m_0} \int h \mathrm{d}\mu_{x,m_0}(h)$$

- compare with : $abla(\|x\|^2 d^2_{\mu,m_0}(x)) = rac{2}{k_0} \sum_{k=1}^{k_0} \mathrm{p}^k_C(x);$
- interpretation : $d_{\mu,m_0}(x)$ is the (partial) Wasserstein distance between the Dirac mass $m_0\delta_x$ and μ .

Introduction	
Distance to a measure	Definition of the distance function
Results & Applications	Properties

Properties

- the function $x \mapsto d_{\mu,m_0}(x)$ is 1-Lipschitz;
- 3 the function $x \mapsto ||x||^2 d^2_{\mu,m_0}(x)$ is convex;
- the map $\mu \mapsto d_{\mu,m_0}$ from probability measures to continuous functions is $\frac{1}{\sqrt{m_0}}$ -Lipschitz, ie

$$\left\| \mathrm{d}_{\mu,m_0} - \mathrm{d}_{\mu',m_0}
ight\|_\infty \leq rac{1}{\sqrt{m_0}} \mathrm{d}_\mathrm{W}(\mu,\mu')$$

the proof of 2 and 3 involves the second expression for $\mathrm{d}_{\mu,m_0}.$

properties 1 and 2 are related to the regularity of d_{μ,m_0} while 3 is a stability property

Introduction Measure, Wasserstein distance Distance to a measure Definition of the distance function Results & Applications Properties

Consequences of the previous properties

- existence of an analogous to the medial axis
- stability of a filtered version of it (as with the μ-medial axis) under Wasserstein perturbation
- Stability of the critical function of a measure
- ${f 0}$ the gradient $abla {
 m d}_{\mu,m_0}$ is ${
 m L}^1$ -stable
- 5 ...

 \implies the distance functions d_{μ,m_0} share many stability and regularity properties with the usual distance function.

Distance functions to point clouds with outliers Non-parametric density estimation

Outline

2 Distance to a measure

- Measure, Wasserstein distance
- Definition of the distance function
- Properties

3 Results & Applications

- Distance functions to point clouds with outliers
- Non-parametric density estimation

Distance functions to point clouds with outliers Non-parametric density estimation

Square with outliers

F. Chazal, D. Cohen-Steiner, Q. Mérigot The distance function to a probability measure

Distance functions to point clouds with outliers Non-parametric density estimation

< /□ > <

Square with outliers

Distance functions to point clouds with outliers Non-parametric density estimation

3D square

Reconstruction of an offset from a noisy dataset, with 10% outliers

Non-parametric density estimation

Outline

2 Distance to a measure

- Measure, Wasserstein distance
- Definition of the distance function
- Properties

3 Results & Applications

- Distance functions to point clouds with outliers
- Non-parametric density estimation

Non-parametric density estimation

k-NN density estimation method, from a statistics textbook

kNN density estimate contours

Density is estimated using $x \mapsto \frac{m_0}{\omega_{d-1}(\delta_{\mu,m_0}(x))}$.

Distance functions to point clouds with outliers Non-parametric density estimation

Downsides of kNN density estimation

- the gradient of the estimated density can behave wildly
- this density decreases slowly at infinity (it isn't integrable !)
- exhibits peaks near very dense zone

1. can be fixed using d_{μ,m_0} instead of δ_{μ,m_0} (because of the semiconcavity) 2. and 3. shows that the *distance function* is a better-behaved geometric object to associate to a measure.

- We introduced a distance function to a measure $\mu\mapsto \mathrm{d}_{\mu,m_0}.$
- This distance function is robust to Wasserstein perturbations, and thus handles outliers gracefully;
- d_{μ} shares regularity properties with the usual distance function to a compact.
- These properties allow to adapt geometric stability results to this measure-theoretic setting.

