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Our topic: Some geometric questions about randomly generated
mosaics in Rd and their typical polytopes

Typical questions in a nutshell (two historical problems):

(1) A question by Rényi in a lecture in Cambridge (1967):

Let L be a random line through the unit disc B2 in the plane,
with the following distribution:

The direction of the line (the angle with a fixed direction) is
distributed uniformly in [0,2π]; for given direction the oriented
distance from 0 is distributed uniformly in [−1,1]; direction and
distance are independent.

Let L1, . . . , Ln be stochastically independent random lines with
the distribution of L. Let Pn be the intersection of the closed
halfplanes bounded by these lines and containing 0.

2



Then Pn is a random polygon, and its vertex number f0(Pn) is a

random variable. Rényi asked for its expectation, as n tends to

infinity.

This was answered by Rényi and Sulanke (1968),

lim
n→∞E f0(Pn) =

π2

2
= 4.9348

Instead of fixing the unit disc and letting the number n tend to

infinity, we shall consider infinitely many lines, spread out in the

whole plane, and the generated tessellation.

Interesting questions arise for general distributions of the direc-

tions and in higher dimensions.
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(2) A question by D.G. Kendall (1940s, popularized 1987):

Consider the random polygon Pn from (1). Under the condition

that it has large area, will it be approximately circular, with high

probability?

Actually, this question was posed for the cell containing 0 of the

tessellation induced by certain random line systems (stationary

isotropic Poisson line processes).

The answer is affirmative.

Again, the problem becomes more interesting for general direc-

tional distributions and in higher dimensions.

The answers to (1) and (2) depend heavily on results from the

theory of convex bodies.
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Preliminaries:

(a) Mosaics

(b) Poisson processes

(c) Amalgamation of both

(a) Mosaics

A mosaic in Rd, or tessellation of Rd, is a locally finite set m of

d-polytopes in Rd with:

•
⋃
P∈m P = Rd,

• for P,Q ∈ m with P 6= Q, P ∩ Q is either empty or a face of P

and of Q.

The polytopes of m are called the cells of m. The k-faces of m

are the k-faces of the cells of m.

Fk(m) is the set of all k-faces of m.
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Examples

(1) Let H be a nonempty, locally finite set of hyperplanes in Rd

(every compact subset of Rd meets only finitely many hyperplanes

of H).

The closures of the connected components of Rd \⋃H∈HH form

a mosaic. It is called the hyperplane tessellation induced by H.

(2) Let S be a nonempty, locally finite set of points in Rd. For

x ∈ S, the Voronoi cell (or Dirichlet cell) C(x,S) of x (with respect

to S) is the set of all points in Rd for which x is a nearest point

in S, thus

C(x,S) = {y ∈ Rd : ‖y − x‖ ≤ ‖y − s‖ for all s ∈ S}.

The point x is called the nucleus of the Voronoi cell C(x, S).

{C(x,S) : x ∈ S} is the Voronoi mosaic induced by S.
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(3) Suppose the points of S are in general position (no d+ 1 on

a hyperplane, no d + 2 on a sphere). Then each vertex of the

Voronoi mosaic belongs to d + 1 cells. The convex hull of the

nuclei of these cells is a simplex. The set of all these simplices is

the Delaunay mosaic induced by S.

Direct definition: Any d + 1 points of S lie on a sphere. If there

is no point of S interior to this sphere, then the convex hull of

the points is a cell of the Delaunay mosaic.
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(b) Poisson processes

Let E be a locally compact topological space with a countable

base. ‘Measures’ on E are Borel measures.

Let η be a locally finite subset of E.

We identify η with the (simple) counting measure on E that

associates mass one to each element of η (and is zero else).

Thus we use synonymously:

x ∈ η and η({x}) = 1,

card(η ∩A) and η(A).

A point process in E is a measurable mapping from some probabi-

lity space (Ω,A,P) into the space of all simple counting measures

on E (equipped with the smallest σ-algebra for which all evalua-

tion maps η 7→ η(A), A ⊂ E Borel set, are measurable).
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Example: Let Θ be an infinite, locally finite measure on E with-

out atoms. Let Ci ⊂ E be compact sets with Θ(Ci) > 0 and

Ci ↑ E for i → ∞. Let mi ∈ N, and let ξ1, . . . , ξmi be independent

random points in E with distribution

Θ Ci
Θ(Ci)

.

Then {ξ1, . . . , ξmi} is a point process in E.

(This is often studied in Rd with Lebesgue measure and convex

Ci. There are many papers about conv{ξ1, . . . , ξmi}.)

If we let i and mi tend to infinity, in such a way that

mi

Θ(Ci)
→ 1,

we obtain (heuristically) a Poisson process.
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A (simple) point process X in E is a Poisson process with intensity
measure Θ if

P{X(A) = k} = e−Θ(A) Θ(A)k

k!
for k ∈ N0

for all Borel sets A ⊂ E with Θ(A) <∞.

Properties:

• For disjoint Borel sets A1, A2 ⊂ E, the restrictions X A1 and
X A2 are stochastically independent.

• If A ⊂ E is a Borel set with Θ(A) <∞, then under the condition
that X(A) = m, the restriction X A is stochastically equivalent
to the process defined by m independent random points with
distribution

Θ A

Θ(A)
.
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(c) Random mosaics induced by Poisson processes

Kd denotes the space of convex bodies (nonempty, compact, con-

vex subsets) in Rd, equipped with the Hausdorff metric.

A process of convex particles in Rd is a point process X in the

space Kd.

It is called stationary (or homogeneous) if its distribution is in-

variant under translations, thus if, for each t ∈ Rd, the processes

X and X + t are stochastically equivalent.

A random mosaic is a process of convex particles which is almost

surely a mosaic.

We consider three types of random mosaics induced by Poisson

processes.
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(1) Poisson hyerplane mosaics

Let 〈·, ·〉 and ‖·‖ denote the scalar product and norm, respectively,
in Rd.

Bd := {x ∈ Rd : ‖x‖ ≤ 1} is the unit ball and Sd−1 = ∂Bd the unit
sphere.

A hyperplane in Rd can be written in the form

H(u, τ) = {x ∈ Rd : 〈x, u〉 = τ} = H(−u,−τ),

with u ∈ Sd−1 and τ ∈ R.

Let A(d, d− 1) denote the space of all hyperplanes (affine Grass-
mannian) in Rd, with its usual topology.

Let X̂ be a Poisson process in the space A(d, d−1). Every realiza-
tion of X̂ is a.s. a locally finite system of hyperplanes. It induces
a tessellation of Rd. In this way, a Poisson hyperplane mosaic X
is defined.
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(2) Poisson–Voronoi mosaics

Let X̃ be a Poisson process in Rd. Every realization of X̃ is a.s.

a locally finite system of points and hence defines its Voronoi

tessellation. In this way, a Poisson–Voronoi mosaic X is defined.

(3) Poisson–Delaunay mosaics

Let X̃ be a Poisson process in Rd. Every realization of X̃ is a.s.

a locally finite system of points in general position and hence

defines its Delaunay tessellation. In this way, a Poisson–Delaunay

mosaic Y is defined.

In the following, X̂ and X̃ are assumed to be stationary (their

distributions are translation invariant). Then also the induced

random mosaics are stationary.
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Part I: Stationary Poisson hyperplane mosaics:

intersection densities and vertex numbers

Let X̂ be a stationary Poisson hyperplane process in Rd.

It is determined by two parameters, a number and a probability

measure on the sphere.

For a Borel set A ∈ A(d, d− 1), the random variable X̂(A) is the

number of hyperplanes of X̂ falling in A. Its expectation

E X̂(A) = Θ(A)

defines a measure on A(d, d− 1), the intensity measure of X̂.

By stationarity, there is a decomposition
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Θ(A) = γ̂
∫
Sd−1

∫ ∞
−∞

1A(H(u, τ)) dτ ϕ̂(du)

for Borel sets A ⊂ A(d, d− 1). Here,

γ̂ is the intensity of X̂,

ϕ̂ is the directional distribution of X̂, an even probability measure
on the unit sphere.

We assume that γ̂ > 0 and that ϕ̂ is not concentrated on a great
subsphere.

Intuitive meaning of intensity and directional distribution:
For a symmetric Borel set A ⊂ Sd−1,

γ̂ϕ̂(A) =
1

2
E card{H(u, τ) ∈ X̂ : u ∈ A, |τ | ≤ 1}.

15



Derived parameters: the intersection densities

Let k ∈ {0, . . . , d − 1}. Intersecting any d − k hyperplanes of X̂

(which are a.s. in general position), we obtain a k-flat process,

that is, a point process in the space A(d, k) of k-flats of Rd.

This is the intersection process of order d − k of X̂, denoted by

X̂d−k.

Its intensity is given by

γ̂d−k =
1

κd−k
E card{F ∈ X̂d−k : F ∩Bd 6= ∅},

where κd is the volume of the d-dimensional unit ball.
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It can also be represented by

γ̂d−k = E
∑

F∈X̂d−k

volk(F ∩B),

for any Borel set B ⊂ Rd of Lebesgue measure λ(B) = 1.

We call γ̂d−k the intersection density of order d− k.

Note that X̂1 = X̂ and γ̂1 = γ̂.

Let the intensity γ̂ be given. Then the hyperplane process X̂

depends only on the directional distribution ϕ̂.

This fact suggests many geometric extremal problems of isope-
rimetric type.

Some of them can be answered, using the device of the associated
zonoid and results on convex bodies.
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Which directional distributions yield

‘the most intersections’ ?

More precisely, for given intensity γ̂, which directional distributi-

ons yield maximal intersection density of order d− k?

The intersection density of order d− k is given by

γ̂d−k =
γ̂d−k

(d− k)!

∫
(Sd−1)d−k

∇d−k(u1, . . . , ud−k) ϕ̂d−k(d(u1, . . . , ud−k)),

where ∇d−k(u1, . . . , ud−k) is the (d−k)-dimensional volume of the

parallelepiped spanned by the vectors u1, . . . , ud−k.

The integral can be interpreted as an intrinsic volume of an au-

xiliary zonoid.
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Explanations

The Minkowski sum of sets A,B ⊂ Rd is defined by

A+B = {x+ y : x ∈ A, y ∈ B}.

The support function of a convex body K is defined by

h(K,u) = max{〈x, u〉 : x ∈ K} for u ∈ Rd.

It satisfies, h(K+M, ·) = h(K, ·)+h(M, ·) for convex bodies K,M .

A sum of finitely many line segments is a zonotope.

The zonotopes are precisely the polytopes with centrally symme-

tric faces.
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The support function of the segment with endpoints v,−v is given
by h([v,−v], u) = |〈u, v〉|.

Hence, the support function of a zonotope K can be represented
by

h(K,u) =
m∑
i=1

αi|〈u, vi〉|

with unit vectors v1, . . . , vm and positive numbers α1, . . . , αm.

A zonoid is a convex body K whose support function has a re-
presentation

h(K,u) =
∫
Sd−1

|〈u, v〉| ρ(dv)

with a finite even measure ρ on the sphere Sd−1, or a translate of
such a body. Equivalently, a convex body K is a zonoid if and only
if it can be approximated by zonoids (in the Hausdorff metric).
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The intrinsic volumes of a convex body K can be defined by the

polynomial expansion

V (K + εBd) =
d∑

j=0

εd−jκd−jVj(K).

They satisfy the famous Aleksandrov–Fenchel inequalities, in par-

ticular

κd−j(
d
j

) Vj(K)


k

≥ κk−jd

κd−k(
d
k

) Vk(K)


j

for 0 < j < k ≤ d. If dimK ≥ j, then equality holds if and only if

K is a ball.
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Application to our Poisson hyperplane process X̂:

Following Matheron, we define the associated zonoid Π
X̂

by its

support function

h(Π
X̂
, ·) =

γ̂

2

∫
Sd−1

|〈·, v〉| ϕ̂(du).

Then it turns out that the intersection density of order k is given

by

γ̂k = Vk(Π
X̂

) ,

in particular, γ̂ = γ̂1 = V1(Π
X̂

). Therefore, the Aleksandrov–

Fenchel inequality gives

γ̂k ≤

(
d
k

)
κkd−1

dkκd−kκ
k−1
d

γ̂k,

for k ∈ {2, . . . , d}.
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If equality holds, then Π
X̂

is a ball. By a known uniqueness theo-

rem for the ‘cosine transform’, the even measure ϕ̂ must be the

normalized spherical Lebesgue measure, hence it is rotation inva-

riant. This implies that the intensity measure of the hyperplane

process X̂ is rotation invariant.

For a Poisson process, the intensity measure determines the dis-

tribution. It follows that the distribution of X̂ is rotation invariant.

A process with this property is called isotropic. The converse also

holds. Hence:

For given intensity γ̂, the intersection density γ̂k of order k ∈
{2, . . . , d} becomes maximal precisely if X̂ is isotropic.

23



The preceding (older) result served us to introduce the associated

zonoid Π
X̂

.

This zonoid is now applied to more recent results.

Recall that X is the mosaic induced by the Poisson hyperplane

process X̂. We denote by X(k) the process of its k-dimensional

faces, k = 2, . . . , d.

How many vertices has the ‘average’ k-face?

Here ‘averaging’ must be in two ways: spatially and stochastically.

We need a notion of a random polytope that can be considered

as a ‘typical’ k-face of the mosaic X.
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Two natural procedures, heuristically:

• Select a k-face at random, with equal weights for each k-face

in a realization of the mosaic (which is, of course, only possible

in a bounded region), and translate it so that its Steiner point

comes to the origin. The resulting random polytope is called the

typical k-face, denoted by Z(k).

• Select a random point p, uniformly with respect to the k-dimen-

sional Hausdorff measure on the union of all k-faces (which is, of

course, only possible in a bounded region), take the k-face con-

taining p, and translate it by −p. The resulting random polytope

is called the weighted typical k-face, denoted by Z
(k)
0 .

Palm theory can be used to give precise definitions.
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The zero cell Z0 of X is the cell containing 0.

It is stochastically equivalent to Z
(d)
0 .

Let f0(P ) denote the number of vertices of a polytope P .

We ask for the expectations of the random variables

f0(Z(k)) and f0(Z(k)
0 ).

A (more general) theorem of J. Mecke (1984) gives

E f0(Z(k)) = 2k.

What about E f0(Z(k)
0 )?

First we consider the case k = d, the expected vertex number of

the zero cell Z0.
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One can compute (heavily using the Poisson assumption) that

E f0(Z0)

=
γ̂d

d!

∫
(Sd−1)d

∫ ∞
−∞
· · ·

∫ ∞
−∞

E card(Z0 ∩H(u1, τ1) ∩ · · · ∩H(ud, τd))

×dτ1 · · ·dτd ϕ̂d(d(u1, . . . , ud))

= EVd(Z0) ·
γ̂d

d!

∫
(Sd−1)d

∇d(u1, . . . , ud) ϕ̂
d(d(u1, . . . , ud))

= EVd(Z0)Vd(Π
X̂

).

Fortunately, also EVd(Z0) can be expressed in terms of the asso-

ciated zonoid, namely

EVd(Z0) = 2−dd!Vd(Πo
X̂

).
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Here, for a convex body K with 0 in the interior, Ko denotes the

polar body, defined by

Ko = {x ∈ Rd : 〈x, y〉 ≤ 1 for all y ∈ K}.

Thus, we obtain

E f0(Z0) = 2−dd!Vd(Π
X̂

)Vd(Πo
X̂

).

The volume product Vd(K)Vd(K
o) is an important functional in

the affine geometry of convex bodies. For zonoids K (with centre

0), it satisfies the Reisner and Blaschke–Santaló inequalities

4d

d!
≤ V (K)V (Ko) ≤ κ2

d .

Equality on the left holds if and only if K is a parallelepiped, and

on the right it holds if and only if K is an ellipsoid.
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We conclude that

2d ≤ Ef0(Z0) ≤ 2−dd!κ2
d .

On the left side, equality holds if and only if X is a parallel mo-

saic (that is, the hyperplanes of X̂ have only d fixed different

directions). On the right side, equality holds if and only if X is

affinely isotropic (that is, X̂ is an affine transform of an isotropic

process).

We want to extend the preceding result to the weighted typical

k-face Z
(k)
0 , k = 2, . . . , d.

For this, we need a suitable representation of the weighted typical

k-face Z
(k)
0 (that is, of its distribution).
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Recall that the intersection process X̂d−k is obtained by intersec-

ting any d−k hyperplanes of the hyperplane process X̂ in general

position. It is a stationary process of k-flats.

Its directional distribution Q̂d−k is a probability measure on the

Grassmannian G(d, k) of k-dimensional linear subspaces.

Its intuitive meaning is exhibited by the following. For a k-flat F ,

let F0 denote its translate through 0. For a Borel set A ⊂ G(d, k)

we have

Q̂d−k(A) =
E card{F ∈ X̂d−k : F ∩Bd 6= ∅, F0 ∈ A}

E card{F ∈ X̂d−k : F ∩Bd 6= ∅}
.
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The distribution of the weighted typical k-face is given by

P(Z(k)
0 ∈ A) =

∫
G(d,k)

P(Z0 ∩ L ∈ A) Q̂d−k(dL)

for Borel sets A in the space of polytopes.

In other words: the weighted typical k-face Z
(k)
0 is stochastically

equivalent to the random polytope Z0∩L, where L is a random k-
dimensional subspace of Rd, independent of X̂, with distribution
Q̂d−k.

For the expected number of vertices, this implies

Ef0(Z(k)
0 ) =

∫
G(d,k)

Ef0(Z0 ∩ L) Q̂d−k(dL)

=
∫
G(d,k)

Ef0(Z0(X̂ ∩ L)) Q̂d−k(dL).
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Here, Z0 ∩ L is the intersection of the fixed subspace L with the

random zero cell Z0.

Equivalently, this is the zero cell of the intersection process X̂∩L,

which is a stationary Poisson hyperplane process in L. Hence, we

can express Ef0(Z0(X̂ ∩ L)) in terms of the volume product of

the associated zonoid of X̂ ∩ L.

Fortunately (Matheron), the associated zonoid of the intersect-

ion process X̂ ∩ L is the orthogonal projection of the associated

zonoid of X̂ to L, denoted by Π
X̂
|L. Hence,

Ef0(Z(k)
0 ) = 2−kk!

∫
G(d,k)

Vk(Π
X̂
|L)Vk((Π

X̂
|L)o) Q̂d−k(dL).

In each subspace L, we can apply the Reisner and the Blaschke–

Santaló inequality. This gives
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Theorem. For k = 2, . . . , d,

2k ≤ Ef0(Z(k)
0 ) ≤ 2−kk!κ2

k.

On the left side, equality holds if and only if X is a parallel mosaic.

On the right side, equality holds if X is isotropic.

Before discussing the equality cases, we mention a generalization.

The distribution of the weighted typical k-face Z
(k)
0 is (if trans-

lations are disregarded) the volume weighted distribution of the

typical k-face Z(k). We can also use different weighting functions,

namely

Lj(P ) = Hj(skeljP ) =
∑

F∈Fj(P )

Vj(F ),

for polytopes P and for 0 ≤ j ≤ dimP .
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The Lj-weighted typical k-face Zk,j has distribution given by

P(Zk,j ∈ A) =
1

ELj(Z(k))
E
[
1A(Z(k))Lj(Z

(k))
]
.

Then, for 0 ≤ j ≤ k ≤ d,

2k ≤ Ef0(Zk,j) ≤ 2j−2k
k−j∑
i=0

22i
(k − j

i

)
(k − i)!κ2

k−i.

Equality cases are as before.
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The equality cases

They pose geometric questions on projections of zonoids.

From

Ef0(Z(k)
0 ) = 2−kk!

∫
G(d,k)

Vk(Π
X̂
|L)Vk((Π

X̂
|L)o) Q̂d−k(dL)

and

4k

k!
≤ Vk(Π

X̂
|L)Vk((Π

X̂
|L)o) ≤ κ2

k

we have obtained that

2k ≤ Ef0(Z(k)
0 ) ≤ 2−kk!κ2

k. (1)

Equality on the left side of (1) holds if and only if the projection
Π
X̂
|L is a parallelepiped for each subspace L in the support of

the measure Q̂d−k.
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Explicitly,

Q̂d−k(A) = c(ϕ̂)
∫

(Sd−1)d−k
1A(u⊥1 ∩ · · · ∩ u

⊥
d−k)∇d−k(u1, . . . , ud−k)

× ϕ̂d−k(d(u1, . . . , ud−k))

for Borel sets A ⊂ G(d, k). Recall that

h(Π
X̂
, x) =

γ̂

2

∫
Sd−1

|〈u, x〉| ϕ̂(du), x ∈ Rd.

If Π
X̂

is a parallelepiped, then ϕ̂ is concentrated in ±e1, . . . ,±ed,
for a basis (e1, . . . , ed) of Rd.

Π
X̂

is the sum of segments parallel to e1, . . . , ed.
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Let L ∈ supp Q̂d−k.

Then L = u⊥1 ∩ · · · ∩ u
⊥
d−k with linearly independent vectors in

the support of ϕ̂, say (u1, . . . , ud−k) = (e1, . . . , ed−k), hence L =
lin{e1, . . . , ed−k}⊥. The projection Π

X̂
|L is the sum of segments

parallel to the projections of ed−k+1, . . . , ed, hence it is a parallel-
epiped.

Conversely, suppose that Π
X̂
|L is a parallelepiped, for each L ∈

supp Q̂d−k. We have to show that Π
X̂

is a parallelepiped.

Sketch of the proof for k = d− 1

We have a zonoid K with generating measure ρ, thus

h(K,u) =
∫
Sd−1

|〈u, v〉| ρ(du), u ∈ Sd−1.

For each e ∈ supp ρ, the projection K|e⊥ is a parallelepiped.
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For e ∈ Sd−1, the projection K|e⊥ is a zonoid with generating

measure πe⊥ρ, given by

πe⊥ρ =
∫
Sd−1\{±e}

1A

(
u|e⊥

‖u|e⊥‖

)
‖u|e⊥‖ ρ(du)

for Borel sets A ⊂ Sd−1 ∩ e⊥.

For simplicity, let d = 3. Let e ∈ supp ρ. Then K|e⊥ is a parallelo-

gram, hence its generating measure is concentrated in two pairs

of antipodal points. Therefore, ρ is concentrated on two great

circles C1, C2 through e. Choose e′ ∈ C1 ∩ supp ρ \ {±e}. Then ρ

is concentrated on two great circles C3, C4 through e′. One of

them must conicide with C1, say C4. Then ρ is concentrated in

the intersection points of C1, C2, C3. Hence, K is a parallelepiped.
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Part II: The shape of large cells

For a set η of hyperplanes in Rd, not containing 0, let

Z0 :=
⋂
H∈η

H−,

where H− is the closed halfspace bounded by H that contains 0.

We study this for a Poisson process X̂ of hyperplanes. Then Z0

is a random polytope.

In order to cover stationary Poisson hyperplane tessellations as

well as stationary Poisson–Voronoi mosaics, we assume a more

general form of the intensity measure

Θ = E X̂(·).
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For Borel sets A ⊂ A(d, d− 1), let

Θ(A) = λ
∫
Sd−1

∫ ∞
0

1A(H(u, τ)) τr−1 dτ ϕ(du).

Here,

λ > 0 is an intensity parameter,

r ≥ 1 is the distance exponent,

ϕ is the directional distribution, a probability measure on
Sd−1, not concentrated on a closed hemisphere.

Question: What is the asymptotic shape of the zero cell

Z0 :=
⋂

H∈X̂
H−

under the condition that it is large, in some sense?
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Program:

The asymptotic shape of large cells is completely determined by
the equality cases of an isoperimetric inequality for convex bodies.

Stability results for the isoperimetric inequality yield estimates for
the deviation of large cells from limit shapes.

Origin:

In the early 1940s, David G. Kendall had a conjecture about the
zero cell Z0 of a stationary, isotropic Poisson process of lines in
the plane. In the book

D. Stoyan, W.S. Kendall, J. Mecke: Stochastic Geometry and its
Applications (1987)

he repeated his conjecture in the foreword:
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“One would have preferred to be able to say something about
. . . my conjecture that the conditional law for the shape of Z0,
given the area A(Z0) of Z0, converges weakly, as A(Z0)→∞, to
the degenerate law concentrated at the circular shape.”

What happened in the meantime:

R.E. Miles 1995: A heuristic proof of a longstanding conjecture
of D.G. Kendall concerning the shapes of certain large random
polygons

I.N. Kovalenko 1997: A proof of a conjecture of David Kendall
on the shape of random polygons of large area

I.N. Kovalenko 1998: An extension of a conjecture of D.G. Ken-
dall concerning shapes of random polygons to Poisson Voronöı
cells

J. Mecke, I. Osburg 2003: On the shape of large Crofton paral-
lelotopes
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D. Hug, M. Reitzner, R. Schneider 2004 a,b

D. Hug, R. Schneider 2004, 2005, 2007 a,b

Extension of Kendall’s problem in various directions:

(a) higher dimensions, that is, stationary, isotropic Poisson hy-

perplane processes and zero cells of large volume,

(b) measuring the size not only by the volume, but also by other

functionals,

(c) dropping the assumption of isotropy (rotation invariance)

(d) dropping the stationarity (translation invariance)

The latter opens the way to including typical cells of Poisson–

Voronoi tessellations.
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Poisson–Voronoi tessellations

Let S be a locally finite set in Rd. Recall that, for x ∈ S, the set

C(x,S) := {y ∈ Rd : ‖y − x‖ ≤ ‖y − s‖ ∀ s ∈ S},

consisting of all points of Rd for which x is a nearest point in S,

is the Voronoi cell (or Dirichlet cell) of x with respect to S.

Let X̃ be a stationary Poisson point process in Rd. Then

{C(x, X̃) : x ∈ X̃}

is a stationary random tessellation, called the Poisson–Voronoi

tessellation induced by X̃.
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Its typical cell is (by Slivnyak’s theorem) stochastically equivalent

to

C(0, X̃ ∪ {0}).

Thus, the typical cell can be defined by

Z =
⋂
x∈X̃

H(x)−,

where H(x) is the mid hyperplane of 0 and x.

Thus, the typical cell Z of the Poisson–Voronoi tessellation is the

zero cell of the hyperplane mosaic generated by the hyperplane

process

{H(x) : x ∈ X̃}.

This is a nonstationary Poisson hyperplane process.

45



Forms of the intensity measure:

(a) For a stationary Poisson hyperplane process:

Θ(A) = 2γ̂
∫
Sd−1

∫ ∞
0

1A(H(u, τ)) dτ ϕ̂(du),

γ̂ the intensity, ϕ̂ the directional distribution

(b) For the mid hyperplanes of 0 and a stationary Poisson point
process of intensity γ:

Θ(A) = 2dγ
∫
Sd−1

∫ ∞
0

1A(H(u, τ))τd−1 dτ σ(du),

σ the rotation invariant probability measure on the sphere Sd−1.

Common generalization: a Poisson hyperplane process with in-
tensity measure

Θ(A) = λ
∫
Sd−1

∫ ∞
0

1A(H(u, τ))τr−1 dτ ϕ(du).
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Intermediate résumé:

Given: a Poisson hyperplane process X̂ with intensity measure

Θ(A) = λ
∫
Sd−1

∫ ∞
0

1A(H(u, τ))τr−1 dτ ϕ(du)

and its zero cell

Z0 :=
⋂

H∈X̂
H−,

Given: a functional Σ to measure the size of Z0.

Question: What is the asymptotic shape of Z0, under the con-

dition that the size Σ(Z0) tends to infinity?

Does it exist?

What is a candidate for the shape?

How does it depend on Σ?
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The Size Functional:

How ‘large’ the zero cell is, can be measured by any real function

Σ on Kd (the space of convex bodies in Rd) which is

• increasing under set inclusion,

• homogeneous of some degree k ≥ 0,

• continuous,

• 6≡ 0.

We call Σ a size functional.

Examples: volume, surface area, mean width, diameter, thickness,

inradius, circumradius, volume of the John ellipsoid, width in a

given direction, . . .
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Crucial is the relation of the size functional to

The Hitting Functional:

For a convex body K ∈ Kd, define

HK := {H ∈ A(d, d− 1) : H ∩K 6= ∅}.

By the Poisson distribution of X and the form of the intensity

measure,

P(card(X ∩HK) = k) =
[Φ(K)λ]k

k!
e−Φ(K)λ

with

Φ(K) =
1

r

∫
Sd−1

h(K,u)r ϕ(du).

We call Φ the hitting functional.
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The Isoperimetric Inequality:

By continuity and homogeneity, the hitting functional Φ and the

size functional Σ satisfy a sharp isoperimetric inequality

Φ(K) ≥ αΣ(K)r/k. (2)

‘Sharp’ means that there are extremal bodies (with more than

one point) for which equality holds (this determines α).

We need a stability version, quantifying that a body which almost

yields equality must be close to an extremal body.
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The Deviation Functional:

For given Φ and Σ, let ϑ be a function on {K ∈ Kd : Σ(K) > 0}
with the following properties:

• ϑ(K) = 0 for K ∈ Kd ⇔ K is extremal,

• ϑ is continuous,

• nonnegative,

• homogeneous of degree zero.

We call ϑ a deviation functional.

Deviation functionals exist.
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Stability Version of the Isoperimetric Inequality:

There exists a continuous function f : R+ → R+ with f(ε) > 0

for ε > 0 and f(0) = 0 such that

ϑ(K) ≥ ε ⇒ Φ(K) ≥ (1 + f(ε))αΣ(K)r/k, (3)

for K ∈ Kd.

Any such f is called a stability function for Φ,Σ, ϑ.

In concrete cases, explicit stability functions are of interest.
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Heuristic Approach

We want an upper estimate for the conditional probability

P(ϑ(Z0) ≥ ε | Σ(Z0) ≥ a) =
P(ϑ(Z0) ≥ ε, Σ(Z0) ≥ a)

P(Σ(Z0) ≥ a)
.

Let B be an extremal body, with 0 ∈ B and Σ(B) = a; then

Φ(B) = αΣ(B)r/k = αar/k.

Denominator: By the monotonicity of Σ,

P(Σ(Z0) ≥ a) ≥ P(card(X ∩HB) = 0) = exp
{
−αar/kλ

}
.
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Numerator: Let a (deterministic) convex body K satisfy

ϑ(K) ≥ ε > 0, Σ(K) ≥ a.

Then, by the stability version (3) of the isoperimetric inequality,

P(card(X ∩HK) = 0) = exp{−Φ(K)λ}

≤ exp
{
−(1 + f(ε))αΣ(K)r/kλ

}
≤ exp

{
−(1 + f(ε))αar/kλ

}
.
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Heuristically, we replace the deterministic body K satisfying

card(X ∩HK) = 0, ϑ(K) ≥ ε, Σ(K) ≥ a

by the random body Z0 satisfying

card(X ∩HβZ0
) = 0 ∀ β ∈ (0,1), ϑ(Z0) ≥ ε, Σ(Z0) ≥ a,

and hope that this costs only a slight weakening of the inequality,

say

P(ϑ(Z0) ≥ ε, Σ(Z0) ≥ a) ≤ c1 exp
{
−(1 + c2f(ε))αar/kλ

}
.

Division then gives the exponential estimate

P(ϑ(Z0) ≥ ε | Σ(Z0) ≥ a) ≤ c1 exp
{
−c2f(ε)αar/kλ

}
.

This can be made precise.
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Theorem 1. With a suitable constant c0 > 0 (depending only on

α), the following holds. If ε > 0 and a > 0 , then

P(ϑ(Z0) ≥ ε | Σ(Z0) ≥ a) ≤ c exp
{
−c0f(ε)ar/kλ

}
(4)

where c is a constant depending on ϕ, r,Σ, f, ε, but not on a or λ.

This shows that the extremal bodies of the isoperimetric inequa-

lity (2) can be considered as asymptotic shapes.

But Kendall’s problem asked for limit shapes.
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Shapes

Let G be one of the groups of: similarities, homotheties, positive

dilatations of Rd.

The G-shape of K ∈ Kd is the orbit sG(K) := {gK : g ∈ G}. Let

SG be the space of all G-shapes, with the quotient topology.

The conditional law of the G-shape of Z0, given the lower bound

a > 0 for the size Σ(Z0), is the probability measure µa on SG

defined by

µa(A) := P(sG(Z0) ∈ A | Σ(Z0) ≥ a)

for Borel sets A ⊂ SG.
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Theorem 2. Suppose that the extremal bodies of (2) belong to

a unique G-shape sG(B). Then sG(B) is the limit shape of Z0 for

increasing Σ, in the sense that

lim
a→∞µa = δsG(B) weakly,

where δsG(B) denotes the Dirac measure concentrated at sG(B).

These are two abstract, general theorems. To apply them in con-

crete cases (special Θ and Σ), one has to find the exact isope-

rimetric inequality (2) and its extremal bodies (and, preferably,

explicit stability functions).
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Some Examples:

(1) The zero cell of a stationary Poisson hyperplane tessellation;
the size measured by the volume. Here,

Φ(K) =
∫
Sd−1

h(K,u)ϕ(du) = dV (K,B, . . . , B),

where B is the centered convex body with area measure ϕ (it
exists by Minkowski’s theorem).

The crucial isoperimetric inequality is Minkowski’s inequality

V (K,B, . . . , B) ≥ Vd(B)1−1/dVd(K)1/d.

Equality holds if and only if K is homothetic to B. Hence, the
homothety class of B is the limit shape of Z0 with respect to the
volume. (Stability: Groemer)
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(2) The typical cell of a stationary Poisson–Voronoi tessellation;

the size measured by the kth intrinsic volume Vk. Here,

Φ(K) =
1

d

∫
Sd−1

h(K,u)d σ(du).

Hölder’s inequality and the Aleksandrov–Fenchel inequality give

Φ(K) ≥ αVk(K)d/k

with explicit α. Equality holds if and only if K is a centered ball.

Hence, the class of centered balls is the limit shape of the typical

cell with respect to Vk.

Stability: ϑ(K) ≥ ε ⇒ Φ(K) ≥ (1 + cdε
(d+3)/2)αVk(K)d/k
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(3) The zero cell of a stationary non-isotropic Poisson hyperplane

tessellation; the size measured by the inradius

The limit shape of Z0 with respect to the inradius is the homo-

thety class of the convex body

Bϕ :=
⋂

u∈suppϕ
H(u,1)−.

(4) The zero cell of a stationary isotropic Poisson hyperplane

tessellation; the size measured by the circumradius

The limit shape is the class of segments.

(5) The zero cell of a stationary isotropic Poisson hyperplane

tessellation; the size measured by the diameter

The limit shape is the class of segments.
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(6) The zero cell of a stationary isotropic Poisson hyperplane

tessellation; the size measured by the thickness

There is no limit shape, but the class of bodies of constant width

can be considered as the asymptotic shape.

(7) The zero cell of a stationary isotropic Poisson hyperplane

tessellation; the size measured by the width in a given direction

The limit shape is the class of segments of the given direction.

An unsolved problem:

Replace size by large number of facets or vertices.
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Poisson–Delaunay Mosaics

A Poisson–Delaunay mosaic is the dual tessellation of a stationary

Poisson–Voronoi tessellation. The cells are simplices.

What is the asymptotic shape of ‘large’ typical cells?

Results

The shape of the typical cell tends to the shape of a regular sim-

plex, given that the volume, or the surface area, or the inradius,

or the minimal width, of the typical cell tends to infinity.

Typical cells of large diameter tend to belong to a special class

of simplices, distinct from the regular ones. In the plane, these

are the right-angled triangles.
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The Size Functional

A d-simplex S has a circumscribed sphere (through the vertices);

let z(S) be its centre and R(S) its radius. Let ∆0 be the space

of d-simplices S ⊂ Rd with z(S) = 0.

Let Σ : ∆0 → R be a function with the following properties:

• continuous,

• homogeneous of some degree k > 0,

• Σ attains a maximum on the set of d-simplices inscribed to the

unit sphere,

• Vd/Σ1/k is bounded.

We call Σ the size functional.
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Again, a crucial inequality:

Σ(S) ≤ αR(S)k ∀ S ∈∆0,

with equality attained by the extremal simplices.

The deviation functional: a function ϑ : ∆0 → R with the proper-

ties

• continuous,

• homogeneous of degree 0,

• ϑ(S) = 0 ⇔ S is an extremal simplex.

The stability function: f : [0,1] → [0,1] with f(0) = 0, f(ε) > 0

for ε > 0, and

ϑ(S) ≥ ε ⇒ Σ(S) ≤ (1− f(ε))αR(S)k.
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Theorem 3. Let Z be the typical cell of the Poisson–Delaunay

tessellation derived from a stationary Poisson point process with

intensity γ > 0 in Rd.

If ε ∈ (0,1) and a > 0, then

P(ϑ(Z) ≥ ε | Σ(Z) ≥ a) ≤ c exp
{
−c0f(ε)ad/kγ

}
,

where c, c0 are constants depending on d, ϑ, f , and c also on ε.

Unsolved problems

1.) The simplices of maximal surface area contained in a ball are

precisely the regular ones. Prove a stability result.

2.) Which simplices contained in a ball have maximal mean

width?
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