Constructing the
delaunay skeleton
in medium dimension

Rouge-Gazon
30 janvier, 2009
J.-D. Boissonnat, O. Devillers et S. Hornus

Definitions

Pis a set of n points in R? .

A simplex o is the convex hull of d+1 aff.ind.
points.

q <R’ and simplex o conflict iff q is inside the
circumsphere of o.

A Delaunay triangulation of P, Del(P), is a maximal
set of simplices with vertex-set in P, that conflict
with no point of P,

Definition & motivation

The Delaunay graph, or Delaunay skeleton, or the
graph, is the set of vertices and edges of the
Delaunay triangulation.

In theory, this takes O(n?) worst case space,
instead of the O(n!2!) worst case space
necessary for the full triangulation.

In practice, it does indeed shrink memory usage
(and lengthen the construction time).

jeudi 5 février 2009

Main observation

Given the full Delaunay triangulation, a simplex, it
takes constant time (in the d-cell/vertex

representation) to access a neighbor.
Given the Delaunay graph and the vertex-set of a

Delaunay simplex (Del-simplex) o , it is possible to
find the vertex-set of any neighbor of ¢ relatively
quickly.

Applications

® We've computed a huge space-time (4D)
Delaunay skeleton of a sample of some moving
object [J-P Pons and E.Aganj].We want to extract
“slices” at time=constant.We extract only the
relevant 4-simplices.

® Compute the graph in RAM while “streaming” the
full triangulation to disk.

jeudi 5 février 2009

Sequel outline

|. Recap: incremental construction of Delaunay
triangulation.

2. How to compute the Delaunay graph.
3. How to compute a neighbor of a Delaunay simplex.
4. Making it usable (optimizations).

5. Average case experiments (uniform random
distribution)

Delaunay construction (recap)

Incremental algorithm: inserts points one after the other.
|.Walk in the triangulation

towards the new point p. Stop
upon finding a Del-simplex that

conflicts with p.
2. Ildentify the set of Del-simplices that

conflict with p (they form the conflict
zone; a star-shaped geometric subset
of R%).

3. Remove the conflicting Del-simplices

jeudi 5 février 2009

Delaunay graph construction

Incremental algorithm: inserts points one after the other.
® Ve basically use the same algorithm.

® Jo do so, we need a fast algorithm for the
get_neighbor() function (see later slide).

® As we explore the conflicting Del-simplices, we do
keep them in memory, in order to:

® Update the adjacencies of all the vertices on the
conflict zone’s boundary (see next slide).

® Throw away the now-outdated conflicting
simplices.

Update of the adjacencies

C is the conflict zone: the set of conflicting simplices.
Let E be the set of Delaunay edges in C.

Let B be the set of Delaunay edges in the boundary of
C.

For each edge a—>b in E\B: disconnect vertices a and b.

Let v be the newly created vertex. connect v to each
vertex in B.

get neighbor()

Input: the vertex-set of a Del-simpléx .-~
and a vertex v of O . '
Output: the unique vertex w opp05|te

Compute: [| Neighbors(p)
pET\{v}

Remove: vertices on the wrong _

EJse in_circle() pre'c‘ate to
select the correct .
vertex.

jeudi 5 février 2009

Optimizing lists intersection

get _neighbor(): compute intersection of d lists.

Lists are stored as std::set<...> (fast successor search).

d-1 pairwise intersections is slow CPU-wise and
RAM-wise

We use a simple and faster algorithm from SODA 2000
by Demaine, Lopez-Ortiz and Munro, that cycles through

the d lists at once.

Optimizing lists intersection
Demaine, Lopez-Ortiz and Munro [SODA 2000]

. A
3
Ok) o
'\\/“ D
S :

. .c

jeudi 5 février 2009

Optimizing with a simplex cache

We store a Least Recently Used cache of Delaunay
simplices.

Simplices in the cache are also accessible via a dictionary
on their vertex-set (we use a std::unordered map<...>).

Cached simplices store pointers to neighbors.

After each insertion, the cache is shrunk to its maximum
allowed size by removing the oldest simplices. The user
has explicit control on the size of the cache.

jeudi 5 février 2009

get neighbors() using the cache

Now, get neighbors() manipulates only in-cache
simplices.
| If the stored pointer is not NULL, return it.

2.1. Otherwise, get candidate opposite vertices by list

Intersection.
2.2. Member-query each candidate simplex using

dictionary.
Return simplex if found.
3. Otherwise, use in_circle() predicate as before.

4. Update the cache and the neighbor pointers as
needed.

jeu

di 5 février 2009

Points common to New_DT and Del_graph

® Spatial sorting (Biased Randomized Insertion
Order with “Hilbert” space-filling curve).

® BR|O should be important for the cache
efficiency.

® Ambient dimension d is a compile time parameter
(modified CGAL kernel with dimension as C++
template-parameter)

On uniformly distributed points...

1 | Dimension 2 3 4 5] 0
2 | Number of input points 1024K | 1024K 1024K 256K 32K
3 | Size of the simplex-cache 1K 1K 10K 300K 1000K
4 | Size of the conflict zone 4.1 21 134 940 6145
5 | Calls to neighbor(,) 12.2 84.6 671.2 5631 43021
6 | Number of candidates 2 2.6 4 6.7 11.6
7 | Fast cache hit (non-null pointer) || 56.6 % | 57.5% 54.6 % 55.5 % 54.3 %
8 | Cache hit 37 % 39.6 % 40.1 % 42.3 % 43.1 %
9 | Cache miss 6.4 % 2.9% 5.3% 2.2% 2.6 %
10 | Time ratio (Del_graph/New DT) 6.1 5.7 6.0 6.5 8.1
11 | Space ratio (Del_graph/New DT) 2.7 1.7 0.6 0.2 0.1
12 | Number of simplices per vertex 6 27 (x4.5) 157(x5.8) | 1043 (xe.7) | T111(xe.8)
13 | Number of edges per vertex 6 15.5(x2.6) | 36.5(x2.4) T3 (x2) 164.6(x2.25)

jeudi 5 février 2009

