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A Delaunay triangulation of P, Del(P), is a maximal 
set of simplices with vertex-set in P, that conflict 
with no point of P.

Definitions
P is a set of      points in      .
A simplex     is the convex hull of   d+1   aff. ind. 
points.
q           and simplex     conflict iff q is inside the 
circumsphere of    .
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The Delaunay graph, or Delaunay skeleton, or the 
graph, is the set of vertices and edges of the 
Delaunay triangulation.

In theory, this takes            worst case space, 
instead of the          worst case             space 
necessary for the full triangulation.

O(n! d
2 ")

O(n2)

In practice, it does indeed shrink memory usage 
(and lengthen the construction time).

Definition & motivation
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Main observation

Given the Delaunay graph and the vertex-set of a 
Delaunay simplex (Del-simplex)    , it is possible to 
find the vertex-set of any neighbor of      relatively 
quickly.

σ
σ

Given the full Delaunay triangulation, a simplex, it 
takes constant time (in the d-cell/vertex 
representation) to access a neighbor.
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Applications

• We’ve computed a huge space-time (4D) 
Delaunay skeleton of a sample of some moving 
object [J-P Pons and E. Aganj]. We want to extract 
“slices” at time=constant. We extract only the 
relevant 4-simplices.

• Compute the graph in RAM while “streaming” the 
full triangulation to disk.
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Sequel outline
1. Recap: incremental construction of Delaunay 

triangulation.

2. How to compute the Delaunay graph.

3. How to compute a neighbor of a Delaunay simplex.

4. Making it usable (optimizations).

5. Average case experiments (uniform random 
distribution)
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Delaunay construction (recap)
Incremental algorithm: inserts points one after the other.

Rd

p3. Remove the conflicting Del-simplices 

2. Identify the set of Del-simplices that 
conflict with p (they form the conflict 
zone; a star-shaped geometric subset 
of        ).

1. Walk in the triangulation 
towards the new point p. Stop 
upon finding a Del-simplex that 
conflicts with p.
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Delaunay graph construction
Incremental algorithm: inserts points one after the other.

• We basically use the same algorithm.

• To do so, we need a fast algorithm for the 
get_neighbor() function (see later slide).

• As we explore the conflicting Del-simplices, we do 
keep them in memory, in order to:

• Update the adjacencies of all the vertices on the 
conflict zone’s boundary (see next slide).

• Throw away the now-outdated conflicting 
simplices.
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Update of the adjacencies
• C is the conflict zone: the set of conflicting simplices.

• Let E be the set of Delaunay edges in C.

• Let B be the set of Delaunay edges in the boundary of 
C.

• For each edge a—b in E\B: disconnect vertices a and b.

• Let v be the newly created vertex. connect v to each 
vertex in B.
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get_neighbor()

Compute: 
⋂

p∈σ\

Neighbors(p)
{v}

Remove: vertices on the wrong 
side.
Use in_circle() predicate: to 
select the correct opposite 
vertex.

σ
v

w

Input: the vertex-set of a Del-simplex      
and a vertex v of      .
Output: the unique vertex w opposite 

σ
σ
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Optimizing lists intersection

get_neighbor(): compute intersection of d lists.

d-1 pairwise intersections is slow CPU-wise and 
RAM-wise

We use a simple and faster algorithm from SODA 2000 
by Demaine, López-Ortiz and Munro, that cycles through 
the d lists at once.

Lists are stored as std::set<...> (fast successor search).
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B

Optimizing lists intersection
Demaine, López-Ortiz and Munro [SODA 2000]

A

C

O(k)

O
(lo

g n
i)
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Optimizing with a simplex cache
We store a Least Recently Used cache of Delaunay 
simplices.

Cached simplices store pointers to neighbors.

After each insertion, the cache is shrunk to its maximum 
allowed size by removing the oldest simplices. The user 
has explicit control on the size of the cache.

Simplices in the cache are also accessible via a dictionary 
on their vertex-set (we use a std::unordered_map<...>).
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get_neighbors() using the cache
Now, get_neighbors() manipulates only in-cache 
simplices.

2.1. Otherwise, get candidate opposite vertices by list 
intersection.

2.2. Member-query each candidate simplex using 
dictionary.

Return simplex if found.

1. If the stored pointer is not NULL, return it.

3. Otherwise, use in_circle() predicate as before.
4. Update the cache and the neighbor pointers as 
needed.
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Points common to New_DT and Del_graph

• Spatial sorting (Biased Randomized Insertion 
Order with “Hilbert” space-filling curve).

• BRIO should be important for the cache 
efficiency.

•  Ambient dimension d is a compile time parameter 
(modified CGAL kernel with dimension as C++ 
template-parameter)
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On uniformly distributed points...

1 Dimension 2 3 4 5 6
2 Number of input points 1024K 1024K 1024K 256K 32K
3 Size of the simplex-cache 1K 1K 10K 300K 1000K
4 Size of the conflict zone 4.1 21 134 940 6145
5 Calls to neighbor(,) 12.2 84.6 671.2 5631 43021
6 Number of candidates 2 2.6 4 6.7 11.6
7 Fast cache hit (non-null pointer) 56.6 % 57.5 % 54.6 % 55.5 % 54.3 %
8 Cache hit 37 % 39.6 % 40.1 % 42.3 % 43.1 %
9 Cache miss 6.4 % 2.9 % 5.3 % 2.2 % 2.6 %

10 Time ratio (Del graph/New DT) 6.1 5.7 6.0 6.5 8.1
11 Space ratio (Del graph/New DT) 2.7 1.7 0.6 0.2 0.1
12 Number of simplices per vertex 6 27(×4.5) 157(×5.8) 1043(×6.7) 7111(×6.8)

13 Number of edges per vertex 6 15.5(×2.6) 36.5(×2.4) 73(×2) 164.6(×2.25)

Table 1: Statistics for Del graph. In rows 12 and 13, the parenthesized multiplicand is the ratio
of the current column value with the previous one.

The spatial sorting is used to reduce the number of simplices visited during the localization
part of the insertion. We find that it is extremely efficient in 2D and 3D. Somewhat efficient in
4D and 5D, and that it’s efficiency is unclear in 6D, as we didn’t see much improvement due to
spatial sorting in 6D. We do believe however that such an improvement should be witnessed if
one sharply increases the number of input points.

We have compared New DT with several other implementations presented in the introduction.
As a rough summary, we find that our implementation performs better that all of them (time-
wise and memory-wise). For these comparisons and for a lengthier analysis of the effect of
spatial sorting, we again refer the interested reader to [16] and proceed now to experiment with
our implementation of the Delaunay graph, Del graph.

5.2 Experiments with Del graph, the simplex based representation

We have experimented with Del graph on input points uniformly distributed in a cube. To
keep the discussion short in this extended abstract, we sum up some of the statistics that we
obtain in Table 1.

Each column of Table 1 corresponds to an experiment in a different dimension, as shown in
the first line. The second line displays the number of input points (drawn at random from a
uniform distribution in a cube) and the third line indicates the size of the simplex-cache that we
chose. In dimension 5 and 6, we believe that choosing a smaller cache size should not hampers
the timings too much.

Line 4 shows, in line with the measurements of line 12, how quickly the average size of the
conflict zone grows with the dimension.

Line 5 shows the average number of calls to the neighbor(,) procedure during each explo-
ration of the conflict zone. These should be compared with the less than 30 visited simplices
in the localization procedure in 6D. Line 6 shows the average number of candidate vertices for
the completion of the neighboring simplex: this is the average size of the intersection of the
neighbor-lists of d vertices forming a Delaunay (d− 1)-simplex.

Line 7, 8 and 9 show, respectively, in percent with respect to line 5 of the table, the number
of times a reference to a neighbor was readily available in a cached-simplex, the number of times
the neighbor was present in the cache but had to be searched from the list of candidates, and
the number of times the neighbor was not in the cache and had to be computed by sorting the
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