
Constructing the
delaunay skeleton

in medium dimension

Rouge-Gazon
30 janvier, 2009

J.-D. Boissonnat, O. Devillers et S. Hornus

jeudi 5 février 2009

A Delaunay triangulation of P, Del(P), is a maximal
set of simplices with vertex-set in P, that conflict
with no point of P.

Definitions
P is a set of points in .
A simplex is the convex hull of d+1 aff. ind.
points.
q and simplex conflict iff q is inside the
circumsphere of .

n Rd

σ

∈ Rd σ
σ

jeudi 5 février 2009

The Delaunay graph, or Delaunay skeleton, or the
graph, is the set of vertices and edges of the
Delaunay triangulation.

In theory, this takes worst case space,
instead of the worst case space
necessary for the full triangulation.

O(n! d
2 ")

O(n2)

In practice, it does indeed shrink memory usage
(and lengthen the construction time).

Definition & motivation

jeudi 5 février 2009

Main observation

Given the Delaunay graph and the vertex-set of a
Delaunay simplex (Del-simplex) , it is possible to
find the vertex-set of any neighbor of relatively
quickly.

σ
σ

Given the full Delaunay triangulation, a simplex, it
takes constant time (in the d-cell/vertex
representation) to access a neighbor.

jeudi 5 février 2009

Applications

• We’ve computed a huge space-time (4D)
Delaunay skeleton of a sample of some moving
object [J-P Pons and E. Aganj]. We want to extract
“slices” at time=constant. We extract only the
relevant 4-simplices.

• Compute the graph in RAM while “streaming” the
full triangulation to disk.

jeudi 5 février 2009

Sequel outline
1. Recap: incremental construction of Delaunay

triangulation.

2. How to compute the Delaunay graph.

3. How to compute a neighbor of a Delaunay simplex.

4. Making it usable (optimizations).

5. Average case experiments (uniform random
distribution)

jeudi 5 février 2009

Delaunay construction (recap)
Incremental algorithm: inserts points one after the other.

Rd

p3. Remove the conflicting Del-simplices

2. Identify the set of Del-simplices that
conflict with p (they form the conflict
zone; a star-shaped geometric subset
of).

1. Walk in the triangulation
towards the new point p. Stop
upon finding a Del-simplex that
conflicts with p.

jeudi 5 février 2009

Delaunay graph construction
Incremental algorithm: inserts points one after the other.

• We basically use the same algorithm.

• To do so, we need a fast algorithm for the
get_neighbor() function (see later slide).

• As we explore the conflicting Del-simplices, we do
keep them in memory, in order to:

• Update the adjacencies of all the vertices on the
conflict zone’s boundary (see next slide).

• Throw away the now-outdated conflicting
simplices.

jeudi 5 février 2009

Update of the adjacencies
• C is the conflict zone: the set of conflicting simplices.

• Let E be the set of Delaunay edges in C.

• Let B be the set of Delaunay edges in the boundary of
C.

• For each edge a—b in E\B: disconnect vertices a and b.

• Let v be the newly created vertex. connect v to each
vertex in B.

jeudi 5 février 2009

get_neighbor()

Compute:
⋂

p∈σ\

Neighbors(p)
{v}

Remove: vertices on the wrong
side.
Use in_circle() predicate: to
select the correct opposite
vertex.

σ
v

w

Input: the vertex-set of a Del-simplex
and a vertex v of .
Output: the unique vertex w opposite

σ
σ

jeudi 5 février 2009

Optimizing lists intersection

get_neighbor(): compute intersection of d lists.

d-1 pairwise intersections is slow CPU-wise and
RAM-wise

We use a simple and faster algorithm from SODA 2000
by Demaine, López-Ortiz and Munro, that cycles through
the d lists at once.

Lists are stored as std::set<...> (fast successor search).

jeudi 5 février 2009

B

Optimizing lists intersection
Demaine, López-Ortiz and Munro [SODA 2000]

A

C

O(k)

O
(lo

g n
i)

jeudi 5 février 2009

Optimizing with a simplex cache
We store a Least Recently Used cache of Delaunay
simplices.

Cached simplices store pointers to neighbors.

After each insertion, the cache is shrunk to its maximum
allowed size by removing the oldest simplices. The user
has explicit control on the size of the cache.

Simplices in the cache are also accessible via a dictionary
on their vertex-set (we use a std::unordered_map<...>).

jeudi 5 février 2009

get_neighbors() using the cache
Now, get_neighbors() manipulates only in-cache
simplices.

2.1. Otherwise, get candidate opposite vertices by list
intersection.

2.2. Member-query each candidate simplex using
dictionary.

Return simplex if found.

1. If the stored pointer is not NULL, return it.

3. Otherwise, use in_circle() predicate as before.
4. Update the cache and the neighbor pointers as
needed.

jeudi 5 février 2009

Points common to New_DT and Del_graph

• Spatial sorting (Biased Randomized Insertion
Order with “Hilbert” space-filling curve).

• BRIO should be important for the cache
efficiency.

• Ambient dimension d is a compile time parameter
(modified CGAL kernel with dimension as C++
template-parameter)

jeudi 5 février 2009

On uniformly distributed points...

1 Dimension 2 3 4 5 6
2 Number of input points 1024K 1024K 1024K 256K 32K
3 Size of the simplex-cache 1K 1K 10K 300K 1000K
4 Size of the conflict zone 4.1 21 134 940 6145
5 Calls to neighbor(,) 12.2 84.6 671.2 5631 43021
6 Number of candidates 2 2.6 4 6.7 11.6
7 Fast cache hit (non-null pointer) 56.6 % 57.5 % 54.6 % 55.5 % 54.3 %
8 Cache hit 37 % 39.6 % 40.1 % 42.3 % 43.1 %
9 Cache miss 6.4 % 2.9 % 5.3 % 2.2 % 2.6 %

10 Time ratio (Del graph/New DT) 6.1 5.7 6.0 6.5 8.1
11 Space ratio (Del graph/New DT) 2.7 1.7 0.6 0.2 0.1
12 Number of simplices per vertex 6 27(×4.5) 157(×5.8) 1043(×6.7) 7111(×6.8)

13 Number of edges per vertex 6 15.5(×2.6) 36.5(×2.4) 73(×2) 164.6(×2.25)

Table 1: Statistics for Del graph. In rows 12 and 13, the parenthesized multiplicand is the ratio
of the current column value with the previous one.

The spatial sorting is used to reduce the number of simplices visited during the localization
part of the insertion. We find that it is extremely efficient in 2D and 3D. Somewhat efficient in
4D and 5D, and that it’s efficiency is unclear in 6D, as we didn’t see much improvement due to
spatial sorting in 6D. We do believe however that such an improvement should be witnessed if
one sharply increases the number of input points.

We have compared New DT with several other implementations presented in the introduction.
As a rough summary, we find that our implementation performs better that all of them (time-
wise and memory-wise). For these comparisons and for a lengthier analysis of the effect of
spatial sorting, we again refer the interested reader to [16] and proceed now to experiment with
our implementation of the Delaunay graph, Del graph.

5.2 Experiments with Del graph, the simplex based representation

We have experimented with Del graph on input points uniformly distributed in a cube. To
keep the discussion short in this extended abstract, we sum up some of the statistics that we
obtain in Table 1.

Each column of Table 1 corresponds to an experiment in a different dimension, as shown in
the first line. The second line displays the number of input points (drawn at random from a
uniform distribution in a cube) and the third line indicates the size of the simplex-cache that we
chose. In dimension 5 and 6, we believe that choosing a smaller cache size should not hampers
the timings too much.

Line 4 shows, in line with the measurements of line 12, how quickly the average size of the
conflict zone grows with the dimension.

Line 5 shows the average number of calls to the neighbor(,) procedure during each explo-
ration of the conflict zone. These should be compared with the less than 30 visited simplices
in the localization procedure in 6D. Line 6 shows the average number of candidate vertices for
the completion of the neighboring simplex: this is the average size of the intersection of the
neighbor-lists of d vertices forming a Delaunay (d− 1)-simplex.

Line 7, 8 and 9 show, respectively, in percent with respect to line 5 of the table, the number
of times a reference to a neighbor was readily available in a cached-simplex, the number of times
the neighbor was present in the cache but had to be searched from the list of candidates, and
the number of times the neighbor was not in the cache and had to be computed by sorting the

9

jeudi 5 février 2009

