Journées de Géométrie Algorithmique, January 2009

Proximity of Persistence Modules and their Diagrams

Steve Oudot
\rightarrow joint work with F. Chazal, D. Cohen-Steiner, M. Glisse, L. J. Guibas

Geometrica Group
INRIA Futurs

Gipsa-Lab
INPG

Computer Science Department Stanford University

Topological Persistence (in a nutshell)

\mathbb{X} topological space, $f: \mathbb{X} \rightarrow \mathbb{R}$ function, $k \in \mathbb{Z}$.

Topological Persistence (in a nutshell)

\mathbb{X} topological space, $f: \mathbb{X} \rightarrow \mathbb{R}$ function, $k \in \mathbb{Z}$.
\rightarrow study evolution of k th homology of $f^{-1}((-\infty, \alpha])$ as α spans \mathbb{R}.

Topological Persistence (in a nutshell)

\mathbb{X} topological space, $f: \mathbb{X} \rightarrow \mathbb{R}$ function, $k \in \mathbb{Z}$.
\rightarrow study evolution of k th homology of $f^{-1}((-\infty, \alpha])$ as α spans \mathbb{R}.
\rightarrow finite set of intervals (barcode) encode birth/death of homological features.

Topological Persistence (in a nutshell)

\mathbb{X} topological space, $f: \mathbb{X} \rightarrow \mathbb{R}$ function, $k \in \mathbb{Z}$.
\rightarrow study evolution of k th homology of $f^{-1}((-\infty, \alpha])$ as α spans \mathbb{R}.
\rightarrow finite set of intervals (barcode) encode birth/death of homological features.

Topological Persistence (in a nutshell)

\mathbb{X} topological space, $f: \mathbb{X} \rightarrow \mathbb{R}$ function, $k \in \mathbb{Z}$.
\rightarrow study evolution of k th homology of $f^{-1}((-\infty, \alpha])$ as α spans \mathbb{R}.

Perturbations and Stability Results

Theorem: [Cohen-Steiner, Edelsbrunner, Harer 05]
Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be two tame functions. If f, g are continuous and \mathbb{X} is triangulable, then, $\forall k \in \mathbb{Z}, \mathrm{~d}_{\mathrm{B}}^{\infty}\left(\mathrm{D}_{k} f, \mathrm{D}_{k} g\right) \leq\|f-g\|_{\infty}$.

Perturbations and Stability Results

Theorem: [Cohen-Steiner, Edelsbrunner, Harer 05]
Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be two tame functions. If f, g are continuous and \mathbb{X} is triangulable, then, $\forall k \in \mathbb{Z}, \mathrm{~d}_{\mathrm{B}}^{\infty}\left(\mathrm{D}_{k} f, \mathrm{D}_{k} g\right) \leq\|f-g\|_{\infty}$.

Can these conditions be removed?

Perturbations and Stability Results

Theorem: [Cohen-Steiner, Edelsbrunner, Harer 05]
Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be two tame functions. If f, g are continuous and \mathbb{X} is triangulable, then, $\forall k \in \mathbb{Z}, \mathrm{~d}_{\mathrm{B}}^{\infty}\left(\mathrm{D}_{k} f, \mathrm{D}_{k} g\right) \leq\|f-g\|_{\infty}$.

Outline

- Overview of the proof of [CEH'05] - where continuity and triangulability are needed;
- A new, simple, geometrically-flavored proof of stability with an upper bound of $3\|f-g\|_{\infty}$ on the bottleneck distance;
- Reducing the upper bound from $3\|f-g\|_{\infty}$ to $\|f-g\|_{\infty}$
- interpolating at algebraic level directly.

Outline

- Overview of the proof of [CEH'05] - where continuity and triangulability are needed;
- A new, simple, geometrically-flavored proof of stability with an upper bound of $3\|f-g\|_{\infty}$ on the bottleneck distance;
- Reducing the upper bound from $3\|f-g\|_{\infty}$ to $\|f-g\|_{\infty}$ - interpolating at algebraic level directly.

Proof Overview

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Key observation: $\left\{F_{\alpha}\right\}_{\alpha}$ and $\left\{G_{\alpha}\right\}_{\alpha}$ are ε-interleaved w.r.t. inclusion:

$$
\forall \alpha \in \mathbb{R}, F_{\alpha-\varepsilon} \subseteq G_{\alpha} \subseteq F_{\alpha+\varepsilon}
$$

Proof Overview

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Key observation: $\left\{F_{\alpha}\right\}_{\alpha}$ and $\left\{G_{\alpha}\right\}_{\alpha}$ are ε-interleaved w.r.t. inclusion:

$$
\forall \alpha \in \mathbb{R}, F_{\alpha-\varepsilon} \subseteq G_{\alpha} \subseteq F_{\alpha+\varepsilon}
$$

\rightarrow Intuition: every homological feature that appears/dies at time α in the filtration of f appears/dies at time $\alpha+\varepsilon$ at the latest in the filtration of g, and vice versa.

Proof Overview

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Key observation: $\left\{F_{\alpha}\right\}_{\alpha}$ and $\left\{G_{\alpha}\right\}_{\alpha}$ are ε-interleaved w.r.t. inclusion:
- Bound on Hausdorff distance: $\mathrm{d}_{\mathrm{H}}^{\infty}\left(\mathrm{D}_{k} f, \mathrm{D}_{k} g\right) \leq \varepsilon$
\rightarrow Box Lemma: \forall box $\square, \#\left(\mathrm{D}_{k} f \cap \square\right) \leq \#\left(\mathrm{D}_{k} g \cap \square_{\varepsilon}\right)$

$$
F_{\alpha}^{\beta}=\operatorname{im} H_{k}\left(F_{\alpha}\right) \rightarrow H_{k}\left(F_{\beta}\right)
$$

Proof Overview

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Key observation: $\left\{F_{\alpha}\right\}_{\alpha}$ and $\left\{G_{\alpha}\right\}_{\alpha}$ are ε-interleaved w.r.t. inclusion:
- Bound on Hausdorff distance: $\mathrm{d}_{\mathrm{H}}^{\infty}\left(\mathrm{D}_{k} f, \mathrm{D}_{k} g\right) \leq \varepsilon$
- From Hausdorff to bottleneck: the infinitesimal case:

Let $\delta_{f}=\min \{|a-b|, a, b \operatorname{hcv}$ of f$\}$

Assume that $\varepsilon<\frac{\delta_{f}}{4}$

Box Lemma $\Rightarrow \forall p \in \mathrm{D}_{k} f \backslash \Delta$, $\mu(\{p\})=\#\left(\mathrm{D}_{k} g \cap\{p\}_{\varepsilon}\right)=\#\left(\mathrm{D}_{k} f \cap\{p\}_{2 \varepsilon}\right)$

Proof Overview

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Key observation: $\left\{F_{\alpha}\right\}_{\alpha}$ and $\left\{G_{\alpha}\right\}_{\alpha}$ are ε-interleaved w.r.t. inclusion:
- Bound on Hausdorff distance: $\mathrm{d}_{\mathrm{H}}^{\infty}\left(\mathrm{D}_{k} f, \mathrm{D}_{k} g\right) \leq \varepsilon$
- From Hausdorff to bottleneck: the infinitesimal case:
- Interpolation argument: $\quad \forall s \in[0,1], h_{s}=(1-s) f+s g$

Proof Overview

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Key observation: $\left\{F_{\alpha}\right\}_{\alpha}$ and $\left\{G_{\alpha}\right\}_{\alpha}$ are ε-interleaved w.r.t. inclusion:
- Bound on Hausdorff distance: $\mathrm{d}_{\mathrm{H}}^{\infty}\left(\mathrm{D}_{k} f, \mathrm{D}_{k} g\right) \leq \varepsilon$
- From Hausdorff to bottleneck: the infinitesimal case:
- Interpolation argument: $\forall s \in[0,1], h_{s}=(1-s) f+s g$
$\mathrm{Pb}: h_{s}$ may not be tame

Proof Overview

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Key observation: $\left\{F_{\alpha}\right\}_{\alpha}$ and $\left\{G_{\alpha}\right\}_{\alpha}$ are ε-interleaved w.r.t. inclusion:
- Bound on Hausdorff distance: $\mathrm{d}_{\mathrm{H}}^{\infty}\left(\mathrm{D}_{k} f, \mathrm{D}_{k} g\right) \leq \varepsilon$
- From Hausdorff to bottleneck: the infinitesimal case:
- Interpolation argument: $\forall s \in[0,1], h_{s}=(1-s) f+s g$
$\mathrm{Pb}: h_{s}$ may not be tame
\rightarrow assume \mathbb{X} is triangulable and f, g are C^{0}
$\operatorname{PL}(\mathbb{X})$ is convex, in Tame (\mathbb{X}), and dense in $C^{0}(\mathbb{X})$
\rightarrow build PL interpolations \hat{f}, \hat{g} of f, g
\rightarrow interpolate between \hat{f} and \hat{g}

Outline

- Overview of the proof of [CEH'05] - where continuity and triangulability are needed;
- A new, simple, geometrically-flavored proof of stability with an upper bound of $3\|f-g\|_{\infty}$ on the bottleneck distance;
- Reducing the upper bound from $3\|f-g\|_{\infty}$ to $\|f-g\|_{\infty}$ - interpolating at algebraic level directly.

A Simple Proof

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Key observation:
$F_{0} \subseteq G_{\varepsilon} \subseteq F_{2 \varepsilon} \subseteq \cdots \subseteq G_{(2 n-1) \varepsilon} \subseteq F_{2 n \varepsilon} \subseteq G_{(2 n+1) \varepsilon} \subseteq F_{(2 n+2) \varepsilon} \subseteq \cdots$

A Simple Proof

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Key observation:
$F_{0} \subseteq G_{\varepsilon} \subseteq F_{2 \varepsilon} \subseteq \cdots \subseteq G_{(2 n-1) \varepsilon} \subseteq F_{2 n \varepsilon} \subseteq G_{(2 n+1) \varepsilon} \subseteq F_{(2 n+2) \varepsilon} \subseteq \cdots$
- the filtration $\left\{F_{2 n \varepsilon}\right\}_{n \in \mathbb{Z}}$ is a 2ε-pixelization of $\left\{F_{\alpha}\right\}_{\alpha \in \mathbb{R}}$

A Simple Proof

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Key observation:
$F_{0} \subseteq G_{\varepsilon} \subseteq F_{2 \varepsilon} \subseteq \cdots \subseteq G_{(2 n-1) \varepsilon} \subseteq F_{2 n \varepsilon} \subseteq G_{(2 n+1) \varepsilon} \subseteq F_{(2 n+2) \varepsilon} \subseteq \cdots$
- the filtration $\left\{F_{2 n \varepsilon}\right\}_{n \in \mathbb{Z}}$ is a 2ε-pixelization of $\left\{F_{\alpha}\right\}_{\alpha \in \mathbb{R}}$
- the filtration $\left\{G_{(2 n+1) \varepsilon}\right\}_{n \in \mathbb{Z}}$ is a 2ε-pixelization of $\left\{G_{\alpha}\right\}_{\alpha \in \mathbb{R}}$

A Simple Proof

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Key observation:
$F_{0} \subseteq G_{\varepsilon} \subseteq F_{2 \varepsilon} \subseteq \cdots \subseteq G_{(2 n-1) \varepsilon} \subseteq F_{2 n \varepsilon} \subseteq G_{(2 n+1) \varepsilon} \subseteq F_{(2 n+2) \varepsilon} \subseteq \cdots$
- the filtration $\left\{F_{2 n \varepsilon}\right\}_{n \in \mathbb{Z}}$ is a 2ε-pixelization of $\left\{F_{\alpha}\right\}_{\alpha \in \mathbb{R}}$
- the filtration $\left\{G_{(2 n+1) \varepsilon}\right\}_{n \in \mathbb{Z}}$ is a 2ε-pixelization of $\left\{G_{\alpha}\right\}_{\alpha \in \mathbb{R}}$
- both filtrations are 2ε-pixelizations of $\left\{H_{n \varepsilon}\right\}_{n \in \mathbb{Z}}$, where $H_{n \varepsilon}=\left\{\begin{array}{l}F_{n \varepsilon} \text { if } n \text { is even } \\ G_{n \varepsilon} \text { if } n \text { is odd }\end{array}\right.$

A Simple Proof

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Key observation:
$F_{0} \subseteq G_{\varepsilon} \subseteq F_{2 \varepsilon} \subseteq \cdots \subseteq G_{(2 n-1) \varepsilon} \subseteq F_{2 n \varepsilon} \subseteq G_{(2 n+1) \varepsilon} \subseteq F_{(2 n+2) \varepsilon} \subseteq \cdots$
- the filtration $\left\{F_{2 n \varepsilon}\right\}_{n \in \mathbb{Z}}$ is a 2ε-pixelization of $\left\{F_{\alpha}\right\}_{\alpha \in \mathbb{R}}$
- the filtration $\left\{G_{(2 n+1) \varepsilon}\right\}_{n \in \mathbb{Z}}$ is a 2ε-pixelization of $\left\{G_{\alpha}\right\}_{\alpha \in \mathbb{R}}$
- both filtrations are 2ε-pixelizations of $\left\{H_{n \varepsilon}\right\}_{n \in \mathbb{Z}}$, where $H_{n \varepsilon}=\left\{\begin{array}{l}F_{n \varepsilon} \text { if } n \text { is even } \\ G_{n \varepsilon} \text { if } n \text { is odd }\end{array}\right.$
\rightarrow goal: bound distances between diagrams of functions and pixelizations

A Simple Proof

$$
\begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}
$$

- Pixelizations: \rightarrow effect on persistence barcode/diagram:

A Simple Proof

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Pixelizations: \rightarrow effect on persistence barcode/diagram:

Pixelization map: $\forall \alpha \leq \beta$,

$$
\pi_{2 \varepsilon}(\alpha, \beta)=\left\{\begin{array}{l}
\left(\left\lceil\frac{\alpha}{2 \varepsilon}\right\rceil 2 \varepsilon,\left\lceil\frac{\beta}{2 \varepsilon}\right\rceil 2 \varepsilon\right) \text { if }\left\lceil\frac{\beta}{2 \varepsilon}\right\rceil>\left\lceil\frac{\alpha}{2 \varepsilon}\right\rceil \\
\left(\frac{\alpha+\beta}{2}, \frac{\alpha+\beta}{2}\right) \text { if }\left\lceil\frac{\beta}{2 \varepsilon}\right\rceil=\left\lceil\frac{\alpha}{2 \varepsilon}\right\rceil
\end{array}\right.
$$

Theorem: If $f: \mathbb{X} \rightarrow \mathbb{R}$ is tame, then $\pi_{2 \varepsilon}$ induces a bijection $\mathrm{D}_{k} f \rightarrow \mathrm{D}_{k} f^{2 \varepsilon}$.

$$
\Rightarrow \mathrm{d}_{\mathrm{B}}^{\infty}\left(\mathrm{D}_{k} f, \mathrm{D}_{k} f^{2 \varepsilon}\right) \leq 2 \varepsilon
$$

A Simple Proof

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Pixelizations: \rightarrow effect on persistence barcode/diagram:

Pixelization map: $\forall \alpha \leq \beta$,
$\pi_{2 \varepsilon}(\alpha, \beta)=\left\{\begin{array}{l}\left(\left\lceil\frac{\alpha}{2 \varepsilon}\right\rceil 2 \varepsilon,\left\lceil\left\lceil\frac{\beta}{2 \varepsilon}\right\rceil 2 \varepsilon\right) \text { if }\left\lceil\frac{\beta}{2 \varepsilon}\right\rceil>\left\lceil\frac{\alpha}{2 \varepsilon}\right\rceil\right. \\ \left(\frac{\alpha+\beta}{2}, \frac{\alpha+\beta}{2}\right) \text { if }\left\lceil\frac{\beta}{2 \varepsilon}\right\rceil=\left\lceil\frac{\alpha}{2 \varepsilon}\right\rceil\end{array}\right.$
Theorem: If $f: \mathbb{X} \rightarrow \mathbb{R}$ is tame, then $\pi_{2 \varepsilon}$ induces a bijection $\mathrm{D}_{k} f \rightarrow \mathrm{D}_{k} f^{2 \varepsilon}$.
\rightarrow proof: show that the multiplicities of $\mathrm{D}_{k} f$ and $\mathrm{D}_{k} f^{2 \varepsilon}$ are the same inside each grid cell that does not intersect the diagonal. The case of diagonal cells is trivial.

A Simple Proof

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Back to interleaved filtrations:
$F_{0} \subseteq G_{\varepsilon} \subseteq F_{2 \varepsilon} \subseteq \cdots \subseteq G_{(2 n-1) \varepsilon} \subseteq F_{2 n \varepsilon} \subseteq G_{(2 n+1) \varepsilon} \subseteq F_{(2 n+2) \varepsilon} \subseteq \cdots$
$H_{n \varepsilon}=\left\{\begin{array}{l}F_{n \varepsilon} \text { if } n \text { is even } \\ G_{n \varepsilon} \text { if } n \text { is odd }\end{array} \rightarrow\left(\begin{array}{l}F^{2 \varepsilon} \text { is the } 2 \varepsilon \text {-pixelization of } F \text { and } H \\ G^{2 \varepsilon} \text { is the } 2 \varepsilon \text {-pixelization of } G \text { and } H \text { of phase } \varepsilon\end{array}\right.\right.$

Previous theorem + triangle inequality $\Rightarrow \mathrm{d}_{\mathrm{B}}^{\infty}\left(\mathrm{D}_{k} f, \mathrm{D}_{k} g\right) \leq 8 \varepsilon$

A Simple Proof

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Back to interleaved filtrations:
$F_{0} \subseteq G_{\varepsilon} \subseteq F_{2 \varepsilon} \subseteq \cdots \subseteq G_{(2 n-1) \varepsilon} \subseteq F_{2 n \varepsilon} \subseteq G_{(2 n+1) \varepsilon} \subseteq F_{(2 n+2) \varepsilon} \subseteq \cdots$
$H_{n \varepsilon}=\left\{\begin{array}{l}F_{n \varepsilon} \text { if } n \text { is even } \\ G_{n \varepsilon} \text { if } n \text { is odd }\end{array} \rightarrow\left(\begin{array}{l}F^{2 \varepsilon} \text { is the } 2 \varepsilon \text {-pixelization of } F \text { and } H \\ G^{2 \varepsilon} \text { is the } 2 \varepsilon \text {-pixelization of } G \text { and } H \text { of phase } \varepsilon\end{array}\right.\right.$

Previous theorem + triangle inequality $\Rightarrow \mathrm{d}_{\mathrm{B}}^{\infty}\left(\mathrm{D}_{k} f, \mathrm{D}_{k} g\right) \leq 8 \varepsilon$

Improvement:

A Simple Proof

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Back to interleaved filtrations:
$F_{0} \subseteq G_{\varepsilon} \subseteq F_{2 \varepsilon} \subseteq \cdots \subseteq G_{(2 n-1) \varepsilon} \subseteq F_{2 n \varepsilon} \subseteq G_{(2 n+1) \varepsilon} \subseteq F_{(2 n+2) \varepsilon} \subseteq \cdots$
$H_{n \varepsilon}=\left\{\begin{array}{l}F_{n \varepsilon} \text { if } n \text { is even } \\ G_{n \varepsilon} \text { if } n \text { is odd }\end{array} \rightarrow\left(\begin{array}{l}F^{2 \varepsilon} \text { is the } 2 \varepsilon \text {-pixelization of } F \text { and } H \\ G^{2 \varepsilon} \text { is the } 2 \varepsilon \text {-pixelization of } G \text { and } H \text { of phase } \varepsilon\end{array}\right.\right.$

Previous theorem + triangle inequality $\Rightarrow \mathrm{d}_{\mathrm{B}}^{\infty}\left(\mathrm{D}_{k} f, \mathrm{D}_{k} g\right) \leq 8 \varepsilon$

Improvement:

A Simple Proof

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Back to interleaved filtrations:
$F_{0} \subseteq G_{\varepsilon} \subseteq F_{2 \varepsilon} \subseteq \cdots \subseteq G_{(2 n-1) \varepsilon} \subseteq F_{2 n \varepsilon} \subseteq G_{(2 n+1) \varepsilon} \subseteq F_{(2 n+2) \varepsilon} \subseteq \cdots$
$H_{n \varepsilon}=\left\{\begin{array}{l}F_{n \varepsilon} \text { if } n \text { is even } \\ G_{n \varepsilon} \text { if } n \text { is odd }\end{array} \rightarrow\left(\begin{array}{l}F^{2 \varepsilon} \text { is the } 2 \varepsilon \text {-pixelization of } F \text { and } H \\ G^{2 \varepsilon} \text { is the } 2 \varepsilon \text {-pixelization of } G \text { and } H \text { of phase } \varepsilon\end{array}\right.\right.$

Previous theorem + triangle inequality $\Rightarrow \mathrm{d}_{\mathrm{B}}^{\infty}\left(\mathrm{D}_{k} f, \mathrm{D}_{k} g\right) \leq 8 \varepsilon$

Improvement:

A Simple Proof

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Back to interleaved filtrations:
$F_{0} \subseteq G_{\varepsilon} \subseteq F_{2 \varepsilon} \subseteq \cdots \subseteq G_{(2 n-1) \varepsilon} \subseteq F_{2 n \varepsilon} \subseteq G_{(2 n+1) \varepsilon} \subseteq F_{(2 n+2) \varepsilon} \subseteq \cdots$
$H_{n \varepsilon}=\left\{\begin{array}{l}F_{n \varepsilon} \text { if } n \text { is even } \\ G_{n \varepsilon} \text { if } n \text { is odd }\end{array} \rightarrow\left(\begin{array}{l}F^{2 \varepsilon} \text { is the } 2 \varepsilon \text {-pixelization of } F \text { and } H \\ G^{2 \varepsilon} \text { is the } 2 \varepsilon \text {-pixelization of } G \text { and } H \text { of phase } \varepsilon\end{array}\right.\right.$

Previous theorem + triangle inequality $\Rightarrow \mathrm{d}_{\mathrm{B}}^{\infty}\left(\mathrm{D}_{k} f, \mathrm{D}_{k} g\right) \leq 8 \varepsilon$

Improvement:

A Simple Proof

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Back to interleaved filtrations:
$F_{0} \subseteq G_{\varepsilon} \subseteq F_{2 \varepsilon} \subseteq \cdots \subseteq G_{(2 n-1) \varepsilon} \subseteq F_{2 n \varepsilon} \subseteq G_{(2 n+1) \varepsilon} \subseteq F_{(2 n+2) \varepsilon} \subseteq \cdots$
$H_{n \varepsilon}=\left\{\begin{array}{l}F_{n \varepsilon} \text { if } n \text { is even } \\ G_{n \varepsilon} \text { if } n \text { is odd }\end{array} \rightarrow\left(\begin{array}{l}F^{2 \varepsilon} \text { is the } 2 \varepsilon \text {-pixelization of } F \text { and } H \\ G^{2 \varepsilon} \text { is the } 2 \varepsilon \text {-pixelization of } G \text { and } H \text { of phase } \varepsilon\end{array}\right.\right.$

Previous theorem + triangle inequality $\Rightarrow \mathrm{d}_{\mathrm{B}}^{\infty}\left(\mathrm{D}_{k} f, \mathrm{D}_{k} g\right) \leq 8 \varepsilon$

Improvement:

```
d
```


A Simple Proof

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

- Comments:
- only the fact that F, G are interleaved on a periodic scale $x+\varepsilon \mathbb{Z}$ has been used.
- under this assumption, the bound is tight:

Outline

- Overview of the proof of [CEH'05] - where continuity and triangulability are needed;
- A new, simple, geometrically-flavored proof of stability with an upper bound of $3\|f-g\|_{\infty}$ on the bottleneck distance;
- Reducing the upper bound from $3\|f-g\|_{\infty}$ to $\|f-g\|_{\infty}$
- interpolating at algebraic level directly.

Working at Algebraic Level

$\rightarrow\left(\begin{array}{l}\text { give up functional point of view / work at homology level } \\ \text { rephrase statements and proofs in purely algebraic terms }\end{array}\right.$

Working at Algebraic Level

(Note: all vector spaces are over a same fixed field, omitted in our notations)
A persistence module indexed by \mathbb{R} is a family $\left\{F_{\alpha}\right\}_{\alpha \in \mathbb{R}}$ of vector spaces and a family of linear maps $\left\{f_{\alpha}^{\beta}: F_{\alpha} \rightarrow F_{\beta}\right\}_{\alpha \leq \beta}$ such that $\forall \alpha \leq \beta \leq \gamma$, $f_{\alpha}^{\alpha}=\operatorname{id}_{F_{\alpha}}$ and $f_{\beta}^{\gamma} \circ f_{\alpha}^{\beta}=f_{\alpha}^{\gamma}$.

Weak tameness condition: a persistence module $\mathcal{F}_{\mathbb{R}}=\left(F_{\alpha}, f_{\alpha}^{\beta}\right)$ is 0-tame if rank $f_{\alpha}^{\beta}<+\infty$ for all $\alpha<\beta$.

Working at Algebraic Level

(Note: all vector spaces are over a same fixed field, omitted in our notations)
A persistence module indexed by \mathbb{R} is a family $\left\{F_{\alpha}\right\}_{\alpha \in \mathbb{R}}$ of vector spaces and a family of linear maps $\left\{f_{\alpha}^{\beta}: F_{\alpha} \rightarrow F_{\beta}\right\}_{\alpha \leq \beta}$ such that $\forall \alpha \leq \beta \leq \gamma$, $f_{\alpha}^{\alpha}=\operatorname{id}_{F_{\alpha}}$ and $f_{\beta}^{\gamma} \circ f_{\alpha}^{\beta}=f_{\alpha}^{\gamma}$.

Two persistence modules $\mathcal{F}_{\mathbb{R}}=\left(F_{\alpha}, f_{\alpha}^{\beta}\right)$ and $\mathcal{G}_{\mathbb{R}}=\left(G_{\alpha}, g_{\alpha}^{\beta}\right)$ are ε-interleaved if there exist two families of homomorphisms: $\left\{\phi_{n \varepsilon}: F_{n \varepsilon} \rightarrow G_{(n+1) \varepsilon}\right\}_{n \in 2 \mathbb{Z}}$ and $\left\{\psi_{n \varepsilon}: G_{n \varepsilon} \rightarrow F_{(n+1) \varepsilon}\right\}_{n \in 1+2 \mathbb{Z}}$ that make the following diagram commute:
$\cdots \longrightarrow G_{(2 n-1) \varepsilon} \xrightarrow{\psi_{(2 n-1) \varepsilon}} G_{(2 n+1) \varepsilon} \xrightarrow{\psi(2 n+1) \varepsilon} \cdots$

- proof of 3ε bound still holds (mixed module $\left\{H_{n \varepsilon}\right\}_{n \in \mathbb{Z}}$ defined similarly)

Working at Algebraic Level

(Note: all vector spaces are over a same fixed field, omitted in our notations)
A persistence module indexed by \mathbb{R} is a family $\left\{F_{\alpha}\right\}_{\alpha \in \mathbb{R}}$ of vector spaces and a family of linear maps $\left\{f_{\alpha}^{\beta}: F_{\alpha} \rightarrow F_{\beta}\right\}_{\alpha \leq \beta}$ such that $\forall \alpha \leq \beta \leq \gamma$, $f_{\alpha}^{\alpha}=\operatorname{id}_{F_{\alpha}}$ and $f_{\beta}^{\gamma} \circ f_{\alpha}^{\beta}=f_{\alpha}^{\gamma}$.

Two persistence modules $\mathcal{F}_{\mathbb{R}}=\left(F_{\alpha}, f_{\alpha}^{\beta}\right)$ and $\mathcal{G}_{\mathbb{R}}=\left(G_{\alpha}, g_{\alpha}^{\beta}\right)$ are strongly ε interleaved if \exists two families of homomorphisms: $\left\{\phi_{\alpha}: F_{\alpha} \rightarrow G_{\alpha+\varepsilon}\right\}_{\alpha \in \mathbb{R}}$ and $\left\{\psi_{\alpha}: G_{\alpha} \rightarrow F_{\alpha+\varepsilon}\right\}_{\alpha \in \mathbb{R}}$ that make the following diagrams commute $\forall \alpha \leq \beta$:

Back to the Original Proof

$$
\left\lvert\, \begin{aligned}
& F_{\alpha}:=f^{-1}((-\infty, \alpha]) \\
& G_{\alpha}:=g^{-1}((-\infty, \alpha])
\end{aligned}\right.
$$

Let $f, g: \mathbb{X} \rightarrow \mathbb{R}$ be tame, and let $\varepsilon=\|f-g\|_{\infty}$.

- Key observation: $\left\{F_{\alpha}\right\}_{\alpha}$ and $\left\{G_{\alpha}\right\}_{\alpha}$ are ε-interleaved w.r.t. inclusion:
- Bound on Hausdorff distance: $\mathrm{d}_{\mathrm{H}}^{\infty}\left(\mathrm{D}_{k} f, \mathrm{D}_{k} g\right) \leq \varepsilon$
- From Hausdorff to bottleneck: the infinitesimal case:
- Interpolation argument: $\forall s \in[0,1], h_{s}=(1-s) f+s g$

Interpolation between Persistence Modules

Let $\mathcal{F}_{\mathbb{R}}$ and $\mathcal{G}_{\mathbb{R}}$ be strongly ε-interleaved.

Interpolation between Persistence Modules

Let $\mathcal{F}_{\mathbb{R}}$ and $\mathcal{G}_{\mathbb{R}}$ be strongly ε-interleaved.

- define $\mathcal{H}_{\mathbb{R}}$ as the $\frac{\varepsilon}{2}$-shifted direct sum of $\mathcal{F}_{\mathbb{R}}$ and $\mathcal{G}_{\mathbb{R}}$,

Interpolation between Persistence Modules

Let $\mathcal{F}_{\mathbb{R}}$ and $\mathcal{G}_{\mathbb{R}}$ be strongly ε-interleaved.

- define $\mathcal{H}_{\mathbb{R}}$ as the $\frac{\varepsilon}{2}$-shifted direct sum of $\mathcal{F}_{\mathbb{R}}$ and $\mathcal{G}_{\mathbb{R}}$,
- combine both coordinates when projecting back onto $\mathcal{F}_{\mathbb{R}}$ or $\mathcal{G}_{\mathbb{R}}$,

Interpolation between Persistence Modules

Let $\mathcal{F}_{\mathbb{R}}$ and $\mathcal{G}_{\mathbb{R}}$ be strongly ε-interleaved.

- define $\mathcal{H}_{\mathbb{R}}$ as the $\frac{\varepsilon}{2}$-shifted direct sum of $\mathcal{F}_{\mathbb{R}}$ and $\mathcal{G}_{\mathbb{R}}$,
- combine both coordinates when projecting back onto $\mathcal{F}_{\mathbb{R}}$ or $\mathcal{G}_{\mathbb{R}}$,

Interpolation between Persistence Modules

Let $\mathcal{F}_{\mathbb{R}}$ and $\mathcal{G}_{\mathbb{R}}$ be strongly ε-interleaved.

- define $\mathcal{H}_{\mathbb{R}}$ as the $\frac{\varepsilon}{2}$-shifted direct sum of $\mathcal{F}_{\mathbb{R}}$ and $\mathcal{G}_{\mathbb{R}}$,
- combine both coordinates when projecting back onto $\mathcal{F}_{\mathbb{R}}$ or $\mathcal{G}_{\mathbb{R}}$,
- make trapezoids commute: $\quad \forall \beta \geq \alpha+\varepsilon, \forall(x, y) \in F_{\alpha} \oplus G_{\alpha}$, identify $\left(f_{\alpha}^{\beta}(x)+f_{\alpha+\varepsilon}^{\beta} \circ \psi_{\alpha}(y), 0\right)$ with $\left(f_{\alpha}^{\beta}(x), g_{\alpha}^{\beta}(y)\right)$

Interpolation between Persistence Modules

Let $\mathcal{F}_{\mathbb{R}}$ and $\mathcal{G}_{\mathbb{R}}$ be strongly ε-interleaved.
Quotient persistence module $\left(\tilde{H}_{\alpha}, \tilde{h}_{\alpha}^{\beta}\right)$ is midpoint of $\mathcal{F}_{\mathbb{R}}$ and $\mathcal{G}_{\mathbb{R}}$.

Interpolation between Persistence Modules

Let $\mathcal{F}_{\mathbb{R}}$ and $\mathcal{G}_{\mathbb{R}}$ be strongly ε-interleaved.
Quotient persistence module $\left(\tilde{H}_{\alpha}, \tilde{h}_{\alpha}^{\beta}\right)$ is midpoint of $\mathcal{F}_{\mathbb{R}}$ and $\mathcal{G}_{\mathbb{R}}$.
More generally, we can define any convex combination of $\mathcal{F}_{\mathbb{R}}$ and $\mathcal{G}_{\mathbb{R}}$.

Interpolation between Persistence Modules

Let $\mathcal{F}_{\mathbb{R}}$ and $\mathcal{G}_{\mathbb{R}}$ be strongly ε-interleaved.
Quotient persistence module $\left(\tilde{H}_{\alpha}, \tilde{h}_{\alpha}^{\beta}\right)$ is midpoint of $\mathcal{F}_{\mathbb{R}}$ and $\mathcal{G}_{\mathbb{R}}$.
More generally, we can define any convex combination of $\mathcal{F}_{\mathbb{R}}$ and $\mathcal{G}_{\mathbb{R}}$.
Interpolation argument of [CEH'05] applies straightforwardly.

$$
\Rightarrow \mathrm{d}_{\mathrm{B}}^{\infty}\left(\mathrm{D} \mathcal{F}_{\mathbb{R}}, \mathrm{D} \mathcal{G}_{\mathbb{R}}\right) \leq \varepsilon
$$

Take-Home Message(s)

- Stability is central in topological data analysis and simplification.
- We provide stability results for larger classes of spaces and functions.
- Basic version of our proof is simple and geometrically-flavored.
- Rephrasing of our results in a purely algebraic context enables the comparison of functions defined over different spaces (cf. Primoz's talk).

