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Topological Persistence (in a nutshell)

X

R
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the diagonal has assigned infinite multiplicity
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Topological Persistence (in a nutshell)
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Topological Persistence (in a nutshell)

X

R

X topological space, f : X → R function, k ∈ Z.

→ study evolution of kth homology of f−1((−∞, α]) as α spans R.

∞

Q What if f is slightly perturbed?



Theorem: [Cohen-Steiner, Edelsbrunner, Harer 05]

Let f, g : X → R be two tame functions. If f, g are continuous and X is
triangulable, then, ∀k ∈ Z, d∞B (Dk f,Dk g) ≤ ‖f − g‖∞.
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Perturbations and Stability Results
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Theorem: [Cohen-Steiner, Edelsbrunner, Harer 05]

Let f, g : X → R be two tame functions. If f, g are continuous and X is
triangulable, then, ∀k ∈ Z, d∞B (Dk f,Dk g) ≤ ‖f − g‖∞.

2

Perturbations and Stability Results

Can these conditions be removed?

Can f, g be defined over different spaces X,Y?

X

R

∞



3

Outline

• Overview of the proof of [CEH’05] — where continuity and
triangulability are needed;

• A new, simple, geometrically-flavored proof of stability with
an upper bound of 3‖f − g‖∞ on the bottleneck distance;

• Reducing the upper bound from 3‖f − g‖∞ to ‖f − g‖∞
— interpolating at algebraic level directly.
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Proof Overview

• Key observation: {Fα}α and {Gα}α are ε-interleaved w.r.t. inclusion:

Let f, g : X → R be tame, and let ε = ‖f − g‖∞.

∀α ∈ R, Fα−ε ⊆ Gα ⊆ Fα+ε.

α
α+ ε

Fα := f−1((−∞, α])

Gα := g−1((−∞, α])



→ not enough per se, as the filtrations of
f and g may very well have different com-
patible bases.
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Proof Overview

• Key observation: {Fα}α and {Gα}α are ε-interleaved w.r.t. inclusion:

Let f, g : X → R be tame, and let ε = ‖f − g‖∞.

∀α ∈ R, Fα−ε ⊆ Gα ⊆ Fα+ε.

α
α+ ε

→ Intuition: every homological feature that
appears/dies at time α in the filtration of f
appears/dies at time α+ε at the latest in the
filtration of g, and vice versa.

Fα := f−1((−∞, α])

Gα := g−1((−∞, α])



technical lemma, purely algebraic proof, no need for continuity or triangulability. The diagram opposite gives an algebraic interpretation to the boxes and their relationships through the interleaving. The algebraic arguments involved in the proof will not be used in the rest of the talk.
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Proof Overview

• Key observation: {Fα}α and {Gα}α are ε-interleaved w.r.t. inclusion:

Let f, g : X → R be tame, and let ε = ‖f − g‖∞.

• Bound on Hausdorff distance: d∞H (Dk f,Dk g) ≤ ε

G
d+ε
a−ε G

d+ε
b+ε

G
c−ε
a−ε G

c−ε
b+ε

Fca

Fda

Fcb

Fdb

F
β
α = im Hk(Fα) → Hk(Fβ)

→ Box Lemma: ∀ box �, #(Dk f ∩�) ≤ #(Dk g ∩�ε)

(a, a)

(b, b)

(c, c)

(d, d)

Fα := f−1((−∞, α])

Gα := g−1((−∞, α])



Every point of Dk f \∆ lies at least 2ε away from the diagonal ∆, therefore it is mapped to all the points of Dk g lying within its ε-ball – the number of these points is exactly µ(p). The remaining points of Dk g lie at distance at most ε from Dk f . Since all points of Dk g within ε-balls of off-diagonal points of Dk f have already been mapped, the remaining points of Dk g must lie at most ε away from the diagonal ∆, and are therefore mapped onto it.

Box Lemma ⇒ ∀p ∈ Dk f , µ(p) ≤ #(Dk g ∩ B(p, ε)) ≤ #(Dk f ∩ B∞(p, 2ε)) = µ(p)

The 1
4 -factor ensures that every point of Dk f \∆ is at least 2ε away from the diagonal ∆
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Proof Overview

• Key observation: {Fα}α and {Gα}α are ε-interleaved w.r.t. inclusion:

Let f, g : X → R be tame, and let ε = ‖f − g‖∞.

• Bound on Hausdorff distance: d∞H (Dk f,Dk g) ≤ ε

• From Hausdorff to bottleneck: the infinitesimal case:

Let δf = min{|a− b|, a,b hcv of f}

Assume that ε <
δf
4

Box Lemma ⇒ ∀p ∈ Dk f \∆,
µ({p}) = #(Dk g ∩ {p}ε) = #(Dk f ∩ {p}2ε)

Fα := f−1((−∞, α])

Gα := g−1((−∞, α])



in some sense, points of Dk g that are linked to ∆ are born from the diagonal; points of Dk f that are mapped to ∆ are snapped onto it at some stage s → s′ where hs is very close to h
s′ .

paths taken by the points have lengths of at most ε
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• Key observation: {Fα}α and {Gα}α are ε-interleaved w.r.t. inclusion:

Let f, g : X → R be tame, and let ε = ‖f − g‖∞.

• Bound on Hausdorff distance: d∞H (Dk f,Dk g) ≤ ε

• Interpolation argument:

• From Hausdorff to bottleneck: the infinitesimal case:

∀s ∈ [0, 1], hs = (1− s)f + sg
hs

Fα := f−1((−∞, α])

Gα := g−1((−∞, α])



the space of tame functions on X is not convex — cf. the example of f(x) = x2 , g(x) = inf{(x − 1
n

)2, n ≥ 1} − x2 -¿ h 1
2

= 1
2 inf{(x − 1

n
)2, n ≥ 1}.
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the space of tame functions on X is not convex — cf. the example of f(x) = x2 , g(x) = inf{(x − 1
n

)2, n ≥ 1} − x2 -¿ h 1
2

= 1
2 inf{(x − 1

n
)2, n ≥ 1}.

draw f, g and their interpolations f̂, ĝ on the blackboard
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Proof Overview

• Key observation: {Fα}α and {Gα}α are ε-interleaved w.r.t. inclusion:

Let f, g : X → R be tame, and let ε = ‖f − g‖∞.

• Bound on Hausdorff distance: d∞H (Dk f,Dk g) ≤ ε

• Interpolation argument:

• From Hausdorff to bottleneck: the infinitesimal case:

∀s ∈ [0, 1], hs = (1− s)f + sg

Pb: hs may not be tame
Tame

C0

→ assume X is triangulable and f, g are C0

PL(X) is convex, in Tame(X), and dense in C0(X)

PL→ build PL interpolations f̂ , ĝ of f, g

→ interpolate between f̂ and ĝ

Fα := f−1((−∞, α])

Gα := g−1((−∞, α])
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Outline

• Overview of the proof of [CEH’05] — where continuity and
triangulability are needed;

• A new, simple, geometrically-flavored proof of stability with
an upper bound of 3‖f − g‖∞ on the bottleneck distance;
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A Simple Proof

Let f, g : X → R be tame, and let ε = ‖f − g‖∞.

• Key observation:

F0 ⊆ Gε ⊆ F2ε ⊆ · · · ⊆ G(2n−1)ε ⊆ F2nε ⊆ G(2n+1)ε ⊆ F(2n+2)ε ⊆ · · ·

Fα := f−1((−∞, α])

Gα := g−1((−∞, α])



i.e. it is a sequence of snapshots of the sub-level set filtration of f , taken preiodically at a period of 2ε

6

A Simple Proof

Let f, g : X → R be tame, and let ε = ‖f − g‖∞.

• Key observation:

F0 ⊆ Gε ⊆ F2ε ⊆ · · · ⊆ G(2n−1)ε ⊆ F2nε ⊆ G(2n+1)ε ⊆ F(2n+2)ε ⊆ · · ·

- the filtration {F2nε}n∈Z is a 2ε-pixelization of {Fα}α∈R

Fα := f−1((−∞, α])

Gα := g−1((−∞, α])



i.e. it is a sequence of snapshots of the sub-level set filtration of f , taken preiodically at a period of 2ε

6

A Simple Proof

Let f, g : X → R be tame, and let ε = ‖f − g‖∞.

• Key observation:

F0 ⊆ Gε ⊆ F2ε ⊆ · · · ⊆ G(2n−1)ε ⊆ F2nε ⊆ G(2n+1)ε ⊆ F(2n+2)ε ⊆ · · ·

- the filtration {F2nε}n∈Z is a 2ε-pixelization of {Fα}α∈R

- the filtration {G(2n+1)ε}n∈Z is a 2ε-pixelization of {Gα}α∈R

Fα := f−1((−∞, α])

Gα := g−1((−∞, α])



i.e. it is a sequence of snapshots of the sub-level set filtration of f , taken preiodically at a period of 2ε

6

A Simple Proof

Let f, g : X → R be tame, and let ε = ‖f − g‖∞.

• Key observation:

F0 ⊆ Gε ⊆ F2ε ⊆ · · · ⊆ G(2n−1)ε ⊆ F2nε ⊆ G(2n+1)ε ⊆ F(2n+2)ε ⊆ · · ·

- the filtration {F2nε}n∈Z is a 2ε-pixelization of {Fα}α∈R

- the filtration {G(2n+1)ε}n∈Z is a 2ε-pixelization of {Gα}α∈R

- both filtrations are 2ε-pixelizations of {Hnε}n∈Z, where Hnε =

{
Fnε if n is even
Gnε if n is odd

Fα := f−1((−∞, α])

Gα := g−1((−∞, α])



i.e. it is a sequence of snapshots of the sub-level set filtration of f , taken preiodically at a period of 2ε

6

A Simple Proof

Let f, g : X → R be tame, and let ε = ‖f − g‖∞.

• Key observation:

F0 ⊆ Gε ⊆ F2ε ⊆ · · · ⊆ G(2n−1)ε ⊆ F2nε ⊆ G(2n+1)ε ⊆ F(2n+2)ε ⊆ · · ·

- the filtration {F2nε}n∈Z is a 2ε-pixelization of {Fα}α∈R

- the filtration {G(2n+1)ε}n∈Z is a 2ε-pixelization of {Gα}α∈R

- both filtrations are 2ε-pixelizations of {Hnε}n∈Z, where Hnε =

{
Fnε if n is even
Gnε if n is odd

→ goal: bound distances between diagrams of functions and pixelizations

Fα := f−1((−∞, α])

Gα := g−1((−∞, α])
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A Simple Proof

• Pixelizations:

0

2ε

4ε

6ε

8ε

10ε

12ε

14ε

16ε

18ε

X

→ effect on persistence barcode/diagram:

0 2ε 4ε 8ε 16ε

Fα := f−1((−∞, α])

Gα := g−1((−∞, α])

R
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A Simple Proof

• Pixelizations: → effect on persistence barcode/diagram:

0 2ε 4ε 8ε 16ε

Pixelization map: ∀α ≤ β,

π2ε(α, β) =


(d α

2ε
e2ε, d β

2ε
e2ε) if d β

2ε
e > d α

2ε
e

(α+β
2
, α+β

2
) if d β

2ε
e = d α

2ε
e

Theorem: If f : X → R is tame, then
π2ε induces a bijection Dk f → Dk f2ε.

⇒ d∞B (Dk f,Dk f2ε) ≤ 2ε

Fα := f−1((−∞, α])

Gα := g−1((−∞, α])
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A Simple Proof

• Pixelizations: → effect on persistence barcode/diagram:

0 2ε 4ε 8ε 16ε

Pixelization map: ∀α ≤ β,

π2ε(α, β) =


(d α

2ε
e2ε, d β

2ε
e2ε) if d β

2ε
e > d α

2ε
e

(α+β
2
, α+β

2
) if d β

2ε
e = d α

2ε
e

Theorem: If f : X → R is tame, then
π2ε induces a bijection Dk f → Dk f2ε.

→ proof: show that the multiplicities of Dk f
and Dk f2ε are the same inside each grid cell
that does not intersect the diagonal.

(3)

(1)
(1)

(1)

The case of diagonal cells is trivial.

Fα := f−1((−∞, α])

Gα := g−1((−∞, α])
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A Simple Proof

Let f, g : X → R be tame, and let ε = ‖f − g‖∞.

F0 ⊆ Gε ⊆ F2ε ⊆ · · · ⊆ G(2n−1)ε ⊆ F2nε ⊆ G(2n+1)ε ⊆ F(2n+2)ε ⊆ · · ·

• Back to interleaved filtrations:

Hnε =

{
Fnε if n is even
Gnε if n is odd

→
F 2ε is the 2ε-pixelization of F and H

G2ε is the 2ε-pixelization of G and H of phase ε

Previous theorem + triangle inequality ⇒ d∞B (Dk f,Dk g) ≤ 8ε

Fα := f−1((−∞, α])

Gα := g−1((−∞, α])
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A Simple Proof

Let f, g : X → R be tame, and let ε = ‖f − g‖∞.

F0 ⊆ Gε ⊆ F2ε ⊆ · · · ⊆ G(2n−1)ε ⊆ F2nε ⊆ G(2n+1)ε ⊆ F(2n+2)ε ⊆ · · ·

• Back to interleaved filtrations:

Hnε =

{
Fnε if n is even
Gnε if n is odd

→
F 2ε is the 2ε-pixelization of F and H

G2ε is the 2ε-pixelization of G and H of phase ε

Previous theorem + triangle inequality ⇒ d∞B (Dk f,Dk g) ≤ 8ε

Improvement: d∞B (Dk f,Dk g) ≤ 3ε

Fα := f−1((−∞, α])

Gα := g−1((−∞, α])



this is called weakly ε-interleaved

6

A Simple Proof

• Comments:

Let f, g : X → R be tame, and let ε = ‖f − g‖∞.

- only the fact that F,G are interleaved on a periodic scale x+ εZ has been used.

- under this assumption, the bound is tight:

0
δ

−2ε −ε 3ε
δ

F

G

u

v

u

v

−3ε 2εε

Fα := f−1((−∞, α])

Gα := g−1((−∞, α])
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Outline

• Overview of the proof of [CEH’05] — where continuity and
triangulability are needed;

• A new, simple, geometrically-flavored proof of stability with
an upper bound of 3‖f − g‖∞ on the bottleneck distance;

• Reducing the upper bound from 3‖f − g‖∞ to ‖f − g‖∞
— interpolating at algebraic level directly.
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Working at Algebraic Level

give up functional point of view / work at homology level

rephrase statements and proofs in purely algebraic terms
→

Fα ↪→ Gα+ε ↪→ Fα+2ε ↪→ Gα+3ε ↪→ · · ·

Hk(Fα) → Hk(Gα+ε) → Hk(Fα+2ε) → Hk(Gα+3ε) → · · ·

(kth homology level)
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Working at Algebraic Level

A persistence module indexed by R is a family {Fα}α∈R of vector spaces
and a family of linear maps {fβ

α : Fα → Fβ}α≤β such that ∀α ≤ β ≤ γ,
fα

α = idFα and fγ
β ◦ f

β
α = fγ

α .

Weak tameness condition: a persistence module FR = (Fα, f
β
α ) is 0-tame if

rank fβ
α < +∞ for all α < β.

(Note: all vector spaces are over a same fixed field, omitted in our notations)



- the proof first relates the diagram of F to the one of its 2ε-pixelization → involves only rank arguments, which hold the same. - then, the proof introduces the mixed filtration H (defined the same here) and applies the above pixelization result.
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Working at Algebraic Level

A persistence module indexed by R is a family {Fα}α∈R of vector spaces
and a family of linear maps {fβ

α : Fα → Fβ}α≤β such that ∀α ≤ β ≤ γ,
fα

α = idFα and fγ
β ◦ f

β
α = fγ

α .

Two persistence modules FR = (Fα, f
β
α ) and GR = (Gα, g

β
α) are ε-interleaved

if there exist two families of homomorphisms: {φnε : Fnε → G(n+1)ε}n∈2Z and
{ψnε : Gnε → F(n+1)ε}n∈1+2Z that make the following diagram commute:

φ2nε
ψ(2n−1)ε ψ(2n+1)ε

- proof of 3ε bound still holds (mixed module {Hnε}n∈Z defined similarly)

· · · // F2nε

''PPPPPPP
// F(2n+2)ε // · · ·

· · · // G(2n−1)ε

77nnnnnnn
// G(2n+1)ε

66llllll
// · · ·

(Note: all vector spaces are over a same fixed field, omitted in our notations)
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Working at Algebraic Level

A persistence module indexed by R is a family {Fα}α∈R of vector spaces
and a family of linear maps {fβ

α : Fα → Fβ}α≤β such that ∀α ≤ β ≤ γ,
fα

α = idFα and fγ
β ◦ f

β
α = fγ

α .

Two persistence modules FR = (Fα, f
β
α ) and GR = (Gα, g

β
α) are strongly ε-

interleaved if ∃ two families of homomorphisms: {φα : Fα → Gα+ε}α∈R and
{ψα : Gα → Fα+ε}α∈R that make the following diagrams commute ∀α ≤ β:

φα ψβ

Fα−ε

&&MMMMMM
// Fβ+ε

Gα
// Gβ

88qqqqqq

Fα+ε
// Fβ+ε

Gα
//

88qqqqqq
Gβ

77ppppppp

Fα
// Fβ

&&MMMMMM

Gα−ε

88qqqqqq
// Gβ+ε

Fα
//

&&MMMMMM Fβ

''OOOOOOO

Gα+ε
// Gβ+ε

ψα

ψβ

ψα φβ
φβ

φα

(Note: all vector spaces are over a same fixed field, omitted in our notations)



the proof was purely algebraic until the last part (interpolation)

Idea: reproduce the flow of the proof of [CEH’05] at algebraic level directly

in some sense, points of Dk g that are linked to ∆ are born from the diagonal; points of Dk f that are mapped to ∆ are snapped onto it at some stage s → s′ where hs is very close to h
s′ .

paths taken by the points have lengths of at most ε
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Back to the Original Proof

• Key observation: {Fα}α and {Gα}α are ε-interleaved w.r.t. inclusion:

Let f, g : X → R be tame, and let ε = ‖f − g‖∞.

• Bound on Hausdorff distance: d∞H (Dk f,Dk g) ≤ ε

• Interpolation argument:

• From Hausdorff to bottleneck: the infinitesimal case:

∀s ∈ [0, 1], hs = (1− s)f + sg
hs

Fα := f−1((−∞, α])

Gα := g−1((−∞, α])



10

Interpolation between Persistence Modules

Fα
//

##GG
GG

GG
GG

G Fα+ε // Fβ

##GG
GG

GG
GG

G
// Fβ+ε

Hα+ε/2 //

::uuuuuuuuu

$$IIIIIIIII
Hβ+ε/2

::uuuuuuuuu

$$IIIIIIIII

Gα

;;wwwwwwwww
// Gα+ε // Gβ

;;xxxxxxxxx
// Gβ+ε

Let FR and GR be strongly ε-interleaved.

φα ψα φβ ψβ
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Interpolation between Persistence Modules

Fα
//

##GG
GG

GG
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$$IIIIIIIII

Gα
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// Gα+ε // Gβ
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// Gβ+ε

Let FR and GR be strongly ε-interleaved.

- define HR as the ε
2
-shifted direct sum of FR and GR,

Fα ⊕Gα = = Fβ ⊕Gβ
h
β+ε/2
α+ε/2 = (fβα, g

β
α)
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Let FR and GR be strongly ε-interleaved.

- define HR as the ε
2
-shifted direct sum of FR and GR,

- combine both coordinates when projecting back onto FR or GR,

Fα ⊕Gα = = Fβ ⊕Gβ
h
β+ε/2
α+ε/2 = (fβα, g

β
α)

(fαα , 0)

(0, gαα) φα ⊕ gα+ε
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fα+ε
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β
, 0)

(0, gβ
β

) φβ ⊕ g
β+ε
β

f
β+ε
β

⊕ ψβ
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Let FR and GR be strongly ε-interleaved.

- define HR as the ε
2
-shifted direct sum of FR and GR,

- combine both coordinates when projecting back onto FR or GR,

- make trapezoids commute:

identify (fβ
α (x) + fβ
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α (x), gβ
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α

fα+ε
α ⊕ ψα (fβ

β
, 0)
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Hβ+ε/2
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Gα

;;wwwwwwwww
// Gα+ε // Gβ

;;xxxxxxxxx
// Gβ+ε

Let FR and GR be strongly ε-interleaved.

Quotient persistence module (H̃α, h̃β
α) is midpoint of FR and GR.

More generally, we can define any convex combination of FR and GR.

Interpolation argument of [CEH’05] applies straightforwardly.

⇒ d∞B (D FR,D GR) ≤ ε

∼ ∼h̃
β+ε/2
α+ε/2
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• Stability is central in topological data analysis and simplification.

• We provide stability results for larger classes of spaces and functions.

• Basic version of our proof is simple and geometrically-flavored.

• Rephrasing of our results in a purely algebraic context enables the
comparison of functions defined over different spaces (cf. Primoz’s talk).


