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Topological Persistence (in a nutshell)

X topological space, f : X — R function, k € Z.
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— study evolution of kth homology of f~'((—o0, a]) as a spans R.
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Topological Persistence (in a nutshell)

X topological space, f : X — R function, k € Z.

— study evolution of kth homology of f~'((—o0, a]) as a spans R.

— finite set of intervals (barcode) encode birth /death of homological features.
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Topological Persistence (in a nutshell)

X topological space, f : X — R function, k € Z.

— study evolution of kth homology of f~'((—o0, a]) as a spans R.

— finite set of intervals (barcode) encode birth /death of homological features.




Topological Persistence (in a nutshell)

X topological space, f : X — R function, k € Z.

— study evolution of kth homology of f~'((—o0, a]) as a spans R.

RA Q What if f is slightly perturbed?

A Y



Perturbations and Stability Results

Theorem: [Cohen-Steiner, Edelsbrunner, Harer 05]
Let f,g : X — R be two tame functions. If f,g are continuous and X is

triangulable, then, Vk € Z, dg’(Dx f, D g9) < ||f — 9|lco-
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Perturbations and Stability Results

Theorem: [Cohen-Steiner, Edelsbrunner, Harer 05]

Let f,g : X — R be two tame functions. (If f, g are continuous and X is

triangulablg, then, Vk € Z, dg’ (D f,Dx 9) < ||f — 9|0

\ Can these conditions be removed?
R A Can f, g be defined over different spaces X, Y7
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Outline

e Overview of the proof of [CEH'05] — where continuity and
triangulability are needed;

e A new, simple, geometrically-flavored proof of stability with
an upper bound of 3||f — g||oc on the bottleneck distance;

e Reducing the upper bound from 3||f — g||sc to ||f — 9|oo
— Interpolating at algebraic level directly.
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e Reducing the upper bound from 3||f — g/ to || f — g9]/eo
— Interpolating at algebraic level directly.



Proof Overview Fooi= £ ((—o00, )

Let f,g: X — R be tame, and let € = || f — g||c.

e Key observation: {F, }, and {G,}. are e-interleaved w.r.t. inclusion:

Yo - R, Fa—g Q Ga g Fa—l—g.




Proof Overview o

Let f,g: X — R be tame, and let € = || f — g||c.

e Key observation: {F, }, and {G,}. are e-interleaved w.r.t. inclusion:

Yo - R, Fa—g Q Ga g Fa—l—g.

— Intuition: every homological feature that
appears/dies at time « in the filtration of f
appears/dies at time o+ € at the latest in the
filtration of g, and vice versa.

o+ € N




Proof Overview Fo = (=00, al)

Let f,g: X — R be tame, and let ¢ = || f — ¢g||co.

e Key observation: {F,}, and {G,}, are e-interleaved w.r.t. inclusion:

e Bound on Hausdorff distance: diy (D f,Dg g) < ¢

— Box Lemma: V box [, #(Dy fNU) < #(Dy g N L)

c—¢& c—e
Ga—s > Gb—|—&:

F§ =im Hy(Fo) — Hy(Fg)




Proof Overview o

Let f,g: X — R be tame, and let ¢ = || f — ¢g||co.

e Key observation: {F,}, and {G,}, are e-interleaved w.r.t. inclusion:
e Bound on Hausdorff distance: diy (D f,Dg g) < ¢

e From Hausdorff to bottleneck: the infinitesimal case:

Let 6 = min{|a — b|, a,b hcv of f}

o)
Assume that e < Tf

Box Lemma = Vp € Dy f \ A,
pn({pr}) = #(Dr gN{p}te) = #(Dr fN{p}2e)




Proof Overview o

Let f,g: X — R be tame, and let ¢ = || f — ¢g||co.

e Key observation: {F,}, and {G,}, are e-interleaved w.r.t. inclusion:
e Bound on Hausdorff distance: diy (D f,Dg g) < ¢

e From Hausdorff to bottleneck: the infinitesimal case:

e Interpolation argument: Vs c[0,1], hs = (1 — s)f + sg
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Proof Overview Fooi= £ ((—o00, )

Let f,g: X — R be tame, and let € = || f — g||c.

e Key observation: {F,}, and {G,}. are e-interleaved w.r.t. inclusion:
e Bound on Hausdorff distance: diy (D f,Dg g) < ¢

e From Hausdorff to bottleneck: the infinitesimal case:

e Interpolation argument: Vs c[0,1], hs = (1 —s)f + sg

Tame
Pb: hs may not be tame

— assume X is triangulable and f, g are C°
PL(X) is convex, in Tame(X), and dense in C°(X)

— build PL interpolations f,g of f,g

— Interpolate between f and g



Outline

e Overview of the proof of [CEH'05] — where continuity and
triangulability are needed:;

e A new, simple, geometrically-flavored proof of stability with
an upper bound of 3||f — g||cc on the bottleneck distance;

e Reducing the upper bound from 3||f — g/ to || f — g9]/eo
— Interpolating at algebraic level directly.



A Simple Proof

Let f,g: X — R be tame, and let € = || f — g||c.

e Key observation:

FQ Q Gs g F2€ g .o g G(zn_l)g g F2n5 C G(Zn—|—1)€

CF(
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e Key observation:
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- the filtration {Fane tnez is a 2e-pixelization of {Fy }acr
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Let f,g: X — R be tame, and let € = || f — g||c.

e Key observation:

FO g Gs g F2€ Q s g G(Qn—l)z—: g F2n€ g G(Qn—|—1)€
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- the filtration {G (2,,41): fnez is a 2e-pixelization of {Ga }acr
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e Key observation:
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- both filtrations are 2e-pixelizations of { H,,: },,cz, where H,,- = { Fne 1f 1 is even

Gpe If nis odd



A Simple Proof Fo = £ ((—o0,a])

Let f,g: X — R be tame, and let € = || f — g||c.

e Key observation:

Fo CG: CFo ©--- CGran1)e © Fone € Ganr1ye € Flang2)e € -

- the filtration {Fane tnez is a 2e-pixelization of {Fy }acr

- the filtration {G (2,,41): fnez is a 2e-pixelization of {Ga }acr

- both filtrations are 2e-pixelizations of { H,,: },,cz, where H,,- = { Fne 1f 1 is even

Gpe If nis odd

— goal: bound distances between diagrams of functions and pixelizations



A Simple Proof

e Pixelizations: — effect on persistence barcode/diagram:

L8 I

N R B S A B 16

14¢

12¢

10e

8e

6el.\

4e

2¢e




A Simple Proof Fo = (=00, a])

e Pixelizations: — effect on persistence barcode/diagram:

Pixelization map: Va < 3,

SEREEEEE (126 T£120) T4 > 12
— 1 moe(a, B) = 4

(8, By i (2] =[]

Theorem: |f f : X — R is tame, then
Toe induces a bijection D, f — Dy, 4.

= dg (Dk f, Dy f%°) < 2¢




A Simple Proof |,

e Pixelizations: — effect on persistence barcode/diagram:

Pixelization map: Va < 3,

—_ (8120, [£126) if [£] > [

o me(0, ) = ¢
L (235, 2R if [2] = T3]

Theorem: |f f : X — R is tame, then
Toe induces a bijection D, f — Dy, 4.

— proof: show that the multiplicities of Dy f
and Dy f?% are the same inside each grid cell
that does not intersect the diagonal.

. ®(3)
The case of diagonal cells is trivial. : (})®




A Simple Proof Fo = £ ((—o0,a])

Let f,g: X — R be tame, and let € = || f — g||c.

e Back to interleaved filtrations:

Fo CG: CFo ©--- CGran1)e © Fone € Ganr1ye € Flang2)e € -

I { F,. if n is even < F?¢ is the 2e-pixelization of F and H
ne — . . —
) Gne if nis odd G2 is the 2e-pixelization of G and H of phase ¢

Previous theorem + triangle inequality = dg°(Dg f,Dg g) < 8¢
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A Simple Proof

Let f,g: X — R be tame, and let € = || f — g||c.

e Back to interleaved filtrations:

Fo CG: CFo ©--- CGran1)e © Fone € Ganr1ye € Flang2)e € -

I { F,. if n is even < F?¢ is the 2e-pixelization of F and H
ne — . . —
) Gne if nis odd G2 is the 2e-pixelization of G and H of phase ¢

Previous theorem + triangle inequality = dg°(Dg f,Dg g) < 8¢

Improvement: |dZ (Dg f,Dg g) < 3¢ o> o




A Simple Proof

Let f,g: X — R be tame, and let € = || f — g||c.

e Comments:

- only the fact that F', G are interleaved on a periodic scale x + 7 has been used.

- under this assumption, the bound is tight:

—3e —2¢e —& 0 g 2e 3
! ! ! a ! ! =
o . . . . . . _
F é 5 5
Ue >
G 5 i
’UO >




Outline

e Overview of the proof of [CEH'05] — where continuity and
triangulability are needed:;

e A new, simple, geometrically-flavored proof of stability with
an upper bound of 3||f — g||loc on the bottleneck distance;

e Reducing the upper bound from 3||f — g||oo to || f — gl|eo
— Interpolating at algebraic level directly.



Working at Algebraic Level

give up functional point of view / work at homology level

— . .
rephrase statements and proofs in purely algebraic terms

Facﬁga—kec_)Fa—l—Qec_)Ga—l—Sscﬁ"'

é (kth homology level)

Hk(Fa) — Hk(Ga+g) — Hk(Fa—l—Qs) — Hk(Ga+35) — 5 ..



Working at Algebraic Level

(Note: all vector spaces are over a same fixed field, omitted in our notations)

A persistence module indexed by R is a family {F,}.cr of vector spaces
and a family of linear maps {f? : F, — Fs}a<p such that Va < 8 < 7,

f& =idr, and fJo f2 = f2.

Weak tameness condition: a persistence module Fr = (Fy, f?) is 0-tame if
rank f° < +oo for all a < 5.



Working at Algebraic Level

(Note: all vector spaces are over a same fixed field, omitted in our notations)

A persistence module indexed by R is a family {F,}.cr of vector spaces
and a family of linear maps {f? : F, — Fs}a<p such that Va < 8 < 7,

f& =idr, and fJo f2 = f2.

Two persistence modules Fr = (F., f7) and Gr = (G, ¢4) are e-interleaved
if there exist two families of homomorphisms: {¢ne : Frie — G(n41)e fne2z and
{¥ne : Gne = F(n41)e fne1+2z that make the following diagram commute:

> Fone > Flony2)e — -
/ \%
Y(2n—1)e %4—1)5
S G(Zn—l)e > G(Zn—l—l)e =

- proof of 3¢ bound still holds (mixed module { H,,- },cz defined similarly)



Working at Algebraic Level

(Note: all vector spaces are over a same fixed field, omitted in our notations)

A persistence module indexed by R is a family {F,}.cr of vector spaces
and a family of linear maps {f? : F, — Fs}a<p such that Va < 8 < 7,

f& =idr, and fJo f2 = f2.

Two persistence modules Fr = (Fa, f7) and Gz = (Ga, g2) are strongly e-
interleaved if 3 two families of homomorphisms: {¢a : Foo — Ga+e}acr and
{Va : Go, — Foqtetacr that make the following diagrams commute Va < g3

Fo_c > Fﬁ—l—e a+€ - FB—I—&
G, ——Gp > (i
F, —— Fp > [y

Ga—e > Gﬁ—i—e a—l—e — Gﬁ—l—s




Back to the Original Proof

Let f,g: X — R be tame, and let ¢ = || f — ¢g||co.

Fo 1= f_l((_ooa o)
Go =g " ((—00, )

e Key observation: {F,}, and {G,}, are e-interleaved w.r.t. inclusion:

e Bound on Hausdorff distance: diy (D f,Dg g) < ¢

e From Hausdorff to bottleneck: the infinitesimal case:

e Interpolation argument: Vs c[0,1], hs = (1 — s)f + sg
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Interpolation between Persistence Modules

Let Fr and Gr be strongly e-interleaved.

Fa >Fa_|_€ HF@ >FB‘|‘€

Pa Yo g  Yp

10



Interpolation between Persistence Modules

Let Fr and Gr be strongly e-interleaved.

- define Hr as the 5-shifted direct sum of Fr and Gg,

> Fo4e — Iy > g,

Y

I e = (8, 98 i B
o o a+te/2 = HB+e/2 _Fﬁ@Gﬁ
Ga => Ga-|_5 — G/3_|_€

10



Interpolation between Persistence Modules

Let Fr and Gr be strongly e-interleaved.

- define Hr as the 5-shifted direct sum of Fr and Gg,

- combine both coordinates when projecting back onto Fgr or g,

F,, > Fo4e — Iy > g,

(ffm 3+€@¢a (fgx fg+€@¢5
= /2

h - — (fgvgg)
Fo © Ga :Ha—l—e/Q — >H5-|—8/2 :FB@GB
(QV a D Qgﬁ+€ (0, Qg) 5 D gg—l—e

10



Interpolation between Persistence Modules

Let Fr and Gr be strongly e-interleaved.

- define Hr as the 5-shifted direct sum of Fr and Gg,

- combine both coordinates when projecting back onto Fgr or g,

> Fote HFQ > g,
”ND/L@%‘ . \D%s@w
hﬁ+€/2 (f a ga)
F @GCX—HO&—I—e/Q ate/2 >H6_|_8/2 _FBEBGB
> Gg4e

10



Interpolation between Persistence Modules

Let Fr and Gr be strongly e-interleaved.

- define 'Hg as the s-shifted direct sum of Fr and Gg,
- combine both coordinates when projecting back onto Fgr or g,

- make trapezoids commute: V3 > a+e¢, V(z,y) € Fo @ Ga,

identify (f4 () + f4, . 0 ¥a(y),0) with (£§(x), g4 (1))

> Fo4e — Iy > g,
fOND/L@%‘ \D%s@w
hﬁ+€/2 (f a ga)
F @GCX—HO&—I—e/Q ate/2 >H6_|_8/2 _FBEBGB
> Gg4e

10



Interpolation between Persistence Modules

Let Fr and Gr be strongly e-interleaved.

Quotient persistence module (H,, ng) is midpoint of Fr and Gg.

> Fote H Fg > g,
\ / ZB+e/2 \ /
a—|—€/2 “ate/2 > Hﬁ—|—8/2
> Ggye

10



Interpolation between Persistence Modules

Let Fr and Gr be strongly e-interleaved.
Quotient persistence module (H,, ﬁg) is midpoint of Fr and Gg.

More generally, we can define any convex combination of Fr and Gg.

> Fote H Fg > g,
\ / - Bte/2 \ /
a—|—€/2 Pt/ > H6—|—8/2
> oz—I—e — 5 > G5—|—€
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Interpolation between Persistence Modules

Let Fr and Gr be strongly e-interleaved.
Quotient persistence module (Hy,, h?) is midpoint of Fr and Gg.

More generally, we can define any convex combination of Fr and Gg.
Interpolation argument of [CEH’'05] applies straightforwardly.
— d%O(D fR,D QR) < e

> Fote H Fg > g ¢
\ / - Bte/2 \ /
a—|—€/2 Pt/ > H6—|—8/2
Gate — Gp > Ggye

10



Take-Home Message(s)

e Stability is central in topological data analysis and simplification.
e \We provide stability results for larger classes of spaces and functions.
e Basic version of our proof is simple and geometrically-flavored.

e Rephrasing of our results in a purely algebraic context enables the
comparison of functions defined over different spaces (cf. Primoz’s talk).
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