

Topology in the 21st Century

Vin de Silva Pomona College

1

Topology

What is topology?

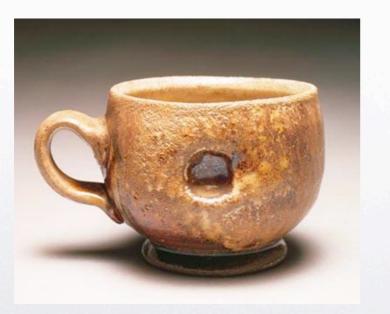
Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

Tuesday, January 27, 2009

What is topology?

It is the branch of mathematics which does not distinguish between a teacup and a bagel

one popular answer



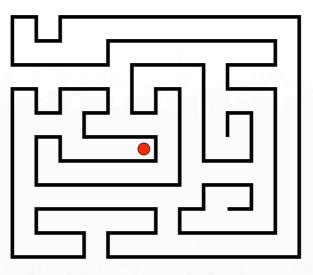
Vin de Silva http://pages.pomona.edu/~vds04747/

Topology gives answers to qualitative questions

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

Tuesday, January 27, 2009

Topology gives answers to qualitative questions



Vin de Silva http://pages.pomona.edu/~vds04747/

Topology gives answers to qualitative questions

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

Tuesday, January 27, 2009

Topology gives answers to qualitative questions

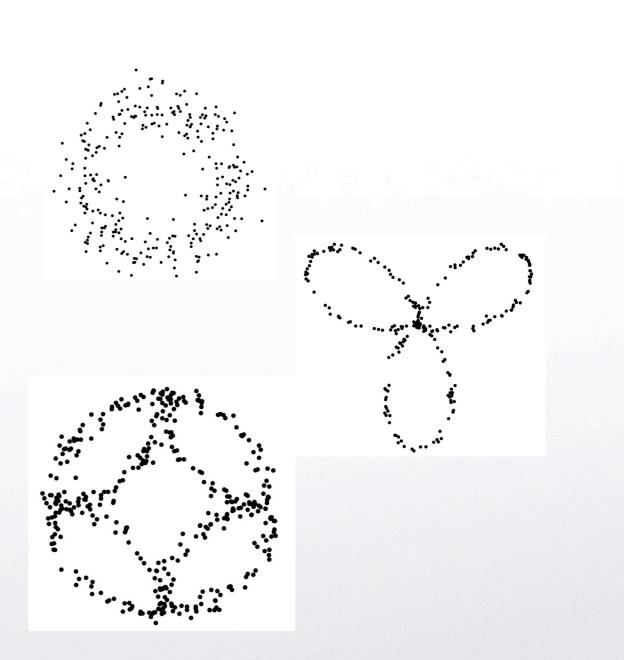
Vin de Silva http://pages.pomona.edu/~vds04747/

Topology gives answers to qualitative questions

Vin de Silva http://pages.pomona.edu/~vds04747/

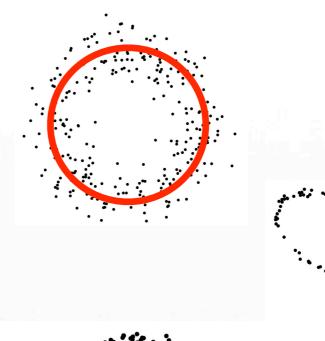
Point-cloud topology

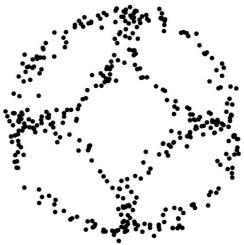
- Topological structure in statistical data
 - density estimation and modality
 - approximation by simplicial complexes
- Assume data have been sampled from some unknown space
 - can we measure topological features of the hidden space?
 - can we assign confidence values to these measurements?
- What does "topology" mean for a cloud of data points?
 - persistent homology
 - spectral theory for point clouds



Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

- Topological structure in statistical data
 - density estimation and modality
 - approximation by simplicial complexes
- Assume data have been sampled from some unknown space
 - can we measure topological features of the hidden space?
 - can we assign confidence values to these measurements?
- What does "topology" mean for a cloud of data points?
 - persistent homology
 - spectral theory for point clouds





Topology in the 21st Century January 26–27, 2009

Vin de Silva http://pages.pomona.edu/~vds04747/

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

Tuesday, January 27, 2009

Betti numbers and homology groups count and identify topological features

• number of connected components, number of holes, etc.

Vin de Silva http://pages.pomona.edu/~vds04747/

Betti numbers and homology groups count and identify topological features

number of connected components, number of holes, etc.

• The k-th Betti number of X is a non-negative integer $b_k(X)$

- "b_k measures the k-dimensional connectivity of X"
- " b_k counts the number of independent k-dimensional features of X"

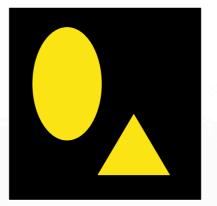
- Betti numbers and homology groups count and identify topological features
 - number of connected components, number of holes, etc.
- The k-th Betti number of X is a non-negative integer $b_k(X)$
 - "bk measures the k-dimensional connectivity of X"
 - "bk counts the number of independent k-dimensional features of X"
- The k-th homology group of X is a vector space $H_k(X)$
 - it is convenient use vector spaces over the scalar field {0,1}
 - each vector in $H_k(X)$ corresponds to a specific feature or combination of features

- Betti numbers and homology groups count and identify topological features
 - number of connected components, number of holes, etc.
- The k-th Betti number of X is a non-negative integer $b_k(X)$
 - "bk measures the k-dimensional connectivity of X"
 - "bk counts the number of independent k-dimensional features of X"
- The k-th homology group of X is a vector space $H_k(X)$
 - it is convenient use vector spaces over the scalar field {0,1}
 - each vector in $H_k(X)$ corresponds to a specific feature or combination of features
- Betti numbers and homology groups are related by $b_k(X) = \dim(H_k(X))$

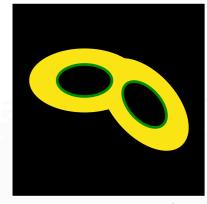
Vin de Silva http://pages.pomona.edu/~vds04747/

2- and 3-dimensional examples

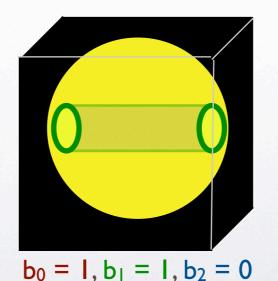
- For an object in 2-dimensional space
 - b₀ is the number of components
 - b₁ is the number of holes
- For an object in 3-dimensional space
 - **b**₀ is the number of components
 - b₁ is the number of tunnel or handles
 - **b**₂ is the number of voids
- (and so on, in higher dimensions)

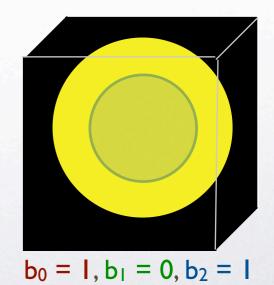


 $b_0 = 2, b_1 = 0$



 $b_0 = 1, b_1 = 2$



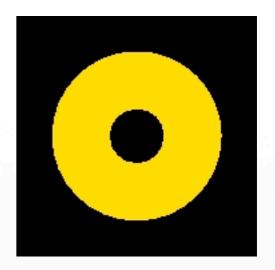


Topology in the 21st Century January 26–27, 2009

Vin de Silva http://pages.pomona.edu/~vds04747/

Calculating homology and Betti numbers

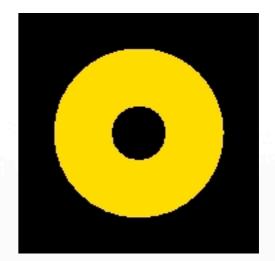
- Betti numbers and homology groups are defined for abstract topological spaces
 - this involves infinite-dimensional linear algebra
- A topological space can often be represented as finite simplicial complex
 - assembled from vertices, edges, triangles, tetrahedra, etc.
 - linear algebra becomes finite dimensional
 - "simplicial homology"



ÍRÌ

Calculating homology and Betti numbers

- Betti numbers and homology groups are defined for abstract topological spaces
 - this involves infinite-dimensional linear algebra
- A topological space can often be represented as finite simplicial complex
 - assembled from vertices, edges, triangles, tetrahedra, etc.
 - linear algebra becomes finite dimensional
 - "simplicial homology"



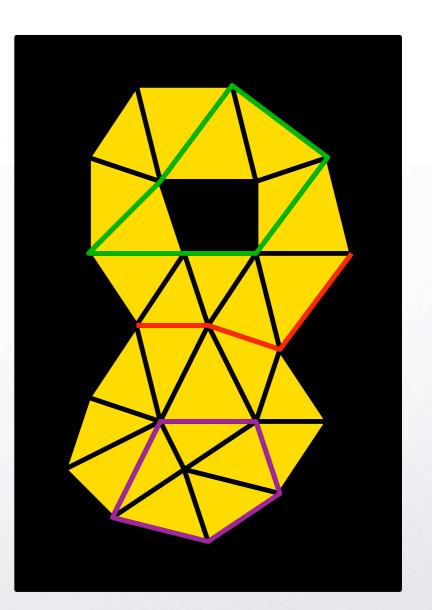
Topology in the 21st Century January 26–27, 2009

Vin de Silva http://pages.pomona.edu/~vds04747/

ÍRÌ

Simplicial homology

- Simplicial complex X
- n₀ vertices, n₁ edges, n₂ triangles, ...
- Define vector spaces $C_0, C_1, C_2, ...$
 - $C_i \leftrightarrow \{\text{subsets of the set of all i-simplices}\}$
- Define linear maps $\partial_i: C_{i+1} \rightarrow C_i$
 - each (i+1)-simplex maps to its set of bounding i-simplices
 - count i-simplices modulo 2
 - the boundary of a boundary is empty: $\partial^2 = 0$
- Define $H_i(X) = Ker(\partial_i) / Im(\partial_{i-1})$
- Define b_i(X) = dim(H_i(X))



Topology in the 21st Century January 26–27, 2009

Vin de Silva http://pages.pomona.edu/~vds04747/

Plex: algebraic topology in MATLAB

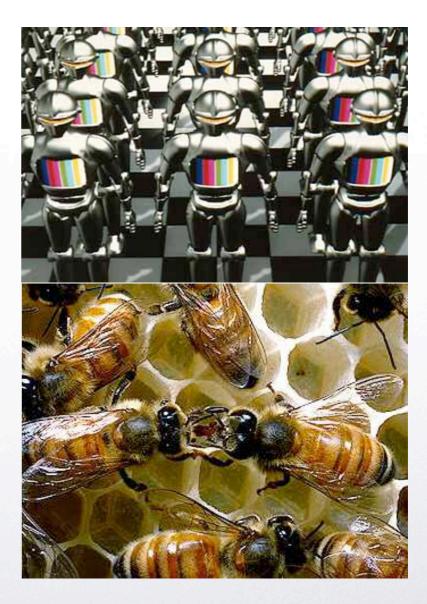
- Plex is a library of C++ and MATLAB routines for applied algebraic topology
- MATLAB front-end allows for easy high-level scripting
- Version I (VdS, 2000-3)
- Version 2 (Pat Perry & VdS, 2005)
 - core library written in C++
 - "metric data" toolbox
 - includes persistent homology library of Afra Zomorodian and Lutz Kettner
- Version 3 (Harlan Sexton, 2007)
 - Java-based, for portability

		~u	
Ex Figure No. 1	: 🔏 🖻 🖺 🗠 🖙 📆 🥐 Current I	Directory	
dit <u>V</u> iew Insert <u>T</u> ools <u>W</u> indow <u>H</u> elp		,	
	<pre>< M A T L A B > Copyright 1984-2003 The MathWorks, In sion 6.5.1.200223 Release 13 (Service Aug 22 2003</pre>		
0.05 0.1 0.15 0.2 0.25	g: MATLAB Toolbox Path Cache is out of help toolbox_path_cache' for more info		
	et started, select "MATLAB Help" from	the He	
0.05 0.1 0.15 0.2 0.25	Plex? cetree, {b}uild, {d}istribution, v{2}, [none]		
	irectory: /Users/vin/Plex/plex/matlab/	Plex/	
0.05 0.1 0.15 0.2 0.25	// [data_make(200,'sphere',2); data_make(200,'		
e made de la non negacive inceger er inr.	<pre>[C,F] = px_weak(DL,3,R/4); display(C); dimensional simplicial complex</pre>		
	[20 125 251 202]		
	<pre>I = persistence(C.F): fiaure(1): plotpair</pre>	's(I):	
[DLrows, err] = local_checkvertices(Clist, 📣	Start	V	
n(Clist) == n) = (1: n); ;	Sta	ck: Base	
' <pre>ingth(Clist) < n) & all(ismember(Clist, (1: r</pre>		ize	
= Člist;	<u>@</u> C 1	.x1	
;		0x200	
= [];		.x4	
Jertices of C cannot be matched with rows of		.x3	
	L 1	x20	

Vin de Silva http://pages.pomona.edu/~vds04747/ Swarms of Blind Robots July 29, 2008

Sensor networks

- We deploy a large number of independent robotic agents
 - dozens, hundreds, thousands, ...
- Each robot has limited physical and computational capabilities
 - optical/aural sensing
 - locomotion
 - communication with nearby robots
- Attempt to solve global problems using local algorithms
 - each robot has simple behaviour rules
 - "whole is greater than sum of parts"

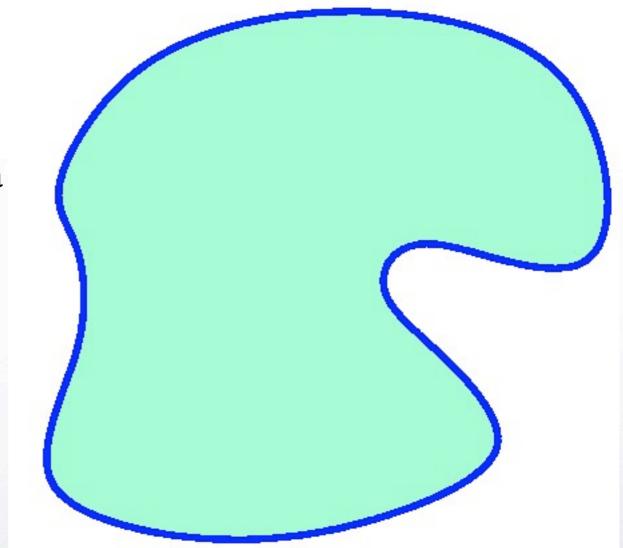


Topology in the 21st Century January 26–27, 2009

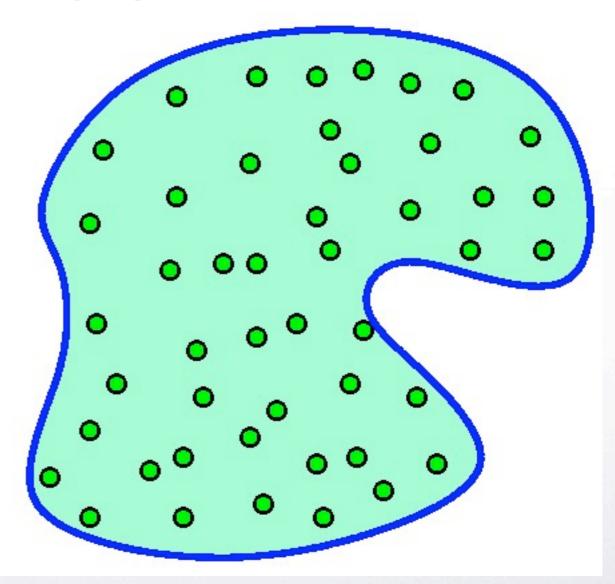
Vin de Silva http://pages.pomona.edu/~vds04747/

- 2D domain bounded by fence
- Robots populate the domain
- Each robot has a coverage area
 - signal transmission
 - surveillance

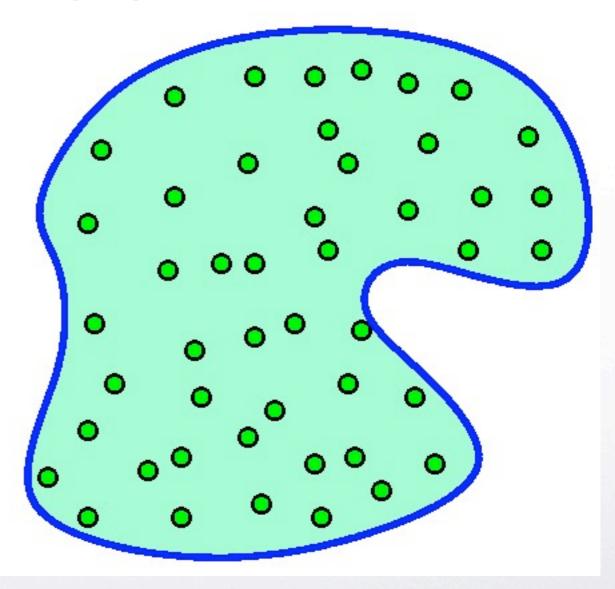
- 2D domain bounded by fence
- Robots populate the domain
- Each robot has a coverage area
 - signal transmission
 - surveillance



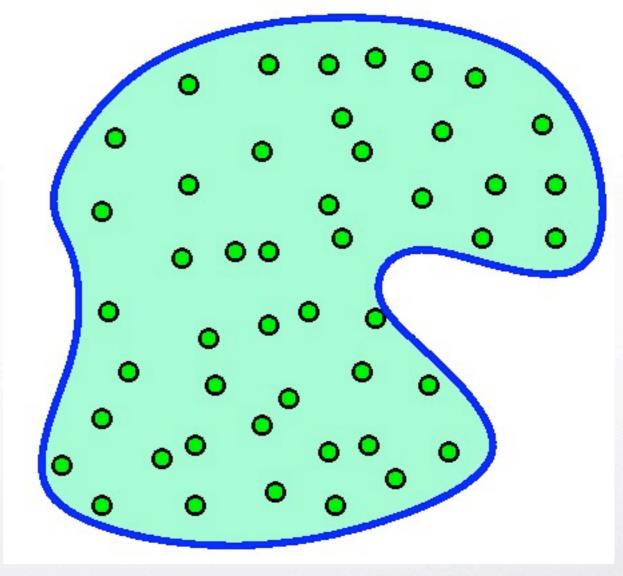
- 2D domain bounded by fence
- Robots populate the domain
- Each robot has a coverage area
 - signal transmission
 - surveillance



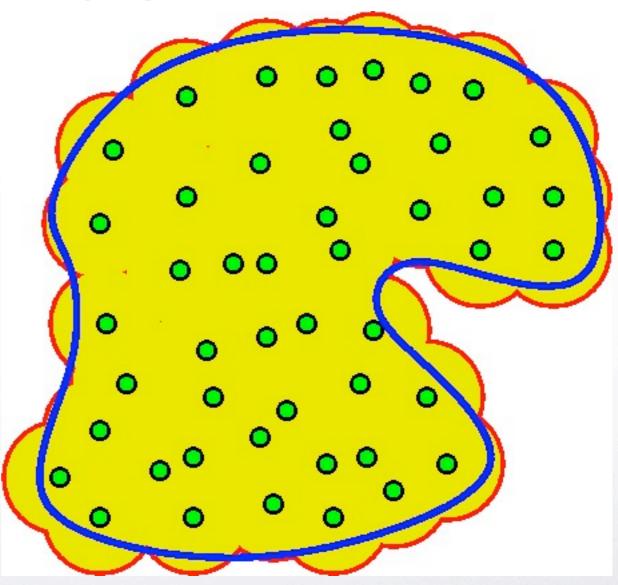
- 2D domain bounded by fence
- Robots populate the domain
- Each robot has a coverage area
 - signal transmission
 - surveillance



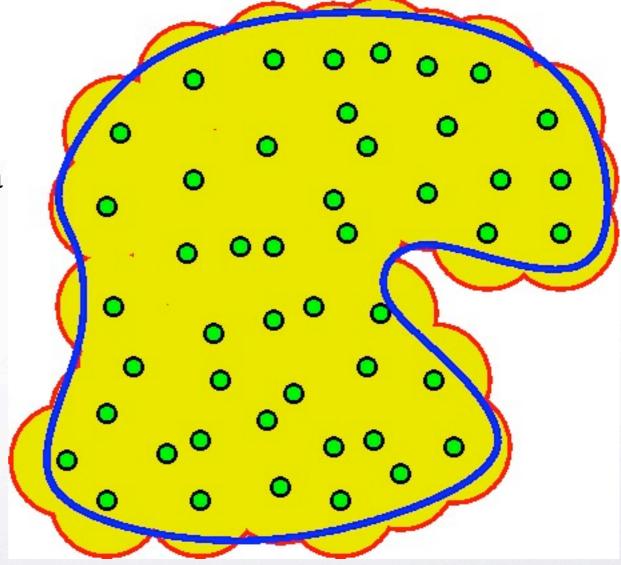
- 2D domain bounded by fence
- Robots populate the domain
- Each robot has a coverage area
 - signal transmission
 - surveillance



- 2D domain bounded by fence
- Robots populate the domain
- Each robot has a coverage area
 - signal transmission
 - surveillance



- 2D domain bounded by fence
- Robots populate the domain
- Each robot has a coverage area
 - signal transmission
 - surveillance



Is the entire domain covered?

Vin de Silva http://pages.pomona.edu/~vds04747/



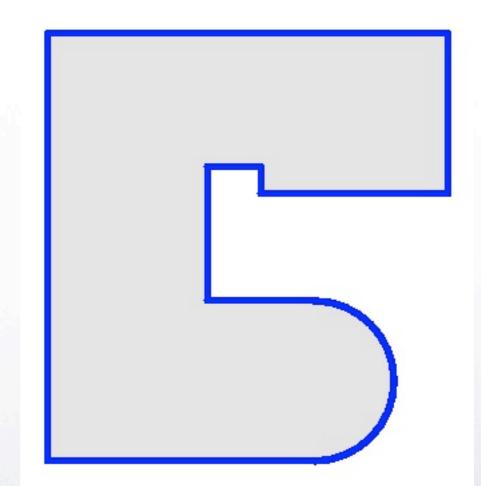
What could we use to solve the problem?

- Exact knowledge of domain shape
 - "exploring the known"
- Exact knowledge of robot positions
 - e.g. using GPS systems
- Centralised information gathering and computation
 - "mission control"

Vin de Silva http://pages.pomona.edu/~vds04747/

What could we use to solve the problem?

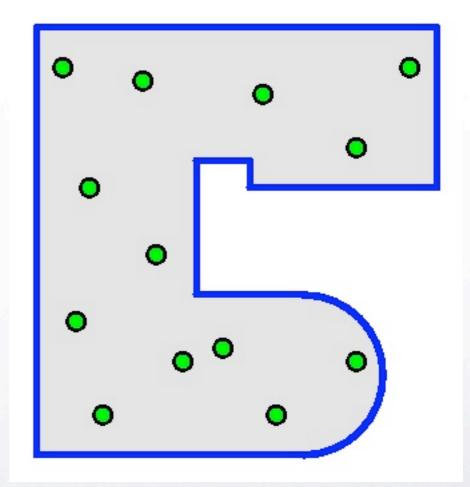
- Exact knowledge of domain shape
 - "exploring the known"
- Exact knowledge of robot positions
 - e.g. using GPS systems
- Centralised information gathering and computation
 - "mission control"



Vin de Silva http://pages.pomona.edu/~vds04747/

What could we use to solve the problem?

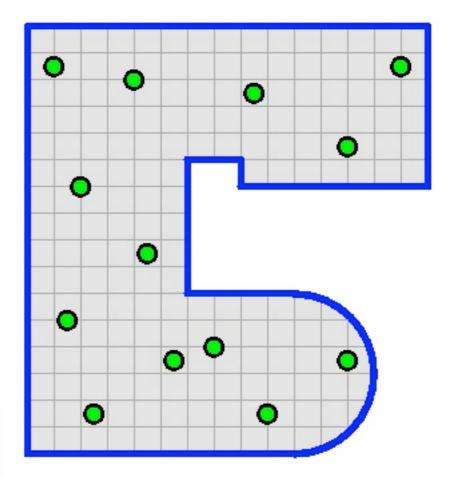
- Exact knowledge of domain shape
 - "exploring the known"
- Exact knowledge of robot positions
 - e.g. using GPS systems
- Centralised information gathering and computation
 - "mission control"



Vin de Silva http://pages.pomona.edu/~vds04747/

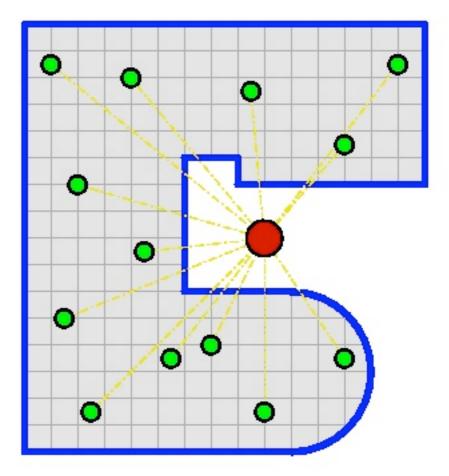
What could we use to solve the problem?

- Exact knowledge of domain shape
 - "exploring the known"
- Exact knowledge of robot positions
 - e.g. using GPS systems
- Centralised information gathering and computation
 - "mission control"



What could we use to solve the problem?

- Exact knowledge of domain shape
 - "exploring the known"
- Exact knowledge of robot positions
 - e.g. using GPS systems
- Centralised information gathering and computation
 - "mission control"



What could we use to solve the problem?

- Exact knowledge of domain shape
 - "exploring the known"
- Exact knowledge of robot positions
 - e.g. using GPS systems
- Centralised information gathering and computation
 - "mission control"

Vin de Silva http://pages.pomona.edu/~vds04747/

Attacking the coverage problem using topology

What could we use to solve the problem?

- Exact knowledge of domain shape
 - "exploring the known"
- Exact knowledge of robot positions
 - e.g. using GPS systems
- Centralised information gathering and computation
 - "mission control"

Vin de Silva http://pages.pomona.edu/~vds04747/

Attacking the coverage problem using topology

What could we use to solve the problem?

- Exact knowledge of domain shape
 "exploring the known"
- Exact knowledge of robot positions
 - e.g. using GPS systems
- Centralised information gathering and computation

"mission control"

unknown domain shape

• with mild constraints

crude proximity informationidentify nearby robots and fence

Vin de Silva http://pages.pomona.edu/~vds04747/

Theorem (VdS, Ghrist, Muhammad 2005)

Assumptions

- The coverage area of each robot is a circular disk of radius r_c
- Each robot can identify all robots which are near it (distance $\leq r_s$)
- Each robot can identify all robots which are at midrange (distance $\leq r_w$)
- Each robot knows if it is close to the fence (distance $\leq r_f$)
- $r_c \ge r_s \sqrt{(1/3)}$ and $r_w \ge r_s \sqrt{(13/3)}$
- The domain is not "pinched"
- The fence is "not too wiggly"

Conclusion

There is a test for global coverage which gives no false positives, and "not too many" false negatives

Vin de Silva http://pages.pomona.edu/~vds04747/

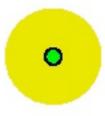
$\widehat{\mathbf{n}}$

Assumptions

- The coverage area of each robot is a circular disk of radius r_c
- Each robot can identify all robots which are near it (distance $\leq r_s$)
- Each robot can identify all robots which are at midrange (distance $\leq r_w$)
- Each robot knows if it is close to the fence (distance $\leq r_f$)
- $r_c \ge r_s \sqrt{(1/3)}$ and $r_w \ge r_s \sqrt{(13/3)}$
- The domain is not "pinched"
- The fence is "not too wiggly"

Conclusion

There is a test for global coverage which gives no false positives, and "not too many" false negatives



Topology in the 21st Century January 26–27, 2009

$\widehat{\mathbf{m}}$

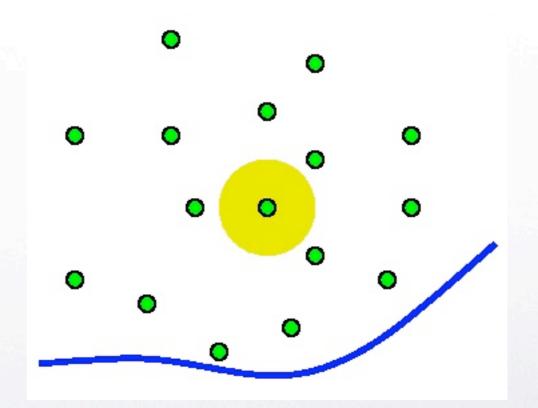
Theorem (VdS, Ghrist, Muhammad 2005)

Assumptions

- The coverage area of each robot is a circular disk of radius r_c
- Each robot can identify all robots which are near it (distance $\leq r_s$)
- Each robot can identify all robots which are at midrange (distance $\leq r_w$)
- Each robot knows if it is close to the fence (distance ≤ r_f)
- $r_c \ge r_s \sqrt{(1/3)}$ and $r_w \ge r_s \sqrt{(13/3)}$
- The domain is not "pinched"
- The fence is "not too wiggly"

Conclusion

There is a test for global coverage which gives no false positives, and "not too many" false negatives



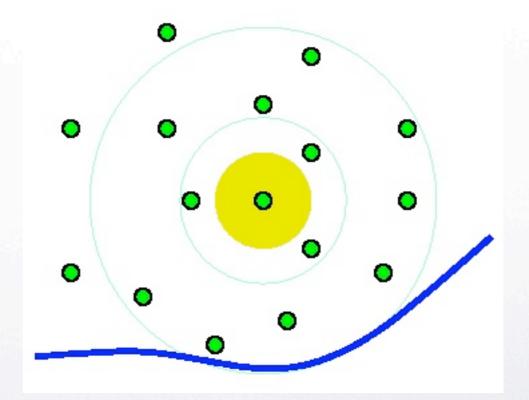
Theorem (VdS, Ghrist, Muhammad 2005)

Assumptions

- The coverage area of each robot is a circular disk of radius r_c
- Each robot can identify all robots which are near it (distance $\leq r_s$)
- Each robot can identify all robots which are at midrange (distance $\leq r_w$)
- Each robot knows if it is close to the fence (distance $\leq r_f$)
- $r_c \ge r_s \sqrt{(1/3)}$ and $r_w \ge r_s \sqrt{(1/3)}$
- The domain is not "pinched"
- The fence is "not too wiggly"

Conclusion

There is a test for global coverage which gives no false positives, and "not too many" false negatives



Topology in the 21st Century January 26–27, 2009

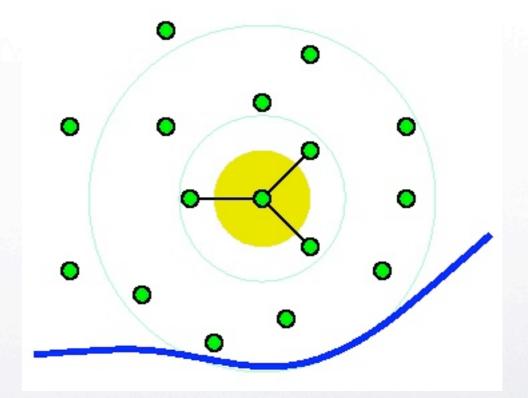
Theorem (VdS, Ghrist, Muhammad 2005)

Assumptions

- The coverage area of each robot is a circular disk of radius r_c
- Each robot can identify all robots which are near it (distance $\leq r_s$)
- Each robot can identify all robots which are at midrange (distance $\leq r_w$)
- Each robot knows if it is close to the fence (distance $\leq r_f$)
- $r_c \ge r_s \sqrt{(1/3)}$ and $r_w \ge r_s \sqrt{(1/3)}$
- The domain is not "pinched"
- The fence is "not too wiggly"

Conclusion

There is a test for global coverage which gives no false positives, and "not too many" false negatives



Topology in the 21st Century January 26–27, 2009

$\widehat{}$

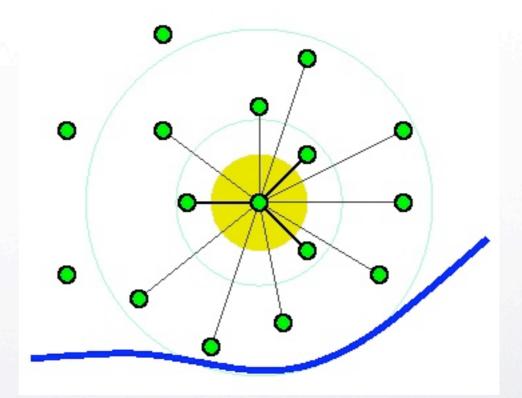
Theorem (VdS, Ghrist, Muhammad 2005)

Assumptions

- The coverage area of each robot is a circular disk of radius r_c
- Each robot can identify all robots which are near it (distance $\leq r_s$)
- Each robot can identify all robots which are at midrange (distance $\leq r_w$)
- Each robot knows if it is close to the fence (distance ≤ r_f)
- $r_c \ge r_s \sqrt{(1/3)}$ and $r_w \ge r_s \sqrt{(1/3)}$
- The domain is not "pinched"
- The fence is "not too wiggly"

Conclusion

There is a test for global coverage which gives no false positives, and "not too many" false negatives



Topology in the 21st Century January 26–27, 2009

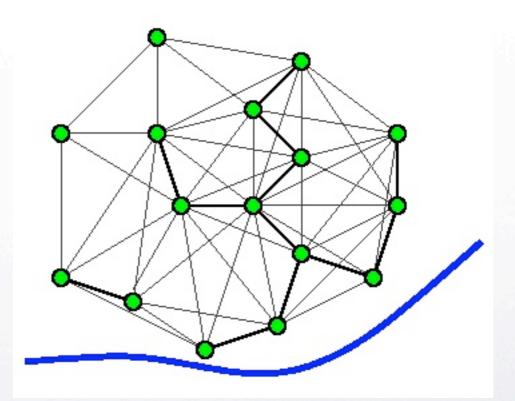
Theorem (VdS, Ghrist, Muhammad 2005)

Assumptions

- The coverage area of each robot is a circular disk of radius r_c
- Each robot can identify all robots which are near it (distance $\leq r_s$)
- Each robot can identify all robots which are at midrange (distance $\leq r_w$)
- Each robot knows if it is close to the fence (distance $\leq r_f$)
- $r_c \ge r_s \sqrt{(1/3)}$ and $r_w \ge r_s \sqrt{(1/3)}$
- The domain is not "pinched"
- The fence is "not too wiggly"

Conclusion

There is a test for global coverage which gives no false positives, and "not too many" false negatives



Topology in the 21st Century January 26–27, 2009

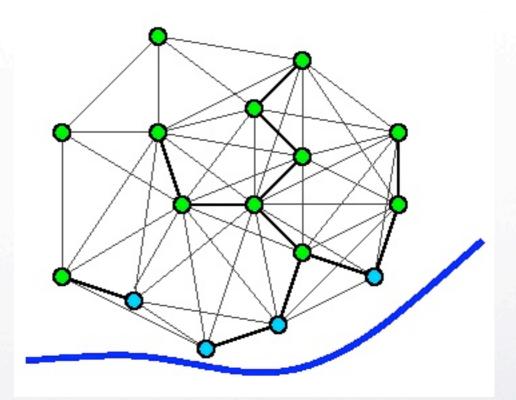
Theorem (VdS, Ghrist, Muhammad 2005)

Assumptions

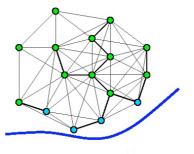
- The coverage area of each robot is a circular disk of radius r_c
- Each robot can identify all robots which are near it (distance $\leq r_s$)
- Each robot can identify all robots which are at midrange (distance $\leq r_w$)
- Each robot knows if it is close to the fence (distance $\leq r_f$)
- $r_c \ge r_s \sqrt{(1/3)}$ and $r_w \ge r_s \sqrt{(1/3)}$
- The domain is not "pinched"
- The fence is "not too wiggly"

Conclusion

There is a test for global coverage which gives no false positives, and "not too many" false negatives



2-dimensional coverage: first try

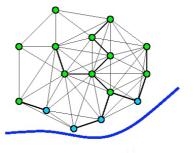


Construct a simplicial complex R ("Rips complex")

- a vertex for each robot
- an edge whenever two robots are separated by distance at most $r_c\sqrt{3}$
- all triangles for which all the edges already belong to R
- Construct a subcomplex F ("Fence complex")
 - a vertex for each robot within distance r_f of the boundary
 - all edges, triangles for which all the vertices already belong to F
- Are the following statements equivalent?
 - coverage is achieved in the interior of the domain
 - there is a 2-chain in R with boundary in F which does not retract into F
 - in relative homology $H_2(R,F) \neq 0$

Vin de Silva http://pages.pomona.edu/~vds04747/

2-dimensional coverage: first try

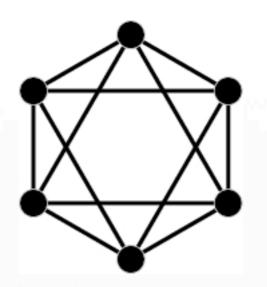


- Construct a simplicial complex R ("Rips complex")
 - a vertex for each robot
 - an edge whenever two robots are separated by distance at most $(r_c\sqrt{3})$
 - all triangles for which all the edges already belong to R
- Construct a subcomplex F ("Fence complex")
 - a vertex for each robot within distance r_f of the boundary
 - all edges, triangles for which all the vertices already belong to F
- Are the following statements equivalent?
 - coverage is achieved in the interior of the domain
 - there is a 2-chain in R with boundary in F which does not retract into F
 - in relative homology $H_2(R,F) \neq 0$

- Definition An r_s -triangle is a triangle where all three sides have length $\leq r_s$.
- Lemma If three robots lie at the vertices of an r_s -triangle, and if $r_c \ge r_s/\sqrt{3}$ then the three coverage disks of radius r_c meet and cover the entire triangle.
 - worst case: equilateral triangle
- More generally, in d dimensions: if all the edges of a d-simplex have length at most $r_c\sqrt{(2+2/d)}$, then the d+1 balls of radius r_c meet and cover the entire simplex.
 - worst case: regular simplex
- If we can find a set of r_s-triangles covering the domain with a robot at each vertex, then by Lemma we have coverage.

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

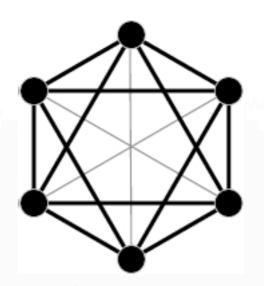
It is not enough to find a nonzero vector in $H_2(R,F)$



This closed system of 8 triangles cannot be collapsed using tetrahedra...

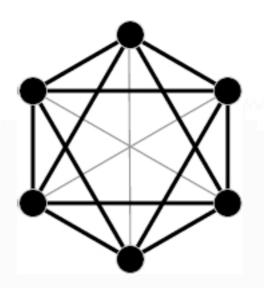
Vin de Silva http://pages.pomona.edu/~vds04747/

It is not enough to find a nonzero vector in $H_2(R,F)$



This closed system of 8 triangles cannot be collapsed using tetrahedra... ...unless you allow slightly larger tetrahedra.

It is not enough to find a nonzero vector in $H_2(R,F)$



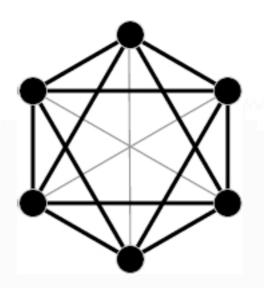
This closed system of 8 triangles cannot be collapsed using tetrahedra...

...unless you allow slightly larger tetrahedra.

Theorem Any closed system of r_s -triangles in the plane can be collapsed as the boundary of a set of r_w -tetrahedra, provided that $r_w \ge 2r_s/\sqrt{3}$.

Vin de Silva http://pages.pomona.edu/~vds04747/

It is not enough to find a nonzero vector in $H_2(R,F)$



This closed system of 8 triangles cannot be collapsed using tetrahedra... ...unless you allow slightly larger tetrahedra.

Theorem Any closed system of r_s -triangles in the plane can be collapsed as the boundary of a set of r_w -tetrahedra, provided that $r_w \ge 2r_s/\sqrt{3}$.

Caution Worse things can happen when the fence is involved.

Vin de Silva http://pages.pomona.edu/~vds04747/

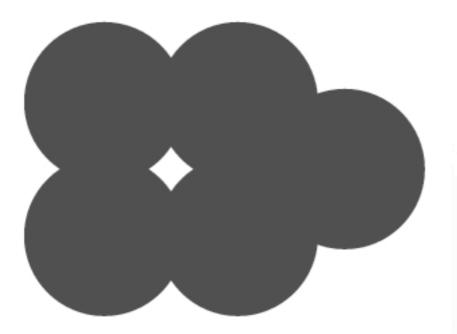
2-dimensional coverage: one possible answer

- Set three different radii r_s , r_w , r_f in addition to coverage radius r_c
 - require inequalities $r_c \ge r_s \sqrt{(1/3)}$ and $r_w \ge r_s \sqrt{(13/3)}$
 - geometry of domain is subject to constraints governed by r_s, r_w, r_f
- Construct simplicial complexes $R_s \subseteq R_w$
 - a vertex for each robot
 - an edge whenever two robots are separated by distance at most r_s , r_w
 - all triangles, tetrahedra for which all the edges already belong to Rs, Rw
- Construct subcomplexes F_s, F_w of R_s, R_w
 - a vertex for each robot within distance **r**_f of the boundary
 - ▶ all edges, triangles, tetrahedra for which all the vertices already belong to F_s, F_w

Under the given assumptions

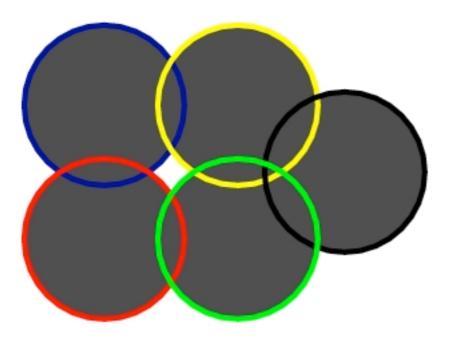
- ▶ if the relative homology map $H_2(R_s, F_s) \rightarrow H_2(R_w, F_w)$ is not zero
- then coverage is achieved (except possibly at points close to the boundary)

ÍRÌ



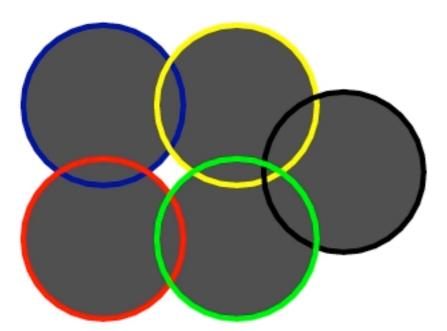
Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

Tuesday, January 27, 2009



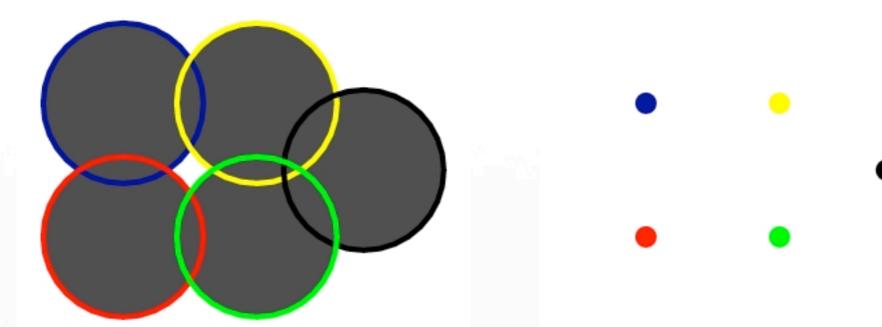
Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

Tuesday, January 27, 2009



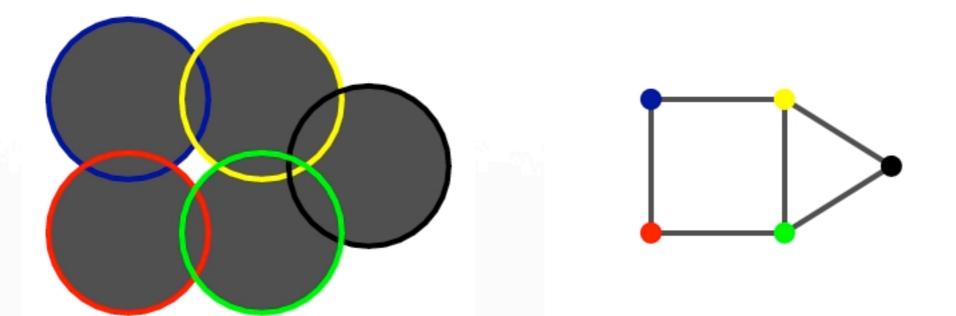
- For a union of disks in the plane we define a "nerve complex"
 - a vertex for every disk
 - an edge whenever two disks intersect
 - a triangle whenever three disks intersect
- If the nerve complex has the same topology as the original union of disks
- We need precise inter-robot distances to calculate the nerve complex

Vin de Silva http://pages.pomona.edu/~vds04747/



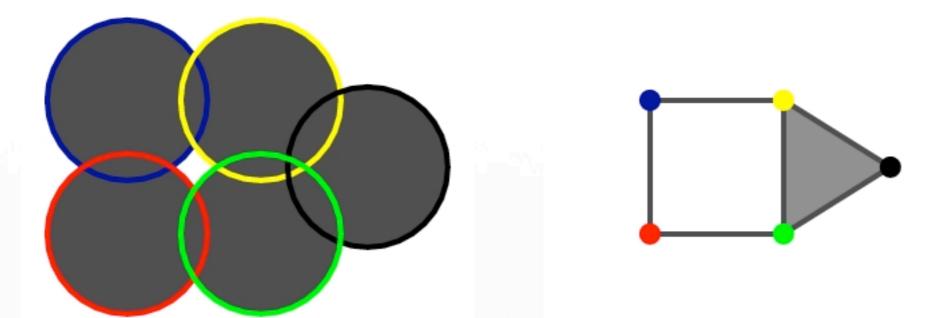
- For a union of disks in the plane we define a "nerve complex"
 - a vertex for every disk
 - an edge whenever two disks intersect
 - a triangle whenever three disks intersect
- If the nerve complex has the same topology as the original union of disks
- We need precise inter-robot distances to calculate the nerve complex

Vin de Silva http://pages.pomona.edu/~vds04747/



- For a union of disks in the plane we define a "nerve complex"
 - a vertex for every disk
 - an edge whenever two disks intersect
 - a triangle whenever three disks intersect
- If the nerve complex has the same topology as the original union of disks
- We need precise inter-robot distances to calculate the nerve complex

Vin de Silva http://pages.pomona.edu/~vds04747/



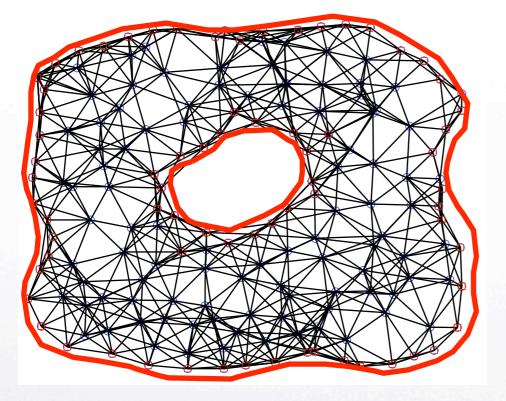
- For a union of disks in the plane we define a "nerve complex"
 - a vertex for every disk
 - an edge whenever two disks intersect
 - a triangle whenever three disks intersect
- If the nerve complex has the same topology as the original union of disks
- We need precise inter-robot distances to calculate the nerve complex

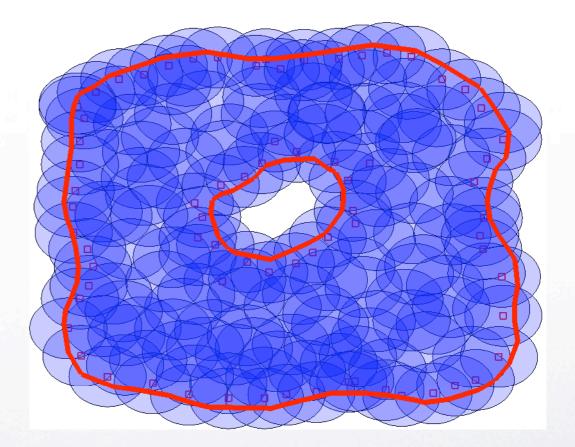
Vin de Silva http://pages.pomona.edu/~vds04747/

- For a union of disks in the plane we define a "nerve complex"
 - a vertex for every disk
 - an edge whenever two disks intersect
 - a triangle whenever three disks intersect
- If the nerve complex has the same topology as the original union of disks
- We need precise inter-robot distances to calculate the nerve complex

Vin de Silva http://pages.pomona.edu/~vds04747/

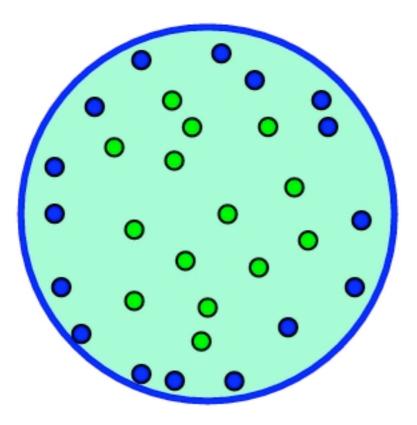
Example





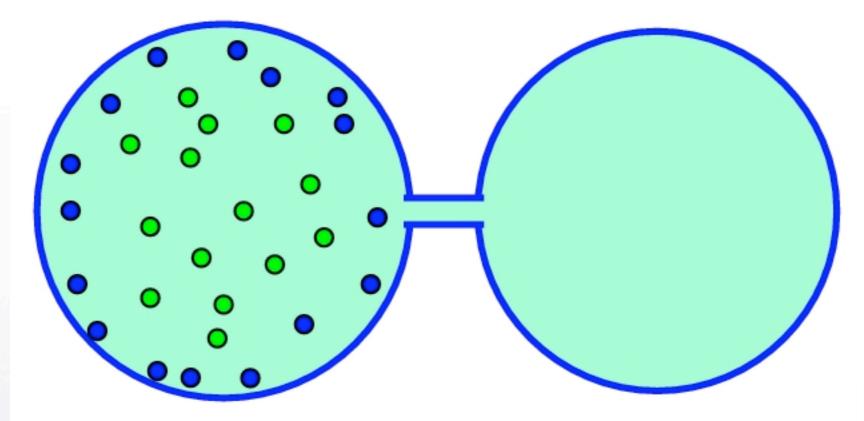
Vin de Silva http://pages.pomona.edu/~vds04747/

Why we need to avoid pinched domains



Vin de Silva http://pages.pomona.edu/~vds04747/

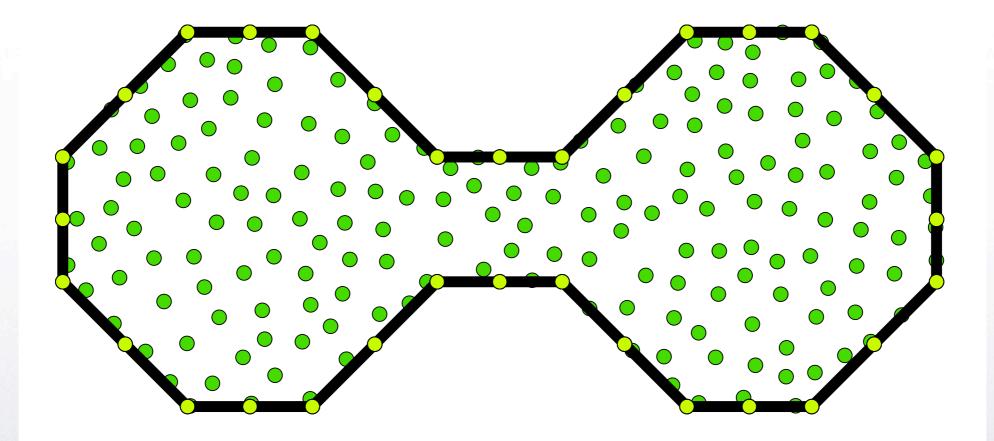
Why we need to avoid pinched domains



Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

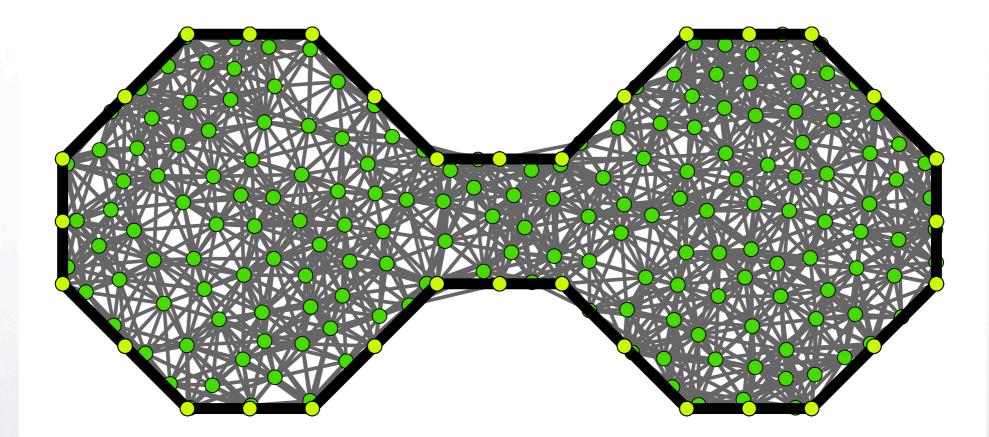
Tuesday, January 27, 2009

2-dimensional coverage: controlled boundary



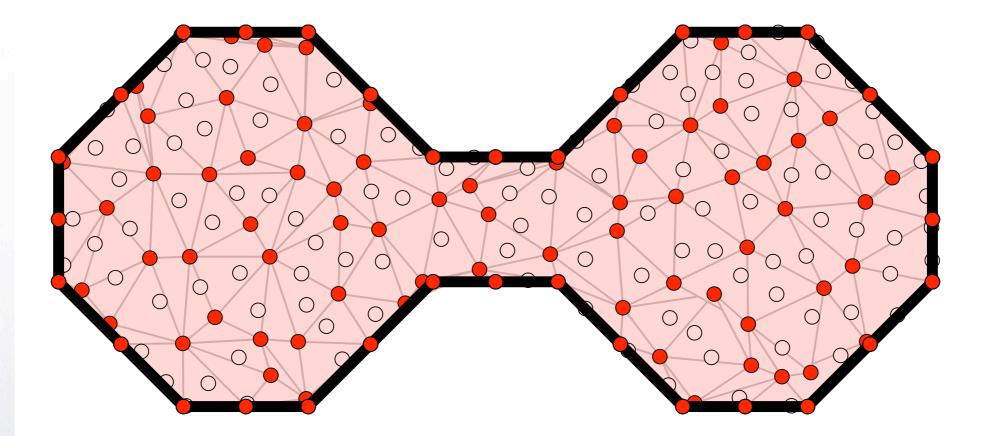
Vin de Silva http://pages.pomona.edu/~vds04747/

2-dimensional coverage: controlled boundary



Vin de Silva http://pages.pomona.edu/~vds04747/

2-dimensional coverage: controlled boundary



Vin de Silva http://pages.pomona.edu/~vds04747/

Optimization

- Tahbaz-Salehi & Jadbabaie (2008 results)
 - Finding tight cycles around holes in coverage
 ⇒ identify and repair holes efficiently
 - ▶ Finding minimal 2-cycles spanning the region
 ⇒ switch off unused sensor nodes

Strategy:

Replace L⁰ optimization with L¹ optimization

 $\underset{\beta \in C_{k+1}}{\operatorname{argmin}} \|\alpha + d\beta\|_{L^0}$

 $\underset{\beta \in C_{k+1}}{\operatorname{argmin}} \|\alpha + d\beta\|_{L^1}$

- Solve L¹ problem using subgradient methods
- Find criteria under which L¹ optimum recovers L⁰ optimum

Topology in the 21st Century January 26–27, 2009

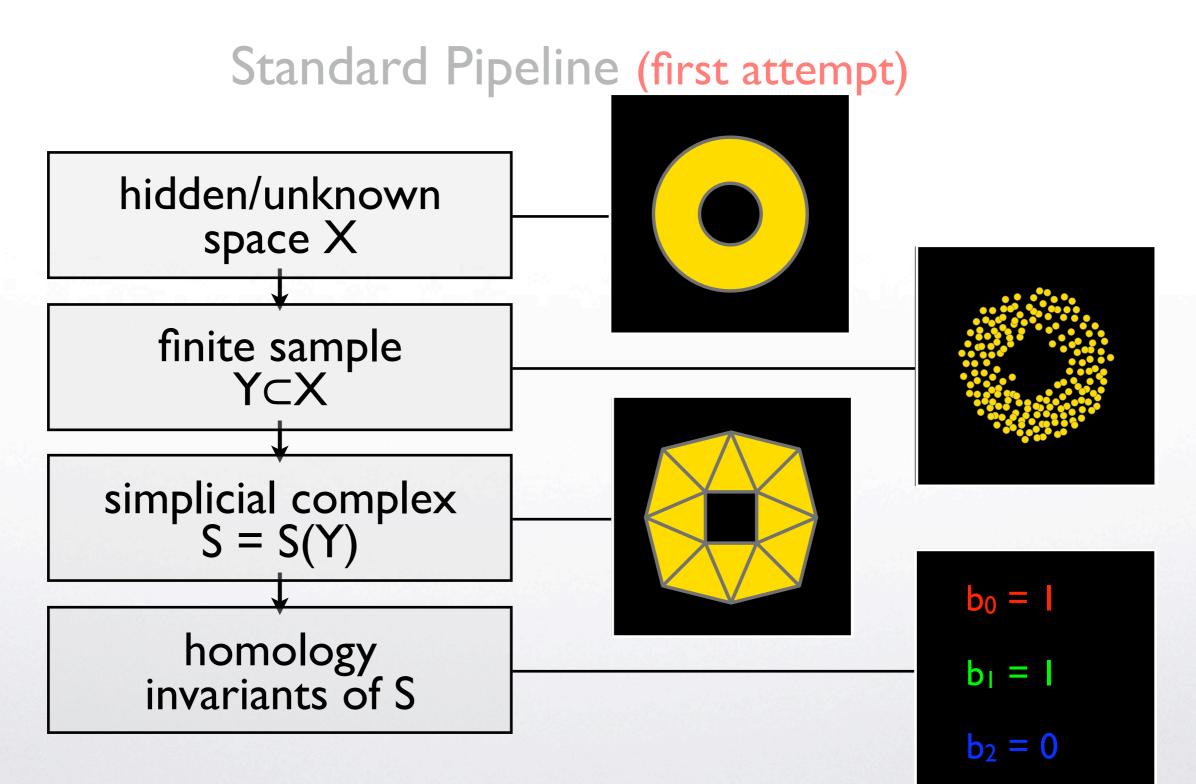
Discrete vs Continuous

26

 $\langle \neg | \rightarrow \rangle$

Point-cloud topology

- Algebraic topology measures qualitative features of a space X
 - How many components?
 - How many tunnels/voids?
 - How do paths and loops deform within X?
- These are measured by algebraic invariants
 - fundamental group $\pi_1(X)$
 - homology groups $H_k(X)$ and Betti numbers $b_k(X)$
 - ► products $H_j(X) \times H_k(X) \rightarrow H_{j+k}(X)$
- Can we compute these invariants from a finite sample $Y \subset X$?



28

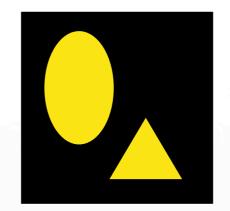
Vin de Silva http://pages.pomona.edu/~vds04747/

Tuesday, January 27, 2009

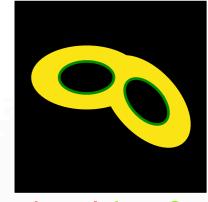
Betti numbers ↔ features

29

- For an object in 2D space
 - ▶ b₀ is the number of components
 - b) is the number of holes

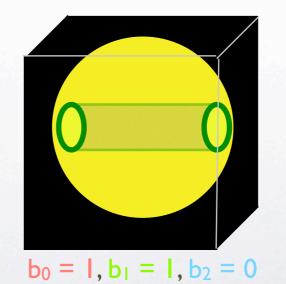


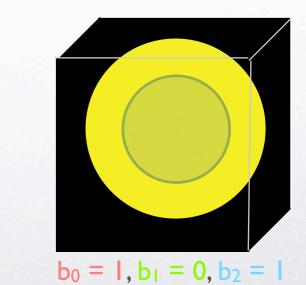
 $b_0 = 2, b_1 = 0$



 $b_0 = 1, b_1 = 2$

- For an object in 3D space
 - b₀ is the number of components
 - b₁ is the number of tunnels or handles
 - b2 is the number of voids
- (and so on, in higher dimensions)





Topology in the 21st Century January 26–27, 2009

Reconstruction theorems

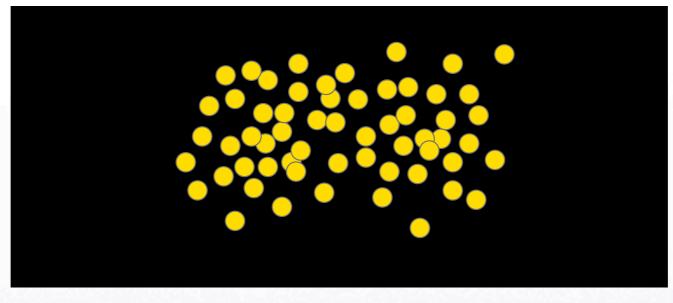
- Various constructions for S(Y)
 - Cech complex (folklore)
 - Rips–Vietoris complex (folklore)
 - α-shape complex (Edelsbrunner, Mücke)
 - strong/weak witness complexes (Carlsson, dS)
- Desire theorems of the form:

If Y is well-sampled from X then S(Y) \approx X

• e.g. Niyogi–Smale–Weinberger (2004), Cech complex

Discrete vs continuous

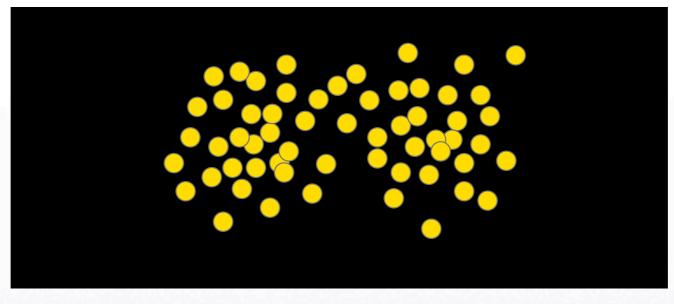
- Betti numbers are discrete
- Topological spaces
 - topological spaces are continuous
 - the space of topological spaces is discrete
- Finite point-clouds
 - point-clouds are discrete
 - the space of point-clouds is continuous
- Therefore, raw Betti numbers are
 - very handy for topological spaces
 - X a bit dangerous for point-clouds



At which parameter value does the number of components change?

Vin de Silva http://pages.pomona.edu/~vds04747/

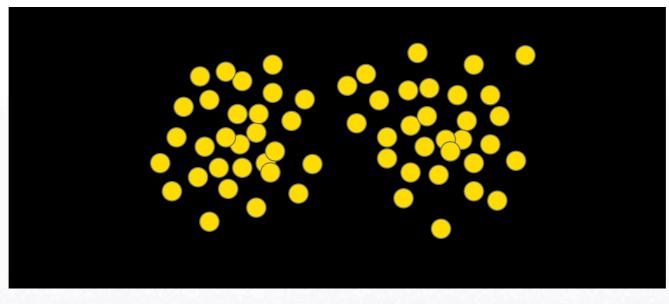
32



At which parameter value does the number of components change?

Vin de Silva http://pages.pomona.edu/~vds04747/

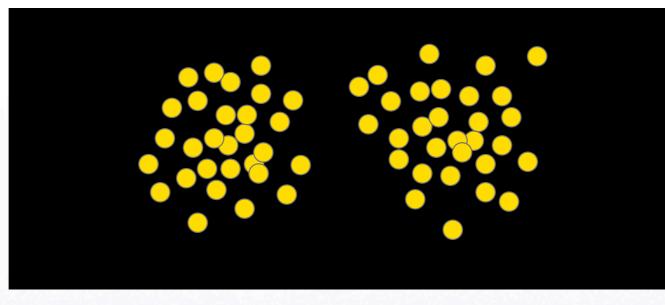
32



At which parameter value does the number of components change?

Vin de Silva http://pages.pomona.edu/~vds04747/

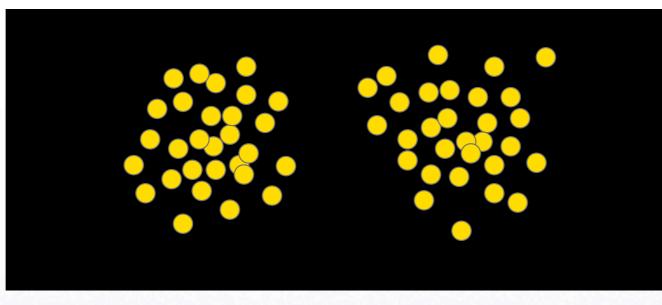
32



At which parameter value does the number of components change?

Vin de Silva http://pages.pomona.edu/~vds04747/

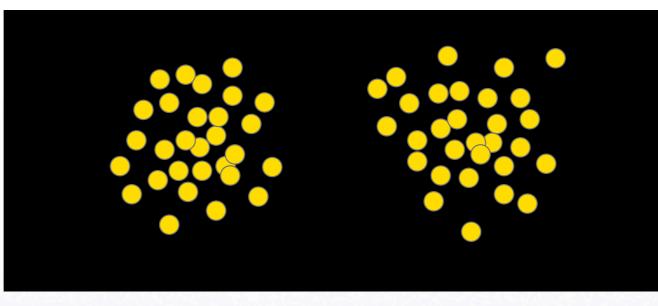
32



At which parameter value does the number of components change?

Vin de Silva http://pages.pomona.edu/~vds04747/

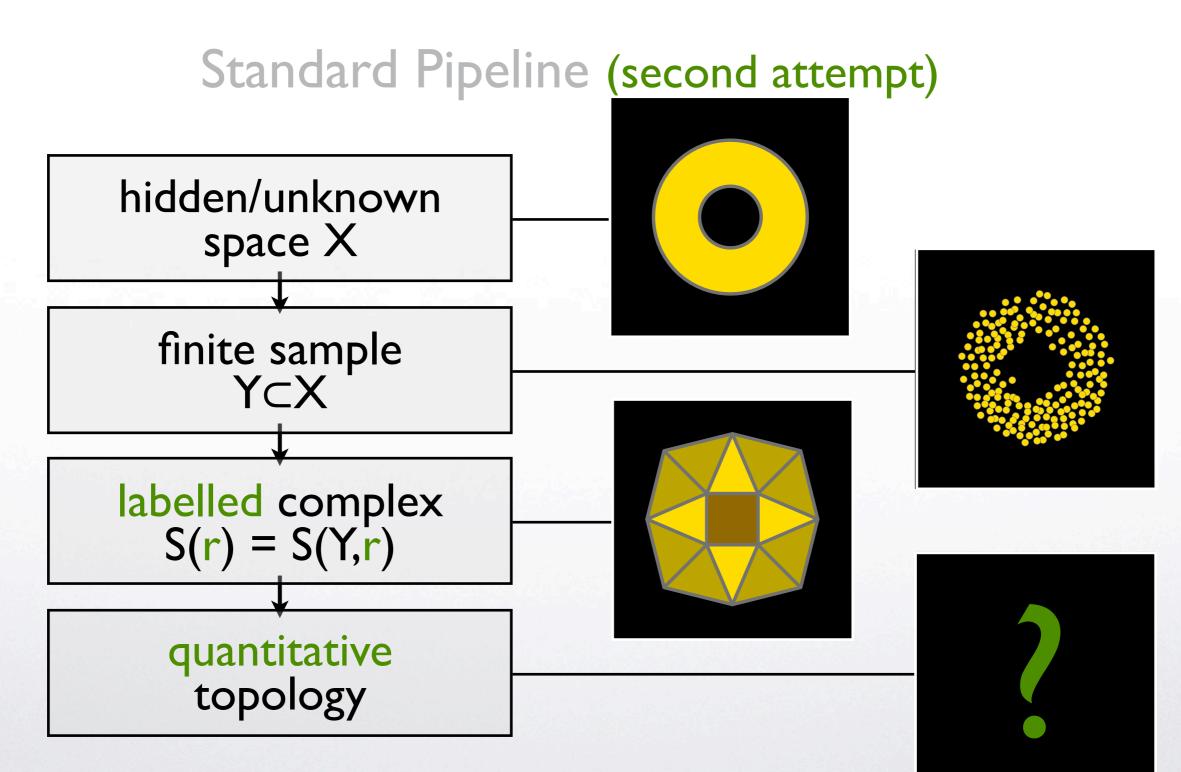
32



At which parameter value does the number of components change?

Vin de Silva http://pages.pomona.edu/~vds04747/

32



Vin de Silva http://pages.pomona.edu/~vds04747/

33

Topology in the 21st Century January 26–27, 2009

Persistence

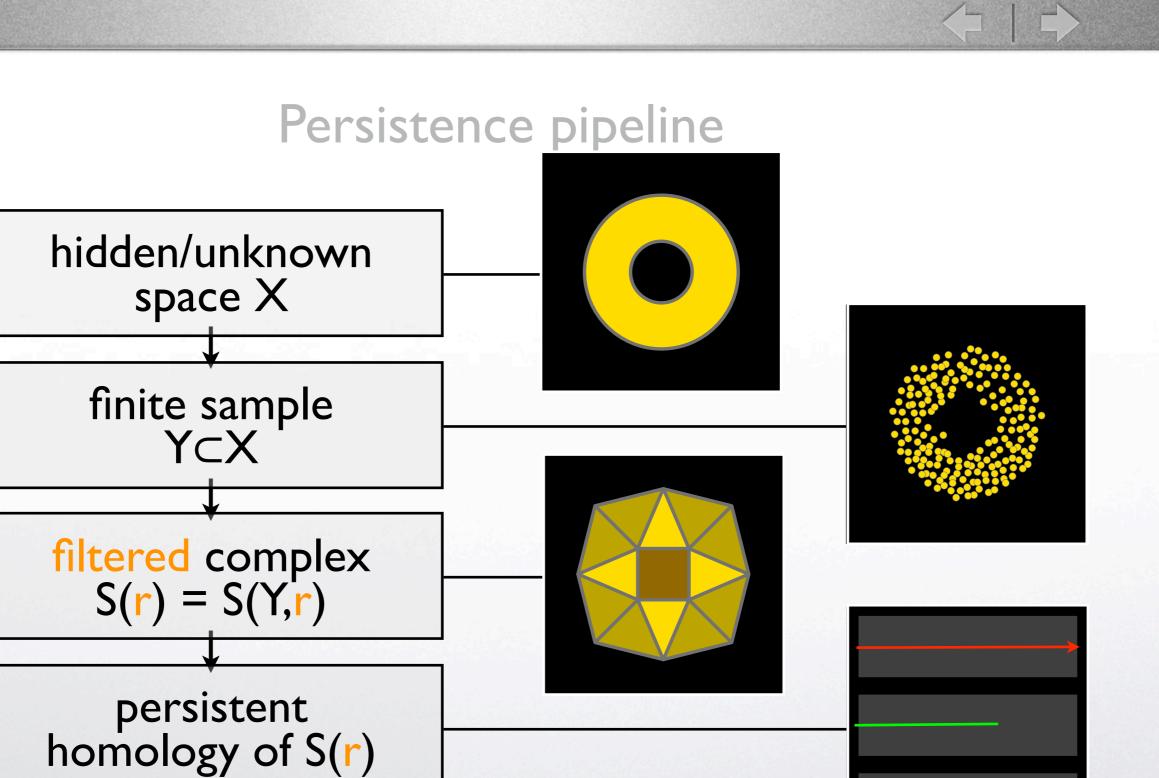
Monotone increasing family of spaces

 $\mathbf{X} = \{X_{\epsilon} \mid \epsilon \ge 0\} \quad \text{such that} \quad X_{\epsilon} \subseteq X_{\epsilon'} \text{ if } \epsilon \le \epsilon'$

Persistent homology

rank $[H_*(X_{\epsilon}) \to H_*(X_{\epsilon'})]$ for all $\epsilon \le \epsilon'$

- Barcode (Edelsbrunner, Letscher, Zomorodian '00)
 - finite collection of intervals [b_i,d_i)
 - [b,d) indicates feature born at time b, dies at time d
- Stability theorem (Cohen-Steiner, Edelsbrunner, Harer '07)
 - barcode depends continuously on the underlying data
 - see also Chazal, Cohen-Steiner, Glisse, Guibas, Oudot '09
- Continuous measurements (interval length) coupled to discrete information (number of intervals



Vin de Silva http://pages.pomona.edu/~vds04747/

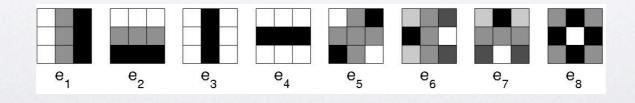
35

Visual Image Patches

 $\langle \neg | \rightarrow$

Visual image patches

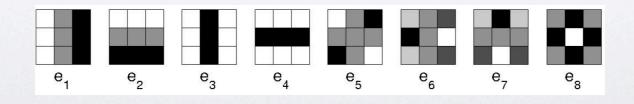
- Lee, Pedersen, Mumford (2003) studied the local statistical properties of natural images (from Van Hateren's database)
- 3-by-3 pixel patches with high contrast between pixels: are some patches more likely than others?
- Carlsson, VdS, Ishkhanov, Zomorodian (2004/8): topological properties of high-density regions in pixel-patch space



Vin de Silva http://pages.pomona.edu/~vds04747/

The space of image patches

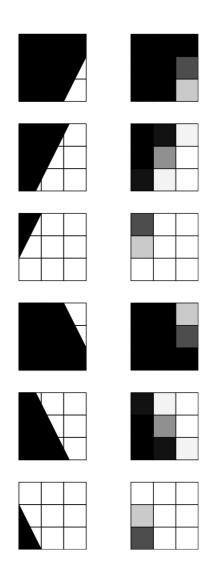
- ~4.2 million high-contrast 3-by-3 patches selected randomly from images in database.
- Normalise each patch twice: subtract mean intensity, then rescale to unit norm.
- Normalised patches live on a unit 7-sphere in 8-dimensional space with the following basis:



Vin de Silva http://pages.pomona.edu/~vds04747/

High-density regions

- LPM2003 found that the distribution of patches is dense in the 7-sphere.
- There are high-density regions:
 - edge features
- Can we describe the structure of the highdensity regions?
 - threshold by k-nearest-neighbour density estimator

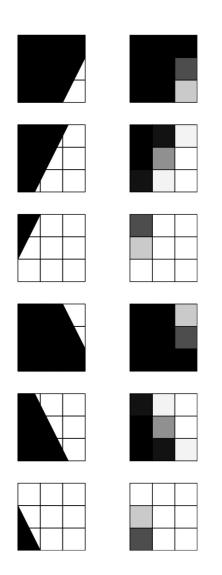


Topology in the 21st Century January 26–27, 2009

Vin de Silva http://pages.pomona.edu/~vds04747/

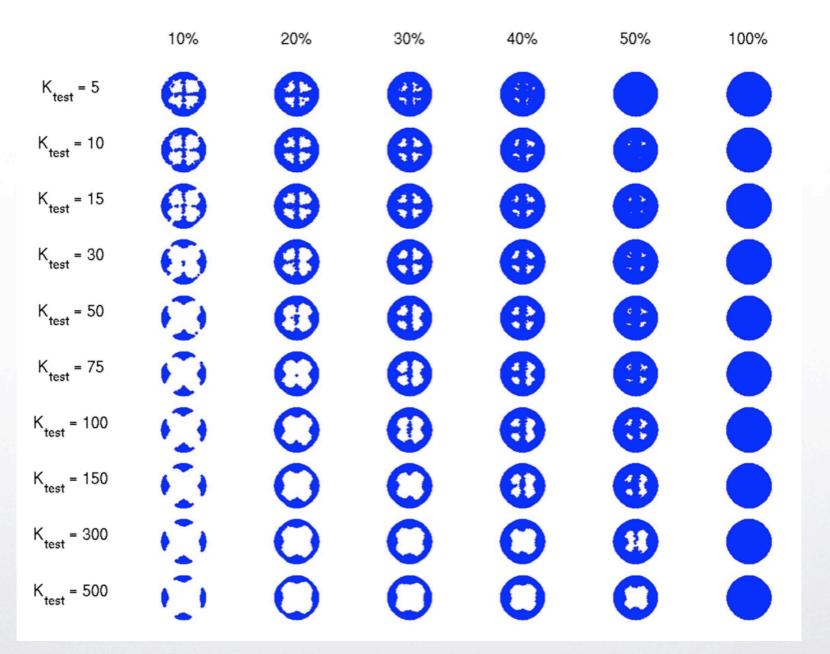
High-density regions

- LPM2003 found that the distribution of patches is dense in the 7-sphere.
- There are high-density regions:
 - edge features
- Can we describe the structure of the highdensity regions?
 - threshold by k-nearest-neighbour density estimator



 $\langle \neg | \rightarrow$

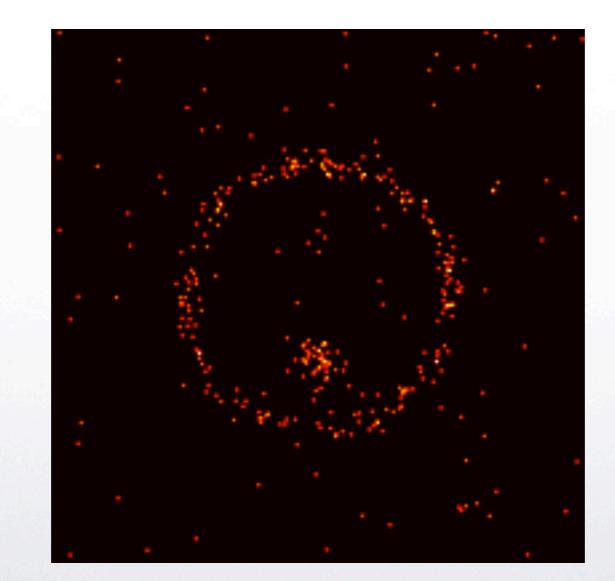
Straining a data soup



Vin de Silva http://pages.pomona.edu/~vds04747/

Varying the density parameter

(toy example)

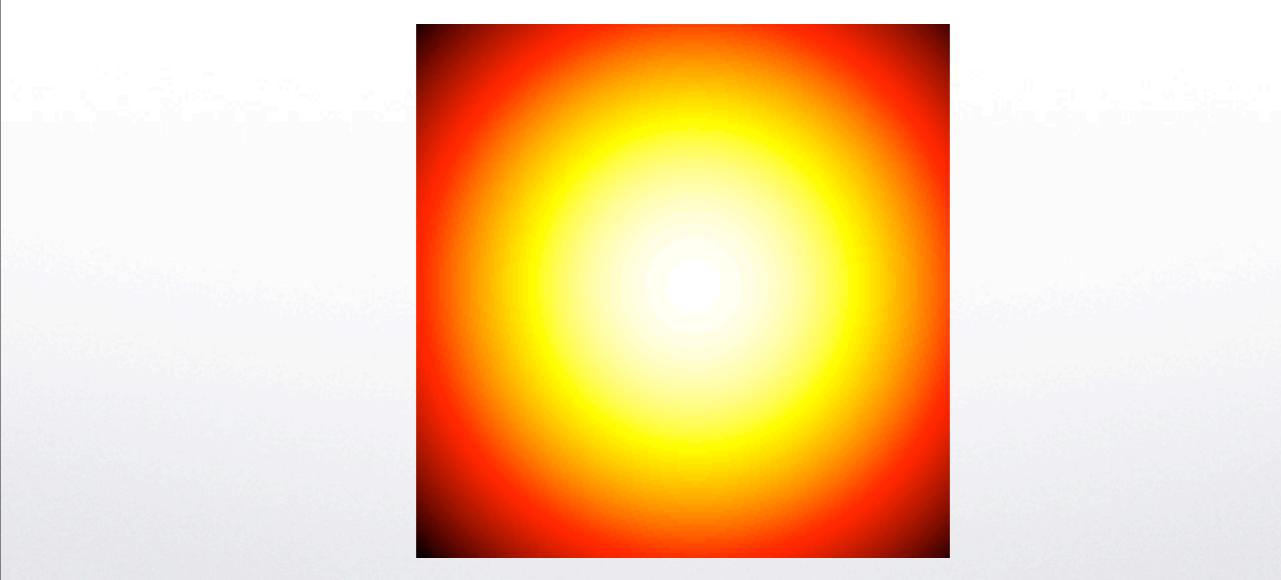


Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

Tuesday, January 27, 2009

Varying the density parameter

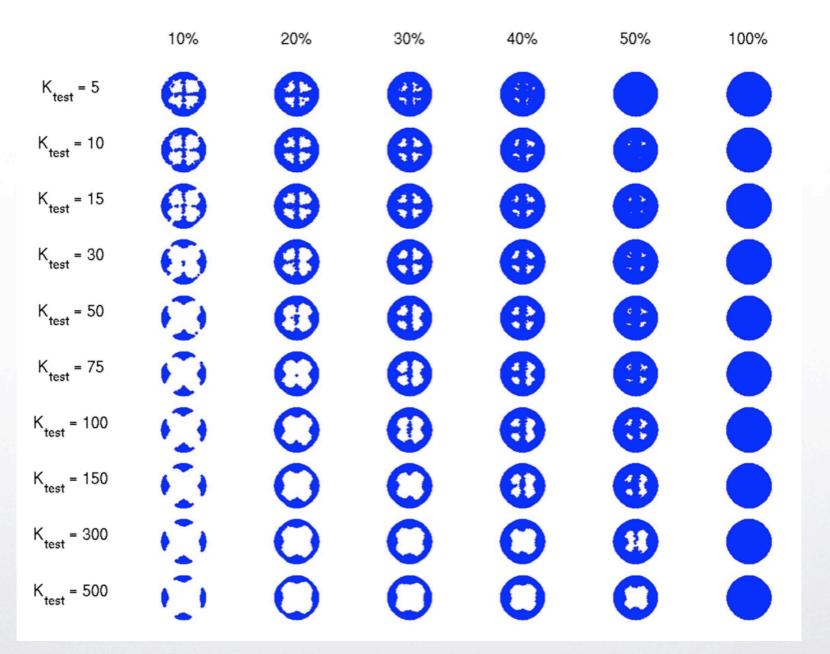
(toy example)



Vin de Silva http://pages.pomona.edu/~vds04747/

 $\langle \neg | \rightarrow \rangle$

Straining a data soup



Vin de Silva http://pages.pomona.edu/~vds04747/

 \leftarrow | \rightarrow

A small platter of cuts

	10%	20%	30%
K=15			
K=100			
K=300			

Vin de Silva http://pages.pomona.edu/~vds04747/

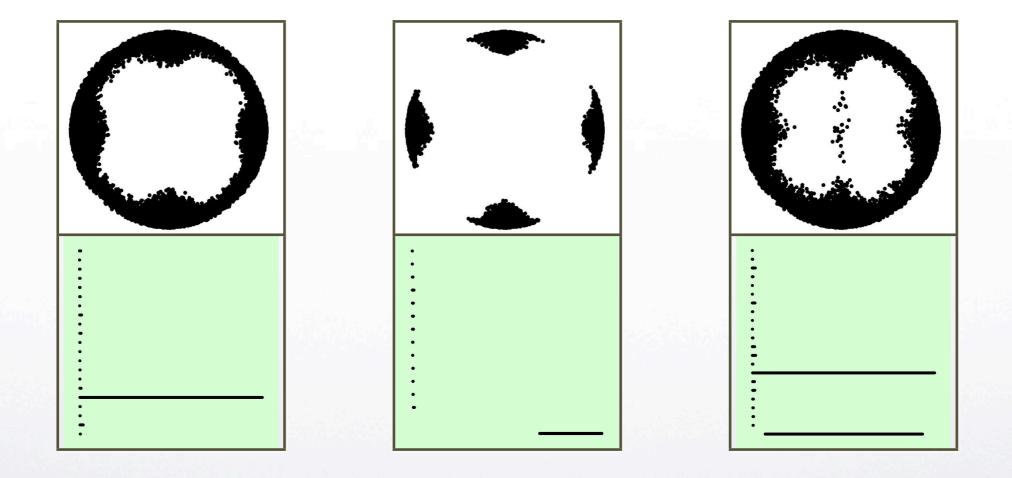
 \leftarrow | \rightarrow

A small platter of cuts

	10%	20%	30%
K=15			
K=100	· · · · · · · · · · · · · · · · · · ·	· • • • • • • • • • • • • • • • • • • •	
K=300			

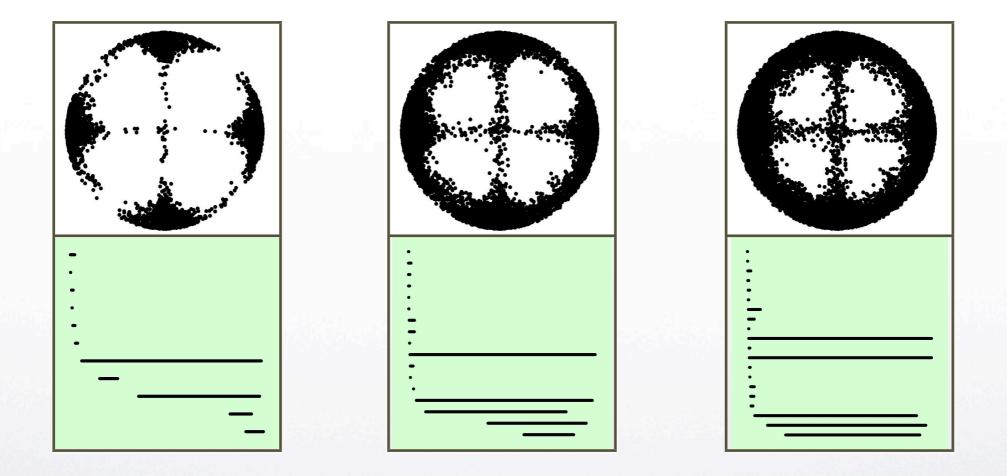
Vin de Silva http://pages.pomona.edu/~vds04747/

(8-dimensional data)

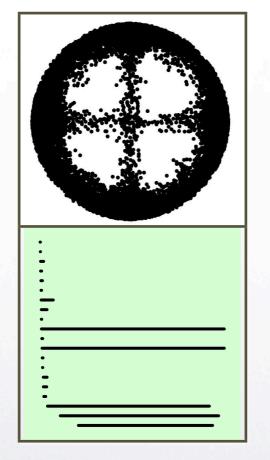


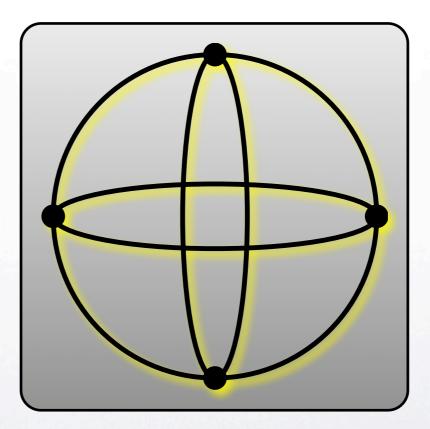
Vin de Silva http://pages.pomona.edu/~vds04747/

(8-dimensional data)



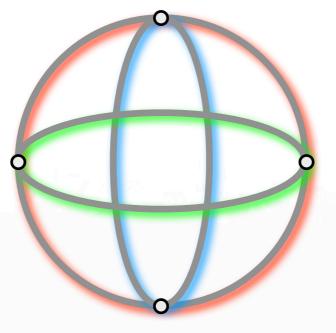
3-circles model



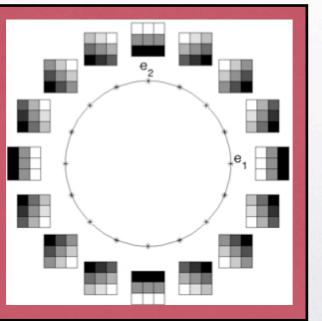


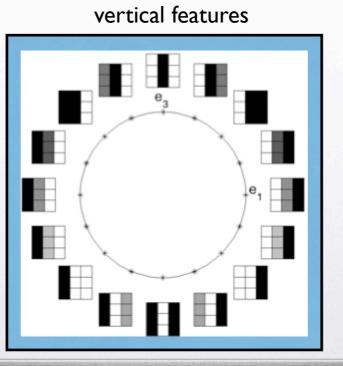
Vin de Silva <u>http://pages.pomona.edu/~vds04747/</u>

3 circles explained

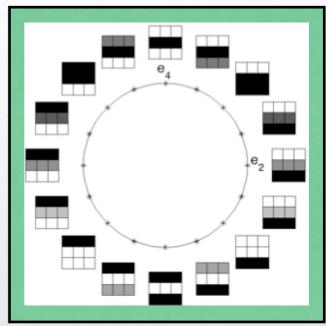


linear gradients





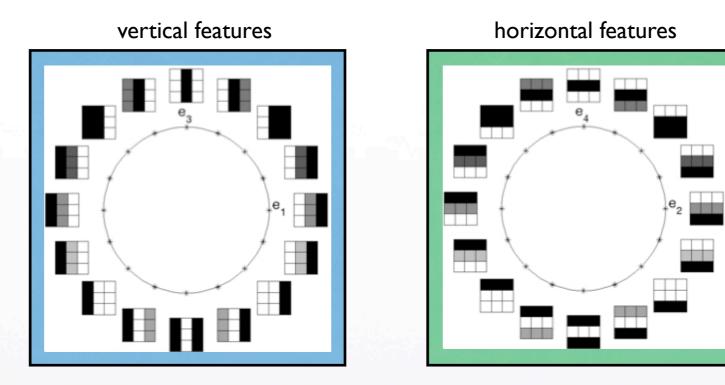
horizontal features



Topology in the 21st Century January 26–27, 2009

Vin de Silva http://pages.pomona.edu/~vds04747/

The secondary circles



Why is there a predominance of vertical/horizontal local features?

Artefact of the square patch shape? Artefact of the natural world?

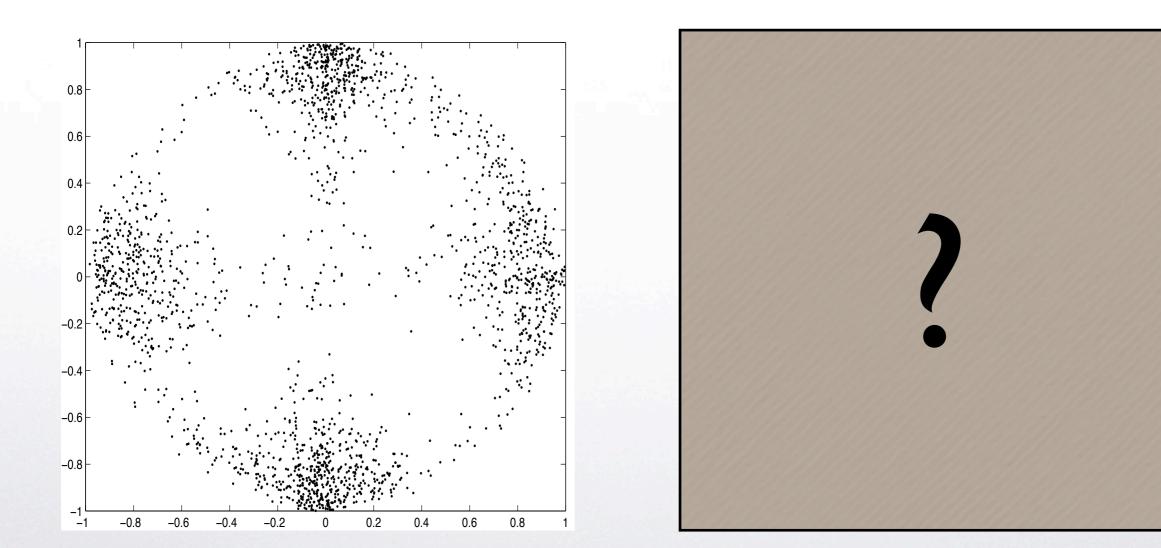
Vin de Silva http://pages.pomona.edu/~vds04747/

 $\Leftrightarrow | \Rightarrow$

Tilting the camera

orthogonal images

diagonal images



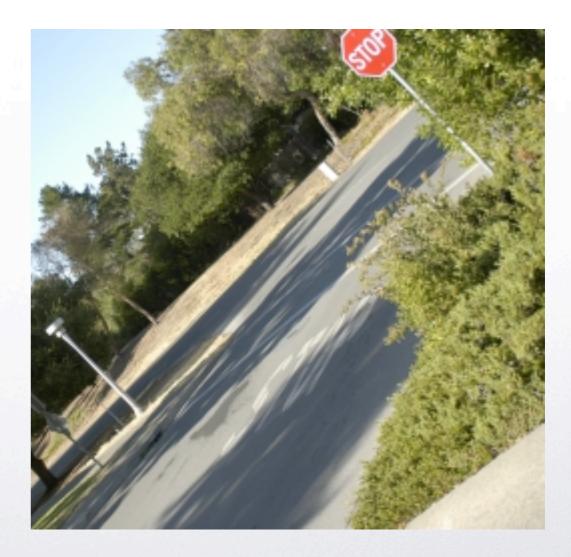
Vin de Silva http://pages.pomona.edu/~vds04747/

 $\langle \neg | \downarrow \rangle$

Tilting the camera

orthogonal images

diagonal images



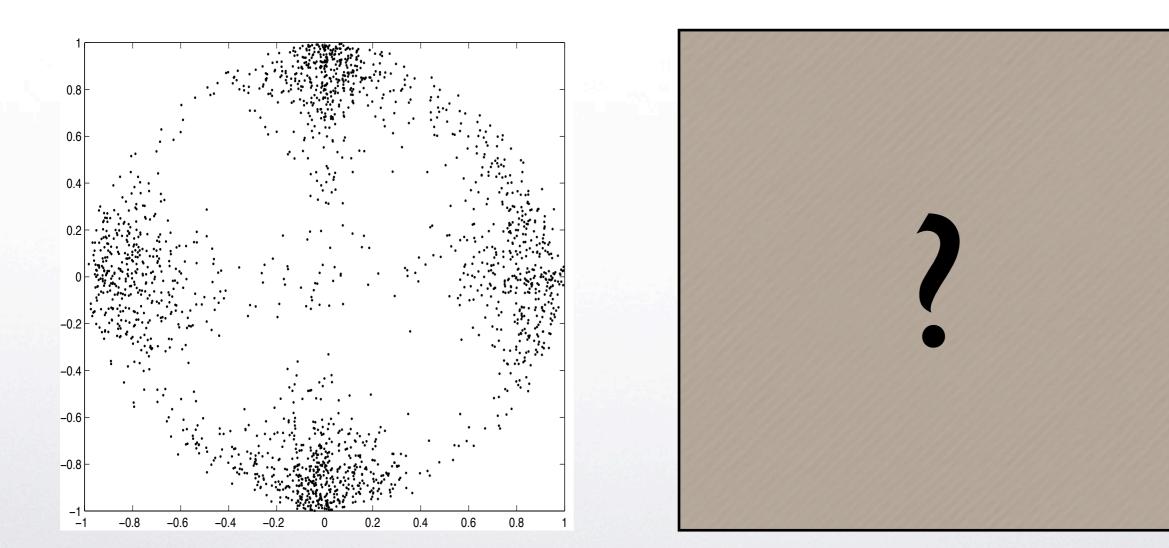
Vin de Silva http://pages.pomona.edu/~vds04747/

 $\Leftrightarrow | \Rightarrow$

Tilting the camera

orthogonal images

diagonal images



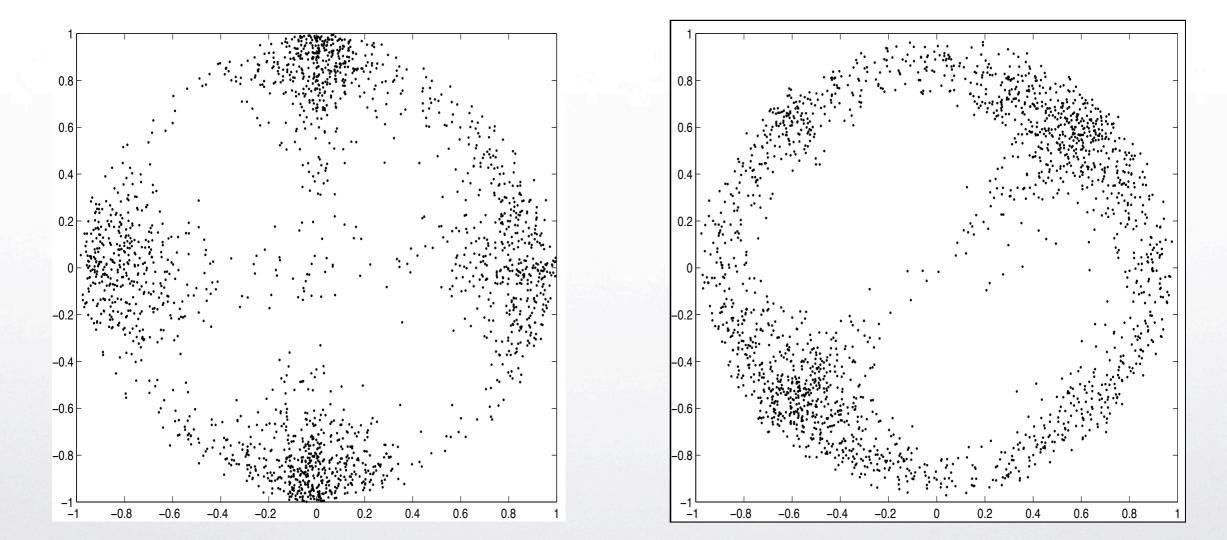
Vin de Silva http://pages.pomona.edu/~vds04747/

 $\langle - | \rightarrow$

Tilting the camera

orthogonal images

diagonal images



Vin de Silva http://pages.pomona.edu/~vds04747/

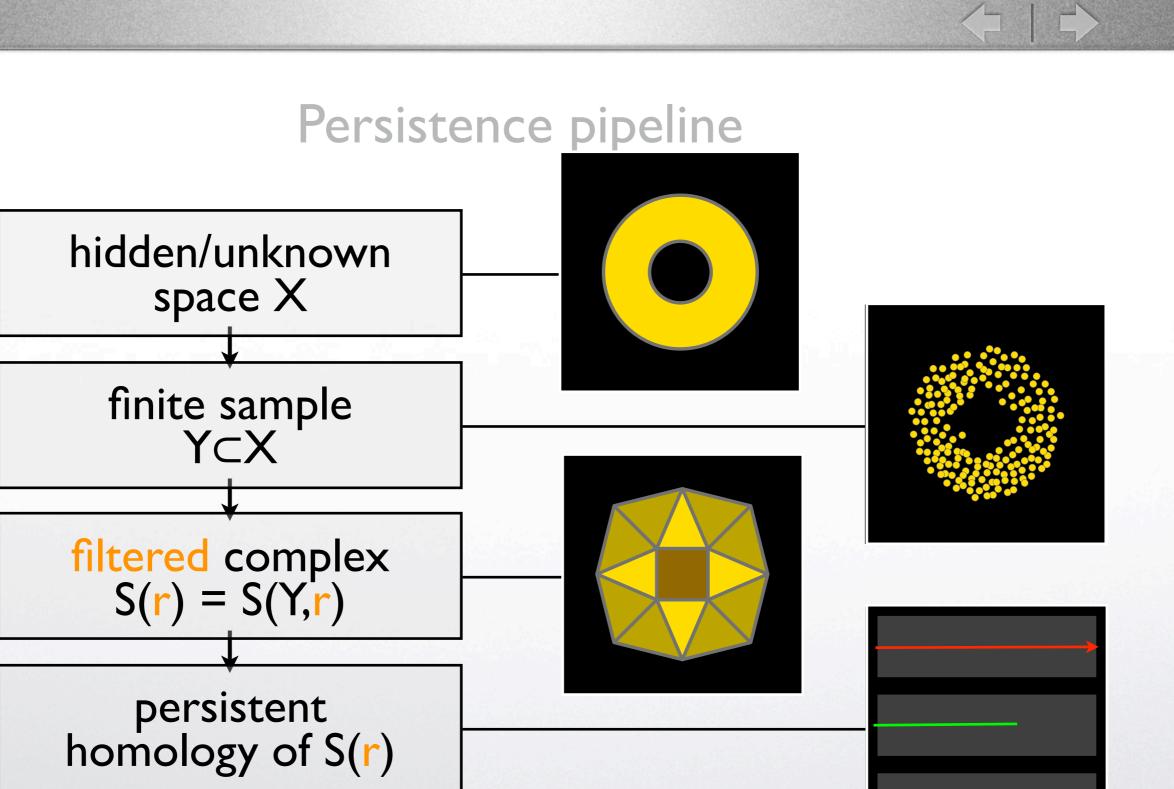
Homogenizing over all tilt angles

- e₁-e₂ circle: arbitrary linear functions ax+by in the image plane.
- e₁-e₃ circle: quadratic functions of x.
- e₃-e₄ circle: quadratic functions of y.
- What about quadratic functions of arbitrary linear functions ax+by?

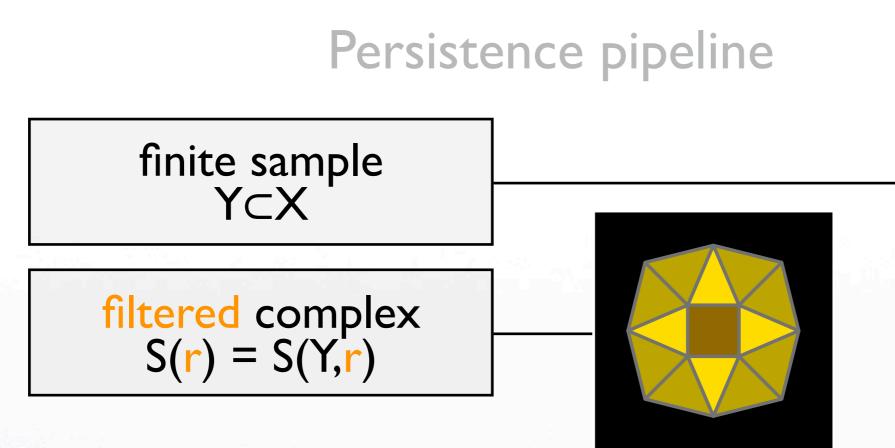
Vin de Silva http://pages.pomona.edu/~vds04747/

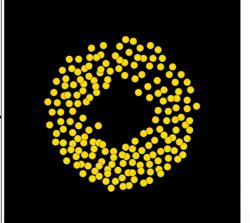
Witness complexes

 $\langle \neg | \rightarrow$



Vin de Silva http://pages.pomona.edu/~vds04747/





Cech complex

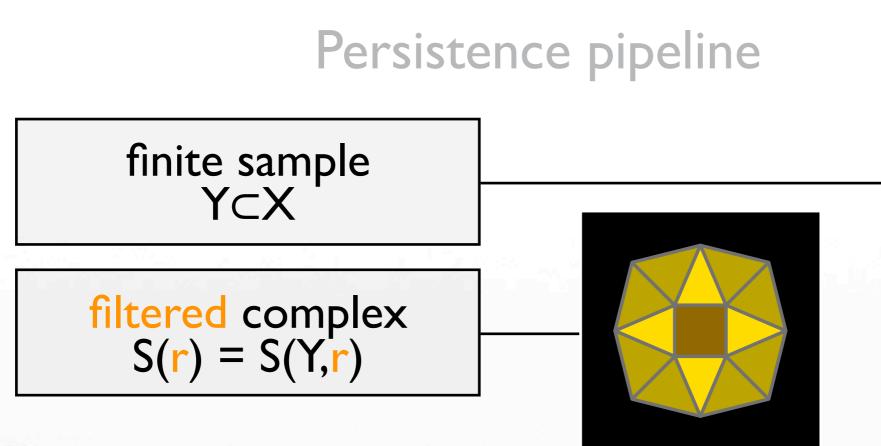
$$\sigma = [a_0, \dots, a_k] \in \check{\operatorname{Cech}}(X, \epsilon) \Leftrightarrow \bigcap_{i=0}^{\kappa} B_{\epsilon}(a_i) \neq \emptyset$$

Rips complex

$$\sigma = [a_0, \dots, a_k] \in \operatorname{Rips}(X, \epsilon) \Leftrightarrow |a_i - a_j| \le \epsilon, \, \forall i, j$$

Vin de Silva http://pages.pomona.edu/~vds04747/

56

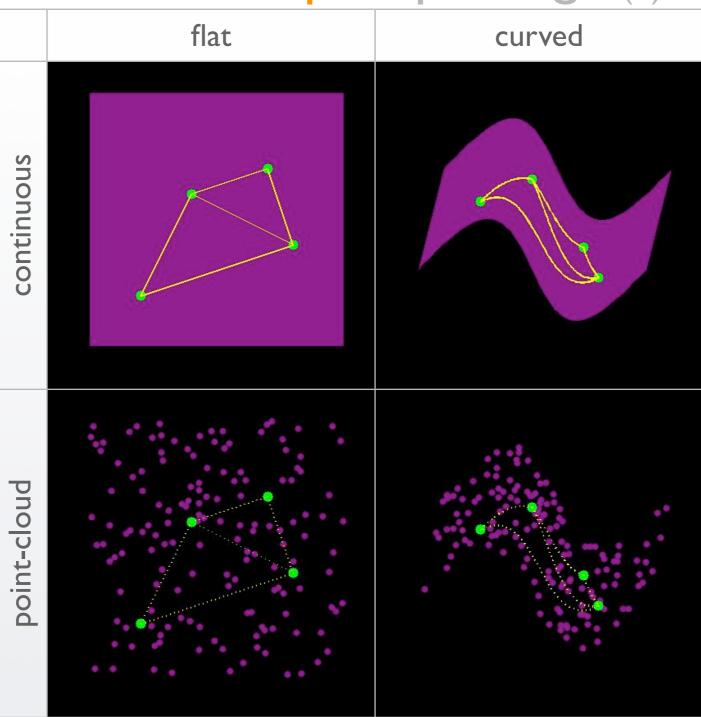


Cech complex

$$\sigma = [a_0, \dots, a_k] \in \operatorname{\check{C}ech}(X, \epsilon) \Leftrightarrow \bigcap_{i=0}^k B_{\epsilon}(a_i) \neq \emptyset$$

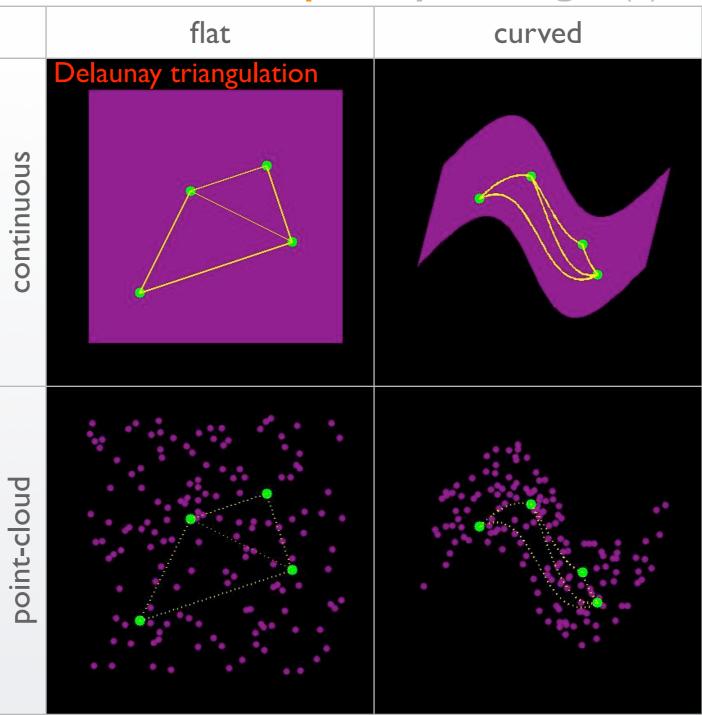
Rips complex

$$\sigma = [a_0, \dots, a_k] \in \operatorname{Rips}(X, \epsilon) \Leftrightarrow |a_i - a_j| \le \epsilon, \, \forall i, j$$



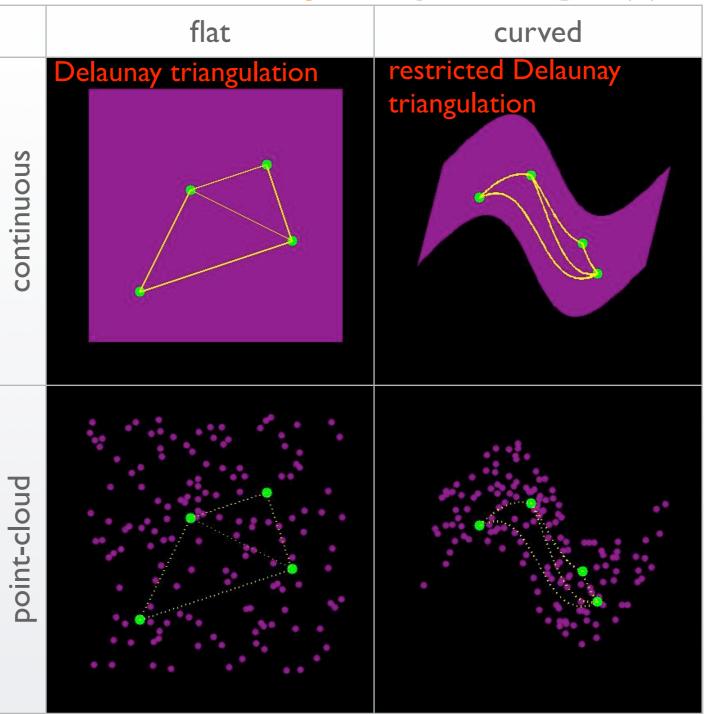
Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

 $\langle \neg | \downarrow \rangle$

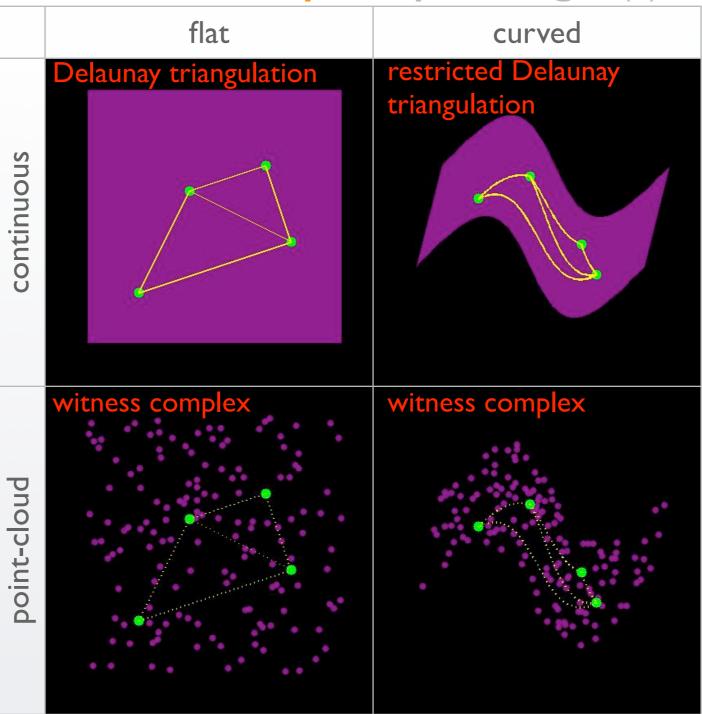


Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

 $\langle \neg | \downarrow \rangle$



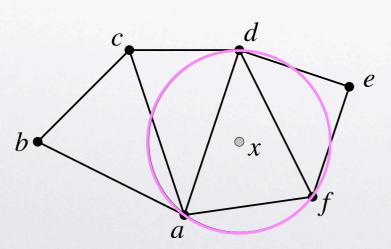
Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

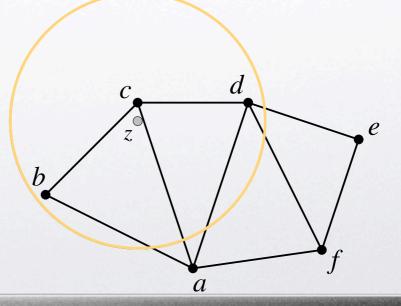


Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

 $\langle \neg | \downarrow \rangle$

- A, X subsets of a metric space
- Strong witnesses
- $x \in X$ is a strong witness for $\sigma \subset A$ $\Leftrightarrow |x-a| \le |x-b|$ for all $a \in \sigma, b \in A$
- Weak witnesses
- $\begin{aligned} x \in X \text{ is a weak witness for } \sigma \subset A \\ \Leftrightarrow \quad |x a| \leq |x b| \quad \text{for all } a \in \sigma, \ b \in A \setminus \sigma \end{aligned}$



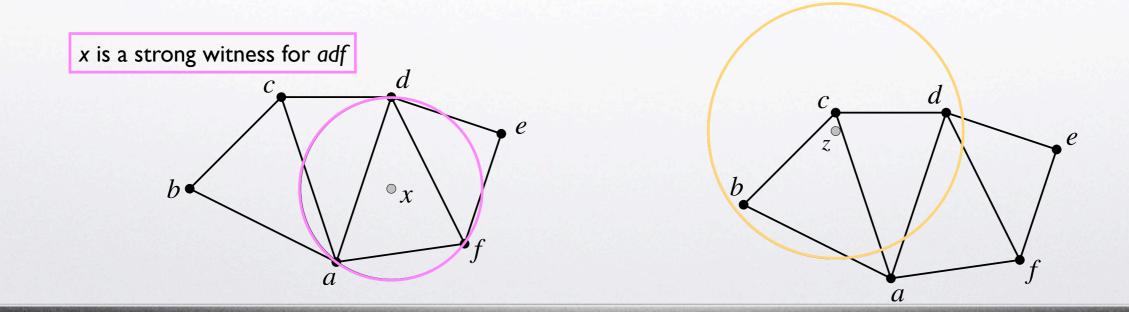


Topology in the 21st Century January 26–27, 2009

Vin de Silva http://pages.pomona.edu/~vds04747/

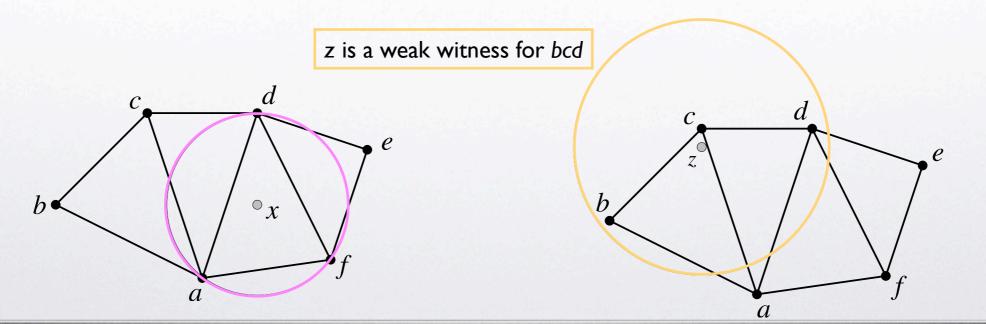
Tuesday, January 27, 2009

- A, X subsets of a metric space
- Strong witnesses
- Weak witnesses
- $x \in X$ is a strong witness for $\sigma \subset A$ $\Leftrightarrow |x-a| \le |x-b|$ for all $a \in \sigma, b \in A$
- $x \in X \text{ is a weak witness for } \sigma \subset A$ $\Leftrightarrow \quad |x - a| \le |x - b| \quad \text{for all } a \in \sigma, \ b \in A \setminus \sigma$



Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

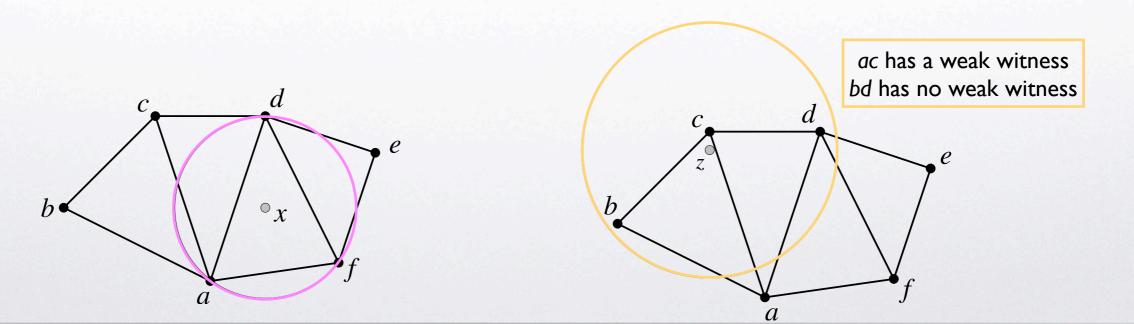
- A, X subsets of a metric space
- Strong witnesses
- $x \in X$ is a strong witness for $\sigma \subset A$ $\Leftrightarrow |x-a| \le |x-b|$ for all $a \in \sigma, b \in A$
- Weak witnesses
- $\begin{aligned} x \in X \text{ is a weak witness for } \sigma \subset A \\ \Leftrightarrow \quad |x a| \leq |x b| \quad \text{for all } a \in \sigma, \ b \in A \setminus \sigma \end{aligned}$



Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

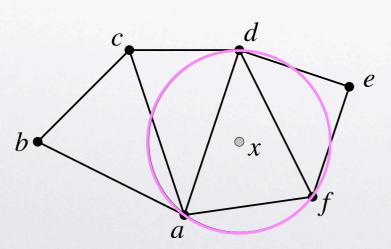
- A, X subsets of a metric space
- Strong witnesses
- $x \in X$ is a strong witness for $\sigma \subset A$ $\Leftrightarrow |x-a| \le |x-b|$ for all $a \in \sigma, b \in A$
- Weak witnesses

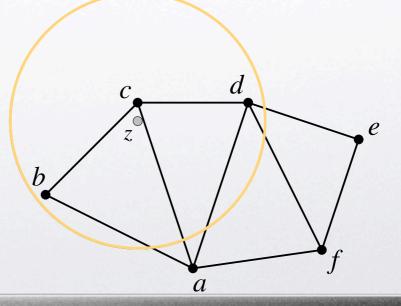
 $x \in X \text{ is a weak witness for } \sigma \subset A$ $\Leftrightarrow \quad |x - a| \le |x - b| \quad \text{for all } a \in \sigma, \ b \in A \setminus \sigma$



Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

- A, X subsets of a metric space
- Strong witnesses
- $x \in X$ is a strong witness for $\sigma \subset A$ $\Leftrightarrow |x-a| \le |x-b|$ for all $a \in \sigma, b \in A$
- Weak witnesses
- $\begin{aligned} x \in X \text{ is a weak witness for } \sigma \subset A \\ \Leftrightarrow \quad |x a| \leq |x b| \quad \text{for all } a \in \sigma, \ b \in A \setminus \sigma \end{aligned}$





Topology in the 21st Century January 26–27, 2009

Vin de Silva http://pages.pomona.edu/~vds04747/

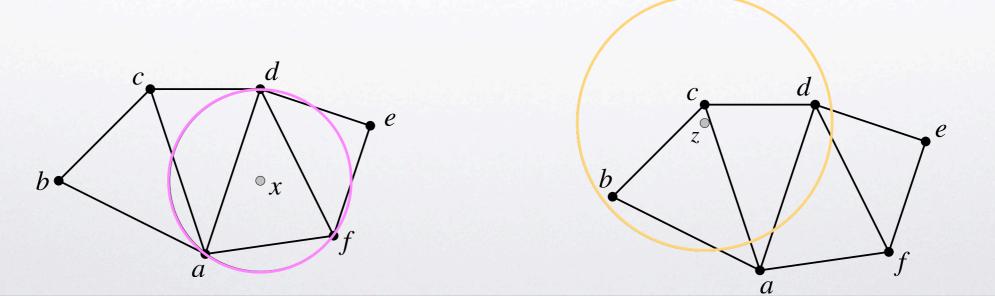
Tuesday, January 27, 2009

- ► A, X subsets of a metric space
- Strong Delaunay complex

 $\sigma \in \text{Del}(A, X) \quad \Leftrightarrow \quad \sigma \text{ has a strong witness } x \in X$

Weak Delaunay complex

 $\sigma \in \mathrm{Del}^{\mathrm{w}}(A, X) \quad \Leftrightarrow \quad \text{every } \tau \leq \sigma \text{ has a weak witness } x \in X$



Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

The weak witnesses theorem

$\mathsf{Del}(\mathsf{A}, \mathbb{R}^n) = \mathsf{Del}^w(\mathsf{A}, \mathbb{R}^n)$

 $S \subseteq A$ has a strong witness

 \Leftrightarrow

every $T \subseteq S$ has a weak witness

\Rightarrow trivial

construct strong witness in convex hull of weak witnesses

Vin de Silva http://pages.pomona.edu/~vds04747/

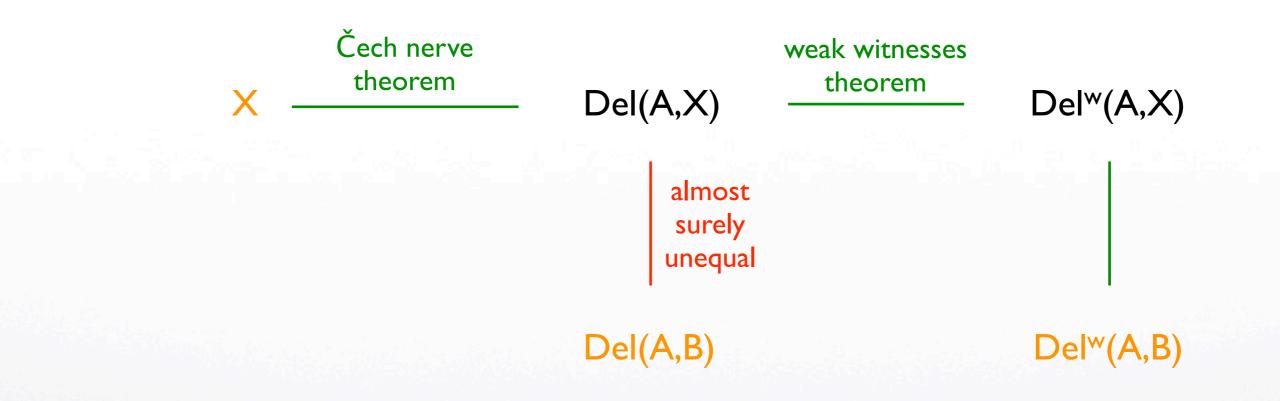
• For $A \subset \mathbf{R}^n$

- Del(A, Rⁿ) = Delaunay triangulation
- Del^w(A, Rⁿ) = Del(A, Rⁿ) weak witnesses theorem

• For $A \subset X \subset \mathbf{R}^n$

- Del(A,X) = restricted Delaunay triangulation
- If $B \subset \mathbb{R}^n$ discrete, choose landmark set $A \subset B$
 - Del(A,B) is called a strong witness complex for B
 - Del^w(A,B) is called a weak witness complex for B

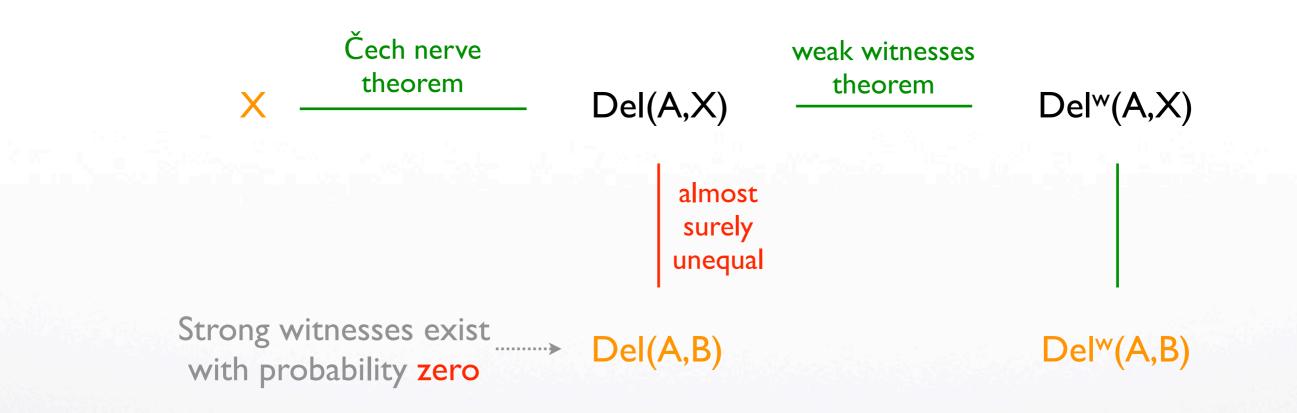
Vin de Silva http://pages.pomona.edu/~vds04747/



Green means "plausibly equal"

Red means "clearly unequal"

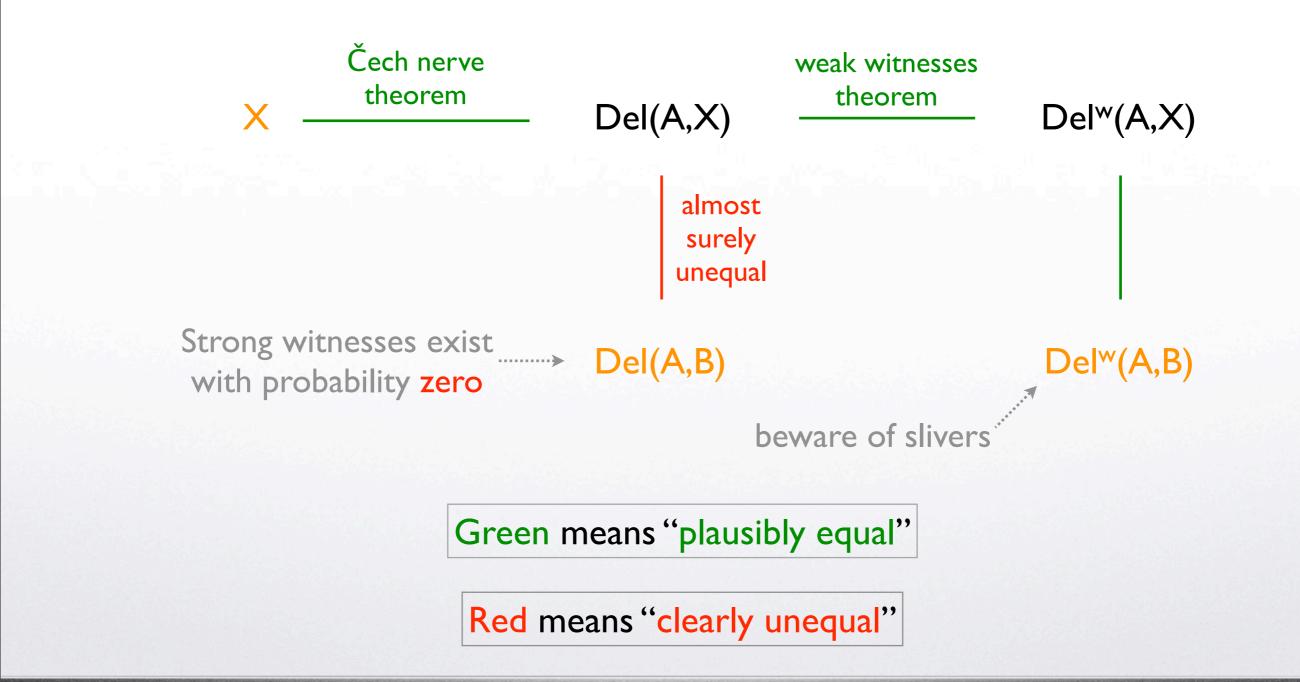
Vin de Silva http://pages.pomona.edu/~vds04747/



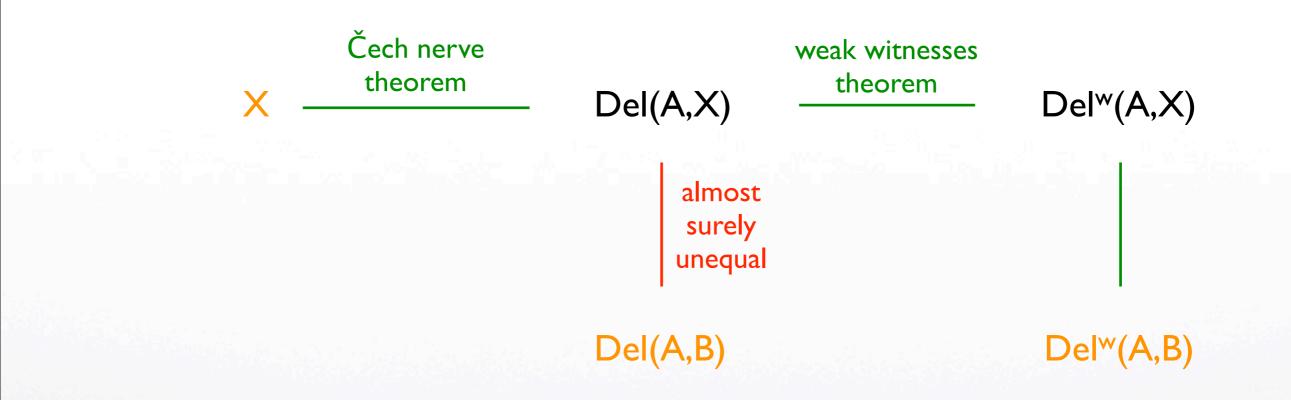
Green means "plausibly equal"

Red means "clearly unequal"

Vin de Silva http://pages.pomona.edu/~vds04747/



Vin de Silva http://pages.pomona.edu/~vds04747/



- Recent theoretical work on X = Del^w(A,B)
 - Attali, Edelsbrunner, Mileyko curves, surfaces
 - Boissonat, Guibas, Oudot sliver exudation, thickened witnesses

Vin de Silva http://pages.pomona.edu/~vds04747/

The weak witnesses theorem

$Del(A, \mathbb{R}^n) = Del^w(A, \mathbb{R}^n)$

 $S \subseteq A$ has a strong witness

 \Leftrightarrow

every $T \subseteq S$ has a weak witness

\Rightarrow trivial

construct strong witness in convex hull of weak witnesses

Vin de Silva http://pages.pomona.edu/~vds04747/

Voronoi convexity

Under the following assumptions...

- topological space X, set A
- ► $\forall x, y \in X, \exists \text{ connected } \gamma(x, y) \ni x, y$
- ▶ $\forall a \in A, \exists$ continuous function d(a,x)
- ▶ $\forall x, y \in X$, the Voronoi half-space

 $R(a,b) = \{x \in X \mid d(a,x) \le d(b,x)\}$

is γ -convex (i.e. closed under γ)

...it follows that $Del(A,X) = Del^{w}(A,X)$

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

Voronoi convexity

Under the following assumptions...

- topological space X, set A
- Variation of {x,y}
 ∀x,y ∈ X, ∃ connected γ(x,y) ∋ x,y
- $\forall a \in A, \exists$ continuous function d(a,x)
- $\forall x, y \in X$, the Voronoi half-space

 $\mathsf{R}(\mathsf{a},\mathsf{b}) = \{\mathsf{x} \in \mathsf{X} \mid \mathsf{d}(\mathsf{a},\mathsf{x}) \leq \mathsf{d}(\mathsf{b},\mathsf{x})\}$

is γ -convex (i.e. closed under γ)

...it follows that $Del(A,X) = Del^{w}(A,X)$

Vin de Silva http://pages.pomona.edu/~vds04747/

Examples

- Voronoi convexity is satisfied by:
 - $A \subset X = \mathbb{R}^n$, d(a,x) = |a-x| = geodesic metric
 - $A \subset X = \frac{1}{2}S^n$ (hemisphere), d(a,x) = geodesic metric
 - A ⊂ X = Hⁿ (hyperbolic space), d(a,x) = geodesic metric
 - $A \subset X = T$ (tree), d(a,x) = geodesic metric
 - $A \subset X = \mathbb{R}^{p,q}$, $d(a,x) = |a-x|^2 = Minkowski square norm$
 - $A \subset X = \mathbb{R}^{p,q}$, d(a,x) = a*x = Minkowski inner product
 - ► $X = \mathbb{R}^n, A \subset \mathbb{R}^n \times \mathbb{R}, d((a,c),x) = a.x c$ (linear inequalities)

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

í BÌ

Laguerre diagrams

Weight schemes satisfying Voronoi convexity

Euclidean

 $D(a, w(a), x) = \frac{1}{2}|a-x|^2 - w(a)$

Spherical (restrict to hemisphere)

 $D(a, w(a), x) = -e^{w(a)} \cos(\theta(a, x))$

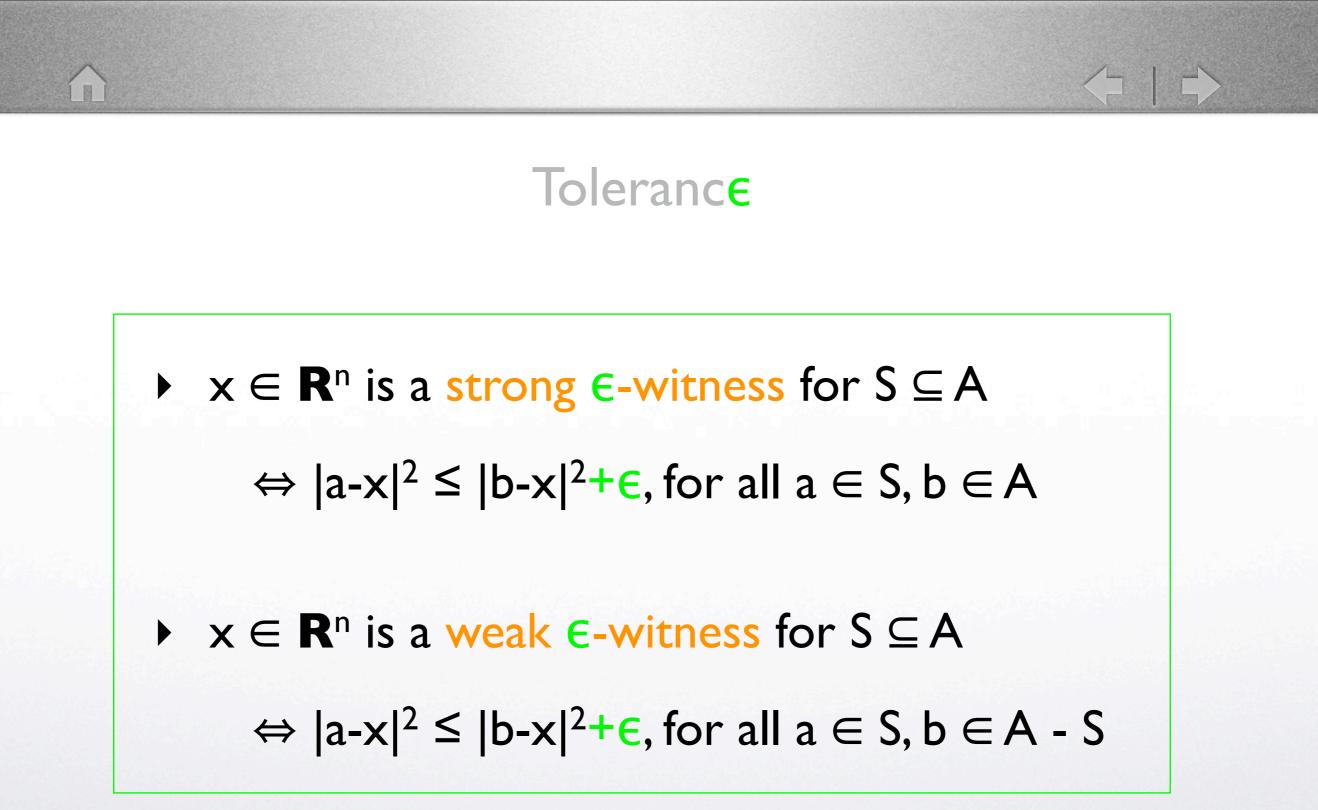
Hyperbolic

 $D(a, w(a), x) = e^{-w(a)} \cosh(u(a, x))$

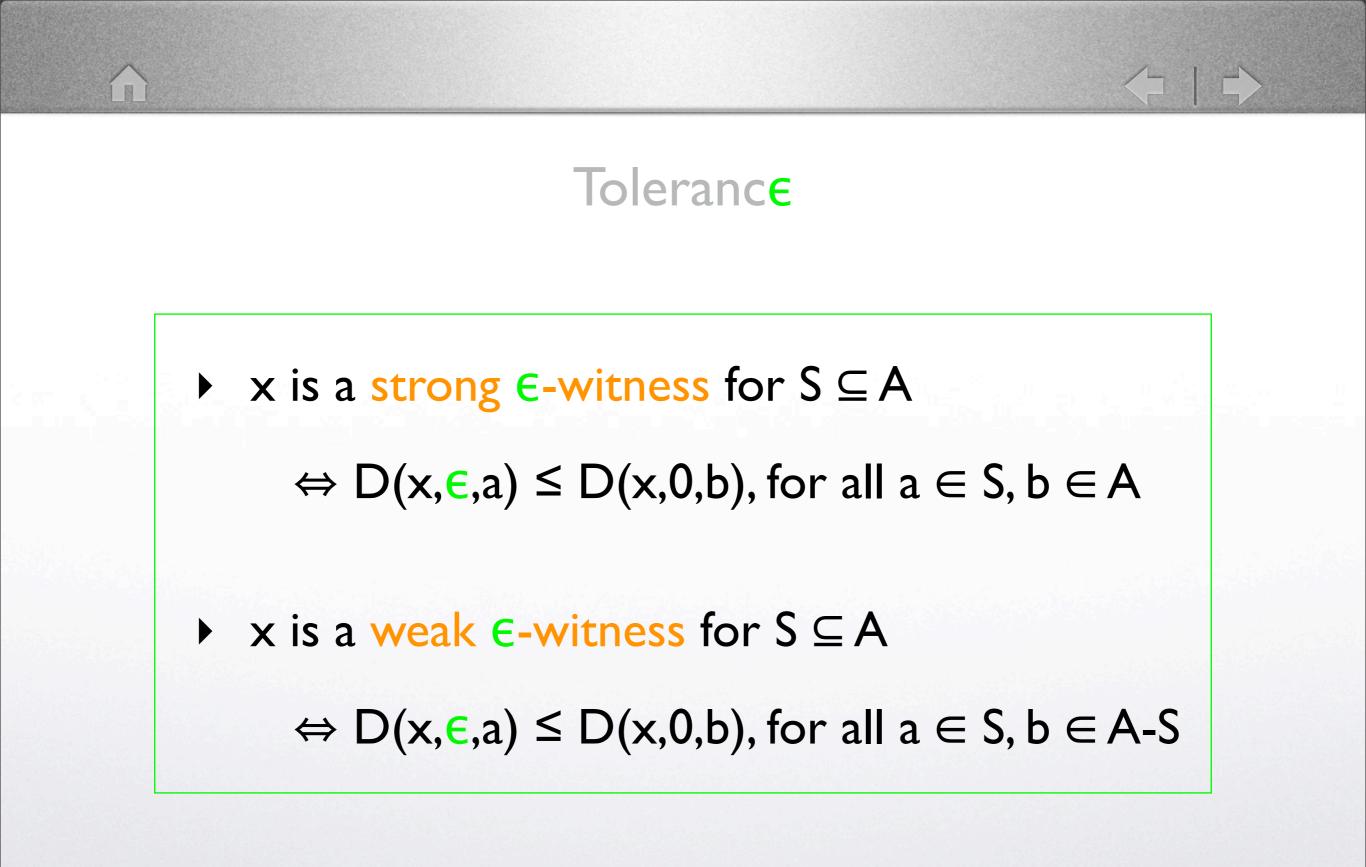
Inequalities $D(a,w(a),x) \le D(b,w(b),x)$ define half-spaces

(Spherical Laguerre diagrams due to Sugihara, 2002)

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009



Vin de Silva http://pages.pomona.edu/~vds04747/



Vin de Silva http://pages.pomona.edu/~vds04747/

Tolerance

Laguerre weights in Euclidean, spherical, hyperbolic spaces

• x is a strong \in -witness for $S \subseteq A$

 $\Leftrightarrow D(x, \epsilon, a) \leq D(x, 0, b)$, for all $a \in S, b \in A$

x is a weak ∈-witness for S ⊆ A
 ⇔ D(x,∈,a) ≤ D(x,0,b), for all a ∈ S, b ∈ A-S

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

E-witness compexes

- strong E-witness complex
 - $S \in Del(A, X; \epsilon) \Leftrightarrow S$ has a strong ϵ -witness in X
- weak E-witness complex
 - $S \in \text{Del}^{w}(A,X;\varepsilon) \Leftrightarrow \text{every } T \subseteq S \text{ has a weak } \varepsilon\text{-witness in } X$

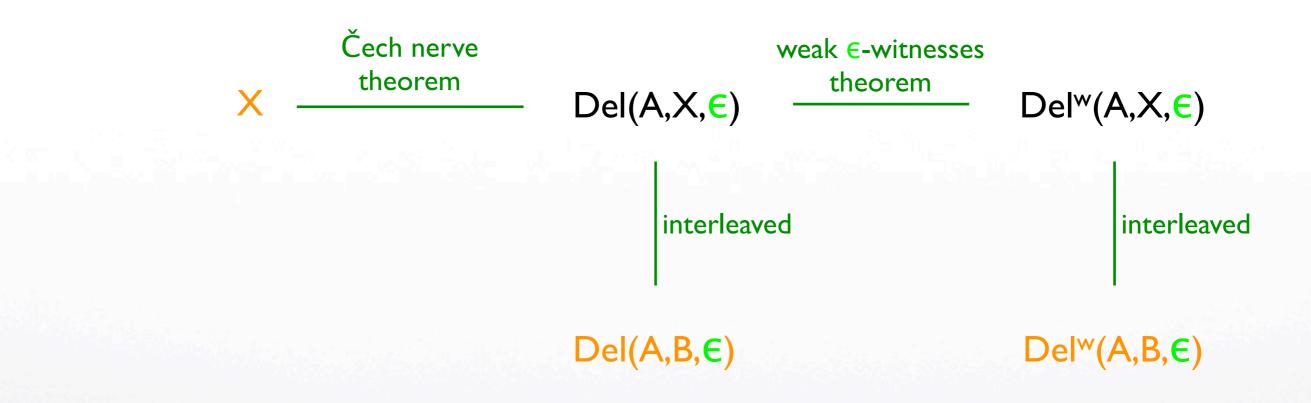
Vin de Silva http://pages.pomona.edu/~vds04747/

E-witness compexes

Filtered complexes for persistent homology

- strong E-witness complex
 - $S \in Del(A, X; \epsilon) \Leftrightarrow S$ has a strong ϵ -witness in X
- weak E-witness complex
 - $S \in Del^{w}(A,X;\varepsilon) \Leftrightarrow every T \subseteq S$ has a weak ε -witness in X

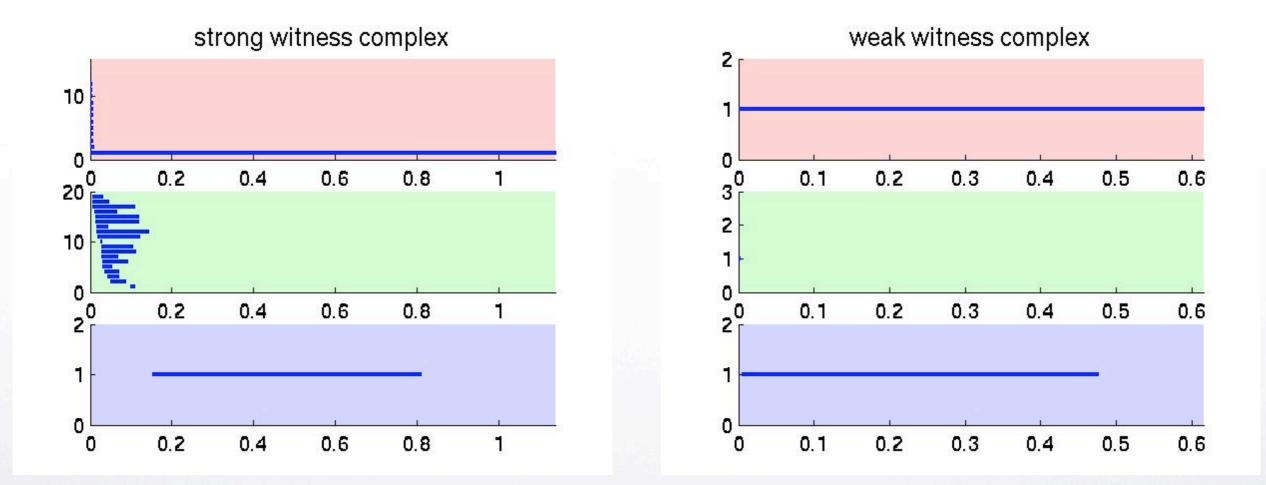
Witness complex $paradigm_{(\epsilon)}$



Green means "plausibly equal"

Vin de Silva http://pages.pomona.edu/~vds04747/

Comparing strong and weak



Data points sampled from 2-sphere

Vin de Silva http://pages.pomona.edu/~vds04747/

And the Oscar goes to ...

Witness Complexes -- Mumford Dataset Vin de Silva & Gunnar Carlsson

Vin de Silva http://pages.pomona.edu/~vds04747/

Tuesday, January 27, 2009

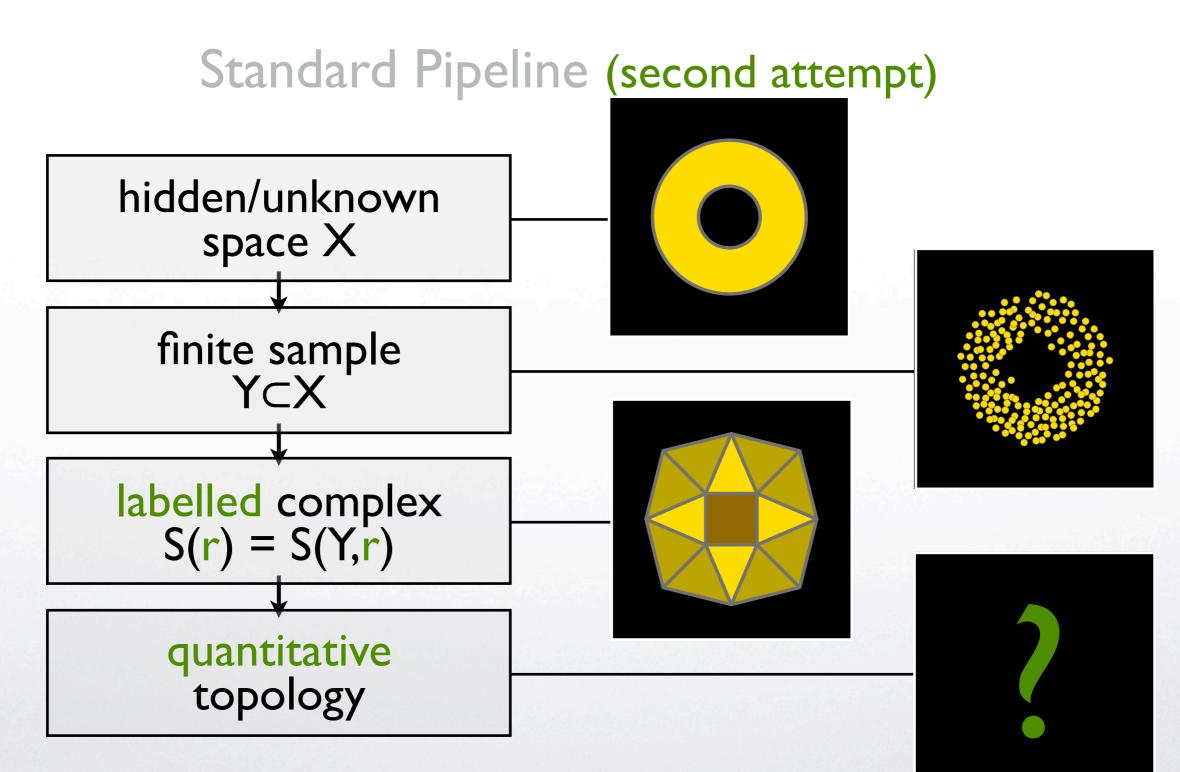
Tuesday, January 27, 2009

Topology in the 21st Century

Vin de Silva Pomona College

Discrete Laplacians

 $\langle \neg | \rightarrow$



78

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

The discrete Laplacian Δ_k

- $C_k = \{ \text{ real-valued functions on } k \text{-simplices of } S(Y) \}$
 - floating point rather than exact arithmetic
- Define discrete Laplacian operators $\Delta_k : C_k \rightarrow C_k$
- Consider the harmonic spaces $H_k = Ker(\Delta_k)$
 - $\blacktriangleright \hspace{0.1in} H_k \hspace{0.1in} is \hspace{0.1in} isomorphic \hspace{0.1in} to \hspace{0.1in} standard \hspace{0.1in} homology \hspace{0.1in} of \hspace{0.1in} X$
- Consider eigenspaces { f : Δ_kf = λf } for λ small
 "almost homology" or "ε-homology"
- Information derived from the ranks of these spaces (Betti numbers) and the eigenfunctions themselves

Vin de Silva http://pages.pomona.edu/~vds04747/

Constructing Δ_k

Given a chain complex over the real numbers...

$$\cdots C_{k-1} \xleftarrow{\partial_k} C_k \xleftarrow{\partial_k} C_{k+1} \cdots$$

homology is defined using a chain complex

...and an inner product on each C_k , we can form the dual cochain complex:

$$\cdots C_{k-1} \xrightarrow{\partial_k^*} C_k \xrightarrow{\partial_k^*} C_{k+1} \cdots$$

cohomology is defined using a cochain complex

The discrete Laplacian is defined...

$$\Delta_k = \partial_k^* \partial_k + \partial_{k+1} \partial_{k+1}^*$$

...and one can easily prove (in the finite dimensional case):

harmonic space
$$\mathcal{H}_k := \operatorname{Ker}(\Delta_k) \cong rac{\operatorname{Ker}(\partial_k)}{\operatorname{Im}(\partial_{k+1})} =: H_k$$
 homology

For a 3-dimensional domain:

$$\Omega^{0} \xrightarrow{\nabla} \Omega^{1} \xrightarrow{\nabla \times} \Omega^{2} \xrightarrow{\nabla \cdot} \Omega^{3}$$
$$\Omega^{0} \xleftarrow{-\nabla \cdot} \Omega^{1} \xleftarrow{\nabla \times} \Omega^{2} \xleftarrow{-\nabla} \Omega^{3}$$

For example:

$$\begin{aligned} \Delta_0 f &:= \nabla \cdot (\nabla f) &= -\sum_{i=1}^3 \frac{\partial^2 f}{\partial x_i^2} \\ \Delta_0 \vec{g} &:= \nabla \times (\nabla \times \vec{g}) - \nabla (\nabla \cdot \vec{g}) &= -\sum_{i=1}^3 \frac{\partial^2 \vec{g}}{\partial x_i^2} \end{aligned}$$

Proof that $Ker(\Delta_k) = H_k$ is much more difficult in this setting.

Vin de Silva http://pages.pomona.edu/~vds04747/

81

Topology in the 21st Century January 26–27, 2009

For a 3-dimensional domain:

For example:

$$\Delta_0 f := \nabla \cdot (\nabla f) = -\sum_{i=1}^3 \frac{\partial^2 f}{\partial x_i^2}$$

$$\Delta_0 \vec{g} := \nabla \times (\nabla \times \vec{g}) - \nabla (\nabla \cdot \vec{g}) = -\sum_{i=1}^3 \frac{\partial^2 \vec{g}}{\partial x_i^2}$$

Proof that $Ker(\Delta_k) = H_k$ is much more difficult in this setting.

Vin de Silva http://pages.pomona.edu/~vds04747/

81

Topology in the 21st Century January 26–27, 2009

For a 3-dimensional domain:

For example:

$$\begin{aligned} \Delta_0 f &:= \nabla \cdot (\nabla f) &= -\sum_{i=1}^3 \frac{\partial^2 f}{\partial x_i^2} \\ \Delta_0 \vec{g} &:= \nabla \times (\nabla \times \vec{g}) - \nabla (\nabla \cdot \vec{g}) &= -\sum_{i=1}^3 \frac{\partial^2 \vec{g}}{\partial x_i^2} \end{aligned}$$

Proof that $Ker(\Delta_k) = H_k$ is much more difficult in this setting.

requires analysis in spaces of smooth functions for lemmas of the form $Ker(D)=Im(D^*)^{\perp}$

For a 3-dimensional domain:

For example:

$$\begin{aligned} \Delta_0 f &:= \nabla \cdot (\nabla f) &= -\sum_{i=1}^3 \frac{\partial^2 f}{\partial x_i^2} \\ \Delta_0 \vec{g} &:= \nabla \times (\nabla \times \vec{g}) - \nabla (\nabla \cdot \vec{g}) &= -\sum_{i=1}^3 \frac{\partial^2 \vec{g}}{\partial x_i^2} \end{aligned}$$

Proof that $Ker(\Delta_k) = H_k$ is much more difficult in this setting.

requires analysis in spaces of smooth functions for lemmas of the form $Ker(D)=Im(D^*)^{\perp}$ result not true for subsets of Euclidean space! only for closed manifolds

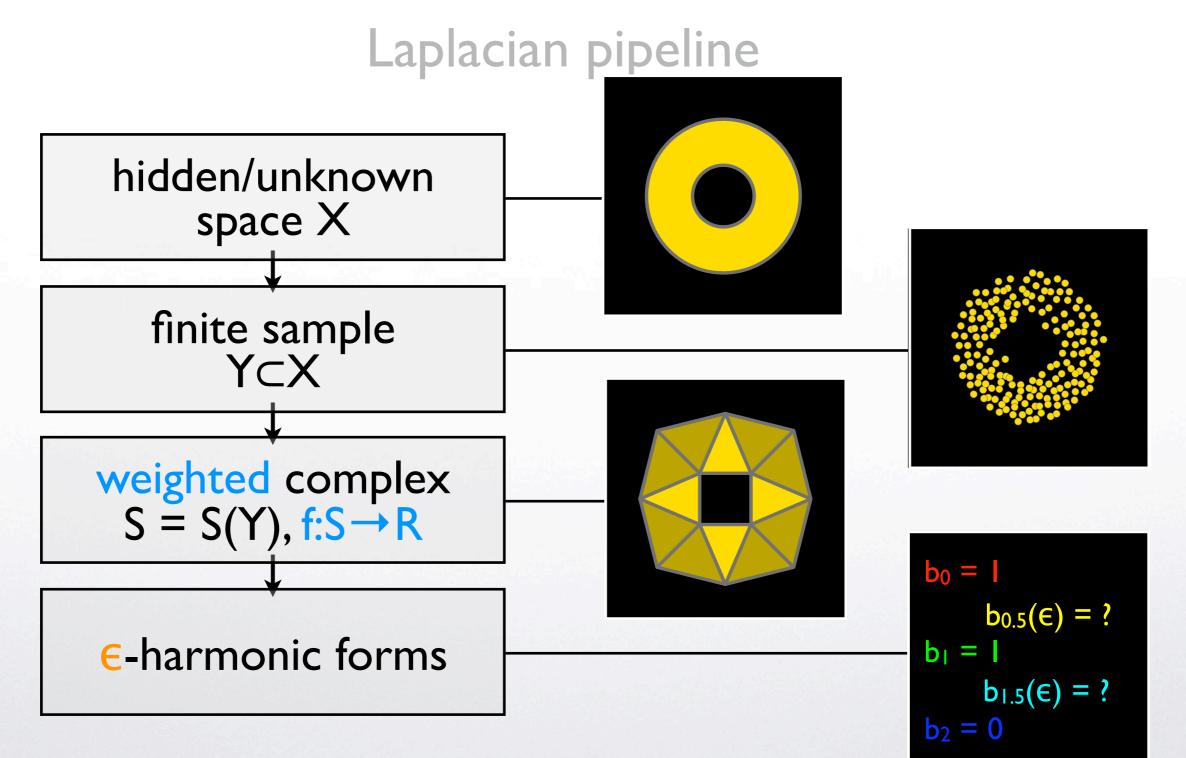
E-Betti numbers

```
For every nonnegative integer k, and \epsilon > 0:
Integers b<sub>k</sub> "Betti numbers"
Integers b<sub>k+1/2</sub>(\epsilon) "\epsilon-Betti numbers"
such that:
```

 $dim(Ker(\Delta_k)) = b_k$ $dim(Eig(\Delta_k, \epsilon)) = b_{k-\frac{1}{2}}(\epsilon) + b_k + b_{k+\frac{1}{2}}(\epsilon)$

space spanned by eigenfunctions with eigenvalue less than E

Vin de Silva http://pages.pomona.edu/~vds04747/



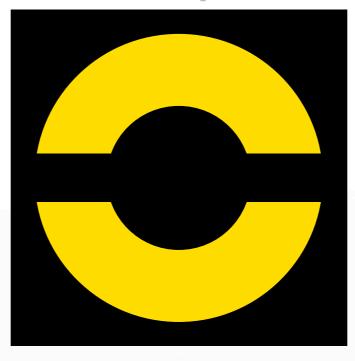
83

Vin de Silva http://pages.pomona.edu/~vds04747/

Pros and cons

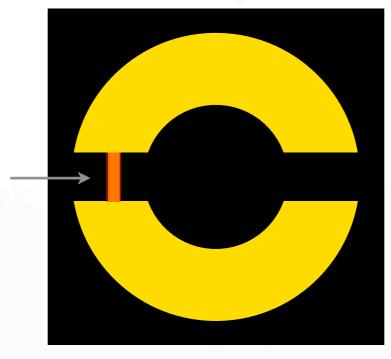
- Several ways to incorporate continuous parameters
 - meaning of " λ is close to zero" how close?
 - simplices can be weighted prior to construction of Δ_k
- Harmonic cycles have global optimality properties
 - localising features/minimal cycle problem
- Non-zero eigenfunctions encode subtle relationships between cells of adjacent dimensions
- Numerically more vulnerable than persistent homology
- X Theory somewhat underdeveloped
 - ▶ (except graph Laplacians, see "Spectral Graph Theory" by Chung ✓)
 - ▶ (recent work on high-dimensional spanning "trees" by Jeremy Martin et al ✓)

Examples



b ₀	b _{0.5} (€)	bı	b _{1.5} (ε)	b ₂
2	0	0	0	0

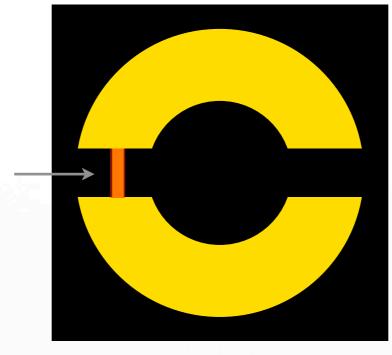
Examples



hot spot for 1-chain j, where $\Delta_1 j = \lambda j$

b ₀	b _{0.5} (€)	bı	b1.5(ε)	b ₂
I		0	0	0

Examples

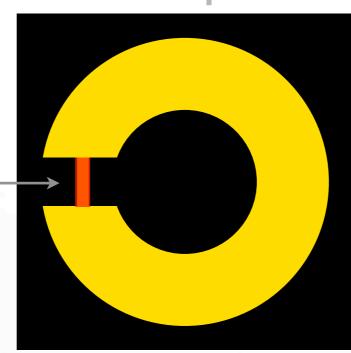


hot spot for 1-chain j, where $\Delta_1 j = \lambda j$

b ₀	b _{0.5} (€)	bı	b₁.₅(€)	b ₂
I		0	0	0

Examples

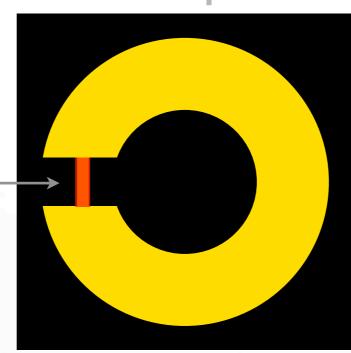
hot spot for 1-cycle j, where $\Delta_1 j = 0$



bo	b _{0.5} (€)	bı	b _{1.5} (ε)	b ₂
Ι	0		0	0

Examples

hot spot for 1-cycle j, where $\Delta_1 j = 0$

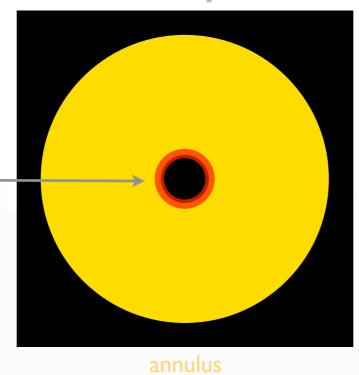


b ₀	b _{0.5} (€)	bı	b _{1.5} (ε)	b ₂
I	0		0	0

Vin de Silva http://pages.pomona.edu/~vds04747/

Examples

hot spot for 1-cycle j, where $\Delta_1 j = 0$



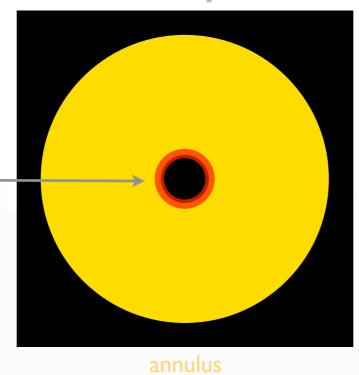
 b_0 $b_{0.5}(\epsilon)$ b_1 $b_{1.5}(\epsilon)$ b_2

 I
 0
 I
 0
 0

88

Examples

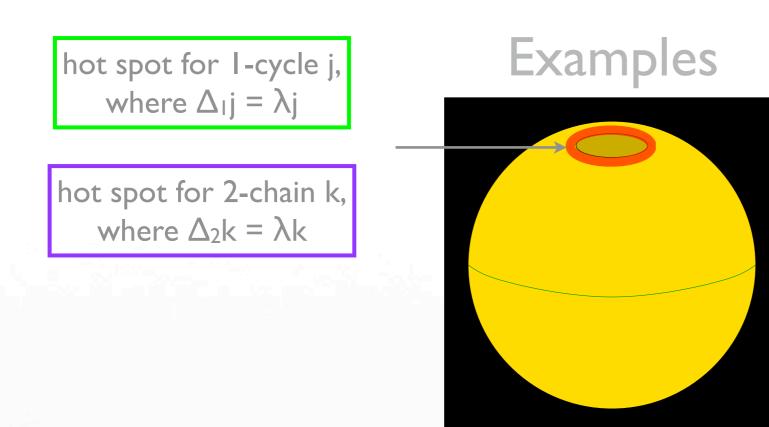
hot spot for 1-cycle j, where $\Delta_1 j = 0$



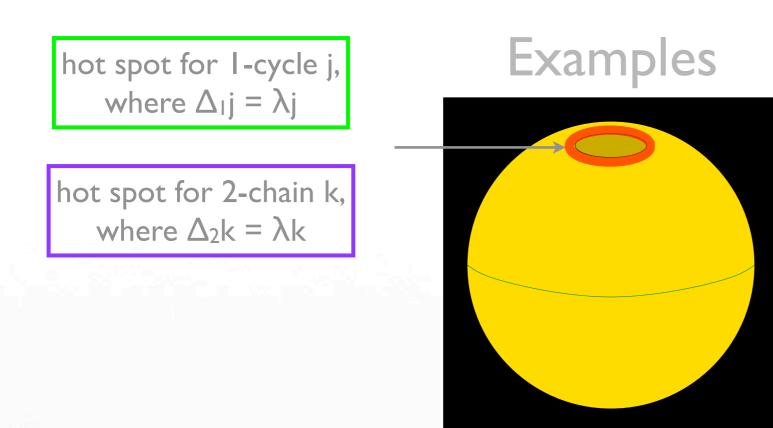
 b_0 $b_{0.5}(\epsilon)$ b_1 $b_{1.5}(\epsilon)$ b_2

 I
 0
 I
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

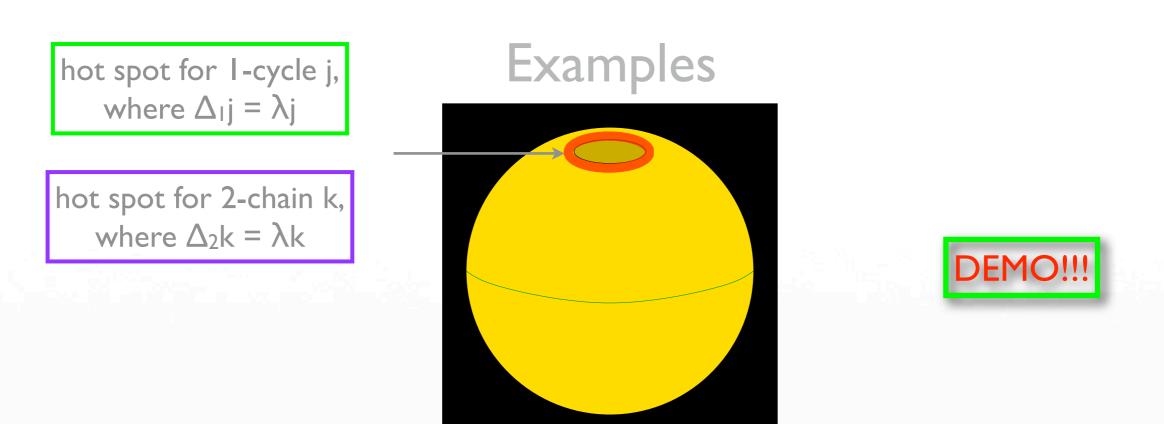
88



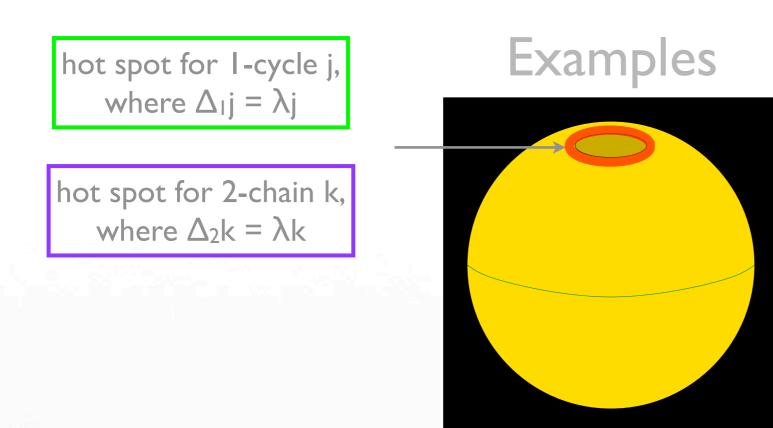
b ₀	b _{0.5} (€)	bı	b₁.5(€)	b ₂
I	0	0		0



b ₀	b _{0.5} (€)	bı	b₁.₅(€)	b ₂
	0	0		0



b ₀	b _{0.5} (€)	bı	b _{1.5} (ε)	b 2
	0	0		0



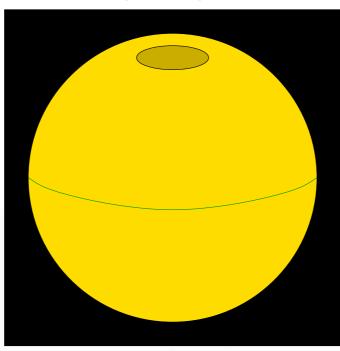
b ₀	b _{0.5} (€)	bı	b₁.₅(€)	b ₂
	0	0		0

Examples



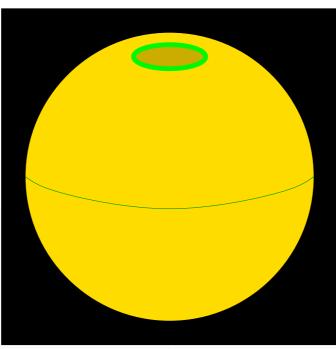
sphere

b ₀	b _{0.5} (€)	bı	b1.5(E)	b ₂
	0	0	0	



punctured sphere

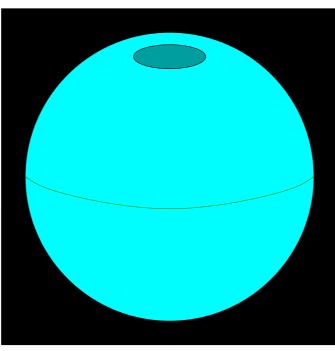
Vin de Silva http://pages.pomona.edu/~vds04747/



punctured sphere

A I-D cycle which is a boundary (but only just)

Vin de Silva http://pages.pomona.edu/~vds04747/

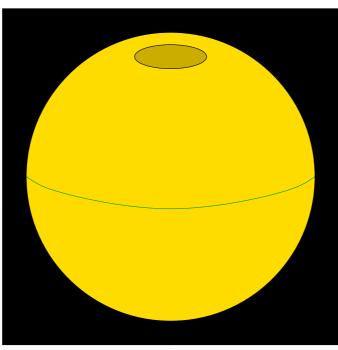


punctured sphere

A I-D cycle which is a boundary (but only just)

A 2-D chain which is almost (but not quite) closed

Vin de Silva http://pages.pomona.edu/~vds04747/



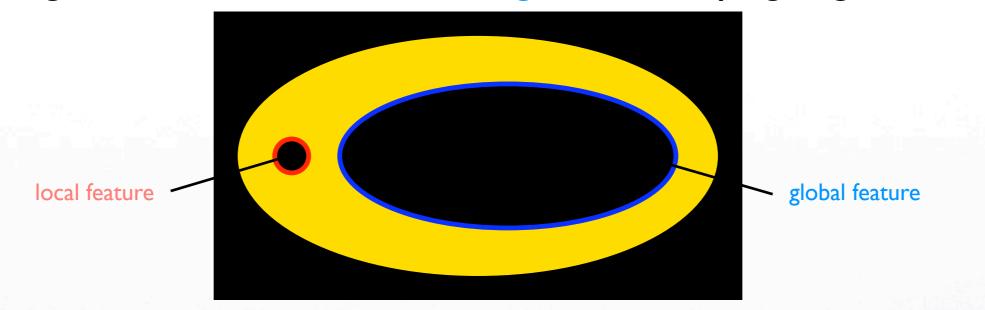
punctured sphere

A I-D cycle which is a boundary (but only just)

A 2-D chain which is almost (but not quite) closed

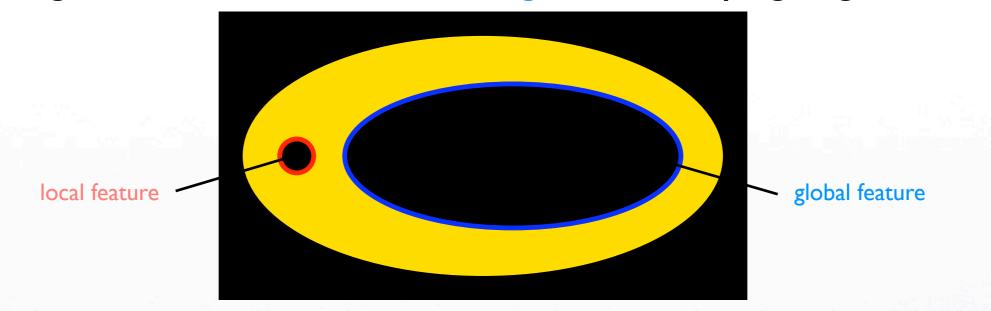
Vin de Silva http://pages.pomona.edu/~vds04747/

Homological features can be local or global to varying degrees:



This example has a 2-dimensional space of harmonic 1-forms. Can we pick out 1-forms representing the two features?

Homological features can be local or global to varying degrees:



This example has a 2-dimensional space of harmonic 1-forms. Can we pick out 1-forms representing the two features?

95

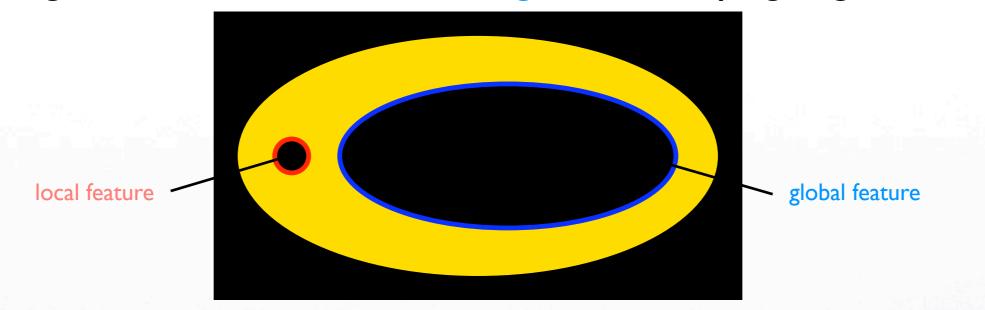
persistent homology can do this very easily



Topology in the 21st Century January 26–27, 2009

Vin de Silva http://pages.pomona.edu/~vds04747/

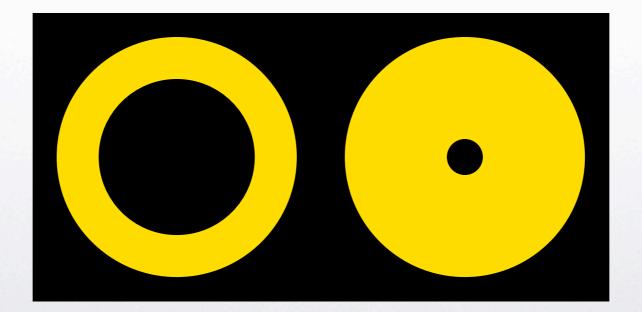
Homological features can be local or global to varying degrees:



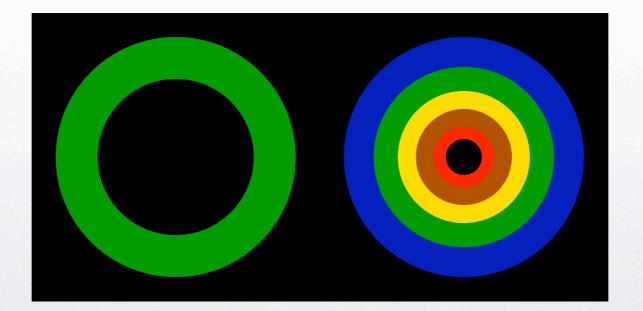
This example has a 2-dimensional space of harmonic 1-forms. Can we pick out 1-forms representing the two features?

Concentration

- Heuristic arguments suggest that harmonic cycles concentrate energy...
 - ...weakly along global features
 - ...strongly along local features



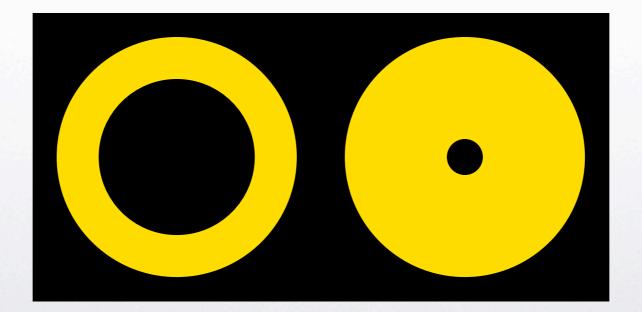
- Heuristic arguments suggest that harmonic cycles concentrate energy...
 - ...weakly along global features
 - ...strongly along local features



Vin de Silva http://pages.pomona.edu/~vds04747/

Concentration

- Heuristic arguments suggest that harmonic cycles concentrate energy...
 - ...weakly along global features
 - ...strongly along local features



Entropy & L^p comparison

- How to detect whether a cycle is highly concentrated in some region?
- Some measure of entropy is called for
 - high entropy \leftrightarrow flat distribution \leftrightarrow global feature
 - low entropy \leftrightarrow peaked distribution \leftrightarrow local feature
- Simple estimate: compare L¹ and L² norms
 - ► E[f] := ||f||₁ / ||f||₂
 - ► E[f] large ↔ global feature
 - ► E[f] small ↔ local feature

Entropy & L^p comparison

- How to detect whether a cycle is highly concentrated in some region?
- Some measure of entropy is called for
 - high entropy \leftrightarrow flat distribution \leftrightarrow global feature
 - low entropy \leftrightarrow peaked distribution \leftrightarrow local feature
- Simple estimate: compare L¹ and L² norms
 - ► E[f] := ||f||₁ / ||f||₂
 - ► E[f] large ↔ global feature
 - ► E[f] small ↔ local feature

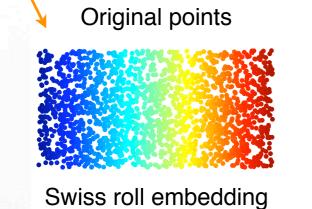
Cohomology and S¹-functions

Joint work with Mikael Vejdemo-Johansson

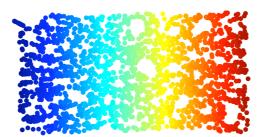
Nonlinear Dimensionality Reduction

unknown: linear parameter space

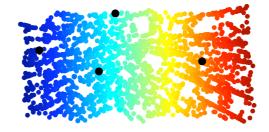
(II)

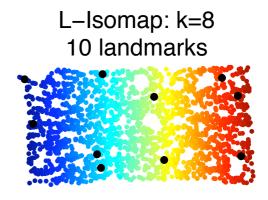


Isomap: k=8



L–Isomap: k=8 4 landmarks



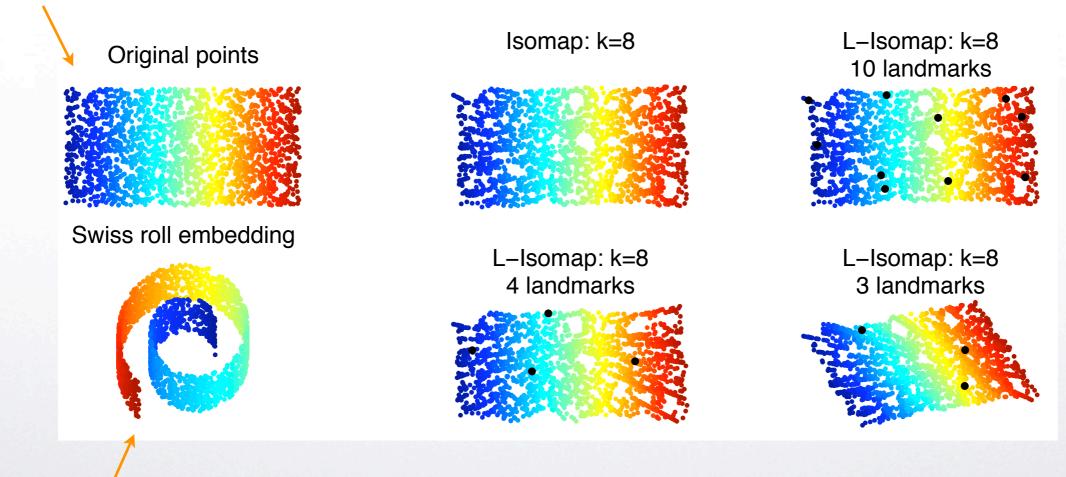


L–Isomap: k=8 3 landmarks

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

Nonlinear Dimensionality Reduction

unknown: linear parameter space



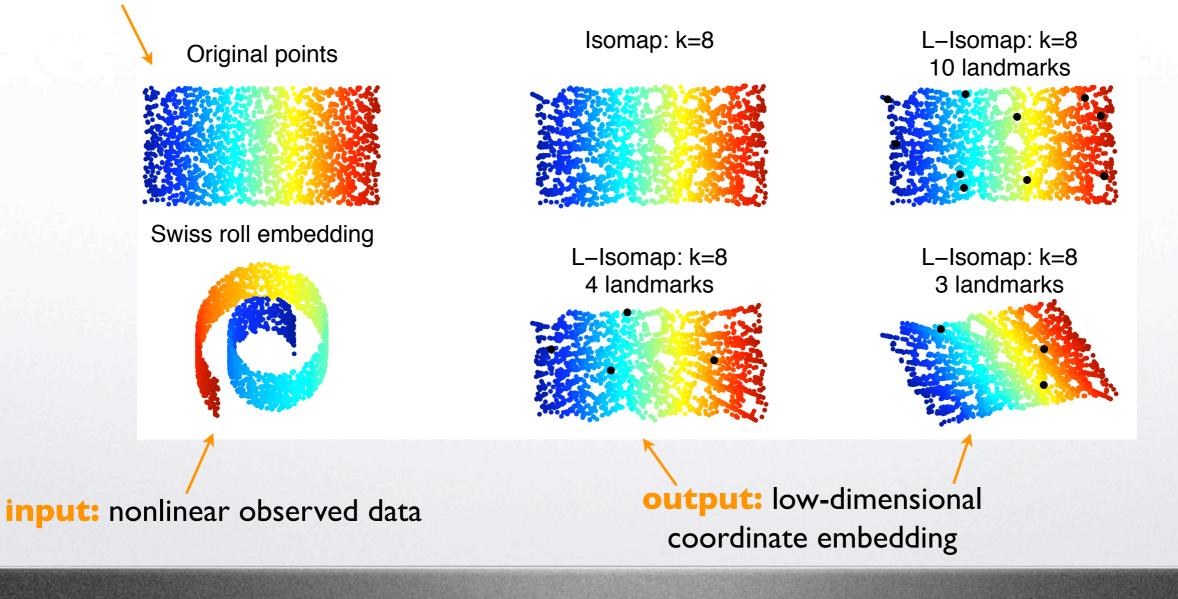
input: nonlinear observed data

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

lsomap (etc)

Nonlinear Dimensionality Reduction

unknown: linear parameter space



Vin de Silva http://pages.pomona.edu/~vds04747/

Vin de Silva http://pages.pomona.edu/~vds04747/

NLDR techniques

Beginning December 2000:

- Isomap (Tenenbaum, dS, Langford)
- LLE (Roweis, Saul)
- Laplacian Eigenmaps (Belkin, Niyogi)
- Hessian Eigenmaps (Donoho, Grimes)
- ...
- Goal: find useful real-valued coordinate functions on data
 - Most effective when data lie on the image of a convex region
 - Nontrivial topology typically causes problems

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

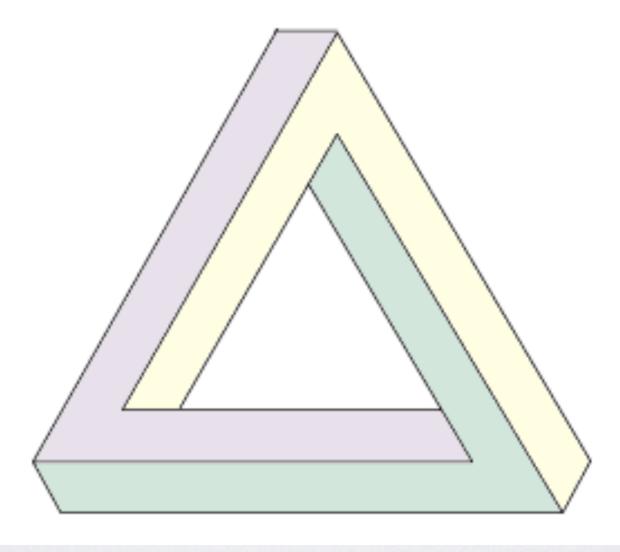
- Beginning December 2000:
 - Isomap (Tenenbaum, dS, Langford)
 - LLE (Roweis, Saul)
 - Laplacian Eigenmaps (Belkin, Niyogi)
 - Hessian Eigenmaps (Donoho, Grimes)
 - ...
- Goal: find useful real-valued coordinate functions on data
 - Most effective when data lie on the image of a convex region
 - Nontrivial topology typically causes problems

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

- Beginning December 2000:
 - Isomap (Tenenbaum, dS, Langford)
 - LLE (Roweis, Saul)
 - Laplacian Eigenmaps (Belkin, Niyogi)
 - Hessian Eigenmaps (Donoho, Grimes)
 - ...
- Goal: find useful real-valued coordinate functions on data
 - Most effective when data lie on the image of a convex region
 - Nontrivial topology typically causes problems

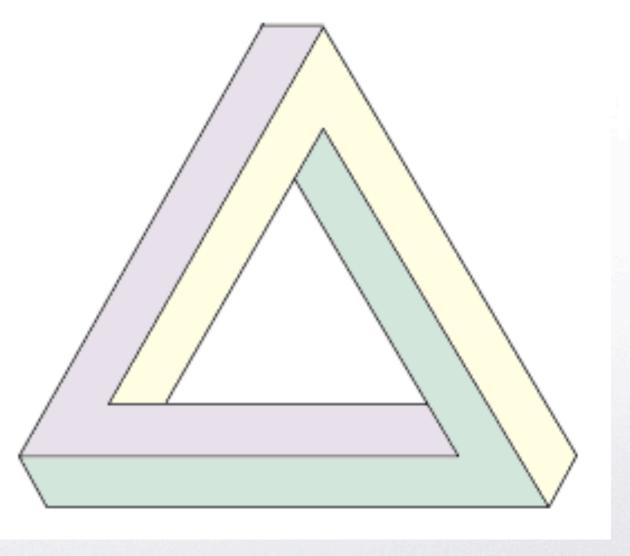
What about circle-valued coordinates? $\vartheta_i : X \rightarrow S^1$

An idea of Penrose...



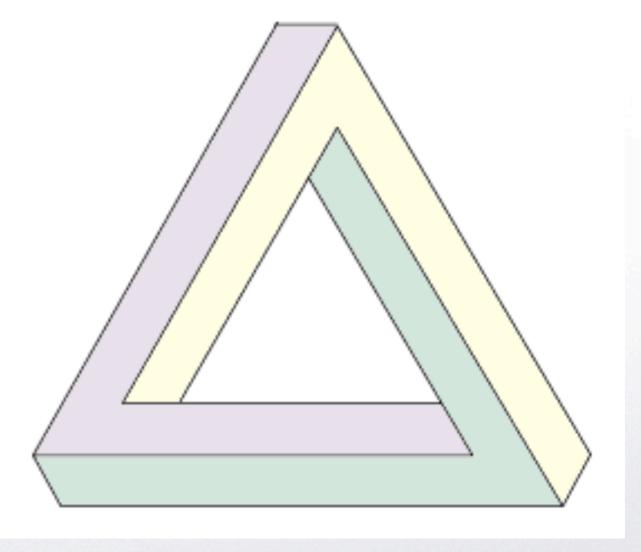
Vin de Silva http://pages.pomona.edu/~vds04747/

- What is the depth function f(x)?
- f(x)-f(y) is locally consistently defined.
- There is no global f(x).



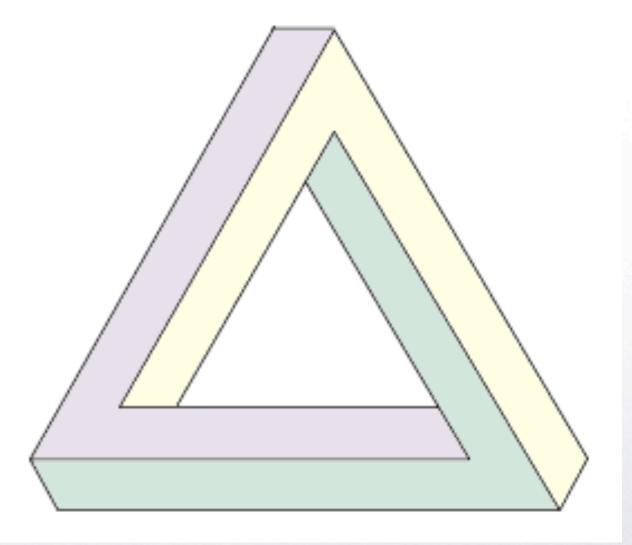
Topology in the 21st Century January 26–27, 2009

- What is the depth function f(x)?
- f(x)-f(y) is locally consistently defined.
- There is no global f(x).



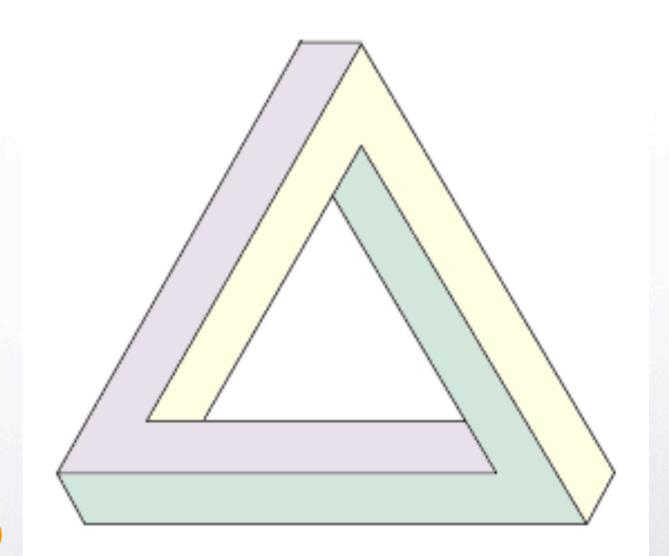
Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

- What is the depth function f(x)?
- f(x)-f(y) is locally consistently defined.
- There is no global f(x).



Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

- What is the depth function f(x)?
- f(x)-f(y) is locally consistently defined.
- There is no global f(x).



nonzero cohomology class in H¹(X)

circle-valued depth function

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

Homotopy theory

[X, S'] = H'(X; Z)

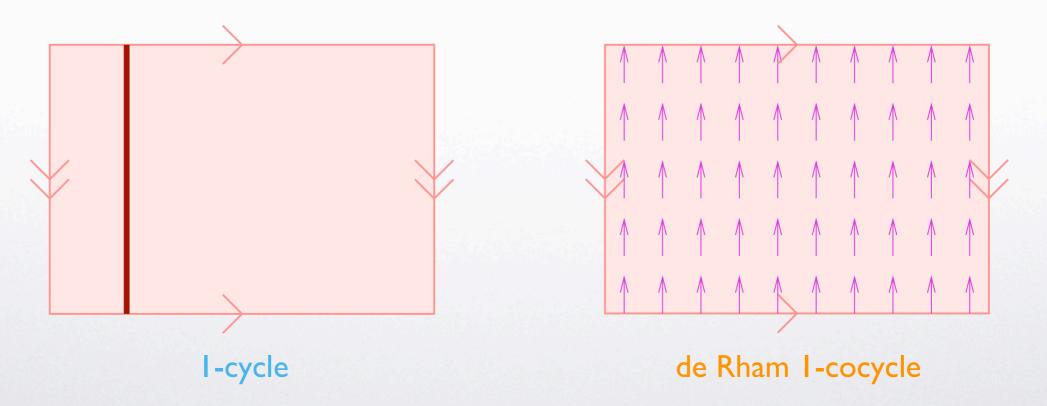
Homotopy classes of maps $X \rightarrow S^1$

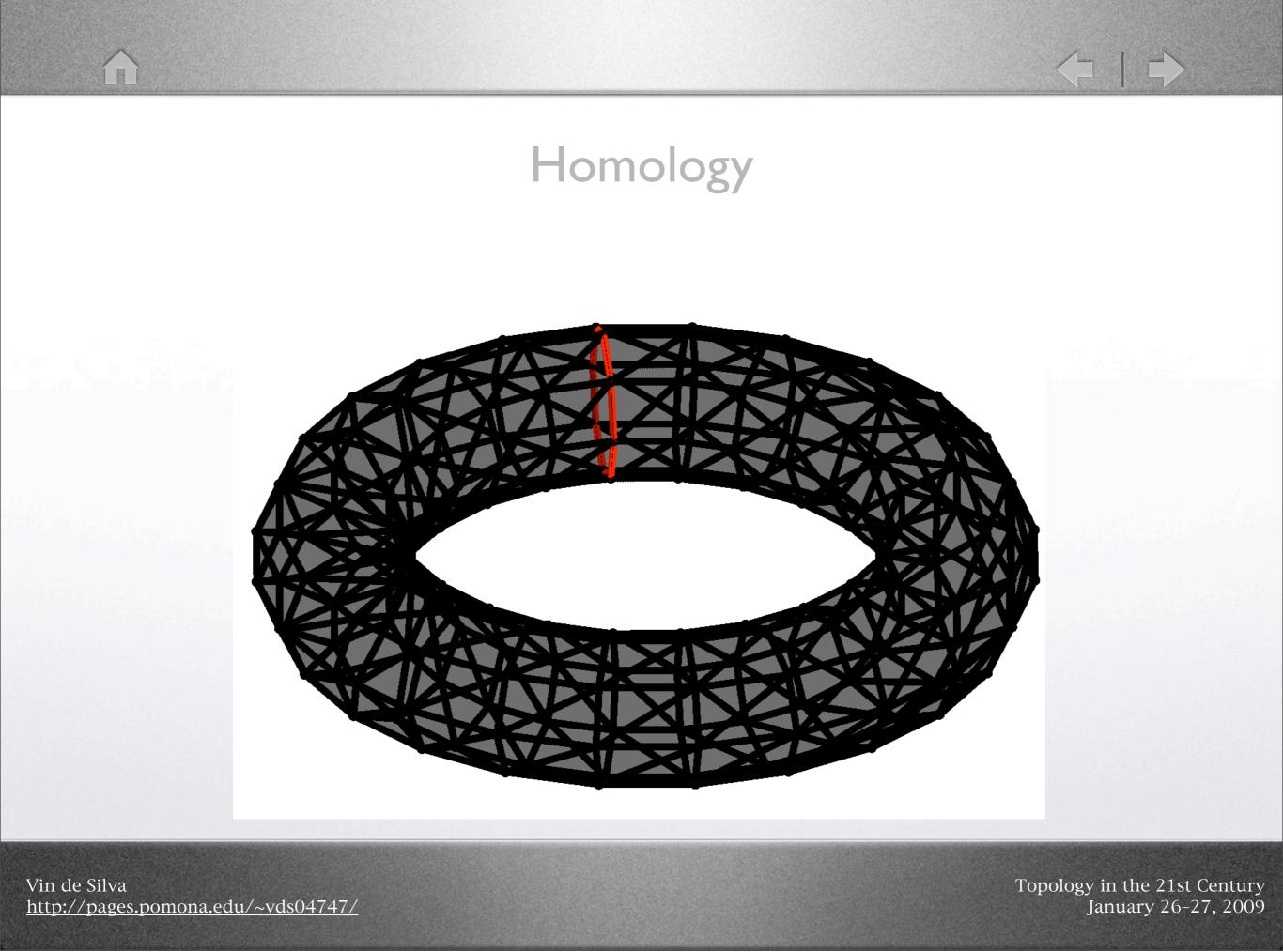
Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

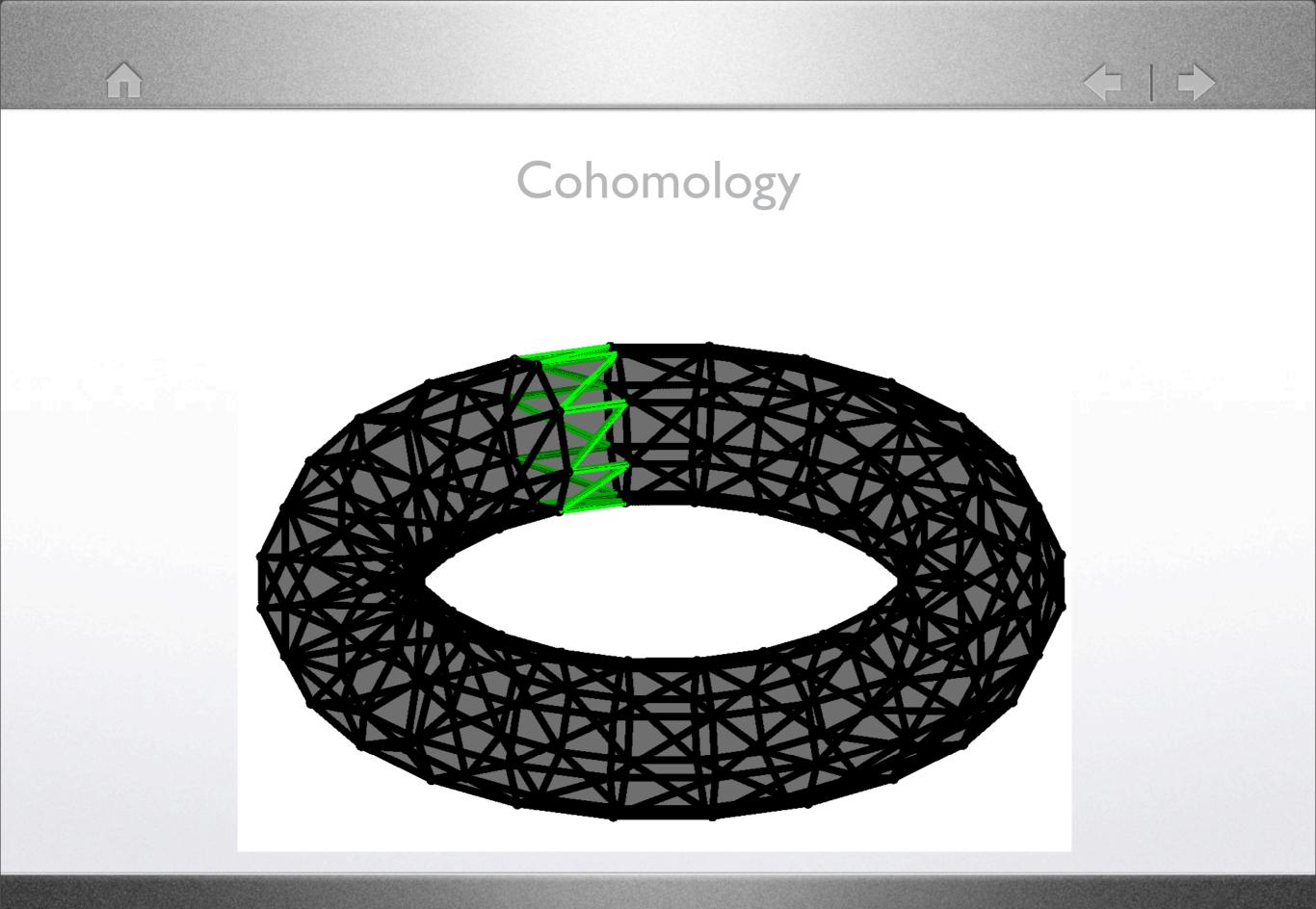
Tuesday, January 27, 2009

Why Cohomology?

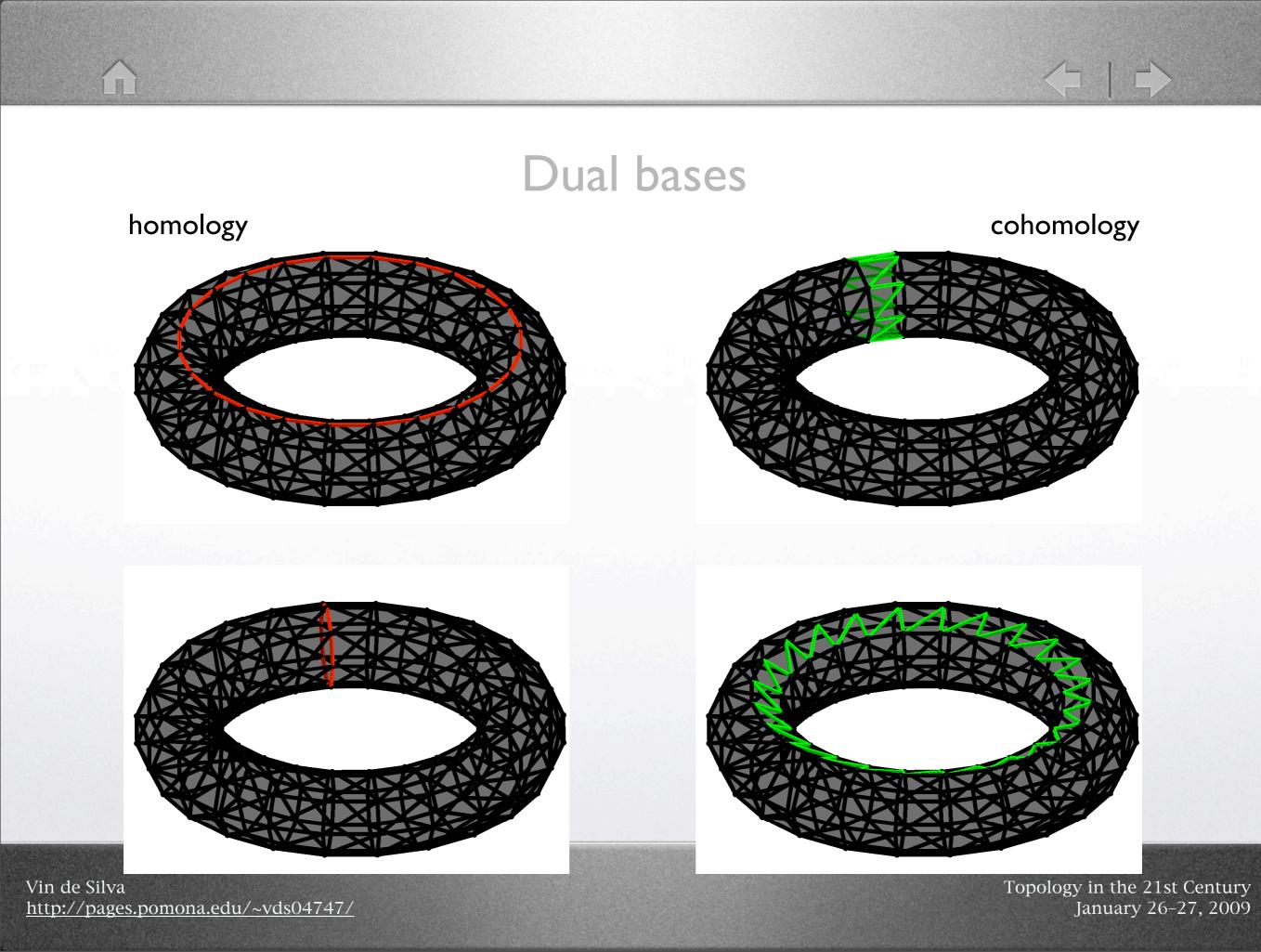
- homology, homotopy: maps into X
- cohomology, cohomotopy: maps from X







Vin de Silva http://pages.pomona.edu/~vds04747/



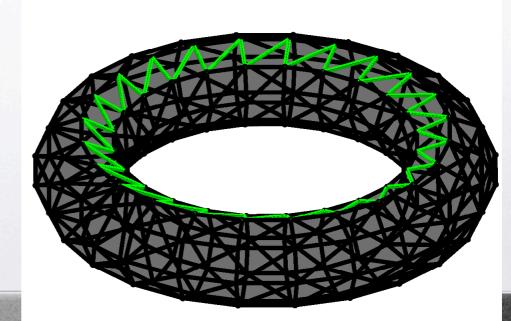
Circle maps

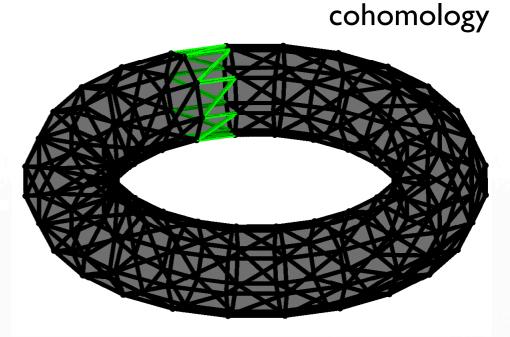
- Integer cocycles give rise to circle maps...
- ...but these are abrupt and unsmooth.

http://pages.pomona.edu/~vds04747/

Vin de Silva

Topology in the 21st Century January 26–27, 2009



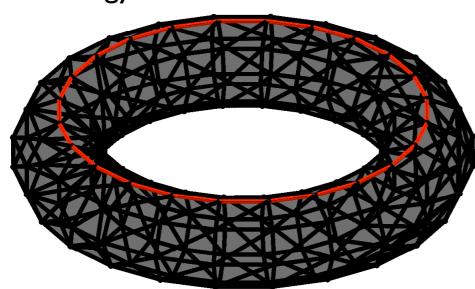


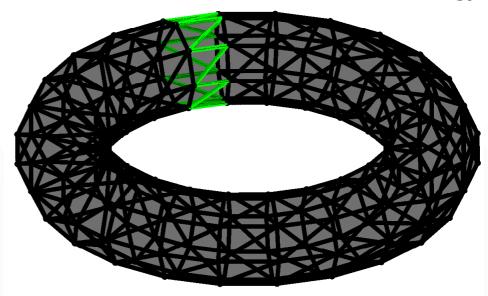
 $\langle | \rangle$

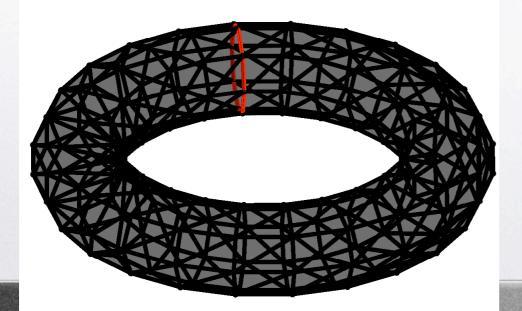
Harmonic smoothing

homology

cohomology





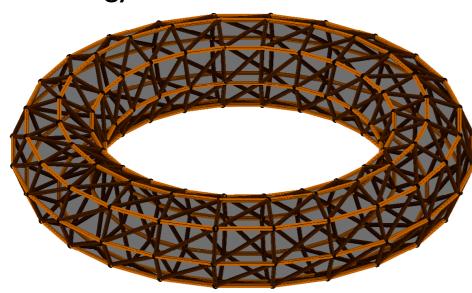


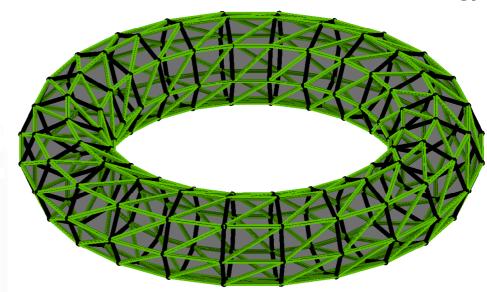
Vin de Silva http://pages.pomona.edu/~vds04747/

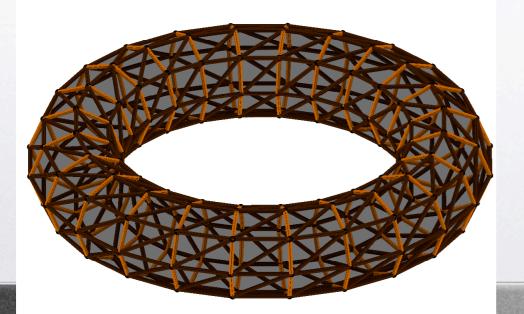
Harmonic smoothing

homology

cohomology





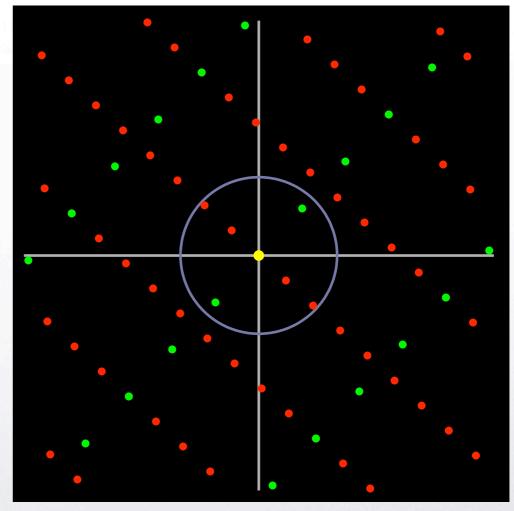


Vin de Silva http://pages.pomona.edu/~vds04747/

Dual lattices

- After smoothing, integer cocycles become real cocycles...
- ...but they still produce circle maps.
- Seek harmonic forms in integer cohomology lattice.

harmonic I-forms



integer homology and cohomology lattices

Vin de Silva http://pages.pomona.edu/~vds04747/

Strategy

- Filtered complex
- Persistent cohomology (mod p) \bigcirc pH¹(X; \mathbb{F}_p)
- Select significant cocycle
- O► Lift to integer coefficients
- Smooth
- Integrate

• $pH^{1}(\mathbb{X}; \mathbb{F}_{p})$ • $[\alpha_{p}] \in H^{1}(X^{\epsilon}; \mathbb{F}_{p})$ • $[\alpha] \in H^{1}(X^{\epsilon}; \mathbb{Z})$ • $\bar{\alpha} \in \mathcal{H}^{1}(X^{\epsilon}) \subseteq C^{1}(X^{\epsilon}; \mathbb{R})$

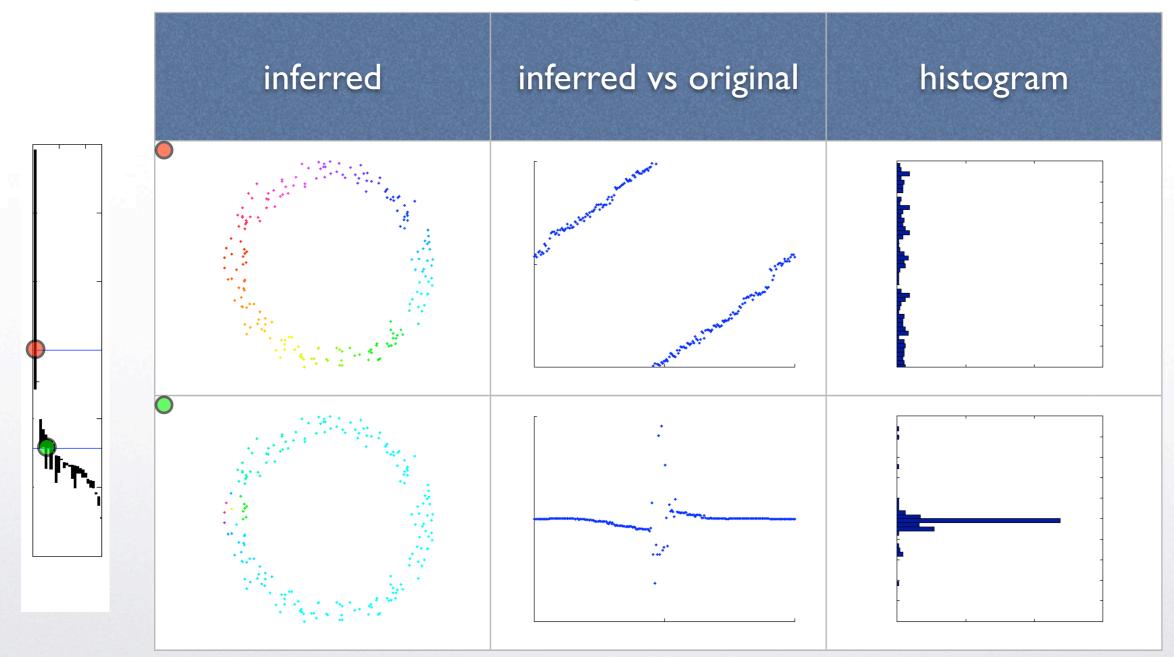
$$\Theta : X^{\epsilon} \to S^1$$

 $\bullet \mathbb{X} = \{X^{\epsilon}\}_{\epsilon > 0}$

Vin de Silva http://pages.pomona.edu/~vds04747/

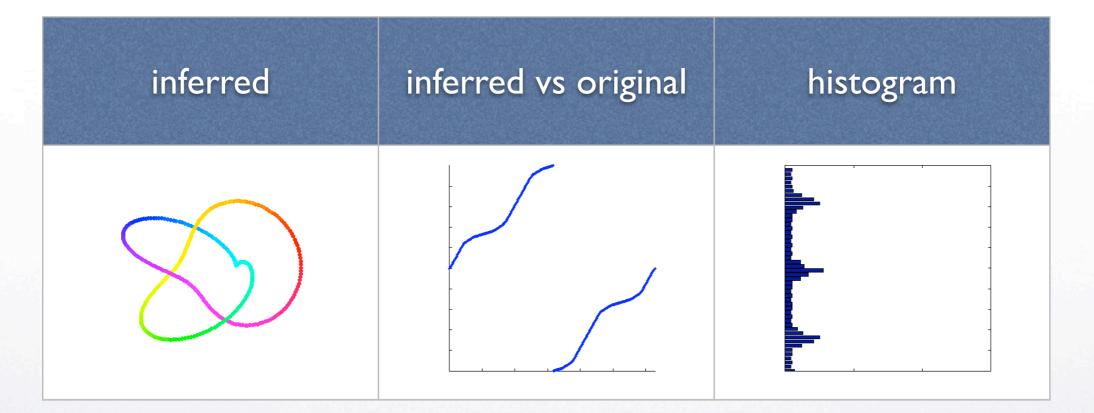
 $\widehat{\mathbf{n}}$

Noisy circle



Vin de Silva http://pages.pomona.edu/~vds04747/

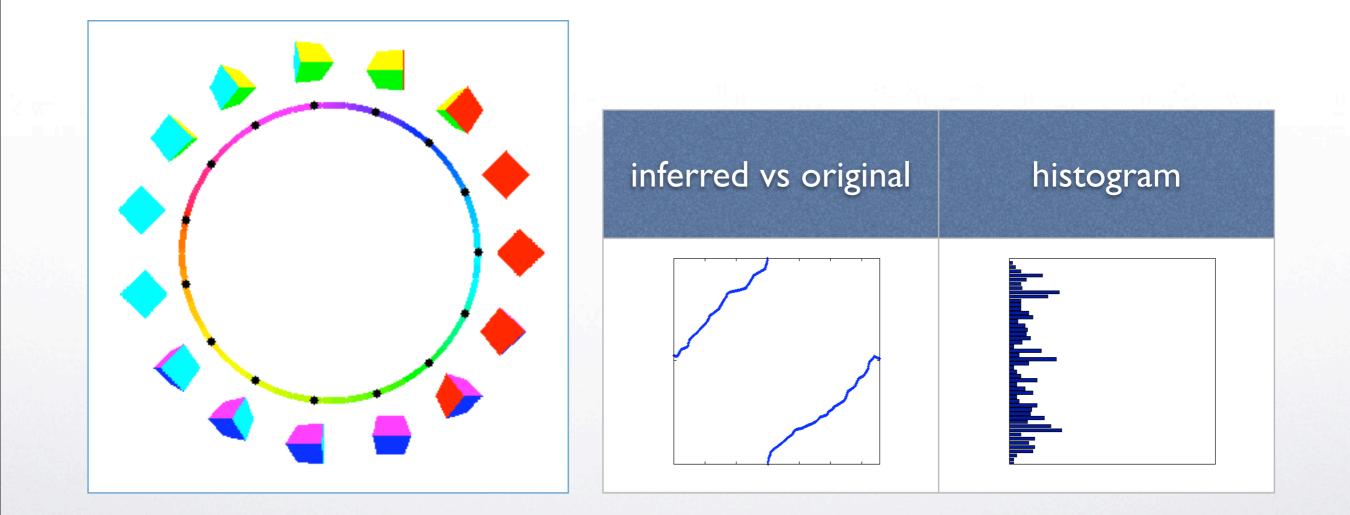
Trefoil knot



Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

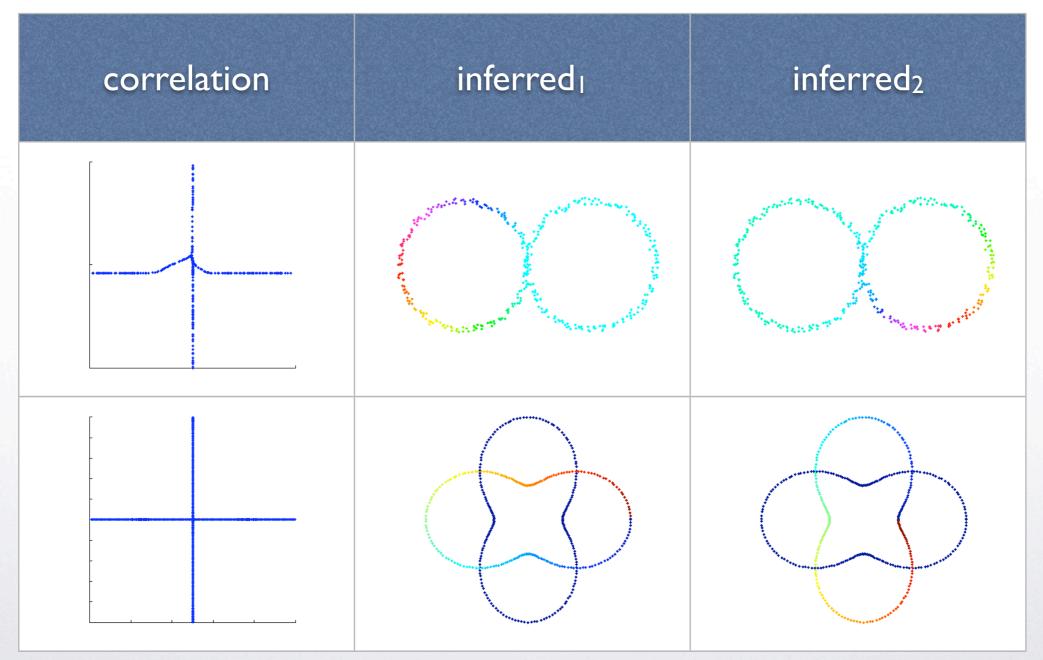
Tuesday, January 27, 2009

Rotating cube images



 $\widehat{\mathbf{n}}$

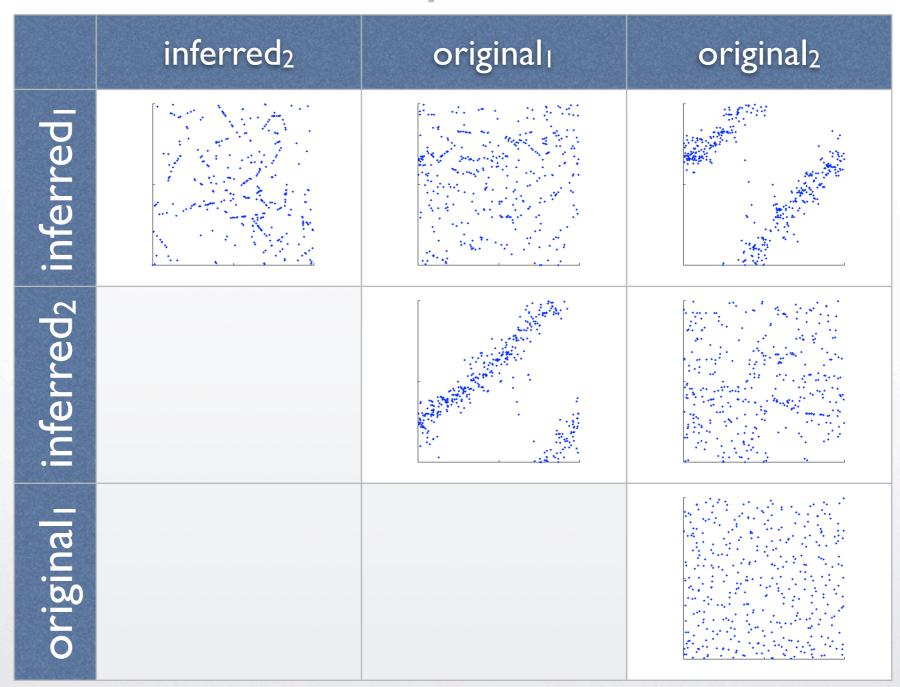
Pairs of circles



 $\widehat{\mathbf{m}}$

 $\langle \neg | \rightarrow$

Noisy torus



Vin de Silva http://pages.pomona.edu/~vds04747/

Persistent relative cohomology

- Persistent homology algorithm (ELZ2000):
 - ▶ Given filtered simplicial complex $\{K_t, \rightarrow\}$
 - Input (S, ∂ S) in order of appearance of S
 - Output persistent homology $\{H_*(K_t), \rightarrow\}$
- What happens if you input the cells in reverse order?

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

Persistent homology

- Persistent homology algorithm (ELZ2000):
 - ▶ Given filtered simplicial complex $\{K_t, \rightarrow\}$
 - Input (S, ∂S) in order of appearance of S Note: When S enters the filtration, the simplices of ∂S are already there.
 - Output persistent homology
 - $\{H_*(K_t), \rightarrow\}$
- What happens if you input the cells in reverse order?

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

- Persistent homology algorithm (ELZ2000):
 - ▶ Given filtered simplicial complex $\{K_t, \rightarrow\}$
 - Input (S, δS) in order of appearance of S
 When S enters the reversed filtration, the simplices of δS are already there.
 - Output persistent relative cohomology

 $\{H^*(K,K_t), \rightarrow\}$

(at time t, the missing cells are those of K_t).

Next: exploit this for local homology calculations.

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

Local cohomology

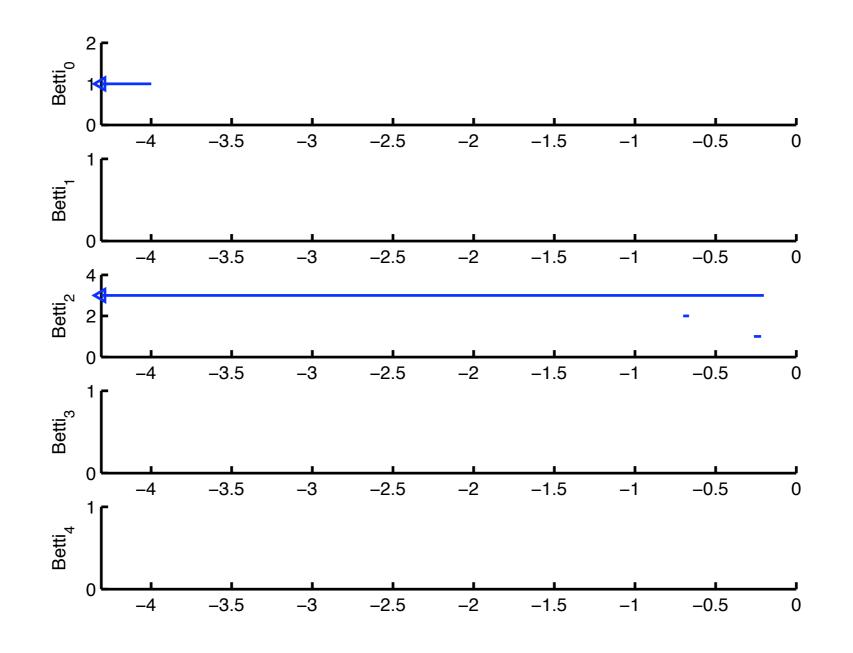
- Local structure of X near a point x_0 measured by $H^*(X, X-x_0)$.
- Filtration X = {X_t}_{t<0} converging to X-x₀ as t→0 from below:
 X_t = {x ∈ X : d(x,x₀) > |t|}
- Restrict filtration to data points:

 $\mathbf{B} = \{B_t = B \cap X_t\}_{t \le 0}$

- Select landmarks A ⊂ B
- ► Fix ∈
 - Construct filtered space $Del(A,B;\epsilon) = {Del^{w}(A,B_{t};\epsilon)}_{t<0}$.
 - Compute $H^*(\mathbf{Del}(A, \mathbf{B}; \epsilon)) = pH^*(\mathrm{Del}^w(A, B_t; \epsilon)).$

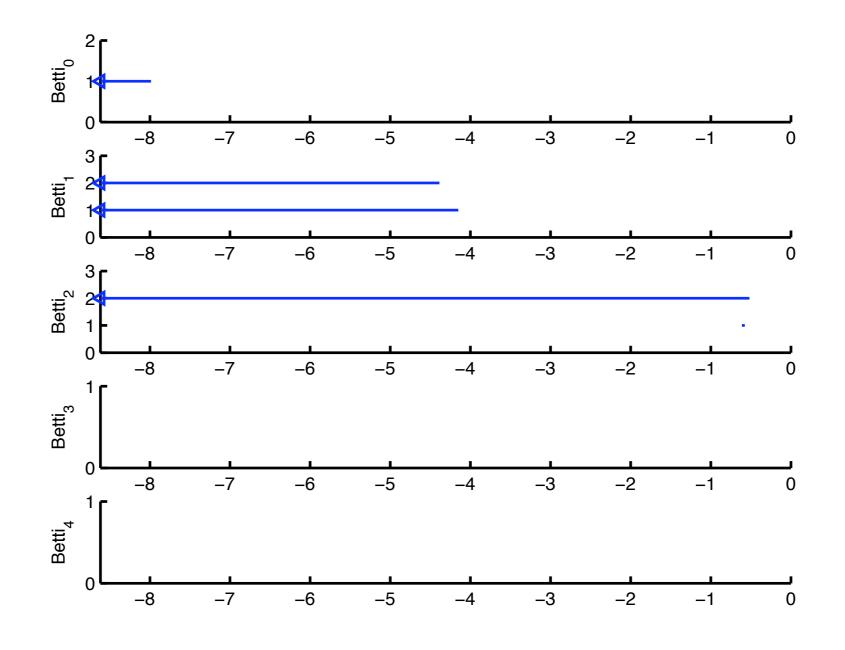
Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

2-sphere

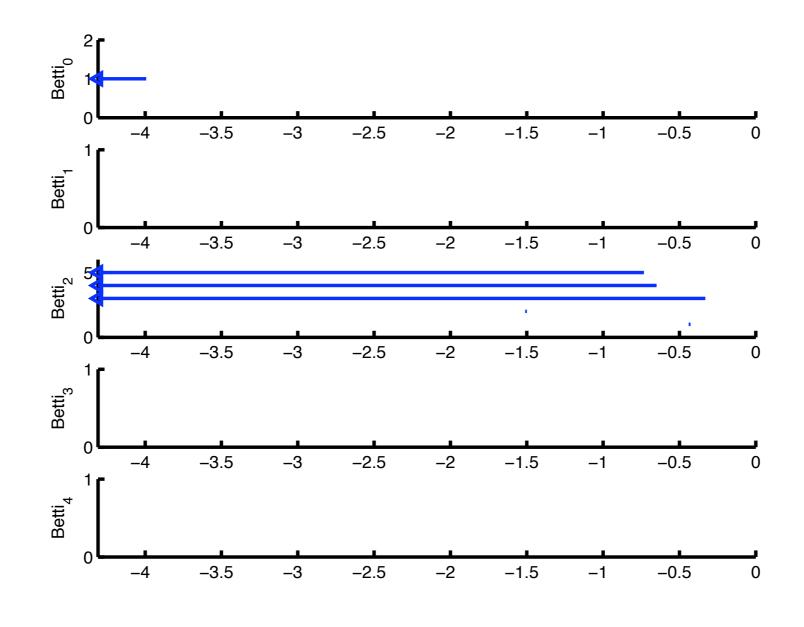


Vin de Silva http://pages.pomona.edu/~vds04747/

Torus

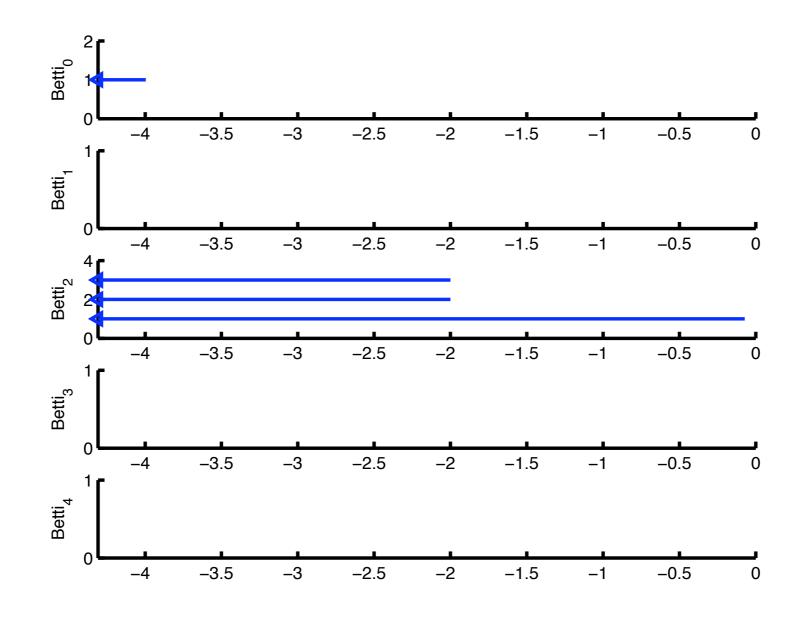


Union of two 2-spheres over a circle



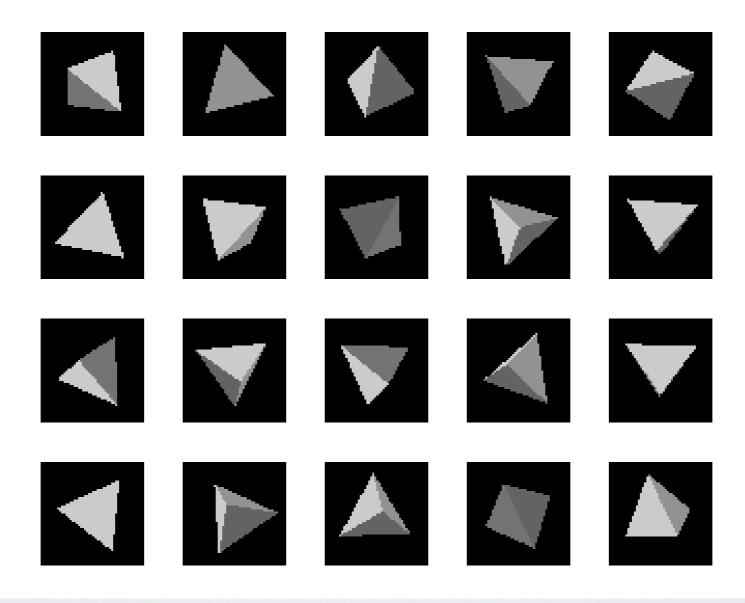
Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

Union of two 2-spheres over a circle



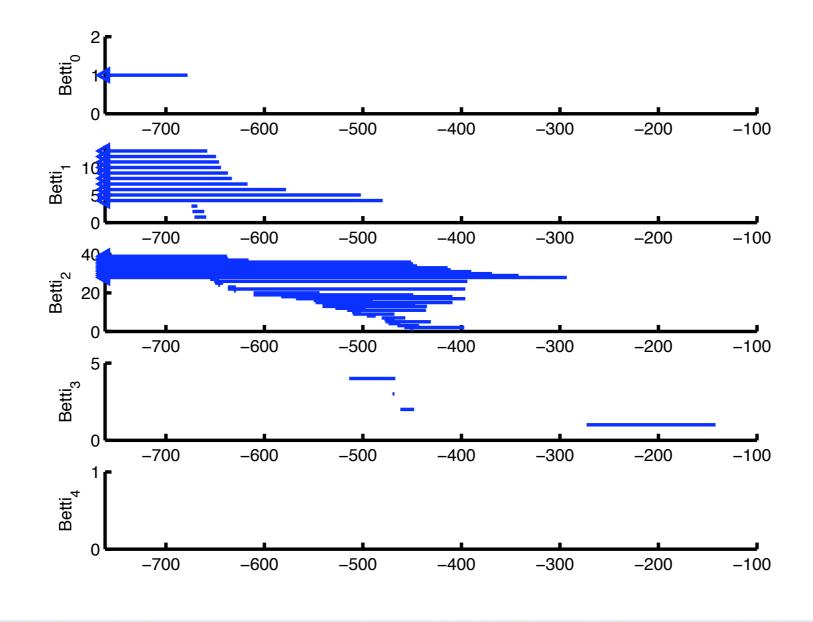
Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

(II)

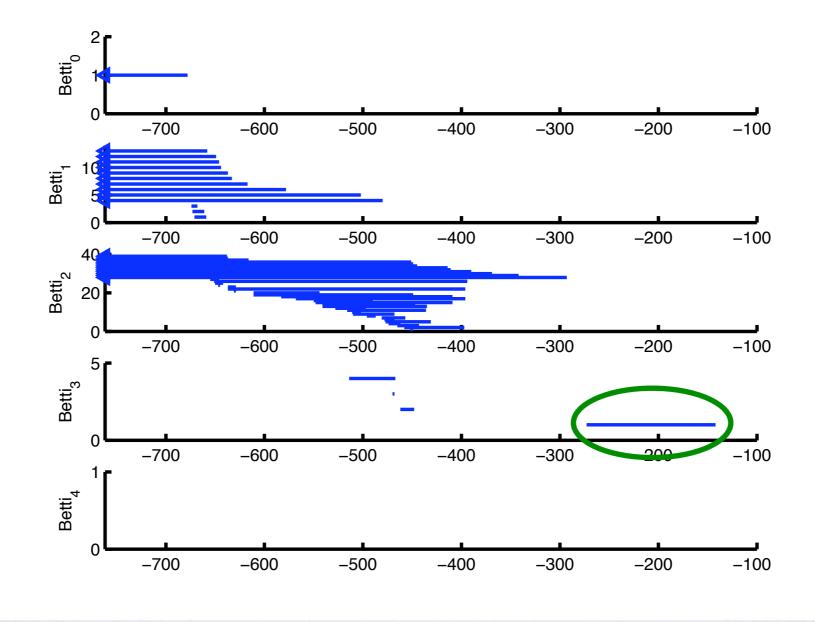


Space of rotations = SO(3) is 3-dimensional

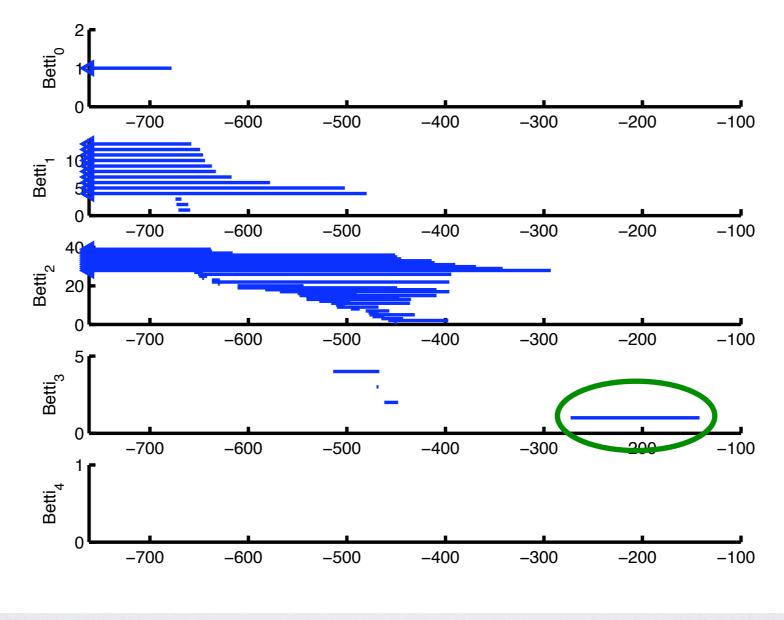
Vin de Silva http://pages.pomona.edu/~vds04747/



Vin de Silva http://pages.pomona.edu/~vds04747/



Vin de Silva http://pages.pomona.edu/~vds04747/



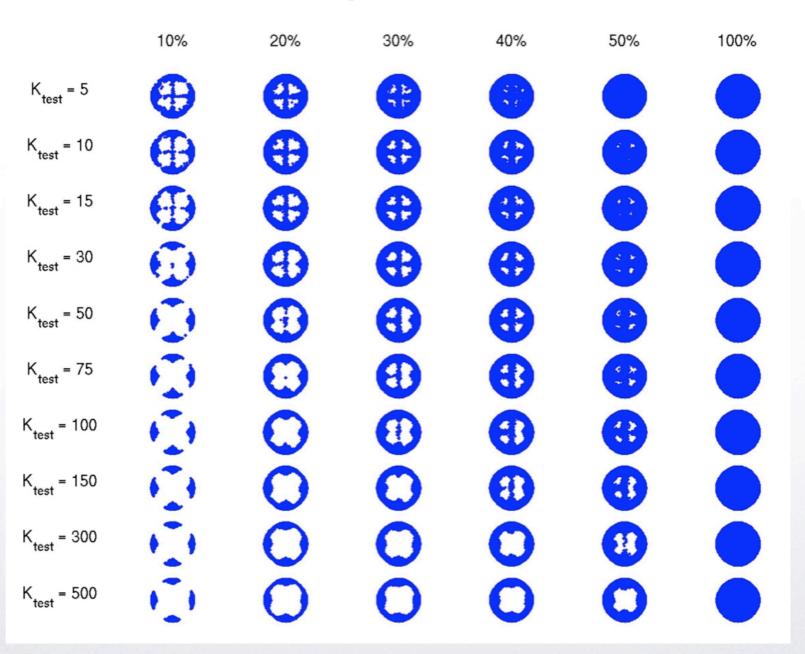
Confession: I cheated a bit (by cherry-picking)

Zigzag persistence

Joint work with Gunnar Carlsson, Dmitriy Morozov

 $\langle + | + \rangle$

Three parameters



Vin de Silva http://pages.pomona.edu/~vds04747/

Persistence

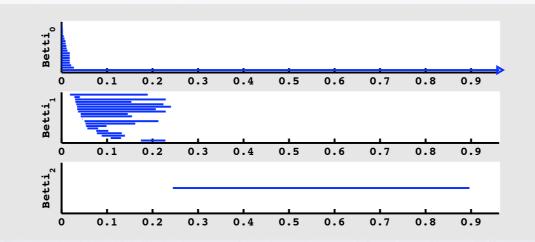
Monotone increasing family of spaces

 $\mathbf{X} = \{X_{\epsilon} \mid \epsilon \ge 0\} \quad \text{such that} \quad X_{\epsilon} \subseteq X_{\epsilon'} \text{ if } \epsilon \le \epsilon'$

Persistent homology

 $\operatorname{rank}\left[H_*(X_{\epsilon}) \to H_*(X_{\epsilon'})\right] \quad \text{for all } \epsilon \leq \epsilon'$

- Barcode description (Edelsbrunner, Letscher, Zomorodian '00)
- Barcode stability theorem (Cohen-Steiner, Edelsbrunner, Harer '07)
 - the barcode depends continuously on the underlying diagram of spaces
 - see also Chazal, Cohen-Steiner, Glisse, Guibas, Oudot '09



Vin de Silva http://pages.pomona.edu/~vds04747/

Persistence

Spaces

$X_1 \longrightarrow X_2 \longrightarrow \cdots \longrightarrow X_n$

Persistent homology

 $H_*(X_1) \longrightarrow H_*(X_2) \longrightarrow \cdots \longrightarrow H_*(X_n)$

- Barcode algebra (Carlsson, Zomorodian '05)
 - ► H(X) is naturally a module over polynomial ring k[t]
 - $\Rightarrow has unique representation as a sum of indecomposables$
 - indecomposable summands depicted as barcode intervals
 - calculate decomposition using linear algebra over k[t]

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

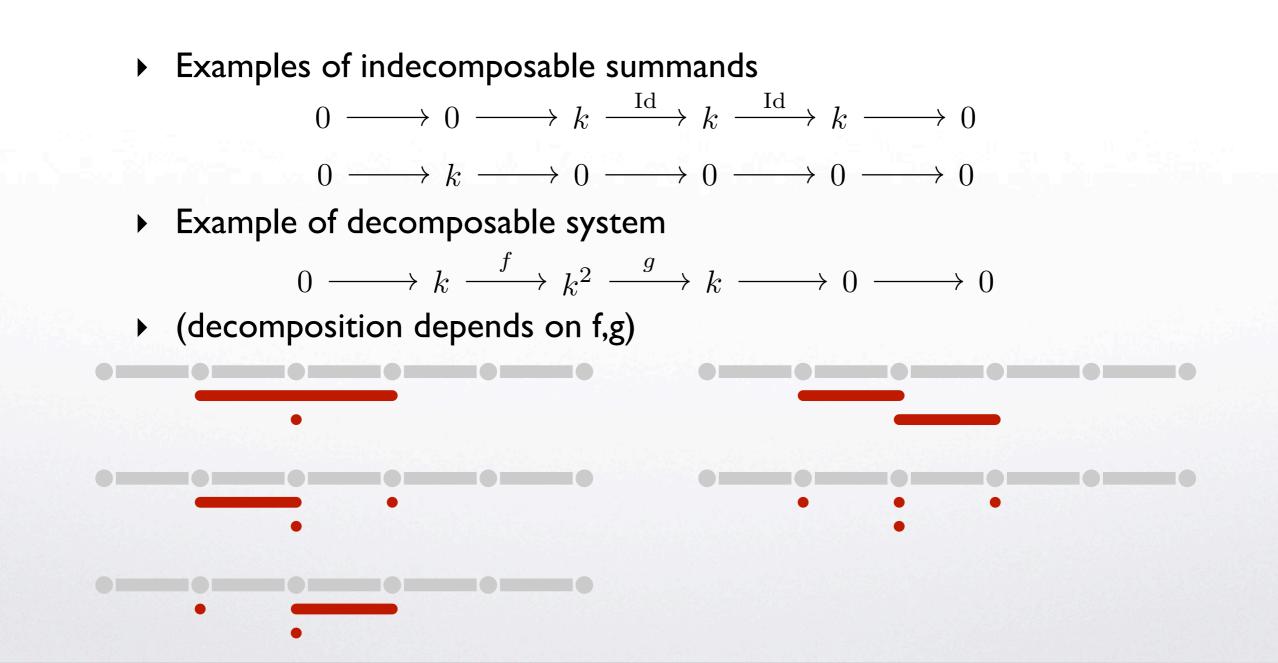
Examples of indecomposable summands

$$0 \longrightarrow 0 \longrightarrow k \xrightarrow{\text{Id}} k \xrightarrow{\text{Id}} k \longrightarrow 0$$
$$0 \longrightarrow k \longrightarrow 0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$$

Example of decomposable system

$$0 \longrightarrow k \xrightarrow{f} k^2 \xrightarrow{g} k \longrightarrow 0 \longrightarrow 0$$

(decomposition depends on f,g)



Topology in the 21st Century January 26–27, 2009

Non-monotone families

- Example: time-varying complex X = {X_t | t real}.
- Example: 30% strained data soup, varying the smoothing parameter.
- Example: witness complex with fixed vertex set, varying the set of witnesses.
- How do the features of X change as t varies?
 - New cell appears $X \longrightarrow X \cup \sigma$
 - Old cell disappears $X \longleftarrow X \setminus \tau$
 - Inclusion map directions vary arbitrarily, e.g.
 - $\cdots \longrightarrow X_{i-1} \longleftrightarrow X_i \longrightarrow X_{i+1} \longrightarrow \cdots$
- Can we do non-monotone persistence?

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

 V_1

- A **quiver** is a directed (multi-)graph:
 - nodes
 - ▶ arrows

• A **representation** of a quiver Q has:

- a vector space for every node
- a linear map for every arrow

• General question: classify representations of a given quiver Q.

- What would be the ideal answer?
 - unique decomposition into indecomposable representations
 - + explicit list of indecomposables
 - + algorithm to determine decomposition type

 V_2

- Example
- Typical representation
- Irreducible representations (over complex numbers)
 - \mathbb{C}

V

• Classifying invariant $\dim(V)$

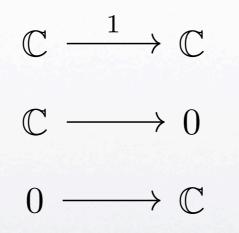
Vin de Silva http://pages.pomona.edu/~vds04747/

Example

$$\bigcirc \longrightarrow \bigcirc$$

 $V \xrightarrow{f} W$

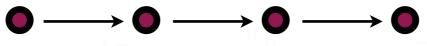
- Typical representation
- Irreducible representations (over complex numbers)



• Classifying invariants $\operatorname{rank}(f), \dim(V), \dim(W)$

Vin de Silva http://pages.pomona.edu/~vds04747/

Example



Typical representation

$$V_0 \xrightarrow{f_0} V_1 \xrightarrow{f_1} V_2 \xrightarrow{f_2} V_3$$

- ▶ Irreducible representations (over complex numbers)
 intervals [b, d], 0 ≤ b ≤ d ≤ 3
- Classifying invariants

 $\operatorname{rank}\left[V_i \to V_j\right], \quad 0 \le i \le j \le 3$

Vin de Silva http://pages.pomona.edu/~vds04747/

• Example

$$\bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc$$

Typical representation

$$V_0 \xrightarrow{f_0} V_1 \xrightarrow{f_1} V_2 \xrightarrow{f_2} V_3$$

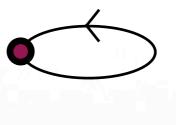
- ▶ Irreducible representations (over complex numbers)
 intervals [b, d], 0 ≤ b ≤ d ≤ 3
- Classifying invariants

$$\operatorname{rank}\left[V_i \to V_j\right], \quad 0 \le i \le j \le 3$$

relation: rank
$$[V_i \to V_j] = \sum_{[b,d] \supseteq [i,j]}$$
 multiplicity of $[b,d]$

Vin de Silva http://pages.pomona.edu/~vds04747/

Example



Typical representation

$$V \xrightarrow{f} V$$

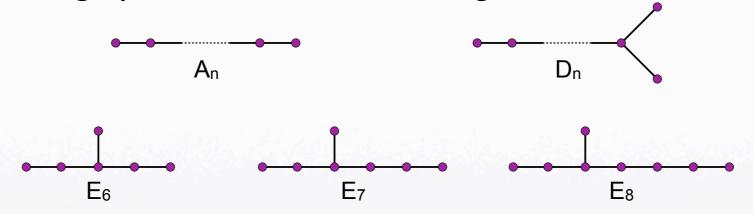
Irreducible representations (over complex numbers)

	$\begin{bmatrix} \lambda \\ 0 \end{bmatrix}$	$1 \\ \lambda$	 $\begin{bmatrix} 0\\ 0 \end{bmatrix}$	
Jordan blocks	•	:	:	
	0	0	 1	
	0	0	 λ	

Classifying invariants: generalised eigenspectrum of f

Vin de Silva http://pages.pomona.edu/~vds04747/

- A quiver Q is of finite type if there is a unique decomposition theorem with a finite list of indecomposables.
- Gabriel's Theorem (1972): Q is of finite type iff its underlying undirected graph is one of the following.



 Kac's theorem (1980): the set of dimension vectors of indecomposable representations of a Q is independent of the direction of the arrows.

> **Corollary**: interval decomposition for all quivers of type A_n ⇒ zigzag persistent homology!

Vin de Silva http://pages.pomona.edu/~vds04747/

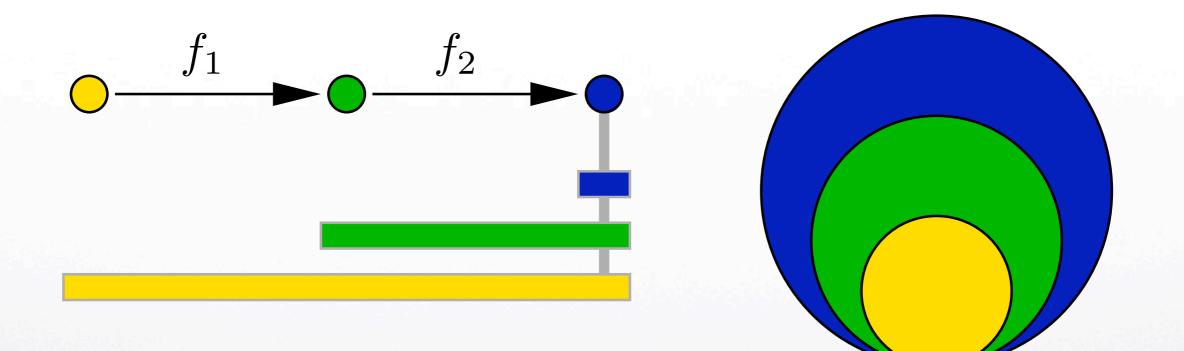
Calculating the zig-zag barcode

- We can construct the barcode representation inductively.
 - Start from the left term in the sequence.
 - At time k, we have a filtration of V_k stored as a filtered basis.
 - The filtration records the lifetimes (to date) of all vectors in V_k .
 - Update step: pull back/push forward the filtration to V_{k+1} .
 - Record the lifespans of features killed in the move.
- The filtration is crucial. Basis operations must respect the filtration.

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

ÍN

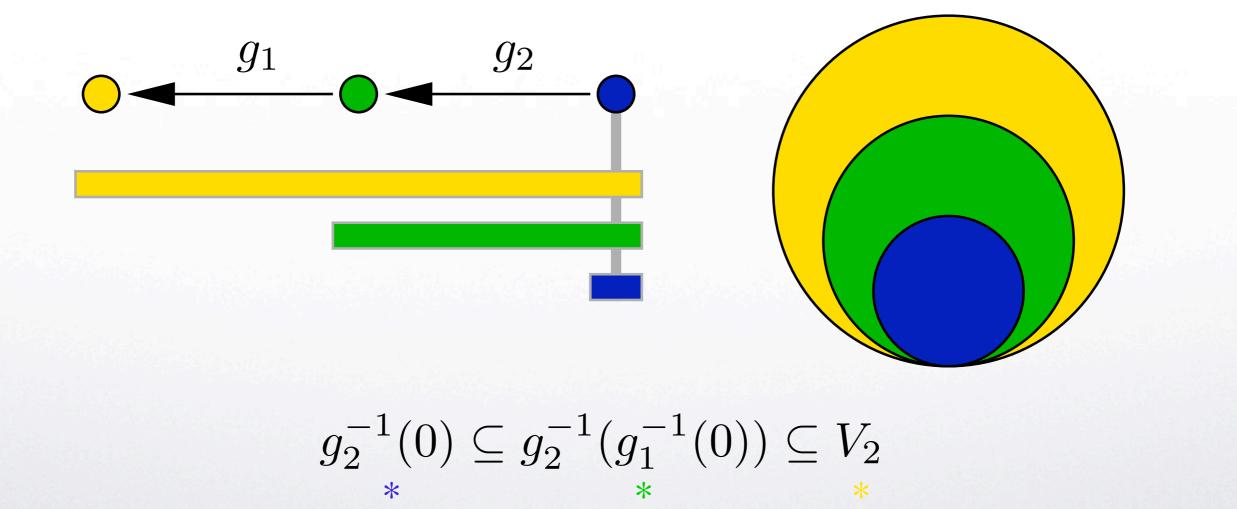
Three-term sequences



$f_2(f_1(V_0)) \subseteq f_2(V_1) \subseteq V_2$

Vin de Silva http://pages.pomona.edu/~vds04747/

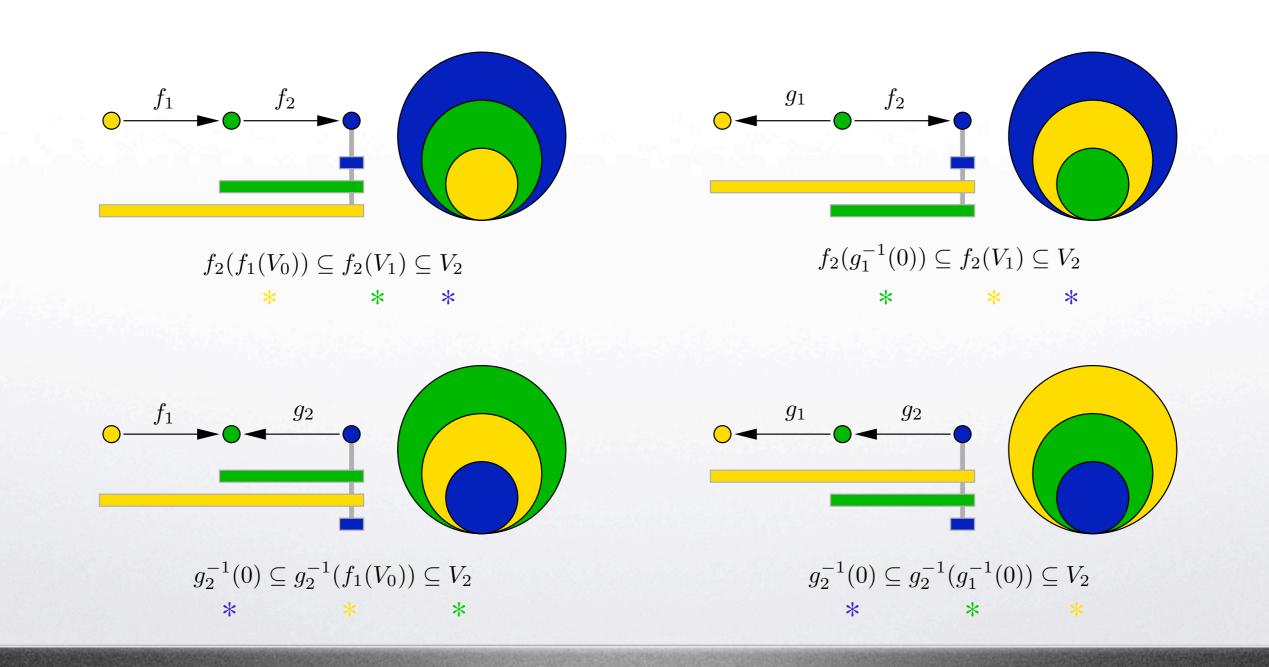
Three-term sequences



Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

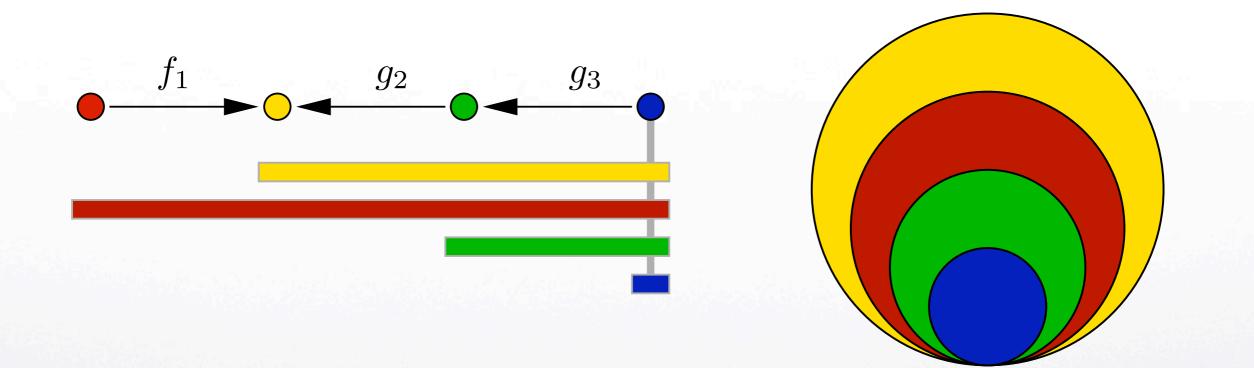
Tuesday, January 27, 2009

Three-term sequences



Vin de Silva http://pages.pomona.edu/~vds04747/

A four-term sequence



Vin de Silva http://pages.pomona.edu/~vds04747/

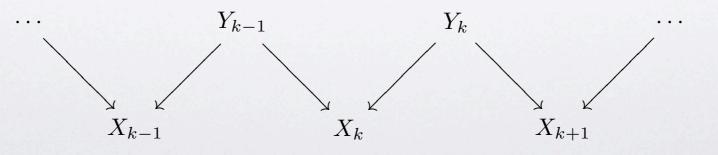
Witness bicomplexes

Joint work with Gunnar Carlsson, Dmitriy Morozov

Families of witness complexes

•
$$X_k = Del(A,C)$$
 where $C = C(t_k)$

- Vertex set fixed, add or subtract cells one at a time
- $H(X_k)$ is a quiver representation of type A_n
- A_n-quiver decomposition \Rightarrow interval barcode \checkmark
- $X_k = Del(A,C)$ where $A = A(t_k)$
 - ▶ No natural map $H(X_k) \rightarrow H(X_{k+1})$ or $H(X_k) \leftarrow H(X_{k+1})$
 - Construct interpolating spaces Y_k with maps $X_k \leftarrow Y_k \rightarrow X_{k+1}$
 - Apply A_n -quiver decomposition to zigzag sequence \checkmark



Topology in the 21st Century January 26–27, 2009

ÍN

Witness bicomplexes

- ► A, B, X subsets of a metric space
- Strong 2-witnesses

 $x \in X$ is a strong biwitness for bisimplex (σ, τ)

 $\Leftrightarrow \qquad x \text{ is a strong witness for } \sigma \subset A$

AND x is a strong witness for $\tau \subset B$

Weak 2-witnesses

 $x \in X$ is a weak biwitness for bisimplex (σ, τ)

 $\Leftrightarrow \qquad x \text{ is a weak witness for } \sigma \subset A$

AND x is a weak witness for $\tau \subset B$

Strong Delaunay bicomplex

 $(\sigma, \tau) \in \text{Del}_2(A, B; X) \quad \Leftrightarrow \quad (\sigma, \tau) \text{ has a strong biwitness } x \in X$

Weak Delaunay bicomplex

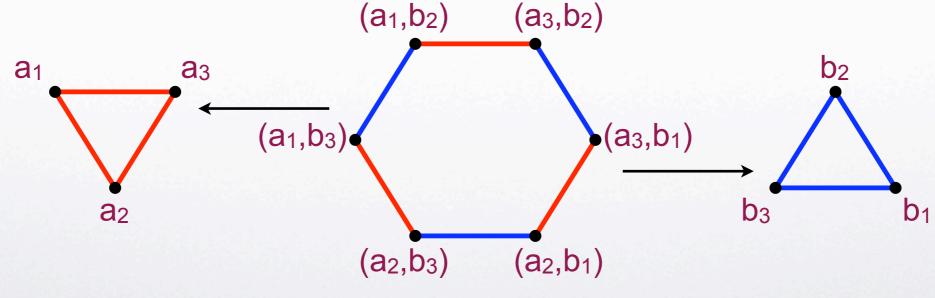
 $(\sigma, \tau) \in \mathrm{Del}_2^{\mathrm{w}}(A, B; X) \quad \Leftrightarrow \quad \text{every } (\sigma', \tau') \leq (\sigma, \tau) \text{ has a weak biwitness } x \in X$

Witness bicomplexes

There are natural projection maps

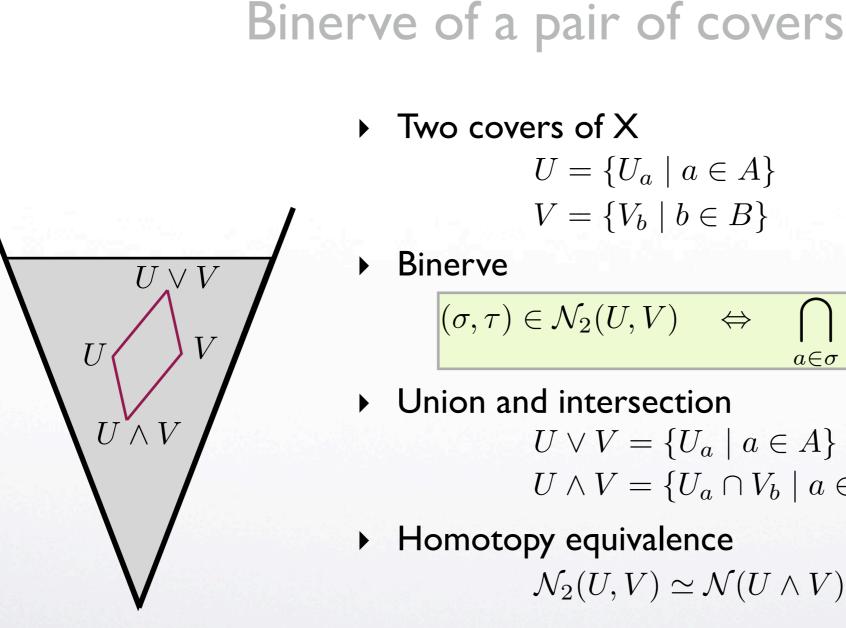
$$Del(A; X) \longleftarrow Del_2(A, B; X) \longrightarrow Del(B; X)$$
$$Del^{w}(A; X) \longleftarrow Del_2^{w}(A, B; X) \longrightarrow Del^{w}(B; X)$$

• Example: X = unit circle, A = $\{0, 2\pi/3, 4\pi/3\}$, B = $\{\pi/3, \pi, 5\pi/3\}$



(To understand correctness, we consider 2-nerves.)

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009



- - $U = \{ U_a \mid a \in A \}$ $V = \{V_b \mid b \in B\}$

- Union and intersection
 - $U \lor V = \{U_a \mid a \in A\} \cup \{V_b \mid b \in B\}$ $U \wedge V = \{ U_a \cap V_b \mid a \in A, b \in B \}$
- Homotopy equivalence $\mathcal{N}_2(U,V) \simeq \mathcal{N}(U \wedge V)$
- Mayer–Vietoris theorem

 $\dots \to H_k(U \wedge V) \to H_k(U) \oplus H_k(V) \to H_k(U \vee V) \to H_{k-1}(U \wedge V) \to \dots$

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26-27, 2009

The binerve theorem

- Proposition (weak witnesses theorem for Delaunay bicomplexes).
 - $\operatorname{Del}_{2}^{\mathrm{w}}(A, B; \mathbb{R}^{n}) = \operatorname{Del}_{2}(A, B; \mathbb{R}^{n})$
- Proposition. Let U,V be the Voronoi covers of X defined by A,B.
 - $\operatorname{Del}_2(A, B; X) = \mathcal{N}_2(U, V)$
- Binerve Theorem. U,V covers of X.The following are equivalent.

 $U \lor V$ is a projectively faithful cover of X

 $\mathcal{N}(U) \leftarrow \mathcal{N}_2(U, V) \to \mathcal{N}(V)$ is projectively faithful^{*} for X

 $\mathcal{N}(U) \to \mathcal{N}(U \lor V) \leftarrow \mathcal{N}(V)$ is projectively faithful^{*} for X

i.e. the homology diagram contains $H^*(X) \leftarrow H^*(X) \rightarrow H^*(X)$ as a summand

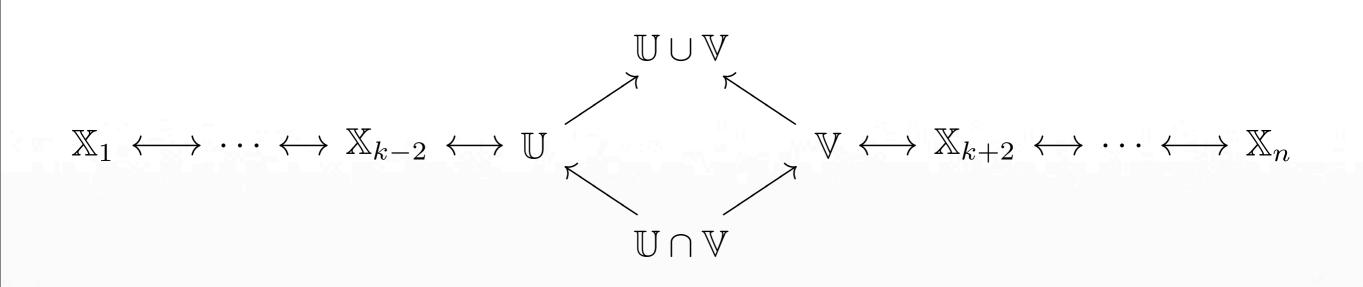
* i.e. the homology diagram contains $H^*(X) \rightarrow H^*(X) \leftarrow H^*(X)$ as a summand

Topology in the 21st Century January 26–27, 2009

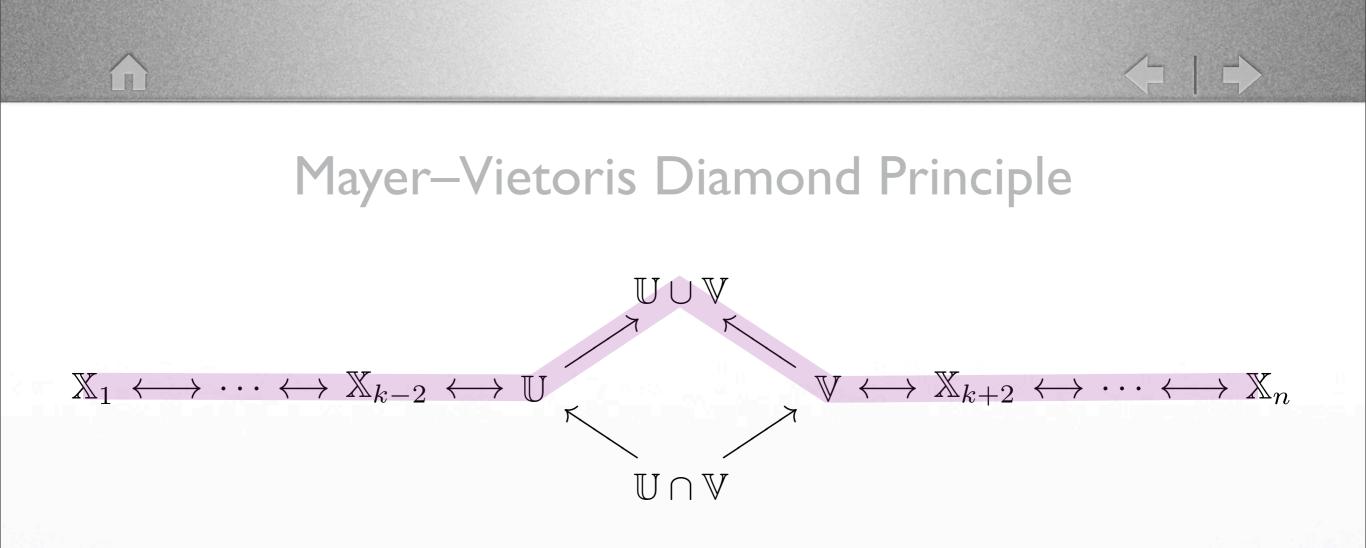
ÍN

The pyramid theorem

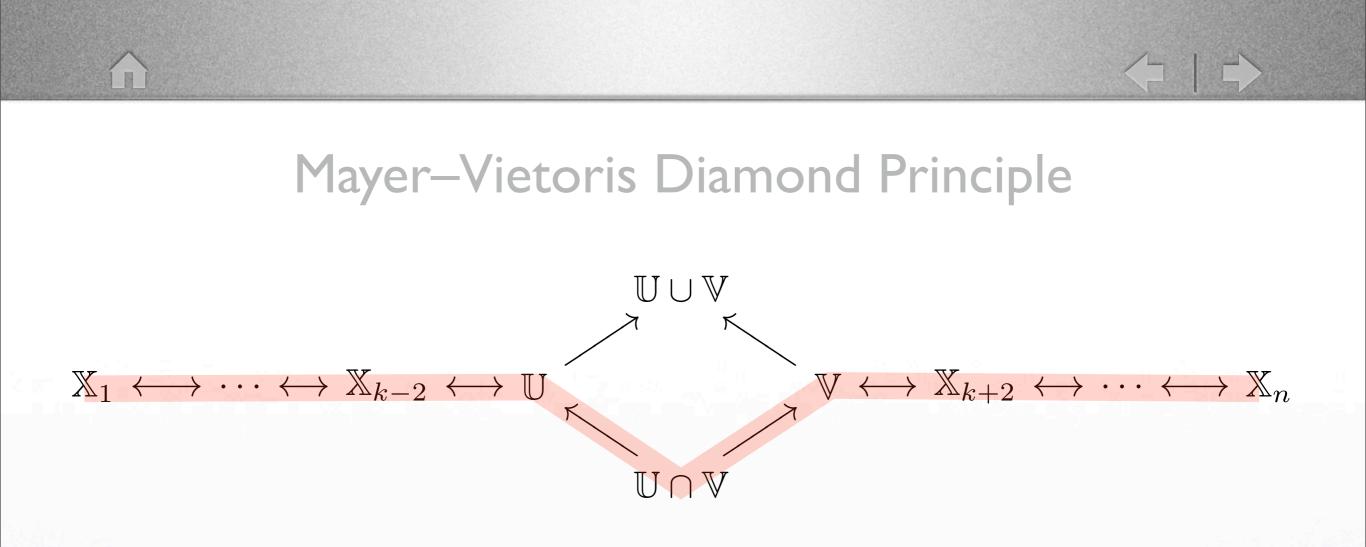
Joint work with Gunnar Carlsson, Dmitriy Morozov



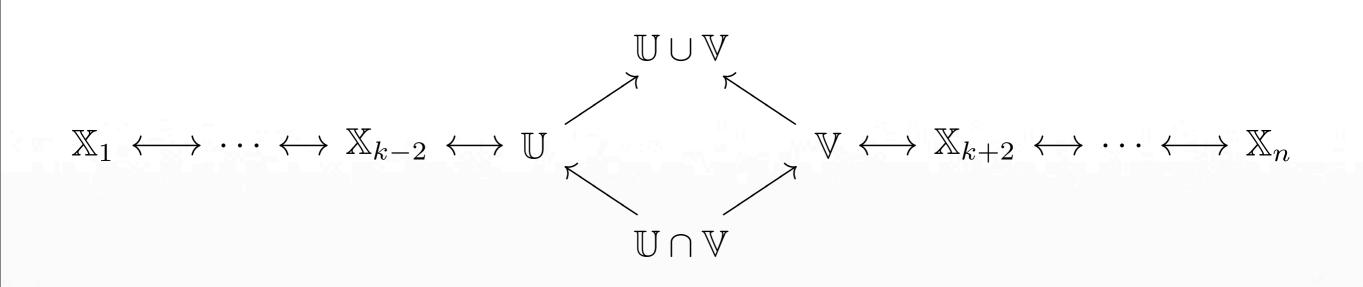
- The two zigzags in the above diagram carry the same persistent homology information.
 - The intervals change slightly, and some intervals undergo a dimension shift.
 - The result follows from the Mayer–Vietoris theorem for the middle diamond.



- The two zigzags in the above diagram carry the same persistent homology information.
 - The intervals change slightly, and some intervals undergo a dimension shift.
 - The result follows from the Mayer–Vietoris theorem for the middle diamond.

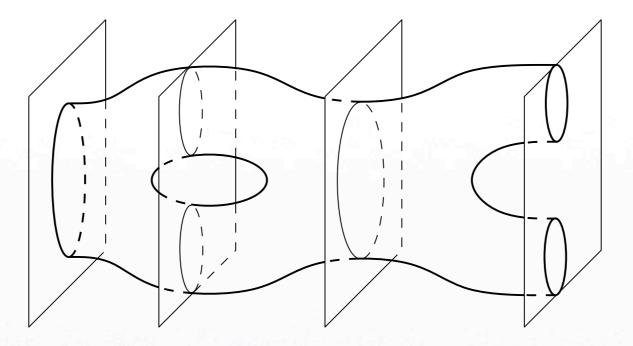


- The two zigzags in the above diagram carry the same persistent homology information.
 - The intervals change slightly, and some intervals undergo a dimension shift.
 - The result follows from the Mayer–Vietoris theorem for the middle diamond.



- The two zigzags in the above diagram carry the same persistent homology information.
 - The intervals change slightly, and some intervals undergo a dimension shift.
 - The result follows from the Mayer–Vietoris theorem for the middle diamond.

Levelset zigzag persistence

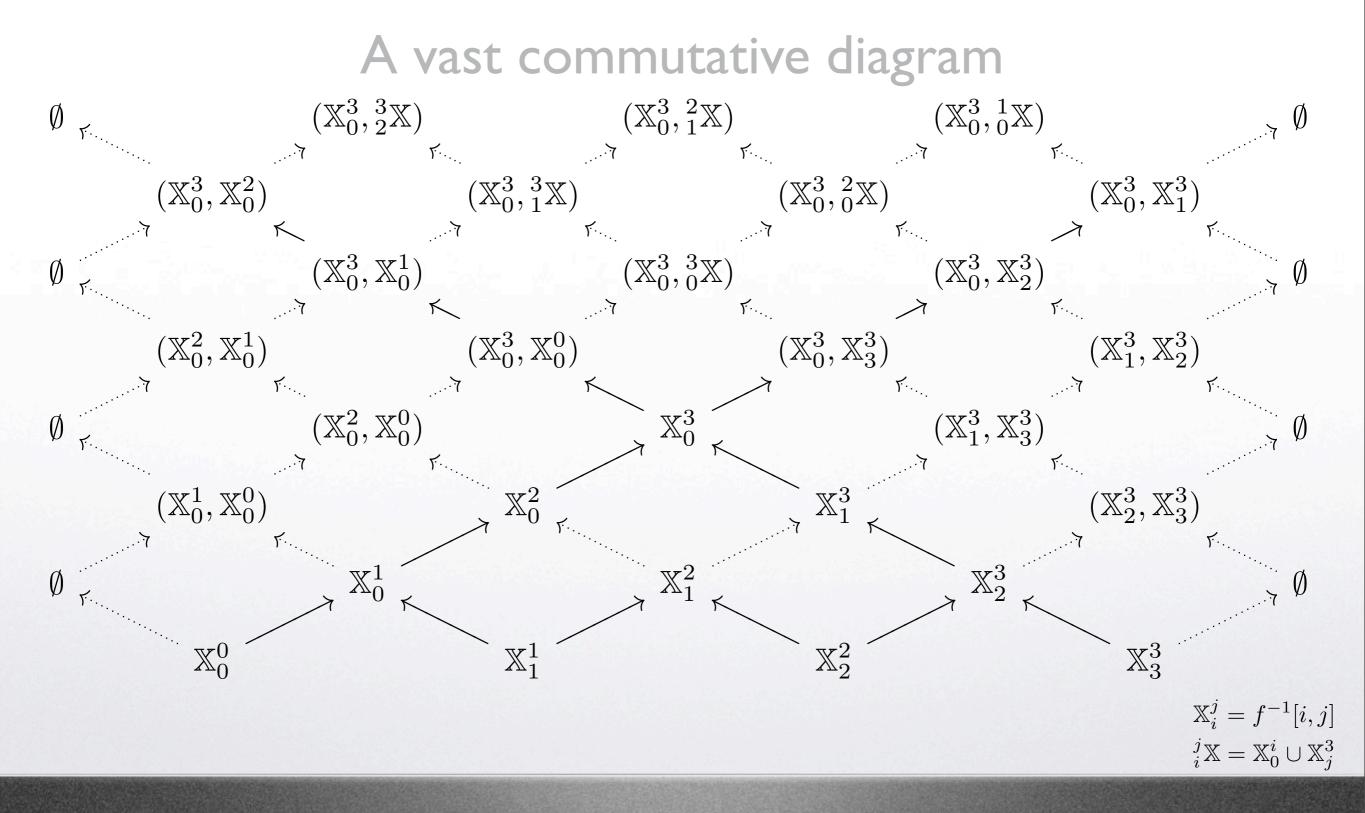


- X any space with a (tame) real-valued function f.
- Define the levelset zigzag of (X,f):

$$\mathbb{X}_0^0 \to \mathbb{X}_0^1 \leftarrow \mathbb{X}_1^1 \to \mathbb{X}_1^2 \leftarrow \mathbb{X}_2^2 \to \ldots \leftarrow \mathbb{X}_{n-1}^{n-1} \to \mathbb{X}_{n-1}^n \leftarrow \mathbb{X}_n^n,$$
$$\mathbb{X}_i^j = f^{-1}[i,j]$$

Vin de Silva http://pages.pomona.edu/~vds04747/

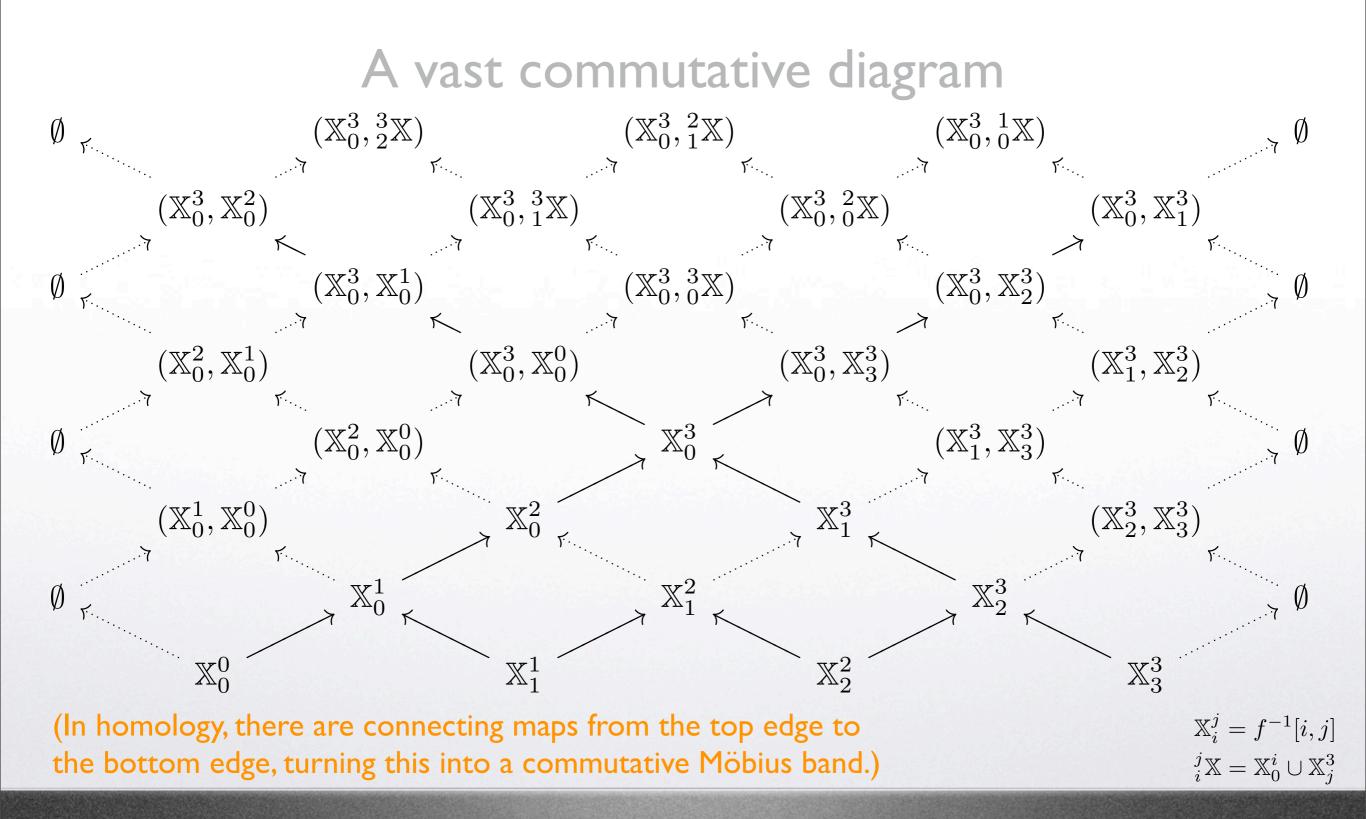
 $\widehat{}$



Topology in the 21st Century January 26–27, 2009

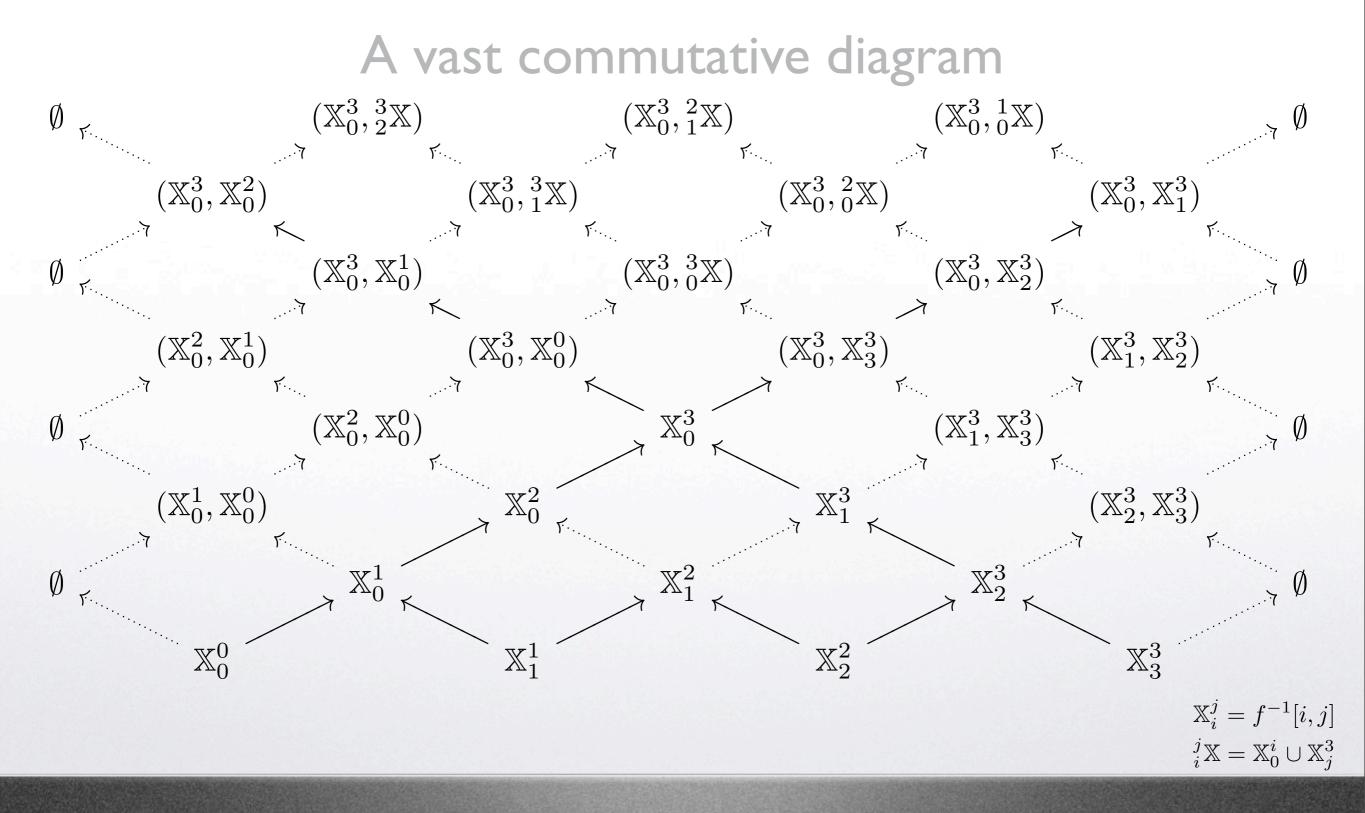
Vin de Silva http://pages.pomona.edu/~vds04747/ $\widehat{}$

 $\langle \neg | \downarrow \rangle$



Vin de Silva http://pages.pomona.edu/~vds04747/

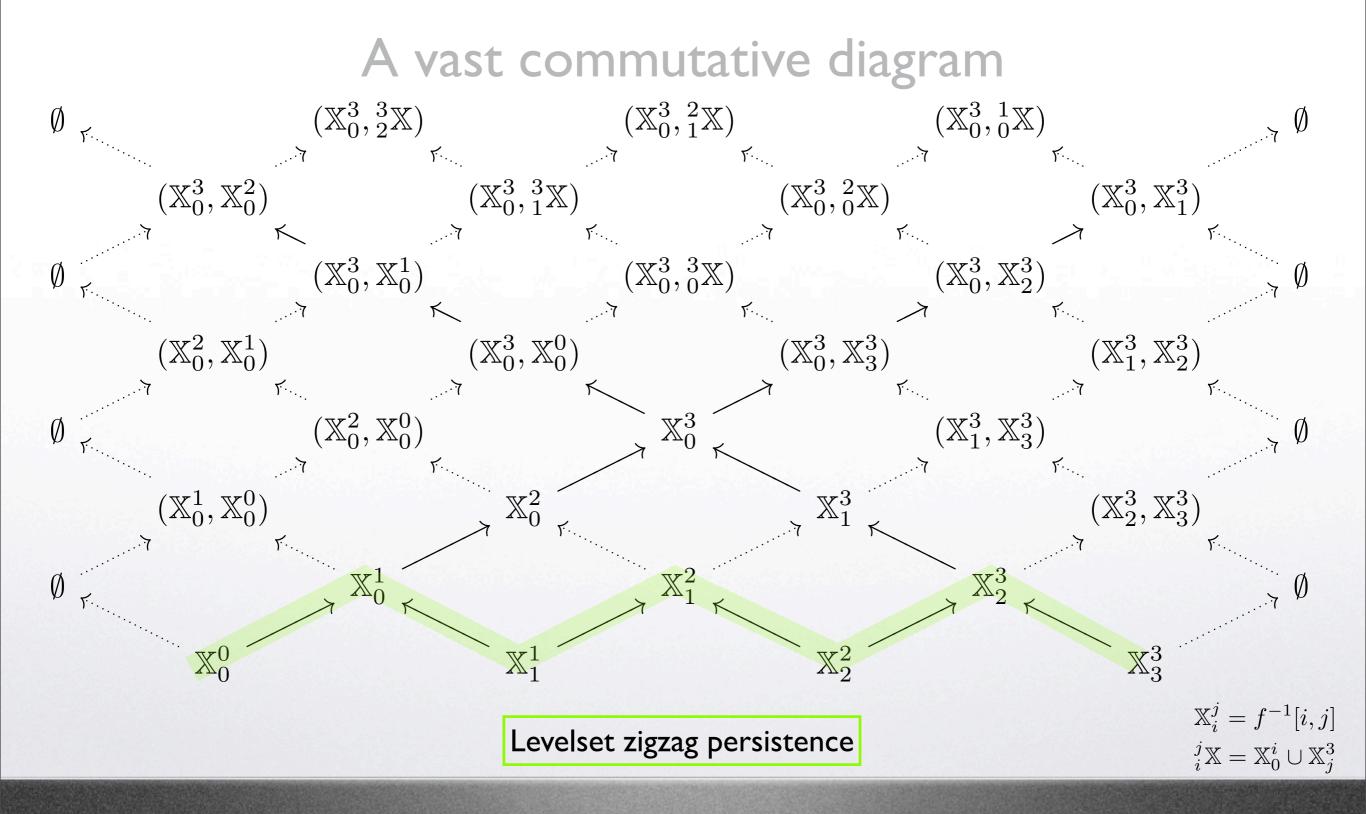
 $\widehat{}$



Topology in the 21st Century January 26–27, 2009

Vin de Silva http://pages.pomona.edu/~vds04747/

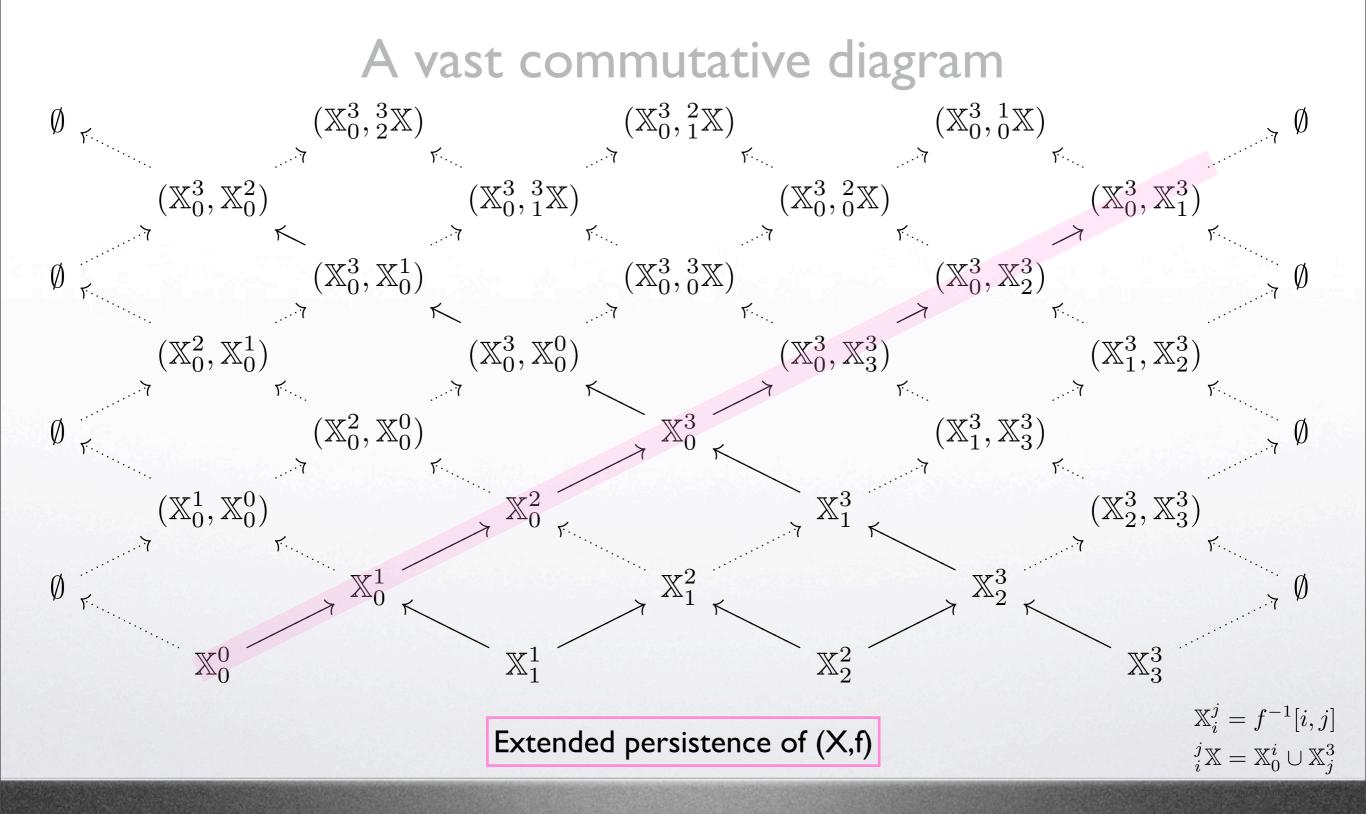
 $\langle \neg | \downarrow \rangle$



Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

Tuesday, January 27, 2009

 $\langle \neg | \downarrow \rangle$

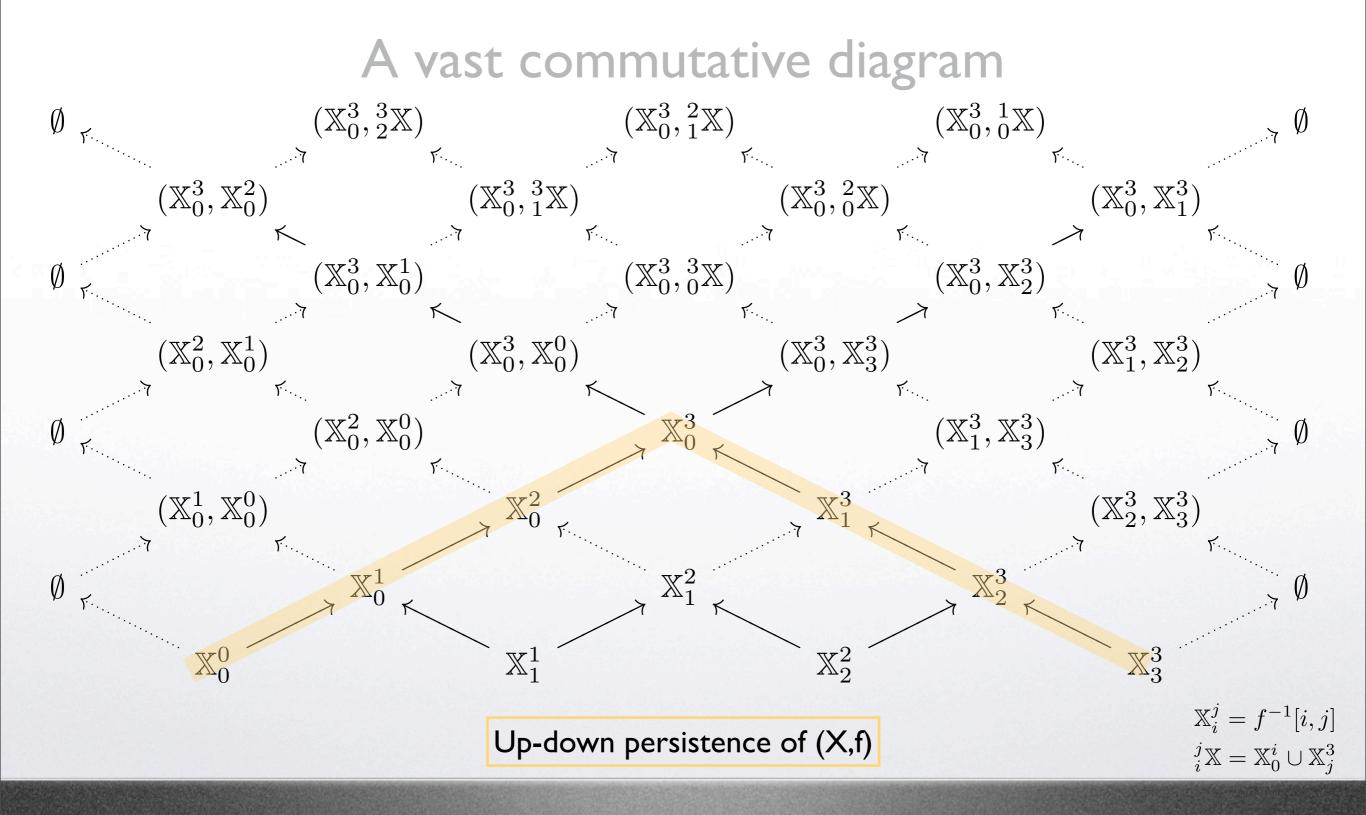


Vin de Silva http://pages.pomona.edu/~vds04747/



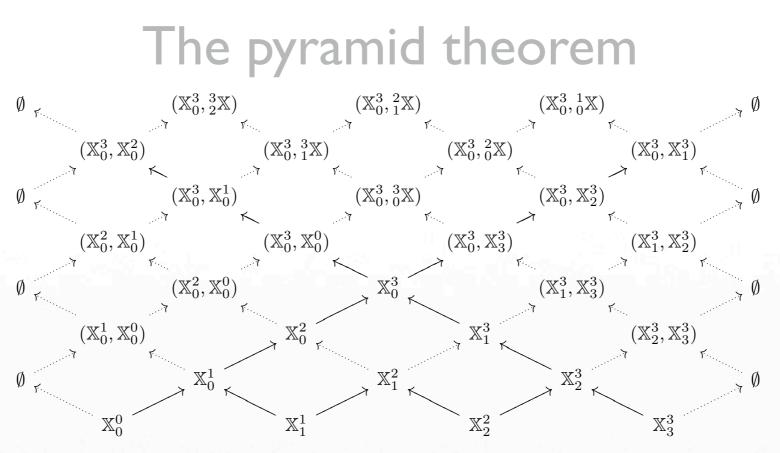
Vin de Silva http://pages.pomona.edu/~vds04747/

 $\langle \neg | \downarrow \rangle$

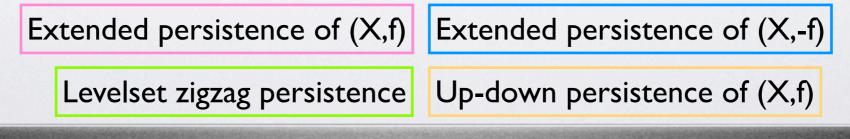


Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

Tuesday, January 27, 2009



- Every diamond is Mayer–Vietoris.
- Thus all monotone paths from left to right carry the same zigzag persistent information (rearranged, with dimension shifts).
- In particular, the following are equivalent:



Thank you

Vin de Silva http://pages.pomona.edu/~vds04747/ Topology in the 21st Century January 26–27, 2009

Tuesday, January 27, 2009