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What is topology?

=

It is the branch of mathematics 
which does not distinguish between 

a teacup and a bagel

one popular answer
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Digression: what is topology?
Topology gives answers to qualitative questions
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Point-cloud topology

‣ Topological structure in statistical 
data
‣ density estimation and modality

‣ approximation by simplicial complexes

‣ Assume data have been sampled 
from some unknown space
‣ can we measure topological features of 

the hidden space?

‣ can we assign confidence values to these 
measurements?

‣ What does “topology” mean for a 
cloud of data points?
‣ persistent homology

‣ spectral theory for point clouds
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Betti numbers and homology groups
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‣ Betti numbers and homology groups count and identify topological features
‣ number of connected components, number of holes, etc.
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‣ Betti numbers and homology groups count and identify topological features
‣ number of connected components, number of holes, etc.

‣ The k-th Betti number of X is a non-negative integer bk(X)
‣ “bk measures the k-dimensional connectivity of X”

‣ “bk counts the number of independent k-dimensional features of X”
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‣ “bk measures the k-dimensional connectivity of X”
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‣ each vector in Hk(X) corresponds to a specific feature or combination of features

6Tuesday, January 27, 2009

http://math.stanford.edu/~silva/
http://math.stanford.edu/~silva/


Topology in the 21st Century
January 26–27, 2009

Vin de Silva
http://pages.pomona.edu/~vds04747/
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‣ number of connected components, number of holes, etc.

‣ The k-th Betti number of X is a non-negative integer bk(X)
‣ “bk measures the k-dimensional connectivity of X”

‣ “bk counts the number of independent k-dimensional features of X”

‣ The k-th homology group of X is a vector space Hk(X)
‣ it is convenient use vector spaces over the scalar field {0,1}

‣ each vector in Hk(X) corresponds to a specific feature or combination of features
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2- and 3-dimensional examples

‣ For an object in 2-dimensional space
‣ b0 is the number of components

‣ b1 is the number of holes

‣ For an object in 3-dimensional space
‣ b0 is the number of components

‣ b1 is the number of tunnel or handles

‣ b2 is the number of voids

‣ (and so on, in higher dimensions)
b0 = 1, b1 = 1, b2 = 0 b0 = 1, b1 = 0, b2 = 1

b0 = 2, b1 = 0 b0 = 1, b1 = 2
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Calculating homology and Betti numbers

‣ Betti numbers and homology groups are defined 
for abstract topological spaces
‣ this involves infinite-dimensional linear algebra

‣ A topological space can often be represented as 
finite simplicial complex
‣ assembled from vertices, edges, triangles, tetrahedra, etc.

‣ linear algebra becomes finite dimensional

‣ “simplicial homology”
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Simplicial homology

‣ Simplicial complex X

‣ n0 vertices, n1 edges, n2 triangles, ...

‣ Define vector spaces C0, C1, C2, ...
‣ Ci ↔ {subsets of the set of all i-simplices}

‣ Define linear maps ∂i: Ci+1 → Ci

‣ each (i+1)-simplex maps to its set of bounding i-simplices

‣ count i-simplices modulo 2

‣ the boundary of a boundary is empty: ∂2 = 0

‣ Define Hi(X) = Ker(∂i) / Im(∂i-1)

‣ Define bi(X) = dim(Hi(X))
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Plex: algebraic topology in MATLAB

‣ Plex is a library of C++ and 
MATLAB routines for applied 
algebraic topology

‣ MATLAB front-end allows for 
easy high-level scripting

‣ Version 1 (VdS, 2000-3)

‣ Version 2 (Pat Perry & VdS, 2005) 
‣ core library written in C++

‣ “metric data” toolbox

‣ includes persistent homology library of 
Afra Zomorodian and Lutz Kettner

‣ Version 3 (Harlan Sexton, 2007)
‣ Java-based, for portability
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Sensor networks

‣ We deploy a large number of 
independent robotic agents
‣ dozens, hundreds, thousands, ...

‣ Each robot has limited physical 
and computational capabilities
‣ optical/aural sensing

‣ locomotion

‣ communication with nearby robots

‣ Attempt to solve global problems 
using local algorithms
‣ each robot has simple behaviour rules

‣ “whole is greater than sum of parts”
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The coverage problem

‣ 2D domain bounded by fence 

‣ Robots populate the domain

‣ Each robot has a coverage area
‣ signal transmission

‣ surveillance
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The coverage problem

‣ 2D domain bounded by fence 

‣ Robots populate the domain

‣ Each robot has a coverage area
‣ signal transmission

‣ surveillance

Is the entire domain covered?

13Tuesday, January 27, 2009

http://math.stanford.edu/~silva/
http://math.stanford.edu/~silva/


Topology in the 21st Century
January 26–27, 2009

Vin de Silva
http://pages.pomona.edu/~vds04747/

Attacking the coverage problem

‣ Exact knowledge of domain shape
‣ “exploring the known”

‣ Exact knowledge of robot positions
‣ e.g. using GPS systems

‣ Centralised information gathering 
and computation
‣ “mission control”

What could we use to solve the problem?
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Attacking the coverage problem

‣ Exact knowledge of domain shape
‣ “exploring the known”

‣ Exact knowledge of robot positions
‣ e.g. using GPS systems

‣ Centralised information gathering 
and computation
‣ “mission control”

What could we use to solve the problem?

using topology

unknown
unknown domain shape
‣ with mild constraints 

crude proximity information
‣ identify nearby robots and fence
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Theorem (VdS, Ghrist, Muhammad 2005)

‣ Assumptions
‣ The coverage area of each robot is a 

circular disk of radius rc

‣ Each robot can identify all robots which 
are near it (distance ≤ rs)

‣ Each robot can identify all robots which 
are at midrange (distance ≤ rw)

‣ Each robot knows if it is close to the 
fence (distance ≤ rf)

‣ rc ≥ rs√(1/3) and rw ≥ rs√(13/3)

‣ The domain is not “pinched”

‣ The fence is “not too wiggly”

‣ Conclusion
‣ There is a test for global coverage which 

gives no false positives, and “not too 
many” false negatives
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‣ Construct a simplicial complex R (“Rips complex”)
‣ a vertex for each robot

‣ an edge whenever two robots are separated by distance at most rc√3

‣ all triangles for which all the edges already belong to R

‣ Construct a subcomplex F (“Fence complex”)
‣ a vertex for each robot within distance rf of the boundary

‣ all edges, triangles for which all the vertices already belong to F

‣ Are the following statements equivalent?
‣ coverage is achieved in the interior of the domain

‣ there is a 2-chain in R with boundary in F which does not retract into F

‣ in relative homology H2(R,F) ≠ 0

2-dimensional coverage: first try
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The √3 Lemma

‣ Definition An rs-triangle is a triangle where all three sides have length ≤ rs.

‣ Lemma If three robots lie at the vertices of an rs-triangle, and if rc ≥ rs/√3 
then the three coverage disks of radius rc meet and cover the entire triangle.
‣ worst case: equilateral triangle

‣ More generally, in d dimensions: if all the edges of a d-simplex have length at 
most rc√(2+2/d), then the d+1 balls of radius rc meet and cover the entire 
simplex.
‣ worst case: regular simplex

‣ If we can find a set of rs-triangles covering the domain with a robot at each 
vertex, then by Lemma we have coverage.
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False 2-cycles
It is not enough to find a nonzero vector in H2(R,F)

This closed system of 8 triangles cannot be collapsed using tetrahedra...

19Tuesday, January 27, 2009

http://math.stanford.edu/~silva/
http://math.stanford.edu/~silva/


Topology in the 21st Century
January 26–27, 2009

Vin de Silva
http://pages.pomona.edu/~vds04747/

False 2-cycles
It is not enough to find a nonzero vector in H2(R,F)

This closed system of 8 triangles cannot be collapsed using tetrahedra...
...unless you allow slightly larger tetrahedra.

19Tuesday, January 27, 2009

http://math.stanford.edu/~silva/
http://math.stanford.edu/~silva/


Topology in the 21st Century
January 26–27, 2009

Vin de Silva
http://pages.pomona.edu/~vds04747/

False 2-cycles
It is not enough to find a nonzero vector in H2(R,F)

This closed system of 8 triangles cannot be collapsed using tetrahedra...
...unless you allow slightly larger tetrahedra.

Theorem Any closed system of rs-triangles in the plane can be collapsed 
as the boundary of a set of rw-tetrahedra, provided that rw ≥ 2rs/√3.
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False 2-cycles
It is not enough to find a nonzero vector in H2(R,F)

This closed system of 8 triangles cannot be collapsed using tetrahedra...
...unless you allow slightly larger tetrahedra.

Theorem Any closed system of rs-triangles in the plane can be collapsed 
as the boundary of a set of rw-tetrahedra, provided that rw ≥ 2rs/√3.

Caution Worse things can happen when the fence is involved.
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2-dimensional coverage: one possible answer

‣ Set three different radii rs, rw, rf in addition to coverage radius rc 
‣ require inequalities rc ≥ rs√(1/3) and rw ≥ rs√(13/3)

‣ geometry of domain is subject to constraints governed by rs, rw, rf

‣ Construct simplicial complexes Rs ⊆ Rw

‣ a vertex for each robot

‣ an edge whenever two robots are separated by distance at most rs, rw

‣ all triangles, tetrahedra for which all the edges already belong to Rs, Rw

‣ Construct subcomplexes Fs, Fw of Rs, Rw

‣ a vertex for each robot within distance rf of the boundary

‣ all edges, triangles, tetrahedra for which all the vertices already belong to Fs, Fw

‣ Under the given assumptions
‣ if the relative homology map H2(Rs,Fs) → H2(Rw,Fw) is not zero

‣ then coverage is achieved (except possibly at points close to the boundary)
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The nerve complex: a better approach?
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The nerve complex: a better approach?

‣ For a union of disks in the plane we define a “nerve complex”
‣ a vertex for every disk

‣ an edge whenever two disks intersect

‣ a triangle whenever three disks intersect

‣ ✔ The nerve complex has the same topology as the original union of disks

‣ ✘ We need precise inter-robot distances to calculate the nerve complex
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Example
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Why we need to avoid pinched domains 
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2-dimensional coverage: controlled boundary
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2-dimensional coverage: controlled boundary
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2-dimensional coverage: controlled boundary
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Optimization

‣ Tahbaz-Salehi & Jadbabaie (2008 results)
‣ Finding tight cycles around holes in coverage

⇒ identify and repair holes efficiently

‣ Finding minimal 2-cycles spanning the region

⇒ switch off unused sensor nodes

‣ Strategy:
‣ Replace L0 optimization with L1 optimization

‣ Solve L1 problem using subgradient methods

‣ Find criteria under which L1 optimum recovers L0 optimum

argmin
β∈Ck+1

‖α + dβ‖L0 argmin
β∈Ck+1

‖α + dβ‖L1
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Point-cloud topology

‣ Algebraic topology measures qualitative features of a space X
‣ How many components?

‣ How many tunnels/voids?

‣ How do paths and loops deform within X?

‣ These are measured by algebraic invariants
‣ fundamental group π1(X)

‣ homology groups Hk(X) and Betti numbers bk(X)

‣ products Hj(X) × Hk(X) → Hj+k(X)

‣ Can we compute these invariants from a finite sample Y⊂X?

27
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Standard Pipeline (first attempt)

hidden/unknown
space X

finite sample
Y⊂X

simplicial complex
S = S(Y)

homology 
invariants of S b1 = 1

b0 = 1

b2 = 0

28
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Betti numbers ↔ features

‣ For an object in 2D space
‣ b0 is the number of components

‣ b1 is the number of holes

‣ For an object in 3D space
‣ b0 is the number of components

‣ b1 is the number of tunnels or handles

‣ b2 is the number of voids

‣ (and so on, in higher dimensions) b0 = 1, b1 = 1, b2 = 0 b0 = 1, b1 = 0, b2 = 1

b0 = 2, b1 = 0 b0 = 1, b1 = 2

29
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Reconstruction theorems

‣ Various constructions for S(Y)
‣ Cech complex (folklore)

‣ Rips–Vietoris complex (folklore)

‣ α-shape complex (Edelsbrunner, Mücke) 

‣ strong/weak witness complexes (Carlsson, dS)

‣ Desire theorems of the form:

‣ e.g. Niyogi–Smale–Weinberger (2004), Cech complex

If Y is well-sampled from X
then S(Y) ≈ X

30
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Discrete vs continuous

‣ Betti numbers are discrete

‣ Topological spaces
‣ topological spaces are continuous

‣ the space of topological spaces is discrete

‣ Finite point-clouds
‣ point-clouds are discrete

‣ the space of point-clouds is continuous

‣ Therefore, raw Betti numbers are
‣ ✔ very handy for topological spaces

‣ ✘ a bit dangerous for point-clouds
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One lump or two?

At which parameter value does the
number of components change?

32
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Standard Pipeline (second attempt)

hidden/unknown
space X

finite sample
Y⊂X

labelled complex
S(r) = S(Y,r)

quantitative
topology ?

33
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Persistence
‣ Monotone increasing family of spaces

‣ Persistent homology

‣ Barcode (Edelsbrunner, Letscher, Zomorodian ’00)
‣ finite collection of intervals [bi,di)

‣ [b,d) indicates feature born at time b, dies at time d

‣ Stability theorem (Cohen-Steiner, Edelsbrunner, Harer ’07)
‣ barcode depends continuously on the underlying data

‣ see also Chazal, Cohen-Steiner, Glisse, Guibas, Oudot ’09

‣ Continuous measurements (interval length) coupled to 
discrete information (number of intervals

X = {Xε | ε ≥ 0} such that Xε ⊆ Xε
′ if ε ≤ ε′

rank [H∗(Xε) → H∗(Xε
′)] for all ε ≤ ε′
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Persistence pipeline

hidden/unknown
space X

finite sample
Y⊂X

filtered complex
S(r) = S(Y,r)

persistent 
homology of S(r)
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‣ Lee, Pedersen, Mumford (2003) studied the local statistical properties 
of natural images (from Van Hateren’s database)

‣ 3-by-3 pixel patches with high contrast between pixels: are some 
patches more likely than others?

‣ Carlsson, VdS, Ishkhanov, Zomorodian (2004/8): topological 
properties of high-density regions in pixel-patch space

Visual image patches
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The space of image patches

‣ ~4.2 million high-contrast 3-by-3 patches selected randomly from 
images in database.

‣ Normalise each patch twice: subtract mean intensity, then rescale to 
unit norm.

‣ Normalised patches live on a unit 7-sphere in 8-dimensional space 
with the following basis:
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High-density regions

‣ LPM2003 found that the distribution of 
patches is dense in the 7-sphere.

‣ There are high-density regions:
‣ edge features

‣ Can we describe the structure of the high-
density regions?
‣ threshold by k-nearest-neighbour density estimator
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Straining a data soup
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Varying the density parameter
(toy example)
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Straining a data soup
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A small platter of cuts

10% 20% 30%

K=15

K=100

K=300
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(8-dimensional data)
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(8-dimensional data)
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3-circles model
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3 circles explained

linear gradients vertical features horizontal features
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The secondary circles

vertical features horizontal features

Why is there a predominance of vertical/horizontal local features?
Artefact of the square patch shape?
Artefact of the natural world?
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Tilting the camera
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Tilting the camera

orthogonal images diagonal images
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Homogenizing over all tilt angles

‣ e1-e2 circle: arbitrary linear 
functions ax+by in the image 
plane.

‣ e1-e3 circle: quadratic 
functions of x.

‣ e3-e4 circle: quadratic 
functions of y.

‣ What about quadratic 
functions of arbitrary linear 
functions ax+by?
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Persistence pipeline

hidden/unknown
space X

finite sample
Y⊂X

filtered complex
S(r) = S(Y,r)

persistent 
homology of S(r)

55
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Persistence pipeline

finite sample
Y⊂X

filtered complex
S(r) = S(Y,r)

56

‣ Cech complex

‣ Rips complex

σ = [a0, . . . , ak] ∈ Čech(X, ε) ⇔
k⋂

i=0

Bε(ai) #= ∅

σ = [a0, . . . , ak] ∈ Rips(X, ε) ⇔ |ai − aj | ≤ ε, ∀i, j
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Persistence pipeline

finite sample
Y⊂X

filtered complex
S(r) = S(Y,r)

56

‣ Cech complex

‣ Rips complex

σ = [a0, . . . , ak] ∈ Čech(X, ε) ⇔
k⋂

i=0

Bε(ai) #= ∅

σ = [a0, . . . , ak] ∈ Rips(X, ε) ⇔ |ai − aj | ≤ ε, ∀i, j

too many 
vertices

56Tuesday, January 27, 2009

http://math.stanford.edu/~silva/
http://math.stanford.edu/~silva/


Topology in the 21st Century
January 26–27, 2009

Vin de Silva
http://pages.pomona.edu/~vds04747/

Witness complex paradigm(1)
flat curved
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Witness complex paradigm(1)
flat curved

Delaunay triangulation
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Witness complex paradigm(1)
flat curved

restricted Delaunay
triangulation

Delaunay triangulation
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Witness complex paradigm(1)
flat curved

restricted Delaunay
triangulation

witness complex

Delaunay triangulation

witness complex

co
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‣ A, X subsets of a metric space

‣ Strong witnesses

‣ Weak witnesses

Witness complexes

x ∈ X is a strong witness for σ ⊂ A

⇔ |x − a| ≤ |x − b| for all a ∈ σ, b ∈ A

x ∈ X is a weak witness for σ ⊂ A

⇔ |x − a| ≤ |x − b| for all a ∈ σ, b ∈ A \ σ

a
f

c d

b

e

x

z

a
f

e
dc

b
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‣ A, X subsets of a metric space

‣ Strong witnesses

‣ Weak witnesses

Witness complexes

x ∈ X is a strong witness for σ ⊂ A

⇔ |x − a| ≤ |x − b| for all a ∈ σ, b ∈ A

x ∈ X is a weak witness for σ ⊂ A

⇔ |x − a| ≤ |x − b| for all a ∈ σ, b ∈ A \ σ

a
f

c d

b

e

x

z

a
f

e
dc

b

x is a strong witness for adf
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‣ A, X subsets of a metric space

‣ Strong witnesses

‣ Weak witnesses

Witness complexes

x ∈ X is a strong witness for σ ⊂ A

⇔ |x − a| ≤ |x − b| for all a ∈ σ, b ∈ A

x ∈ X is a weak witness for σ ⊂ A

⇔ |x − a| ≤ |x − b| for all a ∈ σ, b ∈ A \ σ

a
f

c d

b

e

x

z

a
f

e
dc

b

z is a weak witness for bcd
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‣ A, X subsets of a metric space

‣ Strong witnesses

‣ Weak witnesses

Witness complexes

x ∈ X is a strong witness for σ ⊂ A

⇔ |x − a| ≤ |x − b| for all a ∈ σ, b ∈ A

x ∈ X is a weak witness for σ ⊂ A

⇔ |x − a| ≤ |x − b| for all a ∈ σ, b ∈ A \ σ

a
f

c d

b

e

x

z

a
f

e
dc

b

ac has a weak witness
bd has no weak witness
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‣ A, X subsets of a metric space

‣ Strong witnesses

‣ Weak witnesses

Witness complexes

x ∈ X is a strong witness for σ ⊂ A

⇔ |x − a| ≤ |x − b| for all a ∈ σ, b ∈ A

x ∈ X is a weak witness for σ ⊂ A

⇔ |x − a| ≤ |x − b| for all a ∈ σ, b ∈ A \ σ
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‣ A, X subsets of a metric space

‣ Strong Delaunay complex

‣ Weak Delaunay complex

Witness complexes

a
f

c d

b

e

x

z

a
f

e
dc

b

σ ∈ Del(A, X) ⇔ σ has a strong witness x ∈ X

σ ∈ Delw(A, X) ⇔ every τ ≤ σ has a weak witness x ∈ X

59Tuesday, January 27, 2009

http://math.stanford.edu/~silva/
http://math.stanford.edu/~silva/


Topology in the 21st Century
January 26–27, 2009

Vin de Silva
http://pages.pomona.edu/~vds04747/

Del(A,Rn) = Delw(A,Rn)

S ⊆ A has a strong witness

⇔
every T ⊆ S has a weak witness

⇐ construct strong witness in convex hull of weak witnesses

⇒ trivial

The weak witnesses theorem

60Tuesday, January 27, 2009

http://math.stanford.edu/~silva/
http://math.stanford.edu/~silva/


Topology in the 21st Century
January 26–27, 2009

Vin de Silva
http://pages.pomona.edu/~vds04747/

Witness complexes

‣ For A ⊂ Rn

‣ Del(A,Rn) = Delaunay triangulation

‣ Delw(A,Rn) = Del(A,Rn)  weak witnesses theorem

‣ For A ⊂ X ⊂ Rn

‣ Del(A,X) = restricted Delaunay triangulation

‣ If B ⊂ Rn discrete, choose landmark set A ⊂ B

‣ Del(A,B) is called a strong witness complex for B

‣ Delw(A,B) is called a weak witness complex for B
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Delw(A,X)Del(A,X)

Del(A,B) Delw(A,B)

X

almost
surely

unequal

weak witnesses
theorem

Green means “plausibly equal”

Red means “clearly unequal”

Čech nerve
theorem

Witness complex paradigm(2)
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Delw(A,X)Del(A,X)

Del(A,B) Delw(A,B)

X

almost
surely

unequal

weak witnesses
theorem

Green means “plausibly equal”

Red means “clearly unequal”

Čech nerve
theorem

Witness complex paradigm(2)

Strong witnesses exist
with probability zero
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Delw(A,X)Del(A,X)

Del(A,B) Delw(A,B)

X

almost
surely

unequal

weak witnesses
theorem

Green means “plausibly equal”

Red means “clearly unequal”

Čech nerve
theorem

Witness complex paradigm(2)

Strong witnesses exist
with probability zero

beware of slivers
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Delw(A,X)Del(A,X)

Del(A,B) Delw(A,B)

X

almost
surely

unequal

weak witnesses
theorem

Čech nerve
theorem

Witness complex paradigm(2)

‣ Recent theoretical work on X = Delw(A,B)
‣ Attali, Edelsbrunner, Mileyko  curves, surfaces

‣ Boissonat, Guibas, Oudot  sliver exudation, thickened witnesses
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Del(A,Rn) = Delw(A,Rn)

S ⊆ A has a strong witness

⇔
every T ⊆ S has a weak witness

⇐ construct strong witness in convex hull of weak witnesses

⇒ trivial

The weak witnesses theorem
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‣ Under the following assumptions...

‣ topological space X, set A

‣ ∀x,y ∈ X, ∃ connected γ(x,y) ∋ x,y

‣ ∀a ∈ A, ∃ continuous function d(a,x)

‣ ∀x,y ∈ X, the Voronoi half-space

      R(a,b) = {x ∈ X | d(a,x) ≤ d(b,x)}

is γ-convex (i.e. closed under γ)

...it follows that Del(A,X) = Delw(A,X) 

Voronoi convexity
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‣ Under the following assumptions...

‣ topological space X, set A

‣ ∀x,y ∈ X, ∃ connected γ(x,y) ∋ x,y

‣ ∀a ∈ A, ∃ continuous function d(a,x)

‣ ∀x,y ∈ X, the Voronoi half-space

      R(a,b) = {x ∈ X | d(a,x) ≤ d(b,x)}

is γ-convex (i.e. closed under γ)

...it follows that Del(A,X) = Delw(A,X) 

convex hull of {x,y}

Voronoi convexity
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‣ Voronoi convexity is satisfied by:
‣ A ⊂ X = Rn, d(a,x) = |a-x| = geodesic metric

‣ A ⊂ X = ½Sn (hemisphere), d(a,x) = geodesic metric 

‣ A ⊂ X = Hn (hyperbolic space), d(a,x) = geodesic metric 

‣ A ⊂ X = T (tree), d(a,x) = geodesic metric 

‣ A ⊂ X = Rp,q, d(a,x) = |a-x|2 = Minkowski square norm

‣ A ⊂ X = Rp,q, d(a,x) = a∗x = Minkowski inner product

‣ X = Rn, A ⊂ Rn×R, d((a,c),x) = a.x - c (linear inequalities) 

Examples
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‣ Euclidean
     D(a, w(a), x) = ½|a-x|2 - w(a)

‣ Spherical (restrict to hemisphere)

     D(a, w(a), x) = -ew(a) cos(θ(a,x))
‣ Hyperbolic

     D(a, w(a), x) = e-w(a) cosh(u(a,x))

Weight schemes satisfying Voronoi convexity

(Spherical Laguerre diagrams due to Sugihara, 2002)

Laguerre diagrams

Inequalities D(a,w(a),x) ≤ D(b,w(b),x) define half-spaces
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‣ x ∈ Rn is a strong ε-witness for S ⊆ A

   ⇔ |a-x|2 ≤ |b-x|2+ε, for all a ∈ S, b ∈ A

‣ x ∈ Rn is a weak ε-witness for S ⊆ A

   ⇔ |a-x|2 ≤ |b-x|2+ε, for all a ∈ S, b ∈ A - S

Tolerancε
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‣ x is a strong ε-witness for S ⊆ A

   ⇔ D(x,ε,a) ≤ D(x,0,b), for all a ∈ S, b ∈ A

‣ x is a weak ε-witness for S ⊆ A

   ⇔ D(x,ε,a) ≤ D(x,0,b), for all a ∈ S, b ∈ A-S

Tolerancε
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‣ x is a strong ε-witness for S ⊆ A

   ⇔ D(x,ε,a) ≤ D(x,0,b), for all a ∈ S, b ∈ A

‣ x is a weak ε-witness for S ⊆ A

   ⇔ D(x,ε,a) ≤ D(x,0,b), for all a ∈ S, b ∈ A-S

Tolerancε

Laguerre weights in Euclidean, spherical, hyperbolic spaces
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‣ strong ε-witness complex

   S ∈ Del(A,X;ε) ⇔ S has a strong ε-witness in X

‣ weak ε-witness complex

   S ∈ Delw(A,X;ε) ⇔ every T ⊆ S has a weak ε-witness in X

ε-witness compexes
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‣ strong ε-witness complex

   S ∈ Del(A,X;ε) ⇔ S has a strong ε-witness in X

‣ weak ε-witness complex

   S ∈ Delw(A,X;ε) ⇔ every T ⊆ S has a weak ε-witness in X

Filtered complexes for persistent homology

ε-witness compexes
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Delw(A,X,ε)Del(A,X,ε)

Del(A,B,ε) Delw(A,B,ε)

X

interleaved

weak ε-witnesses
theorem

Green means “plausibly equal”

Čech nerve
theorem

Witness complex paradigm(ε)

interleaved
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Comparing strong and weak

Data points sampled from 2-sphere
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And the Oscar goes to...
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Standard Pipeline (second attempt)

hidden/unknown
space X

finite sample
Y⊂X

labelled complex
S(r) = S(Y,r)

quantitative
topology ?

78
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The discrete Laplacian Δk

‣  Ck = { real-valued functions on k-simplices of S(Y) }
‣ floating point rather than exact arithmetic

‣ Define discrete Laplacian operators Δk : Ck → Ck

‣ Consider the harmonic spaces Hk = Ker(Δk)
‣ Hk is isomorphic to standard homology of X

‣ Consider eigenspaces { f : Δkf = λf } for λ small 
‣ “almost homology” or “ε-homology”

‣ Information derived from the ranks of these spaces (Betti numbers) and the 
eigenfunctions themselves

79
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Constructing Δk

Given a chain complex over the real numbers...

The discrete Laplacian is defined...

...and one can easily prove (in the finite dimensional case):

...and an inner product on each Ck, we can form the dual cochain 
complex:

homology is defined
using a chain complex

homologyharmonic space

cohomology is defined
using a cochain complex

80

· · ·Ck−1
∂k
←− Ck

∂k
←− Ck+1 · · ·

· · ·Ck−1

∂
∗

k
−→ Ck

∂
∗

k
−→ Ck+1 · · ·

∆k = ∂
∗

k∂k + ∂k+1∂
∗

k+1

Hk := Ker(∆k) ∼=
Ker(∂k)

Im(∂k+1)
=: Hk
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Aside: Hodge theory
For a 3-dimensional domain:	

For example:

Proof that Ker(Δk) = Hk is much more difficult in this setting.

81

Ω
0 ∇
−→ Ω

1 ∇×
−→ Ω

2 ∇·
−→ Ω

3

Ω
0 −∇·
←− Ω

1 ∇×
←− Ω

2 −∇
←− Ω

3

∆0f := ∇ · (∇f) = −
∑3

i=1

∂2f
∂x2

i

∆0!g := ∇× (∇× !g) −∇(∇ · !g) = −
∑3

i=1

∂2"g
∂x2

i
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Aside: Hodge theory
For a 3-dimensional domain:	

scalar
fields

vector
fields

vector
fields

scalar
fields

grad curl div

For example:

Proof that Ker(Δk) = Hk is much more difficult in this setting.
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Aside: Hodge theory
For a 3-dimensional domain:	

scalar
fields

vector
fields

vector
fields

scalar
fields

grad curl div

For example:

Proof that Ker(Δk) = Hk is much more difficult in this setting.

81

Ω
0 ∇
−→ Ω
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−→ Ω

2 ∇·
−→ Ω

3

Ω
0 −∇·
←− Ω

1 ∇×
←− Ω

2 −∇
←− Ω

3

∆0f := ∇ · (∇f) = −
∑3

i=1

∂2f
∂x2

i

∆0!g := ∇× (∇× !g) −∇(∇ · !g) = −
∑3

i=1

∂2"g
∂x2

i

requires analysis in spaces of smooth functions for lemmas of the form Ker(D)=Im(D*)⊥
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Aside: Hodge theory
For a 3-dimensional domain:	

scalar
fields

vector
fields

vector
fields

scalar
fields

grad curl div

For example:

Proof that Ker(Δk) = Hk is much more difficult in this setting.

81

Ω
0 ∇
−→ Ω

1 ∇×
−→ Ω

2 ∇·
−→ Ω

3

Ω
0 −∇·
←− Ω

1 ∇×
←− Ω

2 −∇
←− Ω

3

∆0f := ∇ · (∇f) = −
∑3

i=1

∂2f
∂x2

i

∆0!g := ∇× (∇× !g) −∇(∇ · !g) = −
∑3

i=1

∂2"g
∂x2

i

requires analysis in spaces of smooth functions for lemmas of the form Ker(D)=Im(D*)⊥

result not true for subsets of Euclidean space! only for closed manifolds
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ε-Betti numbers

Structure theorem for homology and ε-homology

Integers bk “Betti numbers”

Integers bk+½(ε) “ε-Betti numbers”

For every nonnegative integer k, and ε > 0:

dim(Ker(Δk)) = bk

dim(Eig(Δk,ε)) = bk-½(ε) + bk + bk+½(ε)

such that:

space spanned by eigenfunctions
with eigenvalue less than ε

82
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Laplacian pipeline

hidden/unknown
space X

finite sample
Y⊂X

weighted complex
S = S(Y), f:S→R

ε-harmonic forms 

b0 = 1

b1 = 1

b2 = 0

b0.5(ε) = ?

b1.5(ε) = ?

83
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Pros and cons

‣ ✔ Several ways to incorporate continuous parameters
‣ meaning of ”λ is close to zero” — how close?

‣ simplices can be weighted prior to construction of Δk

‣ ✔ Harmonic cycles have global optimality properties
‣ localising features/minimal cycle problem

‣ ✔ Non-zero eigenfunctions encode subtle relationships between cells of 
adjacent dimensions

‣ ✘ Numerically more vulnerable than persistent homology

‣ ✘ Theory somewhat underdeveloped
‣ (except graph Laplacians, see “Spectral Graph Theory” by Chung ✔)

‣ (recent work on high-dimensional spanning “trees” by Jeremy Martin et al ✔)

84
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Examples

b0 b0.5(ε) b1 b1.5(ε) b2

2 0 0 0 0
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Examples

b0 b0.5(ε) b1 b1.5(ε) b2

1 1 0 0 0

hot spot for 1-chain j,
where Δ1j = λj
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Examples

b0 b0.5(ε) b1 b1.5(ε) b2

1 0 1 0 0

hot spot for 1-cycle j,
where Δ1j = 0

87

87Tuesday, January 27, 2009

http://math.stanford.edu/~silva/
http://math.stanford.edu/~silva/


Topology in the 21st Century
January 26–27, 2009

Vin de Silva
http://pages.pomona.edu/~vds04747/

Examples

b0 b0.5(ε) b1 b1.5(ε) b2

1 0 1 0 0

hot spot for 1-cycle j,
where Δ1j = 0

87

87Tuesday, January 27, 2009

http://math.stanford.edu/~silva/
http://math.stanford.edu/~silva/


Topology in the 21st Century
January 26–27, 2009

Vin de Silva
http://pages.pomona.edu/~vds04747/

Examples

b0 b0.5(ε) b1 b1.5(ε) b2

1 0 1 0 0

hot spot for 1-cycle j,
where Δ1j = 0

annulus
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Examples
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1 0 1 0 0

hot spot for 1-cycle j,
where Δ1j = 0

annulus
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Examples

b0 b0.5(ε) b1 b1.5(ε) b2

1 0 0 1 0

hot spot for 2-chain k,
where Δ2k = λk

hot spot for 1-cycle j,
where Δ1j = λj

punctured sphere
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Examples

b0 b0.5(ε) b1 b1.5(ε) b2

1 0 0 1 0

hot spot for 2-chain k,
where Δ2k = λk

hot spot for 1-cycle j,
where Δ1j = λj

punctured sphere

89

DEMO!!!
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Examples

b0 b0.5(ε) b1 b1.5(ε) b2

1 0 0 0 1

sphere
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What is a (1.5)-D feature?

punctured sphere
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What is a (1.5)-D feature?

punctured sphere

A 1-D cycle which is a boundary (but only just)
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What is a (1.5)-D feature?

punctured sphere

A 1-D cycle which is a boundary (but only just)

A 2-D chain which is almost (but not quite) closed
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What is a (1.5)-D feature?

punctured sphere

A 1-D cycle which is a boundary (but only just)

A 2-D chain which is almost (but not quite) closed
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Local vs global features

Homological features can be local or global to varying degrees:

This example has a 2-dimensional space of harmonic 1-forms.
Can we pick out 1-forms representing the two features?

global featurelocal feature
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Local vs global features

Homological features can be local or global to varying degrees:

This example has a 2-dimensional space of harmonic 1-forms.
Can we pick out 1-forms representing the two features?

global featurelocal feature

persistent homology
can do this very easily
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Local vs global features

Homological features can be local or global to varying degrees:

This example has a 2-dimensional space of harmonic 1-forms.
Can we pick out 1-forms representing the two features?

global featurelocal feature
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Concentration

‣ Heuristic arguments suggest that harmonic cycles concentrate 
energy...

‣ ...weakly along global features

‣ ...strongly along local features

96

96Tuesday, January 27, 2009

http://math.stanford.edu/~silva/
http://math.stanford.edu/~silva/


Topology in the 21st Century
January 26–27, 2009

Vin de Silva
http://pages.pomona.edu/~vds04747/

Concentration

‣ Heuristic arguments suggest that harmonic cycles concentrate 
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Concentration

‣ Heuristic arguments suggest that harmonic cycles concentrate 
energy...

‣ ...weakly along global features

‣ ...strongly along local features
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Entropy & Lp comparison

‣ How to detect whether a cycle is highly concentrated in some 
region?

‣ Some measure of entropy is called for
‣ high entropy ↔ flat distribution ↔ global feature

‣ low entropy ↔ peaked distribution ↔ local feature

‣ Simple estimate: compare L1 and L2 norms
‣ E[f] := ||f||1 / ||f||2

‣ E[f] large ↔ global feature

‣ E[f] small ↔ local feature
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Entropy & Lp comparison

‣ How to detect whether a cycle is highly concentrated in some 
region?

‣ Some measure of entropy is called for
‣ high entropy ↔ flat distribution ↔ global feature

‣ low entropy ↔ peaked distribution ↔ local feature

‣ Simple estimate: compare L1 and L2 norms
‣ E[f] := ||f||1 / ||f||2

‣ E[f] large ↔ global feature

‣ E[f] small ↔ local feature

DEMO!!!
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Isomap (etc)

Original points

Swiss roll embedding

Isomap: k=8
 

L−Isomap: k=8
10 landmarks

L−Isomap: k=8
4 landmarks

L−Isomap: k=8
3 landmarks

Nonlinear Dimensionality Reduction

unknown: linear parameter space
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Isomap (etc)

Original points

Swiss roll embedding

Isomap: k=8
 

L−Isomap: k=8
10 landmarks

L−Isomap: k=8
4 landmarks

L−Isomap: k=8
3 landmarks

Nonlinear Dimensionality Reduction

input: nonlinear observed data

unknown: linear parameter space
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Isomap (etc)

Original points

Swiss roll embedding

Isomap: k=8
 

L−Isomap: k=8
10 landmarks

L−Isomap: k=8
4 landmarks

L−Isomap: k=8
3 landmarks

output: low-dimensional
coordinate embedding

Nonlinear Dimensionality Reduction

input: nonlinear observed data

unknown: linear parameter space

99Tuesday, January 27, 2009

http://math.stanford.edu/~silva/
http://math.stanford.edu/~silva/


Topology in the 21st Century
January 26–27, 2009

Vin de Silva
http://pages.pomona.edu/~vds04747/

Example: face images
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NLDR techniques

‣ Beginning December 2000:
‣ Isomap (Tenenbaum, dS, Langford)

‣ LLE (Roweis, Saul) 

‣ Laplacian Eigenmaps (Belkin, Niyogi) 

‣ Hessian Eigenmaps (Donoho, Grimes)

‣ ...

‣ Goal: find useful real-valued coordinate functions on data

‣ Most effective when data lie on the image of a convex region

‣ Nontrivial topology typically causes problems
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NLDR techniques

‣ Beginning December 2000:
‣ Isomap (Tenenbaum, dS, Langford)

‣ LLE (Roweis, Saul) 

‣ Laplacian Eigenmaps (Belkin, Niyogi) 

‣ Hessian Eigenmaps (Donoho, Grimes)

‣ ...

‣ Goal: find useful real-valued coordinate functions on data

‣ Most effective when data lie on the image of a convex region

‣ Nontrivial topology typically causes problems

actually, 1997
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NLDR techniques

‣ Beginning December 2000:
‣ Isomap (Tenenbaum, dS, Langford)

‣ LLE (Roweis, Saul) 

‣ Laplacian Eigenmaps (Belkin, Niyogi) 

‣ Hessian Eigenmaps (Donoho, Grimes)

‣ ...

‣ Goal: find useful real-valued coordinate functions on data

‣ Most effective when data lie on the image of a convex region

‣ Nontrivial topology typically causes problems

actually, 1997

What about circle-valued coordinates?  ϑi : X ➔ S1
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An idea of Penrose...
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An idea of Penrose...

‣ What is the depth function f(x)?

‣ f(x)-f(y) is locally consistently 
defined.

‣ There is no global f(x).
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An idea of Penrose...

‣ What is the depth function f(x)?

‣ f(x)-f(y) is locally consistently 
defined.

‣ There is no global f(x).

cohomology class in H1(X)
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An idea of Penrose...

‣ What is the depth function f(x)?

‣ f(x)-f(y) is locally consistently 
defined.

‣ There is no global f(x).

cohomology class in H1(X)nonzero 
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An idea of Penrose...

‣ What is the depth function f(x)?

‣ f(x)-f(y) is locally consistently 
defined.

‣ There is no global f(x).

cohomology class in H1(X)

circle-valued depth function 

nonzero 
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Homotopy theory

[X, S1] = H1(X; Z)

Homotopy classes of maps X ➙ S1
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Why Cohomology?

‣ homology, homotopy: maps into X
‣ cohomology, cohomotopy: maps from X

1-cycle de Rham 1-cocycle
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Homology
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Cohomology
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Dual bases
homology cohomology
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Circle maps

‣ Integer cocycles give rise to 
circle maps...

‣ ...but these are abrupt and 
unsmooth.

cohomology
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Harmonic smoothing
homology cohomology
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Harmonic smoothing
homology cohomology
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Dual lattices

‣ After smoothing, integer cocycles 
become real cocycles...

‣ ...but they still produce circle 
maps.

‣ Seek harmonic forms in integer 
cohomology lattice.

harmonic 1-forms

integer homology and cohomology lattices
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Strategy

‣ Filtered complex
‣ Persistent cohomology (mod p)
‣ Select significant cocycle
‣ Lift to integer coefficients
‣ Smooth
‣ Integrate

X = {Xε}
ε≥0

pH1(X; Fp)

[αp] ∈ H
1(Xε; Fp)

[α] ∈ H
1(Xε; Z)

ᾱ ∈ H1(Xε) ⊆ C
1(Xε; R)

θ : X
ε
→ S

1
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Noisy circle

inferred inferred vs original histogram
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Trefoil knot

inferred inferred vs original histogram
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Rotating cube images

inferred vs original histogram
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Pairs of circles

correlation inferred1 inferred2
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Noisy torus
inferred2 original1 original2

in
fe
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ed

1
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2
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1
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Persistent homology

‣ Persistent homology algorithm (ELZ2000):
‣ Given filtered simplicial complex {Kt, →}

‣ Input (S, ∂S) in order of appearance of S

‣ Output persistent homology

                           {H∗(Kt), →}

‣ What happens if you input the cells in reverse order?
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Persistent homology

‣ Persistent homology algorithm (ELZ2000):
‣ Given filtered simplicial complex {Kt, →}

‣ Input (S, ∂S) in order of appearance of S

‣ Output persistent homology

                           {H∗(Kt), →}

‣ What happens if you input the cells in reverse order?

Note: When S enters the filtration, the simplices of ∂S are already there.
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Persistent relative cohomology

‣ Persistent homology algorithm (ELZ2000):
‣ Given filtered simplicial complex {Kt, →}

‣ Input (S, δS) in order of appearance of S

‣ Output persistent relative cohomology

                     {H∗(K,Kt), →}

(at time t, the missing cells are those of Kt).

‣ Next: exploit this for local homology calculations.

When S enters the reversed filtration, the simplices of δS are already there.
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Local cohomology

‣ Local structure of X near a point x0 measured by H∗(X, X-x0).

‣ Filtration X = {Xt}t<0 converging to X-x0 as t→0 from below:
       Xt = {x ∈ X : d(x,x0) > |t|}

‣ Restrict filtration to data points:
       B = {Bt = B ∩ Xt}t<0

‣ Select landmarks A ⊂ B

‣ Fix ε
‣ Construct filtered space Del(A,B;ε) = {Delw(A,Bt;ε)}t<0.

‣ Compute H*(Del(A,B;ε)) = pH*(Delw(A,Bt;ε)).
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2-sphere
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Torus
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Union of two 2-spheres over a circle
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Union of two 2-spheres over a circle
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Space of tetrahedron images

Space of rotations = SO(3) is 3-dimensional
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Space of tetrahedron images
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Space of tetrahedron images
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Space of tetrahedron images
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Confession: I cheated a bit (by cherry-picking)
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Zigzag persistence
Joint work with Gunnar Carlsson, Dmitriy Morozov
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Three parameters
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Persistence
‣ Monotone increasing family of spaces

‣ Persistent homology

‣ Barcode description (Edelsbrunner, Letscher, Zomorodian ’00)

‣ Barcode stability theorem (Cohen-Steiner, Edelsbrunner, Harer ’07)
‣ the barcode depends continuously on the underlying diagram of spaces

‣ see also Chazal, Cohen-Steiner, Glisse, Guibas, Oudot ’09

X = {Xε | ε ≥ 0} such that Xε ⊆ Xε
′ if ε ≤ ε′

rank [H∗(Xε) → H∗(Xε
′)] for all ε ≤ ε′

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
e
t
t
i
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
e
t
t
i
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B
e
t
t
i
2
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Persistence

‣ Spaces

‣ Persistent homology

‣ Barcode algebra (Carlsson, Zomorodian ’05)
‣ H(X) is naturally a module over polynomial ring k[t]

‣ ⇒ has unique representation as a sum of indecomposables

‣ indecomposable summands depicted as barcode intervals

‣ calculate decomposition using linear algebra over k[t]

X1 X2 · · · Xn

H∗(X1) H∗(X2) · · · H∗(Xn)

!! !! !!

!! !! !!
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‣ Examples of indecomposable summands

‣ Example of decomposable system

‣ (decomposition depends on f,g)

Decomposition into summands

0 0 k k k 0!! !! !!
Id

!!
Id

!!

0 k 0 0 0 0!! !! !! !! !!

0 k k
2 k 0 0!! !!

f
!!

g
!! !!
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Non-monotone families

‣ Example: time-varying complex X = {Xt | t real}.

‣ Example: 30% strained data soup, varying the 
smoothing parameter.

‣ Example: witness complex with fixed vertex set, 
varying the set of witnesses.

‣ How do the features of X change as t varies?
‣ New cell appears

‣ Old cell disappears

‣ Inclusion map directions vary arbitrarily, e.g.

‣ Can we do non-monotone persistence?

X X ∪ σ!!

X X \ τ!!

. . . Xi−1 Xi Xi+1
. . .!! "" !! !!
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Quivers

‣ A quiver is a directed (multi-)graph:
‣ nodes

‣ arrows

‣ A representation of a quiver Q has:
‣ a vector space for every node

‣ a linear map for every arrow

‣ General question: classify representations of a given quiver Q.

‣ What would be the ideal answer?
‣ unique decomposition into indecomposable representations

‣ + explicit list of indecomposables

‣ + algorithm to determine decomposition type

V1 V2

W

f1 f2
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‣ Example

‣ Typical representation

‣ Irreducible representations (over complex numbers)

‣ Classifying invariant

Quivers

dim(V )

V

C
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‣ Example

‣ Typical representation

‣ Irreducible representations (over complex numbers)

‣ Classifying invariants

Quivers

V W!!

f

rank(f), dim(V ), dim(W )

C C

C 0

0 C

!!
1

!!

!!
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‣ Example

‣ Typical representation

‣ Irreducible representations (over complex numbers)

‣ Classifying invariants

Quivers

rank [Vi → Vj ] , 0 ≤ i ≤ j ≤ 3

V0 V1 V2 V3
!!

f0
!!

f1
!!

f2

intervals [b, d], 0 ≤ b ≤ d ≤ 3
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‣ Example

‣ Typical representation

‣ Irreducible representations (over complex numbers)

‣ Classifying invariants

Quivers

rank [Vi → Vj ] , 0 ≤ i ≤ j ≤ 3

V0 V1 V2 V3
!!

f0
!!

f1
!!

f2

intervals [b, d], 0 ≤ b ≤ d ≤ 3

relation: rank [Vi → Vj ] =
∑

[b,d]⊇[i,j]

multiplicity of [b, d]
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‣ Example

‣ Typical representation

‣ Irreducible representations (over complex numbers)

‣ Classifying invariants: generalised eigenspectrum of f

Quivers

V V!!

f

Jordan blocks















λ 1 . . . 0

0 λ . . . 0

.

.

.
.
.
.

.

.

.

0 0 . . . 1

0 0 . . . λ
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Quivers

‣ A quiver Q is of finite type if there is a unique decomposition 
theorem with a finite list of indecomposables.

‣ Gabriel’s Theorem (1972): Q is of finite type iff its underlying 
undirected graph is one of the following.

‣ Kac’s theorem (1980): the set of dimension vectors of 
indecomposable representations of a Q is independent of the 
direction of the arrows.

An Dn

E6 E8E7

Corollary: interval decomposition for all quivers of type An 
⇒ zigzag persistent homology!
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Calculating the zig-zag barcode

‣ We can construct the barcode representation inductively.
‣ Start from the left term in the sequence.

‣ At time k, we have a filtration of Vk stored as a filtered basis.

‣ The filtration records the lifetimes (to date) of all vectors in Vk.

‣ Update step: pull back/push forward the filtration to Vk+1.

‣ Record the lifespans of features killed in the move.

‣ The filtration is crucial. Basis operations must respect the filtration.
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Three-term sequences

f1 f2

f2(f1(V0)) ⊆ f2(V1) ⊆ V2

* * *
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Three-term sequences

g−1

2
(0) ⊆ g−1

2
(g−1

1
(0)) ⊆ V2

***

g1 g2
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Three-term sequences

f1 f2

g1 g2

f2(f1(V0)) ⊆ f2(V1) ⊆ V2

* * *

f2(g
−1

1
(0)) ⊆ f2(V1) ⊆ V2

* * *

g−1

2
(0) ⊆ g−1

2
(g−1

1
(0)) ⊆ V2

** *
g−1

2
(0) ⊆ g−1

2
(f1(V0)) ⊆ V2

* * *

f2
g1

f1
g2
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A four-term sequence

f1 g2 g3

g−1

3
(0) ⊆ g−1

3
(g−1

2
(0)) ⊆ g−1

3
(g−1

2
(f1(V0))) ⊆ V3

*** *
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Witness bicomplexes
Joint work with Gunnar Carlsson, Dmitriy Morozov
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Families of witness complexes

‣ Xk = Del(A,C) where C = C(tk)
‣ Vertex set fixed, add or subtract cells one at a time

‣ H(Xk) is a quiver representation of type An 

‣ An-quiver decomposition ⇒ interval barcode ✓

‣ Xk = Del(A,C) where A = A(tk)
‣ No natural map H(Xk) → H(Xk+1) or H(Xk) ← H(Xk+1)

‣ Construct interpolating spaces Yk with maps Xk ← Yk → Xk+1

‣  Apply An-quiver decomposition to zigzag sequence ✓

· · · Yk−1 Yk · · ·

Xk−1 Xk Xk+1

!!
!!

!!
!!

!!
!

"""
"
"
"
"
"
"
"

!!
!

!
!

!
!

!
!

!

"""
"
"
"
"
"
"
"

!!
!

!
!

!
!

!
!

!

""""
""

""
""

"
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‣ A, B, X subsets of a metric space

‣ Strong 2-witnesses

‣ Weak 2-witnesses

‣ Strong Delaunay bicomplex

‣ Weak Delaunay bicomplex

Witness bicomplexes

x ∈ X is a strong biwitness for bisimplex (σ, τ)

⇔ x is a strong witness for σ ⊂ A

and x is a strong witness for τ ⊂ B

x ∈ X is a weak biwitness for bisimplex (σ, τ)

⇔ x is a weak witness for σ ⊂ A

and x is a weak witness for τ ⊂ B

(σ, τ) ∈ Del2(A, B; X) ⇔ (σ, τ) has a strong biwitness x ∈ X

(σ, τ) ∈ Delw2 (A, B; X) ⇔ every (σ′, τ ′) ≤ (σ, τ) has a weak biwitness x ∈ X
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Witness bicomplexes

‣ There are natural projection maps

‣ Example: X = unit circle, A = {0, 2π/3, 4π/3}, B = {π/3, π, 5π/3}

‣ (To understand correctness, we consider 2-nerves.)

Del(A; X) ←− Del2(A, B; X) −→ Del(B; X)

Delw(A; X) ←− Delw2 (A, B; X) −→ Delw(B; X)

(a1,b2)

(a3,b1)

(a2,b1)(a2,b3)

(a1,b3)

(a3,b2)
b2a3a1

a2 b1b3
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Binerve of a pair of covers

‣ Two covers of X

‣ Binerve

‣ Union and intersection

‣ Homotopy equivalence

‣ Mayer–Vietoris theorem

U V

U ∧ V

U ∨ V

U ∨ V = {Ua | a ∈ A} ∪ {Vb | b ∈ B}

U ∧ V = {Ua ∩ Vb | a ∈ A, b ∈ B}

U = {Ua | a ∈ A}

V = {Vb | b ∈ B}

(σ, τ) ∈ N2(U, V ) ⇔
⋂

a∈σ

Ua ∩
⋂

b∈τ

Vb $= ∅

N2(U, V ) ! N (U ∧ V )

. . . → Hk(U ∧ V ) → Hk(U) ⊕ Hk(V ) → Hk(U ∨ V ) → Hk−1(U ∧ V ) → . . .
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The binerve theorem

‣ Proposition (weak witnesses theorem for Delaunay bicomplexes).
‣  

‣ Proposition. Let U,V be the Voronoi covers of X defined by A,B.
‣  

‣ Binerve Theorem. U,V covers of X. The following are equivalent.

U ∨ V is a projectively faithful cover of X

N (U) ← N2(U, V ) → N (V ) is projectively faithful for X

N (U) → N (U ∨ V ) ← N (V ) is projectively faithful for X

*

*

i.e. the homology diagram contains H*(X) ← H*(X) → H*(X) as a summand

i.e. the homology diagram contains H*(X) → H*(X) ← H*(X) as a summand

*

*

Del2(A, B; X) = N2(U, V )

Delw2 (A, B; Rn) = Del2(A, B; Rn)
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The pyramid theorem
Joint work with Gunnar Carlsson, Dmitriy Morozov
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Mayer–Vietoris Diamond Principle

U ∪ V

X1
. . . Xk−2 U V Xk+2

. . . Xn

U ∩ V

!! "" !! "" !! ""

##
!!!!!

!! ""

$$"""""

!! "" !! ""
##

!!!!!

$$"""""

‣ The two zigzags in the above diagram carry the same persistent homology 
information.
‣ The intervals change slightly, and some intervals undergo a dimension shift.

‣ The result follows from the Mayer–Vietoris theorem for the middle diamond.
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Levelset zigzag persistence

X
0

0 → X
1

0 ← X
1

1 → X
2

1 ← X
2

2 → . . . ← X
n−1

n−1
→ X

n

n−1 ← X
n

n
,

‣ X any space with a (tame) real-valued function f.

‣ Define the levelset zigzag of (X,f):

X
j
i = f−1[i, j]
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A vast commutative diagram
∅ (X3

0,
3

2X) (X3

0,
2

1X) (X3

0,
1

0X) ∅

(X3

0, X
2

0) (X3

0,
3

1X) (X3

0,
2

0X) (X3

0, X
3

1)

∅ (X3

0, X
1

0) (X3

0,
3

0X) (X3

0, X
3

2) ∅

(X2

0, X
1

0) (X3

0, X
0

0) (X3

0, X
3

3) (X3

1, X
3

2)

∅ (X2

0, X
0

0) X
3

0 (X3

1, X
3

3) ∅

(X1

0, X
0

0) X
2

0 X
3

1 (X3

2, X
3

3)

∅ X
1

0 X
2

1 X
3

2 ∅

X
0

0 X
1

1 X
2

2 X
3

3

!!

"" ""!! ""!!

""

!!

"" !!!!!
"" ""!! ""

"""
!! !!

!!

"" !!!!!
"" ""

"""
!! !!

""

"" !! "" !!!!!!!

""
"""""

!! "" !!

!!

"" !!

""
"""""""

!!!!!!!!!

"" !!

""

"" !!

""
"""""""

!! "" !!!!!!!!!

"" !!

!!
""

"""""""

!!!!!!!!!

""
"""""""

!!!!!!!!!

""
"""""""

!!!!!!!!!

""

j
i X = X

i
0 ∪ X

3

j

X
j
i = f−1[i, j]
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A vast commutative diagram
∅ (X3

0,
3

2X) (X3

0,
2

1X) (X3

0,
1

0X) ∅

(X3

0, X
2

0) (X3

0,
3

1X) (X3

0,
2

0X) (X3

0, X
3

1)

∅ (X3

0, X
1

0) (X3

0,
3

0X) (X3

0, X
3

2) ∅

(X2

0, X
1

0) (X3

0, X
0

0) (X3

0, X
3

3) (X3

1, X
3

2)

∅ (X2

0, X
0

0) X
3

0 (X3

1, X
3

3) ∅

(X1

0, X
0

0) X
2

0 X
3

1 (X3

2, X
3

3)

∅ X
1

0 X
2

1 X
3

2 ∅

X
0

0 X
1

1 X
2

2 X
3

3

!!

"" ""!! ""!!

""

!!

"" !!!!!
"" ""!! ""

"""
!! !!

!!

"" !!!!!
"" ""

"""
!! !!

""

"" !! "" !!!!!!!

""
"""""

!! "" !!

!!

"" !!

""
"""""""

!!!!!!!!!

"" !!

""

"" !!

""
"""""""

!! "" !!!!!!!!!

"" !!

!!
""

"""""""

!!!!!!!!!

""
"""""""

!!!!!!!!!

""
"""""""

!!!!!!!!!

""

j
i X = X

i
0 ∪ X

3

j

(In homology, there are connecting maps from the top edge to 
the bottom edge, turning this into a commutative Möbius band.)

X
j
i = f−1[i, j]
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A vast commutative diagram
∅ (X3

0,
3

2X) (X3

0,
2

1X) (X3

0,
1

0X) ∅

(X3

0, X
2

0) (X3

0,
3

1X) (X3

0,
2

0X) (X3

0, X
3

1)

∅ (X3

0, X
1

0) (X3

0,
3

0X) (X3

0, X
3

2) ∅

(X2

0, X
1

0) (X3

0, X
0

0) (X3

0, X
3

3) (X3

1, X
3

2)

∅ (X2

0, X
0

0) X
3

0 (X3

1, X
3

3) ∅

(X1

0, X
0

0) X
2

0 X
3

1 (X3

2, X
3

3)

∅ X
1

0 X
2

1 X
3

2 ∅

X
0

0 X
1

1 X
2

2 X
3

3
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"" ""!! ""!!
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"" !!!!!
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!! !!

!!

"" !!!!!
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"" !! "" !!!!!!!
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"""""

!! "" !!
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"""""""

!!!!!!!!!
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"""""""

!! "" !!!!!!!!!
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!!
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"""""""

!!!!!!!!!
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"""""""

!!!!!!!!!
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"""""""

!!!!!!!!!

""

j
i X = X

i
0 ∪ X

3

j

X
j
i = f−1[i, j]
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A vast commutative diagram
∅ (X3

0,
3

2X) (X3

0,
2

1X) (X3

0,
1

0X) ∅

(X3

0, X
2

0) (X3

0,
3

1X) (X3

0,
2

0X) (X3

0, X
3

1)

∅ (X3

0, X
1

0) (X3

0,
3

0X) (X3

0, X
3

2) ∅

(X2

0, X
1

0) (X3

0, X
0

0) (X3

0, X
3

3) (X3

1, X
3

2)

∅ (X2

0, X
0

0) X
3

0 (X3

1, X
3

3) ∅

(X1

0, X
0

0) X
2

0 X
3

1 (X3

2, X
3

3)

∅ X
1

0 X
2

1 X
3

2 ∅

X
0

0 X
1

1 X
2

2 X
3

3

!!

"" ""!! ""!!

""

!!

"" !!!!!
"" ""!! ""

"""
!! !!

!!

"" !!!!!
"" ""

"""
!! !!

""

"" !! "" !!!!!!!

""
"""""

!! "" !!

!!

"" !!

""
"""""""

!!!!!!!!!

"" !!

""

"" !!

""
"""""""

!! "" !!!!!!!!!

"" !!

!!
""

"""""""

!!!!!!!!!

""
"""""""

!!!!!!!!!

""
"""""""

!!!!!!!!!

""

j
i X = X

i
0 ∪ X

3

j
Levelset zigzag persistence

X
j
i = f−1[i, j]
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A vast commutative diagram
∅ (X3

0,
3

2X) (X3

0,
2

1X) (X3

0,
1

0X) ∅

(X3

0, X
2

0) (X3

0,
3

1X) (X3

0,
2

0X) (X3

0, X
3

1)

∅ (X3

0, X
1

0) (X3

0,
3

0X) (X3

0, X
3

2) ∅

(X2

0, X
1

0) (X3

0, X
0

0) (X3

0, X
3

3) (X3

1, X
3

2)

∅ (X2

0, X
0

0) X
3

0 (X3

1, X
3

3) ∅

(X1

0, X
0

0) X
2

0 X
3

1 (X3

2, X
3

3)

∅ X
1

0 X
2

1 X
3

2 ∅

X
0

0 X
1

1 X
2

2 X
3

3

!!

"" ""!! ""!!
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!!

"" !!!!!
"" ""!! ""
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!! !!

!!

"" !!!!!
"" ""
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!! !!
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"" !! "" !!!!!!!
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"""""""
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!! "" !!!!!!!!!
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"""""""

!!!!!!!!!
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"""""""

!!!!!!!!!
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j
i X = X

i
0 ∪ X

3

j
Extended persistence of (X,f)

X
j
i = f−1[i, j]
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A vast commutative diagram
∅ (X3

0,
3

2X) (X3

0,
2

1X) (X3

0,
1

0X) ∅

(X3

0, X
2

0) (X3

0,
3

1X) (X3

0,
2

0X) (X3

0, X
3

1)

∅ (X3

0, X
1

0) (X3

0,
3

0X) (X3

0, X
3

2) ∅

(X2

0, X
1

0) (X3

0, X
0

0) (X3

0, X
3

3) (X3

1, X
3

2)

∅ (X2

0, X
0

0) X
3

0 (X3

1, X
3

3) ∅

(X1

0, X
0

0) X
2

0 X
3

1 (X3

2, X
3

3)

∅ X
1

0 X
2

1 X
3

2 ∅

X
0

0 X
1

1 X
2

2 X
3

3

!!

"" ""!! ""!!
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!!

"" !!!!!
"" ""!! ""
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!! !!

!!

"" !!!!!
"" ""
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!! !!
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"" !! "" !!!!!!!
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"""""
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"""""""

!!!!!!!!!

"" !!
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!! "" !!!!!!!!!

"" !!
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"""""""

!!!!!!!!!
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"""""""

!!!!!!!!!

""
"""""""

!!!!!!!!!

""

j
i X = X

i
0 ∪ X

3

j
Extended persistence of (X,-f)

X
j
i = f−1[i, j]
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A vast commutative diagram
∅ (X3

0,
3

2X) (X3

0,
2

1X) (X3

0,
1

0X) ∅

(X3

0, X
2

0) (X3

0,
3

1X) (X3

0,
2

0X) (X3

0, X
3

1)

∅ (X3

0, X
1

0) (X3

0,
3

0X) (X3

0, X
3

2) ∅

(X2

0, X
1

0) (X3

0, X
0

0) (X3

0, X
3

3) (X3

1, X
3

2)

∅ (X2

0, X
0

0) X
3

0 (X3

1, X
3

3) ∅

(X1

0, X
0

0) X
2

0 X
3

1 (X3

2, X
3

3)

∅ X
1

0 X
2

1 X
3

2 ∅

X
0

0 X
1

1 X
2

2 X
3

3

!!

"" ""!! ""!!

""

!!

"" !!!!!
"" ""!! ""

"""
!! !!

!!

"" !!!!!
"" ""

"""
!! !!

""

"" !! "" !!!!!!!
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"""""

!! "" !!

!!

"" !!
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"""""""

!!!!!!!!!

"" !!
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"" !!
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"""""""

!! "" !!!!!!!!!

"" !!

!!
""

"""""""

!!!!!!!!!
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"""""""

!!!!!!!!!

""
"""""""

!!!!!!!!!

""

j
i X = X

i
0 ∪ X

3

j
Up-down persistence of (X,f)

X
j
i = f−1[i, j]
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The pyramid theorem
∅ (X3

0,
3

2X) (X3

0,
2

1X) (X3

0,
1

0X) ∅

(X3

0, X
2

0) (X3

0,
3

1X) (X3

0,
2

0X) (X3

0, X
3

1)

∅ (X3

0, X
1

0) (X3

0,
3

0X) (X3

0, X
3

2) ∅

(X2

0, X
1

0) (X3

0, X
0

0) (X3

0, X
3

3) (X3

1, X
3

2)

∅ (X2

0, X
0

0) X
3

0 (X3

1, X
3

3) ∅

(X1

0, X
0

0) X
2

0 X
3

1 (X3

2, X
3

3)

∅ X
1

0 X
2

1 X
3

2 ∅

X
0

0 X
1

1 X
2

2 X
3

3

!!

"" ""!! ""!!

""

!!

"" !!!!!
"" ""!! ""

"""
!! !!

!!

"" !!!!!
"" ""

"""
!! !!

""

"" !! "" !!!!!!!

""
"""""

!! "" !!

!!

"" !!

""
"""""""

!!!!!!!!!

"" !!

""

"" !!

""
"""""""

!! "" !!!!!!!!!

"" !!

!!
""

"""""""

!!!!!!!!!
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"""""""

!!!!!!!!!
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"""""""

!!!!!!!!!

""

Extended persistence of (X,f) Extended persistence of (X,-f)

Up-down persistence of (X,f)Levelset zigzag persistence

‣ Every diamond is Mayer–Vietoris.

‣ Thus all monotone paths from left to right carry the same zigzag persistent 
information (rearranged, with dimension shifts).

‣ In particular, the following are equivalent:

158Tuesday, January 27, 2009

http://math.stanford.edu/~silva/
http://math.stanford.edu/~silva/


Topology in the 21st Century
January 26–27, 2009

Vin de Silva
http://pages.pomona.edu/~vds04747/

Thank you
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